TOOUIIHUK HA COPUNCKUA YHUBEPCUTET ,CB. KJIIMMEHT OXPUIACKH*
SPAKYIATET IO MATEMATUKA U HHPOPMATHUKA

Kuura 1 — MartemaTura
Tom 85, 1991

ANNUAIRE DE L’UNIVERSITE DE SOFIA ,ST. KLIMENT OHRIDSKI“

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Livre 1 — Mathématiques
Tome 85, 1991

CLIP++: AN OBJECT-ORIENTED EXTENSION
OF A RELATIONAL DBMS

PAVEL AZALOV, VENTSISLAV DIMITROV

Masea Azance, Benyucass Jumumpos. CLIPTT: OB BEKTHO-OPUEHTUPOBAHHOE
PACUIMPEHUE ONHOU PEJALVOHHONW CYBA

B nacToameli pabore npexmctasinena cuctema Clipt*, xoropas aBngerca o6beKTHO-
opueHTUpPOBaHHKIM pacmupenuem penauuonusoir CYBI Clipper 5.0. Cliptt mononuser
OINHY M3 CaMBIX pacnpocTpaHeHHMX penanunonHbix CYBIl 06bekTHO-0pPUEeRTHPOBAHHBIMH
cpeacreamu. Oxa o6naKaeT OCHOBHEIMM XapPAKTEPMCTUKAMMU OO0 LEXTHO-OPUEHTHUPOBAHHEIX
CHCTEM: MOMHO ONPEAEAThL KAACCH M 0BeKTH; 0becneunBalOTCA HepapXusa KIaccos, Hac-
JIEACTBEHHOCTE M monuMopouam. Pensnuonnwnie sosmoxuoctn CYBJ Clipper 5.0 ucnons-
3y10Tca YToBH noanepuBaTh ycroiunBocTbh 0b6bekTOB.

Pavel Azalov, Ventsislav Dimitrov. CLIPT+: AN OBJECT-ORIENTED EXTENSION OF A
RELATIONAL DBMS

In this paper the Clipt+ system is presented. It is an object-oriented extension of the
Relational DBMS Clipper 5.0. Clip* tries to upgrade one of the most widely spread Relational
DBMS with some object-oriented features. It has the basic characteristics of an object-oriented
system: classes and objects can be defined; class hierarchy, inheritance and polimorphism are
supported. On the other hand, the relational features of the DBMS Clipper 5. 0 are used to
achieve the object persistency.

1. INTRODUCTION

The wide usage of the relational DBMS in the development of computer ap-
plication systems is due mainly to the simplicity of the relational model. But

107

the relational DBMS cannot directly satisfy the requirements of the new applica-
tions in the fields like, for example, the office automation, computer-aided design,
and knowledge based systems. These untraditional applications set some serious
requirements:

— possibilities for direct modelling of the objects of the application area; the
relations of the relational model are not always suitable for this;

—— the uniform representation of all relations in the relational database suggests
a single level hierarchy; the hierarchy is a typical feature of the modeled areas;

— the semantic modelling features and knowledge representation capabilities
are insufficient.

Some approaches for solving these problems can be found in different publica-
tions [Gar 89], [Ong 84], [Obs 86], [Unl 90]. In one of the approaches the relation
model 1s replaced by other models, like: entity-relationship model, semantic data
models or object-oriented data models. In the first one the relational model is
expanded introducing complex objects and abstract data types. One object-oriented
extension of the relational database system Clipper 5.0 is represented in this paper.

2. PRELIMINARIES
2.1. OBJECT-ORIENTED CONCEPTS

The object is a basic rotion in the object-oriented paradigm. The object
unites both state and behavior of the modeled entities in one. The state of an
object is characterized with the values of its attributes. The set of operations
called methods, applicable to these attributes, characterizes the objects, behavior.
Objects, sharing the same attributes and methods, are grouped into a class and
are called instances of that class. The class describes the attributes of its instances
and the operations (methods) applicable to them. The methods (their realization),
as well as the attributes, however, are not visible from outside the object. The
objects can communicate with one another only through messages. These messages
are requests for an object to change its state, to return a value, or to perform some
sequence of actions. The set of messages to which an object responds constitutes
the public interface of an object. Each object responds to a received message by
executing a method.

The notion of a class is different from that of a type. Its specification is the
same as that of a type but it is more a runtime notion.

Inheritance and polymorphism are key concepts of an object-oriented system.
The inheritance allows us to specify or to implement only the extensions between
the existing classes and the new ones. The new class “inherits” all properties of the
old one — its superclass. The polymorphism allows us to send the same message
to different objects and have each object respond in a way appropriate to the kind
of object.

108

2.2. THE SYSTEM CLIPPER 5.0

One of the most famous and worldwide spread relational systems is dBASE. On
the basic concepts of dBASE a number of other systems appeared and developed
successfully:

— interpreters (dBASE, FoxBase);

— compilers (Clipper);

— translators from the dBASE programming language to other programming
languages (dbx3:translator to C);

—_libraries for dBASE files manipulation (SoftC: C-library).

Additionally, almost all Relational DBMS support dBASE file compatibility
and can manipulate dBASE file format.

The Clipper system takes a central place in the development of the dBASE-like
systems. The latest release Clipper 5.0 has some important new features to which
we should pay more attention:

— a preprocessor allowing command definition and redefinition;

— a new data type: code block — executable piece of data, which differs from
the macros by its compile-time translation;

— four predefined classes: ERROR, GET, TBROWSE, TBCOLUMN.

In Clipper 5.0 the definition of new classes is not allowed. Therefore, there
is no inheritance or polymorphism. The attributes of an object can be directly
accessed and their values changed, so there is no encapsulation either.

A short description of an object-oriented extension of Clipper 5.0, called Clip*T,
follows in this paper.

2.3. OVERVIEW OF THE cLIptt

The Clipt* system combines the basic features of the object-oriented and the
database managing systems. Some of them are:

— ¢lass and object definition;

— sub-class definition with inheritance;
— object encapsulation;

— polymorphism;

— persistence.

The Clip** system is entirely build using only the Clipper 5.0 features.The
existing preprocessor is used essentially. The object-oriented features of Cliptt are
implemented as user-defined commands and a set of functions.

3. CLIPT* OBJECT MODEL

The four principal concepts of the Clipt+ object model are: object, message,
class and inheritance.

109

3.1. CLASS DEFINITION

A new class is defined using a command with the following general format:
DEFINE CLASS <class_name> : <parent_class> ;
[<attr> {, <attr> } : <type>]

In curly brackets (“{”, “}”) are enclosed expressions that can appear 0,1 or
more times and in square ones (“[”, “]”), expressions that appear at least once.

The allowable types are: NUMBER (<digits> [,<decimals>]), CHARACTER
(<lemgth>), DATE, MEMO, OBJECT (<of_class>). Let us note that the type
of an object field can be another object of any already defined class. Thus an
object hierarchy can be build. The class methods are defined as attributes of
type FUNCTION (<para#>) or INITIALIZER (<para#>). The last one represents
a constructor method. The appending and removal of attributes are performed
respectively by the commands:

- ADD TO CLASS <class_name> ATTRIBUTES;
[<attr> {, <attr> 1} : <type>]

DELETE FRCM CLASS <class_name> ATTRIBUTES <attr> {, <attr> }

The removal of a class is possible if it has no subclasses and is not nested in
other class definitions. The command is:

DELETE CLASS <class_name> {, <class_name> }

A subclass is defined using the class definition command. Each class can have
many subclasses but only one superclass. There is only one predefined root-class
called OBJECT. Example:

DEFIRE CLASS location : object ;

x, y : NUMERIC (2) ;
init : initializer (2) ;
move : function (2)
DEFINE CLASS box : location ;
h, w : NUMERIC (2) ;
typ : CHARACTER (1) ;
clear: function (0)
DEFINE CLASS string : location ;
s : character (24)
In the above example three classes are defined, building the following hierarchy:

OBJECT
LOCATION
BOX STRING

110

3.2. OBJECT DECLARATION

Each object is an instance of an existing class. Its declaration is similar to the
Clipper 5.0 variable declaration. The object declaration command has the following
format: |

| PRIVATE | PUBLIC | DECLARE | LOCAL : <class_name> ;

<obj_name>(<param_list>) {, <obj_name>(<param_list>) }

An object can be declared with no round brackets. The <param_list> may
be empty. Here are some examples:

:location L1, L2 (4, 4), L3 ()

PUBLIC :box B1(4, 4, 10, 10, ’-?)

When no initializing parameter list is passed during an object declaration, no
constructor (initializer) is invoked for that object (ex. L1}. If a parameter list is
passed (even if it is empty), Clip*™ tries to initialize the object calling a constructor-
method of that class. If there are several constructors defined in one and the same
class, Clip** selects that one which expects number of parameters, closest to the
number of the parameters passed, but not less if possible. For example, if the BOX
class definition has three constructors INIT1, INIT3, INIT6, expecting 1, 3 and
6 parameters respectively, INIT3 will be selected. The constructor is a method
designed to initialize the object at declaration time. If a class contains nested
classes in its definition, the best place for initializing the nested objects is in the
constructor-method.

3.3. METHOD DEFINITION

The method is a regular Clipper 5.0 function. When a method is defined, its
name is preceded by the class name separated with colon (“:”). For example:

FUNCTION LOCATION:MOVE(X, Y)

..... <method body>

RETURN <value>

To compile a method and make the late binding possible, Clip™ contains a
component called pre-preprocessor. It creates preprocessor directives converting
the methods into regular Clipper 5.0 functions. The pre-preprocessor gives the
methods new names, described in the _C_TABLE_ structure (explained later) as
internal method identifiers. During the late binding from the object class and the
sent message, the internal identifier is generated and the real compiled function with
that name is called. For example, the method name LOCATION:MOVE is translated
to an identifier, which looks like F00100202. When a message MOVE (3, 4) is
sent to an object of class LOCATION, the F00100202 identifier is generated and the
F00100202 function is called.

The attributes of an object are accessible only through its methods. When
describing a method body, the class attributes can be accessed. In order to distin-
guish the attributes from the other variables and objects, their names are preceded
by a dot (“.”). All the methods of the same class are called in the same way. For
example:

111

FUNCTION LOCATIOK:INIT(X, Y)
.X := X // .X and .Y are object attributes of class LOCATION;

.Y := Y // X and Y are the parameters passed

RETURN Nil

FUNCTION LOCATION:MOVE(X, Y)

. init(x, Y) // .Init is a method of the same LOCATION class;
RETURN Nil //if used Init(X,Y) function INIT will be called

If an attribute is a nested object, a message can be sent using a dot in front
of its name (as when accessing attributes) and a colon between its name and the
message. The universal way s to assign the object-attribute to a local variable of
the same class, work with it as with any object, and then assign it back to the
object-attribute. In this way nested objects with unlimited depth can be handled.
For example: ,

FUNCTION CLASS1:METHOD1

PRIVATE :location L1(1, 2)

i

1

.LDC := :Li // LOC is a nested object-attribute of class
.LOC:Move(4, 4) // LOCATION to which message Move is sent.
:L1 := .LCC // This shows the processing of a nested
:L1:Move(6, 6) // object-attribute using a temporary

.LOC := :L1 // private object :L1

RETURN Nil

Looking back to the object declaration, let us note that the constructor call-
ing is nothing more than an automatic sending of one of the messages marked as
initializing.

4. OBJECT MANAGEMENT IN CLIp*+

4

4.1. CLASSES AND ATTRIBUTES DESCRIPTION

One of the basic requirements to a database system is the persistence. For
this reason we must have tools to save objects in secondary storage. It is even
more necessary the class description to be persistent. Therefore, Clip*™™ maintains
two database files: @CLASSES.DBF and @ATTRIBS.DBF. The @CLASSES.DBF contains
the class definitions and the relations of classes, while in the ®ATTRIBS.DBF the
attributes and methods are described. For faster access to these descriptions the file
QCLASSES.DBF is indexed on its attributes CLASS_NAME, CLASS_ID, and PARENT_ID.
‘The @ATTRIBS.DBF file is indexed on CLASS_ID to link the attributes and methods
to their class.

The relational schemas of these files are the following:

112

Attr. Name Type Length Decimals

QCLASSES.DBF: CLASS_ID Character 3
CLASS_KAME Character 11
PARENT_ID Character 3
CLASS_ATTR Numeric 3 0
QATTRIBS.DBF: CLASS_ID Character 3
ATTR_NAME Character 15
ATTR_TYPE Character 1
ATTR_LEN Numeric 3 0
ATTR_DEC Character 3
1

ATTR_MODE = Character
Their contents are, for example, the following:

QCLASSES .DBF:

CLASS_ID CLASS NAME PARENT ID CLASS ATTR
000 OBJECT 0
001 LOCATION 000 4
002 BOX 001 6
003 STRING 001 6
QATTRIBS.DBF:
CLASS_ID ATTR NAME ATTRTYPE ATTRULEN ATTR_DEC
001 X N 2 0
001 Y N 2 0
- 001 IRIT 1 2 001
- 001 MOVE ¥ 2 002
—> 002 H N 2 0
002 L} N 2 0
002 TYP C 9 0
002 INIT I 5 001
002 MOVE F 2 002
002 CLEAR F 0 003

4.2. OBJECTS IN MEMORY

For a proper object manipulation Clip™* supports a memory structure
(_C_TABLE_) describing the classes used. In the terms of Clipper 5.0 it is a 2-
dimensional array, but some of its elements are also 2-dimensional arrays. It is
possible to read all class definitions into memory. If this is not done, when an
attempt is made to use a class, its description is added to the structure. This
slows down the system when a class is accessed for the first time, but as only the

113

necessary class descriptions are loaded into _C_TABLE_ , the look-up in it is faster
and less memory is used.
The _C_TABLE_ structure describing the classes in memory is the following:

ClassNAME ClassID ClassMETHOD ClassDATA ClassPID

001

I ¥ i] 1 ¥
Type: |<char-11> |<char-3> |<array[3,xI>|<array[3,x]>|<char-3> |
oo {) } i]
Exam: | LOCATION | 001 | * | * | o000 |
t + —/ { \— 1
([E X R Y N L X , \
/ \
Mtd.NAME Mtd.ID Para# DataNAME DataTYPE Orig.CID
i ¥ [L i i I 4
Type: |<char-15>[<char-9> |<num-2>] | <char- 15> | <char-1>|<char-3>|
i | !] I
§ 1 i i
Exam: | Move |F00100202] 2 |
! i !
; J

i Vo

by s— s
[—— —-—— -,

LALAL IR B I O W AT W - - L N L

- ClassPID — the CLASS Parent IDentifier;

Orig.CID — the Class IDentifier, where the attribute is originally defined (it can be
inherited);

Mtd.ID — internal (memory only) Method IDentifier; consists of: method type ("F’unction
or 'I'nitializer), class identifier (3 characters), method identifier (3 characters) and number of
expected parameters (2 characters);

DataTYPE — Attribute TYPE: C, N, D, L, M, O: nnn, where nnn is the identifier of the class
of which the nested object is.

When a new class description must be loaded into _C_TABLE_ , the following
actions take place. First, the parent class (if any) is determined and if necessary
loaded recursively into memory. Second, its description is appended (doubled) as
last element of the structure. This ensures the inheritance of all its attributes and
methods. At the end, the descriptions of the elements, defined in the class itself,
are read and if they overlap existing elements, the new definitions replace the old
ones (ensuring the polymorphism), else they are added to the sub-arrays describing
the methods or the attributes.

4.3. MEMORY REPRESENTATION OF OBJECT VALUES

The objects themselves are represented in memory as arrays with one element
more than the number of their attributes. In Clipper 5.0 each array element can be
of different type, even another array. Using this feature, the value of each attribute
of an object is kept in a certain element of the array representing that object. The
array takes the name of the object and is directly accessed using it. The attribute
name descriptions and their types are kept in the _C_TABLE_, from where the access
to the corresponding attribute values takes place. The last element of the array is
the object class name.

114

The access to a specific attribute of an object is done as follows. First, using the
class name (the last array element) the class description in _C_TABLE_ is located.
Then in the attribute description sub-array the specific attribute name is found. Its
index is the index of the element in the array, where the attribute value is stored.

— L2 _C_TABLE_

{] l 1 ! !
i 1 i) 1 i L }
LES B B I f——
p————{ p>i.|LOCATION|0O1||INIT]...}2} |}~ 1.|X|N]OO1]|00O|
2. | |} | | |IMovE|...]2|| k=>2.]Y|N|OO1|] |
\ p—l | I Ee® Y i B
\|LOCATION & | — —rt —

| SE——— /

\ /

To ensure the encapsulation of the objects, their values can be accessed only

through the methods of the corresponding class.
The access of the methods is absolutely identical: from the class name (last

array element) and the method name the appropriate function is called. This
automatically implements the late binding and the polymorphism.

4.4. MESSAGE SENDING

To distinguish the objects from the memory variables, their names are preceded
by a colon (“:”). For example:

:L2:Move(10,10) // a message Move(10,10) to the object L2

:Lt := L2 // assigns object L2 to L1 (“:”) in front of

// the second object are not compulsory.

The construction :<identifier> is recognizes by the preprocessor and the
above example is translated to the functions:

_0Obj_MExec_(L2, "Move", 10, 10)

_Obj_Assign_(L1, L2)

The format of sending messages to objects is the following:

: <object_name>: <method_name>{(<param_list>)}

:<object_namel> {:}= {:}<object_name2>

Here the curly brackets designate that the expression within them can appear
pot more than once. The <param_list> may be empty.

The message sending to a nested attribute-object is similar but the object
name is quoted as an attribute (details in 3.3.):

.<obj_attr>:<method_name>{(<parameter_list>)}

When passing an object as a function argument the colon is not compulsory:

Functi(L1) // equivalent to funct1(:L1)

:02:Method2(L1) // equivalent to :02:Method2(:L1)

oooooo

115

4.5. OBJECTS INTO RELATIONS

When defining a new class Clip™™ creates a database file named with the first
8 characters of the class name and with the following attributes: one attribute for
each class attribute with the same names and one additional attribute called _0ID_
(object identifier). The object identifier is generated by Clip*+ upon saving a new
object in secondary storage and has unique value for the whole system. It is in the
range from 1 to 36° — 1 = 46655 (ZZZ as a 36-decimal number). Therefore, up to
46 655 objects can be saved in secondary storage at the same time. The increase
of that number is only a technical problem.

The objects of each class are saved in as many files as the number of the
superclasses of the class plus one for the class itseif is. This may seems rather
clumsy but gives some benefits, for example: easy overlapping of attributes, easy
transformation of an object from one class to another, much easier and faster look-
up, objects of all subclasses of a class can be treated as pertaining to the parent
class. The last one means that if the X-coordinate of all LOCATION objects is
increased by one, the same will happen to all objects of the subclasses BOX and
STRING. Looking back to the LOCATION and BOX classes, the following relational
schemas will be created:

LOCATION (_0ID_, X, Y)

BOX (_0ID_, H, W, TYP)

Note: The root class has at least _0ID_ attribute.

Each object in secondary storage is decomposed into its attributes which are
saved in the file corresponding to the class where they are originally defined. For
example, the object B of class BOX: B(X=4, Y=5, H=10, W=20, TYP =22}, goes
nto 3 files:

OBJECT (_0ID_) LOCATION (_OID_, X, Y) BOX (_0ID_, H, W, TYP)

Rt —w L — W — O S -~ Moo - " 7o - . S — S T W i S S~ - T ——— W — T W oo — {1 SB T~ -~ -~ v— — —

ooooooooooooooooooooooooooo

Ozr Ozr 4 & Ozr 10 20 el
When an object is read from secondary storage into memory, first a selection
of _OID_ (it is unique) is performed and then a join on _0ID_ of all relations is
build of. The resulting tuple is put into the object structure (array) together with
the class name as last element.

-0ID_. XY H W TYP

OBJECT Ozr
LOCATIONY OQOzr 4 5
BGX Ozr 16 20 =2

An object is saved in secondary storage in much the same way: it is decomposed
into tuples (of attributes defined in the same class together with an object identifier)
and saved in the corresponding file. Let B is the above object of class BOX. It is
saved in the following way: each attribute is checked, where it is originally defined,
and using the class name the database file is determined (see the following scheme).

116

OBJECT.DBF

¢_oto_) eeeevs _C_TABLE_
oz —t+— a +—|
joer] 1 |
LOCAT 10N.DBF <---T1ON<-001} | INIT]...|2]| {x |njoo1] l000|
(om_, X,) | | | |{MovE|...|2]] [y |8joo1] | |
............. I\ =] O W B B
Ozr 4 5 P—t+—\ : —
U A b
P v
At } \—t+—
S I N e d —rr V| |
BOX.DBF<----=~-~- BOX <-002| [INIT{...|5]||—[X [NjoOt]|_/ |0O1]|
(o1o_, K, W, TYPy | | | (MovE| ... {2|[{g—IY {Njoot]s | |
----------------- L1 leR].ofolHf=in INjoo2|_ | |
ozr 1020 *-+ || [IHelv I¥oo2iN
I HiielTypinjoo2i_\ | |
AR mip—= s 1 |
—+—\t HilH ——
..... o\ i1/
Hil i
B i i
) I e—
LOCATION(X) S | 4 | < 1|11] N save object ||
LOCAT LOR(Y) S| 5{ -S{{i 1 i
BOX(H)< | 10]< J|| Sp———
BOX(W)< | 20]< I | |
BOX(TYP) [*-1]< — | |
N I |
OBJECT(_DID_) <oy iBOX}w l
LOCATION(_OID)<= L— |

OBJECT(”OID“)(—-L—-—-—- object 1D generation SR

4.6. LOCATING OBJECTS

The location of objects in secondary storage by the values of their attributes
uses one specific feature of Clipper 5.0: each element of an array can be of any type
including code block. So to solve the contradiction between the object encapsula-
tion and the direct access of the data in the relations, the notion functional object
is introduced in Clipt*. A functional object has as many attributes as the corre-
sponding object and it is declared in the same way, but instead of values contains
code blocks that are Boolean expressions on the corresponding attributes. Thus
the requirement for object encapsulation is fulfilled and at the same time an object

117

can be located by the values of its attributes. The functional object is used in the
object locating commands. For each object in the secondary storage the Boolean
expressions are calculated and if they are true, the desired object is found.

In the subsequent command formats the curly brackets designate that the
expression can appear not more than once.

The object locating command is :

LOCATE OBJECT FOR <fobjfor> WHILE <fobjwhile>

{NEXT <next>} {<rest:REST>}

Example:

Private :LOCATION L4({!x| x>5 .and. x<10}, {lwl w # z})

LOCATE OBJECT FOR :L4

The argument of the code block is always the corresponding attribute, no
matter what its name is. In the above example the ’x? argument represents the *X’
attribute and the ’w’ argument represents the 'Y’ attribute, because the Boolean
expression occupies the 'Y’ attribute place. The ’z* is a2 memory variable.

Objects are added in the database with the command:

APPEND {OBJECT} :<obj>

Objects replace other objecis with the commands:

REPLACE {CURRERT} {0OBJECT} WITH 1<obj>

REPLACE OBJECT <oid> WITH :<obj>

In the first format the object replaces the “current” object. (Clip*+ supports
“current” object and “default” class. They are usually the last accessed object and
class.) In the second format an object with a definite identifier is replaced.

The object is read into memory using a function:

<object_name> := ReadObject({ <object_identifier> })

A “blank” object is added with the commands:

APPEND {BLANK} OBJECT // of current class

APPEND {BLANK} OBJECT OF CLASS <class>

Skipping < n > objects from the default class is done by the command:

SKIP OBJECT A{<n>}

The current object can be deleted using:

DELETE OBJECT

LOCATE in combination with other commands can perform group operations.
For example:

Do While ! Eof ()

LOCATE OBJECT FOR :L4 REST
DELETE OBJECT

EndDo
deletes all the objects matching the functional object :L4.

The above database commands can be made object-oriented. One approach is
to add some predefined methods to the root class OBJECT. Let us note that the
object itself can be accessed from within its methods by the name ”_a_” (in most
00 languages it is “self” or “this”). The only thing these methods would do is to
execute the corresponding database command. For example:

118

: <obj>: Append () <=> APPEND [OBJECT] :<obj>

: <obj>:Replace(<oid>) <=> REPLACE OBJECT <cid > WITH :<obj>

:<obj>:Read({<oid>}) <=> <obj> := ReadObj ect{ {<oid>})

Another approach for object-orienting of the commards s to introduce a special
class (dbaseclass) with an instance (dbaseobj). The methods of that class can
implement the database commands by just executing them. For example:

:dbasecbj : Append(<obj>) <=> APPEND [CBJECT! :<obj>
:dbasaeobj:Skip({<a>1}) <=> SKIP OBJECT {<=n>}
:dbaseodj :Delete() <=> DELETE OBJECT

This is a more universal approach, but more complicated. Both of them can
be easily implemented using the Clip*+ features.

REFERENCES

[Gar 8] Gardarin, G.,, et al. Managing Complex Objects in an Extensibie Relational
DBMS. — Proc. of the 15th Intermational Conf. on VLDB, 1989, 55-65.

{Ong 84] Org, J., et al. Implementaiion of Data Abstraction in the Relational Database
System Ingres. SIGMOD, rec. 14, 1984, 1-14.

[Osb 86} Osborn,S., T. Heaven. The Design of Relational Database System with Abstract
Data Types for Domains. — ACM Transactions of Database Systems, 11, No 3, Sept.
86, 357-373.

[Unl 90} Unland R.,, G.Schiageter. Objeci-Criented Database Systems: Concepts and
Perspectives. LNCS 468, Database Systems of the 90’s, A. Blaser (Ed.}, 154-197.

Received 12.06.1992

119

