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NEWTONIAN AND EULERIAN DYNAMICAL AXIOMS
IV. THE EULERIAN DYNAMICAL EQUATIONS

GEORGI CHOBANOV, IVAN CHOBANOV

—

While the problem of oscillation of a heavy rigid body about a fixed axis
had been solved correctly by Huygens, and while a more satisfactory method con-
taining the germ of several later principles had been created by James Bernoulli
in 1703, in 1750 it could not be said that the general motion of a rigid body was
understood at all. Even for motion about a fixed axis, the reaction of the body
upon its support could not be calculated, and no method for determining the
behaviour of a spinning top was known.

Euler's “first principles” changed the scene overnight ... in the paper
Découverte d’un nouveau principe de mécanigue, written 1750 and published
1752, where these principles are published, Euler obtained the general equations
of motion of a rigid body about its center of gravity. He applied the “first prin-
ciples” to the elements of mass making up the body, at the same time replacing
the acceleration of the element by its expression in terms of the angular velocity
vector, which makes its first appearance here, Taking moments about the center
of gravity then yields, after some reduction, the differential equations of motion
known as “Euler’s equations” for a rigid body, subject to assigned torque about
its center of mass. In the process arise naturally the six components of what is
now called the “tensor of inertia”. .

C. Truesdell: 4 Program Towards Rediscovering the Rational Mechanics of the
Age of Reason

Teopzu Yobanos, Heanw Yobanos. IHUHAMUYECKHUE AKCHOMBI HBOTOHA H
SUNEPA. IV. IUHAMWUECKUE YPABHEHUA 2R JIEPA

»

B etoit ueTnepTol uacTu cepun cratweit [1-3], nocBemeEbe AMHAMMUECKHM AKCHO-
mam HeioTosa u Ditnepa, ocoboe BHUMAHME yeTIeHO AMHAMHUYECKUM ypaBHeHHAM Difnepa,
yupasisaiomue ZBHMMKEHUA BCAKMX TBEPAHX TeN, Kak ¢BOOOAHKX, TAK M DOOYMHEHHBIX NPO-
M3BOALAKM KOHEYHHIM M MHOWHMTEIUMAJILHHM CBA3AM. B UYaCTHOCTM, AHAJIM3MPOBAHLI
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YPaBHCHUA ABUMKEHMSH TBEDILIX upyTthen. PaBoTa conepwur hojpobuniit avanus numamu-
YecKoR hunocodun HanambBepa u JI arpan#aa, paccMmatpueawuian “le COTPS proposé comme
P'assemblage d’une infinité de corpuscules ou points massifs unis ensamble de maniére qu'ils garden-
t toujours nécéssairement entre eux les mémes distances”, KOTODLI MOKA3HBaET, YTo HOAG6HLSA
TUIOTE3a NPUBOAMT K NPOTMBOPEUHIO ¢ BTOpoO# arcuomoit Heiovona, a UMEHRO, YTo “mu-
tationem motus proportionalem esse vi motrici impressae et fieri secundum lineam rectam, qua
vis illa imprimitur”.

‘Georgi Chobanow, Ivan Chobanov. NEWTONIAN AND EULERIAN DYNAMICAL AXIOMS.
IV. THE EULERIAN DYNAMICAL EQUATIONS :

In this fourth part of the series of articles [1-3], dedicated to the Newtonian and Eulerian
dynamical axioms, special stress is put on Euler's dynamical equations governing the motion of
any rigid body both free and subjected to arbitrary finite and infinitesimal constraints. In par-
ticular, the equations of motion of rigid rods are discussed. The paper contains a detailed anal-
ysis of D’Alembert’s and Lagrange’s dynamical philosophy, regarding “le corps proposé comme
Passemblage d'une infinité de corpuscules ou points massifs unis ensemble de maniére qu'ils gar-
dent toujours nécéssairement entre eux les mémes distances”, which displays clearly that such a
hypothesis leads to a contradiction with Newton’s second dynamical law, namely “mutationem
motus proportionalem esse vi motrici impressae et fieri secundum lineam rectam, qua vis illa
imprimatur”.

‘This paper is the natural sequel of a series of articles {1-3], published in this
Annual some time ago and concerning the logical status of the Newtonian and
Eulerian dynamical axioms (the laws, or principles, or postulates, or hypotheses,
etc. of momentum and of moment of momentum for mass-points and rigid bod-
ies respectively) in the edifice of analytical mechanics and their connection with
Hilbert’s Sixth Problem for the axiomatic consolidation of its logical foundations.
As almost any second year student has it at his finger’s ends, though not every au-
thor of dynamical treatises is aware of the fact, the whole of rigid body dynamics is
based on, and is developed from, the following two assumptions, or suppositions, or
conjectures, or maxims, or tenets, etceteras, formulated by Euler as early as 1750
and nowadays bearing his name: |

Ax 1 E (First Eulerian dynamical aziom or principle of momentum of a rigid
body). There exists such a rigid system of reference X that, all derivatives being
taken with respect to X, for any rigid body S and for any system of forces 9,

acting on S, the derivative with respect to the time of the momentum of S equals
the basis of 9. :

Df1 E. Any system of reference, satisfying Ax 1 E, is called inertial according
to Euler. '

Ax 2 E (Second Eulerian dynamical aziom or principle of moment of momen-
tum (kinetical moment) of a rigid body). X being an inertial according to Euler
system of reference and all derivatives being taken with respect to X, for any rigid
body S and for any system of forces @, acting on S, the derivative with respect to

the #zmg of the moment of momentum of S equals the moment of 2, both moments

being taken with respect to the origin of I.
Before proceeding further, let us make a most important remark that is a mat-
- ter of principle, since it concerns the logical status of Ax 1 E and Ax 2 E in the

42



system of rigid body dynamics. Euler’s dynamical axioms Ax 1 £ and Ax 2 E
involve a set of terms specific for analytical mechanics and proclaim certain rela-
tions between the mechanical entities these terms nominate. The terms themselves
are: system of reference, rigid system of reference, origin of a system of reference,
derivative (of a vector function) with respect to a system of reference, momentum
of a rigid body, moment of momentum (kinetical moment) of a rigid body, system
of forces, basis of a system of forces, moment of a system of forces (with respect to
a given pole), acting, and time.

Now all the above terms, with the explicit exception of the last two, are capa-
ble to a strict mathematical definition — at least as strict as the term “integral”
- in analysis. The meaning of this statement reduces to the following mathematical
fact. As it is well-known [4], a real standard vector space V is defined axiomatically
as a set, in which four operations (addition in V', multiplication of the real num-
bers with the elements of V', scalar multiplication of the elements of V, and vector
multiplication in V) are defined, satisfying 15 (3, 4, 5, and 3, respectively, for any
of the operations listed above) specific axioms. Now V once granted, all the terms
Ax 1 E and Ax 2 E include, with the exceptions of acting and time, are potentially
and actually definitable by means of the algebraical and analytical apparatus in V.
It goes without saying that the effective reproduction of the mentioned definitions
is out of question here: the reader, taking an interest in this matter, may be re-
ferred to the corresponding literary sources. The cold fact remains that using the
algebra and analysis in V' as mathematical tools and the elements of V' as mathe-
matical building materials all the notions the Eulerian dynamical axioms Ax 1 E and
Ax 2 E include, with the emphasized exception of acting and time, may be
given specific mathematical definitions satisfying the most severe logical standards
of Twentieth Century’s mathematics. As regards the notions acting and fime, their
logical status in analytical mechanics is identical with that of the notions point, line,
and plane in Euclidean geometry. | |

In other words, if all the terms the Eulerian dynamical axioms Ax 1 E and
Ax 2 E include were capable of explicit mathematical definitions, then these state-
ments would be (true of false) dynamical theorems. Now the fact that Ax 1 E
and Ax 2 E involve terms incapable of such definitions reduces these statements to
dynamical axioms which, in their turn, define (along with other, as yet unstated,
dynamical axioms) the terms acting and time implicitly. In such a manner, Ax 1 E
and Ax 2 E are mathematical predicates that are neither provable nor disprovable,
- just like the fifth postulate in geometry or the mathematical induction in arith-
 metic. Putting it in another way, one has every right to accept Ax 1 Eand Ax2 E
or to reject them. In the first case one arrives at the Eulerian rigid body dynamics;
as regards the second case, one is faced with one’s own problems.

The Eulerian dynamical axioms are nowadays universally accepted — at least
as universally as Euclidean geometry. Analytical dynamics may be then, if not
defined, at least rather adequately described, as the mathematics of equilibria and
motions of mass-points and rigid bodies, and of the forces, which generate these
equilibria and motions and are generated by them. In the same manner, the Eule-
rian rigid body dynamics may be described as the set of mathematical corollaries
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derived from Ax 1 E and Ax 2 E. In other words, one may look upon the Eulerian
dynamical axioms as questions: if Ax 1 E and Ax 2 E, then what? The answer is
one and only: then modern analytical dynamics.

After these general and hence somewhat vague memoranda let us now proceed
to the mathematical formalization of Ax 1 E and Ax 2 E.

First and foremost, let Ozyz be an inertial according to Euler orthonormal
right-hand orientated Cartesian system of reference (the existence of one at least
such a system is ensured by Ax 1 E) with unit vectors 1, 5, k of the axes Oz, Oy,
Oz, respectively. In other words,

(1) i?=32=1, ij=0, k=ixj.

Second, let Q€n¢ be an orthonormal right-hand orientated Cartesian system of
reference, invariably connected with the rigid body S (the existence of one at least
such a system is ensured by the very definition of the rigid body concept) with unit
vectors £0, 79, (9 of the axes Q¢, Qn, QC, respectively. In other words,

(2) €)' =1 =1, £%°=0, (°=£&°x7°
Let the costne-directors a,, (g, v = 1, 2, 3) of Ozyz and Q&n¢ be defined by
{ i =a11€% + a127% + a13( °,

3= an€® + azn° + a2s(°,
k= a31£° 4 azf® + azal .

(3)

Then (1)—(3) imply
€% = ani + anj + ank,

(4) 7% = a12i + azj + assk,
€% = ay3t + aaj + assk.

Let P be any point and

(5) r=0P, rqo=00, j=QP.

Then the identity OP = O + QP implies

(6) r=ro+p

If |

(7) r =zt + yj + 2k,

8 ro = rat + yaJ + zak,
@ p=8E0+mi®+¢C°

tizen (6) and (3), (4) imply

z =z + a11€ + a12n + a13(,
(10) Y= ya + a2 + axan + aga(,
z = 20 + az1€ + azan + ass
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and inversely

€ = ay(z—za)+an(y - ya) + asi(z — za),
(11) n = aia(z — za) +az2(y — ya) + as(z — za),
¢ = aya(z — za) + a2s(y — ya) + asa(z — za)-
If
(12) kx(#o,

then let the elementary angle 0 and the orientated angles ¢ and ¢ be defined as
follows: ' .

(13) cos 8 = k(° (0 < 8 < ™),
(14) sing = j5° cosy=47" (029< 27),
(15) sinq:»:-—ﬁoﬁ?o, cos’go:f%’xo (0 g @ < 27),
provided |
: o kx(°
16 L .
(16) 7 sin @

Then ¥, ¢, § are called the Eulerian angles of the systerns of reference Ozyz and
Qen¢, and ‘
‘ (a1 =coswcosgo--sin'¢f)sin<pcasﬁ,

ayg = — COS Y sin { = 8in 1 COS @ COS B,
a3 = sinysinf,

a91 = sin ¥ cos ¢ + co8 1 sin g cos B,
(17) § a2 = -»sin*&bsinc,o—kcosrﬁcoswcos@, *
Qo3 = — COS Y sin B,

as, = singsinf,

azs = cos psin b,

\ ags = cos ¥,

i.e.
(18) a}w = a;ﬁf/('d):@:g) (ﬂ, v= 1) 2: 3)

are completely determined functions of ¥, ¢, 6.

The first and the second derivatives of the scalar functions with respect to
the time t are traditionally denoted in analytical mechanics by means of one and
two dots, respectively, placed over the corresponding symbols representing those

d?

functions. As regards the vector functions, the dots and the symbols = and Ty

are reserved for their derivatives with respect to the system of reference Ozyz only,

e : . ) 82
their derivatives with respect to Qén¢ being denoted by the symbols 5 and e
Thus, if

(19) a = azi+ 6yJ +a:k
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and
(20) a=a:£%+a,7%+a,C°,

then the derivatives of a with respect to the time and with regard to Ozyz and
Q€n¢ are -

(21) g:a::azz+ay3+azk
and

| é A
(22) 3?‘ = 48" + a7 ° + a0,

respectively. The derivatives (21) and (22) are sometimes qualified by the use of
the adjectives absolute and relative, respectively.
The instantaneous angular velocity

(23) @=%(€°X§G+ﬁ0><'5°+f°xf°)

of 2€n¢ with respect to Ozyz is defined as the only solution of the system of vector
equations :

*

(24) OxE0=€% ox7%=4% Gx¢0= o,
If

(25) @ :wgéo—i-w,}ﬁe—f—w(fo,
then the relations '
we = zf;sinﬁ +écosg¢,
(26) wy = Ysinf — §sin @,
Lwe =1cosf + 7

are called the Eulerian Linematicql equations.
If (19)-(22), then

(27) o F=tias
whence
, do 6o
2 _ =
(28) dt ét

Now (28) and (25), (22) imply
(29) @ =gl + 0y + e CO,
* By definition the point P Vbelongs to the rigid body § if, and only if,

“ § |
(30) ;g? =o (W),
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in other words, iff

(31) §=0=(=0 (v1)
provided (9) by virtue of (22). Since (6) and {27) imply
, dr _drq 6p  _
32) Cow T @ Tatex
the definition (30} and '

, dr dra

‘)_' . = e, e
(33) T T
imply that ‘

{34) v=wvq+@Xp (Vt)

is a necessary and sufficient condition for P in order to belong to the rigid body S.

The set Vs of all points P belonging to a rigid body S, i.e. of all (§) with (30)
or, just the same, with {31}, constitutes a real standard vector space. Now the very
definition of the rigid body concept presupposes that a function

{35) ‘ %: Vs — [0,00)

;s defined, such that the integral

(36) | m:]%@@
Vs

exists; %(p) is called the ‘density of S at the point P, and m is called the mass
of §. The density, as well as the mass of a rigid body play a fundamental role in
both analytical statics and analytical dynamics. In mechanics of rigid bodies with
constant mass 1t is supposed that

30 | f’%fl:a (V5 € Vs, V1)

— a condition that will be hypothesized in the sequel.
The traditional notation

(38) ‘ dm = «(p) dp,

as convenient as incorrect, is frequently used, dm being called an elementary mass
of S; besides, Vs is usually omitted in the record of the integral (36), being implied
by the context. Using this convention and the notation (38), the definition (36)
may be written in the following popular though somewhat enigmatic form:

{39) m= ,// dm.
Now (36)—(39) imply

(40) — =0 (V).
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Before proceeding further, it is nec plus ultra necessary to say in this place some
words about the integral (36) and about some other important dynamical integrals
which will appear immediately below. The point is that, in the present state of
affairs at least — videlicet, at such a logical level of exposition as the present one,
no specification may be made as regards the mathematical nature of the process of
integration in (36): in order to fix the ideas one may purely and simply suppose that
the integral in (36) and elsewhere is taken im Riemannschen Sinne, du denoting
infinitesimal volume (if S is a 3-dimensional rigid body), or infinitesimal area (if
S is 2-dimensional), or infinitesimal length (if S is 1-dimensional). As regards
any further information, it is imbedded in the very definition of the notion of a
dynamical rigid body.

Being at this stage forced into accepting those as vague as to seem void of .
sense explanations, let us proceed to the definition of the mass-centre G of the
rigid body S. It is introduced traditionally by means of ‘the relation

N
Y
provided |
(42) pc = :Q-@-,

the integral being taken over V5. Along with (30) and (40) the definition (41)
implies

6pGc _
(43) -5 =0 ),

i.e. the mass-centre of a rigid body S beléngs to S.
If by definition

(44) re = OG,

then the identity OG = O + QG, together with (5) and (42), implies
(45) | r6 =T+ pa,

and (45),-(41), (6), (39) imply

(46) re = —% /rdm,

the integral being taken over Vs provided (6).
The identities (6) and (45) imply

(47) T=7rg— pg + p-
If by definition
. d‘!’G
48 -
(48) ve=—r,

then (45), (33), (34), (43) imply

(49) : vg =va+w X fg,
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and (49), (34) imply

(50) v=vg—& X pg+@& X p.
On the other hand, (46), (48), (40), (33) imply
(51) vg = L /vdm.
* m

By definition the integrals
(52) S K= f@dm
and ;
(53) - L:frxvdm,

taken over Vs pravided (6), are called the momentum and the moment of momen-
tum (kinetical moment), respectively, of the rigid body S with regard to Ozyz.

We shall now subject the quantities K and L to certain identical transforma-
tions. First of all, we observe that (52) and (51) imply

(54) K = mvg.
On the other hand, (53) and {47), (50) imply
(55) L= [(ra o+ 7 x (v =5 x 56 +5x 7) dm

and (55), (39) imply
(586) V  L=mr¢g Xve+ Lg,

where by definition
67 Le=[px(@xp)dm—micx (@ %je).
- If by definition

(58) I =/ (P +¢%) dm, Iy = f (¢*+¢%) dm, I = j (€% +7°) dm,

(59) o= [ndm, Is = ] Cdm, Tyy= [ endm,

60) Jee=m(ng+¢2), Jpm=m(E+E&), Jo=m(&+nE),
(61)  Jpe =mnele, Jige =mlebe, Jen = méae,

(62) A=Ig —Jeg, B=1Iyy—Jyy, C=lIc—Jg,

(63) D=l —Jn, E=le—Jy, F=In—Jgy
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provided (9) and
(64) = pe = €c€% + ne® + (",

then the quantities A, B, C are called the moments of inertia and the quantities
D, E, F are called the moments of deviation of the rigid body S with respect to

Qnc.
If now '
(65) ’ Lg = Lee€® + Lani® + LacCP,
then (57) implies /
(66) Lae=/£”“xﬁ.a» X pdm—m€° x pad x pg,
and (66), (25), (9), (64) imply
67)  Loe= [ (Fwc— (p0)) dm — m (phwe ~ (iod)a)
whence ,
(68) ' Lge = Awg — Fwy — Ewy
by virtue of (58)~(63). Similarly,
(70) LG( - C’w< — Ewg - Dw,,‘
Now (68)~(70) and (65) imply
(1) Lg = (Awg — Fwy — Ew¢)E® + (Bwy ~ Dwe — Fuwg)ii®

+ (C'w< - E’w( — Dw,, )Eﬁ
On the other hand, (27) implies
5

(72) bg:gngﬁ-Q){LG

and (72), (71), (29) imply
(73) Lg = (Adg — (B ~ Cwpiwg — D(w? —w?) — E(Go +wgwy) — F(dg —wewe))E°
+ (Bisg = (C — Awewg — B — wf) — F(iog +wpwe) — D¢ — wewn))7°
+ (Cio¢ — (A = Blwgwy — F(w} — wl) — Dy +wewe) — E(wg —wywe))C0.
Up to here all considerations have been purely kinematical, in the sense that no

forces have ever appeared. Let us now suppose that the rigid body S is subjected
to the action of the system of forces

(74) Fo=(FM,) (0=1,...,8),
all moments M, (¢ =1, ..., s) being taken with respect to O. Let by definition -
(75) | r=3F,

a=1
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and

S
(76) M =) M,
o=1
be the basis and the moment, respectively, of the system (74), the latter being
obviously taken with regard to O. If now one calls to mind that the system of
reference Ozyz is imertial according to Euler by hypothesis, then one may write
down the Eulerian dynamical axioms Ax 1 E and Ax 2 E in the form

(76) : K =F"
and
(77) - ‘ L=M"
respectively.

If by definition |

2

O we = ¢
then (76), (54), (40), (48) imply
(79) . mwg = F*.
Now (69), (78), ‘
(80) re = zgi + yej + zgk,
(81) F"=Fi+Fjj+Fk
imply ' ‘
(82) mig = F;, mye =F,, mig=1F;.

Let ;
(83) | My=M"+F x7eg

be the moment of the system of forces (74) with respect to the mass-centre G of
the rigid body S. Then (83) and (79) imply ‘

(84) M* = Mg + mrg X wg,
and (84), (77), (56) imply |
(85) | Lg = M.
If by definition
(86) MG = M E° + ME,a° + MEC,
then (85), (73) imply |
(87)

Adg — (B — Cwgu¢ — D(w] — w}) = B + wgwn) — F(wn — wewe) = Mg,
Bd),, - (C - A)w(wg - E(wf - w?) - F(w€ + w,,wg) - D(w; - wgwﬂ) = Méﬁ’
Ci¢ — (A — Bwgwy — F(w} - w?) = D(wy + wewe) — E(wg — wpwe) = Mg,
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The relations (82) are called Euler’s dynamical equations for the motion of
the mass-centre of a rigid body, and the relations (87) are called Euler’s dynamical
equations for the motion of a rigid body around its mass-centre. At that, the
equations (82) represent a mathematically developed equivalent of the first Eulerian
dynamical axiom Ax 1 E, while the equations (87) are a mathematical reflexion, by
means of the moments of inertia and of the moments of deviation of a rigid body,
of the second Eulerian dynamical axiom Ax 2 E.

Let us for a while come to a standstill here and let our thought dwell upon
the equations (82), (87). The latter supply us with a system of 6 conditions for
the motion of any rigid body concerning the quantities they involve. And which
quantities do they involve? Along with the moments of inertia A, B, C and the
moments of deviation D, E, F' (which are known quantitative characteristics for any
particular rigid body S), the equations (82), (87) include the canonic parameters

(88) ’_ T Yo, 20, Kbs ¥, g
of S and the components
(89) F;: Fg::> F;: M(’;'E'J Mé'fl’ ‘(Mé(

of the basis (75) and of the moments (83) with respect to G of the system of forces
~ (74) acting on S. At that, according to a convention, sanctified by the centuries-old
~experience and tradition of analytical mechanics, it is hypothesized that

(90) F* = F*(zq,yq, 20, %, ¢,9; &0, 90, 20, ¥, ¢, ;1)
and
(91) )M:; = MZ‘;(xﬂ; ya, za, ¥, ¢, 8; zq, Yn, 2, 7/‘;: P, 65 t)

are certain determined functions of the canonic parameters (88), of their derivatives
(92) éﬂ: z}ﬁ ‘éﬂz w: "753 g

with respect to the time ¢, and possibly of ¢ itself, whence the same supposition
is valid for the componerits (89) of (90) and (91). In such a manner, the Eulerian
dynamical equations (82), (87) represent a system of 6 differential relations of
second order with respect to the time ¢ for the 6 canonic parameters (88) of the
rigid body S.

All that would be nuda veritas under the assumption that all the parameters
(88) of the rigid body are mutually independent, alias that any of them could vary,
along with its derivative with respect to the time ¢, completely independently from
the variations of the rest of these parameters and of their derivatives with respect
to the time. Is'that always the case?

‘ If all canonic parameters (88) of a rigid body S are mutually independent,
then it is said that S is a free rigid body, the term mmplying that no restrictions
are imposed on the thinkable (or possible, or feasible, or imaginary, or potential,
or virtual) positions of S in space and on the velocities of its points. In the case

.of a free rigid body S a classical for analytical mechanics hypothesis presupposes
(or demands, or exacts, or requires, or insists on, or announces, or promulgates,
or declares, or proclaims) that all the forces (74), acting on S, are active forces,
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in other words, all of them are given (or known, or familiar, or prescribed, or
specified) functions of (88), of (92), and possibly of ¢t. In such a way, in the case
of a free rigid body the Eulerian dynamical equations (82), (87) represent a wholly
determined system of 6 genuine, or pure differential equations of second order with
respect to the time ¢ for the 6 unknown functions (88) of the time ¢. If now initial
values of these functions and of their derivatives (92} with respect to ¢ are given (i.e.
admissible values of (88) and (92) for any particular moment 7 of ¢, say ¢ = 0), then
the dynamical problem concerning the motion of this free rigid body S presents
itself in the capacity of a perfectly correct mathematical problem with one and only
solution (prouded certain conditions are satisfied concerning the right-hand sides
of the equations (82), (87), i.e. if some requirements affecting the analytical nature
of the functions (90) (91) are fulﬁﬂed}

The situation is shifted in a trice if some of the forces (74) are unknown and,
in the same time, not all of the canonic parameters {88) are mutually independent.
Millenial physical experience, engineering praxis, and sound mechanical common
sense display that the idyllic picture of free rigid body motions ceases to interpret
adequately the dynamical realities which have surprisingly engendered nightmarish
problems for all the mechanicians from the Seventeenth till Twenty-Fzrst Century.
Of course, the interplay of mathematical discovery and physical experience is a
dangerous game, and we by no means venture to imitate D’Alembert’s unfortunate
improvisations on this theme and variations, giving good reason for Truesdell’s
statement that “in attempting to connect physical experience with mathematics,
he heaped folly on folly ... one searches for the little solid matter as a qparrow
pecks out a few nutricious seeds from a dungheap — a task not altogether savory”
[5]. In the same time, especially in “physikalischen stmphnen in denen schon
heute die Mathematik eine hervorragende Rolle spielt: dies sind in erster Linie die
Wahrscheinlichkeitsrechnung und die Mechanik” [6], this interaction or, should we
say, heuristic symbiosis, is un fait accompli that no one may disregard without
disturbin.; all sense of reality:

“ .. mathematics, however abstract and however precise, is a science of ezpe-
rience, for experience is not confined to the gross senses: Also the human mind can
experience, and we need not be so naive as to see in an oscﬂ}oscope an instrument
more precise than the brain of a man.

~ That rational mechanics grew out of practical mechanics and co-operated with
it, if not always gracefully, to producg applied mechanics and mechanical engi-
neering, is obvious. In writing the first treatise on rational mechanics {7] Newton
established its standard of mathematical rigor as precisely that of geometry Not
always has this standard been maintained, but today as in 1687 it remains the
ideal. Newton’s comparison with geometry is enlightening, for geometry, too, grew
from physical experience. To those who scoff at geometry for its precise calculations
when all measurements are liable to error, the geometer for millenia has replied:
Geometry is mental, not instrumental. The scoffers have always been with us and
remain today; not only does the ultimate practical and physical value of geometry
need no defense before scientists, but also no-one who has known a geometer needs
reminder that practical and physical usefulness seldom has supplied or suppressed
a single equation in the progress of geometrical research. ’
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The analogy to geometry is a good one. That rational mechanics speaks not
only of space and time but also of mass, force, and energy does not make it any
the less precise. Since it deals with a greater number of physical concepts than
does geometry, its applications to physical problems may be expected to be more
frequent and more far-reaching, but physical applications are not its objective.

But does not rational mechanics deal with quantities of physical experience?
Indeed it does; so does geometry, for lengths, surfaces, and volumes are equally
related to physical experience. The geometer may visualize a surface in terms of a
twisted strip of paper, as in mechanics one may think of a force as a push with the
hand, but whatever these motivations, the symbols in the equations of geometry
and mechanics are precisely defined mathematical quantities. Origin in broader
experience may make mechanics more interesting, but it need not make it any less
rigorous” 8, p. 335-336.

Could it be said more clearly and more simply? There are other places in [8],
dedicated to the interplay of mathematics and physics, that one plainly cannot leave
out not mentioned. Reminding Daniel Bernoulli’s words “there is no philosophy
- which is not founded upon knowledge of the phenomena, but to get any profit from
this knowledge it is absolutely necessary to be a mathematician” and Huygens’
motto “from experience and from reason”, Truesdell speculates:

“What was, then, the method? Rational mechanics was a science of ezxperience,
but no more than geometry was it experimental. While some great mechanical
experiments were done in the Age of Reason, they had only occasional bearing on
the growth of the theories we now regard as classzcal Experiment and theory result
from different kinds of reaction to experience, If, ideally, they should complement
and check one another, yet even today, with all our superior knowledge not only
of facts but also of scientific method, it is difficult enough to relate them, why
should it has been easier 300 years ago? It was not. A factual view of the history of
mechanics must concede that rational mechanics and experimental mechanics, both
arising from human beings’ intelligent reaction to mechanical expenence, grew up
separately.

Not only private, individual experimental researches were performed in the
eighteenth century; there were also large, cooperative projects. As today, they
cost more than real science, and they attracted administrators. But the effect of
all this expense on what we now consider the achievement of the period was nil.
The method used in the great researches was entirely mathematical, but the result
was not what would now be called pure mathematics. Ezperience was the guide;
ezperience, physical experience and the experience of accumulated previous theory.
If we are to seek a word for what was done, it would not be physics and it would
not be pure mathematics; least of all would it be applied mathematics. It would
be rational mechanics ..

- Without ezperience, there would be no rational mechanics, but I should mislead
you if I claimed that experiment, either now or 200 years ago, had greatly influenced
those who study rational mechanics. In this connection experiment, like alcohol,
is a stimulant to be taken with caution. To consult the oracle of a fine vintage at
decent intervals exhilirates, but excess of the common stock brings stupor” [ibid.,
p. 135-136, 357].
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One of the most primitive, most fundamental, and, together with that —
no wonder ergo propter hoc — most complicated mathematical formalization of
physical experience in rigid body analytical dynamics focalizes in the idea of — no
matter accidental or intentional — restrictions imposed on the possible (virtual,
potential) positions of rigid bodies in space. At first sight the underlying idea looks
as simple as to seem obvious; as simple as to seem obvious are the mathematical
means, too, by the aid of which, until this very day, mechanicians are trying to
formalize mathematically this same idea — the height of perfection of their efforts
inevitably calling to one’s mind Mark Twain’s observation that for any problem
there is a solution that is simple, obvious, and wrong. In point of fact, the simplicity
of the idea is spurious to such a degree that anyone who ventures to get into the
swing of the work unavoidably wanders through the intricacies of a true Labyrinth
with no Ariadne at its mouth.

Calling ficus ficus, ligonem ligonem, we are obhged to fathom the fact that
the physical cause underlying any restriction in the positions of a rigid body in
space is rooted in that attribute of matter which is described by the categorical
though somewhat enigmatical term impenetrability. This property, characterized
also by the substantives impermeability and imperviousness, is available in the
very commencement of the notorious dynamical Traité [9] of D’Alembert — in its
first sentence, to all intents and purposes, see the section Définitions et Notions
préliminaires (p. 1) — as an inseparable part of the author’s definition of the rigid
body concept:

“Si deux portions d’étendiie semblables & égales entr’elles sont impénéirables, |
c’est—a~—dire, si elles ne peuvent étre imaginées unis & confondiies I'une avec I'autre,
de maniére qu’elles ne fassent qu’une méme portion d’étendiie moindre que la
somme des deux, chacune de ces portions d’étendiie sera ce qu’on appelle un Corps.
L’impénétrabilité est la propriété principale par laquelle nous distinguons les Corps
des parties de ’espace indéfini, oli nous imaginons qu’ils sont placés.”

The most natural question, coming to the mind of the reader of this définition,
is how does its author use “la propriété principale par laquelle nous distinguons
les Corps” described as impenéirabilité in order to achive his object so modestly
proclaimed in the Préface of the Traité: ‘

“Je me suis proposé dans cet Quvrage de satisfaire & ce double objet, de reculer
les limites de la Méchanique, & d’en applanir I’abord; & mon but principal a été
de remplir en quelque sorte un de ces objets par ’autre, ¢’est—a-dire, nonseulement
de deduire les Principes de la Méchanique des notions les plus claires, mais de les
appliquer aussi & de nouveaux usages; de faire voir tout & la fois, & I'inutilité de
plusieurs Principes qu’on avoit employés jusqu’ici dans la Méchanique, & P’avantage
qu’on peut tirer de la combinaison des autres pour le progrés de cette Science; en
un mot, d’étendre les Principes en les réduisant.” ‘

Strange to say, the straightforward answer of this question is: not at all, not
the least bit, never a whit. In spite of his promise “de déduire les Principes de la
Méchanique des notions les plus claires” and “de les appliquer aussi a de nouveaux
usage”, D’Alembert never, nowhere, and in no wise uses “la notion” impenétrabilité
to this end. The principles in question are formulated in the very beginning of the
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Premiere Partie. Loiz générales du mouvement et de I'équilible des Corps of [9],
where one reads: » : :

"On peut réduire tous les Principes de la Méchanique a trois, la force d’inertie,
le mouvement composé, & P’équilibre. Au moins J’espere faire voir par ce Traité,
que toute cette science peut étre déduite de ces trois Principes. Je traiterai de
chacun d’eux en particulier dans chacun des Chapitres suivans.”

Well, Sir! One reads Chapitre Premier. De la force d’inertie, et des pro-
priétés du mouvement qui en résultent, and one does not come across the word
impénétrabilité at all. Afterwards one reads Chapitre II. Du Mouvement composé,
and one does not encounter this word there too. Ultimately, one turns the pages
of the book over Chapitre III. Du Mouvemeni detruit ou changé par des obstacles,
and one does not run into impénétrabilité again. It is true that in the last chapter
one reads:

“Un Corps qui se meut, peut rencontrer des obstacles qui altérent, ou méme
qui anéantissent tout-a-fait son Mouvement; ces derniers sont, ou invincibles par
eux—memes, ou n’ont précisément de resistance, que ce qu’il en faut pour détruire
le Mouvement imprimé au Corps. “ ~

Un obstacle invincible peut étre tel, qu’il ne permette au Corps aucun Mou-
vement, comme quand un Corps tire une verge droit attachée a un point fixe; ou
I'obstacle pourroit étre de telle nature, qu’il n’empéchat pas le Corps de se mouvoir
dans une autre direction que celle qu’il a, comme quand un Corps rencontre un
plan inébranlable” (p. 31).

It is also true that the very idea of “obstacles” is inextricably bound up with
the “propriété principale impénétrabilité”. At last, it is true that a bit further
down D’Alembert writes: ‘
| “Dela il s’ensuit, qu’un Corps sans ressort qui vient choquer perpendiculaire-
ment un plan immobile & impénéirable, doit s’arréter aprés ce choc, & rester en
repos. Car il est visible que si ce Corps a du Mouvenient apreés la rencontre du
plan, ce ne peut étre qu’en arriére, & dans la direction de la perpendiculaire” (p.
32, our italics). - ' ” '

At the same time it is also true that the adjective “impénétrable” is used, in the
last passage, sporadically, haphazardly, and contrastively — assigned to a subject
exterior to the rigid body, the motion of which is studied rather than to this latter
body itself. The same applies to other cases when the term “impénétrable” is used,
for instance in 30. paragraph of the Traité, where the word “impénétrable” is used
as a synonym for the word “invincible”. |
~ The reason for this state of affairs is a quite simple one: the quality “im-
pénétrable” is an attribute to rigid bodies, whereas the Traité de Dynamique of
D’Alembert has nothing to do with such matters: at the best it could be accepted
as a writing dedicated to mass-point dynamics (if at all), as the ceaseless usage
of the term “vitesse” at once displays, which becomes meaningless when assigned
to rigid bodies. As regards the bodies themselves, D’Alembert is the originator of
the conception, shortly afterwards adopted and developed further by his younger
contemporary De la Grange — an outlook that was fated to play an extremely
unenviable role in the supervening history of rational mechanics. ‘
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Entre parenthéses: In spite of the solemn promise of its author, promulgated
in its title (namely, to “give a general principle for discovering the motions of
several rigid bodies acting one upon another in an arbitrary manner” ), the Traité de
Dynamique of D’Alembert does not provide the reader with mathematical means
for solving even one and only dynamical problem concerning a sole rigid body.
Faced with this situation, one is at a loss for what reason has this Trauté gained
its “immortal” fame? The answer of this quite justifiable question is given by
Truesdell, though his words refer to Leonardo rather than to D’Alembert: -

“To learn the source, we recall the method of the Renaissance: Self-advertising
... In his skill of speech and his self-promotion he was a true son of the Renaissance.
Like the humanists, with much adroitness but little solid achievement he blew
hirnself into renown for all times” (8, p. 80-81]. ’

In D’Alembert’s case it would be appropriate to recall Vasari’s words apropos
of Leonardo: “Even though he talked much more about his works than he actually
achieved, his name and fame will never be extinguished.” We close the brackets.

In such a manner, a sound physical idea has been compromised mathemati-
cally in the Traité de Dynamique of D’Alembert. Without entering into details,
we confine ourselves to the statement that it is discredited also in the natural log-
ical extension [10] of D’Alembert’s illogical dynamical philosophy. As a matter of
fact, the collapse of the idea reaches in [10] such apocalyptic scales that. evokes
memories of biblical sinister omens for the original sin. Nuda veritas is that the
reader of [10] is missing the forest for the trees. Directly contrary to Lagrange’s
overweening advertisements (namely that he proposes “des formules générales, dont
le simple développement donne tous les équations nécessalres pour la solution de
chaque probléme . .. la maniére dont j’ai tache de remplir cet objet ne laissera rien
3 desirer . .. Les méthodes que j’y expose ne demarident ni constructions, ni raison-
nements géométriques ou méchaniques, mais seulement des opérations algébriques,
assujetties & une marche réguliére et uniforme”), the bulk of formulae one bumps
up against in the Méchanique "Analitique is entirely heipless when faced with the
problem of the dynamical behaviour of a single rigid body subjected to any me-
chanical constraints: the cold fact is that the blazing upper strata of Lagrange’s
dynamical performances is as high as the movements (if any) of discrete systems
of a finite number, of masspoints. Truesdell’s observations apropos of [7]: “Newton
gives no evidence of being able to set up differential equations of motion for me-
chanical systems ... the cold fact is, the equations are not in Newton'’s book ...
In Newton’s Principia occur no equations of motion for systems of more than two
free mass-points or more than one constrained mass-point; Newton’s theories of
fluids are largely false; and the spinning top, the bent spring, lie altogether outside
Newton’s range” (8, p. 92-93], may be paraphrased apropos of {10] in the following
manner: Lagrange gives no evidence of being able to set up differential equations of
motion for mechanical systems including rigid bodies; the cold fact is the equations
are not in Lagrange’s book. In Lagrange’s Méchanique Analitique occur no equa-
tions of motion for systems of more than a finite number of mass-points; Lagrange’s
theories of rigid bodies are largely false; and the spinning top, the billiard ball, lie
altogether outside Lagrange’s range. :
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The long and the short of the whole span of Lagrange’s mechanical philosophy,
of his statical and dynamical Weltanschauung, may be incarnated in a sole phrase
of his Traité: | N

“... considérons un systéme de corps, disposés les uns par rapport aux autres
comme on voudra et animé par des forces accélératrices quelconques. :

Soit m la masse de I’un quelconque de ces corps, regardé comme un point” [11,
p. 264; our italics]. ;_ , ‘

This mechanical ideology of Lagrange’s has ripened into the manhood a long
time before he settled down to composing his Méchanique Analitique — as a matter
of fact, not later than 1772 when he wrote his articles [12] wherein one reads:

“... sil’on imagine un systéme d’un nombre indéfini de corps considérés comme
des points et liés ensemble de maniére que leur distances mutuelles restent toujours
les mémes ...” (p. 579).

- Alibi: ,

“En général, si 'on a un systéme d’autant de corps qu’on voudra, disposés de
maniére qu'’ils soient forcés de conserver toujours les mémes distances tant entre
eux qu’a I’égard d’un point donné ...” (p. 587). -

Alibt again: R

“Je considere le corps propose comme I’assemblage d’une infinité de corpuscules
ou points massifs unis ensemble de maniére qu’ils gardent toujours nécéssairement
entre eux les mémes distances” (p. 590). |

In such a manner, there can be no mistaking Lagtange’s words: his corps and
systémes de corps are special kinds of finite systems of discrete mass-points rather
than rigid bodies in the genuine sense of the word. This circumstance has not been
left unheeded, not mentioned, and untraversed. It did not escape Euler’s attention.
Apropos of [12] he wrote in §13] with undubitable while latent irony:

“But when I tried with ‘greatest avidity to follow in detail his extremely pro-
found thoughts, truly I could not get myself to go through all his calculations. Even
the first lemma so deterred me that on account of my blindness I could not hope
in any way to check through all the analytic devices he used” (quoted according to
[8], p- 260).

Considerably later, in 1853 to be more precise, J. Bertrand made some critical
remarks in this connection in the third edition of [10] publiée par himself. Voila
two of them, quoted after [11]:

“Le mot corps désigne ici un point matériel” (p. 11);

“Le mot corps, ici comme plus haut, désigne un point matériel” (p. 32).

In our days Noll, for instance, brought to the fore, from general considerations,
the untenability of the efforts to regard “le corps proposé comme |’assemblage d’un
infinité de corpuscules ou points massifs unis ensemble de maniére qu’ils gardent
toujours nécéssairement entre eux les mémes distances”:

“Many textbooks on theoretical mechanics dismiss continuous bodies with the -
remark that they can be regarded as the limiting case of a particle system with an
increasing number of particles. They cannot. The erfoneous belief that they can
had the unfortunate effect that no serious attempt was made for a long period to
put classical continuum mechanics on a rigorous axiomatic basis” [14, p. 266].

98



Though a home truth, these statements at first sight appear to be ill-founded,
since they are not substanciated by a mathematical proof. Incredibile dictu, as far
as our knowledge goes, nobody has as yet answered mathematically the foliowing
question, fundamental for the whole of Lagrangean dynamical tradition:

Possibility Problem. Can rigid bodies be regarded as the limiting case of a
particle system with an increasing number of particles?

Lagrange’s answer is yes. Noll’s answer is no. Let us cast our eyes about
some other stands. Voild a Traité [15] that out and out belongs to the mechanical
classics. The feather in the author’s cap, as regards the rigid body notion, consists
in the following “extremely profound thoughts” in the words of Euler, absit invidia
verbo: :
“Un corps solide est un ensemble de poinis matériels invariablement liés entre
euz. — Lorsqu’une force est appliquée & 'un de ces points, on dit qu’elle est
appliquée au corps. Le corps solide ainsi défini est une abstraction. Tous les corps
de la nature se déforment sous l’action des forces qui leur sont appliquées; mais
les corps appelés communement solides subissent des déformations trés petits, qui
peuvent étre négligees dans une premiére approximation” (t. I, p. 123-124).

In other words, the Possibility Problem is answered in the affirmative by Appell
too. Skipping more than half a century, let us peek into a dynamical treatise [16]
of comparatively recent time, its author promising in his Introduction “to give a
compact, consistent, and reasonably complete account of the subject as it now
stands” (p. VII, our italics). How does he define the rigid body concept?

Bona venia vestra, he does not define it at all. In the index of the book this
term does not appear independently or, should we say, single-handed, unaided, off
its own bat. Indeed, the text one finds there reads:

“Rigid body, motion in two dimensions, 111-113, 204; in space, 205-207. See
also Euler’s equations, spinning top, rolling sphere, rolling penny, rolling ellipsoid”
(p. 640).

In order to find a description if not a definition of the notion of rigid body
in [16] one must search “for the little solid matter as a sparrow pecks out a few
nutricious seeds from a dungheep — a task not altogether savory”, if it is permitted
to use here Truesdell’s words apropos of D’Alembert. While Chapter I of the book,
entitled Motion of a particle, is dedicated to mass-point dynamics, the term “rigid
body” comes into view for the first time in [16] in the beginning of Chapter II,
headed Dynamical systems. Therein one reads:

“In the preceding chapter we considered the dynamics of a single particle.
It might seem natural, following the historical order of development, to discuss -
next the theory of the motion of a single rigid body; this is in fact the order usually
followed in a first study of rigid Dynamics. Our approach will however be somewhat
different. In Analytical Dynamics we proceed directly from the single particle to
the general dynamical system. The single rigid body is of course a special case of a
dynamical system and indeed one that we shall frequently find useful as a special
illustration” (p. 20).

- In such a way, the reader of [16] comes to know at the same breath the following
truths as great as to seem divine revelations:
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1. In Analytical Dynamics it is proceeded directly from the single particle to
the general dynamical system. .

2. The single rigid body is a special case of a dynamical system.

3. The latter statement needs no proof: it is “of course” true.

4. The single rigid body is frequently useful as a special illustration.

5. Ergo: the single rigid body represents no interest in se, that is to say as ein
Ding an sich. ,

6. An indirectly implied corollary: any attributes ascribed to rigid bodies must
be derived from attributes of general dynamical systems of single particles.

7. Ergo: constraints imposed on rigid bodies must be implied by constraints
imposed on single particles. :

. We shall see now how does the author of this Treatise (having bidden fair,
we recall, “to give a compact, consistent, and reasonably complete account of the
subject {of analytical dynamics] as it now stands”) materialize this new kind of
mathematical induction — his limiting process 1 — oc. Qui habet aures audiends,
audiat: , ' «

“The idea of arigid body in the classical dynamics is a collection of particles set ’
in 2 rigid and imponderable frame. Similarly we shall think of the general dynamical
system as a collection of particles acted on by given forces and controlled by various
kinds of constraints” (ibid.).

In such a manner, Pars answers the Possibility Problem also in the affirmative
— in a most categorical manner at that. There is a point, however, that ought not
be left unnoticed. ' :

AH those yes-answers and no-answers (or should we say can-answers and
cannot-answers) are, alas, no mathematical answers at all. Quite much the reverse:
those replies are sooner reflexions of inner convictions, of professional habits, of in-
tellectual indolence, if you will, and in this respect they are not a jot more reliable
than the possible responses of the question, say, which faith is more preferable —
the Christian or the Mohammedan. The only way a mathematician can solve a
Possibility Problem is to solve an Eristence Problem — to prove that the object,
the possibility of which is investigated, exists in actual fact.

It will remain an enigma of enigmas in seecula saeculorum why, in the course
of more than two clear centuries, the idea flashed through nobody’s mind that
Lagrange’s mental picture of “le corps ... comme l'assemblage d’un infinité de
corpuscules ou points massifs unis ensemble de maniére qu’ils gardent toujours
nécéssairement entre eux les mémes distances” must be unconditionally submitted
to a mathematical proof or disproof, in the same manner as it must be proved, or
disproved, that there exist natural numbers z, y, z and n > 2 for which "yt = 2"
holds. Some mathematicians believe that such numbers exist, cthers disbelieve it
— but, with the nasty exception of a swarm of illiterate idiots, there was a sole
mathematician worthy of the name in the last four centuries, who stated he knew
there exist no such numbers, and he knew it since he found a proof. However,
he did not leave us such a proof, and Gauss, for instance, thought that Fermat
misled himself; that is why the negation of z™ + y" = 2" is qualified by modern
mathematicians as a hypothesis rather than a theorem. -
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If “un corps solide est un ensemble de points matdriels invariablement liés entre
eux”, then the question quite naturally arises: what does connect them in such a
manner? Since we claim to be mechanicians rather than fakirs, we accept that the
only factors determining the mechanical behaviour of mass-points are forces. In
such a way, the Possibility Problem formulated above may be re-redacted in the
following manner: :

Existence Problem. S being a system of mass-points, do there exist forces
acting on them and conserving invariant in the course of the time the mutual
distances between these mass-points?

Solution. In order to accomplish a reductio ad absurdum let us suppose that
this question is answered in the affirmative. Since the number n of the points of S
is indeterminate, it may be supposed, without a loss of generality, that n = 2. Let
P, be the points of § with masses m,, respectwe}y, and let r, = OP, (v = 1, 2),

O denoting the origin of an inertial according to Newton system of reference Oxyz
dr

Let v, = d: (v = 1, 2), the derivatives being taken with respect to Ozyz. At

last, let F', be the forces acting on P, (v =1, 2}, respectively, in accordance with

the supposition made above that such forces exist. Then, by virtue of Newton’s

dynamical axiom,

(93)

-gg(myvy) =F, (v =1, 2),

“the derivatives being taken with respect to Ozyz.
By hypothesis the forces F, (v = 1, 2) are such that

(94) | g;(n ~73)’ =0 (w:)

or, just the same, | '

(95) o (r1—wa){v1—w2) =0 (V).

Let 7 be a particular moment of ;t,he time ¢ and let

(96) rr=1,(7), ver=wv,(r) (v=1,2)

be the initial positions and the initial velocities, respectively — in other words, .
the initial conditions — of the dynamical problem under consideration. Since the
relation (95) holds for any {, it is valid for t = 7 too:

(97) (ri—ro)(v1—22)=0 (t=7),
and (96), (97) imply
(98) ‘ ("lr - 7'21){1"17 - ”2?) = 0.

Now the equation (98) is an absurdity, since it represents a restriction imposed
on the initial conditions (96) of the system S, due to the hypothesis that there
exist forces F, (v = 1, 2) for which (93) with (94) hold: it is a principle of
principles in rational mechanics that the initial conditions of a mechanical system
are independent of the forces acting on it, and this principle is rooted in the very
essence of the theory of ordinary differential equations, according to which the initial
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conditions of a system of differential equations are wholly arbitrary, independent of
the particular functions available there. The absurdity (98) traverses the hypothesis
In question and gives a negative answer of the question posed in the Eristence
Problem. Quod erat demonstrandum.

Scholium 1. A colleague and, strange enough, a good friend of ours, when for
the first time faced with the absurdity (98), ejaculated: Now the same is true for
any two points of any rigid body! At first sight this is a most well-founded doubt.
This is only seemingly, however. :

Let S be a rigid body and P, (v = 1, 2) be any two of its points. Under the
above notations the very definition of the rigid body concept implies the relation
(95) and, following the chain of the above argumentation, leads ultimately to the
conclusion (98). For a rigid body, however, the relation (98) is no restriction at all
imposed on the initial position of the body in space and on its initial velocities. In
other words, (98) puts no restraints on the initial values

(99) za(7), ya(r), 2a(r), ¥(1), ¢(7), o(r)
of the canonical parameters (88) of S and on the initial values
(100) za(r), 4a(r), Za(r), $(), ¢(7), 6(7)

of their derivatives (92). As a matter of fact, in the rigid body case the relation
(98) is reduced to the identity

(101) 0=0,

as it is at once seen by a scalar multiplication with #; — r, of the necessary and
sufficient condition

(102) ]~ Vo =W X (?'1 - ?‘2) (Vt)

in order that the points P, and P; belong to S. Sapienti sat. (

Mais revenons a nos moutons! In other words, let us return to Euler’s dy-
namical equations (82), (87), where no specification is made as yet as regards the
mechanical nature of the forces (74). As it has been underlined, the cases of a free
rigid body, when all the canonic parameters (88) are mutually independent and
when all the forces (74) are known beforehand as given data in the conditions of
the particular dynamical problem under consideration, are as rara avis in lerris as
a honest politician; it has been emphasized also that the physical cause underlying
any restriction in the position of a rigid body in space is rooted in the impene-
trability of matter resulting in the phenomenon of mutual contact between bodies.
‘The latter is a fact homo sapiens has been on closer acquaintance with from his
very childhood in the literal as well as the metaphorical sense of the word — to
such an extent as to feel it by intuition. In real fact, all the motions the same homo
observes in nature are movements of non-free bodies, he himself being perpetually
coerced to set his feet on earth. “ ‘

Now that one comes to think of it, one realizes to his or her amazement that
there is not a single motion in this God’s earth accomplished on account of “pure”
forces, that is to say without the interference of reactions due to surrounding envi-
ronment. Even the free fall of ponderous bodies thrown in the air is influenced by

62



the resistance of the medium, affecting sometimes the projectile motions to such
a degree as to plunge artillerists into dispair. In reality, the only “pure” motions
observable in our universe in the days of Galileo and Newton have been the planet
movements; these, however, have been “polluted”, first, by the Earth’s own mo-
tion, and, second, by their non-observability as movements in the proper sense of
the word (as, for instance, the fall of a meteor): for the naked eye, as well as for
the aided by any instrument whichever, the planet motion is a series of discrete
positions of the luminary rather than a continuous process in the course of time.
Let us make a parenthesis for a brief Iyrical digression. Let us fancy the epoch
of Galileo and Newton, at daybreak of dynamics, when no dynamical law has been
as yet grasped by human mind, but hints of such one were already felt in the air.
The acceleration concept has been shaped by now, the outlines of the force concept
have picked out in the dark (let alone in the statical case), some kind of a mutual
relation between them was already suspected, and yet nobody came to know it.
If life begins ab ovo, then dynamics begins ab corpusculo: identifying, as Galileo
and Newton did, bodies with mass-points, we know today that any dynamical.
phenomenon, observable in their days, has been governed by the law

(103) mw =P+ R,

P denoting the innate force of the body (in other words, the gravitational effects as
established on the Earth’s surface), and R — the reactions of the constraints (re-
sistance including) imposed on the body. Now while P is a completely determined
mechanical entity (at least as far as a particular geographic point is concerned), R
on the contrary escapes a direct observation and measurement like a ghost. Howev-
er, R being unknown and the equation (103) itself being buried in the impenetrable
future, how could one hope to unearth it in broad daylight?
The only chance one has at his disposal is the case

(104) R=o.

Such “pure” motions are proposed by planets, by planets only, and by nothing save
planets. Newton grasped this chance — his chance — with both hands. The result
is immortality, as far as stars are immortal, since his law governs stellar motions:

' Mutationem motus proportionalem esse vi motrici tmpressae, et fiert secundum
lineam rectam qua vis illa imprimitur. 7

Now the universality of this discovery of Newton’s lies in the fact that, al-

though discovered in the special case (104) of (103), it is not only applicable —
“moreover, it is a conditio sine qua non — for the motion of any corpuscular body
subjected to any constraints imposed on it, generating any reactions the Human
Mind and Mother Nature may devise. This inference is one of the most daring, true
though incredible, inductional hypothesis in all the history of science, with wholly
nonforecastable after-effects. :

Summing up, one could quite justifiably state that no rational dynamics could
be created if stellar motions were un-get-at-able to observation and measurements
— if, for instance, the average earth temperature was some degrees higher, so that
no stars could be seen on account of clouds. Finis of the lyrical digression.
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All those meditations are much more philosophical than mathematical by na-
ture, and we apologize to the reader begging his pardon. And yet, the character of
the mathematical phenomenon described by the enigmatic expression geometrical
constrainis imposed on rigid bodies cannot be grasped rightly without these verbal
explanations. Since, summa summarum, all this has a bearmg on one of the most
fundamental concepts in rigid dymanics.

Squaring accounts as regards the heuristic origins of the notion, we must per-
cetve that, although technically feasible by means of an infinite variety of con-
trivances, all restrictions on the positions of a rigid body in space, described in the
mechanical literary sources by means.of phrases like “the body is constrained”, or
“compelled”, or “coerced”. or “forced”, or “imposed”, etceteras repeatedly used,
reduce, when all is said and done, to a most simple mathematical device: those
. are geometrical constraints imposed on certain points of the rigid bodies. However,
since a logical anguis in herba latet here, and the witcheraft of the words may
play a practical joke on the uninitiated, converting sound intentions into a germ
of regrettable misunderstandings, it is of paramount importance to nip in the bud
any chance for any misconception by taking spec;ai pains for explaining the exact
meaning of those synonymous terms:

Here is a point that must become crystal clear for anybody who has made up
his mind to work professionally rather than dilettantish in analytical dynamics: in
spite of the fact that the combination of words geometrical constraint has infiltrated
- the whole span of mechanical language, it is by no means a mathematical term —
it is a concise expression of most knotty, most catchy, and most mazy mathematical
situations that badly need a formal specification in any particular case. All of those
particular cases reduce to the essentiality that specific mathematical hypothesis of
one kind or another must be announced in the very conditions of the dynamical
problem under consideration, concerning the mechanical behaviour of one or more
points of the rigid body or rigid bodies. The corresponding point or points are
promulgated, or proclaimed, or declared points of contact between the rigid body

and the geometrical constraint in question. The importance of this notion may be
emphysizéd by the maxim no point of contact — no dynamical problem concerning
non-free rigid bodies, in the genuine mathematical sense of the word. '

- There are three geometrical entities in space, and there are also three geomet-
~rical entities invariably connected with a rigid body S, that can be juxtaposed in
such mutual relations among each other as to restrict the possible positions of S in
space, and these entities are points, lines, and surfaces. The relations in question
reduce to one of the following combmatlons

A fixed point of S is constrained to coincide with a .given point in space, or to
describe a given curve line in space, or to lie on a given surface in space.

- Or a fixed curve line in S is constrained to pass through a given point in space,
or to intersect a given curve line in space, or to touch a given curve line in space,
or to touch a given surface in space.

Or a fixed surface in S is constrained to pass through a given point in space,
or to touch a given curve line in space, or to touch a given surface in space.

(In all those cases the term in space means ezternal for the rigid body S; at
“that, the special points, lines, and surfaces may be both scleronomic and rheonomic,
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that is to say fixed in space, or variable in position, or in shape in the course of
time, respectively.)

Whenever any of these 10 cases is at hand in a dynamical prollem {separutely
or in combination with others), it is said that a geometrical censtraint 1s tmpesed
on the rigid body. It is imnicdiately seen that in such a case a singular joint «omes
out into the open, namely the particular point common for both the geomistriral
entity fixed in the rigid body § and for the gecmetrical entity in space. pi =w 1 the
part of a geometrical constraint. This namely point is called the point of contaci
of § with the geometrical constraint in questicn.

The cardinal significance of the noticn point of contact for rigid rnecinvics
is predeterminated by the following dynamical axiom, reflecting age-old practicni
experience.

Ax 3 E. Any geometrical constraint imposed on a rigid body & generates «
force acting on S, the directrix of which is passing through the point of vontret of
S with the geometrical constraint.

Df 2 E. The force of Ax 3 E is called the reaciton of the geometrical constraint.

Scholium 2. The term reaction is fabricated as an autipode, or at least in
contrast, to the term action, by means of which the forces indicated in the conaitions
of the dynamical (as well as statical) problemn are described. Ancther cerminclogy
exploits the termns aclive forces and passive forces, respectively. As that, ecltive are
by definition those forces that are completely determined in the conditions ot
statical or dynamical problem for any position and any motion of the rigid br
S, that is to say for any admissible values of the canonic paramcters (83) r;:; S, of
their velociies (92), and possibly of the time t, whereas nothing else is knowa for
the passive forces save what Ax 3 E sermonizes, namely that they are m?ztw s E
and that their directrices are running through the corresponding pomts of romt
withthe geormetrical constraints generating those reactions.

The latter statenient necessitates some specification. Let A be the poimy ol
contact of the rigid body S5 with a geometrical constraint vy and let

e

"
L hbe
2Oy

(105) R =(B,N)

be the reaction of v, its moment IV being taken with respect to (J. As it is wnii-
known, the equation of the directrix 4 of (105) is

(106) rxR=N,
7 == OP denoting the fluent radius-vector of cmy point P of d. If by definition
r4 = OA, then (106) implies
(167) ra X R=N
by virtue of Ax § E.
Scholium 3. As a matter of fact, Ax 3 E states 3 things:
1. The existence of the force R.

9. R is acting on S.
3. N is known as far as r4 and R are known.



~ In other words, any constraint imposed on a rizid body S introduces a new
force in the right-hand sides of the equations (82), (87), governing the motion
of S. Besides, any such constraint introduces 3 new unknown quantities in the
mathematical problem to be solved, namely the components of £ according to
(108) R=Rpa+ R+ R.k

in view of (107).
Let, in a particular dyna,m'cal problem, § be under the action of the active
forces

(109) Fu=(F,M,) (p=1,....m)

and let by definition

m 7
(110) - F=)F, M=)> M,
pe=l p=1

Let n geometrical constraints be imposed on S, generating passive forces

(111) R,=(R,, N,) (v=1,...,n),

and let by definition

(112) R=> R, N=) N,

(Naturally, all moments M, and N, (p=1, ..., m;v=1,..., n)in (109) and
(111) are taken with respect to O. ) Besides, let |

(113) Meg=M-+¥xrg, Ng=N+Rxrg

be the moments of the system of forces (109) and {111}, respectively, with regard to
the mass-centre G of S. Under these hypothesis, the Eulerian dynamical equations

(82), (87) take the form

[ Awe — (B — Clwgwe — (w - w?)
= Elw¢ +wewy) = Flwy — wewe) = Mae + Nag,
Buwy — (0 — A)wewe — E(w? - w?)
| — Fluwg +wywe) — D(we — wewn) = Mgy + Nap,
Cw¢ — (A — Blwew, — F(wg - w,:;)

(115) <

.~ D(wy +wewe) — E{wg — wowe) = Mae + Nag,
provided by definition
(116) F = Fyi+F,j+F.k,
(117) | Mg = Mge€® + Mgy ® + Mg (°,
‘(118) ‘ NG:N(XEQ-E'NG,;??G—!-NG(C-O.
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Scholium 4. Even a cursory analysis of the mathematicai formalism describing
a geometrical constraint of the kinds enumerated above at once displays that any
such constraint imposes one, two, or at most three analytic restrictions on the
canonic parameters (88) of the rigid body S. In the case of n constraints this
circumstance diminishes the number of the unknown functions

(119) za(t), ya(t), za(t), ¥(t), (1), 6(t)

of the time t, the determination of which as a solution of the system of differential
equations (114), (115) is required, by at least n and at most 3n units. On the
other hand, the reactions {111) introduce 3n new unknowns. In such manner, any
problem of rigid dynamics is reduced to a system of 6 ordinary differential equations
(114), (115) of second order with respect to the time ¢ of a heterogenously mixed
type: a part of the unknown quantities are some of the functions (119) and they
are at hand in (114), (115) analytically, that is to say together with their first and
second derivatives with respect to t; another part are the 3n unknown components
of the reactions (111), provided

(119 R, =Ryzi+ Royj+ R,k (v=1,...,n),

and they are at hand in (114), {115) algebraically, as linear unknown quantities, in
point of fact.

Scholium 5. The first query arising when a problem of rigid dynamics is
put for discussion is the question, whether the system (114), (115) of differential
equations is consistent, i.e. whether it does or does not possess a solution. in other
words, this is the Ezistence Problem for the dynamical problem under consideration
or, in view of the physical interpretation of the mathematical circumstances, the
Possibility Problem for the motion of the rigid body under the conditions this
dynamical problem announces.

On account of the mathematical complications the existence problem gives
rise to, it is an object of a particular investigation we shall soon turn back to. For
the time being we shall confine us to the remark that most authors of raechanical
writings leave the existence problem out in the cold in the most flagrant manner:
not only they do not proceed to its solution, but even do not mzake mention of the
existence of the existence problem. | ‘

Scholium 6. We shall bring our exposition to an end with a note concerning
the application of the Eulerian dynamical equations (114), (115) to that special
kind of rigid bodies, which are known under the name of rigid rods.

A rigid rod L is a rigid body the density (35) of which has the eccentricity to
be zero everywhere save along a straight line I, called the directriz of L. Let us
connect with L invariably an orthonormal right-hand orientated Cartesian system
of reference Q&n( in the following manner: the axis Q€ coincides with the directrix
[; the axis QC is parallel to the line of intersection of the plane Ozy with the
plane through €2 perpendicular to 2§ (supposing those two planes non-parallel);
the unit vectors £€° and ¢° of the axes Q{ and Q¢ respectneiy, once defined, the
axis {n is determined by its unit vector 7% = (% x £°. The axis Oz being obvxously
perpendicular to the axis Q, the definition (13) implies

‘ n
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and (120), (17) imply

(1] = COSYPCOSw, aip = —Ccossilly, ajz =siny,
(121} az1 =SIDYCOSy, dazy = —sinysing, dz = — €os ¥,
az; = sin @, azy = COS @, aszs = 0.

Besides, (120) and (26) imply
{122) , : dg:if)simp, Wy = 9 cos ¢, we = Q.
By virtue of the condition (120) a dynamical problem concerning a rigid rod

is presumabl} overdetermined. Indeed, the canonic parameters of L are now 5 in
number, namely

(123) Tas Ya, 20, ’lﬁi", ¢,
whereas there are 6 equations (114), (115) for their determination: in the case of
a free rigid rod they outnumber the unknown quantities (123). This contradiction
is, however, only an ostensibie one.

Let us take a closer view of the situation. The deﬁmtxon of a rigid rod implies

(124) *(p) =0
for
(125) n#0
or ’ ’
(126) ¢#0,
whence, formally at least,
(127) dm = x(p) dédnd¢
implies
(128) dm = x(¢) d¢
provided (9). Now (128), (124)-(126), and (41) imply
(129) o= o [exte)agé®,
i.e. | '

© (130) o e =(e=0

provided (64).
On the other hand, (128), (124)- (126) and (58), (59) imply

(131) Igg o= 0, I’?Q = I{( = [{;’2::(5) df, ]'K = I(c = 15,7 =0
and (130), (60), (61) imply

(132) Jee =0, Jpp=Jo = "‘5(2;‘: In¢ = Jeg = Jgn = 0.
Now (131), (132), (62), (63) imply

(133) A=0, B=C=1, D=E=F=0,

- 68



provided by definition
(134) I= [ €x(eyde - me2,
and (133), (115) imply

(135) I(wy — wewe)= Mgy + Ney,

I(w,; —}-wfw,}) = Mag -+ NGC'
We are faced now with a most interesting and instructive phenomenon — a

danger hanging like the sword of Damocles over the head of everyone working in
rational mechanics. Let us first suppose that the rigid rod is free; then

{OQMGE“I"NG&

(136) | Nge =0
and the first equation (135) implies
(137) Mge = 0.

In other words, (137) is a necessary condition for a free rigid rod dynamical problem
to be consistent, videlicet to possess a solution or, using a mechanical language, in
order that the rigid body could move. Now is this conditio sine gua non satisfied
indeed?

This is a question God Almighty cannot answer.

A Mister Someone with a more physical than mathematical mental constitution
would at once exclaim: Nonsense! You bet (137) is true!

What are his motives?

His mental picture of a rigid rod is suggested by his everyday experience. He
cannot imagine a spade, or a mattock, or an ax working save when hands are
holding its shank, in other words, save when the forces acting on the instrument
are applied on its handle. And the meaning of the term “applied” in this context
is: when the directrices of the forces intersect the directrix of the rod.

Since the latter in our case is the axis 2§, Mister Someone presupposes that
the directices : "

(138) rxF,=M, (g=1,...,m)
of the forces {109) intersect 2€, the equation of which is
(139) rx€=rqxE°

or

(140) | FxE =0

in view of (6). On the other hand, (64) and (130) imply
(141) pc = Ec€°)

and (138), (6), (45) imply

(142) (G+ro—pe)x Fy=M, (u=1,...,m),
whence |

(143) (G+re—pg)x F=M
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by virtue of (110) or, just the same,

(144) | PXF=Mg+EcE®x F
in view of (141) and
(’145) ) ‘MGZM'%FX’{'G

Since the equations (140) and {144) are, by a physical h»oothesm consistent, the
‘relation

(148) - p =Xl

with an appropriate A according to (140) and {144) imply
(147) ‘ MOx F=Mg+EcE?x F,
whence :

(148) £°Mg =0,

i.e. (137) by virtue of (117).

In such a manner, the necessary condition (137) for a free rigid rod dynamical
problem to be consistent is a corollary from the hypothesis that the directrices of all
active forces applied on the rod intersect the directrix of the rod, i.e. the line along
which its density is different from zero. But this hypothesis does not follow from
the hitherto formulated definition of the rigid rod concept consisting in the only
requirement (124) for (125) or (126): it is a new aspect of this notion that has been
just now substantiated physically and mathematically and that must necessarily
take part in the definition of this concept.

In such a manner we arrive at the fo}iowmg newly improved formulation:

A rigid rod is a rigid body the density of which is zero anywhere save along a
straight hqe (1ts dxrectnx) where its density is such that the integral (39) is non-
zero; moreover, if an active force is acting on a rigid rod, its directrix intersects (or
coincides with) ) the directrix of the rod.

This definition accepted, (137) implies that the first equation (135) becomes
(136). The relation (136), however, is by no means an obligatory one. The meaning
of this statement is that the condition (136) is both beyond proof and beyond

disproof. Now we are faced with the same logical perplexities as in the case of - .

the necessary condition (137). This dilemma is settled in the same way as in the
preceding case. In other words, it is supposed that the only points of contact of
a rigid rod W;th any geometncal constraint, imposed on it, must be lying on its
directrix.

Summing up, we may now state that (137) and (136) are presumptive necessary
conditions for any problem of rigid rod dynamics. Praemonitus et praemunitus with
this new clause, one has now every right to state that in the case of a rigid rod the
first equation (115) turns out to become an identity of the kind (101) (privided
the system of reference Q€n(, invariably connected with the rigid body, 1s chosen
in such a manner that (120) and (124) provided (125) or (126) ho}d) As a result,
in the case of rigid rod dynamics one has at his disposal exactly 5 equations of
motion, namely (114) and

(149) I(w,? — wgwg) = Mg,? -+ N(;,; I(QC 5 wgw,?) = M(;(; + .N(;C,

-while the number of the unknown quantities in the dynamical problem is not lesser
than 5.
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