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ON THE GEOMETRY OF SUBGROUPS OF SUZUKI GROUP
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Yasdap Hdozanoe, I'epzana Enesa. O TEOMETPUWHU INOATPYIIIN FPYIIIIEI CY3YKH B
KOHEYHBIX HEMUAKEJIEBBIX UHBEPCHBIX ITJIOCKOCTAX

[lpoctyio rpynny Cysykm Sz(227+1) moxmno paccmMaTpHBaThL KaK NOATPYNNY FPyRIEl
KONWHeAU# TPEXMePHOTO NPOEKTUBHOTO npocTpancTea PG(3,22711) man GF(22711), ko-
Topag ¢ukcupyer oBoun Turca t(¢). DTa rpynna onpemeafeT KOHEUHYIO HEMMKENEBYIO
OBOMIA/IbHYIO MHBEPCHYIO NJIOCKOCTE J(0) HODAAKA g, KOTOPaA COCTOMTCA M3 TOUEK M Ce-
KyIMX IJIOCKOCTel naHHOro oBouzaa, koraa q = 22711, B erofi pabore neTanbHO paccMaT-
pusaeTca reoMerpua moarpynn Sz(227t!) ormocuTennHo Hemmukenesolt umBepcHoM maoc-
koctu S(g).

Chavdar Lozanov, Gergane Eneva. ON THE GEOMETRY OF SUBGROUPS OF SUZUKI
GROUP IN FINITE NON-MIQUELIAN INVERSIVE PLANES

The simple Suzuki group $z(2?7*!) can be considered as a subgroup of the group of colli-
neations of 3-dimensional projective space PG(3,227%1) over GF(2%7+!), fixing the special Tits
ovoid t(1). This group determines a finite non-miquelian egglike Mobius plane J(o) of order g,
consisting of points and plane sections of the above ovoid, when ¢ = 227+1, In this paper a detailed
picture of the geometry of the subgroups of §z(227+1) is given with respect to the non-mlquehm
Mobius plane S(g).

In 1958 Suzuki discovered a class of simple groups Sz(22r+!) with properties
similar to that of the little projective group PSL(3,2") over Galois field GF(2").
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The group PSL(3,2") can be considered as a subgroup of the collineations of -
3-dimensional projective space PG(3,2") over GF(2"), leaving invariant an ovoid
which is non-ruled quadric. Later Tits showed that there exist an ovoid () such
that the group Sz(2? +!) also can be considered as a subgroup of the collineations
of 3-dimensional projective space PG(3,2%+!) over GF(2*r*+!), leaving invariant
the ovoid ¢(4). , |

Each of these groups determine a class of finite egglike Mobius planes (o),
consisting of points and plane sections of the above ovoids. The two classes are:
miquelian planes — M(q), where o is non-ruled quadric in PG(3,q) and non-
miquelian — S(g), where o is the Tits ovoid #(¢), and ¢ = 227 +1,

A Mobius (inversive) plane can be considered also as an incidence structure
J = (B, B, z), whose blocks are called circles, such that the following axiom is
satisfied: ‘

For every point P € ‘B the internal structure Jp is an affine plane.

The automorfism group of S(g) — AutS(g), is the semidirect product
S2(q). AutGF(q). AutS(g) is doubly transitive on the points of S(g) and tran-
sitive on circles of S(q).

The structure of Suzuki group G = Sz(q) is investigated by Luneburg in [1],
where some geometric characteristics of subgroups of Sz(q) are given.

Suzuki group G has order o(G) = (¢° + 1)¢*(g — 1) and contains the following
subgroups:

1) Sylow 2-subgroup S of order ¢2;

2) The normalizer F = MgS of S, which is Frobenius group of order ¢%(g — 1);

3) Dihedral group D of order 2(q — 1);

4) Two cyclic subgroups: Z' of order ¢+ /27 + 1 and Z" of order ¢ — V2q+1;

5) The normalizers: N’ = ReZ' of order 4(g + /2 + 1) and N” = RGZ" of
order 4(q — /2¢ + 1); |

6) The group S(k), when ¢ = k™ and k > § [1].

In this paper we give more detailed picture of the geometry of the above sub-
groups. : . '
We use for our investigation a representation of non-miquelian inversive plane
S(¢), introduced in our paper [2]. The points of S(g) are the points (2,y) of the
corresponding affine plane A(2,¢) and the symbol (00). The circles of S(g) are
the special ovals ¢ : D.¥(z,y)+ Az + By +C = 0 in A(2,q), where ¥(z,y) =
z°*2+y” + 2y and D, A, B,C € GF(g) — Galois field of ¢ elements, ¢ = 2¢, ¢ odd
and ¢ 2 3, and o is the unique automorphism of GF(q) satisfying z° * = 22 for all
¢ € GF(g). The point (co) is incident only with circles with D = 0. )

- The elements of the automorphism group of S(g) — AutS(q) are explicitly
given by: -

(m)wgbpsr = (aa, bﬁ)s (P, s)so:bpsr = (00),
(oo)fg‘m = (00),
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where a,b,p,s,7,k,I,m € GF(q), r # 0,k # 0, and ¢, 3 are inner automorphisms
of GF(g)-
The subgroup Sz(q) of AutS(g) is of type:

{(P:bpsra Tkﬁzm ra=f=1}
‘We shall use the following notations:
L — a set of pencils (parabolic pencils) with carrier L;
xL — a pencil (parabolic pencils) with carrier L;
¢AB _ the bundle (hyperbolic pencil) with carriers A, B;
xAB — the flock (elliptic pencil) with carriers A, B;
P — the subgroup of G = Sz(q) that fixes the point P;
TP9 — the subgroup of G = Sz(g) that fixes the set of two points P and Q.

I. SUBGROUPS WHICH FIX A POINT OF S(Q)

1) As it is shown in [2] the Frobenius group F is the stabilizer of a fixed point
P, FP = StabP. A more detailed information on the geometry of F gives:

A. F = StabP is the stabilizer of the set II”. There exists a unique pencil
#P € TP, such that the F is transitive on the pencils of the set {II” \ 7]’} and
doubly transitive on the circles of #F [3].

We call 72 the special pencil in the point P. Note that these special pencils
correspond to the special pencils of type VI.1 in Hering’s classification of Mobius
planes. ,

2) The Sylow 2-subgroup S C F is characterized geometrically by

B. SP fixes given point P and II¥, and is transitive on the pencils of the set
{11P \ xP}. It is transitive, but not doubly transitive, on the circles of = [3].

The 2-Sylow subgroup S¥ possesses an Abelian subgroup AP of order ¢ and
exponent 2. It fixes the point P and considered as a permutation group on the
points of {S(g) \ P} has ¢ orbits of length ¢. The points of each orbit are incident
with a circle of the special pencil #¥ in the point P.

. The stabilizer C of a fixed circle ¢ is a subgroup of order g(¢ — 1). Another
characterization of C is given by '

C. There exists a unique point P Z ¢ fixed by C, and CF is doubly transitive
on the point set {¢\ P}. C¥ is a subgroup of FP. We call P the special point of
the circlec.

In other words, P is the special point of the circle ¢, if and only if Stabe C
Stab P.

The subgroup C¥ also contains an Abelian subgroup AF of order ¢ and ex-
ponent 2. Consider the set M = {C7 : cPn Cf = AP}. The set of circles ¢;

corresponding to the groups (Cf form the special pencil 7§ in the point P.
Let A, B, C, D be four points incident with a circle c. If ¢o is a circle incident
with the points B and C, the pencils 72 and 7€ are determined. There exists a
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unique circle ¢; € 78, ¢; Z A, and unique circle ¢ € 7€, ¢ Z D. Then the circle
¢; determines a pencil 74 with carrier A, and the circle ¢, determines a pencil 72
with carrier D. Let ¢/ be the circle of 74, incident with D, and ¢” be the circle of
70, incident with A.

There are two possibilities for ¢/ and ¢//:

i. ¢/ coincides with ¢”;

ii. ¢/ and ¢" are distinct.

The first case corresponds to the theorem of Miquel for 4 circles tangent two
by two. In miquelian Mobius planes — M (q), only this case is realized.

The second possibility corresponds to the degenerated case of the theorem of
Miquel for 5 points and there is no nontrivial realization of it in miquelian Mobius
plane. But in non-miquelian Mobius planes S(g) it can be realized particularly.

So the following definitions are natural:

A quadruple of concircular points (4, B, C, D) in S(q) is called miguelian if
for any circle ¢g incident with the points B and C' the corresponding circles ¢/ and
¢’ coincide.

A quadruple of concircular points (4, B, C, D) in S(q) is called non-miquelian
if for any circle ¢p incident with the points B and C the corresponding circles ¢’
and ¢’ are distinct. |

We proved in [4] that

D. A quadruple of concircular points (4, B, C, D) in S(q) is miquelian if and
only if there exists. ¢ € A such that

"O{A3B$C’D}={A1‘B)C’D}

or, equivalently, if there exists an involution in which they are corresponding points.
Note that in miquelian Mobius planes M(q) there is always such involution —
the inversion which fixes the circle incident with 4, B, C, D.
E. A quadruple of concircular points (4, B, C, D) in S(g) is non-miquelian if
and only if for any ¢ € C

¢{A333C3D}# {A,B,C,D}

or, equivalently, if there is no involution in which théy are corresponding points.
Moreover, if one of the points A4, B, C, D is the special point of the circle ¢ then
the quadruple (A, B, C, D) is always non-miquelian.

dI. SUBGROUPS WITHOUT FIXED POINTS

3) The dihedral group D fixes a set of two points P and Q, i. e. it is stabilizer
of the bundle ¢P9 with carriers P, Q. There exist exactly two circles co, c§ € eF9
such that D*9 is transitive on the set of circles {€\ co, ¢} and on the set of points
{eoUct \ PUQ}. Also D is stabilizer of the flock xF9 with carriers P, Q and is
transitive on it’s circles [3]. ‘
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We call ¢q and ¢} special circles of the bundle €.

The dihedral group DF?, possesses a cyclic subgroup T? of order ¢—1. It fixes
the point P and considered as a permutation group on the points of {S(g)\ P U Q}
has g+ 1 orbits of length ¢ — 1. The points of exactly two orbits are incident with a
circle and these are the special circles of the bundle ePQ. The points of any other
orbit are not incident with a circle. |

Note that in [2], [3] and [4] we consider the problem of realization of some
configurational propositions in S(g), while here we interpret some of the results
from the point of view of the geometry of subgroups of Sz(g).

4) At least we shall list some particular but interesting results about the ge-
ometry of the cyclic group Z' in the unique finite inversive non-miquelian plane
S(8).

Since the order of Sz(8) is o(Sz(8)) = 25.5.7.13 it follows that the groups Z'
and Z" are Sylow p-subgroups of Sz(8) with p = 13 and p = 5 respectively.

An immediate consequence of the Theorems of Sylow is that the number of
Sylow p-subgroups of Sz(8) is equal to the index of the normalizer of any p-subgroup
in Sz(8). Also if A and B are Sylow p-subgroups of the group G considered as a
permutation group on the points of S(8), there exists element ¥ € G, such that if
{OA} and {OP} are the orbits of A and B respectively, then {O*}y = {O®}.

So we can consider any fixed cyclic subgroup Z' of Sz(8).

Since oF) = 26.7, F® = {r};,,} and o(Z') = 13, then

Z = {Wibp:r}‘
A sufficient condition Z' to be generated by @abpsr 18 6 = p.
P

13
In the case of S(8) — g = 22 from (pgb?,,,) = id follows

(1) 1+ [r(b+9)] +[r(b+ )’ =0.

Let z be a generator of Galois field GF(8). Then a solution of (1) is b = 2%,
s =0, r =1 and since a = p is not fixed, we put a = p = 0. We denote by Z3® this
subgroup, i. e. Z3> = (P}, s001)-

F. Z3® considered as a permutation group on the points of S(8) has five distinct
orbits ©. On the other hand, Z> considered as a permutation group on the circles
of S(8) has 40 distinct orbits w, such that each point orbit D generates exactly ten
circle orbits and every two point orbits have one circle orbit in common ([5].

Let ®' and ©" be two point orbits of Z§* and (D')y = D", where ¥ € Sz(8).
Then ¥ € Ng(Z3?). In fact for any such'y we have ($)"1ZL3 = Z;®. From here
it is easy to prove

G. There are two point orbits ©’ and D" which are not isomorphic with respect
to the group Sz(8) and any other point orbit is isomorphic either to D’ or to D”.

Every point orbit D of the group Z{> generates six circle orbits w, such that if
¢ € w then |cN®D| = 3, and four circle orbits 7, such that if ¢ € 7 then |cUD| = 4.
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H. Let w be a circle orbit generated by a point orbit D with |cND| = 3if ¢ € w.
Then there exists automorphism ¢ € Z23 such that w = {ei=(co)¢’ |i=1= 13}
and (c;, ¢;41) determine a bundle, and (c;, ¢;13) determine a pencil.

I Let 7 be a circle orbit ® with |cN D} = 4 if ¢ € 7. If consider 7 as an
incidence structure with “points” — the points of ©, “blocks” — the circles of T,
and incidence the same as in S(8), then = is a projective 2-(13, 3, 1) design. So «
is a projective plane of order 3. Since all finite projective planes of order n < 8 are
desarguesian, 7 is desarguesian. Then 7 is a desarguesian projective plane of order
3 [5].

The geometric characterization of the fact that ' and ©” are nonisomorphic
is given by:

J. Every quadruple of concircular points of the orbit D’ is miquelian. Every
two quadruples of concircular points of the orbit D’ are isomorphic.

K. Every quadruple concircular points of any orbit D" is non-miquelian.

Thus we obtain the following geometric characterization of a cyclic subgroup
Z" in S(8):

L. The quadruples of concircular points of one orbit form projective planes.
This planes are of two types with respect to S5z(8). The “lines” of the planes of the
first type are incident with miqueliai quadruples of points, and the “lines” of the
second type are incident with non-miquelian quadruples of points.
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