ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

Книга 1 — Математика Том 86, 1992

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"

FAGULTE DE MATHEMATIQUES ET INFORMATIQUE Livre 1 — Mathématiques Tome 86, 1992

FACTORIZATIONS OF THE GROUPS $PSU_6(q)$ *

TSANKO GENTCHEV, ELENKA GENTCHEVA

Цанко Генчев, Елепка Генчева. ФАКТОРИЗАЦИИ ГРУПП PSU6(q)

Доказан следующий результат:

Пусть $G = PSU_6(q)$ и G = AB, где A, B — собственные неабелевые простые подгруппы G. Тогда имеет место одно из следующих:

- (1) $q = 2 \text{ m } A \cong M_{22}, B \cong PSU_5(2);$
- (2) $q = 2 \times A \cong PSU_4(3), B \cong PSU_5(2);$
- (3) $q = 2^n > 2$, $n \not\equiv 2 \pmod{4}$ if $A \cong PSU_5(q)$, $B \cong G_2(q)$;
- (4) $q \not\equiv -1 \pmod{5}$ if $A \cong PSU_5(q)$, $B \cong PSp_5(q)$.

Teanko Gentchev, Elenka Gentcheva. FACTORIZATIONS OF THE GROUPS PSU6(q)

The following result is proved.

Let $G = PSU_6(q)$ and G = AB, where A, B are proper non-Abelian simple subgroups of G. Then one of the following holds:

- (1) q=2 and $A\cong M_{22}$, $B\cong PSU_5(2)$;
- (2) q=2 and $A\cong PSU_4(3)$, $B\cong PSU_5(2)$;
- (3) $q = 2^n > 2$, $n \not\equiv 2 \pmod{4}$ and $A \cong PSU_5(q)$, $B \cong G_2(q)$;
- (4) $q \not\equiv -1 \pmod{5}$ and $A \cong PSU_5(q)$, $B \cong PSp_6(q)$.

1. INTRODUCTION

In [4], the first author determined all the factorizations (with two proper simple subgroups) of the groups of Lie type of Lie rank 1 or 2. In the present paper we extend this investigation to groups of Lie type of Lie rank 3. Let $PSU_6(q)$ be

^{*} Research partially supported by the MSE Grant No 29/91.

the simple group of Lie type $(^2A_5)$ over the finite field $GF(q^2)$. Assuming the classification of the finite simple groups, we prove the following result.

Theorem. Let $G = PSU_6(q)$ and G = AB, where A, B are proper non-Abelian simple subgroups of G. Then one of the following holds:

- (1) q = 2 and $A \cong M_{22}$, $B \cong PSU_5(2)$;
- (2) q=2 and $A\cong PSU_4(3)$, $B\cong PSU_5(2)$;
- (3) $q = 2^n > 2$, $n \not\equiv 2 \pmod{4}$ and $A \cong PSU_5(q)$, $B \cong G_2(q)$;
- (4) $q \not\equiv -1 \pmod{5}$ and $A \cong PSU_5(q)$, $B \cong PSp_6(q)$.

The factorizations (1) - (4) exist.

The factorizations of the groups $PSU_6(q)$ into the product of two maximal subgroups have been determined in [9].

Throughout this paper we use standard group-theoretic notation. Simple group means non-Abelian simple group. $|G|_p$ denotes the order of a Sylow p-subgroup of a group G and M(G) denotes the Schur multiplier of G. Next, A_n is the alternating group of degree n and $L_n(q)$, $U_n(q)$ stand for $PSL_n(q)$, respectively $PSU_n(q)$. Notation and basic information of the (known) simple groups can be found in [1], [2].

The factorizations of the groups $U_6(2)$ and $U_6(3)$ are determined in [5]. This gives (1), (2) and (4) (with q = 2,3) in the theorem. Thus we can assume that $q \ge 4$.

The following lemmas are needed in the proof of the theorem.

Lemma 1.1 ([7]). If q is odd, then $SL_6(q)$ does not contain an elementary Abelian subgroup of order 8 such that its involutions are conjugate.

Lemma 1.2. The group $U_{\mathbf{c}}(q)$ contains a subgroup isomorphic to $U_{\mathbf{b}}(q)$ if and only if $q \not\equiv -1 \pmod{5}$.

Proof. If $q \equiv -1 \pmod{5}$, the group $U_5(q)$ has an elementary Abelian subgroup of order 25 all of whose non-identity elements are conjugate. On the other hand, it is easily checked that this is impossible in $U_6(q)$, so $U_6(q)$ cannot contain $U_5(q)$. If $q \not\equiv -1 \pmod{5}$, the statement is clear.

If a, b are positive integers and (a, b) = 1, then $Ord_a(b)$ denotes the multiplicative order of b modulo a (i. e. the least positive integer s with $b^a \equiv 1 \pmod{a}$).

Lemma 1.3 (see [8]). Let q be a prime power and s a positive integer. Then there exists a prime r such that $\operatorname{Ord}_r(q) = s$ unless s = 6 and q = 2 or s = 2 and q a Mersenne prime.

2. PROOF OF THE THEOREM

The group $G = PSU_6(q)$, $q = p^n$, p any prime, has order

$$q^{15}(q^2-1)(q^3+1)(q^4-1)(q^5+1)(q^6-1)/(6,q+1).$$

Using Lemma 1.3, choose a prime r such that $\operatorname{Ord}_r(p) = 10n$. Then r = 10nt + 1 for some $t \ge 1$. Now $r | q^5 + 1$ and hence r | |G|. We shall suppose that r | |A|. We next discuss the possibilities for A.

Let $A \cong A_l$ $(l \geq 5)$. Then $l \geq r \geq 11$. Hence A contains a subgroup X isomorphic to $L_2(8)$. As $M(L_2(8)) = 1$, X must embed into $SU_6(q^2)$ and hence into $SL_6(q^2)$. This contradicts Lemma 1.1 if p is odd. Thus p = 2. Set $n = 3^{\alpha}n_1$, where $3 \nmid n_1$. It is directly checked that if $3^{\nu} \mid |G|$ then $\nu \leq 5\alpha + 7$. On the other hand, |A| is a multiple of 3^{μ} , where

$$\mu \geq \left[\frac{l}{3}\right] + \left[\frac{l}{9}\right] \geq \left[\frac{10nt+1}{3}\right] + \left[\frac{10nt+1}{9}\right] \geq 4.3^{\circ}.n_1t \geq 4(2\alpha+2) > 5\alpha+7$$

unless n=t=1 or n=3, t=1. This forces $G=U_6(2)$ and $A\cong A_l$ $(l\geq 11)$ or $G=U_6(8)$ and $A\cong A_l$ $(l\geq 31)$. But $|A_{11}| \nmid |U_6(2)|$ and $|A_{31}| \nmid |U_6(8)|$, whence $|A| \nmid |G|$. This contradiction shows that $A \not\cong A_l$.

Let A be a sporadic group $({}^2F_4(2)')$ is excluded by $r \equiv 1 \pmod{10}$. If p = 2 then the choice of r implies r = 11 (and n = 1), r = 41 (and n = 2), r = 61 (and n = 6), or r > 71. Now it is easily verified that there is no sporadic group of order divisible by at least one of these primes and dividing the order of the corresponding $U_6(2^n)$ (recall $q = 2^n > 2$). So p > 2. Now if $A \not\cong M_{11}$, M_{12} , M_{22} , HS, McL, Suz then (recall |A| is divisible by a prime $r \equiv 1 \pmod{10}$). A contains a subgroup Y (possibly Y = A) with |M(Y)| prime to 6 and Y contains an E_8 subgroup all of whose involutions are conjugate in Y (see [2]). This contradicts Lemma 1.1. Thus, we have proved that if A is sporadic then $A \cong M_{11}$, M_{12} , M_{22} , HS, McL or Suz; hence r = 11 and consequently n = 1, that is, $G = U_6(p)$ for odd p.

Further, let A be a group of Lie type of characteristic $\neq p$. Now [6] leads to $A \cong L_2(11)$. Hence r = 11, so $G = U_6(p)$.

Finally, let A be a group of Lie type over the field GF(q'), $q' = p^m$ (see [1] for the orders of these groups). If $A \cong A_l(q')$ ($\cong L_{l+1}(q')$), $l \ge 1$, then $r \mid A$ yields $r \mid q'^k - 1$ for some $k, 2 \le k \le l+1$. Our choice of r then implies $10n \mid mk$. Choose a prime r_1 with $Ord_{r_1}(p) = mk$. This is possible by Lemma 1.3 and $r_1 \mid G$ (as obviously $r_1 \mid A \mid$). Since $mk \ge 10n$, necessarily $r_1 \mid q^5 + 1$, i. e. $r_1 \mid q^{10} - 1$ and then the choice of r_1 leads to $mk \mid 10n$. Thus 10n = mk, $2 \le k \le l+1$. Now as $|A|_p \le |G|_p = p^{15n}$, we have $ml(l+1)/2 \le 15n = 3mk/2 \le 3m(l+1)/2$. It follows that l = 1, m = 5n, or l = 2, m = 5n or m = 10n/3 ($3 \mid n$), or l = 3, m = 5n/2 ($2 \mid n$), that is, $A \cong L_2(q^5)$, $L_3(q^{5})$, $L_3(q^{10/3})$, or $L_4(q^{5/2})$. However, then $|A| \nmid |G|$.

If $A \cong B_l(q')$ ($\cong P\Omega_{2l+1}(q')$) or $A \cong C_l(q')$ ($\cong PSp_{2l}(q')$), $l \geq 2$, similar arguments produce $A \cong PSp_4(q^{5/2})$ ($2 \mid n$), $PSp_6(q^{5/6})$, or $P\Omega_7(q^{5/3})$ ($3 \mid n$) and again $|A| \uparrow |G|$.

Let $A \cong D_l(q')$ or ${}^2D_l(q')$, $l \ge 4$. It follows (just as above) that 10n = mk for some k, $2 \le k \le 2l$. But then $ml(l-1) \le 15n = 3mk/2 \le 3ml$ (as $|A|_p \le |G|_p$) which forces l = 4, k = 8, i. e. $A \cong D_4(q^{5/4})$ or ${}^2D_4(q^{5/4})$ (4 | n) and $|A| \nmid |G|$.

If $A \cong G_2(q')$, we have similarly $6m \le 15n$ and |A| then shows that $r \mid {q'}^6 - 1$ which yields $10n \mid 6m$. Thus $m = 5n/3 \ (3 \mid n)$ and $A \cong G_2(q^{5/3})$. But then $|A| \nmid |G|$.

, If $A \cong Sz(q')$ (m odd > 1), we have $2m \leq 15n$ and hence r must divide ${q'}^2 + 1$ which yields $10n \mid 4m$. Thus m = 5n, 5n/2 or 15n/2 ($2 \mid n$), that is, $A \cong Sz(q^5)$, $Sz(q^{5/2})$ or $Sz(q^{15/2})$ and again $|A| \nmid |G|$.

Let $A \cong {}^3D_4(q')$ or $A \cong {}^2F_4(q')$ (and m is odd > 1). Then $12m \le 15n$ and the choice of r implies that $r \mid {q'}^8 + {q'}^4 + 1$ if $A \cong {}^3D_4(q')$ and $r \mid {q'}^6 + 1$ if $A \cong {}^2F_4(q')$. In either case $r \mid {q'}^{12} - 1$ whence $10n \mid 12m$. Thus m = 5n/6 (6 | n) and $A \cong {}^3D_4(q^{5/6})$ or ${}^2F_4(q^{5/6})$. But then $|A| \nmid |G|$.

Let $A \cong {}^2G_2(q')$ $(p = 3, m > 1, 2 \nmid m)$. Then $3m \leq 15n$ and hence r must divide ${q'}^3 + 1$ which yields $10n \mid 6m$. Thus m = 5n and $A \cong {}^2G_2(q^5)$ or m = 5n/3 $(3 \mid n)$ and $A \cong {}^2G_2(q^{5/3})$. However, then $|A| \nmid |G|$.

Let $A \cong F_4(q')$, $E_6(q')$, $E_7(q')$, $E_8(q')$, or ${}^2E_6(q')$. Then $|A|_p \leq p^{15n}$ means $15n \geq 24m$, 36m, 63m, 120m, or 36m, respectively. But r | |A| implies $r | q'^k - 1$ for some k, where $k \leq 12$, 12, 18, 30, or 18, respectively. This leads to $10n \leq km$, i. e. $15n \leq 3mk/2 \leq 18m$, 18m, 27m, 45m, or 27m, respectively, a contradiction.

Let $A \cong {}^2A_l(q')$ ($\cong U_{l+1}(q')$), $l \ge 2$. Now $r \mid q'^k + (-1)^{k-1}$ for some k, $2 \le k \le l+1$. If k is even then $r \mid q'^k - 1$ which leads to $10n \mid mk$. As in the case $A \cong A_l(q')$, we have also $mk \mid 10n$. Now $ml(l+1)/2 \le 15n = 3mk/2 \le 3m(l+1)/2$ whence necessarily l = 2, or l = 3 and k = 2 or k = 4, respectively. But then $A \cong U_3(q^5)$ or $A \cong U_4(q^{5/2})(2 \mid n)$ and again $|A| \nmid |G|$. Thus k is odd and $r \mid q'^k + 1$ whence $r \mid q'^{2k} - 1$. This leads to 2mk = 10n and then $ml(l+1)/2 \le 15n' = 3mk \le 3m(l+1)$ yields l = 2, m = 5n/3 $(3 \mid n)$, or l = 3, m = 5n/3 $(3 \mid n)$, or l = 4, m = n, or l = 5, m = n, or l = 6, m = 5n/7 $(7 \mid n)$. Accordingly, $A \cong U_3(q^{5/3})$, $U_4(q^{5/3})$, $U_5(q)$, $U_6(q)$, or $U_7(q^{5/7})$. In each case either $|A| \nmid |G|$, or A = G, or $A \cong U_5(q)$.

Thus we are reduced to the possibilities $G = U_6(p)$, p odd, $A \cong L_2(11)$, M_{11} , M_{12} , M_{22} , HS, McL, or Suz and $G = U_6(q)$, $A \cong U_5(q)$. In the first case $Ord_{11}(p) = 10$ implies that $p \neq 3$, 5, 11. It follows that in any case p^{14} divides |B|. We shall prove that there is no possibility for B.

Indeed, $B \not\cong A_l$ as otherwise l must be too large and then we reach a contradiction just as in the case $A \cong A_l$ above. B is not isomorphic to a sporadic group because if p is odd, $p \neq 3$, 5, 11, then p^{14} does not divide the order of any sporadic group. Further, [6] shows that B cannot be a group of Lie type of characteristic $\neq p$. Finally, if B is of Lie type of characteristic p then (checking the orders of these groups) we conclude that $B \cong L_2(p^{14})$, $L_2(p^{15})$, $L_3(p^5)$, $L_6(p)$, $U_3(p^5)$, or $U_6(p)$. However, then either $|B| \nmid |G|$ or B = G, an impossibility.

In the second case $A \cong U_5(q)$. Choose a prime r_1 such that $\operatorname{Ord}_{r_1}(p) = 6n$ (the choice is possible as $q \geq 4$). As $r_1 | q^6 - 1$ and as $q^6 - 1$ divides $|B: A \cap B| = |G: A| = q^5(q^6-1).(5, q+1)/(6, q+1)$, it follows that $r_1 | |B|$. Now we again consider the possibilities for B (as for A above) taking also into account that $q^5(q^6-1) | |B|$. This leads to $B \cong L_3(q^2)$, $PSp_6(q)$, $P\Omega_7(q)$ ($2 \nmid q$), or $G_2(q)$.

Note that if q is odd then G does not contain a subgroup isomorphic to $G_2(q)$ and consequently a subgroup isomorphic to $P\Omega_7(q)$ (as $P\Omega_7(q)$ contains $G_2(q)$). Indeed, this follows from Lemma 1.1, as $B \cong G_2(q)$ (q odd) has Schur multiplier of order prime to 6, 2-rank three and only one conjugacy class of involutions.

Now, if $B \cong G_2(q)$ $(q = 2^n > 2)$ or $B \cong PSp_6(q)$ we reach (3) or (4) of the theorem.

Lastly, let $A \cong U_5(q)$, $B \cong L_3(q^2)$. Denote $D = A \cap B$; then $|D| = q(q^4 - 1).(6, q + 1)/(3, q^2 - 1)$ (recall (5, q + 1) = 1). By the known subgroup structure of $L_3(q^2)$, it follows that D is contained in a subgroup of B isomorphic to

$$H = \left\{ \begin{pmatrix} a & b & c \\ \hline 0 & & \\ & A & \end{pmatrix} \mid a, b, c \in GF(q^2); \ A \in GL_2(q^2), \ a. \det A = 1 \right\} / \langle \omega E \rangle,$$

where ω is an element of order $(3, q^2 - 1)$ in $GF(q^2)$. Further, H = FK and $F \triangleleft H$, $F \cap K = 1$ where

$$F = \left\{ \begin{pmatrix} \frac{1}{0} & b & c \\ \hline 0 & E \end{pmatrix} \mid b, c \in GF(q^2) \right\} \cong E_{q^4},$$

$$K = \left\{ \begin{pmatrix} a & 0 & 0 \\ \hline 0 & \\ 0 & A \end{pmatrix} \mid a \in GF(q^2); \ A \in GL_2(q^2), \ a. \det A = 1 \right\} / \langle \omega E \rangle$$

$$\cong GL_2(q^2)/\mathbb{Z}_{(3,q^2-1)}.$$

Suppose that $T = D \cap F \neq 1$. Then $T \triangleleft D$ and $T \cong E_{p^k}$, where $p \leq p^k \leq q$. The centralizer of any non-identity p-element in $L_3(q^2)$ has order dividing $q^6(q^2-1)$. Hence $|C_D(T)|$ divides $q(q^2-1).(6,q+1)/(3,q^2-1)$. Then $|D/C_D(T)|$ is divisible by q^2+1 . However, $D/C_D(T)$ is a subgroup of $\operatorname{Aut}(T) \cong GL_k(p)$, so

$$|GL_k(p)| = p^{k(k-1)/2}(p-1)\dots(p^k-1)$$

must be divisible by $q^2 + 1$ which (in view of $p^k \leq q$) contradicts Lemma 1.3.

Thus $D \cap F = 1$ and hence D is isomorphic to a subgroup of $H/F \cong K$. Of course, K contains a subgroup $L \cong SL_2(q^2)$ of index $(q^2 - 1)/(3, q^2 - 1)$ and then $D \cap L$ is a proper subgroup of L of order divisible by $q(q^2 + 1).(6, q + 1)$. It follows that $L_2(q^2)$ has a proper subgroup of order divisible by $q(q^2 + 1)$ which (for $q \ge 4$) contradicts the structure of $L_2(q^2)$.

It remains to show that the factorizations in (3) and (4) actually exist. From [7, Proposition 3.3] we have

$$SU_6(q^2) = SU_5(q^2).Sp_6(q)$$

with "natural" embeddings of $SU_5(q^2)$ and $Sp_6(q)$ in $SU_6(q^2)$. Factoring out by $Z(SU_6(q^2))$, we obtain the factorization in (4), as $SU_5(q^2) \equiv U_5(q)$ (by Lemma 1.2).

Now we prove the existence of the factorization in (3) of the theorem. We use the following two realizations of the group $SU_6(q^2)$:

(i)
$$SU_6(q^2) = \left\{X \in GL_6(q^2) \mid \overline{X}^t IX = I, \det X = 1\right\},$$

$$I = \begin{pmatrix} & & 1 \\ & 1 & & \\ & 1 & & \end{pmatrix};$$

(ii)
$$SU_6(q^2) = \left\{ Y \in GL_6(q^2) \mid \overline{Y}^t Y = E, \det Y = 1 \right\}.$$

(Here, if $D = (d_{ij})$ is a matrix with entries in $GF(q^2)$ then $\overline{D} = (d_{ij}^q)$ and D^t is the transpose of D.)

Let $X, Y \in GL_6(q^2)$ and $Y = T^{-1}XT$, where

$$T = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ t & 0 & 0 & 0 & 0 & t^q \\ 0 & t & 0 & 0 & t^q & 0 \\ 0 & 0 & t & t^q & 0 & 0 \end{pmatrix}, \quad T^{-1} = \begin{pmatrix} 0 & 0 & t^q & 1 & 0 & 0 \\ 0 & t^q & 0 & 0 & 1 & 0 \\ t^q & 0 & 0 & 0 & 0 & 1 \\ t & 0 & 0 & 0 & 0 & 1 \\ 0 & t & 0 & 0 & 1 & 0 \\ 0 & 0 & t & 1 & 0 & 0 \end{pmatrix}$$

$$(t \in GF(q^2), t + t^q = 1).$$

Then $\overline{Y}^t Y = E$ if and only if $\overline{X}^t IX = I$.

Now, with respect to (ii), we have

$$\left\{ \left(\begin{array}{c|c} * & 0 \\ \hline 0 & 1 \end{array} \right) \in SU_6(q^2) \right\} \cong SU_5(q^2).$$

On the other hand (see [3]), with respect to (i), a $G_2(q)$ subgroup of $SU_6(q^2)$ is generated by the matrices $X_{\pm r}(t)$, $r \in \{a, b, a+b, 2a+b, 3a+b, 3a+2b\}$, $t \in GF(q)$, where

$$X_a(t) = \begin{pmatrix} 1 & t & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & t & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & t \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad X_b(t) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & t & 0 & 0 & 0 \\ 0 & 0 & 1 & t & 0 & 0 \\ 0 & 0 & 0 & 1 & t & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$X_{a+b}(t) = \begin{pmatrix} 1 & 0 & t & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & t & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & t \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad X_{2a+b}(t) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & t \\ 0 & 1 & 0 & t & 0 & 0 \\ 0 & 0 & 1 & 0 & t & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$X_{3a+b}(t) = \begin{pmatrix} 1 & 0 & 0 & t & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & t \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad X_{3a+2b}(t) = \begin{pmatrix} 1 & 0 & 0 & 0 & t & 0 \\ 0 & 1 & 0 & 0 & 0 & t \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

and the matrix $X_{-r}(t)$ is the transpose of $X_r(t)$. Now a direct computation shows that the common elements of the above $SU_5(q^2)$ and $G_2(q)$ subgroups are exactly as follows:

$$T^{-1}.\begin{pmatrix} v & 0 & 0 & 0 & v^{-1}s & 0 \\ 0 & v & 0 & 0 & 0 & v^{-1}s \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & v^{-1} & 0 \\ 0 & 0 & 0 & 0 & 0 & v^{-1} \end{pmatrix}.T \quad (v \in GF(q)^*, \ s \in GF(q)),$$

$$T^{-1} \cdot \begin{pmatrix} u^{-1}l & 0 & 0 & 0 & u + u^{-1}lk & 0 \\ 0 & u^{-1}l & 0 & 0 & 0 & u + u^{-1}lk \\ 0 & 0 & 1 & 0 & 0 & u + u^{-1}lk \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ u^{-1} & 0 & 0 & 0 & u^{-1}k & 0 \\ 0 & u^{-1} & 0 & 0 & 0 & u^{-1}k \end{pmatrix} . T$$

 $(u \in GF(q)^*; l, k \in GF(q)).$

Hence $|SU_5(q^2) \cap G_2(q)| = q(q^2 - 1)$ (in fact, $SU_5(q^2) \cap G_2(q) \cong L_2(q)$). Now order considerations imply

 $SU_6(q^2) = SU_5(q^2).G_2(q)$

whence (again by Lemma 1.2) the factorization in (3) follows.

This completes the proof of the theorem.

REFERENCES

- 1. Carter, R. W. Simple groups of Lie type, London, 1872.
- 2. Conway, J., R. Curtis, S. Norton, R. Parker, R. Wilson. Atlas of finite groups. Oxford, 1985.
- 3. Cooperstein, B. Maximal subgroups of $G_2(2^n)$. J. Algebra, 70, 1981, 23-36.
- 4. Gentchev, Ts. Factorizations of the groups of Lie type of Lie rank 1 or 2. Arch. Math., 47, 1986, 493-499.
- 5. Gentchev, Ts., K. Tchakerian. Factorizations of the groups of Lie type of Lie rank three over fields of 2 or 3 elements. Ann. Univ. Sofia, 85, 1991, 83-88.
- 6. Landazuri, V., G. Seitz. On the minimal degree of the projective representations of the finite Chevalley groups. J. Algebra, 32, 1974, 418-443.
- 7. Preiser, U. Factorizations of finite groups. Math. Z., 185, 1984, 373-402.
- 8. Seitz, G. Flag-transitive subgroups of Chevalley groups. Ann. Math., 97, 1973, 27-57.
- 9. Liebeck, M., C. Praeger, J. Saxl. The maximal factorizations of the finite simple groups and their automorphism groups. Memoirs AMS, 86, 1990, 1-151.

Received 30.06.1993