годишник на софийския университет "св. климент охридски"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Tom 103

 $\begin{array}{c} \text{ANNUAL OF SOFIA UNIVERSITY }, \text{ST. KLIMENT OHRIDSKI}^* \end{array}$

FACULTY OF MATHEMATICS AND INFORMATICS Volume 103

LOOPS RELATED TO REFLECTION GEOMETRIES

HELMUT KARZEL

Dedicated to Johannes Böhm on the occasion of his 90-th birthday.

Keywords: Reflection Geometry, Sperner Plane, Kinematic Space, Parallelism, Loops. 2000 Math. Subject Classification: 20N05, 51J15 51M10.

1. INTRODUCTION

In the book "Theory of K-Loops" by Hubert Kiechle we find the following construction theorem for left-loops and loops (cf. $[5]$ (2.7)):

Theorem 1. Let (G, \cdot) be a group, 1 the neutral element, U a subgroup of G *and let* $L \subseteq G$ *be a transversal of the pair* (G, U) *, i.e.*

(T1) ∀ $x \in G \exists_1 \bar{x} \in L$ *with* $\bar{x} \cdot U = x \cdot U$ *.*

 $(T2)$ 1 \in *L*.

For $t, s \in L$ *let* $t \oplus s := \overline{t \cdot s}$ *. Then* (L, \oplus) *is a left loop (called derived left-loop), i.e.*

1) $\forall l \in L : 1 \oplus l = l \oplus 1 = l.$

2) ∀s, $t \in L$, \exists ₁ $x \in L$ *with* $s \oplus x = t$.

 $(L, ⊕)$ *is a loop (i.e. also the equation* $x ⊕ s = t$ *has an unique solution) if and only if the set* L *satisfies the condition (T3) - stronger as (T1) - (then* L *is called L-transversal).*

 $(T3)$ ∀x, $y \in G$: $|L \cap x \cdot U \cdot y| = 1$.

The next theorem tells us that any left-loop can be obtained by the method of Theorem 1 (cf. [5] (2.6) , (2.7) :

Theorem 2. Let $(L, +)$ be a left-loop, for $a \in L$ let $a^+ : L \to L$; $x \mapsto$ $a + x$, $L^+ := \{a^+ \mid a \in L\}$, let $G := L^+ >$ be the group generated by the left*translations* a^+ *and let* $U := \{ \xi \in G \mid \xi(o) = o \}.$ *Then* L^+ *is a transversal of* (G, U) *and the derived left-loop is isomorphic to* $(L, +)$ *.*

Under the notion "reflection geometry" or "Sperner plane" one finds all absolute planes. To any reflection geometry $(G, \mathfrak{D}, \mathfrak{B})$ we associate firstly a so called *kinematic fibration* $\mathfrak F$ of the group $\mathfrak D^2$ and then a *kinematic space* $(\mathfrak D^2, \mathfrak G, \cdot)$. To certain subgroups $F \in \mathfrak{F}$ we find in form of a plane $\langle \varepsilon \rangle$ of the kinematic space $(\mathfrak{D}^2, \mathfrak{G}, \cdot)$ a transversal of (F) . With this method we can associate to each reflection geometry in a natural way loops (L, \oplus) , which shall be studied in this paper. Also in the paper [6] by S. Pasotti, S. Pianta and E. Zizioli we find constructions of loops related to hyperbolic planes using transversals.

2. REFLECTION GROUPS , REFLECTION GEOMETRIES AND SPERNER PLANES

We recall some notions and facts taken from [1], [3] and [4]. Let (G, \cdot) be a group, $J := \{ \gamma \in G \mid \gamma^2 = id \neq \gamma \}$ and $\mathfrak{D} \subseteq J$ such that $\langle \mathfrak{D} \rangle = G$, i.e. \mathfrak{D} is a system of generators of G.

A subset $\mathfrak{b} \subseteq \mathfrak{D}$ is called *pencil* if there are $A, B \in \mathfrak{D}, A \neq B$ with $\mathfrak{b} =$ $\widehat{A}, \widehat{B} := \{ X \in \mathfrak{D} \mid A \cdot B \cdot X \in J \}.$ Let \mathfrak{B} be the set of all pencils. A pencil \mathfrak{b} is called *proper* or also *projective* if for all $\mathfrak{x} \in \mathfrak{B}$, $\mathfrak{b} \cap \mathfrak{x} \neq \emptyset$. Let \mathfrak{B}_o be the set of all proper pencils.

We claim (*Three reflection Axiom*):

(S) If **b** is a pencil and $A, B, C \in \mathfrak{b}$, then $A \cdot B \cdot C \in \mathfrak{D}$ and then if $\mathfrak{B}_o \neq \emptyset$, we call the pair (G, \mathfrak{D}) *reflection group.*

Proposition 1. If (G, \mathcal{D}) is a reflection group then

1. $\mathfrak{D}^4 = \mathfrak{D}^2$, i. e. \mathfrak{D}^2 is a subgroup of G.

- 2. For $\mathfrak{b} \in \mathfrak{B}$ the set $\mathfrak{b}^2 := \{ X \cdot Y \mid X, Y \in \mathfrak{b} \}$ is a commutative subgroup of \mathfrak{D}^2 .
- 3. For $\mathfrak{b}_1, \mathfrak{b}_2 \in \mathfrak{B}$ we have: $\mathfrak{b}_1^2 \cap \mathfrak{b}_2^2 = \{1\} \iff \mathfrak{b}_1 \neq \mathfrak{b}_2$.
- 4. For $\xi \in G$ and $\mathfrak{b} \in \mathfrak{B}$ we have $\xi \cdot \mathfrak{b} \cdot \xi^{-1} \in \mathfrak{B}$.

To a reflection group (G, \mathfrak{D}) we associate the following geometric structure $(G, \mathfrak{D}, \mathfrak{B})$ called *reflection geometry*: The elements of \mathfrak{D} are called *lines*, of \mathfrak{B} *points* and of \mathfrak{B}_o *projective points*. The incidence between a line $L \in \mathfrak{D}$ and a point

 $\mathfrak{b} \in \mathfrak{B}$ is given by $L \in \mathfrak{b}$. A reflection geometry $(G, \mathfrak{D}, \mathfrak{B})$ is called *Sperner plane* if every line $G \in \mathfrak{D}$ is incident with in at least three distinct projective points.

If in a reflection geometry there exist more than one pencil then there exist $A, B, C \in \mathfrak{D}$ with $A \cdot B \cdot C \neq C \cdot B \cdot A$.

Let $A, B \in \mathfrak{D}$ with $A \neq B$ and $\mathfrak{b} := \overbrace{A, B}$. We call A and B *orthogonal* and denote that by $A \perp B$ if $A \cdot B \in J$ and then **b** is called an *orthogonal pencil*.

A Sperner plane is called *regular* if for every $A \in \mathfrak{D}$, the set $A^{\perp} := \{X \in$ $\mathfrak{D} \mid X \perp A$ is a pencil and then A^{\perp} is called the *pole* of the line A.

Let $\mathfrak{P} := \mathfrak{D}^2 \cap J$. If $p \in \mathfrak{P}$ then $\mathfrak{p} := \{ X \in \mathfrak{D} \mid p \cdot X \in J \}$ is an orthogonal pencil. Hence the set of all orthogonal pencils can be identified with the set \mathfrak{P} of all involutions contained in the group \mathfrak{D}^2 .

Proposition 2. Let $(G, \mathfrak{D}, \mathfrak{B})$ be a Sperner plane and let $\alpha \in G$ then

- 1. If $(G, \mathfrak{D}, \mathfrak{B})$ is regular then $\mathfrak{B}_o \subseteq \mathfrak{P}$.
- 2. The map

$$
\widetilde{\alpha} \; : \; G \; \rightarrow \; G \; : \; \xi \; \mapsto \; \alpha \cdot \xi \cdot \alpha^{-1}
$$

maps lines onto lines, points onto points, preserves incidence and orthogonality hence $\tilde{\alpha}$ is a motion of the Sperner plane.

If $\alpha \in \mathfrak{D}$ resp. $\alpha \in \mathfrak{P}$ then $\tilde{\alpha}$ is called *line-reflection* resp. *point-reflection*. If to $a, b \in \mathfrak{B}$ there is a $m \in \mathfrak{B}$ with $\widetilde{m}(a) = b$ then m is called *midpoint* of a and b. A regular Sperner plane with $\mathfrak{B}_o = \mathfrak{P}$ is called *midpoint plane* if for any two distinct points there exists exactly one midpoint.

Proposition 3. Let $(G, \mathfrak{D}, \mathfrak{B})$ be a midpoint plane, let $o \in \mathfrak{P}$ be fixed and for $x \in \mathfrak{P}$ let x' be the midpoint of o and x and let $x^+ := \widetilde{x'} \circ \widetilde{o}$. If for $a, b \in \mathfrak{P}$

$$
a \oplus b := a^+(b)
$$

then (\mathfrak{P}, \oplus) is a loop, even a K-loop.

3. THE KINEMATIC SPACE OF A SPERNER PLANE

Now we associate to a reflection group (G, \mathfrak{D}) a spatial structure. By 3. and 4. of Proposition 1 the set $\mathfrak{F} := \{ \mathfrak{b}^2 \mid \mathfrak{b} \in \mathfrak{B} \}$ forms a *kinematic fibration of the group* \mathfrak{D}^2 , i.e.

- 1) $\bigcup \mathfrak{F} = \mathfrak{D}^2$.
- 2) $\forall U, V \in \mathfrak{F}, U \cap V = \{1\} \text{ or } U = V.$
- 3) If $\xi \in \mathfrak{D}^2$ and $U \in \mathfrak{F}$ then $\xi \cdot U \cdot \xi^{-1} \in \mathfrak{F}$.

Therefore if we call the elements of \mathfrak{D}^2 *points* and of $\mathfrak{G} := {\gamma \cdot F \mid \gamma \in \mathfrak{D}^2, F \in \mathfrak{F}}$ *lines* then $(\mathcal{D}^2, \mathfrak{G})$ is an incidence space and the triple $(\mathcal{D}^2, \mathfrak{G}, \cdot)$ is called *kinematic space* (cf. [2]).

A subset $\Delta \subseteq \mathfrak{D}^2$ is called *subspace* if for all $\alpha, \beta \in \Delta$ with $\alpha \neq \beta$ the line α, β joining the points α and β is contained in Δ .

If $\alpha \in \mathcal{D}^2 \setminus \{1\}$ let $[\alpha]$ denote the unique fiber of \mathfrak{F} with $\alpha \in [\alpha]$. By Proposition 8. of [4] we have

Proposition 4. $\alpha, \beta, \gamma \in \mathbb{Q}^2$ are collinear if and only if

$$
\beta \cdot \alpha^{-1} \cdot \gamma = \gamma \cdot \alpha^{-1} \cdot \beta.
$$

Let $\mathfrak{F}_o := {\mathfrak{b}^2 \mid \mathfrak{b} \in \mathfrak{B}_o}$ the subset of fibers coming from proper pencils. The elements of the subset $\mathfrak{G}_o := \{ \xi \cdot U \mid \xi \in \mathfrak{D}^2, U \in \mathfrak{F}_o \}$ are called *projective lines.*

For $\varepsilon \in \mathfrak{D}^3$ let $\langle \varepsilon \rangle := \{ \xi \in \mathfrak{D}^2 \mid \varepsilon \cdot \xi \in \mathfrak{D} \} = \varepsilon^{-1} \cdot \mathfrak{D}$.

By Proposition 10 of [4] we have

Proposition 5. Let $\epsilon \in \mathfrak{D}^3$, $F \in \mathfrak{F}_o$ a projective fiber, $\xi \in \mathfrak{D}^2$, $G := \xi \cdot F$ hence $G \in \mathfrak{G}_o$ then

- 1. $\langle \varepsilon \rangle \cap F \neq \emptyset$.
- $2. < \varepsilon > 0$ $G \neq \emptyset$.
- 3. If $F \subset \langle \varepsilon \rangle$ and $G \neq F$ then $| \langle \varepsilon \rangle \cap G | = 1$.
- 4. $\langle \varepsilon \rangle$ is a plane.
- 5. If G is contained in the plane $\langle \varepsilon \rangle$ then G meets any line $A \in \mathfrak{G}$ which is contained in the plane $\langle \varepsilon \rangle$.

4. PARALLELISMS IN A KINEMATIC SPACE

Let $(\mathfrak{D}^2, \mathfrak{G}, \cdot)$ be the kinematic space belonging to the kinematic fibration $\mathfrak{F} :=$ $\{\mathfrak{b}^2 \mid \mathfrak{b} \in \mathfrak{B}\}\$ of the group \mathfrak{D}^2 . Then for $G \in \mathfrak{G}$, $G^{-1} \cdot G \in \mathfrak{F}$ and therefore we can define a left and a right parallelism. For $A, B \in \mathfrak{G}$ let

$$
A \|_{l} B \Longleftrightarrow A^{-1} \cdot A = B^{-1} \cdot B, \qquad A \|_{r} B \Longleftrightarrow A \cdot A^{-1} = B \cdot B^{-1}.
$$

If $A \in \mathfrak{G}$ and $\beta \in \mathfrak{D}^2$ then there is exactly one line $B := (\beta \|_{l} A)$ with $B \|_{l} A$ and $\beta \in B$, namely $B := (\beta ||_l A) = \beta \cdot A^{-1} \cdot A$.

By the last remarks of [4] we have:

Theorem 3. Let $\varepsilon \in \mathfrak{D}^3$ and let $G \in \mathfrak{G}_o$ a projective line. Then:

- *1.* If $H \in \mathfrak{G}$ and $H \parallel_{l} G$ or $H \parallel_{r} G$ then $H \in \mathfrak{G}_{o}$.
- 2. There is exactly one projective line denoted by $(\varepsilon \parallel_L G)$ *resp.* $(\varepsilon \parallel_T G)$ *contained in* $\langle \varepsilon \rangle$ *such that* $(\varepsilon ||_l G) ||_l G$ *resp.* $(\varepsilon ||_r G) ||_r G$ *.*
- *3.* If $L \in \mathfrak{G}$ with $L \parallel_{l} G$ and $L \neq (\varepsilon \parallel_{l} G)$ or with $L \parallel_{r} G$ and $L \neq (\varepsilon \parallel_{r} G)$ *then* $|L \cap \langle \varepsilon \rangle| = 1$ *.*

Theorem 4. Let $(G, \mathfrak{D}, \mathfrak{B})$ be a Sperner plane, let $\mathfrak{b} \in \mathfrak{B}_o$ be a proper pencil, *let* $F := \mathfrak{b}^2$, *let* $A \in \mathfrak{b}$ *and let* $T := \{ \langle A \rangle | F \} \cup \{1\}$ *. Then*

- *1.* F is a commutative subgroup of \mathcal{D}^2 and a projective line of the corresponding $kinematic space$ $(\mathfrak{D}^2, \mathfrak{G}, \cdot),$
- 2. $\langle A \rangle$ *is a plane of* $(\mathfrak{D}^2, \mathfrak{G}, \cdot)$ *with* $F \subseteq \langle A \rangle$.
- 3. $\forall \alpha, \beta \in \mathfrak{D}^2$, $\alpha \cdot F \cdot \beta$ *is a projective line and* $\alpha \cdot F \cdot \beta \cap \langle A \rangle \neq \emptyset$ *.*
- 4. For each $\alpha \in \mathfrak{D}^2 \setminus F$ the line $(\alpha \parallel_l F) = \alpha \cdot F$ meets the plane $\langle A \rangle$ in *exactly one point* $\bar{\alpha}$ *and we have* $\bar{\alpha} = \alpha \Leftrightarrow \alpha \in A$ *. For* $\alpha \in F$ *let* $\bar{\alpha} := 1$ *.*
- *5. T is a transversal of* (\mathcal{D}^2, F) *hence* (T, \oplus) *with* $\alpha \oplus \beta := \overline{\alpha \cdot \beta}$ *for* $\alpha, \beta \in T$ *is a left loop.*
- 6. T is a L-transversal of (\mathcal{D}^2, F) hence (T, \oplus) is a loop and 1 is the neutral *element of* (T, \oplus) *.*

5. PROPERTIES OF THE LOOP OF A SPERNER PLANE

Let (T, \oplus) be the loop corresponding to a Sperner plane according to Theorem 4. Then if $\alpha, \beta \in T$ and if $\alpha \cdot \beta \in T$ we obtain $\alpha \oplus \beta = \alpha \cdot \beta$. Now let $\alpha \in T \setminus \{1\}$ and $[\alpha] = \overline{1,\alpha}$. Then $[\alpha]$ is a subgroup of \mathfrak{D}^2 and $[\alpha] \subset T$. Hence on $[\alpha]$ coincide the operations \cdot and \oplus and we have:

Theorem 5. (T, \oplus) *is a fibered loop with the fibration* $\mathfrak{F}' := \mathfrak{F} \setminus \{F\}$ *and each fiber* $X \in \mathfrak{F}'$ *is a commutative subgroup of the loop* (T, \oplus) *.*

6. REFERENCES

- [1] Karzel, H.: Gruppentheoretische Begr¨undung metrischer Geometrien, Vorlesungsausarbeitung von G. Graumann, Hamburg, 1963.
- [2] Karzel, H.: Kinematic Spaces, Istituto Nazionale di Alta Matematica, Symposia Mathematica XI, 1973, 413–439.

- [3] Karzel, H., Sörensen, K., Windelberg, D.: Einführung in die Geometrie, Vandenhoeck, Göttingen, 1973.
- [4] Karzel, H., Taherian, S.-Gh.: Some Properties of Reflection Geometries and the correspopnding Group Space, to be submitted.
- [5] Kiechle, H.: Theory of K-Loops, Lecture Notes in Mathematics 1778, Springer, Heidelberg, 2002.
- [6] Pasotti,S., Pianta, S., Zizioli, E.: A Geometric Environment for Building up Loops, Results Math. 68, 2015, 415–426.

Received on October 31, 2015

Helmut Karzel

Faculty of Mathematics and Informatics Zentrum Mathematik, T.U. München D-80290 München GERMANY

e-mail: karzel@ma.tum.de