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1. INTRODUCTION

The moduli of convexity and smoothness of a Banach space X:

ox(e) == inf{l - x—;—y

H lall = 1yl = 1, ||xy||s}, 0<e<2,

and

{ lz + Tyl + [z — Tyl — 2
sup

: = =1 >0,
! lell =l =1}, >

px(7) =

respectively, are fundamental concepts in Banach space theory. The duality be-
tween them is given by Lindenstrauss formula, see e.g. [6, p. 61]

Px*(T):sup{%E—éx(e): 0§5§2}.
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According to the Nordlander Theorem [7], a Hilbert space H is in a sense the most
convex and the most smooth among Banach spaces, that is, for any Banach space

X
Ox(e) <dm(e) =1—/1—-e2/4=¢%/8+ O(Y)
and
ox (1) > pu (1) = V1+712—1="72/24+0(1%).
The Taylor expansion is written down not only for sake of greater clarity, but also
because the asymptotic behaviors at 0 play an important role.

For technical reasons, further we concentrate on the asymptotic behavior at 0
of the modulus of smoothness. The results concerning the modulus of convexity
can be derived through the Lindenstrauss formula.

Let a > 0 and let X, be the class of all Banach spaces X such that

1
+ aTQ + o(7?).

px (1) =

Several authors independently showed that X, contains only Hilbert spaces [5, 9,
8].

So, it stands to reason that for small a > 0 the spaces in X, might be close
to a Hilbert space in some sense. This is indeed so and the sense is made precise
below.

Recall that the Banach-Mazur distance between two isomorphic Banach spaces
Y and Z is given by

d(Y,Z) = inf{||T||.|T7Y| : T:Y — Z arbitrary isomorphism}.
Now, for a Banach space X one defines
dy(X) == inf{d(Y,{?): Y C X, dimY = 2},

where l;z) denotes the two-dimensional Hilbert space, or, in other words, the Eu-
clidean plane.

Obviously, d2(X) measures how far from an ellipse the two-dimensional sec-
tions of the sphere of X are. The famous Jordan-von Neumann Theorem [3] reads
d2(X) = 1 if and only if X is a Hilbert space. The measure ds(X) is very useful
for estimating the type and cotype of X.

The standard way of estimating do(X) is through the use of the John Sphere,
[4]. In the pioneering work [4] John showed that do(X) < /2 for any X.

Elaborating on this idea, let Y be a two-dimensional space. It is clear that
there is an ellipse , say £, of maximal volume contained in the unit ball of Y. Define

J(¥) 5= max|a] . 1)
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Then, of course,
do(X) <sup{j(Y): Y C X, dimY = 2}.
Let for a > 0
g(a) :==sup{j(Y): Y € &,, dimY = 2}.
Then
da(X) <gla), Ya>0, VX € X,.

From the above considerations we know that g(0) = 1. Rakov [8] estimated j(Y)
for Y € X,, his estimate as a — 0 reads

g(a) <1+kva

with some constant k which is not important here. An asymptotically sharp esti-
mate was given in [1, 2]:

9@ <1t S s Ve

From the method of [1, 2] it is not clear if (2) is exact. In this work we show that
it is not.

We will explain briefly the method of [1, 2].

Let Y be a two-dimensional space in X, for some a > 0. We may assume that

Y is realized in such a way in R? that the unit circle 23 + 23 = 1 of R? is the John
sphere of X. Denote the standard basis of R? by e; = (1,0) and e = (0, 1). Define

(2)

r(o) :=|le1 coso + easing||.
Then in this polar annotation the unit sphere Sy of Y is
Sy ={ - (coso,sino) s o€ [ma]
=< ——(coso,sino): o € [-m,7] .
Y T(O’) ) )
If 2,y € Sy, x = r~1(0)(e1 cosf + easind), y = 77 1(p)(e1 cosp + essing),
then Lemma 3.2 from [1] states that if 7//(0) exists, then

eyl e =yl =2 sin?(0— )
= = ()

r(0)(r(0) +r"(9)).

Since Y € X, we have that for almost all § € [0, 27]

Sin2(6 - <,0) r r 7 a
s SO+ e) <1+ a 3)

From John Theorem it follows that on each arc of the unit circle of length 7/2 there
is a contact point, that is such that r = 1. Therefore, without loss of generality,
there is a € (0,7/2] such that

r(0) =r(e) =1, (4)
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and
1

(YY) = —. 5
J(Y) X ) (5)
So, we may consider the system (3), (4) and try to estimate j(Y).

However, with ¢ in (3) the problem is non-local and probably very difficult. In
order to handle it [1, 2] substitute ¢ = 8 + 7/2 and use r(¢) < 1 to derive from (3)

r(0)(r(0) +r"(0)) <1+a for almost all 8 € [0, 27]. (6)

Then the system (6), (4) is used to estimate j(Y) through (5).

We will demonstrate that for a close to zero the outlined approach can never
produce the exact value of sup j(Y) for Y € X,, denoted above as g(a).

For sake of clarity, for a > 0 denote by G, the class of all m-periodic functions
r=r(0), 0 <6 <, such that

(i) 0<r@) <1, r0)=r(n/2)=1;

(ii) r'(0) is absolutely continuous and 0 < r(0)(r(6) + r”(0)) < 1 + a almost
everywhere;

(iii) the region B, inside the curve

S, = {Tl@)(cose,sine) L oe [77,71']}

is convex.

(It is easy to check that (iii) follows from r + 7" > 0, which is contained in (ii), but
we do not need this fact.)

Finally we introduce the class F), of all m-periodic functions, which satisfy (i),
(i), (iii) and additionally
(iv)
.2
sin”(p — 0) "
sup —————=7r(0)(r(0) +r"(0)) =1+ a.
U ) @) (r(0) +7"(0))

It is clear that F, C Gg.

Theorem 1.1. There exist an interval I and a class X, (R?, |.][a) € Xa, a €1
of Banach spaces, such that for all a € I there are b = b(a) > a which satisfy:

(Z) Ty € Ga, Ty € Fb, Ty ¢ Fa;
(ii)

Ta:(lO') = dg (Xa) < mgx Wla') = dg (Xb) s

max
o
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where ro(0) = || cosoer +sinoes||a, () = | cosoer + sinoes|s.

2. CONSTRUCTION OF A CLASS OF TWO-DIMENSIONAL SPACES

Pick A€ [0,1] andset u=1— X\, v =2u> — A2 = \2 — 4\ + 2.
For 0,,02 = £1 we denote with Dy, ¢, the Euclidean disk of radius A centered at
091,92 = (ellu/a 92u)a ie.

D91792 = {$ = (1}1,1‘2) (S R?: (.’L‘l — 91#)2 + (.1‘2 — 92[1,)2 < )\2} .
Also let

Coy 0, = {x = (z1,22) €R?: (21 — O1p)* + (zg — Oop)® = )\2} .

and
D = D171 U D17_1 U D—l,l U D—l,—h B)\ = convD

We can say that B is a rotund square (see Figure 1). Clearly B; is the unit
(Euclidean ) disk.

Figure 1: A rotund square

X
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It is easy to see that By = @@ where @ is the unit square, i.e.
Q={z=(v1,22) €R*: 11| <1, |za| <1}.
We set Y\ = (R?,||.[[x), where ||.|[x is the Minkowski functional of By, i.e.

[ :inf{t >0: % e BA}.

Since B, is symmetric with respect to the coordinate system, the line z; =
x2 and the origin 0(0,0), we have that (z1,x2), (6171, 602x2) € By, 61,05 = £1
provided (z2,21) € By. So

lzoer + z1eal|x = ||f1z1e1 + Oazaez]|r,

where ey, 3 is the unit vector basis in R?, e; = (1,0), ex = (0, 1).
This implies monotonicity of the basis, i.e. ||x1e1 + z2ea|la < |ly1e1 + yae2|r
whenever |z1| < [y1], |z2] < [yal-

Let us mention that d (YA, léQ)) is the radius of the circumecircle of B) centered
at the origin. Thus

dg(Yk):d(Yk,l§2)> —R=V2u+Xr=v2+ (1—\/5) A

In order to find the asymptotic behavior of py, (7) at O, we need an explicit formula
for the norm of Y. Fix A € (0,1]. Further we omit the index A, i.e. we write YV’
instead of Yy, ||.|| instead of ||.||x, B and S stand for the unit ball and the unit
sphere of Y. Let x = (pcosc,psincg) be the representation of x € R? in polar
coordinates. We set ¢ = argx. Having in mind the symmetry of B, it is enough to
find an explicit formula for |||,z = (21, 22), when 0 < z; < 2p,ie. § <argzr < 7.
Denote by z(u,1) the unique common point of the circle

Ci1 = {(z1,22) € R?: (21 — p)® + (22 — p)* = A?}

and the straight line [ = {(.’L‘l,.’L'z) ER?: zy = 1}-

Set v = argz. Obviously 7 < v < 7 and [|z|| = x2 for all points z with
argz € [y, 5]. If x € [§ —~,7], then the vector z/[|z| belongs to the circle C ;.

Setting f(x1,z2) = ||z|| = [|(z1,22)]], we obtain

(G0 (-o) -
Fr For) =

Calculating the roots of the above equation we get :

L (@1 +22) = VRET+a]) — 201 — 22)%), A£2-V2
L(x1+z2_2z112>7 )\:2_\/§_

2u T1+x2

f(z17x2) =
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T1 if 0<argz<§ —v
llzl| = ¢ f(z1,22) if § —vy<argz <y
T2 if y<argw < 3.

We mention here that the function f is defined not only on the sector
{z eR?*: Z —y <argaz <~}. Actually f is defined on the set

T
E={zeR?: )\Q(I%erg)ZuQ(mlfxg)Q}D{xERQ: gf’ygargazgy}.
It is easy to see that F D {ac ER?: 0< arge < g} for A > 1/2, while

E:{$€R22k1§x2§k2},
T

where ki < ko are the roots of
(1 =N K =20k + (B* = N\°) =0 for 0<A<1/2.
Fact 2.1. For all x € E we have:
(i) f(x) > ||lz|| for e EN{z: 0<argz <%}

(ii) If x(x1,22) € SN {m gy <argz < 'y}, then

A2z2 A2z 2o
fli(er,ze) = Q(T;); fla(z1,22) = RS
A2z?
f// xr1,T2) = 1 )
22( ) g(l‘17132)

where g(x1,72) = (pu(x1 + 22) — v)°

Proof. We prove only (i). Since f(z1,z2) is homogeneous, i.e. f(kxi,kzs) =
kf(z1,x2) for all k> 0, it suffices to check (i) only for z € S.
If z € {u cR?: -y <argu < 'y}, then f(z) =1=||z].
Ifz e EN {ue R?: v <argu < g}, then 29 = 1. From (x—fl,%) € Ci, it
follows % <1l,ie f(z)= flz1,22) >1=|z]. O
Set )
As(w,y,7) = 5 (llz + 7yl + Iz = 7yl = 2lj])).

Evidently,
py (1) = sup {Aa(z,y,7) : =,y € S}.

Due to the symmetry of S:

T
py (T) = Sup{Az(lL‘7y,T) cx,y €S, argx € [Z, 5}}
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Fact 2.2. Letx,y € S, argz € [y, 5], |7| < §. Then
Az(%yﬁ) < A2(Zay>7_)'

Proof. Since ||ly|| = 1, we get |y1| < 1. So |ry1| < §. Since argz € [v, 5], we
have 0 < z3 < p and 2 = 1, |21 £ 7y1| < p £ 7y1. The monotonicity of the basis
implies:

|z £ Tyl = [[(z1 £ Ty1)er + (1 £ Ty2)ez]|
< x7y)er + (L x7y)ea| = ||z £ 7yl

Corollary 2.3. If |7| < &, then
py (1) =sup{Aa(2,y,7): v €A, y€ S},
where A is the arc{x €S, T <argr < fy}.
Proposition 2.4. The following estimate holds:

_
g(x1,22)

Tl T2
Yy Y2

€A, yES}.

Proof. Pick a convex compact set F© C E such that its interior contains the
arc A. Choose 75 € (O, %) in such a way that £ 7y € F whenever z € A, y € 5,
7| < 7F.

Set

Aof(e,y,m) = 5 (flw +79) + fla — y) 24 (2).
From Fact 2.1(i) we have
flaxtry) > |lztryll, z€A yeSs, |r|<71r.
Since f(z) = ||z|| for x € A we get
Ao(z,y,7) < Ao f(2,y,7)
whenever zz € A, y € S, |7| < 7r. Using that, we get for 7 € (0, 7]
py (1) <sup{Aof(z,y,7): z€ A, ye S}.

Take x € A, y € S. Applying Taylor’s formula to ¢(7) = f(z+7y) — f(z) and
(1) = f(r — 1y) — f(x), we can find 0; = 01(z,y,7), 02 = O2(x,y,7) € (0,1) in
such a way that
Asf(x,y, 7 1
% = L@+ 0imy)yt + 2f15(x + O179)y1ys + fro(w + O17y)y3) }

1
+ 3 {(Fi(@ + Oory)y? + 2115 (@ + O27y)y1y2 + Fio(w + Oa7y)y3) } -
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Having in mind that the second derivatives are uniformly continuous on F', we

get :
— T
lim py(7)

70 T2

1
< S @)yl + 215 @)y + faa(2)ys - z€ A, ye S)}
To finish the proof, it is enough to use Fact 2.1 (ii). O

Lemma 2.5. Let x = (z1,22) € A. Then

2 2
= (u(zl +x9) + \y/ 22 —l—z%) .

Proof. The determinant represents the oriented area of the parallelogram,
defined by the vectors x and y. Therefore, for a fixed x, the left-hand side achieves
its greatest value when the distance from the point (y1,y2) to the support of the
vector x is maximal. This is satisfied for some § € C1,_1 NS ory € C_11NS.
Without loss of generality we assume that § € Cy 1 : (s — )2 + (t + )2 = A%
The tangent to C7,_; at the point (g1, %y2) is parallel to the support of z, i.e. the
normal to Cj _; is orthogonal to x. Therefore the scalar product < v,z >= 0,
where v = (1 — p, Jo + ). We get for 1, 72 the system:

xr1 T2

su
b Yy Y2

(y1,92)€S

(1 — p) + w2(G2 + 1) =0
(1 — 1)? + (G2 + p)* = N

with solution:

= /\902

BT ot
g, Az

V2= T et

Hence,

1 X2 _ - 2 2
Tt =z —x = —pu(x1 + x2) — M/ 27 + 5.
TR ‘ 1Y2 291 #( 1 2) 1 2

Proposition 2.6. Let 0 < A <2 — V2. Then

where

1 9 3 2
h(A):X(A “3A 24 A/ —2)\+2) :

Proof. From Proposition 2.4 and Lemma 2.5 it follows

2
iy e [l i)

lim < —su
=0 T2 T 2 P g(z1,22)

:(1’1,1’2)614 s

Ann. Sofia Univ., Fac. Math and Inf., 104, 2017, 139-153. 147



where g(x1,22) = (u(z1 + x2) — v)® is defined in Fact 2.1. For brevity, we denote

(w1 +w2) + \/aT +23)

2
g(x1,22) .

M(.Z‘l,.’L'g) =

On the arc A we have :

o3 + @3 = 2p(wy + @2) 4+ 207 = N2,

2} + a3 = 2u(zy +22) — (2% — N?) = 2p(21 + 22) — 1.

Set \/x3 + 22 = t, then u(z; + 22) = t22+”, and after substituting we get

2
2 v
(% +)\t) 2 (12 +2Xt +v)°
M(.Tl,.’L’Q) = > 3 = 3 .
() @y

We need to examine the function

(12 + 2)t +v)°
m(t) =
(t* —v)

By the cosine formula we get

VI <t <V2u+A=vV2+(1-V2)\

The left-hand side expression represents the distance from the origin O(0,0) to
z(u, 1), while the right-hand side expression is the distance to the middle of arc A.
From

214+ =X—224+2> N -4 +2=v

it is clear that m(t) is defined in this interval. Calculating m’ and simplifying, we

obtain:
2 (12 42Xt + v) (t3 + 4% + 5t + 2)v)

(2 —v)*
We now show that m’ < 0 for 0 < A\ < 2 — \/5, i.e. m is decreasing in the
interval I = [\/ 1+ p?, V2 + (1- \/Q))\} Obviously I C [1, \/ﬂ The quadratic

polynomial u(t) = 2 + 2\t + v is increasing in [—\, 0o], whence

m'(t) = —

u(t) >u(l) =1+22+ A2 —4X+2=22 =20 +3>2 > 0.

Obviously v = A% —4XA+2 > 0. It follows that the coefficients of v(t) = ¢3 + 4\t? +
5vt + 2\v are positive, which implies v(¢) > 0 when ¢ € I. Finally, in order to find
the greatest value of M we use :

T+ +r=1+1-N?+2(1 -2 =2 =2)\2 —6)A +4,
L+p?—v=1+(1-N)?-21- N+ =2},
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2
2(1+u2+2>\ 1—|—,u2+1/)

M 1) =2m (1t 12) =
(1, 1) m( M) (1+M2—V)3
=i(A2—3A+2+A\/A2—2A+2)2
A3 '

The above and the remark at the beginning complete the proof. |

Theorem 2.7. For 0 < A\ < 2 — /2 we have

_opy(r) 1
lim = ih()\)'

T—0 ’7'2

Proof. According to Proposition 2.6, the function m is continuous and decreas-

ing in the interval {m,ﬂ—l— (1 — \/5) )\}. Let
ee (0,m(Vitu2)—m(va+(1-v2)2)).

There exists
ze(x1,22) € A, (21 = x1(€), 22 = 22(€)),

m <\/x%+x%> :m(m) — €.
M(z.) = M(z1,22) = 2m (Vl—&—/ﬂ) — 2e.

Choose 7. > 0, such that

such that

Whence

m
{(p,q) s max(jp 1], g —zal) < 7} € {uwe R : T~y Sargu <},

If |7] < 7e, then Ag(ze,y,7) = Aaf(2e,y,7) for all y € S. By Lemma 2.5, similarly
as in Proposition 2.4 we get :

A A
himT%OpY(QT) > lim sup 2(26;1%7) — lim sup 2f(Ze2»y7T)
T 7—0 yes T 70 yeS T
2?2 A2 1 5
= ?M(l'l,.%'g) =5 (2m (\/1 + ,u2> - 26) = ih()\) — N,
which combined with Proposition 2.6 concludes the proof. O
Remark 2.8. Let us point out that for arbitrary small 7,
- -2
py(T) = sup { ||«T + T?JH + !1’ Ty” , zE€ A, y € S}
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is not attained at the point z(u, 1). Indeed, for 7 € (0, 7.) there holds either

iy i

5—7§arg(Z+Ty)§% véarg(z—fy)§§
or

™ T

5—7§arg(z—w)§% vﬁarg(z+7y)§§-

Similarly as in Proposition 2.4, we have

Ao(z,y,7) = — [(fl1(z + 07y)y7 + 2f15(2 + 0Ty yaye + f3a(z + 0Ty)y3)]

m 4;“10

where 6 = 6(y,7) € (0,1)). Thus

— -2 1
lim sup{lz+7y||+|z el , yES} :Zh()\).

T7—0 272

This is because /(o) does not exists at o = v (r(0) is defined in the Introduction).

3. PROOF OF THE MAIN THEOREM

We start by establishing
Fact 3.1. The function

(A2—3A+2+>\\/)\2—2)\+2)2

h()\) =

> =

is decreasing in (0, 1].
Proof. Tt is sufficient to check that
AN = A2 —3X+2+A/A2 211 2
is decreasing. The derivative

i) = (2A —3)VAZ =20 +2+2X2 =3\ +2
VAZ —2) 42

is negative if

(2A = 3)VAZ =20 +2+2X% =371 +2<0, A€ (0,1).

The latter is equivalent to the inequality

VA2 22X+ 2[VAZ 20+ 2420 3] £ AN 1) <0, A€ (0,1),

which is true because both summands are negative for A € (0,1). O
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Lemma 3.2. Let 0 < A < 1, ||.||x correspond to the space Y and
ra(f) = || cosBey + sin fes||a

be the function which describes the sphere of "rotund square”. Then

s(A) = Sl;PTA(9) (ra(0) +75(0)) < 2

ﬁ(l+a(Y)\))<l+a(Y>\)7

where we have set

NG,
14+a(Yy) = 25%# = h(X).

Above, we assumed that 6 # v = argz. Also, 6 does not correspond to any other
common point of the circle and the straight line, because for such points '’ (0) does
not exist.

Proof. If x= %(m(cos 6,sin 0) belongs to a segment of Sy, then 7y (6)+ry (§)=0.
Let « € A (see Corollary 2.3) and = # z(u,1). From

-2
6 —
sup sin g ®)
00 TA(P)

s

by substituting ¢ =60 — 7 we get

rA(0) (ra(0) +7X(0)) = 1+ a(Ya),

(O ) +HO) <1 a(v),
Hence,
rA(0) (ra(0) +3(0)) < r3(p) (1 +a(Ya)) < N _ort2 (I+a(Yy)).

Above we have used the inequality

1
ralp) < B where |zlls = /1 +p2 = VA2 —2X+2.
2

O

Proof of Theorem 1.1

At the beginning we note that do (Y)) = v/2 + (1 — \/5) A is a decreasing
function of A\. From Lemma 3.2,

1 1

e e O veme yen L O

s(\) = sgp ra(0) (ra(0) + 74 (0)

We denote the right-hand side with k(A). As m is decreasing in (0,1),
k() decreases in this interval too, due to Fact 3.1.
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Thus for all A € (0,2 — v/2) we have
s(A) <k(A) < h(N) (7)

and
lim k(A) = lim h(X) = oco.
A—07F A—0+
Let a € I = (h(2—+/2) —1,00). There exists a unique A = A(a) < 2 — V2,
such that @ = h(A\) — 1 = h(A\(a)) — 1, i.e. A(a) is the inverse function of a =
h(X\) =1, considered in the interval (0,2 —+/2). We define X, = Y\(a), which means
X, = (R%[|].|[la), where ||[.]|la = ||-||x(a)- Respectively let

To(0) = ||| cosoe; +sinoes|||a = [[cosoey +sinoes|[rq) = ra(0).

By definition it is clear that X, € &, for all a € I. Let a € I is fixed and A = A(a)
is as above. From (7) it follows that there exists a unique A; : 0 < Ay < A, for
which a = h(A\) =1 =k(A1)—1. Let b= h(\1) —1, i.e. Ay = A(b). Obviously b > a.

For ry, (o) we have:
ra (0) (A (0) + 74, (0) < s(A1) < k(A1) <h(A) =1+a=1+a(Y)).

But this is equivalent to 73(0) = 7, (0) € G,. Also it is clear that 7(o) € Fp
whence 7(0) ¢ F,. From the note in the beginning

1 1
— = X, Xp) = —.
max 7o) do (Xa) < da (Xp) max (o)

In the wording of the theorem we write 7, and ||.||,, instead of 7, and [||.|||le. O
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