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1. INTRODUCTION

In the book ”Theory of K-Loops” by Hubert Kiechle we find the following
construction theorem for left-loops and loops (cf. [5] (2.7)):

Theorem 1. Let (G, ·) be a group, 1 the neutral element, U a subgroup of G
and let L ⊆ G be a transversal of the pair (G,U), i.e.

(T1) ∀x ∈ G ∃1x̄ ∈ L with x̄ · U = x · U .

(T2) 1 ∈ L.

For t, s ∈ L let t ⊕ s := t · s. Then (L,⊕) is a left loop (called derived left-loop),
i.e.

1) ∀l ∈ L : 1 ⊕ l = l ⊕ 1 = l.

2) ∀s, t ∈ L, ∃1x ∈ L with s⊕ x = t.

(L,⊕) is a loop (i.e. also the equation x⊕ s = t has an unique solution) if and
only if the set L satisfies the condition (T3) - stronger as (T1) - (then L is called
L-transversal).

(T3) ∀x, y ∈ G : |L ∩ x · U · y| = 1.
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The next theorem tells us that any left-loop can be obtained by the method of
Theorem 1 (cf. [5] (2.6), (2.7)):

Theorem 2. Let (L,+) be a left-loop, for a ∈ L let a+ : L → L ; x (→
a + x, L+ := {a+ | a ∈ L}, let G :=< L+ > be the group generated by the left-
translations a+ and let U := {ξ ∈ G | ξ(o) = o}. Then L+ is a transversal of
(G,U) and the derived left-loop is isomorphic to (L,+).

Under the notion ”reflection geometry” or “Sperner plane” one finds all abso-
lute planes. To any reflection geometry (G,D,B) we associate firstly a so called
kinematic fibration F of the group D2 and then a kinematic space (D2,G, ·). To
certain subgroups F ∈ F we find in form of a plane < ε > of the kinematic space
(D2,G, ·) a transversal of (F ). With this method we can associate to each reflec-
tion geometry in a natural way loops (L,⊕), which shall be studied in this paper.
Also in the paper [6] by S. Pasotti, S. Pianta and E. Zizioli we find constructions
of loops related to hyperbolic planes using transversals.

2. REFLECTION GROUPS , REFLECTION GEOMETRIES AND SPERNER
PLANES

We recall some notions and facts taken from [1], [3] and [4]. Let (G, ·) be a
group, J := {γ ∈ G | γ2 = id += γ} and D ⊆ J such that < D >= G, i.e. D is a
system of generators of G.

A subset b ⊆ D is called pencil if there are A,B ∈ D, A += B with

b =
︷︸︸︷
A,B := {X ∈ D | A ·B ·X ∈ J}. Let B be the set of all pencils. A pencil b is

called proper or also projective if for all x ∈ B, b ∩ x += ∅. Let Bo be the set of all
proper pencils.

We claim (Three reflection Axiom):

(S) If b is a pencil and A,B,C ∈ b, then A · B · C ∈ D and then if Bo += ∅,
we call the pair (G,D) reflection group.

Proposition 1. If (G,D) is a reflection group then

1. D4 = D2, i. e. D2 is a subgroup of G.

2. For b ∈ B the set b2 := {X ·Y | X,Y ∈ b} is a commutative subgroup of D2.

3. For b1, b2 ∈ B we have: b21 ∩ b22 = {1} ⇐⇒ b1 += b2.

4. For ξ ∈ G and b ∈ B we have ξ · b · ξ−1 ∈ B.

To a reflection group (G,D) we associate the following geometric structure
(G,D,B) called reflection geometry: The elements of D are called lines, of B
points and of Bo projective points. The incidence between a line L ∈ D and a point
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b ∈ B is given by L ∈ b. A reflection geometry (G,D,B) is called Sperner plane if
every line G ∈ D is incident with in at least three distinct projective points.

If in a reflection geometry there exist more than one pencil then there exist
A,B,C ∈ D with A ·B · C += C ·B ·A .

Let A,B ∈ D with A += B and b :=
︷︸︸︷
A,B. We call A and B orthogonal and

denote that by A ⊥ B if A ·B ∈ J and then b is called an orthogonal pencil.

A Sperner plane is called regular if for every A ∈ D , the set A⊥ := {X ∈
D | X ⊥ A} is a pencil and then A⊥ is called the pole of the line A.

Let P := D2 ∩ J . If p ∈ P then p := {X ∈ D | p · X ∈ J} is an orthogonal
pencil. Hence the set of all orthogonal pencils can be identified with the set P of
all involutions contained in the group D2.

Proposition 2. Let (G,D,B) be a Sperner plane and let α ∈ G then

1. If (G,D,B) is regular then Bo ⊆ P.

2. The map
α̃ : G → G : ξ (→ α · ξ · α−1

maps lines onto lines, points onto points, preserves incidence and orthogonal-
ity hence α̃ is a motion of the Sperner plane.

If α ∈ D resp. α ∈ P then α̃ is called line-reflection resp. point-reflection. If
to a, b ∈ P there is a m ∈ P with m̃(a) = b then m is called midpoint of a and b. A
regular Sperner plane with Bo = P is called midpoint plane if for any two distinct
points there exists exactly one midpoint.

Proposition 3. Let (G,D,B) be a midpoint plane, let o ∈ P be fixed and
for x ∈ P let x′ be the midpoint of o and x and let x+ := x̃′ ◦ õ. If for a, b ∈ P

a⊕ b := a+(b)

then (P,⊕) is a loop, even a K-loop.

3. THE KINEMATIC SPACE OF A SPERNER PLANE

Now we associate to a reflection group (G,D) a spatial structure. By 3. and 4.
of Proposition 1 the set F := {b2 |b ∈ B} forms a kinematic fibration of the group
D2, i.e.

1)
⋃
F = D2.

2) ∀U, V ∈ F, U ∩ V = {1} or U = V .

3) If ξ ∈ D2 and U ∈ F then ξ · U · ξ−1 ∈ F.
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Therefore if we call the elements of D2 points and of G := {γ · F | γ ∈ D2, F ∈ F}
lines then (D2,G) is an incidence space and the triple (D2,G, ·) is called kinematic
space (cf. [2]).

A subset ∆ ⊆ D2 is called subspace if for all α, β ∈ ∆ with α += β the line α, β
joining the points α and β is contained in ∆.

If α ∈ D2 \ {1} let [α] denote the unique fiber of F with α ∈ [α].

By Proposition 8. of [4] we have

Proposition 4. α, β, γ ∈ D2 are collinear if and only if

β · α−1 · γ = γ · α−1 · β.

Let Fo := {b2 | b ∈ Bo} the subset of fibers coming from proper pencils. The
elements of the subset Go := {ξ · U |ξ ∈ D2, U ∈ Fo} are called projective lines.

For ε ∈ D3 let < ε >:= {ξ ∈ D2 | ε · ξ ∈ D} = ε−1 ·D.

By Proposition 10 of [4] we have

Proposition 5. Let ǫ ∈ D3 , F ∈ Fo a projective fiber, ξ ∈ D2, G := ξ · F
hence G ∈ Go then

1. < ε > ∩F += ∅.

2. < ε > ∩ G += ∅.

3. If F ⊆< ε > and G += F then | < ε > ∩ G| = 1.

4. < ε > is a plane.

5. If G is contained in the plane < ε > then G meets any line A ∈ G which is
contained in the plane < ε >.

4. PARALLELISMS IN A KINEMATIC SPACE

Let (D2,G, ·) be the kinematic space belonging to the kinematic fibration F :=
{b2 |b ∈ B} of the group D2. Then for G ∈ G, G−1 · G ∈ F and therefore we can
define a left and a right parallelism. For A,B ∈ G let

A ‖l B ⇐⇒ A−1 ·A = B−1 ·B, A ‖r B ⇐⇒ A ·A−1 = B ·B−1.

If A ∈ G and β ∈ D2 then there is exactly one line B := (β ‖l A) with B ‖l A and
β ∈ B , namely B := (β ‖l A) = β ·A−1 ·A.

By the last remarks of [4] we have:

Theorem 3. Let ε ∈ D3 and let G ∈ Go a projective line. Then:
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1. If H ∈ G and H ‖l G or H ‖r G then H ∈ Go.

2. There is exactly one projective line denoted by (ε ‖l G) resp. (ε ‖r G)
contained in < ε > such that (ε ‖l G) ‖l G resp. (ε ‖r G) ‖r G.

3. If L ∈ G with L ‖l G and L += (ε ‖l G) or with L ‖r G and L += (ε ‖r G)
then |L∩ < ε > | = 1.

Theorem 4. Let (G,D,B) be a Sperner plane, let b ∈ Bo be a proper pencil,
let F := b2 , let A ∈ b and let T := (< A > \F ) ∪ {1}. Then

1. F is a commutative subgroup of D2 and a projective line of the corresponding
kinematic space (D2,G, ·),

2. < A > is a plane of (D2,G, ·) with F ⊆< A >.

3. ∀α, β ∈ D2, α · F · β is a projective line and α · F · β∩ < A > += ∅.

4. For each α ∈ D2 \ F the line (α ‖l F ) = α · F meets the plane < A > in
exactly one point ᾱ and we have ᾱ = α ⇔ α ∈ A. For α ∈ F let ᾱ := 1.

5. T is a transversal of (D2, F ) hence (T,⊕) with α⊕β := α · β for α, β ∈ T is
a left loop.

6. T is a L-transversal of (D2, F ) hence (T,⊕) is a loop and 1 is the neutral
element of (T,⊕).

5. PROPERTIES OF THE LOOP OF A SPERNER PLANE

Let (T,⊕) be the loop corresponding to a Sperner plane according to Theorem
4. Then if α, β ∈ T and if α · β ∈ T we obtain α⊕ β = α · β. Now let α ∈ T \ {1}
and [α] = 1, α. Then [α] is a subgroup of D2 and [α] ⊆ T . Hence on [α] coincide
the operations · and ⊕ and we have:

Theorem 5. (T,⊕) is a fibered loop with the fibration F′ := F \ {F} and each
fiber X ∈ F′ is a commutative subgroup of the loop (T,⊕).
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