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I'EBPOM C IEJUTENAMU HY 1A

PaccMaTpUBAaIOTCS HEKOTOPBIE COOTHOLIEHUA MEXIAY KOMNJIEKCHBIM aHalIM30M U Teo-
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HoreHHuIX (B cMucie Pomxynena) ¢pyuxumii.

Marin Marinov. QUASIMONOGENIC FUNCTIONS ON A COMMUTATIVE ALGEBRA
WITH DIVISORS OF ZERO

Some relations between complex analysis and the function theory on algebras are considered.
New equivalent conditions about quasimonogenic (in the sence of Rogculet) functions are given.

1. INTRODUCTION

Let H be the algebra of the real quaternions. Every quaternion ¢ € H is
represented in the form (cf. [2])

(1) q:21+22j7 zle(ca ZQE(Ca ]2:_1

Noéno and Inenaga [5] have introduced an algebra H, = (H, %) by the multiplication
w0 [H x H — H:

(Z1 + Zgj) * (‘U)l + ng) = ZwW) — 2owWs + (21’(1)2 -+ Zzwl)j. ‘

In this definition the multiplication bj, b € C, is the quaternionic multiplication of
b by j. The algebra H, is a commutative and associative R-algebra with divisors
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of sero. So, denoting
144 1y
W) = — Wy = 2 y
we have w; *ws = we*w; = 0, l.e. w; and ws are divisors of sero. By these elements
every quaternion ¢ has an expression

(2). g=qui+quw;, ¢€C el
Hence
G ¢" = qfw1+ qGws, nEN

Let us remark
Lemma 1. An element ¢ € H, is representable in the forms (1) and (2) if and
only if g1 = z1 — 221, Q2 = 21 + z71.

The algebra H. has an R-isomorphic model in R%. Let {eo, e1,e2,e3} be abasis
in R*. We shall consider the algebra R, := (R* %) ~ H, by the composition law

3 .
— t t R .
€n * €y 1= Gy m€t, Ay, €K,
t=0

with a table of multiplications

€0 €1 €2 €3

€o | €p €1 €2 €3
€1 | €1 —€g €3 —€3
“€2 | €2 €3 —€p —é€1

€3 | €3 —e€z2 —€1 €0

Obviously, eg is an unite element of R, and we may put eg = 1, ¢; = 1, e = j,
ez = k as usual.

The algebra R, was introduced by Em. Ivanoff [9] in 1905 and, irrespective of
him, by Ljush [10] in 1934. ’ ’ ‘

This paper. is written by the conceptual viewpoint of the function theory on
algebras.

2. REGULARITY CONDITION AND MOISIL-FUETER OPERATOR

In this section we obtain new conditions of regularity for quaternionic functions
with values in the algebra H.,, keeping in mind the expression (2). :

On C? we introduce a quaternionic structure by the mapping o : H — C2,
where a(q) := (21, 22) for ¢ := z; + 23§ € H. The quaternionic norm ||g|| is equal to
the complex norm |z|, z = a(q), and we may introduce a topology in H from C2.
Thus, we say that a quaternionic function f = f; + foj : D — H. is continuously
differentiable on an open set D C H and we write f € C!(D) if and only if the
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functions f; and f; are continuously differentiable on D (i.e. the complex functions
fm, m =1,2, are continuously differentiable on a(D) C (C‘z).

Definition 1 ([5]). A function f : D — H. is called regular on an open set
DCHIif fe CY{D)andD* f =0 on D, where
0 + 0 .
95 0%

Definition 2 ([3))- A function f : D — Hi is called H-regular on D if and
only if f is regular on D and Dy, * f = 0 on D, where

0 a .
Pr =55~ 55,7

D .=

Definition 3 ([5]). A function f : D — H, is called S-regular on D if and
only if f is H-regular on D and D, * f = 0, where
0 5
D 621 * o, Bz

The theory of these functions is developed in [5, 4].
Let us remark that the operator 2D is a quaternionic recording of the Moisil-
Fueter operator from hypercomplex analysis [2, 3], and on the algebra R,

3
1 a
5;;06"‘6%'

To the end, let D be a domain in H.

Theorem 1. Let f: D — H, be a continuously dzﬁercntzable function on D.
Then the following conditions are equivalent:
1) The function f is H-regular on D;
2) The function [ has an expression
flq) = Ailgr, @2)wi + folq1, 92)w2, ¢ = w1+ qaw2 € D,

where f,,, m = 1,2, are holomorphic functions on a(D).

Proof. By Lemma 1

g d 0 .d
Dxf= (521 (922)f1w1+(£;+1552_) fawa,

i} a’ d .0
Dpxf= (EZ“@“) frwy + (az . P@E;) fawa.
Hence the conditions
xf=0, Dpxf=0

are equivalent to
Ofm
dn

=0, m=12,n=12
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Theorem 2. Let f be an Hfregular function on D. Then the following condi-

tions are equivaleni:
1) The function f is S-regular on D;
2} The function f has an ezpression

f(e) = fila)wr + folgz)w2, ¢ = quw1 + qaws € D,

where fm, m = 1,2, are holomorphic functions on «(D), and on D

0fi _0f _
0q2 o

Proof. By Lemma 1

0 .0 v, .0
Ds*f:(&'; G >f1w1+<81+ 2>fzw2

and 1) <= 2) follows directly from Theorem 1.
Combining this theorem with the function theory on a polydise (cf. for example
[7]), we get the following

Proposition 1. Let ¢° = ¢w; + ¢w, € H., and let a(D) := Uy (q?) x Uz(q2)
be an open polydisc with a centre a(q®) and a polyradius (ry,7r2). Then for every
S-regular function f on D the following conditions are equivalent:

1) For f 1= @1 + paj and g = 21 + 225 € D follows

Opr _Opr 01 __Op2,
621 - 622, 622 321
2) For f := fiw1 + fows and q 1= qyw; + qawz € D follows -

filg) = p(e1 = 221),  falq) = ¥(21 + 228),
where ¢ and ¢ are holomorphic functions on U;(¢?) and Ua(q3), respectively.

3. QUASIMONOGENIC FUNCTIONS

The purpose of this section is a confirmation of known results on analyticity and
monogenity in the commutative algebras. As well known, for a complex function
= u +iv on a domain A C C' with u € C}(4), v € CI(A) (as real functions
of two real variables) to be holomorphic on A4, it is necessary and sufficient that
df Aw = 0 is fulfilled on A, where w = dz is a differential of 2 € C'. This
condition was generalized by Rosculet [6] for an arbitrary commutative algebra.
For a quaternionic function f = fiw; + fow, on a domain D C H with f € C(D)
we have an expression of the quaternionic differential df = dfiw; + dfawq, where
(9:= w1+ qawz € D)

m 0 fm
dfm :Z (‘;f dgn + 6f dq,.)

n=1

are the complex differentials of the complex functions fr,, m = 1,2.
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Definition 4 ([6]). Let w be a differential 1-form on D C H with values in the
algebra H.. A function f : D — Hl, is called w-quasimonogenic on D if fecyD)
and df Aw = 0 is fulfilled on D.

Proposition 2. Let w be a differential 1-form
(4) Cw=dqwr +dgaws, ¢ = quwy + qawy € H,,

and f : D — H, be an H-regular function on D. Then the following conditions are
equivalent:

1) The function f is w-quasimonogenic on D;

2) The function f is S-reqular on D.

Proof. This follows immediately from Theorem 2 and by the formula
df Aw= (dfl A dql)wl + (dfz A dqQ)WZ.

Definition 5 ([6]). Let w be a differential 1-form on D C H with values in
the algebra Hl,. A function f: D — H, is called w-monogenic on D if f € C*(D)
and on D
d(fxw)=0.

Proposition 3. Letw be a differential 1-form from (4) and f: D — Hl, be an
H -regular function on D. Then the following conditions are equivalent:

1) The function f is w-quasimonogenic on D

2) The function f is w-monogenic on D;

3) The function f is S-regular on D.

Proof. It follows from Proposition 3 and Definition 5, keeping in mind that
d(f*w)=df Aw.

In the case of an arbitrary algebra it is possible to introduce various (not
equivalent) definitions of the notion “analytic function”. Possibly, best definitions
were given by Scheffers in 1893 and Ward i in 1940. See also for details the other
generalizations in [3, 6, 15].

In the considered algebra H, we have

Theorem 3. Let w be a differential 1-form from (4) and f: D — H, be an
H-regular function on D. Then the following condilions are equivalent:

1) The function f is S-regular on D,

2) The function f is analytic on D in the sense of Scheffers;

3) The function f is analytic on D in the sense of Ward.

Proof. The conditions 2) and 3) are equivalent from the commutativity of the
algebra Hl,. (See [15] for details.) On the other hand, from the proof of Theorem
3.1, [4], it follows that 1) is equivalent to 3) and this completes the proof.

We conclude this section with the next Cauchy integral formula for polydisc.

Theorem 4. Let f be an S-regular function on a domain D C H. Then for
every polydisc a(U) := Ur(q1) x Ua(q2) C a(D) with a centre ¢ := q1w1 +qaw2 € D
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1t holds
1 f(t1w1 + igwg) dt dts
; T
O 10 = iy 02— 10)
U1 xaU,
Proof. By Proposition 1 and the proof of the Cauchy integral formula for
holomorphic functions [7] we obtain (5) by evident way.

4. APPLICATIONS

The applications of the algebra H. (known to the author) are in the following
directions:

1. Coding system [12].

2. Inertial navigation [11].

3. Kinematics of the rigid body [13].

Some basic results on the ring of the integer numbers aw; + bw, € H,, a € Z,
b € Z, were obtained by E. Ivanoff [9] and L. Chakaloff [14]. For quaternionic
applications see [1, 2, 8]. This list of references does not exhaust the subject.

‘We shall end with one application of the S-regular funcions in the special
relativity. The exponential function in the algebra H, was defined by Néno and
Inenaga [5] by the following way:

- :
P, (q .
exp(q) := Z ';z(' ), q:= 721+ 227,

n=0
where
' P(g)=1, Piu(g)=¢, Pnt1(g9) = Palg)*q.
This series converges absolutely in H and uniformly on every compact subset of H.
Thus, the function “exp” is S-regular in H [5] and
exp(z1 + 225) = €**(cos z3 + sin 227).
We shall obtain the upper formula in a different way. By (3) and the absolutely
convergence of the series it follows
N _ N~ 2w+ dhwo
exp(z1 + 225) = ;) S
= #1722y, 4 211220, = €%1 cos 2y 4 €7 sin 29).
In particular,
(6) exp(fk) =ch@ +shdj, 0€R,
where k =1 % j.
Let us consider a mapping L : R* — R*, defined by

z— vt , . c?

- () -y
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where v = const > 0, ¢ = const > 0. This is the Lorentz’ transformation from the
special relativity. Putting et = t;, ct’ = ¢{, we have

1- <%)?r“+ﬂk):(x4—hk)f(1—-%k).

We write \
g=q+q2j, qgu=z+t1k, ¢2=2z+yk,

and analogously,
¢ =q+¢i a=+tk =2+yk

Hence, by (6), for the Lorentz’ transformation follows the expression

g = q1 xexp(fk) + q27, 0 := arth 2.
¢
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