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Tony Pantev, Vasil Tsanov. CLASSIFICATION OF DECOMPOSABLE MANIN TRIPLES
AND SOLUTIONS OF THE CLASSICAL YANG-BAXTER EQUATION

We classify decomposable triple Manin systems over an arbitrary smooth algebraic curve and
describe the corresponding solutions of the classical Yang-Baxter equation. We also give some
examples and counter-examples clarifying the nature of the correspondence between general triple
Manin systems and solutions of the classical Yang-Baxter equation.

1. INTRODUCTION

In the present paper we discuss solutions of the classical Yang-Baxter equation

(1) <[?‘, ’Y‘D dmef{rl’g(ul: uQ): ?’1’3(’&1} 11:3)} + [7’1’3(&1} u3)> 7'2’3(11,3, 1‘3)]

+ {2y, u), 723 (us, ug)] = 0,

257



rb2(uy, ug) = =13 (ug, wy),

where r(u;, uz) is a rational function of the cartesian square X x X of an alge-
braic curve X, which takes values in the tensor square of a simple finite dimen-
sional Lie algebra p, and, e. g., r1'3(uy, u3) is the superposition of the functions
r:XxX —p®pand ¢'°: pRp — U(p)®?, defined by ¢13(a@b) = a®1®b (see,
e.g., [11] for details). After the works of Drinfeld and Cherednik (see [5-8] and
[11]) it 1s general wisdom that there is a certain correspondence between solutions
of the Yang-Baxter equations and systems of relevant infinite dimensional Lie alge-
bras called triple Manin systems (see the definition bellow). We treat the triple
Manin systems which are related to Lie algebras of types A(X)®p and R(X) ®p,
where A(X), R(X) are respectively the ring of adels and the field of rational
functions on X. The study of the relevant solutions of the equation (1) is extreme-
ly important for the classification of completely integrable systems of non-linear
equations representable as Lax pairs by the method of Adler-Konstant-Simms (see,
e. g., [10]). _

Solutions of (1) which are meromorphic functions on C x C of type r(u; — uy)
are classified in {1, 2]. It is-also proved in [1, 3] that any solution of (1) meromorphic
on the cartestan product of two discs is equivalent (on the germ level) to a solution
of type r(u1 — uy), where the function r{u) can be extended to a meromorphic
function on C. This gives a complete classification of the local solutions of the
equation (1). However, the classification of global solutions of (1) on an arbitrary
algebraic curve X is an open problem. We discuss this problem from the viewpoint
of triple systems of Manin.

In Sect. 3 we define and study the natural class of decomposable Manin
triple systems to obtain their complete classification (compare with [5], where a
very close class of triple Manin systems is defined and discussed). It turns out that
they produce essentially only one solution of the equation (1).

In Sect. 4 we discuss other important examples. The systems of Example 1 are
known ([8]), but treated in the present scheme they produce rational solutions of
the Yang-Baxter equation which seem to have been overlooked. These solutions are
not of type r(u; — uy), but can be reduced to this type by a local (trigonometric)
change of variables to obtain the well-known trigonometric solutions. Example 2
is a Manin triple which does not correspond to any solution of the equation (1).
Example 3 is known (but Remark 3 might be interesting).

2. BASIC CONCEPTS

Let X be a smooth algebraic curve (over the field of complex numbers C), let
- R(X), A(X) be respectively the field of rational functions and the ring of adels
on X (for general information on adels see, e. g., [4, Ch. VIL, § 2]), and let p be a
simple Lie algebra (finite dimensional).

Definition 1. A triple Manin system is an ordered triple (4, B,g ® b),
where A is a Lie algebra, g, h C A are Lie subalgebras, B is a non-degenerate,
symmetric, bilinear, ad-invariant form on A, g and § are isotopic for B, 1. e.

B(&,n) =0 forall §,n€g(oré&nch),
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and A = g b as a linear space.

We shall discuss Manin triples for which g is a subalgebra of the Lie algebra
R(X)®p. There is a general method due to Cherednik (see [3, 6, 11]) to construct
Manin triples of this type, which we summarize briefly here. Denote by A*(X) the
ring of regular adels on the curve X, let (, ) denote the Killing form of the algebra
p, let S C X be a non-empty subset of X and w be a meromorphic 1-form on X.
Let xs € A(X) be the characteristic function of the set S. For each subalgebra
A C A(X) we denote by As the subalgebra xs.A of A(X). Let Ag denote the Lie
algebra As(X) ® p and Hs be the bilinear form on Ag defined by

(2) HS(f:Q’):ZReSx(f,g).w.

s
Obviously, Hg satisfies all the conditions required by the definition of a triple
system.

The problem of constructing triple systems in this context amounts to finding a
couple of Hg-isotropic subalgebras g, h of Ag with trivial intersection such that the
direct sum § = géh is a subalgebra and the restriction of Hg is still non-degenerate
on g§.

Cherednik proposes that the algebra b of the triple is chosen to be the sub-
algebra A% (X) ® p, which is obviously isotropic, whence the problem reduces to
finding a suitable complement g. It is essential (and convenient) for our purpose of
looking for solutions ’

| reR(X x X)®(p®p)
of the equation (1) that the algebra g be a subalgebra of R(X)®p. For each triple
Manin system (A, B,g® h) we define a map p : g — (A*h)* with the formula

(3) p(z) (€An) = B(z, [n,£]).
A map p : g — A’g such that '
B(p(z),§An) = p(x) (§An)
is called a cocommutator of g (if it exists). One can check by a straightforward

computation that p is a cocycle of g with coeflicients in the g-module A%g and that
p satisfies the equation p2(p(z)) = 0 for all z € g, where

def
p2(zAy) = p(z)Ay — zAp(y)

(this is exactly the adjoin of the Jacobi identity, see, e. g., [11]). If it happens that
the cocycle p is a coboundary, 1. e, if
(4) dr)=p
for some r € C%(g, A%g) = Ag, then {[r,7]) is ad-variant, and with some luck we
may expect that

([ r)) =0,

i.e. that r is a solution of the equation (1).

It is a rare occasion that the equation (4) be satisfied by some r € A%g (this
module is “too small”). In the situation we are treating, one looks for a solution of
the equation (4) (and hence of the equation (1)) as a 0-chain in the g-module

B(X)=R{(XxX)®(p®¥p)
of rational functions on the Cartesian square of X with values in p ® p.
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3. DECOMPOSABLE MANIN TRIPLES

From this moment on we treat only subalgebras of Ag as described above.

Definition 2. A Manin triple (As, Hs,g ® §) will be called decomposable
iff
8=1®p, b=J®p,
where I, J are subalgebras of R(X)g, A1 (X)s, respectively.

Remark 1. It is easy to see that the classification of decomposable Manin
triples amounts to the classification of triples (I, J,w), where I, J are as above,
I®J = As(X) and w 1s a meromorphic differential on X such that the bilinear
form :

(5) B(a,b) =) Res;a.bw
5

is non-degenerate on As(X) and vanishes identically on I and J. Indeed, as the
Killing form on p is non-degenerate, by suitable choice of coefficients the vanishing
of (2) is reduced to the vanishing of (5).

Proposition 1. Let (I,J,w} be as in Definition 2. Then erther

1) C C J (implying J = I'IS@% = A} (X)) or

i) C C I (smplying J = (Hs\{y}@\x) x M, for some y € S), where M, is the
maztmal 1deal of the local ring @,.

Proof. We need two lemmas.

Lemma 1. /N AL (X)CC.

Proof. Assume that there exists an f € 1N AY(X) which is not constant. Let
zy,...,xn € X be the poles of the differential w and let k; be the multiplicity of
the pole z;. The function

9L W - f(2:) f)
belongs to I, because f € I, and I is an algebra over C. Obviously, g(z;) = 0 for
each ¢, but ¢ does not vanish identically, because f is not constant. Thus one can
conclude that there exists a k € N such that multy, (g*¥) > k; for each i. For any
a € AY(X) we have

B(a, %) = Z Resz(a - g% -w).
8

For each i multy, (a - g* -w) 2 0, and hence B(a,g*) = 0, because for each z €
S\ {z1,...,z,} we have multy(a - ¢g* -w) 2 0 (as a, ¢ and w have no poles in
S\{zi,...,za}).

On the other hand, g¥ € I and ¢ # 0, whence there exists (Remark 1) an
element b € J such that B(b,g*¥) # 0, which is a contradiction. Thus we have
INnA¥{(X)ccC
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Lemma 2. J is an ideal of the ring AL (X).

Proof. Let a € AL(X), b € J. By definition As(X) = I® J,s0a= f+a;
with unique f € 7 and a; € J. But a —a; = f € AL(X), because a and a; are
elements of A% (X). Thus f € INAS(X) and by Lemma 1 f is a constant. As J
is an algebra over C, we have f.b € J and a.b = f.b+ a;.b is an element of J, i.e.
J is an ideal of AY(X).

Obviously, the field C may belong to only one of the algebras I, J.

i) Let C C J. Then J = A} (X), because J C A%(X) is ar ideal by Lemma 2.

i) Let C C 1. We have AL(X) C As(X) = 1@ J and by Lemma | we get
Af(X) = C+J. Because of C C I we have CNJ = {0} and hence Af(xX)=CalJ.
By Lemma 2 J is an ideal in A} (X) and A% (X),; = C, whence we conclude that

J is a maximal ideal. Let x € S, then J; « @x But @x 1s a local ring, hence we
have two possibilities:

either J, C M, or J, = (AH(X)): = O,

HJ, = @x forallz € S, then J = .Ag (X), which contradicts Ag‘(X) = C¢J. Thus
there exists an y € S such that J, C M, whence J C Hs\{y}éx x M, « AL (X).

But J is a maximal ideal 1e. J = Hs\{y}@x x My, which concludes the proof of
Proposition 1.
In the following theorem we keep the notation of Proposition 1.

Theorem 1. Let (I, J,w) be as in Definttion 2. Then:

1) If CC I, then there exists a function u € I which is injective on the set S
with the following properiies:

a) w = dz, where z = u™?;

b) The multiplicity of z at all points of S is 1;

¢) Let uy = (z — z(z))~'. The algebra I is generated by the functions ug for
all x of §.

ii) If CC J, then there exists a function u € I which is injective on the set S
with a pole at the point y such that:.

a) w = du;

b) The multiplicity of u at all points of S\ {y} is 1,

¢) The algebra I is generated by the functions 1, u, (u — u(z))™} for all x €
S\ {y} |

Proof. Case i1). The fact that As(X) = I & J yields for each z € S the
existence of a function

¢ €1

which has one simple pole in § at the point z.
By Lemma 1 each function f € I has at least one pole in 5. Thus each z
determines ¢, up to a constant. Obviously, the algebra I is generated by the
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functions 1, ¢, for all z € S. By Lemma 1 for a fixed z € S the function

((féx - Qéx(y)) ’ (@531 """ éy(X)) €l
is a non-zero constant, whence ¢, i1s a non-degenerate Mobius transformation of

¢,. We set
def
u'= ¢y,
so now the algebra [ is generated by
1: u, (u - u(x))—-l

for all z € S\ {y}. We expand the differential w at each point 2 € S in power
series. At each point ¢ € S\ {y} the differential w is regular. Indeed, fix z € S\ {y}
and denote by z; the meromorphic function u — u(z). The function 2z, is a local
parameter in a neighbourhood of the point z.

Let the Taylor expansion of w in the parameter z, be

w=(arz ¥+ Vdz, k21, ap#£0.
Define the adels a and b by

def — def
ap = Xx(P)-Zﬁ Y by = Xz(p)

for a point p € S, where y,(:) is the characteristic function of the set {z}. As

Jy = @x, we know that a, b6 € J. By Remark 1 the bilinear form B is isotopic on
J,i.e. B(a,b) = ay = 0, which is a contradiction.

To estimate the order of the pole of w at the point y, consider the Taylor
expansion of w at y in the local parameter z = u=*:

w=(a_pz ¥4+ +a_j.27 M +ag+-- ). dz.
The adel a defined by a, = x.(p).z obviously belongs to the algebra J = 90, x

HS\{y}@ Also by Remark 1 we obtain B(a,a’) = 0 for each s 2 1. Direct
computation of B(a,a*) gives

B{a,a*) = a_ <3+23-0

whence the order & of the pole of w at y is estimated by £ £ 2
Assume that £ < 2. Then the Taylor expansion is

= (ap+--).dz
as 1 € I, using Remark 1, we obtain ‘
a_1 = B(1, l) =0.

Let a; be the first non-vanishing coefficient. We compute B(u”" 1) and obtain by
Remark 1 (note that 1,u € I) that

o) = B(u'*t1 1) =0,

which is a contradiction. Thus a_2 # 0 and normalizing © we may presume that
.9 = —1. The same argument as for a_; gives a, = 0 for all n 2 0, whence

w=—2"%dz = du,

which settles case ii).
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Casei). Let # € S, ¢ € I, and z, be as above. The differential w has no poles
in S. Indeed, if the Taylor expansion of w at some point x € S were

w=(ak.2z; 4+ ).dzp with & 2 1 and a_; # 0,

then for the adel a € A¥(X) = J defined by ay; = x4(y).25~! we would have
a_r = B(a,1) = 0, which is a contradiction. So, for each z € S we have

w=(af+atze+ +afzk+ ) dz.
But ¢, € I and it has no pole in S\ {z}. Hence
| oF = B(ge,82) = 0
for all s 2 1. Thus in a neighbourhood of z we have
w=dzy

(normalizing ¢, suitably). Let y € S be an arbitrary point. Obviously, the func-
tions ¢ = z7 ' (z € S) generate I. Denote u = z,. The differentials w and du are

meromorphic sections of Q'(X), whence f = -g-"- 1s a global meromorphic function
uw
on X. But w and du coincide in an open neighbourhood of y, hence f =1 and
w = du. |

Similarly, w = dz, for each ¢ € 5. So dz; = du for each z, 1.e. z; = u + ag,
where a, is a constant. But z;(z) = 0, whence a; = u(z) and the algebra I is
generated by vy = (u —u(z))~! (z € S).

Remark. Repeating the above arguments at each point £ € S, one can prove
under natural restrictions that if we assume the differential w to be adel (not a
global meromorphic differential on X), no real generalization is obtained.

Corollary 1. If ¥ = (As,Hs,g ® h) is a decomposable Manin iriple on a
curve X, then there exists a decomposable Manin triple ' = (&', H', ¢’ ®4') on P!
such thal § is the pullback of ' by the function u : X — P* defined in Theorem 1.

Proof. In the notations of Theorem 1 we have: the algebra [ is a direct sum

I = @ u;.(C.ug) (as alinear space) in the case i), and I = CHC.ud ( ‘?f : C(u—
s S\y

u(z))~!) in the case ii). This remark makes the corollary obvious.

The Killing form on p is represented by a symmetric, non-degenerate, ad-
invariant element k € p* @ p*. Let K be the element of Hom(p,p*), canonically
corresponding to k. If K~=! € Hom(p*, p) is the inverse linear map of K, then there
is a non-degenerate, symmetric, ad-invariant element k~! € p ® p, canonically
corresponding to K~!. For an arbitrary function f € R(X) we denote by ry the
p ® p valued function on X x X defined by the formula

(6) | ri(z,y) = (flz) = fw) ™ k7

Let 9 be the differential of the cochain complex C*(g, B). In the following theorem
we describe the cocommutators p : g — A% g of the Lie algebras appearing in the
current context.
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Theorem 2. Let (As,Hs,g @ h) be a decomposable Manin triple, and let
(I,J,w) be the corresponding triple as in Remark 1. Then:

1) In the case i} of Theorem 1 we have p(z) = 8(r,)(x) for all z € g;

ii) In the case ii) of Theorem 1 we have p(z) = —d(r,)(z) for all z € g,
where u, z € R(X) are determined in Theorem 1. o

Proof. We shall prove only the case t). The case ii) can be proved similarly.
We have I = %) uz .(C.uz), hence the functions of the set

{u!®alk 21, €S8, acp)
span g as a linear space. Denote by a.z} the adel (a.z}), = §,(z).(a ® z}). Tt is
obvious that
az, € AL(X)®p=h.
The form Hg is a non-degenerate on Ag(X), so it is sufficient to prove that
Hs(p(uf @ a), b.22 ®c.2) = Hs(0(r }{(uE ® a), b2 @ c.2™) for each z € S,

a,b,e€p, k21, n,m 2 0. Let us define for each z € S the functions v,, w;, oy,
B € M(X x X):

vy : X x X —-C wy : X xX —-C
(P, q) — u=(p) (p,q) — uz(q)

or X x X —=C By : X x X —C
(p,q) = z:(p) (p,q) — 2:(q).

In this notations we have r, = (o — #).k~! as a meromorphic function on X x X
and if k=1 = " a; ® b; € pQ p, then we compute d(r,)(uf @ a) as follows:

O(r.)(uz ®a) = _ (e =) ai @ bi)(uf ® a)
=Y (vh{a—B)" adaai @ bi + wh (a - B) " .a; @ by).

But £~! is an ad-invariant element of p ® p, whence adqsk™! = 0, and whence
Zadaai Qb; = — z a; ® ad,b;.

Thus

H

O(r:)(uk ®a) = (vf — wh).(a = B)"1. ) adaa; @ b;

= (v —we).(vE T 4+ wE T (o - {5’)“1.Zadaa,- ® b;.

?
By definition we have o = v7!, # = w™!, and z; = 2z — 2z(z), hence uw.u;' =
(z — z(z)).2” ! =1 = z{z).u, and |
(v = we) o = B)7F = (vy —we)(w—v) L wv = —vpw, vw.(vw) T = —vpw,.
Finally, we obtain

5(7’;)(?1’;‘; ® a) - "(inx + -+ wi?)x). Z a,daai ® bz'_
i

264



Let us compute -

Hs(0(r) (vt @ a), b.20Ac.2) = —-HS(Z viwkt = ada; @ b“ b.zjAc.z)

2 8

X |
=3 D (Resg(2]7° dzz) Resg (22~ FF0F dz)

(ad a;, b).(bi,¢) — Resy (27" 7°.dz; ). Res, (z”"(;"“)“.dzx) x (adqai, c).(b;, b))

-5 Z n, s41- 6m Et-2ms- (ad ahb) (b%)c) m s+l~§n, k+2-—s-(adaai;c)-(bisb))

3 &

= _“‘é?H—m E+1- Z((ad a;, b 3,(:) (adaai;c)~(b§:b))~

Using that ad,k~! = 0, Va € p, we write
Hs(0(r,)(uf @ a),b.22 Ac.2™)
1

zm§.5n+m,k+1.;((adaaé, b).(bi, ¢) + (ai, ¢).(adgbs, b)).

As £7! is a symmetric tensor and the Killing form (, ) is an ad-invariant, we can

write the identities

- Z((Eidaag, b).(bg3 f:) + (Gz’; C)-(adabia b))
= Z((ai, adgb).(bi, ) + (a;i, c).(bi, adab))

=2.(k71 adb® c).
In such a way we obtain
Hs(0(r.)(uf @ a), b2 Ac.z™) = bpymesr (k7 adab @ ).
For p(u* @ a) we have by definition ' '

Hs(p(uf @ a), b.zP Ac.z™) = Hg([ub ® a,b.27],c.27) = Hg(227F ® [a,b], c.

= &n.{.m‘k_.},.l .(adab§ C).

But (z ® y,a® b) dg(x, a).(y,b) = k(z,a).k(y,b), consequently
(™', adeb®c) = (k™' (keadab), K(c))
= (K™ o K(adab), K(c)} = {adab, K(c)) = k(adab c) (adgb, c)
(here (, ) is the natural pairing of p and p”).
Thus
Hs(0(r)(uf @a),b.2f Ac.2l?) = bngmpsr (K7, adab ® ¢)
= bpymit1-(adab, ) = Hs(p(ut @ a), bz} Ac.z]),
i.e. p{z) = O(r,)(z) for ecach z € g.

z)
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It is obvious that any two solutions of the equation (4) with a fixed cocom-
mutator p differ by an element ¢ of the module B(X) such that d(c) = 0, i.e. by
elements of H%(g, B). Thus the problem of uniqueness of solutions for the equation
(4) is solved by the next proposition.

"~ Proposition 2. In the notations of Theorem 1 we have
(7) H'(p, B(X)) = 0.

Proof. Let p, be a Cartan subalgebra of p and let I = {ay,...,ar} be a
fixed system of simple roots for p,. Let {5 }aca-, {€2}i=1, 1, {e}‘}ﬁem be the
~corresponding Weyl base. We know that it satisfies the following relations:

e} ex] = alel).eg, Va €A™,

[e),ef] = p(ed).ef, VYue AT,

j
[e=a ef] = Za(e?).e?, Va € AT,
T i,
, o« p 0, a+B8#0€A.
Hence the base of B(X) over the field R{X x X) is

(*) [6?,6{}]:0, Vi,j=1,...,r,

ex Qey, ¢r®e), e;®ef,
dRe,, edwel, e @€},
ef @e;, ef®ed, ef @ef
foreach o, S €A™, 4, = 1,...,7’,‘ A pEe At
Let A € B(X) be an arbitrary element and f;ﬁ”,...,f;j € R(X x X) be
the coefficients of A of the corresponding base element (e. g, e; @ €5 and so on).

Assume that A € Z°(g, B(X)) = H%g, B(X)) C B(X). Let u € g be non-constant
(there exists such an element u by Theorem 1). We have

(A4) =0, (AN (u* ®a)=0.

By the relations () we obtain for the coefficients of 9(A)(u* @ €) the following
expressions: |
— for the coefficient in front of e, @ ey

foi(0.0) = aled).fo5 (P, @) u*(p) + B(ed) Sog (P a)-u"(g), Vo, BEAT;
— for the coefficient in front of e; ® €}
o0 @) = ale)) S5 (p.0)w* (), Vo €AT, Vi=1,..r

— the coefficient in front of el ® e} vanishes identically, and so on.

If 8(A) = 0, then all the coefficients of d(A)(u* ® e}) vanish identically on
X x X. Consider for instance &(e?).uk(’p).f;o(p, g)=0foreachk 2 1,t=1,...,7.
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For each &, 3t : a(ef) # 0 (because « is a non-zero root of p, and €?,... ¢ are a
base of py). Then for a suitable ¢ we have u(p).f7.°(p,¢) =0, ¥(p,q) € X x X, i.e.
f;;} = 0. Stmilarly, f;}; = ff; = ;*;-0 =0, Vi=1,...,r Va €A™; VA pe AT,
Also fog (p,q)(a(e]).uf(p) + B(ef).ub(q)) = 0, Yk 2 1, t = 1,...,r; Y(p,q) €
X x X.
Let

D(u) = {(p,g) € X x X [u(p) = u(g)} Usupp(divxxx (u)).
If we assume that f ;" (p,q) # 0 for some point, then fag (P.q) # 0 in an open
subset of X x X. The set D(u) is closed, hence fag (P,q) # 0 in an open subset
of X x X \ D(u). Setting k = 1,2, we obtain for each (p,q) in an open subset of
X x X\ D(u): |
a(ed).u(p) + Be?).u(q) = 0,
a(ed)u?(p)+ B(ed)u?(g) =0, Vt=1,...,r

The determinant of this linear system is u(p).u(q).(u(p) — u(q)) and it does not
vanish for (p,q) € X x X \ D(u). Hence this system has only the zero solution, i. e.

afe)) =0, Yt =1,...,7, which is a contradiction, because a is a non-zero root and
e?,...,eg are a base of p,. So we have fop = f;g' = ;’ﬁ_ = ;‘: = 0. The above

argument implies that for A € Kerd we have

— 0 o .0 o £00
A= E e, ®e; @ fi5 .
« 1,J

Consequently, for @ € A~, using the fact that 8(A)(u* ® e7) = 0, Yk 2 1, we
derive a(ed). f2(p, g).uf(p)=0foreachi,j=1,...,r, x€ A" and k > 1.

But for each ¢ = 1,... r there exists a € A~ such that a(e?) # 0, hence
setting k = 1 we obtain u(p).f’(p,q) =0, V(p,g) € X x X, i.e. f =0,

It turns out that for all triple systems described in Theorem 1 there exists
a solution r, of the equation (4) which coincides (up to pullback from P! to the
curve X)) with the well-known “rational” solution (6) of the classical Yang-Baxter
equation (compare with [8, 11]).

Remark 2. It is easy to construct Manin triple systems on an arbitrary curve
X, which are “subtriples” of those described in Theorem 1 and which determine
the respective curve X (by taking the intersections of As and h with R(X) ® p).
However, one can check that we get no essentially new solutions of the Yang-Baxter
equation in this way.

4. OTHER EXAMPLES

Apart from the solution (6) there are two well-known classes of solutions of the
Yang-Baxter equation — the elliptic and the trigonometric solutions, described,
e.g.,in [1, 2, 8 10]. While (as known) the elliptic solutions are directly obtained
from (non-decomposable) triple Manin systems which we shall describe briefly
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later, we show here that the trigonometric solutions are obtained from rational solu-
tions of the equation (1) (and (4)) corresponding to suitable triple Manin systems,
which we proceed to describe.

Example 1. Let X = P! § = {0,000}, and let ¢ be the co-ordinate function
on P'. Let u(P') be the ring of polynomial adels on P!, Denote 4 = u(P')s ® .
One may interpret A as the cartesian square L(p) x L(p), where

Lp)Ecktep

is the non-twisted affine (Kac-Moody without central extensions) Lie algebra of p
(see, e. g., [9]). Indeed,

A=uPYs®p=(Clt,t" Doy ®p x (C[t, 1)) {00} ®P.

Thus the first factor L(p) is the polynomial algebra C[t,t~!] ® p interpreted as a
subalgebra of the adels at the point 0 € P!, likewise the second factor at co. Denote

g=(Clt,t™ s @p = L(p).
We choose a Cartan decomposition of p:
p=n_®n @ Ny,

and hence of L(p):
L(p) = n- & o @ 1y,
where
no=n_ @ Cit7dp), fo=ny, fy=n,3(LClt]DY)

(see [9, p. 78]. For cach a € A denote by a® the projection of (a)y on iy and with
a™ the projection of (@) on Mg (note that Ayg) = Agee} = L(p)). Define

h={a€ (E_){O} X (5_;.){0@} ]CLQ + a™ = 0}.

Let w be the meromorphic differential t=1.dt on P'. Then (A4, Hs,g® b) is a triple
Manin system. The cocommutator p of g 1s described as follows:

p(Hi) =0,
p(X;t}: :thi AH%?

where Xf, H; are the canonic generators of the Kac-Moody algebra g = L(p) (see
[11]). A straightforward computation gives an element r € B(P') such that r is
a solution to both equations (1) and (4). Thus we get a rational solution of the
classical Yang-Baxter equation, which corresponds to the Manin triple (A, Hs, g ®
h). If we substitute exp(u) for the co-ordinate function ¢, we obtain the so-called
trigonometric solution of the classical Yang-Baxter equation, which is studied in
detail in [1, 2].
The solution » for the case p = 5| (2,C) is the following:

1
r=(t—-s)"'(te-Qes+ Z(i +5)eg ®ep+seQe ),
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where?, s are co-ordinate functions of the first and the second copy of P! in B(P') =

73(1?’1 x P1Y® (p ® p), and {e_, e, ey ) is the canonical Cartan-Wayl basis of the
algebra p = 5((2,C).

Example 2. We preserve the notations of Example 1. Define
h={a€ (- ®Cltt Doy x (b4 @ Clt,t™ N ooy |

mo((a)e) + mo((a)ec) = 0},

where mg is the projection on the subalgebra C[t,17!]®ng C L(p). Again (A, Hs, g®
h) is a triple Manin system, but this time there exists no cocommutator of the al-
gebra g determined by it. More explicitly, the functional defined by formula (3)
is an infinite series and does not correspond to any function p : g — A%g. Pre-
surnably, this pathology is due to the choice of the “bad” definition of the “Cartan
subalgebra” of L(p), contrary to the “good” definition in Example 1. Observe that
this drastic change in the cocommutator situation of g is achieved by changing only
the “b” part of the triple system.

Example 3. For completeness we include a brief description of the triple
Manin systemn genecrating the elliptic solutions of the classical Yang-Baxter equa-
tion. For more details see [1, 10]. Let I;, I be the internal automorphisms of
s|(n,C), defined by the matrices

10 ... 0 10 0
01 ... 0 |
O R RS L
1o L1 00 .. et

where € is a primitive n-th root of unity. Let X = C/{Z @ Zr} be an elliptic curve.
We choose S = {0}; w = dz (z being the co-ordinate on C); p = 5| (n,C). Define

E+1lr

o= {JER(X)Op|f (z+ ) = (),

and f has no poles outside the set {k t M} :
5

.on

The well-known elliptic solutions of Belavin (see, e. g., [10]) correspond to the
cocommutator of the algebra g determined by the Manin triple (As, Hs,g @ b).

Remark 3. The elliptic solutions of Belavin are the only essentially non-
rational solutions known (to us). It is curious to observe that the triple of Example
3 generates also a (local) solution 7 of the equations (1) and (4) determined by the
cocommutator of the algebra . As a function of the local parameter z, 7 coincides
exactly with the “rational” solution r, (see formula (6)).

Remark 4. One can check that the analog of Proposition 2 is valid for all
examples treated above.
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