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1. INTRODUCTION

The aim of this paper is to define a standard representation for modules over
finite chain rings and demonstrate its application to certain basic operations over
modules. The problem of defining a standard representation arises in connection
with various problems. These include the problem of the construction of spreads
of projective Hjelmslev spaces by subspaces of various shapes, the problem of the
construction of R-analogues of designs, as well as the construction of network codes
over finite chain rings.

The paper is structured as follows. In section 2 we summarize some basic facts
about the structure of finite chain rings. We introduce a linear order on the ring
elements which is used in the definition of the standard form. In section 3 we
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present structure results about modules over finite chain rings as well as a counting
formula for the number of submodules of given shape contained in a fixed module.
In section 4 we introduce the standard form of a matrix over a finite chain ring.
We prove one of our central results that for every module RM ≤ RR

n there exists
a unique matrix in standard form whose rows generate RM . In section 5 we obtain
the standard form of the matrix whose rows generate the right orthogonal M⊥

R of
a given left module RM . In section 6 we discuss how to generate all submodules of
a given module spanned by the rows of a matrix in standard form.

2. FINITE CHAIN RINGS

In this section, we give some facts about finite chain rings. An associative
ring with identity is called a left (right) chain ring if the lattice of its left (right)
ideals is a chain. The general structure of finite chain rings is given in the following
theorem.

Theorem 1. For a finite chain ring R the following conditions are equivalent

(i) R is a left chain ring;

(ii) the principal left ideals of R form a chain;

(iii) R is a local ring and RadR = Rθ for any θ ∈ RadR/(RadR)2;

(iv) R is a right chain ring.

If R satisfies the above conditions then every proper left(right) ideal of R has the
form (RadR)i = Rθi = θiR for some positive integer i.

It is well-known that the factor-ring R/RadR is a field. We denote its cardi-
nality by q = pr. The smallest positive integerm for which (RadR)m = (0) is called
the length of R. Furthermore, for each i = 0, . . . ,m− 1, (RadR)i/(RadR)i+1 is a
vector space of dimension 1 over R/RadR, and we have |(RadR)i/(RadR)i+1| = q.
This implies that |R| = qm. The characteristic of R is charR = ps for some positive
integer s.

Let Γ = {γ0 = 0, γ1 = 1, γ2, . . . , γq−1} be a set of elements of R with γi 6≡ γj
(mod RadR) for all i, j with 0 ≤ i < j ≤ q − 1. Let us fix a generator θ of R.
Every element a from R can be written in a unique way as

a = a0 + a1θ + · · ·+ am−1θ
m−1,

for some ai ∈ Γ. We fix the following linear order on Γ:

γ0 ≺ γ1 ≺ · · · ≺ γm−1.
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This order is extended to the elements of R as follows. For the elements a =
a0 + a1θ+ · · ·+ am−1θ

m−1 and b = b0 + b1θ+ · · ·+ bm−1θ
m−1, ai, bi ∈ Γ, we write

a ≺ b if and only if

am−1 = bm−1, . . . , aj+1 = bj+1, aj ≺ bj ,

for some 0 ≤ j ≤ m−1. We can define a bijection ϕ : R→ {0, 1, . . . , qm−1} which
is consistent with the linear order of the elements of R given above. Set ϕ(γi) = i.
Further for a = a0 + a1θ + · · · + am−1θ

m−1, ai ∈ Γ, we let ϕ(a) =
∑m−1

i=0 ϕ(ai)q
i.

The following lemma contains some straightforward properties of ϕ.

Lemma 1. (1) a ∈ Γ if and only if ϕ(a) < q; more generally, the elements a
with ϕ(a) < qi form a system of distinct representatives modulo (RadR)i;

(2) for each i ∈ N, a ∈ (RadR)i, i.e. a = bθi, b ∈ R∗, if and only if ϕ(a) divides
qi;

(3) if qi divides ϕ(b) then b = aθi with a = ϕ−1
(

ϕ(b)
qi

)

.

Throughout the paper, the letters θ,Γ, p, q,m, r, s will have the meaning fixed
above. For a more detailed study of finite chain rings we refer to [2,3,4,5,7,8].

3. MODULES OVER FINITE CHAIN RINGS

Let RM be a finitely generated left R-module. We say that the element x ∈ RM
has period θi if i ≥ 0 is the smallest integer with θix = 0. The element x ∈ RM is
said to have height j if j is the largest integer with x = θjy for some y ∈ M . We
set

M∗ = {x ∈M | x has period θm}.

An integer partition of the positive integer N is a sequence λ = (λ1, λ2, . . .)
with λi ∈ Z, λ1 ≥ λ2 ≥ · · · , λi = 0 for all but finitely many i, and N = λ1+λ2+· · · .
We write this as λ ⊢ N . Sometimes it is convenient to suppress the trailing zeros
in the sequence λ. Partitions can be written multiplicatively as λ = 1s12s23s3 . . .
where si is the number of λj ’s equal to i. Denote by λ′j the number of parts greater
or equal to j. Then λ′ = (λ′1, λ

′
2, . . .) is again a partition of N and it is called the

conjugate partition of λ.

The following theorem describes the structure of finite R-modules.

Theorem 2. Let R be a finite chain ring. For every finite module RM there
exists a uniquely determined partition λ = (λ1, . . . , λk) ⊢ logR |M | into parts 1 ≤
λi ≤ m such that

RM ∼= R/(RadR)λ1 ⊕ · · · ⊕R/(RadR)λk .

The parts of the conjugate partition λ′ = (λ′1, λ
′
2, . . .) ⊢ logq |M | are the Ulm-

Kaplansky invariants λ′i = dimR/RadR(M [θ] ∩ θi−1M).
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The partitions λ and λ′ are called the shape, resp. conjugate shape, of RM .
The integer k = λ′1 = dimR/RadR M [θ] is called the rank of RM and the integer
λ′m is called the free rank of RM .

Denote by Mm,n(R) the set of all m-by-n matrices over the chain ring R.

Theorem 3 ([3]). Let A ∈Mm,n(R) be a matrix over R. Then the left module

RL ≤ RR
n generated by the rows of A and the right module MR ≤ RR

n generated
by the columns of A have the same shape.

It is known that an n-dimensional vector space over the finite field Fq has
exactly

[
n

k

]

q

=
(qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q − 1)

k-dimensional vector subspaces.

A similar counting formula holds true for modules over finite chain rings. Let

RM be a module of shape λ and U ≤ RM be a submodule of shape µ. The
conjugate partitions λ′, µ′ are related by µ′ ≤ λ′ which is equivalent to µ ≤ λ. The
next theorem is our main counting tool. For the special case of R = Zm it is known
from [1]. For the case of general R we refer to [7].

Theorem 4. Let RM be a module of shape λ. For every partition µ satisfying
µ ≤ λ the module RM has exactly

[
λ

µ

]

q

:=
∞∏

i=1

qµ
′

i+1(λ
′

i
−µ′

i
) ·

[
λ′i − µ′i+1

µ′i − µ′i+1

]

q

(3.1)

submodules of shape µ. In particular, the number of free rank s submodules of RM
equals

qs(λ
′

1−s)+...+s(λ′
m−1−s) ·

[
λ′m
s

]

q

.

Corollary 1. Let m = (m, . . . ,m
︸ ︷︷ ︸

n

) and let µ = (µ1, . . . , µn), where m ≥ µ1 ≥

· · · ≥ µn ≥ 0. Then
[
m

µ

]

q

=

[
m

µ

]

q

,

where µ = (m− µn, . . . ,m− µ1).

Remark 1. The formula in Corollary 1 can be viewed as analogue of the usual
binomial identity

(
n
k

)
=

(
n

n−k

)
.
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4. THE STANDARD FORM OF A MATRIX OVER A FINITE CHAIN RING

Let R be a finite chain ring of cardinality qm and with residue field R/RadR ∼=
Fq, q = pr, where p is a prime. Given a finite set of generators of a submodule M
of RR

n, we consider the problem of finding a standard generating set for M , which
can be easily operated on, i.e., from the standard form we expect to be able to find
easily the dual module, the span of two modules, as well as their intersection.

We denote by Mk,n the set of all k-by-n matrices over R.

Definition 1. We say that the matrix A = (aij) ∈Mk,n is in standard form
if

(1) aiji = θm−ti for some ti ∈ {0, . . . ,m};

(2) ais = θm−ti+1β, β ∈ R, for all s < ji;

(3) ais = θm−tiβ, β ∈ R, for all s > ji;

(4) asji ≺ aiji for all s 6= i (here ≺ is the lexicographic order defined in section );

(5) i1 < i2 < i3 < · · · .

The integer ti is called the type of row i, i = 1, . . . , k. Let a = (a1, . . . , an) ∈

RR
n. The smallest i ∈ {0, . . . ,m} such that θia = 0 is called the type of a. The

leftmost component aj with aj ∈ (RadR)m−i \ (RadR)m−i+1 is called the leader
of a. For a matrix A ∈Mk,n(R) in standard form we denote the set of coordinate
positions of the row-leaders of A by J(A) = {j1, j2, . . . , jk}.

Lemma 2. Let RM ≤ RR
n be a module and let A be a matrix in standard

form whose rows generate RM . For an arbitrary element v ∈ RM denote by s the
position of its leader. Then s ∈ J(A).

Proof. Denote the rows of A by v1, . . . ,vk. Let further J(A) = {j1, . . . , jk},
and let the respective leaders be θm−t1 , . . . , θm−tk . Without loss of generality
we can assume that t1 ≥ t2 ≥ · · · ≥ tk ≥ 1. Then all elements in column js,
s = 1, . . . , k, that are under the leader of row s, are zeros.

Set v = λ1v1 + . . . + λkvk. Let the leader of v be in position l. We consider
three cases.

(1) Let l < j1. Assume that s ∈ {1, . . . , k} is such an index that the type of
λsvs is the largest among the types of the vectors λivi. If λs ∈ (RadR)τs then
the type of v is at most ts − 1 − τs. On the other hand, the element in the js-th
coordinate of v is λs+(terms which are a linear combination of 1, θ, . . . , θ

m−ts−1).
Therefore the type of v is at least ts − τs, a contradiction.

(2) Let ji−1 < l < ji. Assume λs 6= 0 for some s ≤ i − 1 and λ − svs is
the largest type of a vector from {λ1v1, . . . , λivi}. If λs ∈ (RadR)τs , this largest
type is at most ts − τs. On the other hand, v has in position js the element
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λsθ
m−ts+(terms which are a linear combination of 1, θ, . . . , θm−ts−1). The first

term is from Rθm−ts+τs , but is to the left of the leader, a contradiction. We have
proved so far that λj = 0 for all j ≤ i− 1. Now we can use the argument from (1)
to complete this case.

(3) Now let l > jk. Now we can use the argument from the first part of (2).

By (1–3) l should be a coordinate position which is from J(A). �

Theorem 5. For every module M ≤ RR
n there exists a unique matrix B in

standard form such that M is spanned by the rows of B.

Proof. 1) Existence. We prove the existence by induction on k = rkM . There
is nothing to prove for k = 1. One has only to note that by a suitable multiplication
one can make the leader have the form θm−t for some t.

Let v′1 ∈ M be an element of the maximal possible type in M , m − t1 say.
Without loss of generality we may assume that the leader is in position j1 and is
the leftmost among all leaders of elements of M . By a suitable multiplication, we
can make this leader equal to θm−t1 . Now RM = Rv

′
1⊕RM

′, where RM
′ has rank

k − 1 and is the submodule of RM containing all vectors having 0 in position j1.
This follows by the fact that for every vector v ∈ RM one can find a λ ∈ R such
that v − λ1v

′
1 has zero in position j1.

By the induction hypothesis, there exists a matrix B in standard form whose
rows generate RM

′. Denote these rows by v2, . . . ,vk. Set J(B) = {j2, . . . , jk}.
Further, let the js-th component of v

′
1 be αs + βsθ

m−ts , s = 2, . . . , k, where αs =
x0 + x1θ + xm−ts−1, βs = y0 + · · ·+ yts−1, xi, yi ∈ Γ.

The element v1 = v′1 − β2v2 − · · · − βkvk has the property that the element
in position js is smaller (with respect to ≺) than θm−ts for all s = 2, . . . , k. It is
also clear that the components of v1 to the left of the leader belong to RadR

m−t+1

(since the i-th, i < j1, component in each one of v
′
1,v2, . . . ,vk is in RadR

m−t+1).
Hence the matrix A having as rows the vectors v1,v2, . . . ,vk is the desired matrix.

2) Uniqueness. Assume A′ = (v′1, . . . ,v
′

k)
T and A′′ = (v′′1 , . . . ,v

′′

k)
T are two

matrices in standard form whose rows generate the same module RM . By Lemma 2
J(A′) = J(A′′) = {j1, . . . , jk}. Let the leaders of v′i (resp. v′′i ) be θm−t′

i (resp.
θm−t′′

i ). With no loss of generality t′1 ≥ t′2 ≥ · · · ≥ t′k. In particular, this means that
all elements in A′ in the columns j1, j2, . . . , jk below the leader of the corresponding
row are zeros, i.e. we have.

v′1 = (. . . θm−t′1 v′1,j2 . . . v′1,ji . . . v′1jk . . .)

v′2 = (. . . 0 θm−t′2 . . . v′2,ji . . . v′2jk . . .)
...

...
...

...
...

v′i = (. . . 0 0 . . . θm−t′
i . . . v′ijk . . .)

...
...

...
...

...

v′k = (. . . 0 0 . . . 0 . . . θm−t′
k . . .)
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Now we can express v′′i as v
′′
1 = λ1v

′
1+ · · ·+ λkv

′

k. Since the leader of v
′′

i is in
position ji, we get that

θm−t′′
i = λiθ

m−t′
i +

i−1∑

s=1

λsv
′

sjs .

Let us note that λs = 0 for all s < i; otherwise the leader of v′′i is in a position with
a smaller number than ji. Thus the above equality simplifies to θm−t′′

i = λiθ
m−t′

i ,
which implies that m− t′i ≤ m− t′′i , i.e., t

′

i ≥ t′′i for all i = 1, . . . , k. Since the sets
{t′i} and {t

′′

i } (taken in non-increasing order) give the shape of RM we have t′i = t′′i
for all i.

Now we can conclude that vk have zeros in positions j1, . . . , jk−1 and θm−t′
k =

θm−t′′
k in position jk. Then v′k−v

′′

k has zeros in positions j1, . . . , jk. Let v
′

k−v
′′

k 6= 0.
Then its leader is in position different from j1, . . . , jk, a contradiction to Lemma 2.
Hence v′k = v′′k and the proof is completed by induction on the rank of RM . �

Corollary 2. Let A be a (k× n)-matrix in standard form over the chain ring
R. There exist permutation matrices T1 of size (k× k) and T2 of size (n× n) such
that

T1AT2 =










Ik0
A01 A02 . . . A0,m−1 A0,m

0 θIk1
θA12 . . . θA1,m−1 θA1,m

0 0 θ2Ik2
. . . θ2A2,m−1 θ2A2,m

...
...

...
. . .

...
...

0 0 0 . . . θm−1Ikm−1
θm−1Am−1,m










, (4.1)

where the entries in the matrices Aij are from Γ.

5. THE ORTHOGONAL MODULE

Let R be a finite chain ring and consider a left module RM ≤ RR
n. For two

vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) we define their inner product by

xy = x1y1 + · · ·+ xnyn.

The right orthogonal to RM is defined by

M⊥

R = {y ∈ Rn | xy = 0 for all x ∈M}.

Analogously, we define the left orthogonal to right moduleMR ≤ Rn
R. The following

theorem summarizes some basic properties of orthogonal modules [4, 5].
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Theorem 6. Let R be a chain ring with |R| = qm, R/RadR ∼= Fq, and let

RM ≤ RR
N be a left submodule of shape λ = (λ1, . . . , λn).

(1) The right module M⊥

R has shape λ = (m − λn, . . . ,m − λ1). In particular
|M ||M⊥| = |Rn|.

(2) ⊥(M⊥) =M .

(3) M →M⊥ defines an antiisomorphism between the lattices of left (resp. right)
submodules of Rn and hence

(M1 ∩M2)
⊥ =M⊥

1 +M⊥

2 , (M1 +M2)
⊥ =M⊥

1 ∩M⊥

2 ,

for M1,M2 ≤ Rn.

Assume A is a matrix over the chain ring R in (upper) standard form. Let

RM be the left module generated by the rows of A. We are going to describe a
method of finding a matrix B in lower standard form, whose rows generate the
right orthogonal module M⊥

R .

Theorem 7. Let RM be a submodule of RR
n generated by the rows of the

matrix A of the form (4.1). Then M⊥

R is generated by the matrix

B =










B01θ
m−1 Ik1

θm−1 0 0 . . . 0
B02θ

m−2 B12θ
m−2 Ik2

θm−2 0 . . . 0
B03θ

m−3 B13θ
m−3 B23θ

m−3 Ik2
θm−3 . . . 0

...
...

...
...

. . .
...

B0,m B1,m−1 B2,m−1 B3,m−1 . . . Ikm−1










, (5.1)

where

Bij = −
(
Aij −

∑

1<k<j+1

AikAk,j+1 +
∑

i<k<l<j+1

AikAklAl,j+1 − · · ·

+ (−1)j−i+1Ai,i+1Ai+1,i+2 . . . Aj,j+1

)T
.

Proof. We have to show that the dot product of any row of A with any row of
B is zero. �

Corollary 3. Let A ∈ Mk,n be a matrix over a chain ring R whose rows
generate the module RM . Let A′ = T1AT2, where T1 and T2 are permutation
matrices of orders k and n, respectively, be of the form (4.1). The module M⊥

R is
generated by the rows of

B = TT
1 B′TT

2 ,

where B′ is the matrix given by (5.1).
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6. GENERATION OF ALL SUBMODULES OF RM OF FIXED SHAPE

Let RM be a module of shape

λ = (m, . . . ,m
︸ ︷︷ ︸

k0

,m− 1, . . . ,m− 1
︸ ︷︷ ︸

k1

, . . . , 1, . . . , 1
︸ ︷︷ ︸

km−1

) = mk0(m− 1)k1 . . . 1km−1

and let RN be a submodule of M of shape µ ≤ λ. Assume M is generated by the
rows of a matrix A in standard form. With no loss of generality, A has the form
(4.1). Let further N be generated by the rows of another matrix B that is also in
standard form. Under the above assumptions B can be represented as

B = CA,

where C is a matrix in standard form with the following properties:

(1) if the leader in row i of B is in position ji then the leader of row i in C is in
position li with li ≥ ji;

(2) the components of C contained in the j-th column where

k0 + k1 + · · ·+ ks−1 + 1 ≤ j ≤ k0 + k1 + · · ·+ ks, k−1 = 0,

are from Γ + θΓ + · · ·+ θm−s−1Γ.

The proof of this observation is straightforward. It allows us to generate all
submodules with a fixed shape of a module generated by the rows of some matrix
A. We demonstrate this by the following example.

Example 1. Let R = Z4 and let A be the matrix

A =







1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2







.

The module M generated by the rows (but also by the columns) of A is of shape
λ = (2, 2, 1, 1). By Theorem 4 the number of all submodule N ≤ M of shape
µ = (2, 1) is

[
λ

µ

]

22
= 21·(4−2)

[
4− 1

2− 1

]

2

20(2−1)

[
2− 0

1− 0

]

2

= 84.

We are going to construct the possible matrices C satisfying the conditions de-
scribed above. Note that the last two columns can contain only entries from
Γ = {0, 1}.Thus we have the following possibilities for C:

(
1 Γ Γ Γ
0 2 0 0

)

,

(
2 0 0 0
0 1 Γ Γ

)

,

(
1 R 0 Γ
0 RadR 1 Γ

)

(
1 R Γ 0
0 RadR 0 1

)

,

(
RadR 1 0 Γ
RadR 0 1 Γ

)

,

(
RadR 1 Γ 0
RadR 0 0 1

)
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Here R = {0, 1, 2, 3}, Γ = {0, 1}, and RadR = {0, 2}. Thus the number of matrices
C of the first type is 8, of the second type – 4, of the third type – 32 etc, giving a
total of

8 + 4 + 32 + 16 + 16 + 8 = 84,

as given by Theorem 4.
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