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- PaBora nponomkaer HCCIeIOBaHHE KOMIO3UTOB, PAaCCMOTPEHHBIX B YacTH I, moc-
BAIIEHHOM MX NOBEJEHHIO B YCJOBHAX TEPMHUYECKOIO HATPYXKeHHA. 3AeChb MCCJENOBaH
caydall UMCTO MEXaHWYECKOTO HATPYKEHHA M TOUHee — MPOJOJNBHONG DaCTHKEHMA. '
Mokazano, 4TO NMpeAIOKeHHHH B 4acTH | MOAXOM BeJeT K HAMEKHBIM KaveCTBEHHBIM
¥ KOJIMYECTBEHHBIM 3aKIIOUEHHAM M ONEHKaM OTHOCHMTEJLHO NMOBeAEHHA PacCMATPHBa-
€MBIX KOMIIO3UTOB. ‘

Klaus Herrmann, lvan Mihovsky. APPROXIMATE ANALYTICAL INVESTIGA-
TION OF THE ELASTIC-PLASTIC BEHAVIOUR OF FIBROUS COMPOSITES. I1.
EXTERNAL LOADING.

The paper continues the investigation of the composites specified in Part 1. While
the latter part is devoted to the thermally induced response the present one deals with the
purely mechanical problem of longitudinal extension. The approach developed in Part I
is shown to lead to realistic (both qualitative and quantitative) predictions of the overall
response of the composites considered.. :

INTRODUCTION

~ The basic aspects of the influence of the matrix plasticity on the overall ther-
momechanical response of the fibrous composites are considered in sufficient detail
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in the introductory section of Part I of the present study along with the specific
features of the general approach developed in the latter.

In the present part the same class of fibrous composites is considered by the aid
of the same models of the composite unit cell and the process of matrix plastifica-
tion (Herrmann & Mihovsky [1, 2], cf. p. I). The loading is specified as longitudinal
extension, which is a typical operational loading for fibrous composites. Therefore
it is quite natural that their response in such load-bearing applications has been
intensively studied in the past and that a good understanding of the overall char-
acteristics of this response already exists nowadays.

Following Kelly [3] one may summarize that there are two stages in the be-
haviour of the considered composites. They reflect the initial purely elastic elon-
gation of the fibres and the matrix, respectively, as well as the following plastic
flow in the matrix. The transition to the second stage occurs when the matrix
material starts yielding. This process begins at a value of the axial strain which
is “a little less” than the yield strain of the matrix, and is complete at “a slightly
larger” strain. The contribution of the matrix to the stress-strain curve in the sec-
ond stage is negligible. The lower bound to this slope, as derived by Hill [4], is (in
‘the notation introduced in p. I} Eyr? /r

This brief general description of the elastic-plastic response of the fibrous
composites clearly, indicates that the entire matrix plastification is a sudden phe-
nomenon. Such an effect of a sudden entire matrix plastification is not involved
in the thermally induced composite response, considered in p. I. The plastic zone
size in the latter case has been shown to increase monotonically with progressive
thermal loading. To clear up the response of the composites in the interval between
the initial and the complete matrix plastification, respectively, as well as the very
mechanism of the latter appears to be an interesting problem. In fact, this interval
corresponds to a very small change of the axial strain from “a little less” to “a
~ slightly larger” value, as stated by Kelly [3]. Thus, at fisrt sight, the details of the
composite behaviour in this short interval do not seem to be of essential signifi-
cance. But, from the view point of the influence of the matrix plasticity on the
response (including the failure) of the composites, it is important to get a better
understanding of this initial stage of matrix plastification. The real nature of this
stage indicates that it is governed by specific mechanisms. Accordingly, one should
expect that the latter may further contribute to the occurrence of specific trends
of the development of the plastic deformation process in the completely plastified
matrix. These trends are of interest with respect to the determination of the overall
- response of the composites, especially for the occurrence and the development of
failure modes. e

In this paper, the specific aspects of the matrix plastification process develop-
ing in a longitudinally extended fibrous composite are considered. Corresponding
conclusions of both qualitative and quantitative character are derived by means of
an approximate analytical version of the general approach already used in Part 1.
This version predicts an elastic-plastic response of the composite material which
is consistent with the lower bound estimation obtained by Hill [4]. Certain gen-
eral conclusions are derived in the closing section of the article with respect to the
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distinguishing features of the composite response under thermal and mechanical
loading conditions. The specific influence of the matrix plasticity on the fracture
resistance of the composites for both loading schemes as well as the significance of
special structural defects are considered. |

STATEMENT OF THE PROBLEM

The class of composites, the composite unit cell, and the mechanical propertles ,
of the fibre and the matrix materials, respectively, are the same as already specified
in p. 1. The loading is specified as longitudinal extension of the composite and
therefore as axial extension of the unit cell. The lateral surface of the latter 1S
traction free. Accordingly, the plane cross-sections hypothesis applies, the stress-
strain field in the cell is axisymmetric, and the normal stresses in both the fibre
and the matrix are principal ones and depend upon the radial coordinate r only-
" Further, the powers and the products of the ratios E,, /E ¢ and ry/ry, are considered
again as small quantities and, like in p. I, the final results are presented in forms,
containing the principal terms only.

ELASTIC BEHAVIOUR AND ELASTIC-PLASTIC TRANSITION

In accordance with the known elastic solution of the problem (cf.,'for example,
Ebert et al. [5]) the stresses in the matrix and the fibre are of the same form as 1
eqns (1), p. I, but with a new value of the constant C. This value reads

(1) ‘ . V CzSzAVr.?s

where the notation Ay means . ‘

(2) Av = vy — vy,

Mareover, the relation

(3) |  Av>0

applies for the commonly used fibrous composites and is assumed to be valid in
the following considerations. It provides, in fact, the occurrence of compressive
radial stresses at the fibre-matrix interface, i.e. the well-known shrinkage effect.
Further, by considering the equilibrium condition for the axial forces, the elastic
stress distribution from egns (1), p. I, together wx!;h the new C—-value from eqn (1)
now implies the relation '

(4) ol = En(l4 E),
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where F, is the same as in eqn (3), p. I, while

(5) o; = P[nr],

" is the axial composite stress, induced in the unit cell by the applied axial tensile

force P. Eqn (4) represents the well-known “rule of mixtures” approximation of

" the linear elastic response of a composite. ‘

‘ Now, in accordance with the classical von Mises’ yield condition, the matrix
starts yielding at the fibre-matrix interface when the stress o7 and the axial strain

£,, respectively, achieve the values °

| | "
© ot =a0r B [i- $ 00
| | o [ 3 (av?
™ =g [1- 3552y

Due to the smallness of (Ar)? one may really view the strain e8! of the initial
matrix plastification, given in eqn (7), as “a little less” than the matrix yield strain
ey = 0y/Enm, as stated by Kelly [3]. In addition, a simple comparison with the
thermal problem, tonsidered in p. I, shows that in the present case the initial
matrix plastification takes place at a much larger value of the e,-strain than it
was stated for the corresponding ¢3*-value (cf. p. I, eqn (8)). On the contrary,
the value of the radial stress at the fibre-matrix interface at the instant of initial
plastification is much smaller than the corresponding stress value in the thermal
problem.

It should be mentioned that in accordance with the sense e of the quantity 6,,
involved in the matrix plastification model, its actual value should be expected to
‘be close to the eP'-value or, respectively, to the value ¢2!*?! in the thermal problem
(cf. p. I). Therefore the plastic behaviour of the matrix in the present case will be
associated with a yield ellipse, which is of the same geometry as that in the thermal
case (p. I, eqns (10), (11)) but with its center removed from the origin of the (s,
0,)-plane along the line 0, = 0¢ over a distance which is “a little less” than the
length oy /(1 ~ 2vy,) of its larger principal half-axis. In the thermal case the center
of the yield ellipse almost coincides with the origin of the (o3, o )-plane. In the
present problem it is its vertex w = 7 (p. I, eqn (12)) that almost coincides with
the same origin. These general observations will prove to be useful for the following
analysis.

ANALYSIS OF THE ELASTIC-PLASTIC BEHAVIOUR,

In accordance with the basic adoptions of the matrix plastification model (cf.
p. I) one may immediately conclude that the series of equations given in p. I,
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namely eqns (9) -— (18), should hold true in the present problem as well. Further,
when keeping the structure of the thermal problem analysis one should consider
as a next step the way, in which the shrinkage influences the behaviour of the
angle w,,, introduced in eqn (18), p. 1. Generally speaking, the shrinkage is a
desired effect in the load-bearing applications of the fibrous composites, since it
prevents the occurrence of delamination phenomena in the latter. Practically, the
shrinkage in the present problem results from the larger cross-sectional contraction
- of the matrix with respect to the fibre. Relation (3) simply proves the validity of
this conclusion in the elastic range. Furthermore, the usual assumption of plastic
incompressibility implies the natural conclusion that the progressive plastification
of the matrix will effectively result in a further increase of Poisson’s ratio in the
matrix phase. The latter increase will then contribute to the further increase of
the shrinkage as it is adopted in the matrix plastification model of Herrmann &
Mihovsky [1]. In addition, one should accordingly accept that as in the thermal
problem the progressive loading will cause monotonous increase of the angle w;,
- within the interval defined by eqn (19), p. L. But by considering the u,-continuity
condition at the fibre-matrix interface (p. I, eqn (21)), it can be easily seen that
this foregoing adoptlon is not realistic. Because in the present case the function

f(wr, ) has again negative values, whereas, in contrast to the thermal one, de, is
~ positive due to the elongation of the cell. Therefore, the equation cited predicts
- negative dw, -values, that means a decrease of w,, and thus of the shrinkage with
_progressive loading, i.e. with increasing ¢,-strain. To clear up the reason for this
inconsistency between the adoption mentioned above and the prediction of the u,.-
continuity condition appears to be the first necessary step that distinguishes the
present analysis from that of the thermal problem.

It should be recalled in this regard that the u,.-contmulty condition, eqn (21)

p. I as well as the boundary condition, eqn (18), p. 1, are derived under the
assumption that the ¢5°*"- strain (i = r, §) are neligible (cf the text following eqn
(15), p. I). One may sxmply prove that, in fact, it is this assumption that leads to -
the inconsistency mentioned just above. Actually, in the present case, the cross-
sectional elastic strain components in the plastic zone should not be neglected since,
due to the relatively small stress concentration effect of the fibre (cf. the remarks
following eqn (7)), the corresponding plastic strain components will be also small
enough. Finally, by means of the procedure, described in sec. 5, p. I, and with the
gg-strain introduced into the u,.-contmuxty condttxon the following relation holds
true

(8) : : © Aude, = fi(wy, )dwy,,

where

40,(1 +vm)(1 + a)sind’

(9) | ' A=



. T
sin (-6— - wf!) Cosuwy,

(10) h (w,-,? = sin(wr, + ®) — 2vysin ® cosw,, ’
| (1+V;)(1~2VI)E
(11) YT T Ot umEy

Thereby eqn (8) is to be further coupled with a corresponding interval within which
the angle w,, changes, as well as with an appropriate boundary condition. It can
be proved that the angle wg_, as defined by eqn (15}, p. 1 (with the elastic strain
neglected), will not apply to the present case. Thus, the account for the elastic
strain, involved in eqn (8), requires a more accurate determination of the initial
value of wy, i.e. of wg,. The latter represents itself the value of w,, at the instant of
_ theé occurence of the second plastic zone. As in the thermal case it can be assumed
that up to this instant the transitional matrix plastification process (cf. p. I) does
not affect substantially the linear elastic behaviour of the composite. In the present
case this behaviour allows to be considered as satisfying the condition

(12)’ » : (o7 + o';m)‘r::r;‘ =0,

since the left-hand side of eqn (12) is proportional to r? /r2 and the terms of this
order of magnitude are, as adopted neglected in the present analysis.

Moreover, since the value e of the €,-strain, at which the second plastic zone
occurs, should not differ substantlally from the value of the sf"-stram (cf. eqn (7)),
one may further accept that :

| =€
(13) . , €, =€l
Regarding the yield ellipse (p. I, eqns (10), (11) now with g.*: from eqn (13))
eqns (12) and (13) simply prove that the stress state at the fibre-matrix interface,
at which the second plastic zone occurs, corresponds to the intersection point of
- this ellipse and of the straight line defined by eqn (12). Accordingly, the value wg,_,
which defines the position of this intersection point over the yield ellipse, can be
determined by using eqns (10), p. I, as well as eqns (7) and (13), respectively

- ,ﬂ | 3 (Av)?
(14) . 9 WR, = Arccos [ 1+ Qm]

Due to the smallness of (Av)? the value of wg_ is approximately 7. The same
statement is valid for the angle 7 — ® (cf. p. I, eqn (13)). Now, in the framework of
the model of the matrix plastification process (cf. p. I) the angle 7 — ® represents
the critical value of w,,, at which failure of the composite takes place, whereas wp,
is the initial value of w,,. Therefore, the establishment of an accurate relationship
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between the angles m — ® and wg, is absolutely necessary. In fact, such a relation

follows immediateiy from eqns (13), p. I, and eqn (14), respectively, and reads
\ .

(15)  wp <7-9, if Av> (14 vm)(l - 2uv,)/3,

(16) | wr, > 7 — @, if Av < (1+um)(1—2vm)/3.

At this place some additional remarks should be made before proceeding with
the further analysis. First of all, it can be stated that the general approach devel- -
oped in the present study, reduces the entire problem of the elastic-plastic response
of the considered fibrous composites to a’plane plasticity problem, which has a close
analogy to the well-known classical plane stress perfect plasticity problem (cf. for
example Kachanc»v [6]). The latter problem also involves a yield ellipse, for which

formally sz = 0 and ® = 7/6 hold true. By this analogy, the present problem can
be approached in the following way. It is in fact a matter of routine procedures to
prove that the yield ellipse from eqn (10), p. I, involves arcs of hyperbolicity and -
ellipticity as well as points of parabolicity. In particular, the arcs @ < w <7 — &
and 7 — ® < w < 7 of the latter ellipse are arcs of hyperbolicity and ellipticity,
respectively, and the point w = m — ® is a point of parabolicity. As the mathemat-
ical plasticity theory shows (Kachanov [6]), the regime of plastic redistribution of
stresses, associated with these arcs and points, possess both overall and local spe-
cific features. Thus, one should necessarily distinguish between the latter regimes.
This general conclusion reveals itself the importance of the above derived relations .
(14) — (16). They clearly indicate that different regimes of plastic deformation
may develop in the matrix phase depending upon the value of the difference Av of
Poisson’s ratio. Thereby for large values of Av the relations (14) and (15) prédict
that a hyperbolic stress state will initially develop in the second plastic zone. In
the case of small Av-values (cf. relation (16)) there exists an elliptic state of stress
in the plastic zone. Furthermore, the analysis from p. I proves that the process of
matrix cooling induces a hyperbolic regime of plastic deformation in the matrix.

Thus in accordance with the foregoing considerations it would be reasonable
to separate the analysis of the cases, corresponding to the relations (15) and (16)
respectively. Thereby the terms “hyperbolic” and “elliptic” will be used in the
following just in order to distinguish between these cases. The analysis itself will
keep the structure of p. I. Certain general considerations, concermng the analogy
with the plane stress perfect plasticity problem, are to be found in the authors’
article Herrmann & Mihovsky [7].

HYPERBOLIC CASE

It is clear from the conclusxons derived above that in this case eqn (8) s to be
solved within the interval '

(17) | wr, S wr
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along with the boundary condition

e
(18) €2 ‘w,_f—wn = Ez’

where wpg_ is defined by eqn (14) and satisfies relation (15), while the value E‘:
follows from eqns (7), (13). In this case eqn (8) implies positive dw, -values, i.e.
the increasing loading, and thus the increasing axial strain €, leads to an increase
in the angle w,,. By applying the procedure from p. I the wy, (¢,)-dependence can
be obtained as an approximate solution of the problem, specified by eqns (8), (17),
(18), respectively. This solution reads (when the principal terms are considered
only)

(19) Wr; = WR, +bi1A 1 As;,
where | ‘
‘ | tan ¢
, b —
(20) 1 21/1 1= Vf
(21) ~ | . Ae, =g, - 2‘:"

The axial strain difference ¢ Acy, at which failure of the unit cell takes place,
follows formally from eqn (19) with w,, =7 — & to be

*—®—wp,
b1Ay

- As it will be explained below, eqn (22) is a formal one It assumes lmphmtaly
- that the failure takes place before the entire plastification of the matrix, which is
not the actual case in the considered problem (in contrast to the thermal one).

Equations (16), (17), (20) from p. I for the plastic zone radius R, apply in the
present case as well with the new wg_-value from eqn (14). Therefore, by analogy
with the thermal case and with eqn (19) the R (¢, )-dependence reads

" r? A 2
- R i
1 v(l th) (1 As;) } .

Finally, the condition of equilibrium of the axial forces

2 A=

(23) - R*(Ac¢,) = R:?

R
(24) - riel +(rZ — RHoPe +2 f oTPrdr = rk ot

rs
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leads to the following forms of the o(e,)-dependence agam by the only considera-

tion of principal terms , .
.. ' R?:
‘ ‘ o - r2,
or '
m 1 <
(26) Aot = Ae, Em(1 + Ec)

2 RZ?2—-riAe,
1+ E, % Ag

1+

The function AcS(Ac,) is easily seen to be convex and to deviate smoothly
from the straight o,(c;)-line defined by eqn (4). Further, the analysis of the com-
posite response, eqn (26), in the sense of that from p. I, is now performable straight-
forwardly. But in the present case such a detailed analy51s is actually not necessary
for the following reason. Eqn (26) reflects the response of the composite within the

short interval [¢,, e/7], where £/?" stays for the value of the ¢,-strain at which
total (complete) matrix p]astlﬁcatlon takes place.
: Upon mtroducmg

(27) | Ael?! = gtPh _ ¢

it is clear that eqns (22), (26) would be of actual importance if the failure of the
composite takes place before the total plastification of the matrix, i.e. if Ae} <
Agt P! Thus, the next specific question that needs to be cleared up is which of the
two latter phenomena takes place at first. This question concerns, first of all, the
determination of the £!?"-value.

In solving this question it should be firstly mentioned that in the present case
the plastification of the matrix will lead to a reduction of the cross-sectional stresses
in the remaining elastically deforming region. The plastic zone radius remains (in
contrast to the thermal case) always much smaller than ry,, i.e. RY < rp,, which
is simply due to the smallness of the coefficient (x — ® — wg_) in the exponent in
eqn (20), p. 1. Accordingly, the themselves small o¢-stresses (i = r, 8), acting
in the elastic matrix region R, £ r < ry,, decrease further. This result allows
a consideration of the stress state in this region as approaching a state of pure

- axial tension with ¢7*® = E,¢,. Thus the plastification of this entire region takes
suddenly place v«hen o = oy. This result defines the value £{?" as
' o
28 . gz, = L
, ( ; ) 2 y Em

The foregoing equationé allow to prove that the relation Ae} > AelP holds -
practically always true. This is consistent with the typical observations of the
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behaviour of the fibrous composites. Thereby the occurrence of the stage of elastic-
plastic behaviour with a completely plastified matrix precedes the failure of the
- composite. Thus eqn (19) (respectively eqn (26)) is valid only in the interval [

‘P"' }. The quantity Ac’, defined by eqn {22), is itself not a real characteristic of
the composite. Furthermore, the values of Ae!P" and of the corresponding stress
of total plastification o0!?" (respectively Aac“ P} follow from eqn (7), (13), (25),
(27), (28) by considering principal terms only

¥

' 3(&:/)?
Agtrl = 2V
(29) ' T Em 2(1 4 vp)?
3(Av)?
e, t.pl. — f,t,pf. __ ~Cpl — Ec )
(30) . Agz ?’v' ’ o, O'g(1+ )2(1 +Vm)2
Upon introducing the notations \

1  Asp=c gy,
(32) Adty = of ~ ot ,

and by applvmg the equilibrium condition of the axial forces the o"’(sz,) dependence
for the con31dered stage can be given in the form

(33) | Ac; = EnE ¢ o

Thereby eqn (33) is nothing else but the known lower bound estimation of the
elastic-plastic response of the considered class of fibrous composites, derived by Hill
[4]. The interpretation of eqn (33) in the “rule of mixture” sense with a negligible
~ contribution of the plastified matrix phase (cf. Kelly (3] and the introduction to p.
I1) 1s straightforward.

‘ A qualitative purely schematic 1Hustrat10n of the overall response of the con-
sidered composites, as predicted by the present analysis, is given in Fig. 1. Thereby
the straight lines I and III correspond to eqns (4) and (33), respectively, while the
straight line II'is the linear approximation of the dotted one, to which eqn (26)
corresponds. The strain ¢} = e}?! + A} , with ¢! P! defined by eqn (28), is the
strain at which the failure modes, predicted by the model of Herrmann & Mihovsky
[1], start actually developing in the composite cell. How these failure modes occur
upon the complete matrix plastification is a problem with the solution of which the -

analysis of the hyperbolic case will be entirely closed. To this regard eqn (8) proves
that with further loading of the composite, i.e. upon o%**" the angle wy, further
increases and finally approaches the angle (x — ®). In addltion, it can be shown
that in accordance with the u,-continuity condition at » = R,, i.e. at the boundary
between the two plastic zones, the angle wg_ increases as well but it remains, at
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Fig. 1. Qualitative schematic illustration of the response of fibrous composites
under longitudinal extension

the same time, smaller than w,,. Thus, it is the latter angle that first achieves the
critical value (7 — @) to which the occurrence of the failure modes of the composites
at the fibre-matrix interface corresponds.

It should be pointed out that these conclusions result, in fact, from a relatively

complicated analysis. The latter involves a second yield ellipse (with €: = £y ),
- the o,-continuity condition at. r = R,, as well as a jump in the oy-stress at r =
R.. The occurrence of this jump results from the sudden change ib the process
of plastic stress redistribution, caused by the sudden entire matrix plastification.
The stress state in the suddenly plastified matrix annulus R, £ r £ r,, with
or & 0¢ & 0 corresponds to the vertex w = = of the second yield ellipse. This
vertex belongs to an arc of ellipticity of the latter. The necessity of introducing
this ellipse reflects the fact that a'sudden plastification of the elastically deformed
matrix region corresponds to a value se of the axial strain in this region, which is
equal to €y

Further eqn (17), p. 1. with wg, from eqn (14) now proves that with the ,
behaviour of w, , and wg, described above the plastic zone radius R, decreases with -
progressive loading. This is a natural result since the large plastic zone R, S r < rpy
should be really expected to reduce the stress concentration within the thin plastic -

layer ry < r £ R., surrounding the fibre, and to reduce in this way its size R, as
well.

When solved in the terms of Ae, » and Aw,.“ = wy, — w‘ P (cf. eqns (19),
(29)) the u,-continuity condition, eqn (8), will imply with w,, = = — ® the actual
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critical Ae} ,-strain difference, respectively, the critical ¢}-strain (cf. Fig. 1) at
which modes of failure of the composite will start developmg The determination
of this critical strain difference Ac} , is a matter of simple computations, and the

strain €} is equal to e1?! + Aej , (cf. Fig. 1).

ELLIPTIC CASE

This case corresponds to relatively small values of Ay, for which the inequality
(16) holds true. The stress concentration effect is smaller than in the foregoing case.
The initial value of w,,, i.e. wg,, belongs to the interval [r — ®, 7). The speciality
of this case is associated with the behaviour of the function f; (w,._,) from eqgn (8)
This function changes its sign when w,, runs through the value

(34) | ‘Wry = arctan[—(1 — 2v;) tan ®].

The angle @, obviously belongs to the interval [x — ®, 7]. It is easy to prove at
the same time that irrespectively of whether the wg_-value is larger or smaller than
@y, , the change in the sign of the function fi(w,,) at wr, = @,, guarantees that
upon the occurence of the second plastic zone the angle w,, in any case will achieve
the value Ty,, and that further development of the matrix plastification process
will be possible with this constant value w,., of w,,. It is reasonable to accept
that the progressive loading causes again an increase of the plastic zone radius R,.
Then, in accordance with eqn (17), p. I (with w,, = &,, now), this increase should
be due to the increase of the angle wp_ in the interval [x — ®, 7]. At the instant
when wg_ = 7 the plastic zone radius R, becomes infinitely large, i.e. sudden total
matrix plastification takes place. Note, that the point w = 7 belongs to an arc of
ellipticity of the yield ellipse (p. I, eqn (11)).

The effect of constancy of the angle w,, and of the sudden ent:re matrix plas-
tification can be explained in the followmg way. As eqn (8) shows, in this case
the angle w,, changes upon the occurrence of the second plastic zone ry < r < R.
between the themselves close values wg, and @, Wr,. The plastic zone radius Rc re-
mains small again, i.e. comparable with the ﬁbre radms r; (p. I, eqn (17)). At the
same time the thinness of the plastic zone reflects the very low stress concentration
effect of the fibre. Since the plastification itself further reduces the latter effect,
it can be assumed that at a certain instant of the plastification process the radial
dependence of the stresses in the thin plastic zone becomes negligible. Then, due to
the o,-continuity condition at r = ry, the fibre and the thin plastic coating around
it could be considered at this instant just as forming an “elastic” core ry < r < R,
of the composite cell, which expands with an “increasing” Poisson’s ratio v.. The
core is “elastic” in the sense that the existing radial stress in it satisfies, as in the
homogeneous linearly elastic fibre material, the relation ¢, = o,|,=gr, (p. I, eqns
(1}). The “increase” of the v.-ratio is due to the plastic incompressibility of the
strain in the thin plastic coating as well as due to the expansion of the latter, i.e.
due to the increase of its volume fraction. With the concept of the core formation
the u,-continuity condition at r = ry, i.e. within the core now, may be considered
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as identically satisfied irrespectively of the values of the angle w,,. The latter keeps
actually the value @, ,. The core spreads into the matrix phase with the increasing
ve-value and thus reduces the stresses 0/*¢, i = r, 8, in the remaining elastic region,
since the latter are proportional to the itself decreasing difference v, — v, cf. eqns
(1), p. I and eqn (1), respectively. Obviously, this is the above considered stage of
deformation with increasing wg_-values (wg, — ). Thus the instant of complete
matrix plastification wg, = 7 corresponds to that one at which v, becomes equal
to vm (cf. eqn (14) with Av = v, — v.). |
It should be mentioned without discussing the details that the analysis of the
unit cell behaviour upon the instant of complete matrix plastification follows the
same basic lines as in the foregoing case. It predicts, as it should be expected, the
same response (cf. eqn (33)). The distinguishing feature between the two cases

concerns in fact the length of the transitional interval [*e, gl P!l (cf. Fig. 1). This
interval proves to be even shorter in the present case than the itself short interval
from the hyperbolic case. ' /

The basic features of the development of the plastic deformation process, as
well as of its influence on the overall response of a fibrous composite, have been
considered above in sufficient detail and do not need to be additionally analyzed in
a separate section as in p. I. Nevertheless, it would be of interest to summarize both
the common and the specific features of the thermal and the mechanical response
of the considered class of composites from the view-point of the general approach
developed in this study. Such a summary is presented in the next section along
with a brief consideraton of these features, concerning the possible applications of
the general approach to some problems of the practice of the fibrous composites.

CONCLUDING REMARKS

The general approach, developed in the present study, predicts a realistic’
elastic-plastic response of the considered class of fibrous composites under both
thermal and mechanical loading condition. Quantitatively, the predicted response
reflects both the geometrical and the mechanical properties of the composite struc- -
ture. It is consistent with the “rule of mixtures” description of the composites
behaviour commonly adopted in the engineering practice. The response itself is
derived as an overall quantitative estimation of the characteristics of the processes
of elastic and plastic deformation, respectively, developmg simultaneously within
the composite structure.

In accordance with the analysis of both the overall and these specific features
of these processes different regimes in the development of the matrix plastification
process may occur, depending upon the loading status or/and the properties of the
constituents. The response of a fibrous composite under the condition of matrix |
cooling corresponds to a regime of monotonous increase of the plastic zone size.
Similar regimes develop initially under longitudinal extension as well. The latter
cover, as a rule, a short interval of axial strain changes and are followed by the phe-
nomenon of the sudden entire matrix plastification. The general approach allows to



draw a clear analogy between these regimes and the regimes developing in the clas-
sical plane stress perfect plasticity problem. From the point of view of this analogy
the phenomena of progressive increase of the plastic zone size and entire sudden
matrix plastification just reflect the essential properties of the corresponding set of
governing equations, if the latter are of the hyperbolic or elliptic type, respectively.
Further, the approach relates the change of the type of this set of equations to a
parabolic one with the occurrence of specific failure phenomena, connected with
the considered class fibrous composites. :

The approach described above accounts in a special way for the mutually

conquering effects of the matrix ductility and the fibre stiffness. The quantity s
involved in this approach proves to be a reliable average measure of the mteractlons
between these effects. Its identification in the thermal problem is of importance.
To this regard corresponding practical procedures are proposed. -
As it was mentioned in the introduction to p. I, the basic effects of the matrix
plasticity concern its influence on the overall composite response and the improve-
ment of the fracture resistance of the composites to existing structural defects.
Along with the clarification of the first of these effects the present approach allows
to derive definite conclusions with. respect to the second one as well. Thereby it
_ is clear to this regard that in the case of longitudinal extension the plasticity of
the matrix reduces the cross-sectional stresses. Accordingly, if defects are present
in the matrix phase, which are sensitive to these stresses, then one should account
for the possible growth of such defects only within the linear elastic stage of the
composite behaviour. The plasticity of the matrix really improves the resistance of
the composites to such defects. Typical defects of this type are, for example, the
relatively short cracks which, when reffered to the unit cell cross-section, may be
considered as radial cracks. Such cracks occur very often during the processes of
thermal treatment involved in the fabrication of the composites. :

_ The plasticity of the matrix does not reduce the sensitivity of the composites to
such cracks under the conditions of matrix cooling. In this case the circumferential
stress at the front r = R, of the plastic zone is relatively large. The enlargement

“of this zone results in a relative increase of this stress in the points, traversed by
the front. Therefore, if a radial crack exists in the elastic matrix region then with
progressive matrix cooling the elastic-plastic boundary will approach the crack tip
and imply larger stress concentration there. Such a crack, even if it was in equilib-
rium in the elastic stage of the composite behaviour, may start propagating due to
the progressive process of matrix plastification. Thus, in that case the plasticity of
the matrix does not improve the fracture resistance of a composite. Moreover, the
same relatively large circumferential stress, carried by the propagating plastic zone
front, may be considered as the reason for the occurrence of such cracks during the
processes of thermal treatment involved in the fabrication of the composites.

Thereby, as it was mentioned, the problem of matrix cooling is considered as

‘modelling the real fabrication problem of cooling the entire composite structure. In
fact, the basic lines of the analysis from p. I apply to the latter problem as well if,
roughly speaking, the term ay, in the thermal analysis is replaced by Aa = ap—ay.
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One may then expect by analogy with the case of longitudinal extension that de-
pending upon the specific value of Aa different regimes of plastic deformation may
develop in the matrix phase during the fabrication process of cooling of the entire
composite structure. Accordingly, by using the present approach a development
of fabrication technologies should be possible which would at least reduce, if not
entirely prevent, the undesired radial cracking of the composites and therefore also
the propagation of existing radial cracks respectively. Similar applications of the
approach, based upon the suitable choice of the (Aa, Av)-combinations, may be of
importance in problems concerning both the load-bearing capacities and the crack
sensitivity of the considered composites at low temperatures. '
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