годишник на софийския университет "СВ. Климент охридски"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Книга 1 — Математика Том 85, 1991

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Livre 1 — Mathématiques
Tome 85, 1991

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"

SOME REMARKS ON THE STRICTLY POSITIVE MEASURES

GEORGE ALEXANDROV

Георги Александров. НЕСКОЛЬКО ЗАМЕЧАНИЙ О СТРОГО ПОЗИТИВНЫХ МЕР

Показано, что если K компакт Гротендика, тогда K имеет строго позитивную меру тогда и только тогда, когда существует непрерывный линейный иньективный оператор $T:C(K) \to c_0(\Gamma)$.

George Alexandrov. SOME REMARKS ON THE STRICTLY POSITIVE MEASURES

It is shown that if K is a Grothendieck compact space, then K admits a strictly positive measure if and only if there exists a linear bounded one-to-one operator $T: C(K) \to c_0(\Gamma)$.

1. INTRODUCTION

A finite nonnegative regular Borel measure μ on the compact Hausdorff space K is called *strictly positive* if $\mu(U) > 0$ for every nonempty open subset U of K.

A compact Hausdorff space K is called *Grothendieck-compact* if the space C(K) is the Grothendieck space, i. e. the weak* and weak convergence of sequences coincide in C(K)*.

A compact Hausdorff space K is extremally disconnected if the closure of every open subset of K is open-and-closed (for the remaining definitions see below).

Every extremally disconnected compact space is a Grothendieck compact space.

It is known that if a compact space K has a strictly positive measure, then there exists a bounded linear one-to-one operator $T: C(K) \to c_0(\Gamma)$ ([2], p. 179). Therefore the space C(K) admits an equivalent strictly convex norm ([3], p. 101).

The converse is not true. Argyros, Mercourakis and Negrepontis ([1], Theorem 1. 11) proved the existence of a bounded linear one-to-one operator $T: C(K) \to c_0(\Gamma)$ and so C(K) has an equivalent strictly convex norm for the known example of Gaifman (see [2], Theorem 6. 23) of a compact Hausdorff space K without a strictly positive measure.

However, on the class of extremally disconnected compact spaces we have the following

Theorem ([1]). Let K be an extremally disconnected compact space. Then K admits a strictly positive measure if and only if there exists a linear bounded one-to-one operator $T: C(K) \to c_0(\Gamma)$.

Naturally, the question arises: Is there a class of compact spaces, essentially wider than the class of extremally disconnected compact space, for which this theorem holds?

Here we give the positive answer to this question.

2. DEFINITIONS, NOTATIONS AND SOME PROPOSITIONS

If (X, ||.||) is a Banach space, X^* denotes its dual; $X^* = \{x^* : X \to R : x^* \text{ is linear and continuous }\}$.

The weak* topology on X^* is the topology induced on X^* by X, i. e. $x_i^* \to x^*$ is weak* convergent in X^* if $x_i^*(x) \to x^*(x)$ for all $x \in X$.

The unit ball of a Banach space X is denoted by $B_1(X)$; thus $B_1(X) = \{x \in X : ||x|| \le 1\}$.

If $T: X \to Y$ is a linear bounded operator between Banach spaces, then $T^*: Y^* \to X^*$ is the *conjugate* operator of T given by $T^*(y^*) = y^* \circ T$ for all $y^* \in Y^*$. Every conjugate operator T^* is weak*-weak* continuous.

A norm ||.|| of a Banach space X is strictly convex, if for all $x, y \in X$ with ||x|| = ||y|| = 1 we have ||(x+y)/2|| < 1 whenever $x \neq y$.

The subset $A \subset X^*$ is total if the linear closure $\lim(A)$ of A is a total subspace, i. e. if $x \in X$ and we have $x^*(x) = 0$ for all $x^* \in \lim(A)$, then x = 0.

Given a compact Hausdorff space K, C(K) denotes the space of all real-valued continuous functions on K with supremum norm.

Given a set Γ , $l_{\infty}(\Gamma)$ denotes the Banach space of all bounded functions $f:\Gamma \to \mathbb{R}$, with $||f|| = \sup_{\gamma \in \Gamma} |f(\gamma)|$, and $c_0(\Gamma) = \{f \in l_{\infty}(\Gamma) : \text{ for all } \varepsilon > 0 \}$ $\{\gamma \in \Gamma : |f(\gamma)| > \varepsilon\}$ is finite $\{\Gamma\}$. Also, $\{l_1(\Gamma)\}$ denotes the Banach space of all functions $\{f:\Gamma \to \mathbb{R}\}$ such that $\sum_{\gamma \in \Gamma} |f(\gamma)| < \infty$ with the norm $||f|| = \sum_{\gamma \in \Gamma} |f(\gamma)|$.

The *support* of a nonnegative regular Borel measure μ on the compact Hausdorff space K, denoted by $\operatorname{supp}(\mu)$, is the set of all $x \in K$ for which $\mu(U) > 0$ for every open set U containing x. The support of a measure is a closed subset of K. It is clear that if a nonnegative regular Borel measure μ is strictly positive, then $\operatorname{supp}(\mu) = K$.

Proposition (Rosenthal [6]). Let K be a compact Hausdorff space. Then K admits a strictly positive measure if and only if $C(K)^*$ contains a weakly compact total subset.

A compact Hausdorff space K is called Rosenthal-compact if K is homeomorphic to a subspace of the space of functions of the first Baire class with the pointwise convergence for some complete separable metric space.

The Rosenthal-compacts are introduced by H. Rosenthal in connection with the characterization of the Banach spaces isomorphically containing $l_1(N)$ (N denote the set of positive integers) [7]. The class of these compacts extends in a natural way the class of metrizable compacts.

Proposition (Godefroy [4]). Let K be a Rosenthal-compact space and μ is a nonnegative regular Borel measure, then the $supp(\mu)$ is a separable space.

3. RESULTS

Theorem 1. Let K be a Grothendieck-compact. Then K admits a strictly positive measure if and only if there exists a linear bounded one-to-one operator $T: C(K) \to c_0(\Gamma)$.

Proof. We need to prove only the "if" part. Let $T: C(K) \to c_0(\Gamma)$ be a linear bounded one-to-one operator and let $T^*: l_1(\Gamma) \to C(K)^*$ be the conjugate operator of T.

The unite ball $B_1 = B_1(l_1(\Gamma))$ of the space $l_1(\Gamma)$ is weak*-sequentially compact. Then $T^*(B_1)$ is also weak*-sequentially compact, because the conjugate operator T^* is weak*-weak* continuous. Since K is a Grothendieck-compact space, then on the set $T^*(B_1)$ the weak* and weak convergence of sequences coincide and, consequently, $T^*(B_1)$ is a weak compact.

On the other hand, $T^*(B_1)$ is a total set, because $T^*(l_1(\Gamma))$ $(T^*(l_1(\Gamma)))$ is a linear closure of $T^*(B_1)$ is a total subspace in $C(K)^*$.

Really, let $f \in C(K)$ and $(T^*g)(f) = 0$ for all $g \in l_1(\Gamma)$. Since

$$(T^*g)(f) = g(Tf) = 0, \quad \forall g \in l_1(\Gamma),$$

and $l_1(\Gamma)$ is a dual space to the space $c_0(\Gamma)$, then Tf = 0. However, the operator T is one-to-one and therefore f = 0.

Thus we have a weak compact total subset $T^*(B_1)$ in $C(K)^*$ and then the assertion follows from the result of Rosenthal.

Corollary 1. There exists a Grothendieck-compact K which is not an extremally disconnected compact with a strictly positive measure.

Haydon [5] constructed a Grothendieck-compact K which is not extremally disconnected, such that the space C(K) is isomorphic to a subspace of $l_{\infty}(\mathbb{N})$. Consequently, there is a linear bounded one-to-one operator $T: C(K) \to c_0(\mathbb{N})$.

Really, let T_1 be an isomorphism from C(K) into $l_{\infty}(N)$. The map $T_2: l_{\infty}(N) \to c_0(N)$, defined by the equality

$$T_2(x) = \{x_n/n\}_{n=1}^{\infty}, \quad x = \{x_n\}_{n=1}^{\infty} \in l_{\infty}(\mathbb{N}),$$

is obviously bounded linear one-to-one operator. Then our operator is $T = T_1 \circ T_2$.

Corollary 2. If K is a Grothendieck-compact with a strictly positive measure, then the space C(K) admits an equivalent strictly convex norm.

Theorem 2. Let K be a Rosenthal-compact. Then K admits a strictly positive measure if and only if K is separable.

Proof. Let K be a separable compact, in particular, a separable Rosenthal-compact, and let $\{x_n\}_{n=1}^{\infty}$ be a dense subset in K, then we define a srictly positive measure μ on K by

$$\mu(U) = \sum_{x_n \in U} \frac{1}{2^n}$$

for all open sets U.

If now a separable Rosenthal-compact space K has a strictly positive measure μ , then the support of μ is equal to K. Therefore, the assertion follows from a result of Godefroy.

Corollary 3. If K is a separable Rosenthal-compact, then the space C(K) admits an equivalent strictly convex norm.

4. QUESTION

A norm ||.|| of a Banach space X is locally uniformly convex if for every sequence $\{x_n\}_{n=1}^{\infty} \subset X$ and every $x \in X$, such that $||x_n|| = ||x|| = 1$, if $\lim ||(x+x_n)/2|| = 1$ then $\lim ||x_n-x|| = 0$.

If the norm is locally uniformly convex then this norm is strictly convex.

Question. Let K be a separable Rosenthal-compact. Does the space C(K) admit an equivalent locally uniformly convex norm?

REFERENCES

- Argyros, S., S. Mercourakis, S. Negrepontis. Functional-analytic properties of Corson-compact spaces. — Studia Math., 89, 1988, 197-229.
- 2. Comfort, W., S. Negrepontis. Chain Conditions in Topology. Cambridge Tracts in Math., 79, Cambridge Univ. Press, 1982.
- 3. Diestel, J. Geometry of Banach spaces. Selected topics, Lect. Notes in Math., 485, Springer-Verlag, Berlin, 1975.
- 4. Godefroy, G. Compacts de Rosenthal. Pac. J. Math., 91(2), 1980, 293-306.
- 5. Hay don, R. A non-reflexive Grothendieck space which does not contain l_{∞} . Isr. J. Math., 40, 1981, 65-73.
- 6. Rosenthal, H. On injective Banach spaces and the spaces $L_{\infty}(\mu)$ for finite measures μ .

 Acta Math., 124, 1970, 205-248.
- 7. Rosenthal, H. A characterization of Banach spaces containing l_1 . Proc. Nat. Acad. Sci. USA, 71, 1974, 2411-2413.

Received 30.03.1992