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George Alezandrov. SOME REMARKS ON THE STRICTLY POSITIVE MEASURES

-

It is shown that if K is a Grothendieck compact space, then K admits a strictly positive
measure if and only if there exists a linear bounded one-to-one operator T: C(K) — co(T’).

1. INTRODUCTION

A finite nonnegative regular Borel measure g on the compact Hausdorff space
K is called strictly positive if u(U) > 0 for every nonem»ty open subset U of K.

A compact Hausdorff space K is called Grothendieck-compact if the space C(K)
is the Grothendieck space, i. e. the weak® and weak convergence of sequences coin-
cide in C(K)*.

A compact Hausdorff space K is extremally disconnected if the closure of every
open subset of K is open-and-closed (for the remaining definitions see below).

Every extremally disconnected compact space is a Grothendieck compact space.
It is known that if a compact space K has a strictly positive measure, then
there exists a bounded linear one-to-one operator T: C(K) — co(T') ({2], p. 179).
Therefore the space C(K) admits an equivalent strictly convex norm ([3], p. 101).
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The converse is not true. Argyros, Mercourakis and Negrepontis ([1],
Theorem 1. 11) proved the existence of a bounded linear one-to-one operator
T:C(K) — co(T) and so C(K) has an equivalent strictly convex norm for the
known example of Gaifman (see (2], Theorem 6. 23) of a compact Hausdorff space
K without a strictly positive measure.

However, on the class of extremally disconnected compact spaces we have the
following

Theorem ([1]). Let K be an extremally disconnected compact space. Then
K admits a strictly positive measure if and only if there ezists a linear bounded
one-to-one operator T: C(K) — ¢o(T).

Naturally, the question arises: Is there a class of compact spaces, essentxal-
ly wider than the class of extremally disconnected compact space, for which this
theorem holds?

Here we give the positive answer to this question.

2. DEFINITIONS, NOTATIONS AND SOME PROPOSITIONS

If (X,]].]l) is a Banach space, X* denotes its dual; X* = {z* : X — R :z" is
linear and continuous }.

The weak™ topology on X* is the topology induced on X* by X, i.e. &} — z*
is weak* convergent in X* if z}(z) — z*(z) for all z € X.

The unit ball of a Banach space X is denoted by B;(X); thus By(X) = {z €
X : |zl < 13,

If T:X — Y is a linear bounded operator between Banach spaces, then
T*:Y* — X* is the conjugate operator of T' given by T*(y*) = y* o T for all
y* € Y* . Every conjugate operator T* is weak*~weak* continuous.

A norm ||.|| of a Banach space X is strictly convez, if for all z,y € X with
llzll = llyll = 1 we have ||(z +y)/2|| < 1 whenever z # y.

The subset A C X* is total if the linear closure lin(A) of A is ¢ total subspace,
i.e. if z € X and we have z*(z) = 0 for all z* € lin(A4), then z = 0.

Given a compact Hausdorff space K, C(K) denotes the space of all real-valued
continuous functions on K with supremum norm. :

Given a set T, I(T') denotes the Banach space of all bounded functions
f:T — R, with |{f]] = SUPyer [f(7)] 5 and eo(T) = {f € loo(I) : for all € > 0
{y €T : |f(¥)| > €} is finite }. Also, {1(T) denotes the Banach space of all

functions f:T — R such that Z |£(7)] < oo with the norm ||f]| = Z F(l-

The support of a nonnegatwe regular Borel measure p on the c.ompact Haus-
dorff space K, denoted by supp(p), is the set of all z € K for which u(U) > 0 for
every open set U containing z. The support of a measure is a closed subset of K.
It is clear that if a nonnegative regular Borel measure p is strictly positive, then

supp(p) = K.
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Proposition (Rosenthal [6)). Let K be a compact Hausdorff space. Then K
admits a strictly positive measure if and only if C(K)* contains ¢ weakly compact
total subset.

A compact Hausdorff space K is called Rosenthal-compact if K is homeomor-
phic to a subspace of the space of functions of the first Baire class with the pointwise

convergence for some complete separable metric space.

The Rosenthal-compacts are introduced by H. Rosenthal in connection with the
characterization of the Banach spaces isomorphically containing I;(N) (N denote
the set of positive integers) [7]. The class of these compacts extends in a natural

way the class of metrizable compacts.
Proposition (Godefroy [4]). Let K be a Rosenthal-compact space and y is a
nonnegative regular Borel measure, then the supp(u) is a separable space.

3. RESULTS

Theorem 1. Let K be a Grothendieck-compact. Then K admits a sirictly
positive measure if and only if there exists a linear bounded one-to-one operator
T:C(K) — co(T).

Proof. We need to prove only the “if” part. Let T:C(K) — ¢o(T) be a
linear bounded one-to-one operator and let T*:1;(I') — C(K)* be the conjugate
operator of T'.

The unite ball B; = B;({1(T)) of the space l; (T') is weak*-sequentially compact.
Then T*(B.) is also weak*-sequentially compact, because the conjugate operator
T* is weak®—weak* continuous. Since K is a Grothendieck-compact space, then
on the set T*(B;) the weak* and weak convergence of sequences coincide and,
consequently, 7*(B1) is a weak compact.

On the other hand, 7*(B;) is a total set, because T*(I;(T)) (T*(l1(T)) is a
linear closure of T*(B;)) is a total subspace in C(K)"*.

Really, let f € C(K) and (T*g)(f) = 0 for all g € I;(T'). Since

(T*9)(f) = 9(Tf) =0, Vge (D),
and [;(T') is a dual space to the space co(I'), then T'f = 0. However, the operator
T is one-to-one and therefore f = 0.

Thus we have a weak compact total subset 7*(B;) in C(K)* and then the
assertion follows from the result of Rosenthal. ,

Corollary 1. There erists a Grothendieck-compact K which 1s not an
extremally disconnected compact with a strictly positive measure.

Haydon [5] constructed a Grothendieck-compact K which is not extremally
disconnected, such that the space C(K) is isomorphic to a subspace of loo(N).
Consequently, there is a linear bounded one-to-one operator T: C(K) — ¢o(N).

Really, let 73 be an isomorphism from C(K) into lo(N). The map
T3:10{N) — co{N), defined by the equality ~

Tz(&)) = {xﬂ/n}go::ls Tz = {xn}f;ozl € IW(N)!

37



is obviously bounded linear one-to-one operator. Then our operator is 7' = T} o T5.

Corollary 2. If K is a Grothendieck-compact with a strictly positive measure,
then the space C(K) admits an equivalent strictly convezr norm.

Theorem 2. Let K be a Rosenthal-compact. Then K admits a sirictly positive
measure if and only if K is separable.

Proof. Let K be a separable compact, in particular, a separable Rosenthal-
compact, and let {£,}52, be a dense subset in X, then we define a srictly positive

measure pg on K by
1
p(U)= Y 5

. zn€U
_ for all open sets U.

If now a separable Rosenthal-compact space K has a strictly positive measure
i, then the support of u is equal to K. Therefore, the assertion follows from a
result of Godefroy.

Corollary 3. If K is a separable Rosenthal-compact, then the space C(K)
admits an equivalent strictly conver norm.

4. QUESTION
A norm |[|.|| of a Banach space X is locally uniformly convez if for every
sequence {Zn};2; C X and every ¢ € X, such that ||z,]] = [lz|| = 1, if

lim||(z + zn)/2]] = 1 then lim]jz, — z|| = 0.
If the norm is locally uniformly convex then this norm is strictly convex.
Question. Let K be a separable Rosenthal-compact. Does the space C(K)
admit an equivalent locally uniformly convex norm?
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