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'~ ON THE OPTIMAL THIRD-ORDER BOUNDS ON THE
EFFECTIVE ELASTIC MODULI OF RANDOM DISPERSIONS
" OF SPHERES

KONSTANTIN MARKOV, KRASSIMIR ZVYATKOV

Koncemanmun Mapxos, Kpacwuﬁ Ifesmxos. OB OﬁTHMAHBHbIX TPAHULL
TPETBLETO NOPSAIKA NJIS 90SEKTUBHBIX YIPYTUX MONYJIEN Ci1y-
YAWHBIX CYCIEH3UHA CQEP.

Wccaeayercs Bonpoc ONTHMAJBHOCTH BapHALMOHHHX TDAaHHIL Bepana-Mouune,
Makkos m Ap. aus odpPeKTHBHHX MOLYyJAeHf YNpyrocTu AByXda3nmix cpex. OnrTuMans-
HOCTh NMOHAMAeTCA B CMHIC]E MOJy4YeHWA Haubojiee y3KUX TPAHMI NPH y4YETe TOMBKO
craTHcTHYeCcKOM nudopManmu, Heobxo Mol I/ 0ACYETA BTHX FPAHKMI, MMEHHO JBYX-
M TPEXTOYEYHHX KoppelsumoHHnX ¢yukumii. Ha npumepe cayuaitnol cycnensuu chep
- NOKa3aHO, YTO AHAJOTWYHO CKAJAPHOMY CAYYalo, ®TH IPAaHHLUK B obuleM cilydae Heol-

 rumanbub. ONTHMaJRHOCTh MMEET MECTO JMINb IO MOPAAKA ¢, rae ¢ obbeMHad KOH-
ueHTpaua cdep. lI.na cycnensu#t rpanmunt Bepana-Monmne n Makkos nmomcumtaHsl
ABHO [0 NOPAIKA €’ U MOJNYUEHHHE Pe3yTbTATH UCHOAB3OBAHK [UIA UCCHEOBAKMA NPH-
MEHHMOCTH HEKOTOPHIX ®BPMCTHYECKHX METOJOB MEXaHHWKH KOMIIO3NTHHX MaTepHaJOB.

Konstantin Markov, Krassimir Zvyatkov. ON THE OPTIMAL THIRD-ORDER
BOUNDS ON THE EFFECTIVE ELASTIC MODULI OF RANDOM DISPERSIONS :
OF SPHERES. -

The problem of optimality of the variational bounds, due to Beran-Molyneux, McCoy,
et al., on the effective elastic moduli of two-phase random media is considered. ‘Optimality
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is understood in the sense that bounds should be the tightest ones that use the statistical
information needed for their evaluation; for the said bounds these are the two- and three-
point correlation functions for the medium. For random dispersion of spheres it is shown
that the bounds are optimal to the order ¢? only, where c is the volume fraction of the
spheres. The Beran-Molyneux and McCoy bounds are then explicitly calculated to the
order ¢? for the dispersions and used for a study of applicability of some known schemes
of mechanics of composite media. ’

»

INTRODUCTION

The paper is devoted to the problem of variational bounding of the effective
elastic moduli .of two-phase random media. Generalizing the scalar conductivity
" arguments of [1] we first rederive the Beran-Molyneux [2] and the McCoy (3] bounds
on the effective bulk and shear moduli of the media, respectively, as simple Ritz-type
approximation within the frame of the general variational procedure given in [4].
Then we pose the central for the paper problem of the optimality of the said bounds.
Optimality is understood here in the sense that they should be the tightest ones
that use the statistical information needed for their evaluation. For the said bounds
these are the two- and three- point correlation functions for the medium. Similarly
to the scalar conductivity case [1], it appears that the Beran-Molyneux and the
McCoy bounds are not optimal in genera,l For random dispersions of spheres,
however, they are optimal to the order ¢?, where ¢ denotes the volume fraction of
the spheres. We next calculate explicitly the said bounds to the order c2. The
so-obtained c2-bounds represent, in particular, a rigorous basis for a comparison
with the predictions of some heuristic models in mechanics of composite materials.
In this way certain conclusions (mostly negative), concerning the applicability of
some known formulas in elasticity of random dispersions, are finally reached.

THE BOUNDING PROCEDURE IN THE ELASTIC CASE

Consider a two-phase elastic random medium, which is statistically homoge-
neous and isotropic. For definiteness in this moment only we shall call constituents
filler and matrix. We assume the constituents isotropic, so that the fourth-rank
tensor of elastic moduli of the medium, L(#), is a random field of the form

(2.15) - I(:v):3k(m)J’+2y(a:)J“

‘where J and J" are the basic ISOtI‘OplC fourth-rank tensors with the Cartema.n
components :

i

| 1 2
L= 6135“, i = 3 (53'&5_1‘} + budjx — §f5i551c1> ,

and
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(2.1b) k@)= (k) + K(z),  K(z)=[k]I'(z),
(@)= +p(z), (=)= [ul'(=),

(k] = ky — km, (4] = py — ppm, k and p stand everywhere for the bulk and shear
modulus, respectively. Hereafter, all quantities, pertaining to the filler, are supplied
with the subscript “f” and those for the matrix — with “m”, the volume fraction
of the filler and matrix are respectively ¢ and 1 —¢. In (2.1b) I'(z) = I(z) — c is
the fluctuating part of the indicator function I{(x) for the region, occupied by the
filler constituent, i.e. ‘ ‘ '

1, ifzefiller,
0, if € matrix,

(2.2) I(z) = I;(=) = {

The Lame equations for the medium, at the absense of body forces, read -

(2.3a) | V.o(z)=0, o(z)=L(z):ez),

1 : : N
where o denotes the stress tensor, ¢ = §(Vu + uV) is the small strain tensor

generated by the displacement field u(z), the colon denotes contraction with respect
to two pairs of indices. In the isotropic case under consideration we have

24  o(z) = k(2)0(2)I + 2u(z)d(z),

(@5) dz)= 0@ +de), @)= tre(z),

(cf. (2.1)) so that (2.5) is the decomposition of the strain tensor as a sum of its
. spherical and deviatoric parts, I stands liere for the unit second-rank tensor.
We prescribe also t;lie average strain tensor E, imposed on the medium

i

(2.3b) ‘  {e(x)) = E,

where E is a given symmetrical second-rank tensor, the brackets (-) hereafter denote
ensemble averaging. Eqns (2.3) represent the basic random problem (with respect’
to displacements) in elasticity of composite media. This is the elastic counterpart
of the scalar problem, considered in [1]. - a

The random problem (2.3) is equivalent to the variational problem

(2.6) - o WA[u(-)] = (e(z) : L(x) :'e(a:}) — min.
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The functional W is considered over the class of random fields u(z), which gener-
ate strain fields (=) satisfying (2.3b). Moreover, minWy4 = E : L : E, where L*
is the tensor of effective elastic moduli for the medium. In the statistically isotropic
case under consideration L* = 3k*J' + 2u*J", where k* and p* are the effective
bulk and shear modulus of the random medium respectively.

In order to obtain bounds on the effective properties of a random medium it
was proposed in [4] to employ certain truncated functional series as classes of trial
fields for the respective variational principles. For an elastic medium the class of
such trial fields, in the simplest nontrivial case of interest, is

1) KO = {u(m)m(m) —E.z+ / T(z - y)I'(y)Py).

Hereafter the integrals are over the whole R3, if the 1ntegra,t10n domain is not
explicity indicated.

The energy functional (2.6), when restricted over the class (2.7), becomes an
usual functional of the nonrandom kernel T'(x), namely ‘

WalT()] = OWr’E + 2(p)E - E

+2 [V T() + 2uE : def T(w)}Ma()d?
42 ] ] V- T(y,)V - Two) (N Ma(ys ~ v2) + Ma(ws, )} Pv,d,

+2 [ [ aef T,): def T (0 Malwr ~ v2) + WiMa(u, 1)}

where def T(:r,) = %(VT(@) + T(x)V),
My(z) = (I'(0)I'(=z)),  Ma(z,y) = (I'(0)'(=)I'(y))
are the two- and three-point moments of the mdxcator field I(x), defined in (2.2).

‘Hereafter the differentiation is with respect to z.
The Euler-Lagrange equation for the functional W, [T'(+)] reads

(2.8) - E:[I ~VM2(:c) + /VMg(x —y) - Ly, : def T(y)dy

+ / VMs(z, y)- [L}‘: def T'(y)d*y = 0.
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It could be shown, employing simple convexity arguments, that the solution
of eqn (2.8) does exist and is unique. The solution, T(y), is to be inserted into
the second equation of (2.3a) which, upon averaging, will bring forth certain upper
bounds k() and u® on the effective bulk and shear moduli of the medlum The
superscript “3” indicates that the evaluation of the bounds £(3 and u(® requires
knowledge of the r-point moments for the field I(x) up to r = 3. In this sense these
bounds are called third-order, similarly to the scalar conductivity case [1, 4]. More
important, it could be shown, extending the scalar conductivity arguments of [4], -
that k(3) and 4(® are the optimal third-order bounds in the sense that they are the
best ones which can be obtamed making use of the smd statxsmcal information, i.e.
M, and M3 only.

The explicit solution of the integro-differential equation (2.8) is very difficult
in general. That is why we introduce, after [5), a simpler procedure. Let T(z) be
a fixed kernel. Consider the set of trial fields -

(29)  EW={(u@)u(z)=E -z+a j T(z - y)I'(y)d®y} c KO,

where o € R! is adjustable parameter. The functional Wy, when restricted on K (1)
becomes a quadratic function of &, whose monimization brings forth certain thu*d-—
order bounds £ and #® on the effective bulk and shear moduli. Sueh bounds,
due to obvious reasons, are called in [5] Ritz-type ones. Though not optimal in
general, the bounds }'(3) and i® could be explicitly evaluated, if the kernel T(z)
is skillfully chosen. As a matter of fact, Beran and Molineux [2] and McCoy [3]} have
pointed out that such a choice of the kernel is supplied by the first-order terms in
the perturbation solution of the basic elastic problem (2.3). (A similar observation
in the scalar conductivity case is due again to Beran ([6].) In our terminology
the above mentioned authors have calculated the bounds £® and 73 for the said
choice of the kernel T(z) Their derivations will be repeated below in the frame of
our scheme and then the problem of optimality of the respective bounds for random
dispersions of spheres will be addressed. But before this it is necessary that the
perturbation solution of the elastic problem (2.3) should be considered at some
length.

PERTURBATION SOLUTION OF THE BASIC ELASTIC PROBLEM (8.3)

Let the medium be weakly inhomogeneous, i.e. the ratios

o K@) (@)
(3.1) bk = mex -—-(}—}-'—, (3,{1 = mcax *—@')—”

are small, 8k, 6pu < 1, noting, however, that 8k, 6p may be small of different
“orders of magnitude. Consider the perturbation series for the displacement field
that solves the problem (2.3) |
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(3.2) u(z) = u®(z) + N (z) + wO@(z) + z u®9(z),
A | p.a=1

‘where u(®(2) = E -z and u®9(x) has the order of magnitude (6&:)”(6;1)?
besides, (u?(2)) =0,p,¢=0, 1,..., p?+¢* #0.
On introducing (3.2) into (2. 3a), we get straightforwardly

3tr E 1

sw T ) Vi =gt WY,

(33)  uO@)=

1
27 (u)

34 wO@) = ke [Vl o 1+ 3VVia = ol W@

where E;g = E — - Itr E is the deviatoric average strain, hereafter all gradients are
with respect to 2, V = V,, and

F3

1 o 3(k) = 2p)

. B O )

xl

so that 7 is the Poisson ratio of a medium with elastic moduli (k)'and (#). (Note
that 7 # (v).) The well-known Green tensor for the Lame equation in the isotropic
case is used in an obvious manner, when deriving (3.3) and (3. 4)

The reformulation of the problem (2. 3) for the stress field is well—known (cf.

m:
(3.6a) | o) =V ><2<I>(a:') x V,

(3.6b)  Ux(M(z):o(z)) x V =0.

Here M(z) = L™'(z) is the fourth-rank compliance tensor field for the medium,
‘and ®(=z) is the symmetrical second-rank “tensor potential” field for the stress —
the stress function of Maxwell and Morrera, which assures that the equilibrium
equation (2.3a) is identically satisfied. Slmllarly to (2.3b), we prescribe the mean
value, X, for the stress tensor

(3.6(:) (o(x)) =X.
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Eqns (3.6) represent the basic random elastic problem, with respect to stress,
in elasticity of composite media. The variational formulation of this problem is the
principle of minimum complementary energy. Consider the functional

(3.7) Wg[®(-)] = (¢(z) : M(z) : o(z)) — min,

where the field o(x) is the birotor of @(z) cf. (3.6a), such that {3.6¢) holds. Then
the solution ®*(z) of the problem (3.6) minimizes W, so that o(z) = Vx®*(z)xV
is the real stress field in the medium. Moreover,

38 , min Wp=X:M": I,

where M* = L*~! is the effective compliance tensor of the medium.
In the isotropic case under study we have

(9 Wald()]= (k(l)u— a(m}) 1( TORGE s(z))

(3.10) min Wa[®(- )}.. ltr22+ 7 T4 Za

where 8(z) = o(z) ~ §I tr a(z) is the stress deviator and X; is the deviatoric part

of the macrostress tensor X.

The construction of the Ritz-type lower bounds, similar to the upper ones of
Beran and Molineux, needs the first-order perturbation terms in the solution of the
random problem (3.6), i.e. the counterparts of the fields u(1:%)(z) and u(®!)(z),
given in (3.3) and (3.4) respectively . As noted by McCoy [3], the straightforward
construction of these terms is however lengthy and tedious. That is why.we shall
use another scheme of arguments, suggested and, as a matter of fact; employed in
‘the same paper [3]. The scheme consists in the followmg

Let us insert the perturbation solution (3.2) into the Hooke law

(3.11) » | o(z) = L(z) : e(x)
= {{L)+ L'(z)} : {E + Vui(z) + o(6L)}
={(L): E+oi(z)+0o(6L),

where -
(3.12a) o1(z) = L'(z) : E + (L) : Vu (=),
6L = max |L; m(%)l/ L, L*=(LapysLapys),
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L'(z) = L(z) — (L) being the fluctuating part of the field L(z). In the isotropic
case under consideration we have § L = max(ék, 6u) and

(3.12b) - ui(z) = u§‘*°)(¢z)+u§°">(z). .
On averaging (3.11) we get

(3.13) | % = (L) : E+ o(5L),
so that the field o, (), to the order o(6L), has the form

(3.14) oy(=)=L'(z) : (L)™' : T+ (L) : Vuy(z).
Since {(oy(z)) = O‘, we have in virtue of (3.12) that
o(z)=X+o1(z) +o(SL)

and thus o;(z) is the needed first-order term in the perturbation expansion of the
solution of the problem (3.6).
In the isotropic case

o1(x) = o1 O(2) + 0"V (2),

where 0{1:9(z) and ¢(®1)(z) have the orders of magnitude §k and 8y respectively.
Moreover a(l'o)gz) = 0 if y/(x) = 0, i.e. if the constituents have the same shear
modulus, and ¢(®})(z) = 0 if k’(2) = 0, i.e. if the bulk modulus is the same. The
analytic forms of 0'(1*9)(:5) and o(®1)(z) easily follow from (3.7) and (3.8):

(3.15) o(10(z) = ;kzg) L+ (3(@ Q) IV - w0
+H ><Vu<1’°> e u09)
@) @)= <(‘§)24 3(3(k) = 2(u)) IV - u®D
HE)(TuOD + 4 @DY),

The eventual form of these fields would be obtained, if the expressions (3.3)
and (3.4) for u(":?)(z) and u(®!)(x) are inserted into (3.15) and (3.16) respectively,
and transition from E to ¥ is made according to (3.13). Such explicit formulas are
not needed in what follows, however, because we can use the respective expressions

from the evaluation of the upper bounds, which involve contractions of tensors like
Vu(1:9 and Vul®D, Therefore the evaluation of the lower Ritz-type bounds can
be readily performed if the respective upper bounds are a.lrea.dy calculated. In this
way the d1fﬁcult1es that appear, due to the presence of birotors in (3.6), are avoided.
That is why we shall give in the following the formulas for the lower bounds without
any comments.’ “ |
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BERAN — MOLINEUX (BM) BOUNDS ON THE EFFECTIVE BULK
MODULUS ‘

We start with the construction of certain Ritz-type bounds on the effective
elastic moduli of the two-phase material, making use of the above constructed
first-order perturbation fields u(1:9) 4(%1) 5(1.0) and 5(%1), The discussion of the
- problem of their optimality, in the above explained sense, will be postponed till sec.
6. | |
~ Let us consider, after Beran and Molineux {2], the class of trial displacement

fields '

(4.1) | u(z) = E -z + au1%(z),

where E is spherical, u(1:9(z) is given in (3.3) and « is adjustable scalar parameter,
cf. (2.9). On inserting (4.1) into the energy functional (2.6) and minimizing the
result with respect to «, one gets the following upper bound on the eﬁ'ectlve bulk
modulus £*, obtained by the above authors:

(4.2a) k* < kg ks = (B{1 = (K%)?/ Ky}, ;
where ?
(4.3)' L Ku={I0) + 2R + (VE?) + 2T} (R,
| , 1 ' 1 3,43
/ f WO KGR )T o VY o dad

S i e ‘* s

1s a certain statistical parameter and A = £ — g is the Lame constant. Hereafter

the prime denotes the fluctuating part of the respective random fields. Simple
analysis, based on the relations (2.2), shows that

(4.4) ' J = [u][k]*A
where A is the dimensionless statistical parameter, introducéd as follows
(45) - |
' 1 1 '
_ F v » k. 3, 43 ' 1 #,
A //z(z, w) V__-—47;Ez‘i Vv4ﬁwld zd°w, i(z, w) = (I (0, I'(2)I (w))

"The lower BM-bound i is obtained when the functiopal (3.9) is minimized over
the class of trial stress fields

o(z) =X + ac0(z), a € R,
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with a spherical £ and (%) (z), defined in (3.15). The ﬁnal result, in the original
Beran — Molyneux form, reads

@B K SE G = () - YK

IV LANEYLAWEN
K{ <k>”§<~;>+§‘]a

-~

where J' is the statistical parameter

e (o e onee
Sin’ce

W (e

wkeAhave’ | | | '

(4.7b) o J’;_~<%>(k’2}+[%] [k]24,

and-thus the upper and lower BM-bounds (4.2) depend on the same statistical
parameter A. This parameter appears also in the Beran bounds [6] on the effective
conductivity, as it could be easily shown. In turn, BM-bounds may be expressed
in a concise form [8] by means of the Milton parameters §; and £;, defined as

(4.8) | | §2=1- 52 |

P zdw  5(2)Sy(w) -
- ] ] TR {sa( 2, w) - 22 by,
where u = cos p, ¢ belng the angle between the vectors z and w, Pg(u) = -(3u2-1)A

is the Legendre polynomial of order two, and

(4.9) ' | Sa(z) = (1(0)I(=)), Ss(z‘, iy)c: (I(0)I(=)I(y))

are the so-called [9] two- and three-point functions réspectively. Let us recall that.
the quantities So(x) and Ss(x, y) are, respectively, the probabilities of finding
" in the filler phase (phase “2” in our case) the end points O (the origin, chosen
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_ arbitrarily) and O’ of the line segment OO0’ = z and the vertices of the triangle

000", where OO0’ = x, 00" = v.
Note that the relation between the parameters £ and A is readily deduable
from their definitions, if one takes into account that ‘

1 1 6Py(u) zZ-w

4.1 VV ——": - -
(4.10) Y i) PP T Rl
and it reads

1 JA
4.11 : =]1—-¢ ==~ |4+ ——— —1]}.
- a=1-6 =3 (44 25 -)

* Let the medium have constant shear modulus, i.e. gy = p,, and p'(2) = 0,
so that the bulk modulus only varies in position. In this case the lower and the
upper BM-bounds coincide yielding the exact values of the effective bulk modulus,-
namely

(k) R
(k) + 5 (u) + (611 = 20)

The same value of k* can be obtained from the Hashin-Shtrikman bounds [10] on
k*, which also coincide if gy = pm. Note that the exact value (4. 12) of k* in the
case under consideration was first pointed out by Hill [11].

(4.12) k= (k) —

McCOY (MC) BOUNDS ON THE EFFECTIVE SHEAR MODULUS

The reasomng of McCoy [3] is fully similar to that in sec. 4, namely we assume
that tr E =0, i.e. the macrostrain tensor is deviatoric, and then take the class of
tnal displacement fields ' '

u(z) = E -z + au(o 1)(z) a € R,

for the energy functional (2.3). Minimization of the latter with respect to a yields
the upper MC-bound on the effective shear modulus of the medium, which we write
in the form

44— 59 (7).
15M, ’
1 .
= 21— D)4 = 59N () + (1 = ) ) T

(5.1a) | g S pver Bye = (1) -

() {I,,é(l?rﬁ? - 225 + 10)} :
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with the dimensionless statistical parameters, defined as follows

1 o 1 1
(5.2) Ikpp = W/j(k*(ﬂ)uf(z)u’(w))VVm : VV4w|wld3zd3w,
I, = §1<2>+(7 10v+ 11,
[ 3. 43
-, / f Mz, W)Y ; o I g

1o = 1m / / ME(z, w)VIVY|2] 0 VYUV |w|d32dw

H

Where M{{z, w) = (¢/(0)p'(2)#'(w)) is the. three-point correlation function for
the random field u(z), and v is defined in (3.5). The bold-faced point in (5.2)
denotes full contraction, i.e. contraction with respect to all four pairs of indices.

The parameters I;,, and I( ) obviously coincide, being proportional to the
above introduced parameter A:

.—I . A -
T TSR

(5.3a) o
For the parameter Iff) we have

44,

(2) =
(5-3b) , T c(1 —c)(1 - 2c)’
‘where
(5.4) Al =g f f i(z, w)VVVV|z| e VVVV|w|d*zd’w

is another statistical parameter for the medium, independent of A, i(z, w) =
(I'(0)I'(z)I'w)). The parameter A; is introduced by Milton and Phan-Thien [12],
eqn (63). Milton 12, 13] has employed the statistical parameters ny, 72, similar to
- the {’s, defined in (4 8):

rd

- | 5
(5'5) m=l-m= 2—152 -

c<115~?c / / wisz {gs(z’ w) - W}&(u),
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the same notations being used here as those in (4.8), where Py(u) = -81-(351;4 -

20u? + 3) is the Legendre polynomial of order four.
The relatlon between the parameters 7, 3 and A, is given in [12], eqn (29). It
reads :

B 5 fc+44,-34 1-c\
(5.6) m=1-m=3 (e, 1oc)
and follows from the formula
(5.7) vvvwza.vvvv;wlzw u= Y

1=Plwl*’ 2] lw]’

similar to (4.10). |
It i1s important to pomt out that both statistical parameters & and 7y (and
thus £, and 1, as well} lie in the interval {0, 1]. Moreover, they satisfy the inequality

(5.8) 210, — 563 2 0,

as it is shown by Milton and Phan-Thien [12], eqn (52). This inequality is a
consequence of the fact that the upper MC—bound should be always greater than
the lower one.

The lower MC-bound g}, on the shear modulus u* of the medium is obtained
when minimizing the functional (3.9) over the class of trial stress fields

o(z) =L+ ac®I(z), a€R, |
with a deviatoric & and o(®1)(z), defined in (3.16). The final result reads

i

o LI\ (759 )
.1b bom <t - { Lo (=)= : :
G1b) e Sa - (o) (p) o
| My = 2(1+9) {3Juku — (4 b+ 2 25
1= '3‘ +7) kku — (B /k) kg

+3(79° - 107+ 1)J{Y - (2 + 47 - T) (' /),

with the following statistical parameters

(59  Jiu= / ] <M@>vv 41H vy %llw‘d?’zdaw,

= f <-’(;(3)w)>vv4wlzi VY gy

_ () (w) ‘
D= f / < OB >vvvv1zi.vvvvlw1d3zd3w
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similar to ( 5 2).
‘ Simple analysis, based on the relatlons of the type (4.7), shows that the lower
MC-bound (5.1) depends on the same statistical parameters as the upper one. They
may be chosen either as A and A,, defined in (4.5) and (5.4) respectively, or as the
Milton parameters £; and 7, defined in (4.8) and (5.6) (cf. [8)).

THE CLUSTER BOUNDS FOR DISPERSIONS OF SPHERES

Let the medium be a random dispersion of equisized nonoverlapping spheres
of radius a and let z; be the set of random points that serve as centers of the
spheres. The random constitution of the dispersion is exhaustively described by
the Stratonovich random density function [1, 4]

(6.1) @)=Y b)),
'fhen
62) K@) = 1] [ bz - ¥ (@)=,

@) = [ e - p @),

~ where ¥'(x) is the fluctuating part of ¢(#) and h(z) is the characteristic function
of a single sphere of radius a, located at the origin. On introducing (6.2) into (3.3)
and (3.4), we make, similarly to that in 1, 5], a transition from the basic random
field (=) (cf. (2.2)) to the random densit, - field ¢(z). The first-order perturbation
fields ©(19)(x) and u(®'X(z) then become

| Loy 3IK]

63 . uV)= . Wt ¢ E / Ly(z — y)o' (y)dﬁy,
6 e %)-2“ [t - vy,
v?here

BHT.(x) = Vele), To(@) = Vy(e) T+ ZVVx(z), %= ”Z(T'IZ%")"
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and ¢ = h ¥ ——, x = h x —|x| are respectively the harmonic (Newtonian) and
4r|x| 4x :

the biharmonic potentials for a single sphere of radius a, located at the origin.

Obviously, the kernel T',(2) in (6.3) is proportional to the disturbance of the
displacement field in an unbounded elastic matrix (of moduli k., and p,,), intro-
duced by a single spherical inhomogeneity (of moduli &; and p;), when the strain
tensor at infinity is spherical (c¢f. [14]). This means that in the latter case the
class of trial fields (4.1) is just the superposition of such disturbances, multiplied
by an adjustable scalar parameter, over the set of spheres in the dispersion. There-
fore the BM-bound (4.2a) on the bulk modulus %*, which corresponds to the class
(4.1), coincides with the first-order cluster bound in the sense of Torquato [15] —
a conclusion fully similar to that, already reached in [5] for the scalar conductivity
case. , L
The situation with the displacement field u(®!)(z) is a bit more involved.
Recalling again the Eshelby result [14], one can easily notice that u(®V(2) is pro-
portional to the disturbance of the displacement field in an unbounded matrix with
shear modulus pu,, and the Poisson ratio 7, introduced by a single spherical inhomo-
geneity with elastic moduli k,» and p,,, when deviatoric strain is applied at infinity.
Thus the MC-bound (5.1a) represents a first-order cluster bound in the sense that
the field (3.4) is proportional to the disturbance, generated by a single spherical
inhomogeneity. Strictly speaking, however, it is not a cluster bound in the sense
of Torquato [15], because the field w(®!)(z) is not the single-sphere disturbance,
generated in the matrix material with the moduli £,, and p,,, i.e. with the Poisson
ratio v,,. The reason is that 7 # v, and thus 3 # 3, as well. It could be easily
seen, however, that 7—v,,, = O(c) and thus 3% — s, = O(c) as well. That is why the
kernel E; : Tyg(x) in (6.4) 1s proportional, to the order O(c), to the single-sphere
disturbance in the matrix material. This fact, as we shall see in the following sec.
8, suffices to claim that the MC-bounds together with the BM-ones are optimal to
the order ¢? for the random dispersions under study. '

A GENERALIZATION OF THE McCOY fBOUNDS

The very form (3.4) of the field u‘®!)(x) hints the following idea. Consider
the class of trial displacements '

T 1

+0r ¥V Lo~ yl} M)y

where ‘E; is deviatoric and aj, as are two adjustable scalar parameters. The
minimization of the energy functional (2.6) with respect to a; and a» brings forth a
certain upper bound zip¢ on theeffective shear modulus j* of the random medium.
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This bound could be called generalized M C-bound. Obviously, the
latter coincides with the upper MC-bound, fipre = pmc, if ‘
min

(7.2) ‘ Amin = a2

o T
where ai"’i“, ag‘i“ are respectively the values of the parameters a; and a3 that
minimize the functional (2.6) in the class (7.1), 5 is defined in (3.5).

As a matter of fact, the class of trial fields (7.1) has been introduced by Milton
and Phan-Thien [12], sec. 5a, who considered two-phase random media of periodic
internal constitution and.employed the Fourier transform of the fields from the class
(7.1). , .
~ Let the medium be a random dispersion of spheres. On making transition to
the random density field ¢(=z), cf. (6.1), we recast the trial fields (7.1) as

(7.3) u(e)=Eg; - z+E;: /{al\?'p(:z: -yT

+a2VVVx(z — y) 1 (y)dy. |

Using once more the arguments from sec. 6, we note that fiyc resembles again
the cluster bound of Torquato, because the best kernel in the integral of (7.3) is
proportional to the field

(7.4) Ei: {Vo(xz —y) @I + Amin VV V(2 — y)},

with Anin, defined in (7.2). In turn, the field (7.4) is proportional to the single-
sphere disturbance with the deviatoric strain Eg4; acting at infinity. However, this
disturbance could exist in an elastic matrix material only if ~0.5 < Apin $ —0.25,
because the Poisson ratio v € (0, 0.5). -

A detailed study with many examples and figures, concerning the Beran-
Molyneux, McCoy, generalized McCoy and other new and more restrictive boupds
(of fourth-order) on the effective moduli of random elastic media is performed in the
above mentioned paper [12], to which we refer the reader for further information.
We shall turn now to the problem of optimality of the aforementioned bounds for
random dispersions of spheres and their explicit evaluation to the order c2.

“THE OPTIMAL THIRD-ORDER BOUNDS ON THE ELASTIC MODULI

At wmentioned in sec. 2, the optimal third-order bounds on the effective elastic
moduli could bhe obtained by solving the Euler-Lagrange equation (2.8). The fore-
going Ritz-type bounds will be optimal if the respective kernels satisfy eqn (2.8).
The scalar conductivity arguments, presented in [1], can be easily extended to the
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elastic case as well, so that we could claim that the Beran-Molyneux, the McCoy
and the generalized McCoy bounds are not the optimal third-order bounds.

To show however that the said bounds are optimal to the order ¢? for a disper-
sion of spheres, we shall use again the scheme of arguments of [1]. The arguments
for the moment hold for anisotropic constituents with tensors of elastic moduli Ly
(for the matrix) and Ly (for the filler particles). Let

(8.1) T(z) = T(z;n) = To(x) + nT1(x) + n*Ta(z) + -

be the virial expansion of the optimal kernel T'(z). We have to underline that it
depends on the number density of the spheres n.

Let us insert (8.1) into the functional (2.6), restricted over the class of trial
fields {2.7), and expand the result in powers of n:

(82) WT() = E:(L): B +nW,[To()] 4 n*WelTo(), T2()] +oln?).

The functionals W, and W> depend on the indicated virial coefficients as fol-
lows: '

63 W)= [al@): Lnsle)de

+ / h(@){so(e) + 2B} : [L] : co(z)d’:

*

(8.4) ~ Wg[To(j), T1(-)) = WalTo(")]

+2 /{50(:1:) :L,, + h(m)[fg(fn) +E (L]} e (x)de;

(8.5) Wa[To()] = Va/zfg(:c) : (L] :ggf:n)d:}x

- f ]50(33 —4,) : L : €0(2 — y3) Ro(y) — yo)d’y, 4%y,
= [ [ M= wRew ~ w)RE + 220 = )+ ol - w)
. [L]: eof{z — yg)dSyIdSyz.
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When deriving (8.3) — (8.5), the well-known formulas for the moments of the
random density field ¥(z), correct to the order n?, are used, namely

(W) =n, (@)$() = n6(y; — ¥1) + n’gol(yy — ) + o(n?),

(8.6) W) es)) = n8(ys - ¥1)6(us - )
+3n*{6(y, — Ya)g90(ys — ys)}s + o(n?).

Hére go is the zero-density limit of the two-point probability density function for
- the random set x; of sphere centers, {-}, denotes symmetrization with respect to
all different combmamon of the indices in the braces, Ro(y) = 1 — go(y), cf. {4, 16},

also €;(x) = —-—(VT +T V) fori=0,1,[L]=L;— Ly
The mlmrmzmg kernel satisfies the equation 6W = 0, so that we have in

particular §W,[Tq()] = 0, Wa[To(-), T1(-)} = 0. The first of these equations
yields straightforwardly

67 V- [ + [EIR@)E + eo(2)]} = 0,

~ which is just the equation for the disturbance in the displacement field in an un-

bounded matrix of moduli L,, introduced by a single spherical inhomogeneity of

moduli L;, when the strain at infinity is E. The functional W, is then independent
of T1(z) (see (8.5), (8.7)):

o - WalTo(:), T1())] = WoTo(-)].

‘This means that for the bounds to be optimal to the order ¢? it suffices the zero-
order coefficient T'y(x) in (8.1) to be proportional to the single-sphere disturbance
field — the solution of eqn (8.7). (Obviously, this conclusion holds also for dis-
persions of identical and identically oriented inclusions, randomly and nonoverlap-
pingly distributed in a matrix.) Since the first-order perturbatiori kernels in (6.3)
and (6.4) in the isotropic cAse either coincide (I',(z)) or coincide to the order O(c)
(Ta(=x)), with the spherical and deviatoric parts, respectively, of the single-sphere
- disturbance field in the matrix material, we can claim that the BM- and MC-bounds
are ¢?-optimal. This fact implies, in turn, that the generalized MC-bound fij; - (cf.
sec. 6) coincides to the order c¢? with the MC-bound p%,, given in (5.1a):

®n e = mirc +ofc?).

The reason is that when evaluating the bound fipr¢ we employ statistical informa-
tion, given by the two- and three-point moments and thus it cannot be better than
the optintal third-order bound. The latter, however, coincides to the order ¢? with
the MC-bound z}; -
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EVALUATION OF THE BERAN- MOLYNEUX AND THE McCOY BOUNDS
TO ORDER c?

In order to obtain the explicit forms of the BM- and the MC-bounds for a
dispersion of spheres to the order ¢?, it suffices to calculate the statistical parameters
A and Ay to the same order of accuracy.

~ To the order n?, i.e. ¢?, the three-point correlation function i(z, w) for the
field I(z), see (2.2), has the form

(9.1) z{z, w) = nfh(::)h(z ~ z2)h(w — x)d°=x

. —n? / / h{z — 21 )[h(w — ;) )h(x2) + ﬁ(w _ zo)h(zx2)
+h(w — =2 )h(z1 )] Ro(1 —@a)d2x dPxy + 0(n2)

because I’(:n) fh(:n - y)v,b"(:z:)d3y On msertmg (9.1) into (4.5), we get

(9.2a) A = (ag — ajc)e + o(0?),
where

. 1 ) ; "‘3 1
(9.2b) do = 7= h(z)VVe(z): VVp(z)d’z = 3
9.2¢) = ,‘}» / Fo(2)VVe(x) : VV ()P

2 | 5
, +7§[RO($1 — 22)h(21)VV (1) : VVp(22)d>21d°2, = 3~ M,

making use of the well-known properties of the Newtonian potentlal ga(z) for a
sphere. In (9 2¢)

Fo(zx) = /h(m - y)Rg(y)day,

and

(9.3) gg(/\a)dA A= r/a;
! o
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is the statistical parameter for the dispersion, which appears in the Beran bounds
on the effective conductivity of the dispersion.
The relations (9.2) can be summarized as follows

1
3

and thus the first two coefﬁéients in the virial expansion of the statistical parameter
A, defined in (4.5), are calculated for the dispersion under study.
It is worth mentioning that if we insert (9.4) into (4.11}, we shall obtain

(9.4) A=-[1-(5- 3@2)c]c+ o{c?),

(9.5) o ' , £y = g.mzc + O(C);

_so that the statistical parameter (9.3) appears to be proportional to the coefficient
of the leading c-term in the virial expansion of the Milton parameter (4.8) for the
disperston. | ) |
The c?-evaluation of the statistical parameter A, defined in (5.4), is similar.
We have

(9.6a) Ay = (bg = byc)e + ofc?).
- On introducing (9.1) into (5.4), we get

1

(9.6b) by = v

/ h(z) VIV Vx(z) s VYV Vy(2)d% = .é.

' availing of the well-known properties of the biharmonic potential )\(:r:)t for a sphere.
In turn, after simple algebra, we find

(9.6¢) b= Zi}f? { / Fo(z)VVVVx(2) e VUV Vx(2)dx

1 ~ )
+§‘; / F{)(ZI — zg)h(zl)VVVV]zgl L] VVVVx(ml)d3zld3:cg} = g ~ m;,

where

| 9 TF(r)(a* 22 1
(97 | ST {5r4 52713 dr
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is a new statistical parameter for the digpersion, similar to mo.

Since the function Fg(x) depends linearly on go(r), the parameter m/, will be
also a linear functional of go(r). Its explicit form could be derived by using the
method of [4, sec. 11], by means of which the relation (9.3) was reached The final
result reads

6 A(5A8~—30,\5+5'1/\4 4,\2+2)

(9.8) mf;«- OTo1)

g0(ra)d), A=r/a.

Note that in the so-called well-stirred case, for which go(r) = g(r) = 1 if
r 2 2a, and vanishes otherwise, we have

(9.9) my = % - glns ~0.14045,  m} a 0.25016.

The relations (9.6) can be now summanzed as follows

(9.10) A [1 — (7 —5mY)cle+ 0((:2)

C.Yl]»--‘

which is the counterpart of (5.3). In turn,~ for the second Milton parameter 7,
defined in (5.5), we obtain .’ : ~

(9.11) : : ‘ Ny = gMgé*i- O(C), M, = 4?’?22» — 3mas,
as a consequence of (5.6) and (9.10).

Note that the inequality (5.8) together with (9.5) and (9 11) ylelds

(9.12) ‘ ’ | m,

1AY
-1} O

—Mg.

A simple inspection of the kernels in the integral‘»representat:ions (9-3) and
(9.11) for the statistical parameters m2 and m} shows that the stronger inequality

(9.13) me

v
R=

ma

holds for dispersions of nonoverlapping spheres, since go(r) is nonnegative. More-
over, the inequality (9. 13‘} is the best in the sense that the constant 6/5 cannet be
ma.de bigger. This fact implies that the equality in (9.12) is never realizable for
dispersions, so that the équality in the Phan-Thien-Milton inequality (5.8) is never
attainable whatever be the random dxstrlbutlén of the spheres.
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Let

. k* ’
(9.14) S — = 1+ ajpc+ askc® + -
. km
be the virial expansion for the effective bulk modulus of the dispersion. Making

use of eqns (4.4), (4.5) and (9.3), we get as a consequence of the BM-bounds (4.2)

| _ Iy _ Bkm
(9.15) a1 = mm, Oy = m,

so that the upper and lower BM-bounds coincide to the order ¢ and for the c?-
coeflicient the followmg 1nequaht1es hold

(9.16a) aby < agk < aly,
(9.16b) | ab, = amalk {1 + 2am, Pm}Eﬂ]m2} ,
prkm '

agk = amqfk {1 + EQm%lmg} ,
. QL m
where m is the statistical parameter (9.3)..
" Let

(9.17) A cidactaget+ -

Bm

be the virial expansion for the eﬂ"ect,ive shear modulus of the dispersion. Making
use of eqns (5.2), (5.3) and (9.10), we get as a consequence of the MC-bounds (5.1)

W _ 6(km +2pm)
(9.18) Arp = tim + B[] fm = 5(3km + 4pim)

$0 that the upper and lower MC-bounds, similarly to the BM-ones, coincide to the
order c. For the c2-coefficient as, we get the mequahtles

(919&) . | ﬂ,f)‘u < a2, § Ggw
where

ol = amals {1 ; f(vm)l-lm +x A}

58



with the notations

3(1 — 2u,,)?
4(1 = v )(4 - 5vm)’

(9.19¢) f(vm) =

3my + (Tv? - vy, + Dmy
41 —vm)(4 - 5vp)

X = X(Vm, ma, m}) =

‘where v,, is the Poisson ratio of the matrix. , : :
The c?-bounds (9.16) and (9.19) on the effective elastic moduli of a random
dispersion of spheres have been reported in [17], using slightly different notations.
In the case of an incompressible matrix, v, = 0.5, the bounds (9.19) are
significantly simplified

| ,mg( 5[u] )2( (] )
(9.20) ag‘“,—5 3pem + 244 1+2‘;&;M2

« _2( 5[y ( Tl )
ag‘“_g(&um-ﬂm) 1+§§;

The c*-bounds on p* in this case depend on a single statistical parameter
M, = 4mj, — 3my — the same that appeared in the c-term of the virial expansion
(9.11) of the second Milton parameter ;. The situation is thus fully similar to that
.. for the ¢2-bounds on the effective conductivity, considered i in detail in [4], with the
only difference that a new statistical parameter appears.

Let us assume that the spheres are rigid, so that p; = oo as well. The upper
bound (9 19) then degenerates since My > 0, cf. (9 13), and thus

| | 1
(9.21) : } g (1 + 5Mg> < Ggu < OO, .

We can conclude from (9.21) that the value 2.5 for az, s never attainable for -
dispersions with incompressible constituents. For a well-stirred disperswn we get,
moreover, that 3.22415 a2, < 00, in virtue of (9.9).

>

SOME IMPLICATIONS OF THE ¢2-BOUNDS

The foregoing c?-bounds (9.16) and (9.19) are third-order also in the sense that
they coincide for a weakly inhomogeneous dispersion to the order ([k]/km )P ([4#]/6m)?,
p+ ¢ = 3. For instance, for the bounds (9.16) on the bulk modulus we have

(10.1) agk = amal, {1 + 2a;£mz} to ((}[g}:)? ;U;_}) .
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In turn, the bounds (9.19) coincide to the order ([u]/pm)®. These facts allow to
check on the applicability of the known theories in mechanics of composite media
for the case of random dispersions of spheres, making use of the method, proposed
in [4, p. H], when studying effective scalar conductivity. The basic idea of the
method is to consider the formulae for the effective propesties, predicted by some
of these theories, to the order ¢® and in the limiting case of a weakly inhomogeneous
medium, and to compare the results with the relations of the type of (10.1): In this
way the values of the statistical parameters ma and mj, which correspond to the
‘theory under examination, could be obtained. To illustrate the method we shall
consider here only two examples: the well-known self-consistent theory of elastic
composites, due to Hill [18] and Budiansky [19], and the approximate c?-theory of
random elastic aispersion, due to Willis and Acton [20].

10.1. The self-consistent theory ot random dispersions is based on the
assumption that each sphere is embedded in an unboilinded matrix material that
possesses the unknown effective moduli &*, p*, see for more details 19, 20} This
assumption eventually yields the following system for the moduli £* and p*: ~

' klk*c
10.2a k" =k [ ,
(10.22) T T k)
. [u)p*e
HO= it - " s
BB (g - )
where : o , .
o 3k* ’ 6(k* + 2u™)
10.2b T a— C = .
(10.2b) =y U T seE 40
Let
(10.3) k° =1+ aygc+agec + -,
:j _1+a1#c+aopc + -

~be the virial expansions of the solution k* = k*(c), u* = p*(c) of the system (10.2)

at ¢ < 1. It is easily seen that the c-coefficients a1 and pyx in (10.3) coincide with
those, given in (9.14) and (9.17) respectively. In the case of mcompressnble spheres,
ky = . we get the following expression for asy::

(10.4) L op = (v, A7, {I
’ ' Hh 3”1?1&1?1(}”711 + ﬁm[ ])

- which meets the bounds (9.16). only if
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(10.5) | my = mi ==,

w3l n

This value of mz may be also obtained by comparing (10.1) and (10.4) in the
weakly inhomogeneous case [u}/pm < 1. It is noteworthy that the same value (10.5)
for my has been found in [4] when analyzing the applicability of the self-consistent
theory of effective scalar conductivity for random dispersions.

Suppose that the matrix is also incompressible, k,, = 0o, so that k* = oo as
well. The second equation (10.2a) then simplifies and one easily obtains

3[4} )

p
10. = 14— )
(10.6) n = 53“‘( Y St 20y )

= 2a, (14 2403 s ot ™),

Having compared (10.6) and (9.18), and taking into account (10.5), we get the

value of the second statistical parameter mf, corresponding to the self-consistent -

theory, to be

~ However, the values (10.5) and (10.7) of the parameters m; and m) respec-
tively do not satisfy the inequality (9.13), which should hold for any dispersion
of nonoverlapping spheres. We therefore conclude that the predictions of the self-
consistent theory, eqns (10.2), are not applicable in general to such dispersions even
to the order ¢?, whatever be the random distribution of the spheres.

10.2. The approximate c?-theory of Willis and Acton. In the theory of
Willis and Acton [20] the effective elastic moduli of the dispersion are expressed in
terms of the solution of an integral equation for the so-called polarization
field. It is proposed that the equation be solved by iterations and the first
two such iterations are analytically found, yielding approximate formulas for the
c2-coeflicients ajx and a;, of the virial expansions (9.14) and (9.17) of the effective
moduli £* and p* respectively.

The formula for asy, of the said authors, in our notations, reads (cf [20], eqn

(5.20)):

4 W pm }
10.8 = 2 {1+ —Aam
(108) G2k “"‘“““{ 5™ km i + B ]

where
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(10.9) ‘ =3 / 9“(*“)(1,\

is the statistical parameter introduced in [20, eqn (5.18)] and denoted there by .
(In the well-stirred case A = 1/8.) The expression (10.8) meets the bounds (9.16)

only if

| 2
(10'10) myg = gA‘
A simple inspection of the kérnels'in the integral representations (9.3) and

(10.9) for the parameters my and A, respectively, shows that

(10.11) g o my > '—§-A,
since go(f) > 0. This means that the ¢* approximation {10.8) for ay; violates the
bounds (9.16) whatever be the function go(r).

« For incompressible constituents, k,, = ky = o0, the approxxmate formula of
Wﬁhs and Acton for ag; is (cf. [20], eqn (6. 1))

' D‘] N . [p]
.}.2 — + PRSP RS e

When compared to (9.20), eqn (10.12) yields

+

(10.13) | 6A = 4}, — 3ms,

which is violated for the well-stirred dispersion, cf. (9 9). Unlike the case of bulk
modulus there exist, however, random constitutions, i.e. functions go(r), for which
(10.13) holds.

CONCLUDING REMARKS

The method of truncated functional series [4] has been systematically applied
in this paper, in order to investigate certain third-order bounds on the effective
elastic’ properties of two-phase random media, i.e. bounds that employ statisti-
cal information, given by the two- and three-point correlation functions. In this
way we were, first, able to unify the existing bounding procedures, due to Beran
and Molyneux and McCoy, as certain Ritz-type procedures, corresponding to the
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choice of the respective perturbation kernels in the one-tuple term of the trun-
cated functional series. Second, and more important, we were led to the problem
of optimality of the bounds, due to the mentioned authors, in the sense whether
the bounds are the most respective ones under the statistical information, used in
their evaluation. The answer appears negative even. for the classical example of a
random dispersion of nonoverlapping spheres. However, the bounds in the latter
case are optimal to the order ¢?, similarly to the scalar conductivity case. The
explicit evaluation of the said bounds to the order ¢? leads to the appearance of
two statistical parameters, which linearly depend on the zero-density limit of the
radial distribution function for the random set of sphere centers. The parameters
are closely related to the coeflicients of the leading c-terms of the Milton parameters
{2 and 7, for the dispersion. This fact indicates once more the importance of the
Milton parameters in the theory of two-phase random media. Similarly to [4], the
obtained ¢2-bounds allow to check on the applicability of certain heuristic theories
in elasticity of composite materials for random dispersions of spheres. The most
curious result of such a check here is that the well-known self-consistent theory,
due to Hill and Budiansky, is not applicable to random dispersion even to the order
¢?, because its predlctlons violate the respective bounds whatever be the random
dlsmbutlon of the spheres.
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