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Zumump Cropdes. O CPEIHEN 3ANEPYKKW OBHAPYKEHUSA 3ALUKINBAHUN

B oanott npeamectpyiomelt pabore aBTop HacToAmed paboTH NpPEANOKHI OOAUH Me-
ToJ ODHADYKEHNA HEKOTODHIX 3AUMKIMBAHMHA B BHUMCAMTENbHEX NpoHeccaX. DHA yka3an
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TH TOrO YACTHOIO CJy4Yasd M OLHOrO APYFOro UacTHOrO Caydas, IPeNJIOKEHHOrO DaHblIe
P. Il. BperTom. YcranaBnuBaeTcA OLHO AaabHelllee ONTMMAaNbHOE CBOUCTBO YacCTHOLO
cayyas, Mcnonbaypomero uncaa Pubonauunm.

Dimiter Skordev. ON THE AVERAGE DELAY OF THE DETECTION OF CYCLIC LOOPS

In a previous paper the author of the present paper has proposed a method for the detection
of some kinds of cyclic loops in computational processes. A particular case of the method has been
indicated, which is optimal in a certain sense and makes use of Fibonacci numbers. In the present
paper a comparison is made between the effectiveness of that particular case and the effectiveness
of another pa.rtlcular case proposed earlier by R. P. Brent. A further opumal property of the
particular case using Fibonacci numbers is established.

1. INTRODUCTION

In the paper [1], 2 method has been proposed for the detection of some kinds
of cyclic loops in computational processes, and a particular case of this method

* Research partially supported by the Ministry of Science and Higher Education, Contract
MM 43/91.
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has been indicated, which is optimal in a certain sense and makes use of Fibonacci
numbers. For the sake of brevity, we shall call this particular case the F-method.
No previous work on loop detection has been quoted in that paper, due to the lack
of information in this respect at the moment of writing of the paper. When the
paper was published, the author found out about Floyd’s loop detection method
presented in Section 3.1 of the book [2] (the book was available in its Russian
translation of the first edition). Several years later, in 1990, the author had the
occasion to see the second edition of [2], and then he observed that a particular case
of his method from [1] (but not an optimal one) has been used much earlier by R. P.
Brent (cf. Exercise 7 in Section 3.1 of the second edition of [2]). From the optimal
property proved in [1] a certain advantage of the F-method over the Brent’s one
can be seen, but a further comparison of the efficiency of both methods is desirable.
Some calculations providing elements of such a comparison will be presented in this
paper, and another optimal property of the F-method will be established.

2. DISCRETE AUTONOMOUS PROCESSES, CYCLIC LOOPS IN THEM
AND SEQUENCES FOR DETECTION OF SUCH LOOPS

We shall first recollect some definitions from the paper [1].
By definition, a discrete autonomous process is a function P with domP =N
(the set of the non-negative integers! ) such that for all ¢ and ¢, in N the implication

P(tc) = P(h) = P(to -+ 1) = P(tl + 1)

holds (as an example, the sequence can be mentioned which consists of the consec-
utive memory states of a non-terminating computational process using no external
information sources). If P is a discrete autonomous process, and ¢; € N, then we
say that a cyclic loop is present in P at the moment t; iff there is a o in N such
that ¢, < ¢; and P(ty) = P(t1).

Let 7 = {r;};2, be a strictly increasing sequence of elements of N. For each ¢
in N satisfying the inequality ¢ > 79, let 8,(¢) denote the greatest number 7; such
that ¢ > 7; (the subscript r of the expression 6.(t) is omitted in {1]). Lemma 1
of [1] states that, whenever P is a discrete autonomous process, and %y, £, i are
natural numbers satisfying the conditions

to <t1, P(to) = P(t1), i 2 to, Tig1 — 7 2 t1 — 1o,

then the equality P(8,(t)) = P(t) holds for t = ; + (t; — to).

The strictly increasing sequence of natural numbers 7 is called a DCL-sequence
(a sequence for detection of cyclic loops) iff, whenever P is a discrete autonomous
process, and a cyclic loop is present in P at some moment from N, then P(6,(t)) =
P(t) for some integer t > 7. It is shown in [1] that 7 is a DCL-sequence iff the
sequence {741 — Ti};o, i8 unbounded.

! The terminology will be adopted at which the mentioned set N is the set of the natural
numbers (i. e. 0 is considered a natural number).
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A DCL-sequence 7 can be used for the detection of cyclic loops in the following
way: when given a discrete autonomous process P, we look for the least integer
t > 7 satisfying the equality P(6,(t)) = P(t). Brent’s method mentioned in the
introduction consists in using in such a way the sequence {2 — 1} , and the
F-method proposed in [1] makes use of the sequence

(1) 0,1, 3,8, 21, 55, 144, ...,

consisting of the Fibonacci numbers with even subscripts.

Some additional definitions and statements will be given now.

Definition 1. A discrete autonomous process P will be called cyclic iff a cyclic
loop is present in P at some moment from N.

Definition 2. Let P be a cyclic discrete autonomous process, and 7 be a
DCL-sequence. We shall denote by t1(P) the earliest moment at which a cyclic
loop is present in P. By 1o(P) the natural number ¢o (obviously unique) will be
denoted, which satisfies the conditions

tg < t1(P), P(to) = P(il(P))

Let }(P) be the least integer t which is greater than 7 and satisfies the condition
P(8-(t)) = P(t) (such a number ¢ exists by the assumption that 7 is a DCL-
sequence). Then the difference t{(P)—1(P) will be called the delay of the detection
of the loop in P by means of T.

Example 1. Let 7 be the sequence {2* - I}ZO, used by R. P. Brent, n be a
natural number, and P be the sequence of natural numbers defined by the condition
that P(t) is the remainder of ¢ modulo 2* + 1 for all t in N. Then P is a cyclic
discrete autonomous process, the equalities t;(P) = 2" + 1, t{(P) = 2"*! 4+ 27
hold, and hence the delay of the detection of the loop in P by means of 7 is
n+l 1 = 2, (P) - 3. ]

The optimal property of the DCL-sequence (1), mentioned above, can be for-
mulated as follows:

(i) if P is an arbitrary cyclic discrete autonomous process, then the delay of
the detection of the loop in P by means of (1) is not greater than the number

L+ V5, () - 12

S 2

(ii) whenever 7 is a DCL-sequence, and a, b are real numbers such that for any
cyclic discrete autonomous process P the delay of the detection of the loop in P
by means of 7 is not greater than at,(P) + b, then the inequality

1+2~/3(t -1

at+b 2

14

2 Since = 1.618... < 2, it follows that using the F-method instead of the Brent's

1%

one will lead to a smaller delay of the detection of the loop in the discrete autonomous process
P from Example 1 if the value of n is sufficiently large (in fact this will be the case whenever
n 2 2, and if n = 0 or n = 1 then the delay will be one and the same, no matter which one of
both methods is used).
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holds for all positive integers .3
Lemma 1. Let P be a discrete autonomous pmcess to, t1, ty, t] be natural
numbers satisfying the conditions

to < t1, ty < i, P(to) = P(t1), P(ty) = P(t}),

and let P(t) # P(to) for each integert satisfying the inequalities to <t < ;. Then
tho—th 2t — 1.
Proof. Whenever t € Nandt 2 g, then
P(t+ (il —t{))) = P(il + (t —-to)) = P(ta + (t t to)) _— P(t)

Hence P(t + n(t; —ty)) = P(t) for any such ¢ and any natural number n. Let us
choose the natural number n in such a way that the inequality to + n(t; — o) 2 ¢}
holds, and hence
tg-i-n(il —'tg) =tg+h
for some h in N. Then
P(ty +h) = P(to+ h) = P(to + n(t; — o)) = P(to).
Now we set t = t}+h—n(t;—to). Thent > t; and the equalities t+n(t1—1p) = t|+h,
t —to =t} —t; hold. From the first of them we get
P(t) = P(t + n(t, — to)) = P(t} + h) = P(to).
Therefore t 2 t;, and hence, by the second of the same equalities,
ti --ti) 2t -1 m

Lemma 2. Let P be a cyclic discrete autonomous process, T be a DCL-
sequence, and m be the least naturel number i satisfying the inequalities
(2) 7 2 W(P), Tiq1—m 2 ti(P)—to(P).

Then the delay of the detection of the loop in P by means of T is equal to 7, —to(P).
Proof. By the definitions of the numbter ¢)(P) and of the function 8, a
natural number n exists, such that

Tn < t3(P) £ Tag1, P(ra) = P(t,(P)).

Moreover, for every integer ¢ which satisfies the inequalities 7, < t < #}(P), the
inequality P(t) # P(7,) holds, since 6,(t) = 7,, and hence P(6,(t)) = P(Tn) for
any such . Using Lemma 1 and the definitions of ¢;(P) and to(P), we get the
inequality

t1(P) = to(P) 2 #4(P) — 7.

4

3 This optimal property of the sequence (1) does not mean that using (1) always guarantees
a not greater delay of the loop detection than using any other DCL-sequence. For example, if the
discrete autonomous process P is defined by the condition that P(t) is the remainder of t modulo
14, then the delay of the detection of the loop by means of the F-method is equal to 21, whereas
the delay of the detection of the loop by means of Brent's method is equal to 15,
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An inequality in the opposite direction also follows from Lemma 1, since P(t) #
P(to(P)) for any integer ¢ satisfying the inequalities ¢o(P) <t < t1(P). Therefore
the equality .

t(P)—to(P) =11(P) = Ta
holds. From this equality we conclude that

t(P) —t1(P) = 1a — to(P),

i.e. the delay of the detection of the loop in P is equal to the difference 7, —
to(P). To complete the proof, we shall show that the equality n = m holds. Since
1(P) 2 t1(P), it is clear that 7, 2 to(P). Moreover, Ta41 — Tn 2 t1(P) — T, and
thus n is one of the natural numbers ¢ which satisfy the inequalities (2). Let j be
an arbitrary one among these numbers, and let ¢ = 1; + (¢1(P) — to(P)). Clearly,
t 2 79, and Lemma 1 from [1] (recollected above) leads to the conclusion that
the equality P(6,(t) = P(t) holds. Therefore t 2 #}(P), and hence 7; 2 t(P) —
(t1(P) — to(P)) = 7n. This implies the needed inequality j 2 n. @

Definition 3. If 7 is a DCL-sequence, and fo, ¢; are natural numbers satisfying
the inequality to < t;, then we set

pr(to,t1) =min{i eN| 7 2 to, i1 — 7 2 11— to}

(this number is denoted by (o, 1) in the proof of the corollary of Lemma 3 in [1}).

In the denotations of the above definition, the statement of Lemma 2 can be
formulated as follows: if P is a cyclic discrete autonomous process and 7 is a DCL-
sequence, then the delay of the detection of the loop in P by means of 7 is equal
to the difference 7, (1,,1,) — to, Where to = to(P), t1 = t1(P).

3. AVERAGE DELAY OF THE DETECTION OF CYCLIC LOOPS
| BY MEANS OF A GIVEN DCL-SEQUENCE

Throughout this and the next section, a DCL-sequence 7 will be supposed to
be given.

Suppose t; is a positive integer, and P is a cyclic discrete autonomous process
such that the equality ¢,(P) = t; holds. Then the possible values of ¢o(P) are 0,
1,2, ..., 1 — 1, and if no additional information about the process P is available,
we could assume that these values have equal probabilities. Together with the last
paragraph of the previous section, this makes the following definition acceptable.

Definition 4. If ¢, is a positive integer, then the rational number

ty=-1

1
8 (t1) = T > (Tur(torts) = o)

’!o:ﬁ

will be called the average delay of detection by means of T of the loops arising at
the moment ;. , ‘
Obviously,

1 1
br(ts) = fon(ta) — 5t - 1),
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where
$1—1

ar(tl) = Z Tf-‘r(tﬂxtl)'
to=0
Hence the calculation of é;(%,) can be reduced to the calculation of o, (t;).
Lemma 3. Let t; be a positive integer, and j be the least natural number i
satisfying the inequality 7,41 2 t1. Then the inequality

prod

(3) or(t1) 2 175 + (b — V)54
holds, where :
_ fmin{rj;1—t1, 5} +1 ifn>n

7= { min {7y — 79,%1} otherwise.
An equality is present in the inequality (3) iff at least one of the following fwo cases
is present: : :

(3) 42 — 41 2 By

b)rjp—7 2t and Tjpp— 74 2 8 -7 — 1.
A sufficient condition for the presence of an equality in (3) is the inequality
Ti+2 2 2Tj41-

Proof. Let usconsider an arbitrary integer {0, which satisfies the inequalities
0 £to £¢1 — 1. If for a certain natural number i the inequalities 7; 2 tp and
Tit1—Ti 2 t1—1o hold, then 134y = (fi1—7)+7 2 ty, and hence ¢ 2 j. Therefore
the inequality u,(%0,%1) 2 j holds, and an equality is present in it iff the inequalities
77 2 to, Tj41— 75 2 81 —tg hold, i.e. iff t; — Ti+1+7; S to £ 75. Let

a =max{t; — rj41 + 7,0}, B =min{r,t; ~1}.
Evidently, the inequalities 0 £ oo £ # £ ¢1—1 hold. Hence the integers ¢, satisfying

the conditions 0 £ ' € ¢;—1 and p, (t0,%1) = j are exactly the integers ¢ satisfying
the inequalities o £ ¢y £ . Consequently, there are exactly |

B—a+1=F+min{-t; + 741 — 7,0} +1

such integers. We shall show that in fact § — o +1 = 4, where 7 is the number
defined in the formulation of the lemma. If t; > 7, then it is easily seen that 7; < ¢,
(one has to consider separately the case when j > 0 and the case when j = 0).
Therefore, if £; > 7 then § = 7; and hence :

f—a+l=r+min{-t;+ 741 -7,0}+1=min{-t; + 7j31, 7} +1 = 7.
On the other hand, if t; £ 79 then j = 0; t; £ 7;, hence B =t; — 1 and therefore
B-a+l=t —14+min{-t;+7 —7,0}+1=min{n — 7,41} =7.

Thus there are exactly ¥ numbers ¢g in the set
Nt1)=10,1,2,...,t; - 1}

which satisfy the condition u,(to,t;) = j. Of course, the equality Tueltoty) =
73 will also hold for them. For the remaining t; — ¥ numbers ¢ in N(t;) the
inequality p,(to,%1) 2 j+ 1 and hence the inequality Tur(to,t1) 2 Tj+1 holds. Thus
the inequality (3) is established. It is clear also that an equality will be present
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in (3) iff all ¢o from N(21), violating the condition o £ o £ 8, satisfy the equality
pr(to,t1) = j + 1. Making use of the definition of u,(to,%1) and of the fact that
541 > to for all g in N(#;) (since 741 2 #1), we see that an equality will be present
in (3) iff all o from N(¢,), violating the condition o < to £ f, satisfy the inequality
Ti+2—Tj+1 2 t1—to. A trivial possibility for this is that there are no ¢, from N(t,)
violating the condition o £ %y £ § at all. This happens iff a =0 and g =1; — 1,
i.e.iffty £ 141 —75 and t; £ 7+ 1. If there is at least one #g in N(t;) violating the
condition & £ tp £ B, then the inequality 7549 — Tj41 2 £1 — ¢ is satisfied for all
such %o iff it is satisfied for the least among them. If & > 0,i. e. {1 > 7j41 —7;, then
the least such ¢o is 0, whereasif e =0 and B < t; —1,l.e. Tj 1 =7 2 4 > 15 + 1,
then the least such tp is #+ 1 = 77 + 1. And so we showed that an equality is
present in (3) iff at least one of the following three cases is present:

(l) t1 £ Tj41 — Tj and t; £ T + 1;

(ii) 42 = Tj+1 2 11 > 41 — TS

(iii) Tit1— T 2 >7+ 1 and Tiv2—Ti+1 21— 75 — 1.
But it can be easily verified that the disjunction of (i), (ii) and (iii) is equivalent to
the disjunction of (a) and (b) from the formulation of the lemma (since the impli-
cations (i) == (b), (ii) == (a), (iii) =>(b), (a) == (ii)V(i)V(iii) and (b)==>(i)V(iii)
hold). Finally, if the inequality 7j4+2 2 27j41 holds, then 7540 ~ 7541 2 7541 2 &
and hence the case (a) is present. g

Remark 1. If the sequence {r+1 — 73};o, is monotonically increasing then
the implication (b} = (a) holds. Thus in this case an equality is present in (3) iff
the case (a) is present.

Corollary 1. Lett; € N,t; > 79, and j be the least natural number i satzsfymg
the inequality 7i41 2 1. Then:

(A) Ifty £ Tj41 — 75 then
(4) or(t1) 2 T4t — (5 + D(741 - 75),
and an equality is present in (4) iff Tjy2 — Tj41 2 81 — 75 — 1, the inequality

Ti+2 2 2(7j41 — 75) — 1 being sufficient for this
(B) Ift, > Ti4l — Tj then

() or(t1) 2 (27741 = 70t~ (41 = T)(T41 + 1)
and an equality is present in (5) ff Tj42 — 7541 2 11, the inequality 7542 2 2749
being sufficient for this.

Remark 2. In the case when {; = 7j41 — 7; the values of the right-hand sides
of the inequalities (4) and (5) are equal.

Example 2. Let 7 be the sequence {2° ~ 1} _ o and let the integer ¢, satisfy
the inequalities 2/ < t; < 2/+1 , where j € N. Obviously 741 = 2r; +1 > 27; for
all 7 in N. Then Corollary 1 yields the equality

or(t) = (3.20 — 1)t; — 2%+

(to obtain this equality in the case when ¢; = 27 it is convenient to use also Remark
2). From the above equality we get

3

, 9i+1\ 1
6:(t) =2 (3 — ——-) - =(t; +1).
1 2
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Making use of the methods of the infinitesimal calculus, it is easy to obtain the
following inequalities from the above result:

1 5 1
- — < g - =
(an equality is present in the left of them iff t; = 27).

Example 3. Let 7 be the sequence (1), i.e.
=, 1=0,1,2,3,...,
where w0 = 0, 1 = 1, ¢, = -1 + Yn-g for n > 1. Then
Titl — Ti = P2it+2 — P2i = P2i41 > P2i = Ti,

hence 741 > 27; for all 7 in N.. Now let the integer ¢; satisfy the inequalities
o1 <t £ Y141, where | € N. By application of Corollary 1 we get the equality

or(t1) = pipats — pg(pr + 1),
where ¢ and r are the odd and the even one, respectively, among the numbers [ and

I+ 1 (part (A) of the corollary is applied in the case when [ is even and part (B)
is applied in the opposite case). Of course, the above equality implies the equality

‘Pq(@r + 1) _ 1 _
—_—l 2(t1 1).

6r(t1) = pry2 — ,
1

From this result easily follows that again the inequality
1
5t —1) £ 6:(t1)

holds (an equality is now present in it iff some of the equalities ; = Y, t1=er+1
holds, i. e. in the case when [ is even and some of the equalities t; = @11, 1 = @1 +1
holds).

In the above examples we have the case of 7y = 0. For the case of 75 > 0 the
following complement to Corollary 1 can be made.

Corollary 1'. Let t; be an integer satisfying the inequalities 0 < t; < 7.
Then:

(AN Ift; £ 11— 19 then

(4') | or(t1) = 7ot1.
(B!) Ifty > m — 19 then
(5) or(t1) 2 ity — (11 — m)?,

and an inequality is present in (5') iff o— 1 2 11, the inequality 75 2 7+ 10 being
sufficient for this.

Remark 2. In the case when ¢; = 7, — 7, the values of the right-hand sides
of the inequalities (4') and (5') are equal.

Now we shall prove the general validity of that inequality which occurs in both
Example 2 and Example 3.
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Theorem 1. For any positive znteger ty the tnequality
(6) 6-(t1) 2 (n‘f1 -1)

holds, and an equality is present in (6) iff for some natural number j satisfying the
inequality
(7) Ti41 2 275 + 1
at least one of the following two cases ts present:
(1) t1 = 7341 — 7 and 742 2 27541 = 75) - Lo
Proof. The inequality (6) is equivalent to the inequality
(8) or(t1) 2 ta(ta — 1),

and an equality is present in (6) iff an equa}ity is present in {8). To prove the
inequality (8) and to study when an equality is present in it, we shall use the
following fact: for any two real numbers a and b and any {;, sa.tlsfymg the condition
a £ t; £ b, the inequality

(9) (G"}"bml)il —ab 2 31(11—1)
holds, and an equality is present in it iff ¢; = a or t; = b.4 Now let t; be an

arbitrary positive integer. To prove the statement of the theorem for it, we shall
consider several cases.

We shall first study the case when ¢; > 1. Let j be the least natural number
i satisfying the inequality 741 2 1.

Suppose first that

(10) 1 £ T4 T
Then the inequality (4) holds, as well as the inequalities
(11) T +15 4 S T4 - T

Making use of the above formulated fact for

a=7+1, b=T41—7j
we get the inequality
(12) Tigrts = (7 + {741 — 75) 2 ta(t1 — 1),
and this inequality together with (4) implies the needed inequality (8). Obviously,
the inequalities (11) imply the inequality (7). An equality will be present in (8) iff
an equality is present in each of the inequalities (4) and (12). This is equivalent

to the requirement that the inequality 7j42 — 7j41 2 t1 — 7; — 1 holds together
with some of the equalities t; = 7; + 1, t; = 7541 — 7j. The above inequality is

4 This is an obvious consequence of the equality
t1(ty = 1) = ({a+ b = 1)t1 — ab) = (1 — a)(t1 — b).
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obviously satisfied for ¢; = 7; + 1, and it is equivalent to Tj42 2 2(1j41 — 75) — 1
fort; = 7541 — 75. Thus 7341 2 2717 +1 in the considered situation and an equality
is present in (8) iff some of the cases (1) and (II) is present.

Now, remaining in the case when t; > 79, we shall suppose that

1> T4~ T
Then the inequality (5) holds, as well as the inequalities
| Ti+1 =T <t <71+ 1

Applying the inequality (9) for @ = 741 — 75, b = 7541 + 1 together with the
‘information when an equality is present in it, we get the inequality

(27541 = )t = (01 — )54 + 1) > 1ty — 1),
From this inequality and the inequality (5) we conclude that
g?(tl) > tl(tl —_ 1),

i. e. (8) holds again, but without the possibility of an equality in it.

Now we go to the case when ; £ 7. Ift; £ 7 —7 then the equality (4’) holds,
and hence the inequality (8) holds again without the possibility of an equality in
it. Suppose t; > 1 — 70. Then the inequality (5’) holds, and since

iy — tl(’tl - 1) = i1(1'1 -_ (tl - 1)) > (1’1 - 79)2

in this case, we again see that (8) holds without the possibility of an equality in it.

So we proved that the inequality (8) is always true and an equality is present
in it iff the inequalities ¢; > 7 and (10) are present together with some of the cases
(I) and (II) when j is the least natural number i satisfying the inequality 7,1 2 ¢;.
Moreover, we showed that the inequality (7) holds for this j if an equality is present
in (8). Suppose now that j is an arbitrary natural number, such that (7) holds and
some of the cases (I) and (II) is present. If we succeed to show that j is the least
natural number i satisfying the inequality 7;4; 2 ¢, and the inequalities t; > g
and (10) hold, then we shall be able to apply the above result and to conclude that
an equality is present in (8). But it is just this case, since (7) implies that

H<Ti+lS 747 £ Tia

Remark 3. If the sequence {r;4; ~ 7;};2, is monotonically increasing, then

the inequality 7j42 2 2(7j41 — 7;) — 1 (occurring in Corollary 1 and Theorem 1)
will be surely satisfied, since 742 — 741 2 7j41 — 7; implies
Ti+2 2 241 — 7 > Arj1 —75) — 1.

Consequently, if the sequence {ri41 — 7 };~, is monotonically increasing, then the
inequality sign in (4) can be replaced by an equality sign, and the case (II) in
Theorem 1 can be characterized simply by the equality ¢; = 7541 — 7;.
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4. ASYMPTOTIC BEHAVIOUR OF THE AVERAGE DELAY
OF THE DETECTION OF CYCLIC LOOPS BY MEANS OF DCL-SEQUENCES

Theorem 1 shows that
timinf 201 = gy e &201)

ti—oo 1y 31—*00 1~ th-1°% 2

Sufficient conditions will be given now for having an equality in the above inequality.
Theorem 2. Let infinitely many natural numbers i exist, such that 7,4y 2 27;.
Then

5.(t) 1

—

—

(13) : lim inf

ty =00 ?1 2

Proof. An infinite sequence of positive integers j can.be found satisfying
the inequality 7j42 2 27;41. For each of them, applying Corollary 1 for ¢; = 754,
we conclude that

or(1j41) = (2T541 = )T — (41— )T + 1) = 4a(m42 — 1) + 75,

and, consequently,

br(1541) = —(":4—1 - 1)+ —
J+1

or (7'3+1) 73
Tig1 — 1 2 Ti41(T541 — 1)
Now it is sufficient to make use of the fact that

T 1

0< <
Ti4(Tier —1)  Tipr—1

for all j in question, and, consequently, the corresponding sequence of values of
mﬂl converges to l =
Tig1 — 1 2

Example 4. If 7 is the DCL-sequence (1), mentioned in Section 2, or the DCL-
sequence {2‘ - 1} ;—o» used in Brent’s method, then, by Theorem 2, the equality
(13) holds.

The next example shows that the equality (13) cannot be asserted without
additional assumptions about the DCL-sequence r.

Example 5. Let the DCL-sequence 7 be determined by means of the equality

r.-=2(*'2*’1), i=0,1,2,3, ...

. O.(2 | . .
We shall show that thm -5-(—12 = +o0. For that purpose consider an arbitrary pos-
1—oo 1y
itive integer ¢; and an arbitrary integer ¢y satisfying the inequalities 0 £ #p < El
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| 2ty . 2t
If we set j = p;(to,t1), then 7541 — 5 2t—t 2 —g-l-, iLe.j+12 -3—1 and hence

J 2 g;—l—l From here we get

iG+1 172t "\ 2 2, 1
T;;,.(tg,tl)'— (2 )_"2“("5""1 ""é"": méw—mg tl'

Therefore, whenever ¢; > 1 we have

{t./3]
2t 1
oty 2 z Tur(tots) = <'"9; - g) t,

to=0

and consequently

6(t1)> (Qtl 1) 1t —-1_ 2, 11
3

t 9 3/ 2

9 73)7 24 T W B

. . X or (1 . .
Under some assumptions, an expression for lim sup -T-(——Q will be given.
11 —~—00 1
. 2ab
Lemma 4. Let a and b be integers such that 0 < a £ b. Lett* = TTECT
a~ —

t=[t"]ifa<b,andi=aifa=0b. Then
(a+b-1t—ab (a+b-1)°
12 = 4ab

for all non-zero real numberst, and the integer t satisfies the inequalitiesa < T < b
and the inequality

(15) (a+b—-1)¥'—-ab>(a+b~1)2 (1_:1?).

(14)

i’ = 4ab 7

Moreover, if b— a > 1 then the strict inequalities a < 1 < b hold.
Proof. The inequality (14) is an immediate consequence of the fact that

(16) (a+b-1)t-ab:(a+b-—-1)2(l_l(t_ 2ab )2)

12 4ab 12 a+b-1

for all non-zero real numbers £. If @ = b then (15) reduces to the easily verifiable

inequality
(2a — 1)a — a? s (2a-1) (1_ _1_)

a? = 4a? a?
Suppose now that a < b. Then
b - 1 b— 1
)=(a-1)——— 2 b—*_b-————-—
-t =(a )—k—b—-l 0, bt Tp-1 20

Consequently, the inequalities a + 1 < ¢* £ b hold, and #* < b in the case when
b—a>1. Thus

(17) a<ish [-t"|<l,
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and in fact we have { < b in the case when 6 — a > 1. Now it remains to note
that (15) follows from the second of the inequalities (17) and the case t = ¢ of the
equality (16). g

Theorem 3. Let 1,41 2 27 for all sufficiently large natural numbers i. Then

. 5.(ty) 1 { L2 @-12) 1

(18) D —a™\I- a- S 2
where { )
L =limsup 22, 1= liminf 221
imoo T§ =0 T

(in the case when L = +oo the right-hand side of (18) is considered as denoting
+00). |

Proof. Letn be anatural number such that 7341 2 27; for all ¢ greater than
n. For all positive integers ;7 we set

. t
m;:max{ga%l—)lt1€N,13<t1§‘G+1},
poo Tt g L | k(2K 1)
T o T T4 k—-l (kj — 1)k;

We shall prove the inequalities

(19) M; > m; > M; (1—}") (1-——-1&—)
Tj 7

for all j greater than n. Let j > n. To prove the first of the inequalities (19),
we consider an arbitrary integer t; satisfying the conditions 7; < t; £ 1541, If
t1 £ 7j41 — 7; then, by part (A) of Corollary 1, the equality

(20) or(t1) = Tty — (7 + 1)(741 — 75)

holds, and the inequality (14) from Lemma 4 witha =7+ 1,b=141 — 75, t = 14,
yields

ar(t1) . Tih1 < T _1 K
g = i(n ¥ Wrjsr— 1) 4 -17) 4k -1

Suppose now that ¢; > 7541 — 7;. Then, by part (B) of Corollary 1, the equality

< M;.

(21) ot =Crip -t — (41 - )T + 1)
holds. Using (14) with a = 744 — 7',-,‘b =141+ 1,1 =1, we get
or(t1) o (2741 1) @41~ 1) 1(2k -1
7 < < — = < ;.
] T Amn-n)mat+l)  Ana-n)na 40k - Dk
- Thus we proved that aft(tl) < M; for any integer {; satisfying the ineéualities

1
73 < t1 £ 7j41, and hence the first of ﬁhe inequalities (19) holds. To prove the
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second one, it is sufficient to prove the existence of an integer t; satisfying the
inequalities

t 1 1\
(22) 75 <1 £ T4, M_C'rt(zl) > M; (1 — ;—) (1 - ;—2—) )
1 F]

The existence of such a t; will be proved first in the case when
2
2k —1)* K
(kj - l)kj - kj -1
1 (2k; - 1)2
T 4(k; — 1)k
with @ = 71541 — 75, b = 7541 + 1, we conclude that an integer ¢; exists satisfying
the inequalities ‘
(23) Tt — T <t < Tjp1+1,

In this case we have the equality M; Again applying Lemma 4

(24) (2741 = )t = (41 = ) (G4 + 1) (21541 = 1)° (1 B _{) '

t] T i — )+ 1) t}
Since 7; £ 7541 — 7; < t; £ 741 for the same t;, part (B) of Corollary 1 shows
the validity of the equality (21) for this ¢;, and hence the above inequality can be
written in the form

(25) or(t1) o (2n41 - 1) (1 1)'

2 = 4np-n)ma+) 8
Hence
0’-,— t 27.' el 974 2 1
(26) t(zl) > 1 ( _i+l .J) 1 1-=
1 (Ti41 = 75) (1541 + 1) 7;

5 (27341 = 15)° (1__ 1 ) 1_____%
47541 = T)Tin Ti+1 7

1(2k; —1)? 1 1
EICERCANE VAR )

It remains to study the case when
(2 —1)* K
(kj —1)k; ~ k-1
It is immediately seen that k; # 2 in this case, and therefore k; > 2. Hence

Tj+1 > 27j, and consequently 7541 £ 741 —7;. Applying Lemma4 witha = 7;+1,
b = 7541 — 7}, we conclude that an integer #; exists, which satisfies the inequalities

Ti+1 8t £ 11~ 15,

Tie1ts = (75 + D = 15) | T ( _ _%_)
2 = A1+ 1)(r541—15) )’
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By part (A) of Corollary 1, for the same t; also the equality (20) holds, and the
above inequality can be written in the form

orlts) i (1 - l) :
2 T 47+ D) (1541 - 75) t}

Therefore

O—T(tl) 3+1 (1 _ 1 )
2 T 4+ 1)(7}+1 - 73) (m5 +1)?
T? 1 1
> ot (1-3) (- o)
47i(Tj41 — 7j) Tj (5 + 1)?

1 1 1 1
- (1-3) (- gr) >0 (-3) (- 3)

So the validity of the inequalities (19) for all j greater than n is proved. This fact
implies the equality

(27) lim sup m; = limsup M;.
j—ro0 jso0
Obviously,
. t
(28) limsup m; = limsup 67(2 1) ,
J—o0 ty—00 tl

and it is easily seen that

1 kz (2k; — 1)2
(29) h;)i s;p M; = 7 max {h;ri s;:p M h?}., sgp &=k [

Making use of the fact that k; 2 2 for all j greater than n and of the fact that
k2

k-1
easy to get the equality

is a monotonically increasing and continuous function of k when k 2 2, it is

k? L2
30 limsu ,
(80) ek ey
where the right-hand side is interpreted as +oo if L = +00. In a similar way we
establish the equallty

. (2k; — 1) (21—-1)?
31 limsu = ,
Gh P G -k~ G-
~ where the right-hand side is interpreted as 4 if | = +oo (the fact is used that
(2k — 1)? |
(k= 1Dk
sidered values of k). Of course, we have also the equality

is a monotonically decreasing and continuous function of k for the con-

(32) limsup blt) _ lim T(tl)

1
t3—+00 1 t,_-.oo t2 T2
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Combining the equalities (27)—(32), we get the equality (18) which had to be
proven. g

Example 6. If 7 is the DCL-sequence {2‘ - 1} ;=0 used in Brent’s method,
then L = = 2 and Theorem 3 ylelds

lim sup 5 (1) _ Zma.x {4, g} . 0.625.

{1 =00 1 2 52 8
Corollary 2. Under the assumption of Theorem 3 the inequality
33 - limsup 5 (t1) 2 V5

4

11— 00 tl
holds, and an equality is present in it iff
lim Tl - 3+\/5_

(34) i—o0 T 2
Proof. In the denotations of Theorem 3 it will be proved that
L (21-1)?
>
(35) ma.x{L_l, = >2+v5
and an equality is present in this inequality iff
(36) L=I=3+2\/5—.

For that purpose we note that

B (2k—1)?
o1 o - 2tVs

S

3+
2

for k = . Suppose now that

L2 (2 -1)?
max{L_i, (1_1)1} < 2+,

2

ie < 24 V5, @-1 < 2+ V5. Making use of the last two inequalities

- - k2 (2k — 1)2

E— 1 and m, Wthh

has been mentioned in the proof of Theorem 3, is a strict one, we conclude that
L 3F x/'

mn that case

and of the fact that the monotonicity of the functions

< 1. Since [ £ L, this is possible only if the equalities (36) hold, and

I (-172)
maX{L-—I’ (1-1)1}‘2+‘/5',

Therefore the inequality

L2 (2A-1)?
max{L_l, =D }<2+\/5
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is impossible and an equality is present in (35) iff the equalities (36) hold. But the
last condition is equivalent to the equality (34) and it remains only to apply the
equality (18). o .

3+ \/5

Remark 4. Since
(34) satisfies also the assumptlon of Theorem 3. As an example of a DCL-sequence
T satisfying (34), the sequence (1), mentioned in Section 2, can be indicated. Hence

the equality
. 6:(t1) VB
imsup =
ty->00 tl 4

> 2, any DCL-sequence 7 satisfying the condition

= 0.559...

holds if 7 is the sequence (1). Having in mind Examples 4 and 6, we may conclude
from the above fact that the F-method is in some sense better than the Brent’s one
with respect to the average delay of loop detection. :

5. A PARTIAL GENERALIZATION OF COROLLARY 2

 In Corollary 2 the inequality (33) has been proved under the assumption of
Theorem 3 that 7;4; 2 27; for all sufficiently large natural numbers i. We shall
show now that this assumption is in fact not needed for the validity of (33).
Theorem 4. For any DCL-sequence T the inequality (33) holds.
Proof. The inequality (33) is equivalent to the following statement: when-

v5 , then s ( 1)
4 t
integers t;. And the validity of the above statement will be established by showing
that for any sufficiently large natural number m a positive integer ¢; exists such

that £, > 7, and the inequality

o (18) (-2) ()

5rt(t1) o ft(ﬁtl) ;, the inequality (37) implies the inequality
1

8- (t1) 1\/5'( 1( 1)1
ty >(2+4 1 ™™ 1 2, 2’

and the right-hand side of the last inequality converges to —4-{1 when m — 00).

For the time being let m be an arbitrary positive integer. We choose an integer T
greater than 7, and satisfying the inequality

T 4
(such an integer T can be found since the left-hand side of (38) converges to 1 when
T — 0o. Two cases will be studied separately.

ever c is a real number less than — > ¢ for infinitely many positive

holds (since

(38)
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Case 1. For any integer 1y, satisfying the inequalities 7, § o < T, the in-
. 5 . .
equality 7y, (1o, 7)+1 S 3 The(toT) holds. For any such tp if we set j = u,(20,T),

then we have

5
T-tSmn-mSgH-T=7
hence 7; 2 4(T — to). Thus 7,,to,7) 2 4(T — o) for any integer to, satisfying the
inequalities 7y, S to < T. Therefore

o T) T-m)T—-mm+1) _ 3
‘r( T2 Z Tur(toT) TQ z io)—-2 = ™m > 2

5

Tg to=Tm 1o=Tm 2
.3 1 5 . . . oy
and since 2 > 2 -+ = the inequality (37) will be surely satisfied for ¢; = T'.

Case 2. There is an integer i, satisfying the inequalities 7, £ to < T and

. . 8 .
the inequality 7, (t0,7)+1 > err(mg‘). We choose such an integer ¢y and set

J = pr(to,T). Then 7541 > grj, Tj 2 to 2 Tm. Three subcases will be considered
separately. ,
Subcase 2.1. The inequality 741 < %7} holds. We shall show that for all
sufficiently large values of m the inequality (37) will be satisfied by t; = 7; + 1.
Indeed, let ¢; = 7; + 1. Since 7341 — 75 < g?’, < t1, part (B) of Corollary 1 can be

4
applied and the validity of the inequality (5) is seen. From here we get

or(ts) o Crn—m)(H+ 1) — (G4 —7)(h41 +1)
t 2 (r; +1)°

. b
Since —7; < Tj41 <

4 4

W) = (2= )5+ 1) = (¢ - )t +1)

5 7 . _ : o 1
for 17 < t £ —7;. This function is concave and the inequalities ¢ (-E:rj) > —gr?

—7;, let us consider the function

4 4 16 7’
7\, 19, 19 ,
Y 17 1 67‘ can be easily verified. Therefore the inequality % (7;41) > — T

also holds and consequently

ar(ts) 19 i
2 16 (r; +1)2
Since %—g > ; + \f
large values of m, the made choice of ¢; guarantees the inequality
o r(tl) ‘/5

2 5*7

and 1; 2 Ty, it is clear that t; > 7, and, for all sufficiently

30



and hence also the inequality (37).
Subcase 2.2. The inequalities %Tj € Tj41 < 275 hold. Let a = 141 = 75,

b= 1j41 + 1, and let ¢; =7, where 7 is constructed as in Lemma 4, i. e. #; = [t*],
where

oo 2T =) (G 4
| 2Tj41 = T

We shall show that the inequalities ¢; > 7, and (37) will be satisfied by this ¢, if
m is sufficiently large. We have

2rj41— 7)) = 7i(r + 1)

t'—(m+1)=

2Tj41 — 7
3 2
°r) —rm(m+1
> 2(4%) T:(TJ+ ) _ fj(Tj—S) .
N 2741 — 7 8(27j41 — 73)

By Lemma 4 we have the inequalities z23) and (24). Then part (B) of Corollary
1 yields also the inequality (5), and we get the inequality (25). As in the proof of

Theorem 3, from (25) we obtain the inequalities (26), i. e.

Gr(tl) 1 (236}' - 1)2 - -}; _ l.—
m}?—“ > :i(kj - 1)]63' 1 T; L 1'-2

b

Supposing that 7, > 8, we see that ¢* 2 7;+1, and consequently t; 2 73 +1 > 7y,

. Ti+1 . . s (Qk - 1)2 .
W1 ; =™ —~——, alnce we have the inequaiities ; and -~ 18 a
thk; = 22 have the inequalities 1 < k; < 2 and ‘v

monotonically decreasing function of & for k > 1, it follows that

orlt) 90 1V [;_1).
tf >8( G)(l @)

Taking into account that o > -+ ﬁ, we again see the validity of the inequality

8 2 4

(37). .

Subcase 2.3. The inequality 7j41 2 27; holds. Then, defining M; in the same
way as in- the proof of Theorem 3, we can prove the existence of an integer #;
satisfying the inequalities (22). The only difference in the proof is that we have to
use the inequalities (4) and (5) instead of equalities (20) and (21). Clearly, this #;
will be greater than 7,,. To show that the inequality (37) will be also satisfied, it
is sufficient to prove the inequality

M; 2 -+

e

1
2
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- 2
But this follows from certain already mentioned properties of the functions 1

_1\2
and H, namely from the fact that ‘the first of these functions is monoton-

ically increasing for k£ 2 2, the second one is mbnc;tonically decreasing, and both

functions have the value 2 + /5 for k = 3 +2J5.. -

Theorem 4 is only -a partial generalization of Corollary 2, since this theorem
gives no information about the cases when an equality is present in the inequality
(33). Remark 4 shows that the condition (34) is a sufficient condition for having an
equality in (33). Although this sufficient condition is also a necessary one under the
assumption of Theorem 3 (as stated in Corollary 2), we shall give now an example
showing that (34) is not a necessary condition for (33) in the general case.

Example 7. Suppose 7 is a DCL-sequence satisfying the condition (34), such
that 7541 ~ 75 > 1 holds for all { in N (such a sequence 7 is, for instance, the
sequence obtained from (1) by omitting its initial term). We define a new sequence
7 by setting

Tok =Tk, Tok+1 =T+ 1.

The sequence T is obviously a DCL-sequence again, but the condition lim —*1 —

i—00 Ty
3+v5
2

is not satisfied. Nevertheless, we shall establish the equality

lim sup br(t1) = \'/.5-
ty 00 tl 4

For that purpose we shall first show that -

. ,
(39) 8(t1) < f*‘"“";"‘” T 46 (k)
1
for any integer ¢; greater than 1. We have the equality
~ | § hiol
or(t1) = g; Z (?p?(tmfl) - tO) )
tg=0

where

pr(to,t1) =min{i €N | T 2 to, Fip1 ~ 7 2 t1 — 1o}
Let ¢; be an arbitrary integer greater than 1. If {; — #; > 1 then the inequality
Tiy1 — Ti 2 11 — 1o is possible only for odd values of i and therefore

pr(to,t1) =min{2k+1 | k€N, e +1 2 to, Thys — (. +1) 2 t1 —to},
ie. o
prto,t) =min{2k+1 | kEN, m 2t~ 1, ;g — 7 2 41 — (to — 1)}

Hence
ﬂf"?(t(};tl) = Qﬂf(tﬂ - 1st1) + 11
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. ;‘F#F(fo,h) —to= (r#;-(to—l,tz) + 1) -t = Tur(to=1,01) ™ (tﬁ - 1)
whenever 0 < to < t; — 1, and for ¢, = 0 we have

pr(to, t1) = m111{2k+ 1 kEN, g1 =7 2 t1 +1} =26,(0, 81 + 1) +1,

Turtots) — 10 = Tur(0ta+1) T 1.
To calculate the value of 67(¢1), it remains to calculate the difference 7_(to,1,) — to
for ty = t; — 1. In this case the inequality 41 —T; 2 t1 — %0 is satisﬁed for all ¢
in N, and therefore
pr(to,t;) =min{i €N | 7 2 to}.

Ift{ — 1 =7 + 1 for some k in N, then to = 73141 and hence

f"?’(thtl) =2k +1, ?,u;.-(to,tx) —to=Tart1 —to = 0.
Let t1 — 1 be not of the form 7 + 1. Then Tax41 2 to is equivalent to 7o 2 to for
any k in N, and hence

pr(to,t) = min{2k | k€N, 7 2 to} = 2u-(to,t1),

Tur(tot1) — 10 = Tu,(to,t1) — t0
Thus

Tur(to,tr) — to £ Ty, (tots) — to
whenever {3 = t; — 1. And so we have

1 [ t1-2 _ B
&+(t1) = H (T“.f.(g,zl} + z ('r,,;(to,m —t(}) + Tus(ti=1,81) — (ty — 1))
to=1
1 ' S PR
< E (Tpr(ﬁ,tx+1) + 1+ z (’rﬁ,(:g_l,zi) —(to — 1)) + Ty (t-1,81) — (t1 - 1))
ig:l

1 t; -3
= -t—l (Tpf(ﬂ,tri'l) + 14+ E (Tﬂr(fostl) —_ tO) -+ Tur(ti=1,t) = (tl - 1)) ’

to=0

A

1 e T 1) +1
'{I (7};,(0,11-&-1) +14 Z (Ttﬁv(tu,ix) o to)) — #r(0,t141) + 61‘(t1).

{to=0 tl

Thus we established the validity of (39) for all mtegers 13} greater than 1. Now we
shall show that

(40) Tu (0,1 41) S 2t

for all sufficiently large positive integers ¢;. To show this, we make use of the
assumption (34) and choose such a number m in N that 311 2 2% whenever { 2 m.
Let t1 2 Tm41 and j = p,(0,¢; + 1). By definition,

(41) j:min{ieN i Tigr — T 2 U1 + 1}.

Hence 7j41 — 7; 2 t; + 1, and this inequality together with the inequalities
Ti+1 2 Tj+1—Tj, t1 = Tms1 enables us to conclude that 7541 > 7yn41 and therefore
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Jj > m. Thus j—1 2 m and consequently j — 1 € N. Therefore (41) implies the in-
equality 13 - Tj~1 5 t;. The 1nequa.hty J—1 2 m guarantees also that 7; 2 27;_;.
Hence 1; £ 2(75 — 75-1) £ 2ty, i.e. the mequahty (40) holds. Thus we proved
that all sufficiently large positive integers t; satisfy the inequalities (39) and (40).
Consequently, for all such ¢; the inequality

67(t1) < i+1 + b-(%1)

ty, < ff 1
holds, and therefore
' t
lim sup ——= &(tl) < limsup .6_"'.(.1_) .
ty—00 41 1 =00 tl
Since
t
limsup 'r(tl) > \/_, limsup 5-(t1) _ v5
1100 tl 4 $1—00 tl 4

by Theorem 4 and Corollary 2, respectively, we conclude that the equality

i or(t) V5
imsup =
t1—o0 11 4
holds indeed,
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