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Klaus Herrmann, Ivan Mihovsky. APPROXIMATE »X'\TALYTICAL II;\TVEQTI-‘
GATION OF THE ELASTIC-PLASTIC BEHAVIOUR OF FIBROUS COMPOSITES
PART I. THERMAL LOADING.

A mechano-mathematical model of the elastic-plastic response of a class of fibrous’
composites is proposed. It concerns low fibre volume fraction composites with a ductile
matrix and parallel elastic fibres. Along with the qualitative-conclusions about the mecha-
nisms of matrix plastification a series of quantitative results is derived as well, concerning
the composites response under thermal and mechanical loading conditions (Parts I and
I1, respectively).



INTRODUCTION

Reinforcement of complaint materials by parallelly aligned continuous strong
fibres provides an essential increase in their strength and stiffness and makes the
fibrous composites thus obtained attractive for various load-bearing applications.
On the other hand such applications involve, as a rule, high fracture resistance
requirements. . Fibrous composites with ductile matrices prove to satisfy these re-
quirements sufficiently well.

Thus, matrix plasticity appears to be a desired property of the composites. It
reduces their sensitivity to a variety of typical structural defects which are either
introduced by the fabrication processes or created artificially. The plasticity of the
matrix material improves the resistance of the composites to initiation of modes
of local fracture, associated with the stress concentration effects due to such struc-
tural defects. At the same time, matrix plasticity is known to change essentially the
overall thermomechanical response-of the composites and, in particular, to reduce
‘considerabiy their overall strength. In other words, matrix plasticity leads to an
overall behaviour of the composite material and to the development of modes of
fatlure, which are much less sensitive to the local structural defects. Therefore, this
phenomenon should be considered to be due to the very nature of the plastic de-
formation process developing within the matrix phase. The mechanisms, involved
in this process, change the entire pattern of fibre-matrix interactions and, corre-
spondingly, the basic features of the phenomena of load transfer and distribution,
respectively, developing within the composite structures. Thus, it is of definite

-interest to clear up the nature of these mechanisms and in addition the trends in
their development, their dependence on the structural parameters and the loading
status of the composites, and accordingly their influence on the overall thermome-
chanical response of the latter. An attempt in this regard is made in the present
study which concerns also the associated questions of how these mechanisms affect
the failure phenomena in the composites, and how and to what extent they reduce
their sensitivity to the typical structural defects. :

~ A general approach to the problem is developed and ap approximate analytical
version of this approach is realized. The approach concerns the class of unidirec-
tionally fibre reinforced composites of relatively low fibre volume fraction and with -
continuous strong elastic fibres perfectly bonded to a matrix of a weaker ductile
material, Furthermore, the class of thermal and mechanical loading conditions is
considered under which axisymmetric stress-strain states develop within a compos-
ite unit cell consisting of a circular cylindrical fibre with a coaxial cylindrical matrix
coating. Numerous aspects of the basic problem considered in the following have
been already successfully studied, for example, in the works of Hill [1], Spencer [2],
Mulhern et al. [3], Ebert et al. [4], Thomason [5], Dvorak & Rao [6], Strife & Prevo
[7], Min (8], Morley [9]. It should be immediately underlined that these references
exhaust by no means the large list of publications on the problem but, at the same
time, the present study aims neither at describing the state of the arts nor at re-
viewing the existing literature. Reference is made to these articles since they, even
in such a restricted amount, clearly indicate how different the approaches to the
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problem may be and, in addition, how this variety of approaches is derivable from
practically the same adoptions about the composite structures as well as by means
of the same basic concepts of the plasticity theory. The distinguishing features of
these approaches concern, in fact, the ways in which they account for (or neglect)
the specific effects of the continuous fibre reinforcement, namely the strengthening
(including the stiffening), the stress concentration, and the shrinkage effect. From
the point of view of this dlstmgmshmg criterion one may specify the approach be-
low as an attempt for a more rigorous account for each of these effects as well as
for the simultaneous account of all of them. The remaining adoptions and concepts
involved in the analysis do not differ in their nature from these of the works }ust
cited.

In essence, the approach itself is a direct further development of the matrix
plastification model previously proposed by the authors in [10, 11]. This basically
qualitative model has proved to imply a series of useful conclusions concerning, for
example, the development of the matrix plastification process (existence of a maxi-
mum plastic zone size), the mecharisms and the modes of failure of the composites
- (plastic instability of the matrix), and, in addition, the fibre-matrix cracks inter-
actions phenomena (applicability of the Dugdale crack model, ¢f. {11, 12}). The
development of the model in the present study leads to further conclusions concern-
ing both the qualitative and the quantitative aspects of the considered problem.
When coupled with appropriate numerical methods the general approach allows to
achieve an improved accuracy of the results as well as an enlargement of the classes
of the considered composite structures and loading conditions without principal
changes in the structure of the governing equations. At the same time the object of
the present investigation is not to deliver*quantitative estimations of high accuracy
but rather to bring a sufficient understanding of the very nature of the processes
of matrix plastification and of their influence on the overall response of the com-
 posites. To clear up these questions is the principal aim and to this respect the
general approach proves to be an effective tool even in its simplified approximate
analytical version. The latter simulates adequately enough the specific features and
trends of development of the matrix plastification process. The analysis predicts
an overall response which is consistent with the commonly adopted understanding
of the composites behaviour in the “rule of mixtures” sense.

Two model problems are considered in detail. These are the problems of
matrix cooling (a simplified version of the cooling of the entire composite structure)
and longitudinal extension. They simulate loading conditions which are typically
involved in the processes of fabrication of the composites (thermal treatment) and in
their load-bearing apphcamons respectively. The study is divided into two parts.
This is due to the fact ‘that the general approach reveals quite different specific
patterns of the elastic-plastic response of the composites when applied to each of
the two model problems considered. Each of these patterns proves to deserve due
attention from the point of view of the corresponding analysis, its predictions, and
the practical applications of the latter. The first part of the study deals with
the thermally induced elastic-plastic behaviour of the considered class of fibrous
composites.



STATEMENT OF THE PROBLEM

The class of composites and the composite unit cell, considered in the following,
are as specified in the introduction. When referred to a cylindrical coordinate
system {r, #, z}. where the z-axis coincides with the axis of the fibre, the cross-
sections of the fibre and the matrix occupy the regions {0 S » < vy, 0 < 6 < 21}
and {r; < r <y, 0 L6 < 27}, respectively.

The fibre material is linearly elastic with Young's modulus E;. Poisson’s ratio
v;. and linear thermal expansion coefficient ay. The material of the matrix 1s
elastic { 'y, Vp,. apy) — perfectly plastic and obeys the von Mises yield condition.
The thermoelastic properties of the fibre and the matrix as well as the tensile yield
stress 0y of the latter are considered as temperature independent.

The thermal loading is specified as matrix cooling, that means as a process
of monotonous quasi- static decrease of the itself negative matrix temperature T,,,
which is measured from the temperature of the initially unstressed state of the
composite. The same scheme of loading has been considered in [11]. The genere-
lization of the analysis of this model scheme with respect to the process of cooling
of the entire cell, which is practically always involved in the fabrication of the
composites, as well as to other more realistic modes of thermal loading is almost
straightforward. No external loads are applied to the cell. Thus, the correspond-
ing thermally induced stress-strain state of the cell is axisymmetric and, due to
* the assumed perfect fibre-matrix bond, allows to be treated by applying the plane
cross-sections hypothesis. Correspondingly, the normal stresses in both the fibre
and matrix phases are principal ones and depend upon the radial coordinate only.

v

THE MATRIX PLASTIFICATION MODEL

It was already mentioned that the analysis in the present investigation is based
upon the matrix plastification model, developed in previous works of the authors
(10, 11}, Thus, a brief general description of the model and of the associated basic
concepts would be usefull both for the better understanding of the analysis and for
its concise presentation. As it should be expected, the basic concepts of the model
oncern the principal features of the considered composites and, firstly, the main
effect of the fibre reinforcement, namely the strengthening one. In fact, due to the
associated decrease of the compliance of the composites connected with this effect,
the longitudinal strains ¢, in.the latters remain relatively small, ne. comparable
with the themselves small purely-eldstic strains in the stiff fibres. Then the elastic
£¢ and the plastic e£-components of the itself small total €,-strain in the plastified
matrix region are also small enough for a comparison, using relations like “much
larger” or “negligibly small”. Accordingly, the model states first of allt that by
‘considering the matrix plastification process one should permanently account for
the current ¢¢-strain instead of neglecting it with respect to the €0-strain, as it is
the usual case in the common plasticity approaches. The way, in which the latter -
account is carried out, is associated with another principal feature of the considered
composites, namely the limited elastic response of the matrix material. The natural
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development of a given process of progressive plastification in a point, i.e. in an
elementary volume of such a material, involves, most generally speaking, trends of
progressive decrease and increase in the elastic and the plastic strain increments,
respectively. One may thus generally relate such a process with a certain specific
instant of its development upon which the elastic strains may be viewed as keeping
approximately constant values, since their further increments become small enough
to prevent (upon superposing) further substantial changes in the values which they
have achieved at this instant. In accordance with these mostly qualitative but
realistic considerations the model assumes the following. For a given composite
structure, given loading status, for a given elementary volume of the matrix phase,

€
a specific value ;: of the £{-strain exists such that upon a certain transitional regime
of plastification, at the end of which the £¢-strain in this volume achleves the value

ez, a second regime starts developing for which the relation ¢¢ = 5 holds true A

further simplifying assumption of the model concerns the dependence of the & 5 -valne
on the Jocation of the elementary volume, i.e. on the spesific and actually unknown
pattern of the transitional plastic stress redistribution which depends itself on this

e
location. The model actually deals with the same ¢,-value in the entire matrix

region, where the second regime has started developing. The quantity 2: may be
thus considered as an average overall measure of the limited elastic response of a
given composite under a given loading status. The determination of this quantity
is, of course, a part of the analysis of the elastic-plastic response of the composites. .
When specified with respect to the considered composite unit cell these basic
concepts of the model imply the following qualitative description of the development
of the matrix plastification process for both the model problems mentioned. Due
" to the stress concentration effect of the fibre, plastic deformations appear in the
matrix at first at the fibre-matrix interface and a transitional regime of matrix
plastification starts developing. The plastic zone associated with this regime has,
due to the symmetry, the form of an annulus ry £ r £ re and spreads into the

*x€
matrix phase. At the instant when | ,=., = £, ie. when the g$-strain achieves
its limiting value (and this instant is first achieved at the ﬁbre~matnx mterface)
the second regime starts developing with a plastic zone ry < r S R, R. < 7.,

within which the relation € = Ez holds true. The second plastic zone spreads
into the matrix phase as well having the first one, which occupies now the annulus
R: £ r £ r. at its front » = R.. Thereby the transitional plastic zone R, Sr < r.
is further considered as a thin layer, i.e. R. & r.. The latter plays the role of an
‘elastic-plastic boundary, to which a softened version of fulfillment of the standard -
elastic-plastic transitional conditions is applicable (cf. {10, 11]).

Finally, the following remark is due with respect to the thermal problem con-
sidered below. The elastic part €S of the total axial strain ¢, in this case involves
itself a part £5***, due to the thermal stresses, and a part €4'*™P due to the ther-
mal contraction. or expansion, respectively. When referred to the thermal problem
the considerations, made above with respect to the £2-strain, should be now viewed
as concerning not the entire £Z-strain but its &':"“‘-part only. Moreover, the strain



£&1€mp is stress independent.

ELASTIC BEHAVIOUR AND ELASTIC-PLASTIC TRANSITION ‘

" The assumptions, specifying the class of fibrous composites under considera-
tion, allow to treat the products and the powers of the ratios En/E; and r5/rm
as small quantities. Appropriate simplifications are carried out accordingly in the
following sections and the results derived are presented in forms, containing the
‘principal terms only. ‘

The linear-elastic solution of the considered problem is obtainable as a simple
generalization of the plane strain (¢, = 0)-solution of Herrmann [13]. The process
of matrix cooling implies the following elastic distribution of the stresses ¢/*¢ and

ol¢, i=r, 0, z, in the matrix and in the fibre respectively:
ome En C r2,
me = ; 5 I¥ 5}
. gé 1 + Vm Thm r
(1) o o = Em(e; —amTn) +vm(o® +05°%),
gfe fromed age - O'me {f’:ff}
a:fe‘ = Eye,+ 2507y,
where |

In fact, eqn (2) represents the exact value of the principal term of C for a
composite with v, = vy.  Generally, this term involves the multzplymg factor
(1- (ym - t/f)/(l + vm)(1 + E.)] as well, where

The latter factor is neglected in the following analysis, since, as one may ac-
~tually prove, it does not affect substantially the. basic features of composite’s be-
haviour. Along with the self-equilibrium condition of the axial sgresses ¢, i = f,
_ m, the stress distribution from eqns (1) implies the relations

(4) e, = amTm/(1+ E.),

5) Y = o T E /(1 + Eo),

where £3** = ¢, —¢!¢™P is the part of the ¢,-strain, due to the stresses, and "7 =
amT,,. Eqns (4) and (5) are obviously approximations of the thermoelastic response
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of the composite unit cell in the common “rule of mixtures” sense. Furthermore, in-
accordance with the von Mises’ yield condition, the foregoing relations define the
temperature of initial matrix plastification T at the fibre-matrix interface as

The corresponding €'~ and £$!*'F-values are
(7) , | el = —ay/V3En(1 + E.),

(8) et = o E V3EM(1 + E.).

“ANALYSIS OF THE ELASTIC-PLASTIC BEHAVIOUR

According to the matrix plastification model described above the £5**-strain
at the fibre-matrix interface achieves upon a certain transitional regime the value
?:: Its initial value is the value £2!*P" defined by eqn (8). At this instant the
second plastic zone r; < r < R, starts spreading into the matrix phase. The

. =€ o . . .
relation €5*** = €, holds true within this zone. In accordance with the generalized

F4

thermoelastic Hooke’s law the stresses o"?, i =r,40, 2, in the plastic zone satisfy
the relation '

o mp _ ok mp | gmp
o7 F = Epe, +vm(o)? +0,7").

Eqn (9) allows a reduction of the von Mises’ yield criterion to the form

mp _ _mp\ 2 mp f;p E %© z 1 _ 2 2 g2
(10) U__) + aé’ + 0"_ . m&.z ( Vm) - ”_Ii :0
: 2 1-2v, 3 3 |

The latter equation is identically satisfied by stresses of the form -

. " €

f omP Ene o v' L
11 . = T Y cos(wx®
H o } =2, s W EY)
where A .
(12 . St w = "% [ %

A
11



(13) tan ® = (1 — 2v,,)/V3.

Due to the elastic restriction specified by eqn (9) the yield condition defines
an ellipse in the (o, o, )-plane, eqn (10) or eqns (11), respectively. The points of
the yield ellipse have coordinates.(o}'?, ¢"P) and are representative points in the
stress-space for the stress-states in the pomts of the plastified matrix phase. Thus,
a specific process of plastic stress redistribution in a point of the matrix phase
defines via the angle w, eqn (12), a specific law of motion along the yield ellipse of
a corresponding representative point. Thereby the angle w is easily seen to be a
function of the loading parameter, i.e. T,, as well as of the radial coordinate r and
is further depending on both the geometrical and the mechanical characteristics of
the - composite constituents. The r-dependence of the angle w is obtalnable upon
integrating the equilibrium equation

o do™P  g7mP — gp'f
1 4) ) r r L] —
(14) T+ - 0

in the interval r; £ r £ R, with the boundary condition

- (15) w|r=R, = wRg, = arccos [-»Em;:i/ay(l +vm)].

The latter condition reflects the assumption {cf. Herrmann & Mihovsky {10
11]) that ¢5*** is the only non-neghglble elastic strain in the second plastic zone

(where, as adopted, €5 = : .) and that the matrix material is plastically incom-

pressible. |
The result of the integration reads

(16) ) _}_22 : sin w

r?  sinwg,

exp[(w — wg_)cotan @],

where the plastic zone radius R. is to be further determined as a function of the

loading parameter Tpn.
~ With respect to the values of w at the fibre-matrix interface eqn (16) implies

(7) ' R?  sinwy,
< ] rf"; " sinwr,

exp[(wr, — wr, )cotan @),
where the notation is introduced

(18) ' wr, = w(r)lr=r,.

It is clear from the very nature of the considered thermal loading process that
progressive matrix cooling should result in progressive shrinkage, i.e. in progressive
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decrease of the itself negative radial stress acting over the fibre-matrix interface.
At the same time the shrinkage effect is limited itself in the sense that, as eqns (11)
prove, a maximum shrinkage, 1.e. a minimum value of the latter stress is achievable
at the instant when w,, = m — ®. This specific instant for the composite unit
cell is shown in [10, 11] to correspond to a critical state of the cell when failure
modes start developing in the latter due to the plastic instability of the matrix at
the fibre-matrix interface. Further, these considerations imply the conclusion that
with progressive thermal loading the angle w,, increases (cf. the structure of the
o7'P |, =,,-stress, eqns (11)), running actually within the interval

(19) o ‘ ‘chgw,fgvr—@.

The latter conclusion is meaningfal if, of course the angles wr,_ and @ satisfy

the relation wr, < m — ®. Since the quantity e: ‘should be expected to belong
actually to the interval [e3t*:?! g, /Ep], then eqns (13) and (15) prove immediately
that the latter relation is valid if v, > 0.1, which i1s the practical case for the
commonly used matrix materials. Moreover, in accordance with this conclusion
eqn-(17) proves the existence of a maximum plastic zone size R} and defines the
latter as

sin @

. *2 2
(20) R =13

, exp[(m — ® — wg,)cotan P)].
sinwp, ,

For reasons of simplicity the analysis below is restricted to cases for which
R} < rp,. From its quantitative side this analysis aims at the prediction of the ther-
mally induced elastic-plastic response of the unit cell, i.e. the €,(T},)-dependence.
This aim is achieved in the following in a step-wise way, which involves at first the
determination of the w, (¢, )- and the R.(¢,)-dependences.

The procedure of obtaining the wy, (¢, )-dependence involves the following basic
steps. First, the condition of continuity of the radial displacements u}, i1 = .f, m
at the fibre-matrix interface is constructed by the aid of the known axisymmetric

relations u,.],,.___,.f = rfsglr-r,, where 89, ¢t = f, m, are the c1rcumferent1al strains
in the fibre and the matrix, respectively. Further, the strain rates €, i = f, m
are obtained as derivatives of the strains % with respect to the loading parameter
Tin. Thereby the elastic part £*® of the {7-strain rate at the interface r = r; is
neglected (cf. the text following eqn (15)). The strain rate & is defined via the
generalized Hooke’s law and eqns (1), now with ¢7*?|,—,, instead of ormel,._,.j for
the stresses at the fibre-matrix interface, The. plastic part &7 of the & -strain
rate is defined in accordance with the associated flow rule concept along with the
yield function, used as a plastic potential (cf. [11]). Moreover, the thermal part
of the £J*-strain rate can be neglected without affecting the basic trends of the
wr-behaviour. The u,-continuity cordition is thus reduced to the form

(21) - B Ade; :‘f(‘*’rf )dwr;:
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where the notations are introduced

Ef\/g
2(73;(1 + Vf)(l — QVf)

-

(22) A=

sin(wy, + ) cos wr,
sin(w,, + ®) — 2vysin® cosw,,

(23) ) =

Eqn (21) has to be solved in the interval [wg,, m — ®] with the approximate
boundary condltron , ‘ ,

- ¢
(24) i ’ - £, ‘wffz‘*;ﬁc :'ggf [ —Ez/Ec.

This boundary condition results from the assumption that the behaviour of the
unit cell in the interval between the initial matrix plastification and the occurrence
of the second plastic zone, i.e. in the transitional refime, is not substantially
affected by the only presence of the corresponding transitional plastic zone and

thus may be considered as followmg the linear-elastic dependence, glven by eqn (4)

or eqn (5) respectively. Such an assumption practically identifies the e and g3t*P!

€
strains and further defines by means of eqns (6) and (8) (the latter with £2'*?! = sz
~now) the instant of occurrence of the second plastic zone (when w,, = wg,, cf. eqn
(24)), as corresponding to the values T2’ and 22! of T, and ?' respectively, which
are : '

Pl

(25) - ol = —&,(1+ B.)/amEe,

(26) ; o= ¢, /E..

An approximate series expansion procedure for solving the boundary value-
problem, specified by eqns {21) and (24), is applied. It consists of the following
- steps. Eqn (21) is first solved for vailues of wy,, close to # — @, upon an expansion
of the function f(w,,) into the powers of the small differences (7 — ® —w,,). The
solution thus obtained is then extrapolated over the entire interval {wg_, 7 — ®] in
order to fit the boundary condition, eqn (24). Accordingly, the following form of
the desired approximate dependence is obtained -

' ) ' b 1/2
(27) we, (Ag)=71—-® - [(T-—@—wgc)g cij;Aez] ;

where
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(28) b= 2vV3us(1 — 2um)/[3 + (1 — 2v,n)?),

(29) Ae, =¢, — &',

The quantity A¢, is thus the part of the total axial strain £, which develops

upon the occurrence of ‘the second plastic zone. The critical value A, of Ae, at
which the unit cell undergoes a transition to failure, follows from eqn (27) with
wr, =7 — P to be

cos ¢
2bA

(30) CAE, = —(r — ® —wg,)?

With the aid of a similar expansion technique one obtains upon introducing
wr, from eqn (27) into eqn (17) the R.(¢,)-dependence in the form

(31)  RYAe)=R:2|1-[1- ") (1-A5‘)
L e ¢ R:2 At /|

It should be pointed out that -eqns (27) and (31) approximate the actual
wr,(€;)- and R.(e,)-dependences rather roughly but, at the same time, they keep
and clearly indicate the basic features of the latter, due to their simple analytical
forms. \
Further, the determination of the ¢,(7},)-dependencé is a matter of simple
computations, based upon the condition of self-equilibrium of the axial stresses

. R,
(32) riol 4 (r2, — R2)oT* +2 / o™ rdr = 0.

rs

Thereby the stress o is to be defined from eqns (1) with’ o]?P|,—,, instead
of o}, =, and with 07"?|;=,, given by eqns (11) with w = wy, along with eqn
(27) for w, I(AEZ) The ax:al stress ¢™¢ in the elastically deformed matrix region .
R.<r f rm 1s obtainable from eqns ( 1) upon definition of a new C-value from the
‘o.-continuity condition at the elastic-plastic boundary r = R.. The latter condi-
tion reflects the softened version of the fulfillment of the elastlc—plasnc transitional
conditions mentioned above (cf. [10, 11]). :

The axial stress ¢7°? in the plastic zone and the radius R, of the latter are
defined by eqns (9) and (31) respectively. ’

Upon correspondmg computatzons and appropriate simplifications eqn°(32)
implies the rolatlon
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1~ R
1+ Ec - Rg/rrzn,

- and by introducing for R, from eqn (31} it is obtained

-1
: | E. R? r$ 1 |
134) AEZ = amATm 1 "Jf”Ec + amATmﬁ"EE: T,%, (1 - ! ) m] ’

where the notation is used

(35) | ATy = Tpn — T7).

The explicite form of the ¢}**(T},)-dependence is obtainable straightforwardly
from eqn (35) and the relation Ael** = Ag, — amATn. \

- The critical temperature of failure of the unit cell 7}, = T2 + ATy, follows from
eqns (25) and (34) (with Ae, = Ae} for AT},) respectively. Both quantities Ae;
and AT, and therefore T}, are dependent on the specific value of 2‘: for the unit
cell and thus for the composite structure also. Consequently, eqn (34) represents
the desired approximate analytical form of the thermally induced elastic-plastic
response of the composite unit cell in the considered model problem of matrix
coohng ' -

'BASIC FEATURES OF THE COMPOSITE BEHAVIOUR

The basic features of the elastic-plastic response of the composite predicted by
the foregoing analysis will be briefly considered in this section. It should be men-
tioned, first of all, that with the aid of the obvious relation Ag3** = = Ae; ~am ATy
one>may immediately transform eqn (33) into the relation En(rZ, — R?)Acl* +
E‘;r Ae, = 0. Thereby the latter relation is nothing else but an explicite repre-
sentatlon of the predicted composite response in the “rule of mixtures” sense. In
accordance with this représentation the plastified matrix region influences the re-
distribution of the axial forces via its radius R, but does not explicity contribute
“to this redistribution. Its own contribution appears to be just negligible within
~ the frame of the present approximate analysis. Furthermore, the following state-

ment should be made with respect to the structure of the.Ae,(AT;;)-dependence
~obtained above. The strain Ac¢, defined by eqn (34) is easily seen to decrease
monotonically as a concave negative function when the itself negative temperature
difference AT, decreases. The curve Ac,(AT,,) proves to deviate smoothly from
the linear elastic €,(7},)-dependence defined by eqn (4). With the formal limit -
transition A7, — —oo the strain A¢, approaches asymptotically a limit value
Aé, which may be easily shown to satisfy the relation Aé, < Ae? (with Al < 0,
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cf. eqn (30)). The latter means that the composite cell achleves its critical state of
failure at finite values of AT}, and T, respectively. -

A purely qualitative schematlc 1llustrat10n of the total elastic-plastic response,
derived above, is presented in Fig.1 where the straight line I describes the behaviour
of a homogeneous cylinder of the matrix material under the considered cooling
process. No thermal stresses develop in such a cylinder and its axial strain is due
to the thermal contraction only. The line II corresponds to purely elastic fibre and
matrix materials, eqn (4). Each of the series of the concave curves I11,; corresponds

w€ . .. .
to eqn (34) with an initially specified ¢, ;-value. Each of these lines coincides with
the line II over the corresponding interval {0, Tg;‘.] or [0, & fi], respectively (cf. eqns
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Fig. 1. Schematic qualitative illustration of the elastic-plastic response of
fibrous composites due to matrix cooling

- (25) and (26)) and smoothly deviateé from this line in the way, shown in the graph,

at the corresponding points ( m, 3, si) The line IV is the assumed experimentally
obtained ¢,(T,,)-curve for the considered composite. As it is usually accepted in
the engineering practice, the linear part of this curve is constructed in accordance
with the linear-elastic “rule of mixture” approach. Thus it coincides over this part
with the straight line II. Let the line IV deviate from the line II at the point (T%/ ...,

5{;‘”?) where “ezp” stays for the experimentally measured values of T2/ and ?'.
Then, upon identifying these values with the Tf’f and 22’ values in eqns (25) and

" 4
(26), respectwely, one defines a corresponding, say e:z exp-Value of the quantity e: Lt
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1s this latter value of s to deal with when applying the foregoing general approach ‘
to a given composite structure

A more sophisticated approach to the identification of the actual value of the
*e~stram involves a comparison between the actual Ae, (ATm) -curve and the series
Of theoretical curves IIl,;. Upon introducing an appropriate best fitting criterion
and by means of a corresponding processing of these curves one may define the

theoretical curve which fits the experimental one in the best way with respect to

the chosen criterion. The value of gj, to which this theoretical curve corresponds,
will then be the actual one for the considered composite. It should be mentioned
that the strain Ae3'* increases as a concave positive function when the negative
temperature difference AT, decreases. One may easily derive the basic features of
the Ac3**(AT,,)-dependence by the aid of the foregoing equations. Furthermore, in
some cases the linearization of the composite response in the elastic-plastic range
may be of interest. A simple linearized version of eqn (34) is presented, for example,
by the relation Ae,/Ac; = AT, /AT Such a linearization replaces the family of
concave curves III,; in Fig.1 by a corresponding family of straight lines with the
same pomts of deviation from the line II. The approaches to the identification of

the actual ¢,-value, described above, apply to the linéarized case as well.

*

CONCLUDING REMARKS:

The results, obtained in the previous sections, represent in the whole an ap-
proximate analytical solution of the considered problem of thermal loading of a
composite structure. The general approach, developed in the study, involves a

specific parameter g'c for the composite structure as well as the loading status
and reveals the ways to its identification under the implicit assuption that the
real thermomechanical response of the composite corresponds to a concave strain-
temperature curve (cf. curve IV in Fig. 1). Whether this is the actual case or,
in other words, whether the predictions of the approach (the curve IIl,; in Fig. 1)
are at least in qualitative agreement with the real composite response is a principal
question. A positive answer to this question would not only support the valid-
ity of the approach in the whole but would obviously reveal further possibilities
for achieving a better quantitative fitting between the predicted and the actual
response. Thereby the following statement could be made with regard to this prob-
lem. To the authors’ knowledge there exist at present no experimental data which
could be used in a reliable way for a comparison with the prediction for the model
problem considered. At the same time the behaviour of the composite under ther-
mal loading with a concave ¢,(Tp, )-curve is explainable in quite a natural way. The
progressivé matrix plastification results in a softening of the matrix in the sense
that the stresses in the itself expanding plastic zone remain limited. This implies a
corresponding relative increase in the strengthening effect of the fibre and thus of
the overall stiffness of the composite structure. The concave curves III,; and IV in
Fig. 1 reflect, in fact, exactly the latter effect. It is difficult to explain in a similar
way an imaginary behavmur of the composite to which a convex curve, such as
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curve V in Fig. 1, would correspond. It should be mentioned in addiiion that the
theoretically predicted response of the composite allows for a direct realistic inter-
pretation in the “rule of mixture” sense. This fact may be considered to confirm
to a further extent the potential of the developed approach for reliable predictions
of the elastic-plastic response of the-composites. Finally it should be noted that,
as Part 11 of the present study proves, when applied to the problem of longitudinal
extension of a fibrous composite the same approach predicts a stress-strain curve
which is in entire qualitative agreement with the typical experimental observations.
Certain additional aspects of the thermally induced response of the composites will
be considered and simultaneously compared with the corresponding aspects of the
behaviour of such composites under longitudinal extension in the closing section of
Part IT of the present study. These aspects concern basically the general features of
the matrix plastification processes and their mﬁuence on the fracture phenomena
in fibrous composites. :
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