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FACTORIZATIONS OF THE GROUPS OF LIE TYPE
OF LIE RANK THREE OVER FIELDS OF 2 OR 3 ELEMENTS

TSANKO GENTCHEV, KEROPE TCHAKERIAN

Hanxo [ennes, Kepone Yaxspsn, PAKTOPUBAUVN 'PYIII TUTIA JIN JIUEBCROI'G
PAHTA 3 HAD IIOJIAMU M3 IBYX UJIY TPEX 3JIEMEHTOB

Hoxasan cneayommii pesynbTaT.

[Mycrs G — rpynna tuna Jlu nuesckoro palra 3 Haj monem u3 ABYX WAM Tpex olle-
menTon. [Ipeanonowum, uto G = AB, rae A u B — cobcreennnie Heabenennle NPOCTHIE
noarpynnut . Torpa MMeeT MeCTO OAHO M3 CJIELY IOLWKX:

1} G = L4(2), A L3(2), B> Ag nnu Az;

2) G = Ly(3), A L3(3), B & 5,(3);

3) G = 8s(2), A Ly(2), B Ly(8), nam A 2 Us(2), B 2 Ly(8) nm Us(3);

4G = Us(?), A=Us(2), B 55(2), {/74(3) anv Moo

5) G = Ug(3), A = Us(3), B & 55(3);

6) G= 07(3}, A= L4(3), B = U3(3), 02(3), 56(2) unm Ag, mau A G2(3), B~ 34(3),
Se(2) unm Ag.

Tsanko Gentchey, Kerope Tchekerian. FACTORIZATIONS OF THE GROUPS OF LIE TYPE
OF LIE RANK THREE OVER FIELDS OF 2 OR 3 ELEMENTS

The following result is proved.
Let G be a group of Lie type of Lie rank three over a field of 2 or 3 elements. Suppose that

G = AB, where A, B are proper non-Abelian simple subgroups of . Then one of the following
holds:

1) G = L4(2), A Lg(?), B = Ag or A7,

2) G= Lg(B}, A L3(3), B o 54(3);

3) G = Ss(2), A Ly(2), B Ly(8), or A2 Uy(2), B2 Ly(8) or Us(3);

4) G= Us(2), A= Ug(?), B o Ss(?), U4(3) or Msa;

5) G = Ug(3), A = Us(3), B = Sg(3);

6) G = 07(3), A = Ly(3), B = Us(3), G2(3), S¢(2) or Ag, or A = G2(3), B & 54(3), Se(2)
or Ag.
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1. INTRODUCTION

The factorizations (into the product of two simple groups) of all finite groups
of Lie type of Lie rank one or two are known (see [3]). In this paper we prove the
following

Theorem. Let G be a (finite, simple) group of Lie type of Lie rank three
over a field of 2 or 3 elements. Suppose that G = AB, where A, B are proper
non-Abelian simple subgroups of G. Then one of the following holds:

1) G = L4(2), A= La(?), B= As or A'r;

2) G = L4(3), A= Lg(g), B = 54(3),

3) G = Se(2), A= L4(2), B= Ly(8), or A= Us(2), B = Ly(8) or Us(3);

4) G = Us(?), A= Us(?), B = 56(2), U4(3) or ]Wzg;

5) G = Ug(3), A= U5(3), B= 5{3(3);

6) G = 07(3), A = L4(3), B = Us(3), G2(3), Ss(2) or Ag, or A = Go(3),
B 2= 54(3), Ss(2) or As.

Our notation is standard (see [2]).

2. PROOFS

The groups of Lie type of Lie rank three over a field of 2 or 3 elements are
54(2), L4(3), 55(2), 56(3), U@(Q), Us(?)), U7(2), U7(3), O?{?)), Og(?), Og(g) The
factorizations of L4(2), L4(3), Ss(2), and O3 (2) are known (see [1], [4]); this yields
1)-3) of the theorem.

Let G = S5(3). As 3° | |G|, we can assume that 3° | |A]. However, S(3) has
no proper simple subgroup of such an order ([2]).

If G = Ur(2), we can assume that 43 | |4| (and |4 | |G|). This leads to
A = L5(43). Then |G : A] = 2°.37.5 divides |B| (and |B| | |G|). However, there is
no such simple group B.

If G = U+(3), there is no simple group A with 547 | {A] and [A] ] |G].

Let G = Og(3). Assuming that 41 | |A|, we have A 2 L,(41) or L»(81). Then
|B] is divisible by 27.3'1.13 or 28.33.7.13, respectively. This yields 4 = L.(81),
B = 56(3) or O7(3), and |AN B| = 120. But Ly(81) has no subgroup of order 120.

Now we treat the remaining groups Us(2), Us(3), and O7(3).

G = Us(2) (order 21%.3%.5.7.11). We use the character table and the maximal
subgroup list of G [2]. The proper simple subgroups of G are As, Ags, A7, As,
Lg(?), L3(8>, Lz(l}.), L3(4), U3(3), U4(2), U4(3), Us(?.;), 55(2), Mgg. This leads to
the following possibilities: A = S5(2), B = Ma, and 4 = Us(2), B = As, Us(3),
L3(4), Ua(3), Se(2), or Mas. In the first case |4 N B| = 70, hence AN B has an
element of order 35 which is impossible in Ms, (as well as in Sg(2)).

Thus A = Us(2). If B = Ag or L3(4), then |[AN B| = 30, hence AN B has an
element of order 15. This contradicts the structure of L3(4),s0 B = As. Now ANB
contains an element ¢ from the class (3A) of G, as the remaining elements of order
3 of G do not commute with elements of order 5. An inspection of the centralizers
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of those elements of order 3 in A and B which commute with elements of order 5
implies C4(t) = Cg(t), |Cp(t)] = 180. Hence |AN B| 2 180, a contradiction.

Let B = U3(3). Then |AN B| = 9. Any involution in Us(3) is a square (of an
element of order 4) and the only involutions of G with this property are those in
the classes (24) and (2B). Thus B contains an element from (24) or (2B). On the
other hand, G has a single class of Us(2) subgroups and the permutation character
of G on the cosets of such a subgroup implies that it contains involutions from both
classes (24) and (2B). It follows that 2 J |A N Bj, a contradiction.

Thus A 2 Us(2), B = S6(2), Us(3), or Mag and we reach 4) of the theorem.

The existence of the first factorization in 4) is known [4]. Next, take subgroups
A =2 Us(2) and B 2 My of G such that 11 ] [ANB|. In Msq, every proper subgroup
of order divisible by 11 is contained in a (maximal) subgroup isomorphic to Ly(11).
Hence [AN B} £ |L2(11)| which produces |AB| 2 |G|, i.e. G = AB thus proving
the third factorization in 4).

Lastly, let A = Us(2), B = Us(3) be subgroups of G and C = ANB. We
can assume that 3° L |C|, as B contains a Sylow 3-subgroup of G. Further,
IC| = |A||B|/IG| = 22.355 and |C| divides (|A],|B]) = 27.3°.5. Now the sub-
group structure of U4(3) implies that C is contained in a (maximal) subgroup D
of B which is isomorphic to a split extension of Eg; by Ag. Then |D : C| =3 or 6.
As D obviously has no subgroup of index 3, it follows that [C| = 22.3%.5, whence
G = AB and the second factorization in 4) is proved.

G = Ug(3) (order 2'2.313.5.72.13.61). Checking the known simple groups A
with 61 | |A] and |A| | |G|, we conclude that A = Us(3). Then |G : A | |B]
and |B| | |G| imply B 2 L3(9), Ss(3), G2(3), or O¢(3). However, G has no G3(3)
subgroups and hence (as 07(3) contains G2(3)) no O7(3) subgroups. Indeed, if
Us(3) contains G2(3) then G2(3) must embed into SUs(9), as G2(3) has a Schur
multiplier of odd order. But G3(3) has 2-rank three and a single class of involutions,
1. e. it has an E3 subgroup all of whose involutions are conjugate. This is impossible
in SLe(9) by [4], Lemma 4.3. Thus B 2 L3(9) or Se(3). Suppose B = L3(9). Each
of the groups Us(3) and L3(9) has GLy(9) subgroups, so has an SL3(9) subgroup
centralized by some element of order 8. On the other hand, as shown below, GG
has a single conjugacy class of SLy(9) subgroups with this property. It follows that
ANB contains an SL2(9) subgroup which contradicts (by order considerations) the
assumption G = AB. Thus A = Us(3), B = Se(3) and we reach 5) of the theorem;
the factorization is known {4].

Now we proceed to prove the claim that G has exactly one conjugacy class of
SL,(9) subgroups centralized by elements of order 8. We use the bar convention
to denote homomorphic images of elements and subgroups of

SUs(9) = {.zr € GLs(9) | 2z =E, detz = 1}

in G = SUg(9)/{—E); here, E is the identity matrix and z*' denotes the transpose
of the matrix * whose entries are the cubes of the entries of a matrix z. Let w be
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a generator of the multiplicati\}é group of GF(9), w? =w + 1, and

, w? 0 —w! 1 0

: w o —w 0 0 1

I'= —w? ! Tr= 1 0 0 w
—w? 0 1 w0

I X,Y €GLy(9) and X = T-1YT then X*'X = E ifand only if Y* IY = Y. Let

(U
z= (T ( U*)T ), where U = (_{‘?..1 w{'il).
E

Then Z is a representative of the single conjugacy class of elements of order 5in G.
Furthermore, C¢(z) = C, where

k
a (UV .
S

S*tS:E, detS':wgk},

1<k <80,S5€GL(Y9),

2
V= ( _11 i‘“’_l ) All the elements ¥ of order 8 in Cg(Z) are given by

1 —
y”‘(w S)a W=T"! v T, =1,30,0r7,

W

= +1 +w? +1 or +uw?
- Fl/’ +w? /) +1 ! Fw? '

An appropriate conjugation in Cg(Z) implies that every cyclic subgroup of order 8
of C¢(Z) is conjugate to (§,) or {¥,), where

|14 54
Y1 = +1 s Y2 = ﬁ:wg .
F1 +w?

Next, Cg(y;) = C1 and Cg(3,) = Cz, where

2 f A 1 A
G ) (Pl )
a ’ a

a-laz -6—1[32

A€GLy9),A=detA, acGF(9),a*=1},
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A, B € GLx(9),

()

A = det 4, B*iB:E, detB:Az}.

Hence |Cg(7,)] = 2°.32.5, |Co(7,)! = 2°.3%.5. Let

A Cor )

Then L = L = SL2(9) and L is a normal subgroup of both C(7,), Ce(¥,). ¥ L;
is another SL,(9) subgroup in C(7;) then L N L; is a proper normal subgroup of
L; of order at least 23.32~% (i = 1,2) which is, of course, impossible. Thus T is the
unique SL,(9) subgroup in each of Cg(¥,) and Cq(7,).

Now let H 2 SL4(9) be an arbitrary subgroup of G centralized by some element
y of order 8. We can assume, up to conjugacy, that Z € H whence § € Cg(Z). Then
{¥) is conjugate to {F;) or (¥,), so H is conjugate to an SL(9) subgroup of C(¥;)
or Cg(¥,), i.e. H is conjugate to the subgroup L. This proves the claim.

G = 07(3) (order 2°.3°.5.7.13). We use the information in [2]. The proper
simple subgroups of G are As, As, A7, As, Ao, L2(7), L2(8), L3(13), La(3), L4(3),
Us(3), Sa(3), G2(3), and Se(2). This leads exactly to the possibilities listed in 6)
of the theorem.

Now we proceed to prove the existence of these seven factorizations.

Let A = L4(3), B = G3(3) be subgroups of G. We can assume that 13 | [ANB|.
Now AN B is a proper subgroup of both A, B of order at least 24.33.13. The
subgroup structure of L4(3) implies that AN B is contained in a subgroup of A
isomorphic to a split extension of E37 by L3(3) while the structure of G2(3) implies
that AN B is contained in a subgroup of B isomorphic to a split extension of Lz(3)
by Cy. It follows that AN B = L3(3). This produces G = AB.

Furthermore, it is known that L4(3) = L3(3)S4(3) (see [4]). As L4(3) has
a single conjugacy class of L3(3) subgroups, it follows that there is a subgroup
C = S4(3) of A such that A = (ANB)C. Then |(ANB)NC| =24,1.e. |[BNC| =24
which produces G = BC.

Similarly, it is known that G2(3) = L3(3)Us(3) (see [4]). As G2(3) has two
conjugacy classes of L3(3) subgroups which are interchanged by an outer auto-
morphism of G5(3), it follows that there is a subgroup D = Us(3) of B such that
B = (AN B)D. This yields |ANn D] = 8 whence G = AD.

Next, let F = S¢(2) be a subgroup of G. The permutation character of G on
the cosets of F' shows that the three conjugacy classes of elements of order 3 of F
are contained in three distinct conjugacy classes of G. Hence any two elements of
order 3 of F' which are conjugate in G are conjugate also in F.

Now [ANF|divides (|Al,{F]) = 27.3%.5. Suppose that 9 { |ANF|. The relevant
permutation characters imply that the only common nonidentity 3-elements of A

Ae SL2(9)}.

87



and F are from the class (3B) of G. Then AN F contains an Ey subgroup all
of whose nonidentity elements are from (3B) and hence (by the above paragraph)
are conjugate in F'. However, Sg(2) has no such Ey subgroup (by the irreducible
character of degree 7 of Ss(2)). Thus 94|AN F| whence |ANF} | 27.3.5. This yields
G = AF.

Similarly, we can choose subgroups B 2 G2(3) and F 2¢ Sg(2) of G such that
the only common nonidentity 3-elements of B and F' are from the class (3F} of G.
Then (just as above) 94|BNF|. As [BNF||25.3%.7, it follows that [BNF| | 26.3.7.
This yields G = BF.

The group G has two conjugacy classes of subgroups H = Ay. Using various
arguments, it is not difficult to determine the class structure of H in G for elements
of order 2 and 3 (notation for the classes of H is as in [2], p. 37):

Classin H (24)Y (2BY (34) (3B 3cy
Classin G (2B) (2C) (3B) (3D)or (3E) (3F).

Now let A =2 L4(3), H = Ag be subgroups of G. Then |AN H| 2 2*.3.5 and
|AN H| I 26.3%.5. The above paragraph and the permutation character of G on A
imply that the only common elements of order 3 of A and H are from the class
(3B). Suppose that 9 | |AN H|. As the elements of (3B) are not cubes in G, it
follows that A N H contains an Eg subgroup all of whose nonidentity elements are
from (3B). This is, however, impossible, as H has no Fy subgroup with nonidentity
elements from the class (34)’ only. Thus |[AN H| | 26.3.5. The subgroup structure
of Ag implies that |AN H| = 2%.3.5 or 2°.3.5. In the latter case, AN H is contained
in a subgroup of H isomorphic to a split extension of A5 x A4 by Cs and then it
is easy to see that A M H must intersect this As x A4 in an As X E4 subgroup.
However, this contradicts the structure of A as the elements of order 5 in L4(3) are
not centralized by Ej4 subgroups. Thus |A N H| = 2%.3.5 whence G = AH.

Lastly, we can choose subgroups B = G3(3) and H = Ag of G such that the
only common elements of order 3 of B and H are from the class (3F) of . Then
(as in the above paragraph) 94|BN H{, as H has no Ey subgroup with nonidentity
elements from the class (3C) only. Further, all the involutions of B are from the
class (2C) while H has no subgroup of order 16 containing involutions from the
class (2B)' only (by the irreducible character of Ag of degree 8). Hence 164{BN HJ.
It follows that |B N H| ] 23.3.7 which leads to G = BH.

This completes the proof of the theorem.
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