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LJUSTERNIK-SCHNIRELMAN CATEGORY
OF THE NON-WANDERING SET

' SIMEON STEFANOV

Cumeon Cmegance. KATETOPUA JIIOCTEPHUKA-IUHUPEJIBMAHA MHOKECT-
BA HEBJYKIAIOUINX TOYEK

B paboTe paccMOTpenH AMHAMMUECKME CUCTeMBl Ha MHoroobpasuu M, yaosnersops-
JI0IUe HEKOTOPoe ycnopue, 6onee obmee, yeM akcHoMy A + YC/AOBUA OTCYTCTBHA UMKIOB
M 3HAUMT BhiNosHeHHBM AnA cucTemM Mopca-Cusmeitna. [Tonyvennt onenky CHU3Y ANA KaTe-
ropuu Jliocrepanka—Illnupensrmana Muoxkecrpa Hebnynaomux Touek {I TaKoM cUCTEMEL
Joxa3annl HEpaBEHCTRA:

a) cat (2, M) 2 };catM;

6) cat{l 2 catM, .
rae s obo3navaer uncno basmcnpix muokects {1;. llonydenul nekoTopnie npuMeHeHUsA BTO-
ro pe3ynbTaTa.

Simeon Stefanov. LJUSTERNIK-SCHNIRELMAN CATEGORY OF THE NON-WANDERING
SET

The paper deals with dynamical systems in some manifold M satisfying some condition,
which is more general than axiom A + no-cycle condition and consequently is fulfilled for Morse-
Smale systems. Some low estimates for the Ljustemik-Schnirelman category of the non-wandering
set { of such a system are obtained. Namely, the following inequalities are proved

a) cat(Q, M) 2 1c:at:M'
s

b) catl 2 catM, ,
where 3 is the number of the basic sets {2;. Some applications of this result are obtained.

We give in this note some low estimates of the Ljusternik-Schirelman category
of the non-wandering set () for a given flow or diffeomorphism satisfiyng some
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condition (Theorem 1). This condition is always fulfilled for axiom A + no-cycle
condition dynamical systems and for Morse-Smale systems. - However, we admit
the existence of cycles (only l-cycles are forbidden). By means of this result we
obtain some information and low estimates of the number of critical elements for
a given Morse-Smale flow (Theorem 2). Other possible applications are illustrated
by the proposition at the end, where we estimate the covering dimension of the
~ critical set of a smooth function with symmetry. The proofs are quite elementary
and do not make use of hard algebraic topology arguments.

Recall first some definitions.

LetA be closed subset of M. The Ljusternik—Schnirelman category of A in M
is the smallest natural number & such that A = A, U...U A, where A; are closed
and contractible in M into a point. Then we write

cat (A, M) =
We shall note for convenience

cat M = cat (M, M)

For the prg)perties of the Ljusternik—-Schnirelman category see for example [4].
Given a flow in M, the a and w-limit sets of a point z are defined as usually:

ofz)={y€ M|t,z —y for somet, — —oo},
w(z) ={y € M |t,z — y for some {,, — 400}
(see [3, 5] for details).
The non-wandering set Q of the flow consists of alI points z € M such that for
any open U 5z and for any to > 0 there exists t 2 to such that tUNU # Q.
A subset V C M is called unrevzs:ted if tyz € V and tyz € V imply t:c eV
for any ¢ € [t1, ta].
We shall suppose that

where the basxc sets (); are dzs_lomt closed invariant and for any ¢ € M we have
a(z) C 4, w(z) C Q; for some i, j. Consider the sets

Ni={ze M\ Q|w(z) C N}

We shall formulate now the condition mentioned above.

() Condition.

(i) N;NN; = D for i < j.

(ii) Each basic set ©; has a base of unrevisited open neighbourhoods.

(iii) If o(z) C Q; and w(z) C Q;, then i # j (no l-cycle condition).

In the case of a discrete time dynamical system, defined by a diffeornorphism
f: M — M, all the definitions are reformulated in an obvious way.

Theorem 1. Let M be a closed connected manifold with ¢ C'-flow (diffeo-
morphism), satisfying Condition (*). Then for the category of the non-wandering
sel () we have the inequalities

a) cat(Q, M) 2 -z-catM;

44



b) catQ > cat M;
 where s ts the number of the basic sets ;.

For the proof of this theorem we need two technical lemmas.

Lemma 1. Let A be a compact and invariant (with respect to some given
flow) subset of the closed manifold M and there is no such a point x € M that
a(z)NA#£ D andw(z)NA#D. Let U and V be open subsets of M such that U 1s
unrevisiled, U DA, UNV =D and for any z € M either w(z) CA orw(z) C V.
Let, finally F C M\ 'V be closed and w(z) C A for any =z € F. Then there erists
to such that tF C U fort 2 .

Proof. Since F is compact, it is enough to show, tha.t for every z € F there
are a neighbourhood Oz and ¢, such that {(Oz N F) C U for t 2 to. Consider the
sets \

Fl={zeF|teeM\Viort 20}, F'={tz|z€F',t 20}
Clearly, F? is positively invariant (i.e. tF° C F° for t 2 0). Consider the closure
@ = F9. It is compact, positively invariant and ® C M \ V. Evidently w(z) C A
for z € 3.

We shall prove first the local assertion about & — that for any = € ® there
are Oz and to such that {(OzN®) C U fort 2 to. Suppose, this is not true. Then
we can find a sequence z,, — zo, T, € P, and positive numbers {, — oo such that
tnr, ¢ U. Passing to a subsequence we may suppose that oz, — 2. Then 20 € @
since ® is positively invariant and closed.

Now we shall show that a(20) N A # O. Consuler the arcs [Zzn, tazn], where
T, — o, InZTn — 2g. Suppose first, that the limit set of these arcs does not intersect
a(20), then zo and zg lie in one and the same trajectory and [z, t,25] — {20, 20].
Since w(zo) C A, there exists a sequence y, = 0,2z, such that 0 < 8, < ¢, and
tn — Yo € A. But then yg € [zg, 2], 1.6. yo = foxzo which is a contradiction, since
zo ¢ A and A is invariant. ‘

So, the limit set of the arcs [z, t,2,] intersects a(zp). Then we can find a
sequence yn = O,z, with 0 < 8, < ¢, such that y, — yo € a(z). But z, € ¥,
hence ¥, € ® (@ is positively invariant). Then yo € ® and therefore w(ys) C 4. But
a(zg) is invariant and yo € a(2q), consequently w(yo) C a(zg) and a(z) N A # B.
On the other hand, zg € ¢ hence w(z5) C A which contradicts the conditions of
the lemma. |

Since ® is compact, t;® C U for some t; > 0. Then £;(0®) C U for some
open neighbourhood O®. Note that t;F C O® for some {2 > 0. Really,ifz € F
then {x € @ for some t 2 0 and there is an open neighbourhood Oz such that
tOx C O®. Therefore to F C OP for some ¢o 2 0. Then ¢1{2F C t;0® C U and
tite 2 0. If now ¢t 2 {115, then tF C U since Uis unrevisited ‘and forany x € F
we have w(iz) CACU.

The lemma is proved.

Lemma 2. Let A be a closed imvariant subset of M which has a base of
unrevisited netghbourhoods and F be a closed sel such that for any neighbourhood
UD A we have tF C U for t sufficiently large. Then there exists an open V D A,
such that

cat{FUV, M) = cat(A, M)
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Proof. Take such open unrevisited U, V that A C V ¢ V ¢ U and
cat(U, M) = cat(A,M). Let A : [0, 1] — M be a continuous map, such that
A(V) =0, A(M\U)=1. WehavetF C V for some t 2 0. Let p(z) = t\z).z.
It is easy to see, that ¢(F UV) C U. Really, for £ € V we have ¢(z) = z and for
zEF\U—gp(z) tzeV.llzeUNF, then p(m)éstncew(m)CUandU
is unrevisited.

But evidently ¢ is homotopic to the identity, ¢ ~ idys and by the elementary
properties of the Ljusternik-Schnirelman category we obtain

cat(FUV, M) £ cat(T, M) = cat(A4, M).

The inverse inequality is obvious.
Proof of Theorem 1. Take open V; D Q; satisfying the conditions of

E .
Lemma 2. Then the set F; = N;\ |J V; is closed in M as following from Condition
=2
(i). According to Lemma 1, we have that for any open U D Uy there exists ¢y such
that tF1 C U for t 2 to. Then Lemma 2 implies cat(Fy UV%_,_JE_J) = cat(Q, M). We
may find an open neighbourhood W; D Fy U V; with cat(Wy, M) = cat(,, M).
Set Fy = No\(UJ V;uWh). We shall prove, that it is closed in M. Really, if z € Fy,
1£2

then z € Noandz ¢ |J V; UW;. If we suppose z ¢ Ny then z €- N (as following
i1#£2 .
from (i)), hence = € Fy therefore ¢ € Wy, which is a contradmtmn.
By the same reasoning we obtain from Lemma 1 and Lemma 2, that
cat(Fo U Vo, M) = cat(Q22, M). Take Wy D F» U Vs such that cat(Wy, M) =
cat(€2y, M). Proceeding by inductien we define closed sets Fi and their open neigh-

bourhoods F = N \ (U ViU U W;), Wi D F U Vk such that
T ik j=1

cat(Wi, M) = cat(Q, M).

| It is easy to show, that | JW; = M. Really, if we suppose, that = ¢ |JW;, then
z ¢ U V;, and if now z € Ni, then z € Fy whereby ¢ € W, — contradiction. So

D cat(Q, M) =) cat(W;, M) 2 cat M.

-~

o i
The second inequality is an obvious property of the category. But since ; are
disjoint and M 1s connected,

cat(Q M) = maxcat(Q,,M)

hence
1 ‘ 1
t > ...§ | > -
cat(§2, M) 252 cat(Qi, M) 2 . cat M

50 a) is proved and b) follows from the inequalities
cat ) = Ecatﬂ; 2 ant(ﬁg, M) > cat M.

The theorem is proved.
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For diffeomorphisms the proof works with little modifications — we have on-
ly to make use of the trivial fact, that cat A = cat f(A) for any diffeomorphism
f:M—-M.

Let us note, that the conditions of Theorem 1 are fulfilled for any axiom A + no-
cycle condition flow or diffeomorphism, or any flow (diffeomorphism) whit a Morse-
Smale decomposition and consequently for “gradient-like” flows (diffeomorphisms).
In all these examples there are no cycles, but the theorem covers quite more general
situations, where cycles are admitted. A simple example is given by the flow in
S with 2 nonhyperbolic stationary points. On the other hand, Theorem 1 easily
implies the classical Ljusternik-Schnirelman theorem, which states that any smooth
function on M has at least cat M critical points. (We only have to consider its
gradient low on M). Theorem 1 also enables us to give low estimates for the
covering dimension of the non-wandering set . If M is a closed connected manifold
and A is a closed subset, the following inequality holds

cat (A, M) £ dimA + 1.

Really, let dim A = k, then for any € > 0 there is a e-map ¢, : A — P into

a k-dimensional polyhedron. We have only to note, that P, may be represented
k41
as the union P = U Fi of k + 1 closed subset, each F; being a finite union of

sufficiently small nemntersectmg closed sets. Then evzdently cat(p; H(F;), M) =1,
therefore cat(A, M) £ k + 1. This inequality and Thearem 1 imply the following
Corollary. Let M be as in Theorem 1. Then

dim§2 > écatM— 1.

Another corollary is obtained for a flow with a finite number of critical elements
(stationary points and periodic trajectories). The following theorem gives some low
estimates for their number. Its conditions are obviously fulfilled for Morse-Smale
flows.

Theorem 2. Let M be a closed connected manifold with a flow, satisfying
Condition (*), whose non-wandemng sel consists of s siaizanary points and s,
pertodic trajectories. Let s = sy + s3. Then

1
1)s 2 §catM.

2) 51+ 252 2 cat M. - | ‘
3) If s < cat M, then there is a pertodic trajectory nonhomotopic to zero
in M. '

Proof. 1) Ewdenﬂy cat(QQ, M) £ 2 and Theorem 1 gives

22 cat(S, M) 2 -s}—catM > écatM,
0

where sqg 1s the number of the basic sets, i.e. s 2 3 cat M.

2) Clearly, cat Q = s; + 2s2 and again by Theorem 1
S+ 259 = cat Q 2 cat M.
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1 : :
3) We have cat (2, M) 2 - cat M > 1, i.e. cat (2, M) 2 2 which means that

{2 is not contractible into a point in M, consequently there is a periodic trajectory
in £, which is nonhomotopic to zero in M. :
Another application of Theorem 1 is the estimate of the critical set of a smooth
function. It may be ilustrated by the following proposition (this kind of estimates
are typical in the Ljusternik-Schnirelman-Morse theory — see for example [2]).
Proposition. Let G be a finite abelian group, or G = S', or S, acting freely
in the n-sphere S™. Let f : S® — R! be a smooth function such that f(gz) = f(z)
for any ¢ € 5%, g € G, with exaclly s critical values. Consider the critical set,
- where the Jacobian Df vaniches

Q= {z€S"|Df(z) = 0}.

Then

. n+1
dimQ 2 SEmG D) +d1mG

Proof. It is well-known, that for the category of the orbit space 5™ /G (which
is a closed manifold) we have

n+1

cat /G = e m T

(see for example [1]).

Clearly, f induces a function on the orbit space fg : S*/G — R'. Consider
now the gradient flow defined by grad fg. Its non-wandering set coincides with the
critical set Q/G of fg. Since fg has s critical values, Q/G is decomposed into s
basic sets. Now, the corollary from Theorem 1 gives

n+1

i > —
d’mﬂj\a 2 dmGtD D

which implies, naturally,

. n+1 : |
dimQ > -
dimQ 2 S@mG 1) + dimG 1
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