ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Книга 1 — Математика Том 84, 1990

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Livre 1 — Mathématiques
Tome 84, 1990

LJUSTERNIK-SCHNIRELMAN CATEGORY OF THE NON-WANDERING SET

SIMEON STEFANOV

Симеон Стефанов. КАТЕГОРИЯ ЛЮСТЕРНИКА-ШНИРЕЛЬМАНА МНОЖЕСТ-ВА НЕБЛУЖДАЮЩИХ ТОЧЕК

В работе рассмотрены динамические системы на многообразии M, удовлетворяющие некоторое условие, более общее, чем аксиому A + условия отсутствия циклов и значит выполненным для систем Морса-Смейла. Получены оценки снизу для категории Люстерника-Шнирельмана множества неблуждающих точек Ω такой системы. Доказаны неравенства:

a)
$$cat(\Omega, M) \geq \frac{1}{s} cat M;$$

б) саt $\Omega \ge \cot M$, где з обозначает число базисных множеств Ω_i . Получены некоторые применения этого результата.

Simeon Stefanov. LJUSTERNIK-SCHNIRELMAN CATEGORY OF THE NON-WANDERING SET

The paper deals with dynamical systems in some manifold M satisfying some condition, which is more general than axiom A + no-cycle condition and consequently is fulfilled for Morse-Smale systems. Some low estimates for the Ljusternik-Schnirelman category of the non-wandering set Ω of such a system are obtained. Namely, the following inequalities are proved

a)
$$cat(\Omega, M) \ge \frac{1}{s} cat M$$

b) cat $\Omega \ge \operatorname{cat} M$, where s is the number of the basic sets Ω_i . Some applications of this result are obtained.

We give in this note some low estimates of the Ljusternik-Schirelman category of the non-wandering set Ω for a given flow or diffeomorphism satisfying some

condition (Theorem 1). This condition is always fulfilled for axiom A + no-cycle condition dynamical systems and for Morse-Smale systems. However, we admit the existence of cycles (only 1-cycles are forbidden). By means of this result we obtain some information and low estimates of the number of critical elements for a given Morse-Smale flow (Theorem 2). Other possible applications are illustrated by the proposition at the end, where we estimate the covering dimension of the critical set of a smooth function with symmetry. The proofs are quite elementary and do not make use of hard algebraic topology arguments.

Recall first some definitions.

Let A be closed subset of M. The Ljusternik-Schnirelman category of A in M is the smallest natural number k such that $A = A_1 \cup ... \cup A_k$, where A_i are closed and contractible in M into a point. Then we write

$$cat(A, M) = k.$$

We shall note for convenience

$$\cot M = \cot (M, M).$$

For the properties of the Ljusternik-Schnirelman category see for example [4]. Given a flow in M, the α and ω -limit sets of a point x are defined as usually:

$$\alpha(x) = \{ y \in M \mid t_n x \to y \text{ for some } t_n \to -\infty \},$$

$$\omega(x) = \{ y \in M \mid t_n x \to y \text{ for some } t_n \to +\infty \}$$

(see [3, 5] for details).

The non-wandering set Ω of the flow consists of all points $x \in M$ such that for any open $U \ni x$ and for any $t_0 > 0$ there exists $t \ge t_0$ such that $tU \cap U \ne \emptyset$.

A subset $V \subset M$ is called unrevisited, if $t_1x \in V$ and $t_2x \in V$ imply $tx \in V$ for any $t \in [t_1, t_2]$.

We shall suppose that

$$\Omega = \Omega_1 \cup \ldots \cup \Omega_s,$$

where the basic sets Ω_i are disjoint, closed, invariant and for any $x \in M$ we have $\alpha(x) \subset \Omega_i$, $\omega(x) \subset \Omega_j$ for some i, j. Consider the sets

$$N_i = \{x \in M \setminus \Omega \mid \omega(x) \subset \Omega_i\}.$$

We shall formulate now the condition mentioned above.

- (*) Condition.
- (i) $\overline{N}_i \cap N_j = \emptyset$ for i < j.
- (ii) Each basic set Ω_i has a base of unrevisited open neighbourhoods.
- (iii) If $\alpha(x) \subset \Omega_i$ and $\omega(x) \subset \Omega_j$, then $i \neq j$ (no 1-cycle condition).

In the case of a discrete time dynamical system, defined by a diffeomorphism $f: M \to M$, all the definitions are reformulated in an obvious way.

Theorem 1. Let M be a closed connected manifold with a C^1 -flow (diffeomorphism), satisfying Condition (*). Then for the category of the non-wandering set Ω we have the inequalities

a) cat
$$(\Omega, M) \ge \frac{1}{s}$$
 cat M ;

b) $\cot \Omega \ge \cot M$; where s is the number of the basic sets Ω_i .

For the proof of this theorem we need two technical lemmas.

Lemma 1. Let A be a compact and invariant (with respect to some given flow) subset of the closed manifold M and there is no such a point $x \in M$ that $\alpha(x) \cap A \neq \emptyset$ and $\omega(x) \cap A \neq \emptyset$. Let U and V be open subsets of M such that U is unrevisited, $U \supset A$, $U \cap V = \emptyset$ and for any $x \in M$ either $\omega(x) \subset A$ or $\omega(x) \subset V$. Let, finally $F \subset M \setminus V$ be closed and $\omega(x) \subset A$ for any $x \in F$. Then there exists t_0 such that $tF \subset U$ for $t \geq t_0$.

Proof. Since F is compact, it is enough to show, that for every $x \in F$ there are a neighbourhood Ox and t_0 such that $t(Ox \cap F) \subset U$ for $t \geq t_0$. Consider the sets

$$F' = \{x \in F \mid tx \in M \setminus V \text{ for } t \ge 0\}, \quad F^0 = \{tx \mid x \in F', t \ge 0\}.$$

Clearly, F^0 is positively invariant (i. e. $tF^0 \subset F^0$ for $t \ge 0$). Consider the closure $\Phi = \overline{F^0}$. It is compact, positively invariant and $\Phi \subset M \setminus V$. Evidently $\omega(x) \subset A$ for $x \in \Phi$.

We shall prove first the local assertion about Φ — that for any $x \in \Phi$ there are Ox and t_0 such that $t(Ox \cap \Phi) \subset U$ for $t \geq t_0$. Suppose, this is not true. Then we can find a sequence $x_n \to x_0$, $x_n \in \Phi$, and positive numbers $t_n \to \infty$ such that $t_n x_n \notin U$. Passing to a subsequence we may suppose that $t_n x_n \to z_0$. Then $z_0 \in \Phi$ since Φ is positively invariant and closed.

Now we shall show that $\alpha(z_0) \cap A \neq \emptyset$. Consider the arcs $[x_n, t_n x_n]$, where $x_n \to x_0, t_n x_n \to z_0$. Suppose first, that the limit set of these arcs does not intersect $\alpha(z_0)$, then x_0 and z_0 lie in one and the same trajectory and $[x_n, t_n x_n] \to [x_0, z_0]$. Since $\omega(x_0) \subset A$, there exists a sequence $y_n = \theta_n x_n$ such that $0 < \theta_n < t_n$ and $y_n \to y_0 \in A$. But then $y_0 \in [x_0, z_0]$, i.e. $y_0 = \theta_0 x_0$ which is a contradiction, since $x_0 \notin A$ and A is invariant.

So, the limit set of the arcs $[x_n, t_n x_n]$ intersects $\alpha(z_0)$. Then we can find a sequence $y_n = \theta_n x_n$ with $0 < \theta_n < t_n$ such that $y_n \to y_0 \in \alpha(z_0)$. But $x_n \in \Phi$, hence $y_n \in \Phi$ (Φ is positively invariant). Then $y_0 \in \Phi$ and therefore $\omega(y_0) \subset A$. But $\alpha(z_0)$ is invariant and $y_0 \in \alpha(z_0)$, consequently $\omega(y_0) \subset \alpha(z_0)$ and $\alpha(z_0) \cap A \neq \emptyset$. On the other hand, $z_0 \in \Phi$ hence $\omega(z_0) \subset A$ which contradicts the conditions of the lemma.

Since Φ is compact, $t_1\Phi \subset U$ for some $t_1 > 0$. Then $t_1(O\Phi) \subset U$ for some open neighbourhood $O\Phi$. Note that $t_2F \subset O\Phi$ for some $t_2 > 0$. Really, if $x \in F$ then $tx \in \Phi$ for some $t \geq 0$ and there is an open neighbourhood Ox such that $tOx \subset O\Phi$. Therefore $t_2F \subset O\Phi$ for some $t_2 \geq 0$. Then $t_1t_2F \subset t_1O\Phi \subset U$ and $t_1t_2 \geq 0$. If now $t \geq t_1t_2$, then $tF \subset U$ since U is unrevisited and for any $x \in F$ we have $\omega(x) \subset A \subset U$.

The lemma is proved.

Lemma 2. Let A be a closed invariant subset of M which has a base of unrevisited neighbourhoods and F be a closed set such that for any neighbourhood $U \supset A$ we have $tF \subset U$ for t sufficiently large. Then there exists an open $V \supset A$, such that

$$cat(F \cup \overline{V}, M) = cat(A, M)$$

Proof. Take such open unrevisited U, V that $A \subset V \subset \overline{V} \subset U$ and $\operatorname{cat}(\overline{U}, M) = \operatorname{cat}(A, M)$. Let $\lambda : [0, 1] \to M$ be a continuous map, such that $\lambda(\overline{V}) = 0, \ \lambda(M \setminus U) = 1$. We have $tF \subset V$ for some $t \geq 0$. Let $\varphi(x) = t\lambda(x).x$. It is easy to see, that $\varphi(F \cup \overline{V}) \subset U$. Really, for $x \in \overline{V}$ we have $\varphi(x) = x$ and for $x \in F \setminus U - \varphi(x) = tx \in V$. If $x \in U \cap F$, then $\varphi(x) \in U$ since $\omega(x) \subset U$ and U is unrevisited.

But evidently φ is homotopic to the identity, $\varphi \sim id_M$ and by the elementary properties of the Ljusternik-Schnirelman category we obtain

$$cat(F \cup \overline{V}, M) \leq cat(\overline{U}, M) = cat(A, M).$$

The inverse inequality is obvious.

Proof of Theorem 1. Take open $V_i \supset \Omega_i$ satisfying the conditions of Lemma 2. Then the set $F_1 = N_1 \setminus \bigcup_{i=2}^s V_i$ is closed in M as following from Condition

(i). According to Lemma 1, we have that for any open $U \supseteq \Omega_1$ there exists t_0 such that $tF_1 \subset U$ for $t \ge t_0$. Then Lemma 2 implies $\operatorname{cat}(F_1 \cup \overline{V_1}, M) = \operatorname{cat}(\Omega_1, M)$. We may find an open neighbourhood $W_1 \supseteq F_1 \cup \overline{V_1}$ with $\operatorname{cat}(\overline{W_1}, M) = \operatorname{cat}(\Omega_1, M)$. Set $F_2 = N_2 \setminus (\bigcup_{i \ne 2} V_i \cup W_1)$. We shall prove, that it is closed in M. Really, if $x \in \overline{F_2}$,

then $x \in \overline{N_2}$ and $x \notin \bigcup_{i \neq 2} V_i \cup W_1$. If we suppose $x \notin N_2$ then $x \in N_1$ (as following

from (i)), hence $x \in F_1$ therefore $x \in W_1$, which is a contradiction.

By the same reasoning we obtain from Lemma 1 and Lemma 2, that $cat(F_2 \cup \overline{V_2}, M) = cat(\Omega_2, M)$. Take $W_2 \supset F_2 \cup \overline{V_2}$ such that $cat(\overline{W_2}, M) = cat(\Omega_2, M)$. Proceeding by induction we define closed sets F_k and their open neighbors.

bourhoods $F_k = N_k \setminus (\bigcup_{i \neq k} V_i \cup \bigcup_{j=1}^{k-1} W_j), W_k \supset F_k \cup \overline{V_k}$ such that

$$cat(\overline{W_k}, M) = cat(\Omega_k, M).$$

It is easy to show, that $\bigcup W_i = M$. Really, if we suppose, that $x \notin \bigcup W_i$, then $x \notin \bigcup V_i$, and if now $x \in N_k$, then $x \in F_k$ whereby $x \in W_k$ —contradiction. So

$$\sum_{i} \operatorname{cat}(\Omega_{i}, M) = \sum_{i} \operatorname{cat}(\overline{W_{i}}, M) \geq \operatorname{cat} M.$$

The second inequality is an obvious property of the category. But since Ω_i are disjoint and M is connected,

$$cat(\Omega, M) = max cat(\Omega_i, M)$$

hence

$$cat(\Omega, M) \ge \frac{1}{s} \sum_{i} cat(\Omega_{i}, M) \ge \frac{1}{s} cat M$$

so a) is proved and b) follows from the inequalities

$$\cot \Omega = \sum \cot \Omega_i \ge \sum \cot(\Omega_i, M) \ge \cot M.$$

The theorem is proved.

For diffeomorphisms the proof works with little modifications — we have only to make use of the trivial fact, that $\cot A = \cot f(A)$ for any diffeomorphism $f: M \to M$.

Let us note, that the conditions of Theorem 1 are fulfilled for any axiom A + no-cycle condition flow or diffeomorphism, or any flow (diffeomorphism) whit a Morse-Smale decomposition and consequently for "gradient-like" flows (diffeomorphisms). In all these examples there are no cycles, but the theorem covers quite more general situations, where cycles are admitted. A simple example is given by the flow in S^1 with 2 nonhyperbolic stationary points. On the other hand, Theorem 1 easily implies the classical Ljusternik-Schnirelman theorem, which states that any smooth function on M has at least cat M critical points. (We only have to consider its gradient flow on M). Theorem 1 also enables us to give low estimates for the covering dimension of the non-wandering set Ω . If M is a closed connected manifold and A is a closed subset, the following inequality holds

$$cat(A, M) \leq dim A + 1.$$

Really, let dim A=k, then for any $\varepsilon>0$ there is a ε -map $\varphi_{\varepsilon}:A\to P_k$ into a k-dimensional polyhedron. We have only to note, that P_k may be represented as the union $P_k=\bigcup_{i=1}^{k+1}F_i$ of k+1 closed subset, each F_i being a finite union of sufficiently small nonintersecting closed sets. Then, evidently $\operatorname{cat}(\varphi_{\varepsilon}^{-1}(F_i),M)=1$, therefore $\operatorname{cat}(A,M)\leq k+1$. This inequality and Theorem 1 imply the following Corollary. Let M be as in Theorem 1. Then

$$\dim\Omega \ge \frac{1}{s} \operatorname{cat} M - 1.$$

Another corollary is obtained for a flow with a finite number of critical elements (stationary points and periodic trajectories). The following theorem gives some low estimates for their number. Its conditions are obviously fulfilled for Morse-Smale flows.

Theorem 2. Let M be a closed connected manifold with a flow, satisfying Condition (*), whose non-wandering set consists of s_1 stationary points and s_2 periodic trajectories. Let $s = s_1 + s_2$. Then

- $1) s \ge \frac{1}{2} \operatorname{cat} M.$
- $2) s_1 + 2s_2 \ge \operatorname{cat} M.$
- 3) If $s < \cot M$, then there is a periodic trajectory nonhomotopic to zero in M.

Proof. 1) Evidently $cat(\Omega, M) \leq 2$ and Theorem 1 gives

$$2 \ge \operatorname{cat}(\Omega, M) \ge \frac{1}{s_0} \operatorname{cat} M \ge \frac{1}{s} \operatorname{cat} M$$

where s_0 is the number of the basic sets, i. e. $s \ge \frac{1}{2} \operatorname{cat} M$.

2) Clearly, $\cot \Omega = s_1 + 2s_2$ and again by Theorem 1 $s_1 + 2s_2 = \cot \Omega \ge \cot M$.

3) We have $\operatorname{cat}(\Omega, M) \ge \frac{1}{s} \operatorname{cat} M > 1$, i.e. $\operatorname{cat}(\Omega, M) \ge 2$ which means that Ω is not contractible into a point in M, consequently there is a periodic trajectory in Ω , which is nonhomotopic to zero in M.

Another application of Theorem 1 is the estimate of the critical set of a smooth function. It may be illustrated by the following proposition (this kind of estimates are typical in the Ljusternik-Schnirelman-Morse theory – see for example [2]).

Proposition. Let G be a finite abelian group, or $G = S^1$, or S^3 , acting freely in the n-sphere S^n . Let $f: S^n \to \mathbb{R}^1$ be a smooth function such that f(gx) = f(x) for any $x \in S^n$, $g \in G$, with exactly s critical values. Consider the critical set, where the Jacobian Df vanishes

$$\Omega = \{ x \in S^n \mid Df(x) = 0 \}.$$

Then

$$\dim \Omega \ge \frac{n+1}{s(\dim G+1)} + \dim G - 1.$$

Proof. It is well-known, that for the category of the orbit space S^n/G (which is a closed manifold) we have

$$\cot S^n/G = \frac{n+1}{\dim G + 1}$$

(see for example [1]).

Clearly, f induces a function on the orbit space $f_G: S^n/G \to \mathbb{R}^1$. Consider now the gradient flow defined by grad f_G . Its non-wandering set coincides with the critical set Ω/G of f_G . Since f_G has s critical values, Ω/G is decomposed into s basic sets. Now, the corollary from Theorem 1 gives

$$\dim\Omega\setminus G \ge \frac{n+1}{s(\dim G+1)}-1$$

which implies, naturally,

$$\dim\Omega \ge \frac{n+1}{s(\dim G+1)} + \dim G - 1.$$

REFERENCES

- 1. Bredon, G. E. Introduction to compact transformation groups. Academic press, 1972.
- 2. Klingenberg, W. Lectures on closed geodesics. Springer-Verlag, 1978.
- 3. Nitecki, Z. Differentiable dynamics. The MIT Press, 1971.
- 4. Palais, R. Ljusternik-Schnirelman theory of Banach manifolds. Topology, 5, 1966, 115-132.
- 5. Palis, J., W. de Melo. Geometric theory of dynamical systems (An introduction). Springer-Verlag, 1982.