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Hanwo Pew;u, Eﬁcmu Fenyesa. ﬁAKTOPKBAIIHH rPYII PSU;(Q)

Jlomu cne,qyloumﬂ pesyARTAT:
. INlyers G = PSUs(q) » G = AB, rpe A, B — coﬁcmume xewﬁcaenne npoc'rue
uom*py m G. Torps HMeeT MeCTO OO N3 CHEAYIOMMX: :
(1)9—23A°‘M23.B“PSU5(2), ; e
(2) g =2 u A PSU(3), B ™ PSUs(2); BRI
(3)ea=2">2,n#2 (mod4) u A PSUs(g), B Gs(g); | *
OXE S (mod Sude PSUS(G): B o PSpy(q)- L o
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Taanko amcm, Blenka szc:.m FAC'I‘ORIZATIONS OF THE GROUPS Psve(q) :

Thcionmnsmuhnpwved. ‘ L o , :
- Let G = PSUs(q) and G = AB, whaeA;‘Barepmpernon-AbelimsinipkmbmupuofG.
, Thmomd{thefollowinshcldn : o I E
{1) ¢ =3 and A ™ M2, B & PSUy(2);
(AJg=2and 4 & PSUL(3), B & PSUs(2);
(3)g=2">2,n%2 (meod 4) andA“PSUa(q),Bﬁf}g(g),
(@1 (med8) ma AR PSU(0). FE PO

1. INTRODUCTION‘ .

.

In (4], the ﬁrst author decermmed aII the fa&tonza.txons (with two proper s;mple
subgroups) of the groups of Lie type of Lie rank 1 or 2. In the present paper we
extend tlns mvestlg&txon to groups of Lie type’ of Lle rank 3 Let PSUs(q) be |

Rmdxpamﬂiy anpported hy the MSE Grmt No 29/91..
» N




the s:mple group of Lie type (’As) over the finite field GF(q?). Assummg the
dmxﬁcatlon of the finite simple groups, we prove the following result. |

Theorem. Let G = PSUs(q) and G = AB, where A, B are proper non-
Abelian simple subgroups of G. Then one of the following hofds

(1) g=2and A= My, B o PSUs(2);

Q) g= =2and A PSU3), B = PSU5(2),

" 3)g=2">2,n#2 (mod 4) and A PSUs(q), B Gz(q), ,

~(4) g # -1 (mod 5) and A = PSUs(q), B2 PSpg(q) .

- The factorizations (1) — (4) ezist. -+

The factorizations of the Bgroups P,S'Ue(g) mto the product of two maaumal |
* subgroups have been determined in [9]. "

| Throughout this paper we use standard group—theoretxc notation. Simple gxoup

means non-Abelian simple group. |G|, denotes the order of a Sylow p-subgroup of a

group G and M(G) denotes the Schur multiplier of G. Next, A, is the alternating
‘group of degree n and Ln(q), Un(q) stand for PSL,(q), respectively PSU, (q)
~ Notation and basic information of the (known) sunple groups can be found in -
B 3
" The factorizations of the gronps Ue(z) and Ue(3) are determined in {6]. This
. gives (1), (2) and (4) (with ¢ = 2 ,3) in the tlworem Thus we can assume that
g24 | |
‘ Thefollmnlemxhasmneedadmtﬁeproofofthethm , -
Lemma 1.1 ([7]). If q is odd, then SLe(q) does not contain an eIcmentary
Abelmu subgroup of order 8 such that its involutions are conjugste. .
- Lemma 1.2. The gwup U.(q) coatmu 'S ulymsp mmom!uc to U;(q) ifand
onlyifg# -1 (m0d5) ,
. Proof q= -1 (mod 5) tbe m Uﬁ(&) ha& an elementary Abelian sub-
group of order 25 all of whose mn«admtm« mta are conjugate. On the other
“hand, it is easily checked that this is impossible in Us(ﬂ): 80 Ue(?) cannot contain
Us(g). i ¢ # —1 (mod 5), the statement is clear. -
Ha, b are positive integers and (a,8) = 1, then. Ord.(b) deﬂotes the multlphcar-
txve order of b modulo a (i. e. the Jenst pomtwemteg,er & with ¥ =1 (mod a)).

" Lemma 1.3 (see [8]). Let ¢ be a prime power and ¢ a positive integer. T&eu o

; thmczuianmmerucht&ﬁtﬂrdr(q)*tudms ﬁandqnéﬂors..2md-
- ancraemacpnme. R M - , B |

2. PROOF OF THE THEOREM

| The sroup G= PSUe(q), 9 p" p any pnme, haa ordar

(e - e+ D@t - 1" + D@ - 1/, q+1)

k' UmngLemmals chomeaprnnerauchthat()rdr(}’)ﬁlw Thenrulom-f-l'
- forsomet 2 1. Now r| ‘+1andhmeer] Weahallsuppoaethatdm We
- nextdmcuthepombmtiafoul



Let A = A (125). Then l2zr211. Hence A contams a subgroup X.
- isomorphic to L3(8). As M(L3(8)) =1, . X must embed into SUs(¢?) and hence
_into SLe(¢?). This contradicts Lemma 1.1 if p is odd. Thus p = 2. Set n= 3°n,,
where 34 n;. It is directly checked that if 3* I |G| then ¥ £ 3a + 7. O,n the other

hand, |A] is a multiple of 3#, where

j ,‘.3}[%].; [.;.] > ;[m'*g“]‘.;.[lo";“] g43°f nit 2 4(2a+2)>5a+7’

,unlessnwt..lern"ii t = 1. This forces G = Ug(2)andA°‘Az (12 11)

~or G = Us(8) and A 2 A; (I 2 31). But |Air{ 1| U3(2)| and |Ag1| 1 |Us(8)], whence
|A| 4 |G]. This contradiction shows that A ¢ 4;.

" Let A be a sporadic group (2F4(2)’ is excluded by r = 1 (mod 10)) Kp=2

then the choice of r implies r = 11 (and n = 1), r = 41 (and n=2), r = 61 (and

" n=86), or r > 71. Now it is easily verified that there is no sporadic group of order

divisible by. at least one of these primes and dividing the order of the cor:espondmg

 Us(2") (recall ¢ = 2" > 2). So p> 2. Now if A ¥ M1, Mia, Maa, HS, McL, Suz

" then (recall |A] is divisible by a prime r =1 (mod 10)). A contains a snbgroup Y
. (possibly Y = A) with |M(Y)| prime to 6 and Y contains an Eg subgroup all of

whose involutions are conjugate in Y (see [2]). This contradicts Lemma 1.1. Thus,

- we have proved that if A is sporadic then A My, My, M3z, HS, McL or Suz; -
- hence r = 11 and consequently n = 1, that is, G = Us(p) for odd p.

| Further, let A be a group of Lie type of characteristic # p. Now {6] leads to

’A o [5(11). Hence r = 11,80 G = Us(p).

| Finally, let A be a group of Lie type over the field GF(q’), q’ p"‘ (see [1]
| for the orders of these groups). If A & Ai(¢') ( = Li4a1(¢)),,I-2 1, then r||A|

o 'ylelds rlq’* — 1 for some k, 2 < k < 1+1. Our choice of r then implies 10n | mk.
- Choose a prime r; with Ord,.x ) k. This is possible by Lemma 1.3 and ry | |G|
- (a8 obviously ry | |A|): Since mk 2 10n, necessarily r1 [¢® +1,1.e. r1|¢*® —1 and
~ thex the choice of r;, leads to mkllOn ‘Thus 10n = mk, 2 < k £ 1+1. Now as
|4lp < |Gl = p'*, we have mi(l +1)/2 'S 15n = 3mk/2 < 3m(l+1)/2 It follows
. thatl=1,m=5n,0rl=2 m=>bnorm= 107;/3(3]7:),0:1*3 m = bnf2
(2]n), that is, A 2 Ly(¢®), Ls(¢®), Ls(qu %), or Ly(¢®/?). However, then |A| | |G|.
- A2 B() (2 PQuyi(d)) o A2 Cle) (2 P.S'pz;(q")) [ 2 2, similar
. arguments produce A P.S'p;(q‘/ o) @) n), PSpe(qsl‘a), or Pﬂy(q‘sfs) (3 i n) a.ndf
again |A{{{G|.
~ Let Asx D;(q‘) or 2}.');(q"),, 12 4. It follows (]ust as above) tha.t 10n = mk for
-~ somek,25 k<2 But then' mI(I-- 1) € 15n = 3mk/2 < 3ml (as JA|, £ IGlp)
which forces 1=4, k=8 ie A D4(q5/4) or 2D4(q5/4) (4| n) and At‘F o
. HA™ Gg(q'), we ha.ve mnularly 6m < 15n and '|A| then- shows that r! q*s B
~which ylelda 10n | 6m. Thus m = 5n/3 (3 | n)and 4 = Gg(qsi 3). But then |A| 'I’ IGI |
. KA Sx(¢)(modd >: 1), we have 2m < 15n and hence r must divide ¢ +1
~ which yields 10n {4m. Thus m = 5n, 5n/2 or 15n/2 (2|n), that is, 4 = Sz(qs), R
- Sz(¢**) or Sz(q““) and agam }Al f lGj | | -
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Let A o 3D4(q') or A = 2F Sq’) (and m is odd > 1). Then 12m £ 15n and the
choice of r implies that r | ¢’ S+ +1if A2 3Dy (¢') and r|¢®+1 1fA = 2F(q¢"). In
éither case r | ¢''? — 1 whence 10n | 12m. Thus m = 5n/6 (6| n) and A 3D4(q5/ 6)
or 2Fy(¢%/%). But then |A|{|G}.

Let A > 2G4(¢") (p =3, m > 1, 2{m). Then 3m < 15:3 and hence r must
divide ¢"° + 1 which yields 10n[6m Thus m = 57 and A & 2Gy(¢%) or m = 5n/3

| (3| n) and A = 2G3(¢®/®). However, then |A| 1 |G|.

Let A= Fy(¢), Ea(¢'), Ex(¢'), Es(¢'), ot *Ee(g'). Then |Alp S p'* means

 15n.2 24m, 36m, 63m, 120m, or 36m, respectively. But r||A| implies r| ¢*
- for some k, where k £ 12, 12, 18, 30, or 18, respectively. This leads to 10n < km,

i.e. 16m £ 3mk/2 < 18m, 18m, 27Tm, 456m, or 2Tm, respectively, a cbntradiction
Let A = 24)(¢") ( = Uipi(¢')), 12 2. Now rlg* + (- 1)"““1 for some k,

| 2<I:<I+1 Ifbweventhenr]q’*-lwhlchleadstownfmk As in the case

A = Ai(¢), we have also mk | 10n. Now mi(l+1)/2 £ 15n = 3mk/2 g 3m(l1+1)/2

" whence necessarily I = 2, or I = 3 and k¥ = 2 or k = 4, respectively. But then

A = Us(¢®) or A = U4(q"/’) (2] n) and again |4} |G|. Thus k is odd and r | q’k +1
whence r|¢'2* — 1. ‘This leads to 2mk = 10n and then mi(l + 1)/2 £ 150 = |
3mk € 3m(l + 1) yields I = 2, m = 5n/3-(3|n), or | = 3, m = 5n/3 (3| n),
orl=4m=mnorl=5 m=norl=6m= 51:/7(7}::) Accordingly,
A= Ug(g¥/%), Un(a™), Us(d)’ Us(g), or Ur(¢®/ 7). In each case either 1Al 11G), or
A=G,or A% Us(g).

Thus we are reduced to the pombxhues G Us(p), odd A e Lz(ll),
Mu‘ My, Maa, HS, McL, o Suz and G = Ug(q), A = Us(g): In the first case

- Ordyi(p) = 10 implies that p # 3, 5, 11. It follows that in gay case p“ divides | B|.
We shall prove that there is no possibility for B.

Indeed B $ A; as otherwise I must be:too large and then we reach a contra-

" diction just as in the case 4 & A; above. B is not momorphlc toa sporadxc group
~ because if p is odd, p # 3, 5, 11, then p'* does not divide the order of any sporadic

group. Further, [6] shows that B cannot be a group of Lie type of characteristic
# p. Finally, if B is of Lie type of characteristic p then (checking the orders of these

N groups) we conclude that B = Lg(p“), Lg(p“), Ls(p®), Lg(p), Us(p®), or Us(p)

| However, then either |B| |G| or B =G, an impossibility.

-

In the second case A Us(g). Choose a prime rL such that Orcl,,1 () = 6n

- ‘(the choie is possible as ¢ > 4). As r; |¢® — 1 and as ¢® — 1 divides [B: AN B| =
|G 2 Al = ¢®(g®~1).(5, ¢+1)/(6, g+1), it follows that r; | | B). Now we again consider

the possibilities for B (as for A above) taking also into account that qs(q“ -1)||B|.

- This leads'to B & Ly(¢?), PSpe(q), PShr(9) (21 ¢), or Ga(g)-

‘Note that if ¢ is odd then G does not contain a subgroup momorphxc to Gs(q) |
and consequently a subgroup 1somorphxc to PQ7(g) (as PSz(q) contains Ga(g)). -
Indeed, this follows from Lemma 1.1, as B £ G'g(q) (¢ odd).has Schur multiplier of

order prime to 6, 2-rank three and only one conjugacy class of involutions. ,

Now, B = Gg(q) (q = 2" > 2) or B = PSpe(q) we reach (3) or (4) of the



Lastly, let A 2 Us(q), B = Ls(¢?). Denote D = AN B; then |D| =
g(g* — 1).(6,9 + 1)/(3,¢* — 1) (recall (5,¢ + 1) = 1). By the known subgroup
structure of L3(g?), it follows that D is contained in a subgroup of B isomorphic
to ‘ o : ~

a ! b ¢ | v .
H= 0 la,b,cé GF(¢®); A€ GLg(qz), a.detA=1 /(wE),
, <A ‘ : ,
0 ‘

where w is an element of order (3,¢—1)in GF(qz) Further, H= FK and FaH,
FNK =1 where ,

1fb ¢ |
CF=8| 0l |lbeeGF(@?) ) 2 Ey,
0!
a| 0 0 _ |
K= 0 | |a € GF(¢?); A E‘GLg(Qz),' a.detA=1 /(wE)
] 4 oo D ;

L & GLa(¢%)/ 1(3,92-1)

Snppoae that T = DnF £ 1. Then T'aD and T = Epn, where p < p* < q. The
centralizer of any non- 1dent,1ty p-elemeént in La(q"’) has o’rder dividing q“(q’ -~ 1),
Hence |Cp€T)| divides g(g? - 1).(6,9+ 1)/(3,¢* — 1). Then |D/Cp(T)] is divisible
bY ¢* + 1. However, D/Cp(T) is a subgroup of Aut(T) o G’L;,(p), ’

)  |GLe(p)| = pHEDp - 1) .. @ -1

must be divisible by q’ + 1 which (m view of p* < ¢) contradicts 'Lemma 1. 3
Thus DN F = 1 and hence D is isomorphic to a subgroup of H/F = K. Of
course, K contains a subgroup L = SLy(¢?) of index (q’ ~1)/(3,¢* — 1) and then
DN L is a proper subgroup of L of order divisible by g(g?+ 1).(6,¢+ 1). It follows
- that La(¢?) has a proper subgroup of order divisible by g(g? + 1) whlch (for g 2 4)
contradicts the structure of Ly(¢?). * |
It remains to show that the factorizations in 3) and (4) actually exist. From
17, Proposltlon 3. 3] we ha.ve ~ |

svs(q’) -—SUs(q") Spe(a)

with “natural” embeddmgs of SUs(¢?) and Spe(g) in SUs(g?). Factormg out by
Z(SUs(¢?)), we obtmn the fa.ctonza.tlon in (4), as SUs(¢?) = Us(q) (by Lemma
- 1.2). ,
"~ Now we prove the existence of the fa,ctonzatmn in (3) of the theorem We use
~ the followmg two re&hzatlons of the group SUs(gz) | « |

-
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W) SUs(®)= {){e GLs(q®) | X' IX =1, det X = 1},

1

@) o suc'(qﬁ), = {Y € czg(qz) ITY = E, detY :-...vl}

(Here, if D = (d,,) is a matnx with entries in GF(q”) then D= = (df, ) and D' is the
~ transpose of D.) | |
Let X, Y € GL¢(g?) and Y = T""XT where

0011 0 0 0 0 # 10 0
0100 1 0 0 ¢ 0 01 0)
r=|1000 0 1| 4 _Jtt 00 001]
=1t 000 0 t]> =1t 0 0 001
0t 00 ¢ 0) 0 ¢t 001 0}
0 0t 0 0 0 0 ¢t 10 0/

(t € GF(¢?), t +t" =1),

Then 'Y = Elfandonlylfflx I .
_ Now, with respect tc (i), we have 3

On the other hand (see 13}), with respect to (i), s Gg(q) subgroup of SUa(qz) is
generated by the matnces X;h,-(t), re {a,b a+b 2a+), 3a+b 3a+26} t € GF(q),
- where |

?

Xalt) = L X0=|
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" and the matrix X ~r(t) is the transpose of X, (t). Now a direct computation shaws

that the common elements of the above .S'Us(q’) and Gg(q) aubgroups are exactly
as follows:

v 0 0 0 v-isg -0
{0 v 00 0 vls
002y 0 |T (veGF@ s€GF()),
" 10 0 00 v 0
0000 O v
e 0 0 u+uw ik 0
0 uwl 00 0 u+u~lk
210 o 10 0o -0
T 0 0 01 0 0 T
vl 0 00 wulk 0
} 0 wl o0 |

(n € GF(q)"' I,k € GF(q)).

Hence lSUs(qz)nGg(q)l =q(g® - 1) (in fact, SUs(¢?) ﬂGg(q)'m Lg(q)) Now erder
considerations imply

s  SUs(g®) = SU(e).Calg)
whence (again by Lemma 1.2) the factorization in (3) follows. -

This completes the proof of the theorem
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