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Yaedap Maues. CBOMCTBO UEPY-POCCEPA U PEAYKUUU ECTECTBEHHBIX
BbIBOAOB

B cTaTbe paccmorpeno cpboiictso Yepu-Poccepa ana HekoTOPHIX BUAOB PeayKUMH.
Ilpennosxen npumep, uTo peaykuuns neduumponana B (1}, He o6nafaeT KaHKBIM CBOMCTBOM,
HECMOTPR Ha TO, YTO OHO MCHOONABLROBAHO [AJAA JOKA3ATENbCTBA €JWHCTBEHHOCTH HOPMAalb-
Hoit GOpMBEL U AN OTOXAECTBJICHME BLIBOJAOB; NOKA3aH BHIBOA, KOTOPLIN peAyuupyeTcsa Ao
PA3NUUHBIX HOPMa/bHbLIX, DTO CBOMCTBO HeNCTBUTENILHO AMA ©ToMl peAyKUMM B TOM Cy-
yae, €C/IM OTMeHMM TPeBOBAHME O NDPHUIIOMKEHUM KOMYTATUBHLIX DENYKUMM TONBKO K MaK-
CUMANbHBIM CerMEHTOM. 1aK Kak ¢cBoMcTBO nelicTBUTENbHO ANA (- M 7-PeAYKIUMM, MOMKHO
npeANoo¥UThL, YTO NpHA NOBABAEHUM KOMYTATUBHBIX PeAyKUMM OHO OBl COXPAHUJIOCH —
3/4eCh NOKA3aHO, YTO ®TO BeAeT K yTpare cBolcrBa.

Chavder Iliev. ON THE CHURCH-ROSSER PROPERTY AND REDUCIBILITY OF NATU-
RAL DERIVATIONS

The paper contains a treatment of the Church-Rosser property with regard to several kinds
of reductions. We give an example that the reducibility relation defined in [1] does not possess
the property, although it is used to verify the uniqueness of the normal form and for stating the
identity between proofs; we show a derivation that reduces to different normal ones. The property
for this relation appears if we deny the restriction over commutative reductions to be applied only
for maximal segments. The Church~-Rosser property is a well-known fact for reducibility of
derivations, and it might be expected that enlarging reducibility with commutative reductions
will save the property. Here we illustrate that in that case the property is lost,
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0. INTRODUCTION

The reducibility relation of natural derivation can be stated by analogy with
A-calculus: F- and n-reductions are defined for derivations. The question about
the Church-Rosser property for these reductions seems to be clear, since they are
analogous to reductions in A-calculus and the Church-Rosser property is well-known
fact for A-terms [3]. According to the Curry-Howard isomorphism we have the
same fact for implicative derivations. 1t i1s no difficulty to verify the property for
derivations in the full language.

Another way of stating the reducibility of derivations is using the inversion
principle, as it is made in [1]. Then the question about the Church-Rosser prop-
erty needs some particularization. According to that principle the corresponding
introduction and elimination inference rules are inverses of each other and nothing
new 1s obtained by an elimination immediately following an introduction, so that
such a sequence of inferences occuring in a derivation can be dispensed with —- in
other words, a proof of the conclusion of elimination is already “contained” in the
proof of the premisses when the major premiss is inferred by introduction.

The notions mazimum formula and mazimum segment are based on this princi-
ple and make it explicit for the diflerent cases that can arise; the inversion principle
implies that they are unnecessary detours in a derivation which can be removed. A
derivation is defined as normal (cf. [1]), when it contains no maximum formula and
no maximum scgment. A f-reduction removes the maximum formula. To remove
maximum segments, commutative reductions are stated. They decrease the length
of maximal segments. This allows to define a proper measure and by induction on
it to prove that every derivation reduces to a normal form -— the well-known Weak
normal form theorem. By the Church-Rosser property it follows that the normal
form of every derivation is unique — thence derivations with identical normal form
-can be equivalenced. In studies treating reducibility of derivations ({1, 2]) a detailed
proof of the Church-Rosser property is missing, although it is used to verify the
uniqueness of the normal form. Here we shall examplify that the normal form of
derivations in the full language of intuitionistic logic is not unique when commuta-
tive reductions are carried out only for a maximum segment (this requirement for
commutative reductions is essential for the proof of the Normal form theorem).

It is not necessary to require the maximum segment to carry out commutative
reductions — then we call them free (commutative) reductions. Such a reduction
does not always lead to any simplification of the derivation, but sometimes only
changes the places of inference rules. Nevertheless, the refusal of the mentioned
above requirement 1s essentlal for the Church-Rosser property, i.e. the reducibility
relation defined by the S-reductions and the free reductions has the Church-Rosser
property.

With the help of the Church-Rosser property we can state a natural equivalence
relation between the proofs (derivations). As we mentioned above, the Church-
Rosser property is valid for gn-reducibility. If we enrich this relation with the
commutative reductions, using the Church-Rosser property, we could define a “bet-
ter” equivalence relation between the proofs. We shall examplify that the adding of
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the free reductions to the 8- and n-reductions leads to the lost of the Church-Rosser
property.

1. DEFINITIONS

We shall represent derivations as terms and let denote them by e, f, g, h
etc. The formulas that derivations are constructed by are in a language containing
&, Vv, D, 1,V and 3. Derivations are constructed inductively starting from the
atomic ones of the kind [A4], where [A] is the trivial derivation of the formula A
from a sequence of formulas (assumptions, hypotheses) I', with I containing A. For
each logical constant o (except .L) we have two inference rules — introduction and
elimination which we denote by o1 and o™, respectively. In certain steps some of
the assumptions and parameters may be discharged (or closed). To avoid collisions
in substitution operations, we shall put labels on the discharged f{ormulas. We shall
use natural numbers for labels, and we shall write them as an upper index of the
labelled formula A, i.e. A%, Tt is suitable to divide the sequence of assumptions
into two ones — A with not labelled and I’ with labelled formulas, and to allow
discharging formulas only from I'. We write d : AT — A for “d is a derivation
with conclusion formula A and all uneliminated (or open)} assumptions belonging
to AI'. The relation d : A" — A is defined inductively as it follows:

1.1. Definition

1)If A€ A, then [A] : AT — A;if B¥ € T, then [B*] : AT — B;

2) If dy : AT — A, d; : AT — B, then &tdod, : AT — A& B,

3)Ifd: AT — Ap & Ay, then &5 d : AT — Ap, &7 d : AT — Ay,

4)Ifd: AT — A, then Vid: AT — AV B, V{d: AT — BV 4;

5)If d: AT — AgV Ay, do: AAET — D, d; : AAPT — D, then
V= d(AX)do(A¥)d, - AT — D, and the occurrences of [A5°] and [A%] in do and
dy, respectively, are closed;

6) If d : AB*T' — C, then D% (B¥)d : AT — B > C, and the occurrences
of [B¥] in d are closed,;

NIfd: Al — BD C,e: AT — B, then D7 de : Al' — (]

8) If d . Al — A(u), u ¢ Par(AT, then V¥ (u)d : AI' — VzA,(2), and the
occurrences of u in d are closed;

9) If d : AT — VzB,(z), t is a term, then V™td : AT — By(t);

10) If d : AL — By(t), t is a term, then 3*td : AT — 2B, (1);

1) If d: AT —s 32B(z), e : AB¥(u)I — C, u ¢ Par(Al'C), then
3-d(B*,u)e : Al — C, and the occurrences of [B*] and u in ¢ are closed;

12)If d: AT — 1, then L7d: AT — B.

By [F] we shall denote derivations of the kind [4] or [B*]. The occurrence
of [F] in a derivation is said to be open (or F' is open) if it is not closed in the
subderivation in which [F] occurs. Open parameters are defined in the same way.

Note. According to the definition a labelled formula can be open, but if a
formulais closed, it is surely labelled. Also, a formula or a parameter may have open
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and closed occurrences In a certain derivation, depending on the subderivations it
is met 1n.

Derivations that only differ with respect to closed parameters or labels of closed
formulas should be counted as identical.

A conclusion of mnference rule is the conclusion of the derivation obtained by
immediate applying of the rule. Major premiss of an elimination rule o~ is the
conclusion of the derivation written immediately after 0=, Length of a derivation
is defined as the number of the occurrences of strings of the kind ¢~ or ¢ in the
derivation. '

1.2. Substitution operations

By [d | F : €] we denote the result of replacing the open occurrences of [F]in d
with the derivation e. The result of replacing the open occurrences of a parameter
u in d with a term t is denoted by [d | u : t] or shortly d,(¢t). We say that a
collision appears at the substitution operation if a closed formula or a parameter
of the derivation we substitute in occurs as open in the derivation or in the term
we substitute with; or when substituting in a derivation or a subderivation of the
kind 3~ d(B*, u)e, BE(t) for some term ¢ occurs as open in the derivation we sub-
stitute with (by BE(t) we mean (B,(1))*). Collisions may be avoided by renaming
closed parameters and proper change of labels of closed formulas. Since we have
equivalenced derivations that differ with respect to closed parameters and labels of
closed formulas, we shall assume that collisions do not appear at substitutions.

By ©,(t) we denote the replacing of the parameter u with the term ¢ in all
formulas of © (© is a sequence of formulas).

Lemma. a) Let h : Al — D. Then [h|v:t]: Ay(1)[,(2) — Dy(t).
b) Let h: AFT — C and g : AT — F. Then [A| F: g]: AT — C.

Proof. An induction on the length of h is applied.

2. REDUCIBILITY OF DERIVATIONS

2.1. B-reductions and commutative reductions
We define reductions as formal expressions of the form g — ¢’ as follows:
(81) &7 &Tdody — di, 1< 2; ;
(82) Vv~ VI d(AS)do(AR)dy — [di | A 2 d), i< 2
(83) D=+ (BF)de — [d | B* : o]
(84) ViVt (u)d — [d ] u: t];
(B5) F73Ttd(BF u)e — [[e | u:t) | BE(t) : d];
(el) o~ 3 d(B* uw)eY s I~ d(B*, u)o~eY;
(c2) o V= d(AE)Ydy(AR)dy Y — v d(AE)om doY (AF1)o—d Y
The expressions (§1)-(85) we call B-reductions and (cl), (¢2) — free commu-

tative reductions. Y 1s an expression depending on ¢~ . For (¢l) we assume that
v and BE(t) (for any term t) do not occur as open in Y; and for (c2) we assume
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that Af° and A¥ are not open in Y (these reéquirements are not restrictions over
(c1) and (c2), since they concern closed parameters and labels of closed formulas).
In the expression of the kind g ~ g’ the right hand side ¢’ is called a reduction of
the left hand side g. We write d — d’ for “d’ is obtained from d by replacing a
subderivation of d by a reduction of it”. The reductbility relalion is defined as the
reflexive and transitive closure of |—;, and it is denoted by —. A derivation is said
to be irreductble if it reduces only to itself.

2.2, Maximum formula and maximum segment

Mazimum formula is a formula which is a conclusion of introduction rule and
magor premiss of the corresponding elimination rule. A derivation of the form
o~ dY is a mazimum segment if there exists a sequence of derivations d; (i £ n)
such that do is obtained by immediate applying of ¢* (the corresponding of o7),
for every 7 > 0 d; is obtained from d;_; either by V™ or by 37, for every ¢ > 0 the
conclusions of d; and d;_ are 1dentical, and d,, = d. The number n is called length of
the mazimum segment. A derivation is defined as normal if it contains no maximum
formula and no maximum segment. By [-reductions the maximum formulas are
removed (although new ones may appear) and the commutative reductions decrease
the length of maximal segments in the cases they occur. It is not necessary to
require a maximum segment to carry out a free commutative reduction. When we
require the left hand sides of (c1) and (¢2) to be maximal segments, the reducibility
relation that arises is denoted by {— (as defined by Prawitz in [1]). Obviously, a
derivation is normal if and only if it is irreducible (in the sense of {—). According
to the Weak normal form theorem every derivation reduces to a normal one. If e
had the Church-Rosser property, every derivation should reduce to unique normal
form. Here we give an example of derivation which reduces to different normal
forms, i.e. = does not possess the Church-Rosser property and the conjecture ([1])
that two derivations may be equivalenced only if the normal derivations to which
they are reduced are identical 1s not vahd.

2.2.1. Example. Let A, B and C be formulas, u ¢ Par(AC), D = B& (A& C), -
and F = 32D, (z). We construct the following derivations:

dy = &H[A¥|&T&T[D"] : FAFDF — A& C,

dy = &7 [D"] : FB™D" — A& C,

d=vi&;[D"]: FD" — AV B.

Then e = V= d(A*)dy(B™)d; : FD* — A& C. Let

. h=&T37[F)(D", u)e: F — C.

We shall show that A reduces to two different ones.

A& C is a conclusion of &*[AF]&T &7 [D"], which is obtained by immediate
applying of &%, and next the rules V7, 3~ and &7 are applied consequently, i.e.
we have a maximum segment, so we can carry out the following reductions:

h=&737[FI(D", u)e - 37 [FI(D" w)&kTe (by (el))
= 37 [FUD", w)&y v~ d(A*)do(B™)d;  (by (¢2) in &5 v~ d(A*)do(B™)d, )
b 3T[FYD", u) V™ d(AF)&ey do(B™)&T di.
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VT d(AN&T do(B™)&T di = VT VT &G [DPN(AR)&T do(B™)&T &7 (D] (by (82))
b (&7 & (D7) B™ & [D7]] = &7 &7 [DM],
1.e.
V(AR )& T do(B™ )T di b &7 &7 (D7),
Then '
A7 [FI(D" u) VT d(AR)&T do(B™)&T dy - 3T [FI(D™, )& &7 [D"].
We have
ho= &y 3T [FI(D¥, u)e t— I7[FUD", u)dey &7 [D7] = hq,

and hg 1s normal.
On the other hand,

e = V7 V] &5 [DM)(AF)do(B™)&T [D"] (by (82))
b (& [DP] ] BT &g [DM]] = &7 [D7].
Then
h=&7TI[FI(D",w)e = &7 37 [FI(D", w)&i [D"] = hy.
In Ay we can not carry out the reduction

&7 3TIFID™ wkT [D"] 1 37 IFID", w)&y &y [D7],

since &7 37 [F](D™, w)& [D™"] is not a maximurn segment, hence hy is normal. We
have

h = ITFID" u)ke &7 [D?] = hg and A ~ &7 3T[FUD™, w)&T[D"] = hy,
where hg and A, are normal and not identical.

There may be objection in connection with the derivation V= d(A¥)dy(B™)d,
since no assumption is closed in d; by V™, but if we take &, &*[B™]d; instead of
di, by a similar way we can reduce h to hy and hy.

As it is scen from the example, the reason for the different normal forms of
~ one and the same derivation is the restriction over commutative reductions to be
applied only for maximal segments.

We can redefine the notion “maximum segment” by changing “dy 1s obtained
by immediate applying of ot (the corresponding of ¢7)” in the above definition
with “dg is not of the kind 3~ g(B*, u)e or V™ f(C*)fo(D?)f;”. Then we have: a
derivation is normal (contains no maximum formula and no maximum segment) if
and only if it is irreducible (in the sense of }—).

3. CHURCH-ROSSER PROPERTY

In this section we shall give a sketch of the proof of the Church-Rosser prop-
erty for reducibility relation constructed by S-reductions and the free commutative
reductions. Also, we shall examplify that the extention of this reducibility relation
with n-reductions leads to the lost of the property.
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To verify the property, we shall use the Tait’s idea for A-terms.

3.1. Fast reduction

The relation “fast reduction” is defined inductively using the already defined
reductions. We shall denote it by “j—

Definition.

(R1) di~ d;

(R2) if d; - ¢; for every i < 2, then &Vdod; i— &tege;

(R3) if di— d', then & d i— & d' for every i < 2;

(R4) if di— e, then V] d— Vie for every i < 2;

(R5) if di~ d’, di — e; for every i < 2, then

V7 d(B*)do(C™)dy i V7 d'(BF)eo(C™)es;

(R6) if d - d', then Dt (B*)d -2+ (B*)d';

(R7) ifdi— d', e = €', then D~ de =D~ d'¢’;

(R8) if d— d’, then V*(u)d 1— V*(u)d';

(R9) if d 1~ d’, then V™ td i— V™ id’;

(R10) if d 4 d', then 3tid y— 3T d’; ,

(R11) if dy— &', € 4 €', then 3~ d(B’TC w)e i 37 d'(B¥ u)e’;
(R12) if di— d', then _L di— L~d;

(R13) if d; i e;, then & &t dody 11— e; for every i < 2;

(R14) if di— ', d; i e;, then
V™ VFd(AE)do(AR Yy i [es | AFr 0 d] for every i < 2

(R15) if d i~ d', e i~ €', then D™ D% (BF)de i [d' | BF : ¢'];

(R16) if d— d', then V"V (u)d 1— [d' | u : 1];

(R17) if di— d’, ¢ — ¢, then 373 td(B* w)e v— ([’ | u: 1] | BE(@) : d'];
(C1) ifo=eY i~ ¢, d i d', then o~ 37d(B*, u)eY 11— 3~d'(B*, u)e/;
(C2) if 07d;Y 1~ d; for every i < 2, di— d’, then

o™ VT d(AEYdo (AR Ydy Y e VT d (ARG (AS) .

As for (c1) and (c2) we have similar requirements for u, B¥, A% and A% in
(C1) and (C2).
~ We shall call (R1)~(R2) simple (fast) reductions.

[t is almost obvious that the transitive closure of 1— coincides with —. To
prove that fact, it is enough to verify:

1) if d }—, ¢, then d — ¢, and

2)if dit— g, then d {— g.

The first condition verifies by induction on d, and the second — by 1nductlon
on the definition of

Definition. The relation }— has the Church-Rosser property if for every d,
do, d; that d }— dp and d |— d; there exists d* such that dy }— d* and d; |— d”.

Using the fact that if a relation has the Church-Rosser property, then its reflex-
ive and transitive closure also has the property (cf. [3]); to verify the Church-Rosser
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property for }—, it 1s enough to verify 1t for j—. We can not prove the property
directly for p—, since +—; does not possess it (it is easy to give an example).

First we state two commutational lemmata which say that — commutates
with the substitution operations from Section 1.

3.1.1. Lemma. If hy— ', then [h | w : t] = [A' | w2 ¢].

3.1.2. Lemma. If h: AFI' — C, by : AT — F and h 11— K, hy 1— hi,
then [h | F': hy]i— [R"] F o BY).

The proof of the lemmata is carried out by induction on the length of A.

3.2. Theorem. The relation — has the Church-Rosser property:
if b h® and h w— A1, then there exists h* such that h® w— h* and
h! 4 h*.

Proof. An induction on the length of h is applied. If h = [F], then the
only possibility for R® and A! is h® = [F] and h! = [F]. Then A* = [F]. We
shall treat in details only one of the cases concerning commutative reductions —
h = 0=37d(B* u)eY. The case h = o~ V™ d(AL°)do(A¥*)d,Y is similar. A
treatment of the cases concerning §-reductions may be found in [2].

Let h be of the kind o~ 3~ d(B*, u)eY . The following subcases arise:

1. o= 37d(B* u)eY i— 3-d°(B*,u)e® — A  (by (C1)) and

o3~ d(B*,u)eY — o~ 3 dY(B*, u)elY? = h! (by simple reduction),
where by hypothesis we have ¢~ €Y — €°, €Y 1— e'Y!, dy—~ d’ for j = 0, 1.

We have to show that there exists h* such that h® — h* and h! — h*.
The induction hypothesis is valid for 67eY. We have c~eY 11— o7 e'Y! and
o~ eY i— €%, hence there exists e* such that 07 e'Y! j— e* and e° — e*.

By the induction hypothesis for d we have d/ - d* for j = 0,1. Let
h* = 3=d"(B*, u)e*. Then

hO = 3=dO(B*, u)e® 11— I~ d*(B*,u)er  (by (R17)),

h' = ¢~ 3 d (BF ,w)e! YT = 3-d*(B*,u)e”  (by (C1)).

2. ¢~ 37 d(B*, u)eY — I7d°(BF,u)e® = A% (by (CL)),

o~ 3" d(B*, w)eY — 3-dH(BF u)e! = Al (by (C1)),

‘where 0= ¢Y — ¢ for{=0,1,and d i d/ for j =0,1. By o~ eY — &/ for j = 0, 1,
and by the induction hypothesis for 0~ €Y we have that there exists €* such that
¢ t— e* for { = 0,1. By the induction hypothesis for d : &/ - d* for j =0, 1. Let
h* = 3=d*(B* u)e*. Then by (R17) we have

A® = 3~ d%(B*, u)e® 1~ 37 d"(B*, u)e*
and

At = 37d"(B*,u)e! i~ 37 d*(B* u)e".

3. h= o~ 3~ 3Hd(B*, u)eY.

h = o= 3~ 3ttd(B*, w)eY — I~ ITtd°(B*,u)e” = h® (by (C1)),

3-3ttd(B*, w)e - [[¢/ |u : t)BE() : 4] (by (R17)), and

h=o-373%d(B*, u)eY 11— o7[[e' | u:t] | BEt) : d ]Y' = h'  (by simple
reduction), where we have d — d’ for j = 0,1, e i~ ¢, 07€eY j}— ¢’ and Y | Y1,
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We assume that BE(#) is not an open assumption in ¥ and u is not open in Y,
hence in ¥'!. (New open parameters and formulas do not appear by reductions.)

By the induction hypothesis for d: & 4 d* for j = 0,1. By e i— ¢ and
Y = Y it follows o7 eY (= 07¢’Y? by simple reduction.

The induction hypothesis is valid for c7e¥Y and 07 eY 1~ o~ 'YL, 07 eY — ",
hence there exists ¢* such that 6~ e’Y! j— e* and ¢” I e*.

BF(t) is not open in Y'!; u is not open in ¥}, hence

o[/ |u:t]| BE@) 'Y = [[o”e/ Y [u:t]| BE(t) : dY).

By Lemma 3.1.1 and o7 €¢’Y! j— ¢* we have [o~¢'Y! | u: ] 1— [e* | u : 1], and by
Lemma 3.1.2 1t follows

lo=e'Y? [u:t]] BE(E) - d'] i [le* [u: 1] | BEQH) : d°],

1.e.

W =o [ |u:t]| BF(t) : d' )Y 1= [[e* | u: 8] | BE(t) - d*).
Using e” jt— €* and & — d", j = 0, 1, we have
3-3+1d°(BY  u)e” i~ ([e* | w: 8] | BEt) : d*] (by (RT)).
Let h* = [[e” | u:t] | B¥(t) : d*]. Then
hY = 37 3HdO(BF  w)e” y— ([e* | u:t] | BE() : 4]

and

R =07 [le |u:t]| BEQ) - d' )Y i [[e* | w : t] | BE(Y) : d*).
4. h=0~3737d(B*,u)e(C™, v)gY.
h=0" 3;"3”d(Bk, w)e(C™, v)gY 1~ o~ 37 d°(B*, u)e'Y! = h°
(by simple reduction, where I7¢(C™,v)g i— ¢’ and then
3737 d(B*, u)e(C™, v)g - 37d°(B*,u)e’ by (Cl))
and , |
h=o"3"37d(B*, we(C™, v}gY i~ 3737 d*(B*, u)e! (C™,v)g’ = A (by (C1)),

where d— &/, j = 0,1, 3" e(C™, v)gu~e€', e gY 1~ ¢, et~ e! and Y = Y1

By the induction hypothesis for d we have d7 (— d*, j = 0, 1. It is necessary to
exist €* such that e~ €'Y i~ e* and 3= e} (C™ v)g’ — e*. Using 37 e(C™,v)g i— €’
and Y i~ Y! we have 6737 e(C™,v)gY 1— o~ €'Y! by simple reduction. Also
o~ gY 1~ ¢’ and e i— e', hence

c”37e(C™, v)gY - 37! (C™,v)g"  (by (C1)).

The induction hypothesis is valid for 6737 ¢(C™, v)gY, hence there exists e* such
that o=¢’Y" = e* and 37} (C™, v)g" - ¢*. Let h* = 37d"(B* u)e*. Using
o7 'Y i~ e*, & i d* for j = 0,1 and (C1), we have

R = 0737 d°(B*  u)e'Y! = 37 d*(BF u)e”.
By 37¢}(C™,v)¢" 1— ¢*, & - d* and (C1) we get
B =334 (B, W (O™, v)g e 3 (B e
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5. h=0c"37 V™ f(AE) fo(A¥) [1(B*, u)eY .
h=0"3"V™ f(A§ ")fo(A""‘)fl(B"’ u)eY - 37V fO( ARy fO (AR FO(BF u)e’ = BO
(by (C1)), 3™ f;(B*,u)e i~ f/ for i = 0,1, and then

37V (AR fo( AR Fi(BE e 1 VP (AR S (AR L (by (C2))
h=0737 V7 f(AG) fo(AT) i(BE w)eY i~ 07 VT FHAR)f(AP)AY = b
(by simple reduction).

We have o=eY 11— ¢, fi f2, I filB* we i f!,i=0,1, fu f for

j=0,1,and Y — Y!. We need f} and f; such that

oY e f5, TTR(BE e f5, 0T fiYlw= f7, 3TR(BR u)e i f7
By 37 fo(B*,u)e i— f) and Y 1~ Y1 we have 673~ fy(B*, u)eY - o™ fiY? w1th
a simple reduction.

By o7 eY 11— ¢/, fo 1 f§ and (C1) we get 037 fo(B*, w)eY — B”fS(Bk,u)e’.
The induction hypothesis is valid for =37 fo(B*, u)eY, hence there exists f3 such
that o~ fiY! i f3 and 37 fJ(B*,u)e’ v f;. Similar, we have f} such that
o” FiY )~ f and 37 f2(BX, we' — f7.

By the induction hypothesis for f we have f — f* and f' i~ f*. Let h* =

c v fr(Aky (AR Fr By fO e fr 3T FA(BE e = f3, 37 fA(BE u)e i ST

and (C2): ,
RO =37 v O(AR) fS(AF) L (BY w)e! 1= VT (AG) f (AT T
By o™ fo¥Y i f5, o7 fiY! i f} and (C2):
RY =™ VT A RAT )Y i VT A (AT
The proof 1s completed.
We define the following relation: dy = d; if there exists d* such that do p— d*

and d; }— d". Using the Church-Rosser property 1t is easy to verify that = is an
equivalence relation (cf. {3]).

3.3. p-reductions

We can enrich — with the following reductions, called n-reductions:

(nl) &¥&5d&7d— d;

(72) V™ d(Ak) v+ [A“](A"") vi (AR — g,

(n3) Ot (B¥) D>~ d[B*] — d 1f B* is not open in d;

(74) V¥ (u)V~ud — d;

(n5) 3~d(B*, w)Itu[B*] — d.

1t i1s easy to show that when +— is enlarged with the r-reductions, it does
not possess the Church-Rosser property. Let D = A& (B&C), u ¢ Par(BC)
and F = 32Dy(z). Obviously, ¢ = I7[F)(D*,u)&; [D*], for which we have
g:2(A& (B&C))u(2) — B & C, is irreducible.

Let h = &t&y I [FI(D*, )& [D¥}&e I [F)(D*, u)& [D*]. We have

&t &g 3T [FI(DF, )& [D*1&5 37 [FI(DF, u)& T [DF]
b 37 [F)(D*, w)&[D*) = g, (by (n1))
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and
&t &g 37 [F(D", w)&y D&y 37 [FI(DY, u)&y [DF]

— &3 [F)(DF, weg &7 [DM37[FI(DF, )T &7 DY) (by (c1).
Obviously, &3~ [F)(DF, u)&q & [DF137[F)(D*, u)&] &7 [D*] is also irreducible
and different from 37 [F)(D*, u)& [D*], i.e. b reduces to two different irreducible
ones. This verifies that the Church-Rosser property is lost when +— is enriched
with p-reductions. This example also illustrates that the reducibility relation which
arises from 7-reductions and commutative reductions does not possess the Church-
Rosser property.
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