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1. INTRODUCTION

In recent years large amounts of DNA-Seq and RNA-Seq data were produced
as a consequence of the advancements of the high-throughput sequencing technolo-
gies. One of the most interesting questions that can be answered by analyzing
RNA-Seq data is finding differentially expressed genes or transcripts, for which the
overall levels in one group of subjects (e.g. patients with a particular disease) is
significantly different than the overall levels in another group (e.g. healthy con-
trols). Ever since the first RNA-Seq datasets became available, researchers started
developing different methods for analyzing it in order to find differentially expressed
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genes and nowadays there are dozens such methods. Further in this article we will
show that even for the same dataset, some of these methods produce very different
results than the others.

Such differences of the results naturally raise the questions whether some meth-
ods are better than others, and more generally how to compare and evaluate such
methods.

Comparing the results of differentially expressed genes is difficult because typ-
ically researchers are only able to biologically validate some portion of the genes
being determined as differentially expressed by the method. In addition, very few or
even none of the ones not being determined as differentially expressed are validated
as such. There are issues even in cases in which generated or in-silico data is used
and therefore we know the true differentially expressed genes, e.g. Soneson and De-
lorenzi (2013). In these cases the data generation assumes certain distributions, e.g.
NB or Poisson, or includes artificially added outliers, which gives and advantage to
differential expression methods that assume the respective distributions.

Here we discuss some general methods, in particular Spectral Clustering, for
calibrating binary classifications that can also be used to compare and evaluate such
classifications. Starting with an initial guess for the clusters (a split of number of
points into two groups, i.e. initial classification) and an a priori information about
the correlations, the method ”moves” some of them between the clusters in order
to improve the classification, in a sense that the resulting (calibrated) classification
is closer to the ”true” classification.

The research is structured in the following way: in section 2 we give a brief
review of the spectral clustering algorithm, in section 3 we explain the used method-
ology and the corresponding results, and finally in section 4 in a short Appendix,
we provide a curious relation between the method of Spectral Clustering and kernel
PCA.

More details of the present research and the experimental results will be pro-
vided in subsequent publication.

2. INTRODUCTION TO THE SPECTRAL CLUSTERING

In the present introduction we provide a short description of the method of
Spectral Clustering (SC) and provide some useful references related to recent de-
velopments and applications of the method.

The search for clusters is called traditionally clustering, but more recently
synonyms were introduced as community detection or modularity maximization,
cf. Clauset et al. (2004), Newman (2006), Newman (2008), and Fortunato and
Barthelemy (2007). It is one of the main problems in Data Analysis, when studying
data which are identified as points not only in a Euclidean space but also in an
abstract graph where the weights of the edges may be used to generate a similarity
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matrix. The role of the similarity matrix is to reflect the neighborhood relations
between data points.

Unlike the usual methods for data clustering and graph partitions, as e.g.
k−means, the method of Spectral Clustering is based on a completely different
view on partition of graphs. In principle, SC may be applied to graphs where
one has a naturally defined similarity matrix; in particular, if the data may be
embedded into an Euclidean space, then we may use various approaches to defining
a similarity matrix. Hence, we may apply the SC to very abstract situations.

Whereas the standard approach to clustering, as the method of k−means em-
phasizes upon the ”compactness” of the data points, the SC makes the point on the
”connectivity” or the ”modularity” of the data points. The method of SC may be
considered as a method for partitioning of graphs. Assume that the vertices of an
undirected graph are enumerated as xj ∈ V (the set of vertices) and the similarity

between them is defined by a weight matrix

W = (wij)i,j

with coefficients
wij := ω (xi, xj) ≥ 0

where the function ω regulates the size of the neigbourhoods. Then the set of edges
is defined as those couples Eij := (xi, xj) ∈ E for which wij > 0. The main idea of
the graph partitioning is to subdivide it into groups of vertices, so that edges Eij

for which xi and xj belong to the same group have large weights wij , while edges
Eij with xi and xj in different groups have small weight wij .

The simplest example would be if we consider a graph consisting of points
xj ∈ R

n. One may take a weight function of the form

wij := g (xi − xj)

in particular, the Gaussian one

wij := exp

(

‖xi − xj‖
2

2σ2

)

.

A standard method for clustering is the Min-Cut: For every two sets A and B
we define the ”strength of interaction” as

cut (A,B) :=
∑

i∈A,j∈B

wij

Now the intuitive idea of the method of Min-Cut is based on minimizing the weight
of edges connecting vertices in A to vertices in B. This very intuitive algorithm
takes O (|V | |E|) time for the calculations, where |V | denotes the set of elements in
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the set V . However, it is not a very successful algorithm as it often isolates vertices.
It is essentially improved by the method of Normalized-Cut defined as

Ncut (A,B) := cut (A,B)

(

1

‖A‖
+

1

‖B‖

)

where for every subset A in the graph we have put

‖A‖ :=
∑

i∈A

di

and di is the degree of the vertex i. The method of Normalized Cut is based on
the minimization of Ncut (A,B) , i.e. the weights of edges connecting vertices in
A to vertices in B, while keeping the sizes of A and B very similar. However it is
NP-hard to solve.

An interesting approach to understanding the idea of the SC method is by first
introducing the Normalized Cut. A main observation is that if we are given two
sets A and B and define now the vector f = (fj)j by putting

fj :=

{

1

‖A‖ for j ∈ A

−1

‖B‖ for j ∈ B

then we have

fTLf =
∑

i,j

wij (fi − fj)
2
=
∑

i,j

wij

(

1

‖A‖
+

1

‖B‖

)2

and

fTDf =
∑

i,j

dif
2

i =
1

‖A‖
+

1

‖B‖

Here we see that the important notions appear in a natural way: the diagonal
matrix D has its diagonal given by the vector (dj)j and L is the unnormalized

Laplacian matrix defined by
L := D −W.

We see easily that

Ncut (A,B) =
fTLf

fTDf

hence

min
A,B

Ncut (A,B) = min
A,B

fTLf

fTDf

where the minimum is taken over the sets A, B. Obviously, we may apply a re-
laxation by considering only those f for which fTD1 = 0. Hence, we obtain the
solutions to the above problems as a solution to the generalized eigenvalue problem

Lf = λDf.
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For details, we refer to Chung (1997) and von Luxburg (2007).

The spectral properties of the Laplacian are closely related to the topological
properties of the graph, as the following classical result shows.

Proposition 1. The matrix L is symmetric and positive semi-definite; as such

it has n non-negative, real eigenvalues, and the smallest one satisfies λ1 = 0; the
corresponding eigenvector has all elements equal to 1. If G is an undirected graph

with nonnegative weights wij ≥ 0, then the multiplicity k of the eigenvalue λ1 is

equal to the number of connected components of G.

We see that the eigenvalue λ1 gives the basic information about the clustering
of the graph into disconnected components, hence, it is very natural to ask for a
deeper knowledge of the cluster structure by inspecting the next eigenvalues. Thus,
these thought follow naturally the historical steps undertaken in 1973 in the paper
of Donath and Hoffman (1973) and the paper of Fiedler (1973), who considered the
second eigenvalue.

2.1. SPECTRAL CLUSTERING ALGORITHM

The general scheme of the SC algorithm is given by the following steps (see
e.g. von Luxburg (2007)):

1. Let W ∈ Rn×n be the similarity matrix with elements wij . Let also put
di =

∑

j=1,...,n

wij and defineD as the diagonal matrix having diagonal elements

di. Let us assume that the number of clusters is k.

Compute the Laplacian matrix by putting L = D −W.

2. Compute the first k eigenvectors u1, ..., uk of L.

Let U ∈ Rn×k be the matrix constructed from the vectors u1, ..., uk as
columns.

3. Let yi ∈ Rk, for i = 1, ..., n, be the corresponding i-th row of U .

Cluster the vectors yi, i = 1, ..., n, in k clusters, C1, C2, ..., Ck, using the k-
means algorithm.

4. The clusters, A1, A2, ..., Ak, of the initial data are recomputed by Ai =
{j, yj ∈ Ci}.

The success of the SC method is usually illustrated by a relatively simple toy
example, with data points located on the real axis, cf. von Luxburg (2007), p.
399. This toy data set consists of a random sample of 200 points x1, ..., x200 ∈ R

drawn according to a mixture of four Gaussians. Since the main applications which
we intend are in the area of genetic analysis using gene expressions which are at
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least two-dimensional, we will be more interested in demonstrating the power of
the SC method for simulated two-dimensional data. In Figure 1 below we have
examples of two-dimensional graphs which are generated in a way very analogous
to the one-dimensional. In Figure 1a we have generated a random sample of 20000
points in the plane drawn according to a mixture of four two-dimensional Gaussians
which are located on four ellipses (5000 points on each one). The semiaxes of the
ellipses are (1, 1), (2, 3), (5, 4), and (30, 5), respectively. In Figure 1b these are seven
mixtures with total of 35000 points located in seven ellipses (again 5000 points on
each one). In addition to the ellipses in Figure 1a we generate three other with
semiaxes (2, 3), (7, 2), and (6, 1), respectively. After the deterministic generation
of each point, we move it on random distance in every axes (normally distributed
with parameters (0, 0.1)).

In fact, in Figure 1 one sees the result of the application of SC - it provides a
perfect clustering.

3. ENHANCEMENT OF INITIAL CLUSTERING BY INCORPORATING A
PRIORI INFORMATION

The purpose of this section is to introduce our methodology for enhancing an
already available clustering, which is based on the appropriate usage of additional
information in the form of a priori given correlations between the elements. We
present the performance of our method on simulated data.

3.1. ALGORITHM

Suppose we are given data which is already clustered using some method. For
simplicity we shall use two clusters, the sets I and NI with significantly different
sizes – the smaller one I will be considered to be containing the significant elements
(important genes), and for this reason will be called ”important set”, while NI will
be bigger and will contain the not important elements. If we have in addition some
information for the relations between the elements of the graph, especially in the
form of correlations, we will use it to improve the initial clustering. Our aim is
(1) to incorporate in a proper way the a priori correlation information by means of
defining an appropriate similarity matrix (2) to keep as many elements as possible
in the set I and (3) to move to the set I those elements in NI which have a high
value of similarity w.r.t. any element in I .

In Statistical data analysis, the correlation matrix is an important statistical
technique which measures the relation between two variables. For our methodology
we develop a model for which we need to know (1) which elements are important,
i.e. the set I , and (2) a ”good enough” correlation matrix, which will be used
for creating a similarity matrix. The proposed SC algorithm will enhance every
initially given clustering defined by initial sets I and NI in two respects: First, it
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will add some new elements to the set I , which have a high correlation with the
elements in I . Second, it will remove from the set I some elements which were
thought initially to be important, because of their large correlation with the set
NI .

For simplicity sake we will explain our methodology on an example which
appears in the analysis of expression levels of genes for RNA-Seq data. The most
important problem when analyzing RNA-Seq data, is to find differentially expressed
genes or transcripts, for which the overall levels in one group of subjects (e.g. pa-
tients with a particular disease) is significantly different than the overall levels in
another group (e.g. healthy controls). On the other hand, and important ingre-
dient of this difficult problem is a matrix with historically available correlations
between the genes which is however not positive-definite. It is important to find an
appropriate way to incorporate this a priori information in the algorithm. In the
present example, we assume that the number of expressed genes is 8824.1

Let the number of all subjects studied be n and n1 be the disease patients,
while n2 = n − n1 be the number of the healthy controls. Thus the graph G
we have to study is the subset of all 8824 points in the euclidean space R

n. To
simplify this setting, we calculate the average of the expression levels for each of
the 8824 genes for the n1 subjects, and on the other hand, calculate the average
of the expression levels for each of the 8824 genes for the n2 subjects. Thus we
obtain 8824 points in the real plane R

2 which reduces the problem to a clustering
problem in the plane. Although this situation seems to be too simplified, it remains
very non-trivial. It still makes deep sense to identify which are the important genes
since the intuitive expectation is that the averaged gene expression levels for the
disease patients would be in principle different from the averaged gene expression
levels for the healthy controls. Such identification of the important genes in the
plane would be very helpful to solve the genuine clustering problem in R

n.

Our algorithm runs as follows:

1. Generation of simulated clustering

First, we generate a simulated clustering given by a partition of the graph
G given by G = I ∪ NI . We generate the set I500 by selecting randomly
500 (respectively, the set I1000 with 1000) points in the plane R

2 – normally
distributed with expectation one and standard deviation 0.1. This will be
defined as the important set I , and it is visualized in the top right corner
in Figure 2. We generate in a similar way the set of not important elements
NI (NI 500 with 8324 points, and respectively NI 1000 with 7824 points) – the
center of their normal distribution is −1. This set is placed in the bottom
left corner in Figure 2.

1Here the number 8824 is not accidentally chosen, but is the number of genes with average
expressions at least 8 in the widely-used dataset by Bottomly et al. (2011).
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2. Correlation matrix

We generate a correlation matrix which would mimic the historically avail-
able correlations between the genes. We generate a correlation matrix C
by using an algorithm described in Numpacharoen and Atsawarungruangkit
(2012), modified by an introduction of a beta distribution. We provide two
experimental settings by generating two correlation matrices, C1 and C2:

(a) The matrix C1 is generated by using a beta distribution Beta(2, 5) with
parameters 2 and 5

(b) The matrix C2 is generated in a similar way by the beta distribution
Beta(2, 2).

The main difference between them is that C1 has a relatively low large values.

3. Similarity matrix

(a) Let us note that there are some elements in the cluster NI , which have
a very low correlations with the others (less than 0.03). The spectral
clustering algorithm can not decide correctly if such element is important
or not. For this reason, we state that such elements are closer to the
elements in NI , by assigning higher correlation levels.

(b) We will modify the correlation matrix C by introducing the so-called
level of significance l. The meaning of this parameter is to increase the
role of the correlations which are higher than l. Here we use a power
function of the form

f (x) :=

{

xp for x < l
x1/p for x ≥ l

for an appropriate integer number p. One may use also different func-
tions f which have similar ”amplification behavior”. We replace the ma-
trix C with elements ci,j by the matrix C ′ with elements c′i,j = f(ci,j).
We carry out experiments with different significance levels l. Since the
maximal correlation of the first correlation matrix C1 is 0.8807, it makes
sense to make experiments with three different values l = {0.6, 0.7, 0.8}.
For the same reason, for the second matrix C2 we make experiments
with five values l = {0.6, 0.7, 0.8, 0.9, 0.98}.

(c) The core of our algorithm is the definition of a proper similarity ma-
trix which takes into account the correlation matrix C. We define the
similarity matrix W by putting:

i.

wi,j := exp

[

−
d(xi, xj)

2

2σ2

]
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for the elements xi, xj in I ; this is the Gaussian similarity coefficient
which preserves the geometrical closeness of the elements, as here
d (xi, xj) denotes the euclidean distance.

ii. for taking into account the a priori given correlations C ′ we put

wi,j := c′i,j

for the rest of the pairs (xi, xj).

3.2. RESULTS

The results for the model with clustering sets I500 and NI 500 are presented in
Figure 2 and Tables 1, 2. The Figure representing the model with clustering sets
I1000 and NI 1000 looks similar, and we do not provide it here. The set of important
elements after clustering are colored in red. The new important elements are the
red points in the bottom left corner. As we can expect, their number varies for
different levels of significance l – these elements are more for smaller values. This
can be easily viewed in Figure 2. The initially accepted for important elements
in I , which after clustering are changed to not important, can not be seen clearly
in Figure 2 since they are only few, however one can observe their number in the
fourth column of Tables 1 and 2. These tables contain the following values:

1. The first column contains the values of the parameters – in the brackets
are the parameters of the beta distribution used for the generation of the
correlation matrix; the other parameter is the level of significance l.

2. The second column contains the number of the expected important elements
before the clustering – respectively 500 and 1000.

3. The third column contains the number of those expected important elements
which are important again after the clustering.

4. The fourth column contains the number of those expected important elements
which are NOT important after the clustering (column 2 - column 3).

5. The fifth column contains the number of the expected not important elements
before the clustering –respectively 8324 and 7824.

6. The sixth column contains the number of those expected not important ele-
ments which have moved to the important set after the clustering.

7. The last column contains the number of those expected not important ele-
ments which are again not important after the clustering. (column 5 - column
6).
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Also, it is reasonable to expect that the total number of the important ele-
ments after clustering varies for different levels of significance – they are more for
lower values of l. Table 1 shows that for beta distribution Beta(2, 2) they vary,
respectively in the following ranges:

1. between 499 and 3434, for the model with clustering given by the sets I500
and NI 500 ,

2. between 1000 and 3753, for the model with clustering given by the sets I1000
and NI 1000.

The same observation is true when the correlation matrix C is generated using
a beta distribution Beta(2, 5) – we can see in the Table 2 that the number of
important elements varies in the following ranges:

1. between 515 and 844, for the model with clustering given by the sets I500 and
NI 500 ,

2. between 1010 and 1322, for the model with clustering given by the sets I1000
and NI 1000.

We can see immediately that the number of the important elements when we use
beta distribution Beta(2, 5) are significantly less than the corresponding number in
the model with beta distribution Beta(2, 2). This is true because the high levels in
the (2, 2)-correlation matrix are significantly more than those in the (2, 5)-matrix.

We will only briefly explain the idea of our algorithm. Let us assume that we
have after clustering a set of important elements I. On the other hand, let I1 ⊂ I
be the set of those important elements, which before we perform clustering are not
expected to be important. And finally, let NI be the set of not important elements
after clustering. Now, the logic of our algorithm becomes clear from the following
inequalities:

min
i

{

max
j
{|C (mi,m1,j)|}

}

> l, mi ∈ I,m1,j ∈ I1 (1)

max
i

{

max
j
{|C (mi, nj)|}

}

< l, mi ∈ I, nj ∈ NI (2)

where l is the level of significance and C is the corresponding correlation matrix
introduced above. This means, that

1. For every important element, for which we initially thought that it is not im-
portant, there exists at least one important element such that the correlation
between them is larger than the level of significance l.

2. For every not important element, there is no important one such that the
correlation between them is larger than the level of significance l.
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4. APPENDIX ON SPECTRAL CLUSTERING AND KERNEL PCA

For a reader more used to the traditional methods for dimensionality reduction
in data analysis, we provide below a short comment about the relation between
the method of Spectral Clustering and the so-called kernel Principal Component
Analysis (PCA). This has been observed apparently for the first time by Bengio
et al. (2003), where the authors show how both methods are special cases of a
more general learning problem, that of learning the principal eigenfunctions of a
kernel. An essential role is played by the fact that the smallest eigenvectors of graph
Laplacians can also be interpreted as the largest eigenvectors of kernel matrices.

Before defining kernel PCA, let us remind that PCA is a basis transformation
to diagonalize an estimate of the covariance matrix of the data. Given N points in
d dimensions PCA essentially projects the data points onto p, directions (p < d)
which capture the maximum variance of the data. These directions correspond to
the eigenvectors of the covariance matrix of the training data points. Intuitively
PCA fits an ellipsoid in d dimensions and uses the projections of the data points
on the first p major axes of the ellipsoid. The ”classic” PCA approach is a linear
projection technique that works well if the data is linearly separable. However, in
the case of linearly inseparable data, a nonlinear technique is required if the task
is to reduce the dimensionality of a dataset. An here we come to the Kernel PCA.

It is another unsupervised learning method that was proposed earlier and that is
based on the simple idea of performing PCA in the feature space of a kernel by
Schoelkopf, Smola and Muller in 1998. Schölkopf et al. (1997) propose the use
of integral operator kernel functions, for computing principal components in high
dimensional feature spaces, related to input space by some nonlinear map.

The basic idea of kernel PCA to deal with linearly inseparable data is to project
it onto a (much) higher dimensional space where it becomes linearly separable.
Let φ be this nonlinear mapping function so that a sample x can be mapped as
x→ φ(x). The term “kernel” represents a function that calculates the dot product
of the images of the samples x under φ, namely,

κ(xi, xj) = φ(xi)φ(xj)
T .

In other words, the function φmaps the original d-dimensional features into a larger,
k-dimensional feature space by creating nonlinear combinations of the original fea-
tures. Often, the mathematical definition of the Gaussian basis kernel function is
written and implemented as

κ(xi, xj) = exp(−γ||xi− xj||2)

where γ = 1/2σ2 is a free parameter that is to be optimized.
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A. TABLES AND FIGURES

Table 1: Clustering results for data with 500 initially important elements

parameters Expected important Expected not important
Total Imp. Not imp. Total Imp. Not imp.

(2,2) 0.6 500 500 0 8324 2934 5390
(2,2) 0.7 500 490 10 8324 1778 6546
(2,2) 0.8 500 499 1 8324 850 7474
(2,2) 0.9 500 487 13 8324 239 8085
(2,2) 0.98 500 489 11 8324 10 8314
(2,5) 0.6 500 500 0 8324 344 7980
(2,5) 0.7 500 499 1 8324 80 8244
(2,5) 0.8 500 500 0 8324 15 8309

Table 2: Clustering results for data with 1000 initially important elements

parameters Expected important Expected not important
Total Imp. Not imp. Total Imp. Not imp.

(2,2) 0.6 1000 999 1 7824 2754 5070
(2,2) 0.7 1000 996 4 7824 1669 6155
(2,2) 0.8 1000 999 1 7824 801 7023
(2,2) 0.9 1000 990 10 7824 255 7599
(2,2) 0.98 1000 991 9 7824 9 7815
(2,5) 0.6 1000 1000 0 7824 322 7502
(2,5) 0.7 1000 996 4 7824 74 7750
(2,5) 0.8 1000 997 3 7824 13 7811

Figure 1: SC succeeds to separate all ellipses in the Gaussian mix example
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Figure 2: Clustering with 500 initial important elements

(a) Parameters: Beta(2,2), l = 0.6
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(b) Parameters: Beta(2,2), l = 0.7
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(c) Parameters: Beta(2,2), l = 0.8
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(d) Parameters: Beta(2,2), l = 0.9
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(e) Parameters: Beta(2,2), l = 0.98
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(f) Parameters: Beta(2,5), l = 0.6
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(g) Parameters: Beta(2,5), l = 0.7
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(h) Parameters: Beta(2,5), l = 0.8
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