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Hopoan 3awes. KOJOBO OLUEHWUBAHUE B ONNEPATOPHbIX TIPOCTPAHCTBAX
C OINNIEPATOPOM CKJ/JIAIUPOBAHUA

PaccMmaTpuBaeTca HOHATHE ONEPATOPA CKAAJMPOBAHMA B ONePAaTOPHBIX NPOCTPAHCT-
Bax ViBaHoBa, poAcTBEHHOE COOTBETCTBYIOIemMy noHaTuic Msanosa. Jlna onepaTopHbIX
NPOCTPAHCTB C ONEpaTOPOM CKAAAMPOBAHMA [OKA3aHa TEOpPeMa KONOBOrO OUEHUBAHMUA, M3
KOTOPOU JIErKO CAEAYIOT NOYTH BCE OCHOBHBbIEe Pe3ybTaTh! anrebpanueckoil Teopum pexyp-
CHM [UIA TaKHX APOCTPAHCTB. B xavecTse npumeneHnii nonyyaloTca OCHOBHbBIE PE3YNLTATH
Teopun KoMBuHATOPHBIX NpoctpancTs Cropaesa B obobGuennoM BapuanTe, ceoboanom or
MCHOIb30BAHUA KOHCTAHT. '

Jordan Zashev. CODE EVALUATION IN OPERATIVE SPACES WITH STORAGE OPERA-
TION

A concept of storage operation in an operative space is considered, which is closely related to
Ivanov’s concept of storing operation in such spaces. For operative spaces with storage operation
a code evaluation theorem, implying almost all principal results of algebraic recursion theory for
such spaces, is proved. As a special case these results are obtained for a generalized version of
Skordev's theory of combinatory spaces, free from using constants.

0. INTRODUCTION

One of the methods in algebraic recursion theory is based on a principle which
we call “the code evaluation theorem”. This theorem is a fundamental result in
the sense that all principal facts of algebraic recursion theory usually follow easily
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from it. For instance, in operative spaces in the sense of [1] the first recursion
theorem, the normal form theorem, and the universal element theorem are near
consequences of the code evaluation theorem. On the other hand, the last theorem
1 operative spaces requires suppositions which differ from those needed for other
methods, especially the method of Ivanov [1]. The principal advantages of the
suppositions needed for the method of code evaluation are connected with the
possibility for further generalization of the theory. For instance, in the context of
categorial generalizations [7], suppositions called “axioms pA;, pAs, pnAs, tuA”
etc. in [1} become rather gross; there are examples of DM-categories in which to
prove the analogue of these suppositions is almost as much difficult as to prove the
analogue of the recursion theorem. Another important advantage is in the fact that
the method of code evaluation is not crucially dependent upon the totality of the
operation of iteration and gives interesting consequences for non-iterative spaces,
as suggested in [8].

The code evaluation theorem was proved for various kinds of algebraic systems
[4]. For operative spaces in the sense of [1] it was not published in its original form,
but only for generalizations in different directions, as in [5], [7] and [8]. Tt was not
clear, however, how this method will do in the case of the theory of combinatory
spaces 1n the sense of [2].

The purpose of the present paper is to prove the code evaluation theorem for
operative spaces with a storage operation and to show how it applies for combinato-
ry spaces, providing in this way a basis for some generalizations of the theory of last
spaces. The operative spaces with a storage operation were essentially introduced
in [1}, but the notion of storage operation in the sense of the present paper is not
a special case of the notion of t-operation in [1]. The last spaces are interesting by
themselves, but being a generalization of combinatory spaces, the code evaluation
theorem in them gives as a consequence all principal results of recursion theory
in last spaces, except the theorem of representation of partial recursive functions,
however in suppositions which differ from those in [2], the difference being but of
secondary significance. [t provides also an elimination of constants from the theory
of combinatory spaces, 1. e. a generalization of the last theory, which is free from
using “points”, the elements of the set € in the original theory of combinatory
spaces [2] playing a similar role.

1. PRELIMINARIES

In order to avoid confusion with notations in [2], our notations for operative
spaces will differ from those of Ivanov [1], especially multiplication will be denoted
in reverse order. Thus in the present paper by an operative space we shall mean
a partially ordered algebra F with two binary operations: multiplication ¢ and
pairing (@,%) (for ¢, ¢ € F), and three constants I, T, Fy such that Fis a
semigroup with an unit I with respect to multiplication, and the following equalities
hold for all v, ¥, x € F: (0, V)14 = @, (0, V)Fy = ¥, x(,¥) = (xp, x¥). Note
that the last definition includes also the supposition that the both operations are
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increasing on both arguments. By storage operation in F we shall mean an unary
operation S in F which is increasing and satisfies for suitable constants D, A,
Ay € F and all ¢, ¥, x € F the following three equalities:

(S1) | S(py) = S(p)S(¥);
(S2) S((p, ¥)) = (S(p), S(¥)) D;
(S3) S(S(p)) = AuS(9)Ar.

A partially ordered algebra F consisting of an operative space, an operation S
and constants D, Ag, A; € F satisfying (S1)-(53) will be called an operative space
with storage, or shortly OSS. An OSS will be called regular, iff the inequality

(s4) (T4 (1), FrS())D < DS(1)

is fulfilled in 1it.

Now let us fix an operative space F with a storage S; we shall write ¢~ for
S(p). Let X be an arbitrary subset of F; then by a simple K-admissible initial
segment we shall mean a subset A C F of one of the following three forms:

1) A={{€T|& <y}, where ¢ € F;

2) A={ € F|ptx <y}, where o, € F and x € X;

NA={eTF|(€x)" <¢I"}, where p € Fand x € X.

A X-admaissible initial segment 1s by definition a countable intersection of sim-
ple K-admissible initial segments. An element ¢ € F will be called K-iteration of
another element ¢ € F, iff ({,9)p < 9 and for every KX-admissible initial segment
A C F such that

(LA ={(LEp|E€cALCA
we have 9 € A. We shall fix the set X and we shall write simply “iteration” instead
of “K-iteration”. If ¥ is an iteration of ¢, then ¥ is the least solution of (7,&)¢ < ¢
with respect to & in F, since the sets of the above form 1) are X-admissible initial
segments. Therefore the iteration of ¢, if it exists, is unique, and in this case we
shall denote it by I(¢). (Note the difference between our iteration I{¢) and that
used by Ivanov [i]; however, both iterations are easily expressible by each other.)

Next, suppose we are given an infinite list of formal symbols called variables
and denoted by z, y, z with or without indexes; and suppose we have another list
of symbols ¢g, ..., ci—1 called parameter symbols. We shall fix an interpretation
assigning to each parameter symbol ¢; a parameter, i.e. an element v; € J, called
also value of ¢;. We shall have also symbols for the elements I, T4, Fy, D, Ag,
Ay of F which we shall denote by the same letters, so each of these elements is the
value of the corresponding symbol denoted by the same letter. We shall call the
last symbols basic constants; both parameter symbols and basic constants together
will be called constants, and constants and variables together will be called prime
terms. Now {erms are defined inductively as it follows: all prime terms are terms;
if t and s are terms, then (ts), (,s) and S(t) (or shortly ¢7) are terms. We adopt
usual conventions of dropping external brackets in multiplication (¢s) of terms etc.
Terms of the following two kinds: p, p~, where p is a prime term, will be called
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simple terms. If no otherwise indicated, the letters ¢, s, p, q, r with or without
indexes will denote the terms below. Terms of the form

(- ((Ho)l1) ... tn1)tn
will be written shortly as ttg ... tn—1tn. An evaluation ¥ is a function with a finite
domain Dom(¥) consisting of variables and values in . The value 5(t) € F of
a term t under an evaluation ¥ defined for all variables occurring in ¢ is defined
inductively as it follows: "t?(t) = J(t) if ¢ is a variable; ﬁ(t) 1s the value of £ if t is a
constant; d(ts) = J(t)d(s); I((t,s)) = (9(t),¥(s)); and J(t™) = (9(t))". For some
purposes it will be convenient to consider the empty word A as a special term with
value I, and, accordingly, ¥(A) = I for any evaluation ¥. By an eztraterm we shall
mean a word which is either a term or empty, and the letter P below will always

range over extraterms. Thus we have AP = P = PA for all extraterms P and we
define A” = A.

2. REDUCTIONS AND NORMAL FORMS OF TERMS

Expressions of the following five kinds:

(R1) (ts)” —t7s7;
(R2) ((t,8))" — (¢ s7)D;
(R3) ()" — Aot Ay;
(R4) t(sr) — tsr;

(R5) (s, 1) — (ts,tr),

will be called contractions. As usual, the notion of contraction gives rise to a
reduction notion: we shall write ¢ jj+; s for “s is obtained from ¢ by contracting of
a redex in ¢”, where by redex we mean an occurrence of a left side of a contraction,
and contracting of a redex means replacing it by a corresponding occurrence of the
right side of the same contraction; by i~ we shall denote the reflexive transitive
closure of the relation (~1. A term is normal, iff it does not contain redexes. An
S-redex is a redex of one of the first three kinds, 1. e. an occurrence of left side of
(R1), (R2) or (R3). For each term t we define another one tV by the following
equalities:

(1) sV =s, if s is a simple term;
(2) (ts)V =tNs, if s is a simple term;
NG (s = (tsr)";

(4) | (t(s, )Y = ((ts)V, (tr)™);

(5) ()™ = (1)),

(6) ()Y = (¢, sY);

(7) | ()" = (s,

(8) (t, )Y = (@), (DY) D;
(9) (@)Y = (Aot Ay
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To see that this is indeed a correct definition, consider the ordinal number
p(t) = a(t)o® + B(t)w® +y(thw + 8(),
where a(t) is the maximal length of S-redexes in ¢; 3(¢) is the number of S-redexes
in t; v(t) is the length of t; and 8() = ) y(%:), where t = ptg...tx—; and the term
: i<k

p is not of the form pop;. The equalities (1)-(9) are obviously defining at least a
partial function tN on terms ¢, but this function is total since an induction on u(¢)
shows that tV is defined and ¢V is normal for every term t. Moreover, we have

Lemma 1. For all terms{ and s:
(a) t1—tV; and
(b) if ti s, then tN = sV,

Consequently, sV = s for every normal term s and for an arbitrary term ¢ tV
is the unique normal term s for which ¢ (- s.

Proof. (a) is obvious by an induction on p(t); to prove (b) it is enough to
show that t i, s implies ¥ = sV . This is done also by induction on p(t). It is
convenient to write t g s for £ = s. Suppose the hypothesis of the induction and
consider nine cases for ¢ as in the definition (1)-(9) of t¥. We shall consider the
case corresponding to (3) only, the rest ones being similar or simpler (we are leaving
them to the reader). This is the case when ¢ has the form r(pq). Let t =7 s. Then
two subcases are possible:

Subcase 1) s = rpg. Then tV = sN by (3).

Subcase 2) s = ro(pogo), Where 7 i~; ro, p Ij Po, ¢ Ik qo, and ¢, j, k are
natural numbers such that i + j + k = 1. Then u(rpq) < u(t) and rpg —1 roPoqo,
whence, using the induction hypothesis, we have tN = (rpg)™ = (ropogo)™ = sV.

: "
Lemma 2. The function t on termst is primitive recursive.

Proof. This is not obvious since an induction on a higher ordinal was used
in the definition of V. But the normal form function ¢V can be represented as a
composition of two primitive recursive functions R and B on terms defined below.
First define a function F on terms by the following equality:

t” if ¢ is a prime term,

F(s)F(r) if t = sr,

(F(s), F(r)D ift=(s,7),

AoF(S)Al ifi e SA.

This is a definition by induction on complexity of ¢, so F' is primitive recursive and

by a similar induction we see that t” i~ F(t) and F(t) does not contain S-redexes.
Next, define by the same induction the function R as it follows:

F(t) =

t if ¢ is a simple term,
R(s)R(r) if t = sr,

(R(s), R(r)) ift = (s,r),

F(s) ift =s".

R(t) =
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In the same way we see that R is primitive recursive, ¢ - R(t) and R(t) does not
contain S-redexes.

Finally, define the function B on terms containing no S-redexes by the following
equality:

(t if t 1s a simple term,
B(p)s if t = ps and s is a simple term,
B{t) = < B(pgr) if t = p(qr),
(B(pq), B(pr)) ift=p(q,r),
( (B(q), B(r})  ift=(q,r).

The last definition proceeds by induction on the number £(¢), defined by

0 if t is a simple term,
g(t) = < e(r) + v(s) ift =rs,
e(ry+e(s)+1 ift=(rs),
whence B is primitive recursive. Moreover, by induction on £(t) we see that for
every term t containing no S-redexes ¢ i~ B(¢) and B(t) is normal. Therefore,
for an arbitrary ¢t we have t |~ B(R(t)) and B(R(t)) is normal, and by Lemma 1
tN = B(R(t)). = |

Finally, let us mention that the extraterm A will be considered as normal and,
accordingly, AN is A by definition; the function PY on extraterms P is obviously
primitive recursive.

3. THE CODE EVALUATION THEOREM

As in Section 1 we shall have fixed an OSS F, an interpretation of parameter
symbols in J, and a subset X C F. Consider a formal system E of inequalities of
the form

(10) $; <z, 1< n,
where n # 0 and sg, ..., sp,—1 are normal.terms containing no other variables than
Lo, ..., Tn-1. For every extraterm P containing no other variables than zg, ...,

T,-1 we shall write 5(59, ...,&€n—1) for the value 5(13) of P under the evaluation
VU {zo,...,xn1} — F defined by 9(z;) = &, i < n. We shall write shortly =
for (zo,...,Zn-1), 5 for (so,...,8n-1), and € for (£o,...,6n—1)- As usual, terms
without variables will be called closed terms and the value of a closed term ¢ will be
denoted by t. We shall call a term ¢ a fit term, iff every occurring in ¢ simple term of
the form z~ occurs in ¢t only through occurrences in a subterm of the form Pz™T7,
as explicitly indicated in the last subterm; the extraterm A is also considered as
fit. Obviously, for every term ¢ there is a fit term t’ containing the same variables
and with the same value as t for every evaluation defined for the variables in ¢. A
solution of (10) is defined as an n-tuple £ € " such that 5;(€) < & for all i < n.
Least solution of (10) is a solution pu = (uo, ..., un—1) of (10) such that for every
solution & = (&, ...,En_1) of (10) we have pu; < & for all i < n. It is obvious that
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any system ¥ of the form (10) is equivalent to such one for which the left sides
s; are fit normal terms. We shall write N(X) for the set of all normal extraterms
containing no other variables than those occurring in X, and N will be the set of
all normal extraterms.

A set K C N(E) will be called closed with respect to the system ¥ of the form
(10) iff the following five conditions are fulfilled:
(Cl) =z € K foralli<mn;
(¢2) if Ps € K and s is a simple closed term, then P € K;
(C3) if (tg,t1) € K, then both #o,1; € K;
{(}4) if Pz; € K, then (P.S,;)N € K and P e K;
(C5) if P(xz;)"@Q € K, where Q is either A or Ay, then

(P(s))VQ € K and P € K.
Now by coding for the system X of the form (10) we shall mean a triple (K, k, o),

where K C N(X) is closed with respect to X, k : K — JF is a function, and o is an
clement of J such that the following five conditions are fulfilled:

(K1)  ok(t)=T4 ift=A;

(K2)  ok(t) = Fyk(P)s if ¢t = Psand s is a simple closed term;
(K3)  ok(t) = Fy(k(to), k(t1)) i t = (to,t1);

(K4)  ok(t) = Fek((Ps:)Y) if t = Pzy, i <m;

(K5)  ok(t) = Fyk((P(si)D)Y) if t = P(2:)7, i < n.

Theorem 1. Supposc the OSS F is regular. Let (K, k, o) be a coding for the
system (10) with fit left sides and let w € F be an iteration of 0. Then the n-tuple

wk(Z) = (wk(zo), ..., wk(z,-1))
is the least solution of the system (10) in J.
Proof. Since w is an iteration of o, 1t satisfies the equality
(I,w)or = w,

whence by multiplication from right by k(t), t € K, and using (K1)-(K5) we obtain
the following equalities:

(11) wk(t) =1 ift=A,

(12)  wk(t) = wk(P)s if t = Ps and s is a simple closed term;
(13)  wk(t) = (wk(p),wk(q)) ift=(p.g);

(14) wk(t) = wk((Ps)Y) ift = Pxy, i < m;

(16)  wk(t) = wk((P(s:))N) if t = P(z:)7, i < n.

We shall prove the inequality

(16) wk(t)wk(s) < wk((ts)™)
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for all t,s € K such that (st)V € K. For that fix t € K and denote by K’ the set
{s € k| (ts)V € K}. Then the subset A C F, defined by

A={9€TF|Vse K (wk(t)Ok(s) <wh((ts)"))},

is a X-admissible initial segment. To show that (I A) C A, suppose ¥ € A and

consider cases for s € K’ as it follows:
Case 1) s = A. Then by (K1) we have

wk()(I,0)ok(s) = wk(t)(I,9)T} = wk(t) = wk((ts)V).

Case 2) s = Pq and ¢ is a simple closed term. Then using (K2) and (12) we
have

Wk(t)(1,9)ok(s) = wk(t)(I, 9) Fy k(P)F = wk(t)9k(P)§
< Wk((tPYV)T = wh((tP)Vq) = wh((ts)™).
Case 3) s = (p,q). Then, similarly, by (K3) and (13) |
Wk(D)(L, 9)ak(s) = wk(O)D(k(p), k() = (@h(t)Ok(p), wh(1)9k(g))
< (Wh((tp)™), wk((t)") = wk(((tp)", (t)™)) = wh((ts)™).
Case 4) s = Px;, i < n. Then, similarly, using (K4), (13) and Lemma 1
wk(t)(1,0)k(s) = wh(O)0k((Ps)N) < wk((t(Psi))V) = wk((tPs:)V)
= Wk((EPYYs0)V) = w((LP)V 2:) = wh((ts)").
Case 5) s = P(z;)", t < n. Similarly, ‘
wh(t)(1,9)ck(s) = wk(O)Pk((P(s:) ) < whk((t(P(s:)))V) = wk((¢P)" (s:))Y)
= wk((tPYN (z;)") = wk((ts)").
Note that in cases 2)-5) we used also conditions (C1)-(C5) to ensure that the

involved terms belong to K’. These cases exhaust all possible cases for s € K’
since s is normal. Therefore, for all s € K’ we have

| KT, 0)k(s) < wh((ts)™),
which means that (I, 9)c € A, and the inclusion (I, A)o C A is proved. Since w is

an iteration of o, we conclude that w € A, whence we get (16).
Next we shall prove that for all ¢t € K \ {A} such that (¢7)"¥ € K we have

(17) (wk(1))" < wk((EYV)I™
Indeed, let K be the set {t € "N € K} and consider the X-admis-
sible 1nitial segment

B={9ecF|9k(A) < T&Vte K" ((9k(t))" <wk(tOHV))}.
To prove that (I, B)e C B, take ¥ € B. Then (I,9)ok(A) = (I,9)Ty = I and to
prove |
(18) ((1,9)ok(t))” < wk((t)Y)

for all t € K", consider cases for t as it follows:
Case 1) t = A. Impossible, since t € K.
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Case 2) t = Ps, where s is a simple closed term. Then if s is a constant, we
have, using (K2), (11) and (12), ‘

((1,9)ok(t))" = (9k(P)3)"
< wk((PYM)I7E) = wh((PYN)(E) 1" = wh((t))1

and if s = ¢, where ¢ is a constant, we have, similarly,

((1,9)ak(£))” = (9k(P)3)” < wk((P)M)())I™ = wk((P)N)Ao(8) A I™
= wk((P)N)Aoc™A) ™ = wk((t)YN)I™.

Case 3) t = (p,q). Using.conditions (C2) and (C3) we see that p,q € K",
hence by (K3), (54), (12) and (13) we have

(1, 0)ak(t))” = ((9k(p), 9k(9)))” = ((9k(p))™, (9k(9))") D
< (Wk((p)YM)I7wk((@)M)I)D = (wk((P)N), wk((¢ V)T 17, FoI7)D
< (wk((p)™), wk((¢)NDI™ = wk((p)Y, (@)V)D)I™ = wk((t))I".

Case 4) t = Pz;, i < n. Then using (15) we get

((1,9)ok(t)™ = (Fk((Ps)"))™ < wh(((Ps:) )Y )™ = wk((P(s:))M)I™

= wk((POYN (z))™ = wk((t)V)I™.

Case 5) t = P(z;)", i < n. Then t = P(z;)” € K, whence by (C5)
(P(s))Y € K. On the other hand, ((P(s:)))Y = (P Ao(si)")N A1, and
since ()N = (P"Ap)N(2;)"A, € K, we see by (C5) again that ((P(s;) )N € K,
i.e. (P(s:))N € K", Therefore, using Lemma 1 and (15) we have
(1, 9)ok ()" = GR(P(s) YN < wh((((P(s) Y)Y

= wk(((P(s:) )™ = wk(((P) Ao(s:))V)ALL™
= Wk(((P) A0 (&) ) A1 ™ = wk(((P(2:) ) ) I = wh((E))1

Thus (18) is proved and thence (I,9)o € B. Since w is an iteration of o, by
the inclusion (I, B)o C B we have w € ‘B, whence we obtain (17). Using (16) and
(17) we are able to show by induction on ¢ that
(19) Hwk(z)) < wh(t)

for all fit t € K. For that suppose t is fit and consider the cases for ¢ as above:
Case 1) t = A. Then (19) is obvious from (11).
Case 2) t = Ps, where s is a simple closed term. Then if P is fit we have by
the induction hypothesis '

H{wk(T)) = P(wk(Z))5 < wk(P)5 = wk(t),

and if P is not fit, then, obviously, s = I~ and P = Plg;” for some i < n and
extraterm P’, and using (17), (16) and the induction hypothesis we have

Hwk(T)) = P'(wk(E))(wk(z:) T < wk(Pwk(z;) "1™ = wk(P'::ijI'\ = wk(t).
Case 3) t = (p,q). Then using the induction hypothesis and (13) we get
Hwk(E)) = (Fwk(D), Wk(@)) < (wk(p),wh(g)) = wk(?).
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Case 4) t = Pxz;. Using the induction hypothesis, (16) and (C5), we have
?(wk(:f)) = P(wk(F))wk(z;) < wk(P)wk(z;) < wk(1).
Case ) t = P(x;)". Impossible, since t is a fit term.

This complete‘s the proof of (19). Since the terms s; are suppos‘ed to be fit
ones, (19) implies that wk(Z) is a solution of (10):

5 (wk(Z)) < wh(s;) = wh(z,).
Now let £ = (o, ...,€,—1) be an arbitrary solution of (10) in F. We shall show
that for each t € K '
(20) * wk(t) < 1(€).
For that consider the K-admissible initial segment
By = {9 € F|Vte K (Ik(t) <t())}.
We shall show that (I,B,)c C B, whence (20) will follow immediately. For that
suppose ¥ € B, and prove for all £ € K that
(21) (1, 9)ok(t) < 1(8),
considering cases for t as it follows:
Case 1) t = A. Then
(I,9)ak(t) = (I, )Ty = I = 1(£).
Case 2) 1 = Pg, where ¢ is a simple closed term. Then
(1, 9)ok(t) = 9k(P)F < P(E)7 = 1(§).
Case 3}t = (p,q). Then
(1,9)ak(t) = (Vk(p), 9k(9)) < (B(£),3(€)) = 1(&).
Case 4) t = Px;, i< n. Let s = Ps;. Then, since reductions do not change
the value of terms and ¢ is a solution of (10), we have

(1,0)ok(t) = Pk((Ps:)V) < 5(€) = P(E)5i(€) < PE)& = 1(E).
Case 5) t = P(z;)”, i < n. Similarly,

(1,9)ok(t) = 9k((P(s:))V) < PEOGE©)” < PE)E&) =1(D).
This completes the proof of (21) and, therefore, of (20). Then for each ¢ < n
we have

wk(x’i) < Ez(g) =&

Remark. As it may be noticed by the reader, the previous theorem holds with
the following variation: we leave the supposition that F is regular and terms s; are
fit, and replace the supposition that w is a K-iteration of o by a (possibly) stronger
one, which is obtained from the definition of X-iteration by erasing the occurrence
of I”in the definition of simple X-admissible initial segment. The proof is the same
with corresponding simplifications, namely we need not to pay attention to fit terms
and we prove (19) for all ¢ € K. The preference of the presented above version
was made for purposes of applications to combinatory spaces, but the version,
mentioned in the present remark, is interesting as well.
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4. EXISTENCE OF CODINGS

To apply Theorem 1 one needs to construct a coding which in many cases is
more or less a straightforward work. We shall describe a general situation when
codings exist always. Namely, let F be an OSS and let as before an interpretation
of parameter symbols in J and a set X C F be fixed. Denote by S the set of all
pairs (X,t), where ¥ is a system of the form (10) and ¢t € N. Then by universal
coding in F we shall mean a pair (k, o), where ¢ € Fand k£ : S — X is a function
such that for every fixed system X of the form (10) the triple (¥, ky, o) is a coding
for £, where k(1) = k(X,1) for all t € N. By proper representation of natural
numbers in J we shall mean a function assigning to each natural number n an
clement nt € F and satisfying the following condition: for every natural number
~m there is a mapping Ry, : " — F such that

Rm((yﬁ’(}: ceey Spm-l)n+ = Pn

for every m-tuple (¢o,...,¢m-1) € I and all n < m. If these mappings R,, are
of the form

Rm({p(}: . ~-s‘;9m—1) = (@0; (501; .. ‘3((1037’1"—1: [){) ~):0>;0:

where p € F, we shall say that the representation in question is normal and
p is its specific element. We shall say also for a proper representation of natural
numbers in F that it 1s premitive recursive, iff unary primitive recursive functions are
representable with respect to this representation, 1. ¢. for every primitive recursive
function f of one argument there is ¢ € F such that ont = (f(n))* for all natural
n. We shall call an element ¢ € F elemeniary in aset B C F, iff ¢ may be expressed
through basic constants and elements of B by means of multiplication, pairing and
storage operations, 1.e. iff ¢ is the value of a closed term with parameters in B.
Elementary mappings f : F* — F are similarly defined as mappings of the form
f(€) = Z’(E) for suitable term ¢ with parameters in ‘B.

Proposition 1. Lel a primilive recursive representation nt of natural numbers
n be given in F, and suppose nt € X for alln, and let the set K satisfy the following
three conditions:
(a) xp = % forall p e F and € X;"
(b) there 1s 6 € F such that éx = xx for all x € X,
(c) there is m € F such that wx = (Ty %, Fyx) for all x € X.

Then there is an universal coding (k,o) in F, and if the representation nt is
normal, then such a coding may be found with o of the following special form:

(22) o= (0%, (01717, (ar—rya—1 1) .. ))B,
where vg, ..., vi—1 are the paramelers, yip; = v forall i <1, 6g = - - =61 = Fy,
0=+ =891 = Fy Ag, and [ is elementary in a fized finile set B C F.

Proof. Take a primittive recursive numeration of elements of S and define
k(X,1) = (the number of (,¢))*. Using the representability of primitive recursive

317



functions we see that there is o’ E F such that

(0t if { is a simple closed term,
1t if t = ps, where s is a simple closed term,
o'k(Et) =< 2t ift= (p, q) for suitable p, g,
3t if t = Pz for a suitable variable z,
4% if t = Pz” for a suitable variable z.

Next we construct og, 01, 09,03,04 € F such that
ook(X,t) =Ty if t = A ‘
c1k(Z,t) = Fuk(X, P)§ if t = Ps and s is a simple closed term;
2k (S, 1) = Fy(k(S,p), K(E,q) if L= (p,q);
o3k(Z,t) = Fy (k(Z, (PL(z))Y) ift = Pa;
oak(Z,t) = Fy(k(S,(P(Z(z)))V) ift = Pz,

where X(z) is the left side of the inequality in £ with right side z, if such inequality
exists, and X(x) = « otherwise. The existence of o3 and o4 follows from the
supposition of primitive recursiveness of the given representation of natural numbers
in J; the existence of o 1s obvious, since the last representation is a proper one.
The crucial point i1s the construction of . It may be done by making use of (a)
and (b) as it follows:

Fik(Z, P)Ys = Fpk(Z, P)ak(Z,s) = Fra k(E, P)k(Z, 5)
= F+a Glgk(E,PS)Ullk(E,Pé‘) = F+Gf Ulg(dli)Aék(E, PS),

and define oy = Fya"o19(011)78, where o € J is such that ak(Z,t) = { for
all simple closed terms t (the existence of o follows from the fact that simple
closed terms are finite in number), s is a simple closed term, and o9 and ¢y,
are constructed using the representability of primitive recursive functions. The
construction of o is based on the use of (¢): for t = (p, q) we have

t{-(k(zap)u k(z’:‘?)) = F-GO'ZOk(xtt)BaZ’Ik(E?t))
= Fi (020, 02 ) (T4 k(E, 1), FLk(E,1)) = Fi (020, 021)mk(Z, 1),

and we define. oy = Fy(0o20,021)7; 020 and o3 are constructed using the rep-
resentability of primitive recursive functions. Finally, taking ¢’ € F such that
o"it = o; for all i < 5, and defining 0 = ¢/'0’6 we see directly that (k, o) is an
universal coding. The form (22) of & in the case of normal representation nt fol-
lows easily from the above construction by some simple transformations using basic
equalities in the definitions of operative space and storage operation and the set
{6, 7, 010,011,020, 021,03,04,0", p} for By, where p is the specific element of the
representation nt. m

Corollary 1. Suppose for every ¢ € F there 1s a solution I(p) of the equality
(I,€)p = € with respect to £ in T, and there are two elements M,Q € F such that
for all ¢ € F the following equalities hold:

(1) " MFy =MF o™
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(if) ¢ MTy = MTye™
(i) ¢ Ty =Ty,
(i\f) QMF+JM = F+M;
(V QMT+T+ = T_*_*

Then there is an universal coding {k, o) in T such that o has the form (22) with
respect to a sel By consisting of elements explicitely expressible by means of basic
constants, @, M, and operations of multiplication, pairing, storage and iteration L.

Indeed, define nt = (MF)*MT,. T, and let X be the set of all elements of
the form n* for a natural n. Then (i)-(iii) imply the condition (a) in Proposition
1. Using (iv) and (v), we see that the operation Ry defined by Ro(p, ¥) = (¢, ¥)Q
satisfies the equalities

(23) Ro(p, ¥)0T = ¢ and Ro(p,¥)(n+1)" = ynt

for all natural n and all ¢, ¥ € J; and for the element 7 = I((T4, F4¢")Q) we see
by induction on n that 7nt = ¥™, whence the operation Ry defined by Ry (¢, ¥} =

(T, F+y7)Q)¢ ™ satisfies \
(24) Ri(p, )0t = ¢ and Ry(p, ¥)(n+ 1)t = vR;(p, ¥)n*

for all natural n and all ¢,9 € F. Using Theorem 1 in [6] we conclude that n*
is a normal primitive recursive representation with specific element Q. Conditions
(b) and (c) in Proposition 1 are satisfied with § = Ry (0t0*, MF M "F,") and
7 =Ry (T4 01, F 0%, (T MFy, FL MF,)). Applying Proposition 1 we obtain the

corollary. m

A system X of the form (10) will be called finitely codable iff there is a finite
set K C N(X) which is closed with respect to X. For finitely codable systems we
can easily find codings with a special simple form of the third component o.

Proposition 2. Let a normal representation n* of natural numbers n with
a specific element p be given in F. Suppose nt € X for all n and the sei X
satisfies the condition (a) in Proposition 1. Then for every finitely codable system
Y there is a coding (K, k, o) for £ such that K is finite and o has the form (22)
with B elementary in {p} and the setl of representations n™ of natural numbers
n. Moreover, if the system ¥ contains occurences of a parameter symbol c; only
through occurences of ¢;”, then the part concerning the correspondent parameter =y;
may be erased from the form (22), i. e. ¢ may be supposed of the form

o= (Fyvo™ ., (Feyio1™ Gigrvier ™ (FyAoya-17,1) - )8,

Indeed, if K C N(X) is finite and closed with respect to X, then we can
enumerate elements of K and define k(t) as ((¢))*, where ~(t) is the number of
t € K. Then we may construct o satisfying (K1)-(K5) in a way which is obvious
enough and obtain the necessary form (22) of o by some elementary transformations
using (a) of Proposition 1. To obtain the last form of ¢ in the Proposition 2, we
have to notice also that if the system X possesses the property in question, namely
that it contains occurrences of the parameter symbols ¢; only through such of ¢;”,
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then all extraterms in the least closed with respect to £ set K C N(L) possess the
same property, which is clear from the closure conditions (C1)-(C5). =

An element ¢ € F will be called finitely recursive in a set B C F, iff it is
definable by a finitely codable system with parameters in B, i.e.  is a member
of the least solution of a finitely codable system of the form (10) with respect to
an interpretation of parameter symbols in B. Similarly, by varying one or several
parameters, finitely recursive in B mappings of one or several arguments are defined.

Proposition 3. The set of finitely recursive clements (and mappings as well)
15 closed with respect to the operations mulliplication, pairing and storage. If for
every ¢ € JF the least solution U(y¢) of the inequality (I,&)p < & with respect to &
exists in F, then the set of fintlely recursive clements (and mappings as well) is
closed also under the operation I

Proof. For the operations multiplication, pairing and I this is easy. For in-
stance, if ¢ is the member ¢q of the least solution (g, ..., 1) of a system X of
the form (10), then (wq,...,¢n-1,1{()) is the least solution of the system &/ = X,
(I,y)xo < y obtained from ¥ by adding the inequality (I, y)zo < y, where y is a
new variable. If £ C N(¥) is finite and closed with respect to I, then the set

| K'=KUly, (Iy), Tu{(L )" |te K}
is finite and closed with respect to ¥’/. This is the proof for the operation I, and
the cases with multiplication and pairing are similar or simpler and are left to the
reader. The case with the operation storage offers a little bit more difficulties.

Lemma. Let ¥ be a system of the form (10) and let U C N(X) be fintte and
closed with respect to ¥. Then there 1s a set /' C N(X) such that U C U', U’ is
finite and closed with respect to X, and 2~ € U’ for all variables  in X.

Proof (a sketch). Define:

Uy={seNZ)|FHeU(s= ()" or sd; = 1))},
Ug = {( WAy | Pe N(X), Pg"eU, andgisa prlme term}

={((P". (V") (r9)el}.
Then the set /! = UUUUUyU Us satisfies the conditions of the lemma. We leave
to the reader to check this in detail. w

Now, if ¢ 1s the member ¢q of the least solution (¢g,...,¢n—1) of a system X
of the form (10), then (@0, ..., ¢n-1,¢ ) is the least solution of the system ¥/ = X,
zo” <y, where y is a new variable. If U C N(X) is finite and closed with respect to
¥, then the set U’ U {y}, where U’ C N(Z) satisfies the conclusions of the Lemma,
is finite and closed with respect to ¥/. =

5. RECURSION THEORY IN NORMAL OPERATIVE SPACES
WITH STORAGE

The existence of codings combined with Theorem 1 implies basic facts of the
recursion theory. We shall illustrate this in the present section with the case of
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regular OSS with constants M and @ satisfying the conditions (i)~(v) in Corollary
1. The last structures will be called normal OSS (shortly NOSS). For an arbitrary
NOSS F we shall fix the representation nt of natural numbers n and the set K
defined in the proof of Corollary 1. A NOSS J will be called iterative, iff the
K-iteration () exists for every ¢ € F. By Theorem 1 and Corollary 1 we have
nmmediately

Corollary 2. [f a NOSS T is iterative, then every system of the form (10)
has a least solution in F, which members are explicitely expressible by means of
parameters, basic constants including M and @, and operations of multiplication,
patring, storage and iteration L

Calling recursive in parameters those elements (respectively mappings) of an
arbitrary OSS which are members of least solutions of systems of the form (10)
(respectively, of a system of the same form with respect to the set of parameters
enlarged with such for the arguments of the mapping), we have as well

Corollary 3. In the derative NOSS T there is an element w € F which is
recursive tn parameters and unwversael in the following sense: for every recursive in
parameters mapping ' : F**Y — T there is a primitive recursive funclion f of m
arguments such that for all natural my, ..., m, .1 we have

(25) T(w,m?,....m_)= w(f(mao, ..., mp-1))7t.

Indeed, by Corollary 1 there is an universal coding (k, o), and let w be the
teration of ¢. It is obvious that we can find a system X of the form (10) such that
or all my, ..., mu,. the element ['(w, mg", ...,m}_ ) is a member, correspond-
ng to a variable z of the least solution of the system X(mg,...,m,_1), obtained
rom X by replacing the parameters, corresponding to the last n arguments of the
mapping T, with m, ..., m:}'_l, respectively. Then taking the function f for
which (f(mg,...,ma— )T = k(E(mo, ..., Mp_1),2) in the notations of the proof

of Proposition 1, we obtain the equality (25) from Theorem 1. &

i
f
J
{

Corollary 4. Let F be an wterative NOSS, and let T : F — F be a recursive
mapping. Then there is an elementary in parameters 3 € F such thal

(26) () = (L Py A€ )BMTL Ty
forall £ € F.

[ndeed, by Corollary 2 I'(€) is explicitly expressible through £, the constants
and the operations, mentioned in Corollary 2, whence by Proposition 3 T' is a
finitely recursive mapping. Applying Proposition 2, we conclude that there is a
system X of the form (10) (containing a parameter symbol for £) such that I'(§) is
a member corresponding to a variable z of the least solution of ¥; and there is a
coding (K, k, o} for ¥ such that K is finite and o has the form (FL.€7, (£ A0é™, 1)),
where f 1s elementary in parameters (and A and @ as well, but the last are treated
now as basic constants). Then by Theorem 1

@) P(E) = H(F+ € (Fy Ao, 1))B)k(x).
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Obviously, we may suppose that k(z) = 0%. Moreover, by the last representation
(27) it is clear that the element I'(€) can be defined by a finitely codable system con-
taining occurrences of the parameter £ only through such of €. Then by applying
for the second time Proposition 2, we get the representation (26). m

Corollary 5. Let F be an iterative NOSS and define for all p,% € F
App(e, ) = I((1, F4 Aoy )p) M T4 T
Then T 1s a combinatory algebra with respect to the operation App as an aplication
operation.

Indeed, writing App(e, wo,...,¢n) for App(... App(App(¥, ¥0), 1) . ..0n), we
prove by induction on n that for every recursive in parameters mapping I : gt

F there 1s an elementary in parameters ¥ € J such that for all &,..., &, € F we
have

[(€o, ..., &) = App(y,&o. ..., &n).
Using the representation (26) and the induction hypothesis we have for suitable 8
and v elementary in parameters:

D€, . &) = (1, Fy Ao(€n ™, (Coy - (e &na) - ) ) D)BYMTLT,
= I((1, F4 Ackn ) (T, (F4, Ty F Ao(o, - - (€2, €n1) - ) ) D)BYM TL Ty
= App((Ty, (F4, T4 Fy Ao(€o, . . ., (€nm2,6n=1) .. ) )D)B,ER)
= App(App(7, &0, &n-1), &) = App(7,60, - - &n)-

Hence, J is a combinatory algebra with respect to the operation App, because the.
last operation being recursive in &, every mapping defined by explicit expression
in terms of this operation is recursive in &. m

6. APPLICATIONS TO COMBINATORY SPACES

Let 8§ = (F,I,C 11, L, R, X, T, F) be a combinatory space in the sense of {2] (un-
explained terminology and notations concerning combinatory spaces, mentioned in .
this section, may be found in [2]). We shall write (¢, ¢) for II(¢, ¥) and we shall
suppose that T and F' belong to €, which 1s not a loss of generality. Consider a
corresponding companion operative space 8.. We shall denote the basic constants
and operations in 8, in the same way as we have done above for an arbitrary
operative space, especially T4 = (T, I) and Fy = (F,I). There is a storage opera-
tion S in 8, defined by S(¢) = (L, ¢R) (see [2], exercises 7, 10 and 11, pp. 55, 56);
the corresponding constants are defined as follows:

D=(LR— Ty (L,R*), Fy(L, R)WL,R) = (LR = T4 R", FyRO)I",
Ao = (L* (RL,R)) and A, = MI™ = M(L,R), where M = {(L, LR), R?); condi-
tion (S4) is obviously satisfied: (T4 I7, F4I7)D = DI™. Moreover, 8, is a NOSS
with respect to M, defined as above, and Q = (L? — T, R, F{(RL, R)). Indeed,
for arbitrary ¢ € € and ¢ € F we have

MFy (e, Iy = ({(F, L), R){c, [)p = ({F,¢c), )
= ((F,e), ) = (L, pR){(F,c), [) = ¢ "M Fi(c, 1),
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whence (by [2], exercise 9, p. 58) MFro " = ¢ " MF 17 but MF 1™ = MF, since
MF.I"c= ((F,L), R{L, Rye = ({F, L), R){I, Re)Le, |
and for an arbitrary b € €
((F, Ly, RY(I, ReYb = ({F, L), R)(b, Y Re = ({F,b), I)Re = ((F, b), Re))
= {{F, 1), Re)b,
whence , *
MFI"c= {{F,I), ReyLe = ({F, Lc), Rc) = M Fyc.

Therefore the condition (i) in Corollary 1 holds and similarly we have (ii), and (iii)
is obvious. To see (1v), consider [or an arbitrary ¢ € € the equality

QMEF (e, 1y = QUF,¢), Iy = Fy(RL, RY{{F,c), I} = Fy{c, I}.
[t implies by the exercise 9, rﬁentioned above, that QM I, 1™ = .17, but
MF,I™ = MF,, whence QMF, = FyI” and QMF M = F.I"M. On the
other hand, I"M = M, whence we get the condition (iv). The last equality follows
from I (p,¥) = {(p, ¢} for all ¢, 1 € F, which can be proved by the same method
as above: take arbitrary b,¢ € F and from |

(L, RY(I,¢¥c)b = (L, R)(b, [)vc = (b, I} = (I, bc)b
conclude that (L, RY{I,vc) = (I, ¥c), whence
I (e, )e = (L, R}, ¥ye = (L, R){], Yeype = {1, pe)pe = (@, ¥)e.
Finally,
QMTyTy = QT T), I) = Ty R{T, T), 1) =1k,
and the condition (v} in Corollary 1 holds as well.

Remark. To apply Corollaries 2-5, we need to suppose that the space S, is
iterative with respect to the fixed set X. We should comment a little upon the
connection of the last supposition and that of the iterativity of 8 in the sense of [2]
and [3]. The condition of iterativity, used in {2], is possibly more general than that
in [3] (no proof is mentioned that it really is), but the former condition employs the
set € of “points” of the space 8 and can not be stated in point-frec generalizations
of the theory of combinatory spaces, the last being one of our objectives. That 1s
why the condition in [3] has to be regarded as natural for such generalizations. It
may be said that up to secondary details the suppositions of iterativity of the NOSS
$. with respect to X and that of iterativity of § in the sense of [3] are equivalent.
The first of them possibly does not imply the second for two reasons: the set X is
too small and only countable intersections of simple K-admissible initial segments
are allowed as K-admissible ones.” But if we admit arbitrary intersections of that
kind and take X' = CU{{c, I) | ¢ € €} instead of X, then it does. The condition of
iterativity of the NOSS 8, thus strengthened, namely that a solution I(y) of

(28) (£, €§)p <&

with respect to € belongs to every intersection A of simple X'-admissible initial
segments satisfying (/,.A)p C A (let call this condition “non-countable X'-itera-
tivity”), is equivalent to the following one for the space &:
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(I) For every ¢ € F there is a solution [(¢) of (28), which belongs to every
intersection A of subsets of F of the form

(29) {£ € T x€C < v},
where x, ¥ € J are arbitrary and ( is a normal element of F such that (I, A)p C A.

Indeed, if § satisfies (I), then 8. is a non-countably X’-iterative, because every
simple K’-admissible initial segment is an infersection of sets of the form (29): for
such segments of the first two kinds this is obvious and for segments A of the form
{6 € F|(Ex)” < I}, where x € X', it follows from the equivalence

(Ex)” < PI™ <= Ve € C{e, INéx < olc, ).
Conversely, if § is a non-countably X'-iterative, then 8 satisfies (I), because every
set of the form (29) is an intersection of simple X'-admissible initial segments of
the same form with ( € €. On the other hand, the condition of iterativity of § in
the sense of {3] possibly does not imply the condition (1), because the first one uses
a solution [p, ¥] of :
(30) . (¥ — 1, Ep) <&
instead of (28). (Actually, 8 is iterative in the sense of [3] iff for all ¢, ¥ € T there is
a solution [, 1] of (30} in F which belongs to every intersection A of sets of the form
(29) such that (¢ — I, Ap) C A.) It should be noticed that the existences of least
solutions of (28) and (30) are equivalent and both solutions are casily expressible
by each other, namely: (@) = R[pR, L]Fy and [¢,¢] = N1y, Fre) (¥, I)). But
in the case of least solutions in the stronger sense as in conditions (1) and that
of iterativity of 8 in the sense of [3], this equivalence i1s not obvious, and that is
why ([} is possibly less general than iterativity of 8. This foss of generality 1s,
however, rather insignificant (condition (I) holds in any case when general criteria
of iterativity of §, given in [3], are applicable). And it may be complgtely avoided
by some simple complications in the proofl of Proposition 1, which are valid for the
present kind of NOSS, namely companion operative spaces S, of combinatory ones
8. (These complications consist of modifying the definition of (X, t) and the rest of
the proof of the proposition, sa that k(X,¢) = 0% fort = A and k(Z,1) = (n+1)T for
t # A, where n is the number of the pair (X,¢), and the element ¢ of the universal
coding (k, o), constructeéd by.the proof, is of the form (L? — Ty R, Fyr{RL, R))
for some 7 of a certdin form, similar to (22), but with erased Fy. Then, if § is
iterative in the sense of [3], the element R[[?, 7(RL, R)]is a X"-iteration of o, where
X" = {{c, I} | c € €}, and applying Proposition 1 instead of Corollary 1 with the
set K" instead of K, we obtain corollaries analogous to the above Corollaries 2-5 for
the present kind of NOSS.) Thus it may be finally said that by the method of code
evaluation, based on Theorem 1 or its variants, the principal results of the theory
of combinatory spaces may be obtained c¢ven in a little bit better suppositions in
comparison with [3], but this improvement is at most of a secondary significance.

Now, when the NOSS 8. is iterative, the Corollaries 2-5 hold for it and they
consist the principal facts of the theory of combinatory spaces, excluding the the-
orem of representation of partially recursive functions. Thus we obtain a general-
ization of the last theory which uses no “points”. We should note that Corollary 2
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{or this case 1s equivalent to the first recursion theorem in 8, since operation II is
expressible by means of the storage S, namely (¢, ¥) = S(¥)}(R, LYS(@){I,T) (sce
(2], p. 85). Note also the normal form of computable mappings I" obtained from
Corollary 4:

‘ F(é) - R[(LF—}-AOéA)ﬁ) LNF)({T:Tﬁ I)):
where 3 is elementary in parameters. We may also obtain the existence of univer-
sal elements w of the kind considered in [2, 111.7], namely: for every recursive in

parameters mapping I' : 7*71 — F there is an absolutely normal in the sense of (2]
element v such that for all bg,...,b,_; € € we have

F<w:b0> .- -96?1w1) = w<7<60) s >&nml>:1>s

where (bo, ..., bp_1) = (bo, {b1,.. . {bn=2,bn-1}..)}. For that purpose the proof of
Corollary 3 has to be applied to a modified version of that of Proposition 1, which
1s valid for companion spaces 8. of combinatory spaces § and uses new parameter
symbols for the parameters bg, ..., b,_1, and another code function &’ instead of
the old one k:

k(1) = ((LE(Z,1), {bo, ..., bn1)), 1)

7. FINAL REMARKS

The Corollary 5 for combinatory spaces (and its obvious analogue for an
arbitrary operative space) is an important corollary which was not mentioned in
monographs [2] and [1]. Its principal significance is in the fact that it shows that the
recursiveness in combinatory spaces (respectively, operative ones) is a special case of
explicit expressibility in combinatory algebras, thus confirming the view that com-
binatory algebras (or their equivalents like C-monoids of Lambek and Scott) are,
perhaps, the best abstract system for the recursion theory. But the principal ques-
tions, arising in this connection about structures like combinatory spaces, NOSS
cte., have not been investigated. Especially, 1t is not known whether the analogue
of the Park’s theorem holds, 1. e. whether the Curry combinator in the algebra in
Jorollary 5 provides the least fixed point of the corresponding recuisive mapping.
And many interesting questions for concretes examples of NOSS about properties
like extensionality and weak extensionality of correspending combinatory algebras
are open. An interesting perspective is connected as well with non-iterative NOSS
for which the operation App in Corollary 5 may define a partial combinatory al-
gebra. There are examples in this respect, which suggest interesting applications
(for instance examples 2 in [8]). We are leaving these topics for possible further
publications.

Finally, let us note that the theory of OSS, as exposed above, holds (without
big complications in the proofs) also for a generalized kind of storage operation S,
for which there are two constants Dg, D; such that the equality

(S2a) S((, 1)) = (DoS(¢), D1 S(¥))D
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s satisfied instead of (S2). Operative spaces with such generalized storage opera-
tion have interesting models arising from some category theoretic considerations.
Namely, let (' be a monoidal category in which binary co-products X @ Y exist
for all X, ¥ € C and satisfy the isomorphism Z @ (X @ Y)= (Z® X)®(Z@Y)
naturally in X, Y, Z. Then any object V of C, which satisfies the isomorphisms

VevaeV=vev,

provides such a model — the semigroup C'(V,V) of arrows from V to V with an
operation S defined by S(p) = 771 o (ly @ p)or, where 7 : V — V @ V is the
given isomorphism. These models suggest connection with “recursion categories”
of D1 Paola — Heller [9] and deserve further examination in a separate paper. '
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