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HPOCTO BBEIMMCHUMBLIX GyHKuMit B cTpykType 91. B konue nokasnipaloTcsi TpU BapUaHTa
ocosHOW Teopemut. [lepBoie ipe naloT obobBmenus vacTy [ <=“ n  =“ rnapHoll TeopeMul.
TpeTuit xapakTepuanupyeT NOTEHIMANbHBIC [-JONYCTUMBbIE QYHKIWM.

Rumen Dimitrov. CHARACTERIZATION OF THE EFFECTIVE COMPUTABILITY IN
FENUMERATIONS

The main definitions of {-basis, J-enumeration and f-admissibility are given. As a main result
the equivalence between f-admissibility and prime computability in 91 is proved. Finally, three
variants of the main theorem are proved. The first two ones are generalizations of the directions
“4e" and “=>" of the main theorem. In the third variant potentially §-admissible functions are
concerned.

1. INTRODUCTION

The notion of prime and search computability on abstract structures was in-
troduced by Moschovakis [5] in 1969. An equivalent but more natural definition
of prime computability was given by Skordev [8]. An important question is to
characterize the prime computable functions on structures with domains the set
of all natural numbers N. A well-known result is that all functions which can be
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computed using the functions S (successor), P (predecessor) and the predicate Z
(zero recognition) are the p-recursive functions. Here we study computability in
the structure M = (N; P; Z). |
Our approach is external and is based on the characterizations of abstract
computability by means of enumerations. This approach was imitiated by Lacombe
[4] and studied in [2, 3, 6, 9, 10]. In this paper we study a special class of enu-
merations of the structure 91 — the f-enumerations. We prove the equivalence of
f-admissibility and prime computability on 91. As the set of f-enumerations is a
proper subset of all enumerations, where P and Z are effective, in this case the
result in one direction is stronger than that proved by Soskov in [10] or in [9].

2. NOTATIONS

Let M = (N; P;Z) be the structure with a domain N, a single operation
P(z) = z =1, and a single predicate Z{z) which gives true for z = 0 and false
otherwise.

Let p; be the i-th prime number. We write (z); for the primitive recursive

function
[ max{t:pl/z} forz #0,
7(3::,z)-.{0 for z =0,

and yo(x) for v(z,0).
We shall fix a coding ( ) of the finite sequences of natural numbers such that

(T1,22,..,&n) = ps[s > 0& (s)o =nk(sh =z & ... & () = z4],

Le. (x1,@9,...T,) = 20.3% .. pfn.
We shall write | f(zy,...,zq) if f(zy,...,2,) is defined, and T f(z1,...,z5)
if 1t is not.

3. BASIC DEFINITIONS

Definition 1. A set A C N is called f-basis if there exists a total function
¥ : N — N such that A= {{¥(0),...,¥(:—1)) : 1€ N}.

Definition 2. The ordered pair (A, a) is called f-enumeration if A is an f-basis
and a = y[4 (ie. a({zy,T2,...,20)) = n).

Note. If (4, ) is an f-enumeration, then « is an 1,1 mapping from A to N.

Definition 3. Let « : A — B be a surjective mapping, where A C N. A
function f : B" —e+ B is called effective in (A, a) if there exists a partial recursive
function ¢ : N” —e> N such that

(Vai € A)...(Va, € A) (f(a(ar),...,a(a)) 2 a (go(al;. L an))) .

Remark. It is clear that given a code (¥(0),...,¥(i — 1)) of an i-tuple, we
can effectively recognize whether 7 = 0 (i.e. whether the sequence is empty), and if
i # 0, then we can find the code of the sequence ¥(0), ..., ¥(i — 2). It means that
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1n every f-enumeration P and Z are effective. Notice that in a fixed f-enumeration
(A, a) the function S (successor) is effective iff the function ¥ is recursive.
Definition 4. A partial function f : N® —» N is called f-admissible if it is
effective 1n all f-enumerations.
~ Remark. The definition is correct, because for every f-enumeration (A4, a) the
mapping « is surjective.

4. THE MAIN RESULT

Soskov has proved in [11] that a function f is prime computable (see [5]) in
the structure 91 iff it is partial recursive and

‘v’xl...an\?’y(f(:cl,...,a?n) =y — y £ max(z,...,x,)),
Le. . |
Ve, .. Ve, (| f(z1,...,20) — flz1,...,zn) £ max(zy,... z,)).
Herc;, for the proof of Skordev’s conjecture (the main theorem), we are not going

to use the prime computability.

Theorem 1. A function f : N® —e» N 1s f-admissible iff it is partial recursive
and there exists a natural number ¢ such that the following condition is true:

Yoy, .. Ve, ({ flzy,. .., zn) — f(z1,...,2,) £ max(zy,...,zp,C)).

Proof. A. Let f be a partial recursive function and ¢ be a natural number such
that

Ve, .. Vz, (] flz1,...,20) — f(z1,...,2,) € max(zy,...,2,,0)).

Given an {-enumeration (A, ), we shall construct a partial recursive function ¢, so
that :
f(a(al): sy a(an)) = a'(()@(al Gn))

for all ay,...,a, of A. The construction is standard and we shall not go mnto details.
Since « is an 1,1 mapping from A to N, there exists a € A such that a(a) = ¢. Fix
a and let Max : N® — N be the primitive recursive function such that for all a,
...,a,of A ’

a _ Jai ifyo(a;) = max(yo(a), yo(ar), -, 70(@n)),
Max(ay,...,an) = {a if vo(a) = max(yo(a), yo{a1), .. ., vo{an)).

Let PRED : N — N be the primitive recursive function such that PRED(z) gives

the code {ag, ..., an—1) of the sequence ag, ..., a,—1 if z is the code of the sequence

ag, ..., Gn-1, Gn, and PRED(z) = x if « is the code of the empty sequence.
Define S1: N? — N by the following equations:

Si(z,0) = &, S1(z,t+ 1) = PRED(S1(z,1)).
It 1s clear that S1 is primitive recursive and for z € A

Yo(S1(z,1)) = yo(x) ~1¢.
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Let S2 : N™ —e» N be defined in the following way:

S2(ar, ..., an) >~ pt {(yo(S1(Max(ay,...,a.),1)) = f(yelar), ..., vo(an))) = 0].
Finally, if ¢ : N —+ N is defined by the equation
w(ay,...,an) >~ S1(Maxp(a1,...,as),S2(a1,...,as)),
then it 1s easy to prove that ¢ is the function we are looking for.
B. In this direction, we shall prove that if f i1s f-admissible, then f is partial
recursive and
()  3cVay .. .Van (| flar,...,an) — flar,...,a,) £ max(ay,....an,c)).

From the result in {9] we can obtain that if f is effective in all enumerations of the
structure 9, then f is definable in 9. Here we require that f be effective only in
f-enumerations of 91 and we prove something equivalent to definability.

First we shall prove that f is partial recursive. Let (A4, ) be an f-enumeration,
where A = {(¥(0),...,¥(i - 1)) : i € N} and V¥ is recursive. It is clear from
the definitions that o and a~! are partial recursive. We know that there exists a
partial recursive function ¢ such that

flalay), ... alan)) = ale(ay,...,an)) for all dl, ...,a, of A.
Since « is bijective, we obtain
fler,zn) = alp(a™(21),... a7 (zn))) -

Hence f is a partial recursive function.
Let us now suppose that () is not true, i.e.

()  Yeday ... Fa, (| flar, ..., an) & (flar, ..., an) > max(ay, ..., an,c))).

First we shall prove the following

Lemma. The set {(z1,...,z,) : f(z1,...,zn) > max(zy,...,z,)} s infinite.
Proof. Suppose (:E{ll)} cel xﬁf}), ...,‘(.’ng), e, :EQC)) are all elements of this
set. Let ¢; = max (f (33{11), ...,:z:ff)) A i (x(lk),...,mgk})), and ¢; = 0 if the
set is empty. By (¥) we can find numbers yi, ..., yn such that (f(v1,...,yn) >

max(y1,...,Yu, €1)). Then, obviously, f(yi,...,¥.) > max(yi,...,y»), but
flys, . . un) # (;::E”,...,:::E?) for all ¢ = 1,..., k. We have supposed that the

set is finite and obtained a contradiction.

Let ©q, @1, ... be a list of all partial recursive functions of n variables.
Definition 5. Let {4, a) be an f-enumeration. An n-tuple (a1, ..., a,), where
ai, ..., ay belong to A, is called witness for the condition
(4) =(fla(ar),. .., a(an)) > a(pi(a, ..., as)))

if | f(afa,),...,a(ay)) and one of the following is true:
) Tei(ar, ... an);
2) L wi(ar,...,an), but pi(a1,...,a,) € A, i.e. T alpi(ar, ..., an));
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3) | alpi(ar, ..., an)), but flalar),.. .,q(an)) £ afpi(ar, ..., a,)).

An f-basis A that consists of the numbers ag < a; < a3 < - - will be defined in
steps. In each step { (for { = —1,0,1,2,...) we shall define a finite approximation
A; = {ag,ay,..., a5 }. In other words, at the step [ the values ¥(7) fori =0, ...,
ki — 1 will be defined. In the step (I + 1) we shall build a set A;4; D A; such that
Ay will contain a witness for the condition ({ + 1). Together with the set A we
shall also define a set A~ such that AN A~ = &. In each step (I + 1) the condition
A 2 A7 will be met.

We shall prove that the set A is an f-basis. Next, if (4, ) is an f-enumeration,
then we can find a witness for cach of the conditions (z), where 1 € N,

Step —1. Let k-1 =0,a0=1, A1 ={1}, A, = 9.

Suppose that in step (I) we have built the finite set A; and the finite set 4
which consists of the elements ag, ay, ..., ax,. Suppose ¥(i) has been defined for
1< k. :

Step [+ 1. We shall define the sets Ay, and A;’H? so that A;y; contains a
witness for the condition (I + 1).

Let (k}, ki, ..., k[, ) be an n-tuple such that

Flkipy, o k) > max(kiyy, ... ki) > ki
The choice of such n-tuple is possible because the set
{{zq,...,xn) : (Vi € n)(z; € k1)}
is finite while the set |
| {(zy,...,20) + fze,. .. 20) > max(ey, ... z0)}
is infinite by the previous Lemma. Let k}+1 = nlaX(}C}+1,..., '1v1). Note that

kigr > ki Let h = (kiyy — ki), We shall define a1, ..., ak,, and ¥(k;), ...,

Wk — 1) successively, so that the following is true for i =1, ..., A:

Bk pim1)
l) Qi = 2%1+i—1pk,+§ ’

2) Qky+i g A;

The first will ensure that a; = (¥(0),...,¥(i — 1)) for all i € N and thus A
will be an f-basis. The second will ensure that the requirements (1), ..., {I) are
not injured for the sake of ({ + 1).

Since A is finite, we can define W(k; + ¢ — 1) and az,4; successively for ¢ =
1, ..., hin the following way:

\IFCkl +1- 1) = pt [Qakt+i~lp§cl+i Q A;} and iy 41 = QQk;-{—i-lp}i(_ﬁ;‘}-é"l),

Note that 1) and 2) are true now.
Let Ay = ArU{ag,+1, ..., ak,+1} and

. Al U {901+1(stg+] cooaen )b i @z+1(%;+1 vooakp ) E A,
I+1 _ .
A, otherwise.

From these definitions we can see that Ai41 and A;, are finite, A, C A4y and
AT C ATy,



Let A = U Ajand A™ = U AT . Now we have to prove that A is an f-basis

g —1 f=—1
and (A, a) (o = 70l A) is the f-enumeration that we are looking for. It is clear that
ag, ai, ... are all the elements of A. In the following lemma we prove that A is an
f-basis.

Lemma 1. a; = (¥(0),...,¥(i—1)) fori e N.
Proof. Using the definitions, we can prove Lemma 1 easily by induction.

Next we shall see that A~ N A = &. For this purpose we shall prove

Lemma 2. A NAy =@ forall k 2 — 1.

Proof. An induction is applied.

For k = —1 we know that A, = {ag} and A7, = & and obviously the
statement 1s true.

Let suppose that for some natural [ we have A7 N A; = &. By construction
Aig1 = AtU{ar41,- .- aky, ) and ak 41, ..., a5, & A7. Using the induction

hypothesis we derive that A N Aj4y = @. If A7 = A, then there is nothing.to
prove. Else

Al xA;U{@l-H(ak}M Ce kR )} and  @rp1 @pr e Gk ) € Avgr

I+1

In this case 1t 1s obvious that A, NA;4; = O.

I+1
Now we are ready‘to prove
Lemma 3. ANA- =O.

Proof. Suppose that there exists a number a such that a € AN A~. We can
find 7 and j such that a € A; and a € A7 . It k = max(i, j), then A, N A; # O,
which contradicts Lemma 2.

We shall see next that for each i € N (a'k‘x, ..., agr) is a witness for the con-

dition (7). Let 7 be a fixed natural number. The n-tuple (k},k?, ..., k") has
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been chosen in such a way that f(k!,... kI') > max(k},... k') = ki. Note
that f(a(az:),...,a(axp)) is defined. We shall consider the following cases for

ei(ags, ..., axr):
1. ‘Pi(%g» - g-;akf) € A;.
Since A; = {ao,...,ax,}, then

(Va € Aj)(a(a) = vo(a) £ ki) and a(pi(ag:, ..., axr)) £ ki
We know that f(k},... k") > k; and hence
(X({Pi(akf, . wak:‘)) ‘-fé f(a(akf)s oo )é(ai’:‘))z

i.e. (ag1,...,akr) is a witness for the condition (i) by 3) of Definition 5.
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2. Tilagr, ... akn).

Since T cr(gai(a;c‘;, e a;gf)), we obtain that (akz, ..., agr) is a witness for the
condition (7) by 1) of Definition 5.

3. | cpz-(akt;, ..., agr), but ‘Pi(%}a coagn) € Ag

In this case g@i(ak‘;, o agr) € A7 € A7, By Lemma 3 AN A~ = < and hence
wi(agy,...,axr) ¢ A. We obtain T a(pi(ag:, ..., axr)) and then (ag1,...,ax») is a
witness for the condition (¢) by 2) of Definition 5.

We have derived that (ag,...,axr) is a witness for the condition (i) and the
theorem is proved. ’

Remark 1. In the construction of the set A we have not used the partial
recursiveness of f.

Remark 2. The construction of the set A~ could be avoided because the
requirement 2) (i.e. agp, . ¢ A]) instep (I +1) of the construction of the set A may
be changed by the condition:

if forsomel; £1 y= {Ph(“kf ,-,agr ), then akp, £y
X 1 . 3

5. THREE VARIANTS OF THE THEOREM

First we shall prove a stronger result than that proved in the direction “<=” of
the main result.

Definition 6. Let o : A — B be a surjective mapping, where A C N. A
predicate P(zy,zg,...,2,) on B is called effective in the enumeration (A,«) if
there exists a partial recursive function ¢ : N™ —e+ {0, 1} such that

(Va1€ A)...(Va€ A)(lplar, ..., a) & (Plalar),...,a(an)) & elar,...,a,) = 1)).

Theorem 2. If f is a function such that
AeVzy .. Ve, (] flzy, ... 2zn) — flzy,. .., 2,) £ max(xy,..., 2n,c)),
then f 1s effective in all enumerations of the structure 9.

Proof. First we shall note that enumerations of the structure 91 are those for
which the functions and predicated of the structure are effective. Obviously, the

f-enumerations are enumerations of N.

Let (A, @) be an enumeration of 0. Let Z : N — {0,1}and PRED : N —» N
be partial recursive functions such that for all a € A:

1) o(PRED(a)) =~ a(a) + 1;

_[1 ifafa)=0,

2) 2(a) = {0 if a(a) # 0.

Obviously, | PRED(a) € A and | Z(a) for all « € A. Thus | Z(PRED(a)) for
ala€ Aandt € N.
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Now we shall see that there exists a partial recursive function 4 such that
Y[A = «. Let us define v : N —e» N in the following way:

y(z) =~ pt [Z(PRED'(z)) = 1] .
We shall prove that y(a) = a(a) for all a € A4, ie.
(W)  a(a) = ut [Z(PRED (@) = 1].

Since | a(a) € N for a € A, then (1) could be proved by induction on a(a). The
proof of this fact is left to the reader.
We are looking for a partial recursive function ¢ : N —e> N such that

(Va; € A)...(Van € A)(f(a(a1),...,a(an)) =~ alp(ay, ..., am))).

The construction of ¢ is the same as the construction of the function ¢ in the proof
of the main result.

In the proof of the main result we observed that if
Vedzy ... 3zn() flzr,. .., z0) & flz1,...,2a) > max(zy, ..., Ty, ¢)),

then there exists an f-enumeration (A4, a) such that f is not effective in {A, o). We
built the set A in steps. In each step we built a finite approximation of A. We
shall analyze that construction and obtain a stronger result than the one proved in
the direction “=" of Theorem 1. We have noted that the construction of A could
be modified in such a way that the use of A~ be avoided. We shall use that f is
partial recursive and modify the construction of A in the following way

On the step (I4+1) we define effectively a code of an n-tuple (k1+1’ ie1s e Kiy)
such that
f(’“rl-{-u oo k) > max(k,ﬂ,.‘ kiy1) > ki
Later we define the recursive functmn S : N — N such that S(I+ 1) gives the code
of the n-tuple (kj,,, kf ,, .. i’+1) which was defined on step (I + 1).

Let F' be a primitive recursive function such that
(z1,22,...,2n,y) € Gy & F2(F(z1,22,...,2n,y,2) = 0)

and let g(z1,29,...,2n,t) = F(z1,20,..., 24, L(t), R(1)).
We know that f has the normal form

f(zy,2a,.. . zn) = L{ptlg(zy, 20, ..., zp,t) = 0]).
Let J be a standard coding of ordered pairs in N. We denote
JP=J, TNz, 29,20, Tag1) = (™21, T, ..., 20), £ng) for n > 2
Let Pr]. (m £ n) be a primitive recursive function such that
Pr (J"(x1,29,...,Zn)) = Tm

(for n = 2 we write L for Pr} and R for Pr?).
Define the functions S: N — N and M : N — N as it follows:
1) S(—1) =0 and M(-1) =0
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2) S(I + 1) = L(ps{g(Prit!(s), Pr3 T (s), ..., Prpt (s), Prntl(s)) = 0
& L(Prpti(s)) > max(Pr}t!(s), Pri*i(s),..., Prit(s))
& max(Priti(s), Prit(s),..., PritY(s)) > M(])]) and

M+ 1) = max(Pr}(S({ + 1)), Pr3(S(I + 1)), ..., Pr (S(I + 1))).

Remark. We shall define S and M for n = —1 in order to unify the definitions
of S and M for n = 0 and n > 0, but we shall think that they are defined only for
n 2 0.

B By induction we shall prove that S and M are totally defined.

1. For [ = —1 we have S(—1) = M(-1) =0

2. Let | S(I) and | M({) for some natural /.

3. We know that the set {(z1,...,zn) : f(z1,...,2n) > max(zy,...,2,)} is
infinite and there exists (z1,...,z,) such that

| f(z1, ... &n) > max(zy, ..., z0) > M(1).
Using the normal form of f, we derive that there exists s such that
g(PrPt(s), Priti(s), ..., Piiti(s), Prnti(s)) = 0
& L(Pr*1(s)) > max(Pri*i(s), Pryti(s), ..., Priti(s))
& max(Priti(s), Priti(s), ..., Priti(s)) > M(l).
From here we can easily see that { S({ + 1) and then | M({+ 1). Thus, using the
definition of the functions S and M, we derive that they are recursive. We can see
that S(I + 1) is the code of the n-tuple (kf+1’ fe1r- o kfp ), which was defined on
step (I + 1), and that M(I+1) = max(kgﬂ,kl“, . k-’+1) = kig1.
Let § be a universal for the partial recursive functions and recursive predicate

such that: pi(z1,...,2,) =y & 32§, z1,...,T5,y, z). Weshall define a predicate
B(z) such that B(z) & = € A. For this purpose first we shall define the predicate

¢ in the following way: .
Gols,2,3) & Yl € pll(MD) < ()0 =) & (&) =) € M(I+1))],
(VyVz(F(ly, PREDE)e = PrilSth)) gy PRED®) = PraS(ti)) (g y )
— (2PRED"*(2)pf,y, —; # V).
Next define the predicate €; as it follows:
Ci(s,z,1) © Cols,z,i)&Vs1 < sC(s1,,1).

Note that if z = {a1,...,q;) (j > ), then €;(s,z,7) is true if and only if 5 is
defined just the way ¥(j — ¢ — 1) is defined in the construction of the set A in the
main theorem.

By the expression (M(l) < ((z)o ~ ))& (((z)o ~1) € M(I + 1)) we find a
number [ such that (/ + 1) is the number of the step, where PRED*(z) is defined.
Then for all I; £ ! we calculate the code of the first n-tuple (kj ,k7,..., k) (ie.
S({1)) such that

flk RS, k) > max(k) kP, .. k).
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Further we find the least s such that for all I £ 1if ¢, (z&; ,-o, Tgp ) = ¥, then

2 PREDi“(x)p'gx)o -t
Since M and S are recursive functions and ¥ is a recursive predicate, there
exists a recursive predicate 3, such that :

Ql(sjym; 2) = Vgl%l(sa T, i? ql) & (Vsl < S)"‘VQEmz(sl y T, é: QQ)a
Le.
(**) ¢, (8% Ly 3) ~ \?’91‘331 (Ss T,t, 9’1) & 3‘}’3%2(3: r,, 93)1
where P, is agaln a recursive predicate.
Let us define B in the following way:
B(z) 4 (PREDE*(2) = 1& (Vi < (2)o)(€1((€)((ay, i) T, 1))

Let notice that B(z) is true if and only if z = 27.3%(®) . p¥"~ where U (0),
U(1), ..., ¥(n — 1) are exactly like those ones, defined in the construction of the
set A in the proof of the main result. In other words, B(z) < z € A,

Using (*x), we can find recursive predicates P4 and P, such that

€A < Br) & V4P, ©) & Fgs P4 (g5, ).

The set {z : dgspa(gs, z)} is recursively enumerable. The set {z : Vq4p3(qq4,2)} is
co-recursively enumerable. Thus the set A could be represented as a difference of
two recursively enumerable sets. We proved the following result:

Theorem 3. If the function f: N — N 1s effective in every f-enumeration
(A, o) such that A can be represented as an intersection of a recursively enumerable
and a co-recursively enumerable set, then f is partial recursive and there exisis
¢ € N such that

Ve Vol flza, .. zn) — flzr,. . 2,) € max{zy,...,z,,0)).

For the proof of the main theorem we have defined the term witness for the
condition (i) —(f(e(ar),...,a(a.)) =~ alpi(ai, ..., an))), where the left-hand side
of this conditional equality was defined for every witness. Now we shall use this
fact to prove another variant of the main theorem.

Definition 7. If « : A — B, where A C N is a surjective mapping, then
f : B™ — B is said to be potentially effective in the enumeration (A, ) if there
exists a partial recursive function ¢ : N® —» N such that

(Va; € A)...(Ya, € A)( | fla(ar),...,a(a)) — | a(p(ay, ..., an))
& f(a(al)) Tt a(aﬂ)) - a(s‘o(al’ s an)))

Definition 8. f : N™ —> N is called potentially f-admissible if f is potentially
effective in all f-enumerations.

Theorem 4. A function f: N — N is potentially f-admassible iof and only +f
f 15 potentzally partial recursive and there exisis c € N such that

Ve .. Ve, (] flzy,. .. zn) — flzy, ..., 2n) £ max(zi,...,Ta,c)),
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Proof. A. Let {A,a) be a functional enumeration, f be potentially partial
recursive, and let exist ¢ € N such that

Vo, .. Ve, (l flzr, ..., 20) — f(z1,...,2,) £ max(xl,...,:cn,c))'
We shall find a partial recursive function ¢ such that |
(Va; € 4)... (Va, € A)( | fle(ar),. .., a(a,)) — | alp(ay, ..., a,))
& fla(ar),. .. alan)) = a(p(ay, . .., a.))).

The construction of the function ¢ is the same as the construction of ¢ in the
proof of the main result, but here instead of the function f we shall use its partial
recursive continuation.

B. In the direction “=” for the proof that f is potentially partial recursive we

can see that a(p(a™!(z1),...,a Y x,))) is a partial recursive continuation of f.
For the proof that 3¢ € N such that
Voi.. Ve (l flzy,...,20) — flzy,...,25) £ max(zy,...,Zn,c))

we can construct a set A just the way we built it in the main theorem. We can see
that | f(a{zg1),. .., a(zgn)), but either ‘

[ a(pi(err, ... zkr))

or

(1 a(@i(mkj; Ceey 33&:‘)) &@(%(%p R $k:‘)) 7 f(a(xk‘x), o a(zEp)

for all natural ¢. Thus there exists ¢ such that .
(Va; € A) ... (Va, € A)( | flefar),...,a(an)) — [ a(e(ar,...,a,))
& fla(ar), .. elan)) = olplay, .. ., an))).
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