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Mapx Yuasme 3APOKIEHHUE CIIABBIX OCOBEHHOCTEM IJI1 OTPAXKEH-
HbIX TTOJNYJIMHEAHUX BOJIH. PaccmMaTpuBaeTca CMemlaHHAf 3ajaya JUIA NOJY M-

HeliHOro BoJIHOBOro ypabHenua. JlaeTca onucanme mpouecca 3apoXxKAeHHMA HOBHIX ocoben-
HocTel. CTaBaTcAa HOBHeE nMpobneMHu.

Mark Williams. THE CREATION OF WEAK SINGULARITIES IN REFLECTING SEMI-
LINEAR WAVES. The process of creation of new singularities in mixed problems for semilinear
wave equation is described. Some open problems are stated.

INTRODUCTION

For solutions to nonlinear hyperbolic equations, it is well-known that inter-
actions between singularity-bearing rays can lead to the appearance of “anomalous”
singularities, that is, singalarities not present in the solutions to corresponding lin-
ear problems. The mechanisms by which this happens, crossing and self-spreading,
have been understood for some time in the case when interactions occur in free
space (e.g., [1], [2], [7]). Here we shall describe how anomalous singularities are
produced in mixed problems for semilinear wave equations [Ju = f(u) on the half-
space R'_,'_"'l, due to crossing and self-spreading at boundary points. Several new
phenomena connected to the boundary appear. For example we will show that the
analogue of Beals’ “3s-theorem” fails for reflection in second-order mixed problems.
Complete proofs of the results presented here may be found in [4], [8], [9].

*Invited lecture given on Sep. 25th 1987 at Varna conference on nonlinear PDE.
**Partially supported by NSF Grant DMS-8701654.
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Forn>2letR+“—{(z y) :z >0}, Q= (—oo, +oo)XR+, Qr = (-T,T) x
R}, and bQr = Q7 Nz = 0}. We state the following problems for a function
u(t,z,y) € HL (Qr), 8 > 22, which satisfies

(1) Ou = (D? — A)u = B(t)f(w), ulbay € C*,

where B(t) € C5° and suppf C {|t| < 6} for some § < T. Here z = (¢,z,y) and
¢(=(r¢n) denotes the dual variables.

Problem I (Crossing). Let Ty = {(21(t),1)}, T2 = {(226t),(2)} be
incoming null bicharacteristics such that {z1(¢)}, {z2()} strike bQr transversally
when ¢ = 0 and cross there (i.e., z;(0) = z2(0) € bQr, {; # +(3). Suppose that
WPF ulic—5 = I'ilic—s UT2]t<—s (where I'1|¢<—s Mmeans {l(z.(t) ) ir a0 t<
—6)}. Determine the location and strength of the anomalous smgularltxes that may
arise.

Problem II (Self-spreading). Let 'y = {(z(t),£()} be incoming null
bicharacteristics such that {z(t)} strikes bQy transversally when t = 0. Suppose
that WF uli¢—5 = [y |t<—s UT_|t<—5. Determine the location and strength of the
anomalous singularities that may arise.

From [4; Theorem 1.3] it is known that for u as in (1), microlocal H" regularity
for r <~ 2s — 3 propagates along generalized bicharacteristics. Thus, anomalous
singularities in Problems I and II can have strength at most ~ 25 — 5. But can
singularities of this strength actually appear? When there is no boundary, Beals’
3s-theorem ([2], [3]) implies that a solution u € H{_ to Ou = Bf(u) can have
anomalous singularities of strength at most ~ 3s — n. When the domain is a half-
space, Theorem 1 below shows that for certain chojces of 3(t), f(u), and incoming
singularities, new singularities of strength ~ 25 — § do actually appear at the
moment of reflection. So for u as in (1), although microlocal H"-regularity for -
r <~ 3s — n propagates along null bicharacteristics in free space, for r>~2-3%
it does not in general reflect (see Fig. 2).

MAIN RESULTS

~ Choose §(t) as above, but now also such that ﬁ > 0and ﬂ(O) > 0, and conmder
the mixed problem on Q7:

(2) Ou = fu?, ulpa, € C®, uli=er = Wy, tgli=—1 =wy,

where wp, w; are the Cauchy data of a function w(t, z,y) € H{ (R"*!) defined as
follows.

Fixing p > 1 and setting (€,7) = (1 + |€,7|?)%, for any w € S™~1 we denote
by fu(z,y) a function in H*(R") such that

a) WFf, ={(0,r.):r>0}

b) 0< ful(€,g) < C(€,n)~(+5+ale),
(3) where a(p) > 0 and a(p) = O(p — 1);

c) For (§,n) such that

16, — 1€, 7lw] < 16,017, ful€,n) > /€, n)~CHE+a0)),
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(Such functions are constructed in [1].) Now define fy, f,9 € H*(R") by taking
w in (3) equal to w; = (% \}5,0) Wy = (713, %,0), and @ = (1, 0) respectively.
We shall consxder three possibilities for w:

a) wh(t,€n) = eitlé: ﬂl[fl(5= )+f2(€:’7)]:

4) b) w*(t,€,n) = e"’f""fl(&'l)+9"']€"’1f2(—€,—ﬂ);
c) wh(t&n) = etlnlge, n) + e HnlG(—¢, —n).

Hence Ow = 0 and WF w in the three cases is, respectively,

a‘) U {(ts_twiar;mi): iER, 7’>0};
i=1,2
b) {(t’_twh raml.) :teR, r> 0}

K@, —twe, —r,~rw2) : t€R, r>0};
¢) {(t,~to,r,rd): t€R, r € R\0}.

(5)

We proceed to define the sets that will carry anomalous singularities. For
we S let K% be the rays through (1, &) in R*+\0((7,£,n)-space) and set

a) Bwwws = K+ K37 ( closure in R*+1\0);
(6) b) Buv-ws = K9 1Ko,
c) B“ = { tangent plane to 72 = |§,9|? at £+ (1,@)}.

With 7(7, €,7) = (7,1) set
3) Ci = wBewes(Yr 2 o'} = B,
") b) Co = =B > )
Q) Ca = =B 2 P} ={r* 2 ).
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Fig. 1
Next, for i = 1,2,3 we define
2 . [}
(8) Ai={r=(t,z,y,7€n).:t >0, (,2,y) € Qr,
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and ) lies on the outgoing ( % > 0) null bicharacteristic that passes over (0, (,1)), for

some (7,7) € Co’,}

Assuming 7 is small enough so that a solution u € H* (Q7) of (2) exists, we
can now state

Theorem 1. Fixg > 0.

i) (Crossing) Define wg, w) in (2) as the Cauchy data at t = —T of w as in (4a)
(resp. (4b)). Then if p in (3) is chosen close enough to 1, u g H2*~3+2+¢(})
for all A € A; (resp. Ap) (Fig.2a and 2b); '

ii) (Self-spreadiny)"l‘he statement is the same, eexept w as in 4c is used and Aj
is substituted for Aj, A, (Fig. 2c¢).

The fact that u is C* in the regions indicated in Fig. 2a and 2b is a conse-
quence of Theorem 1.7 of [8]. This theorem shows that for solutions v € H*(Sr)
whose incoming singularities are confined to proper cones in T % So}f_r UT xbQr, it
is possible to propagate microlocal H o't regularity, for s’ < 2s + % and arbitrarily
large t', outside an appropriate outgoing family of proper cones. This enables one
to identify regions into which singularities arising from interactions at the boundary
cannot spread. A

For semilinear wave equations in free space, anomalous singular support is
never produced by the interaction of fewer than three bicharacteristics, unless self-
spreading occurs [1]. Part i) of Theorem 1 shows that when a boundary is involved,
two crossing rays suffice.

Fig. 2

In the shaded areas u ¢ H25—"/2+2+¢

SKETCH OF THE PROOF OF THEOREM 1.

The proof is based on an idea like that used by Beals [1, 2] in his studies of
spreading in free space. We write u = v + Rfu’® where v € H{, (Q) satisfies

(9) Ov =0, vlpa € C®, vjt=—1 = wo, Vt|t=-1 = w1, -
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and R is the forward solution operator such that for any U with support in¢ > -4,
RU satisfies (in ) -

(10) . ORU =U, RUJba=0, RU=0int < —§.

Rewriting u asu = v + Rﬁv + Rﬂ(u - vz) we see that it will suffice to find
singularities of strength 2s — 2 +2+4¢in RpBv? on A;, as long as any singularities
of Rﬁ(u — vz) on A; can be shown to be strictly weaker. So we proceed to stydy
RpBv? in the case where w as in (4a) is used to define wp, wy.

We can write

(11) Rpv* = (Eﬁvz)la — C((EBv*)lba),

where E is the solution operator in R"t! such that for any U with support in
t> -6

(12) OFU =U and EU =0int < -6, _
and C is such that, for any V on b with support in ¢t > —68, CV satisfies (in Q)
(13) OCV =0, (CV)la ="V, CV =0int < —6.

- The term (E'ﬁvz)lf2 contributes nothing anomalous to RBv?. To see this note

first that v is simply the restriction to z > 0 of the function in H} _(R"*!), which
-we will also call v, given by

(14) v = v, — vy, where v2(2,€,9) = w’(t,£,9) and v (£,€,1) = w™(t, =€, 7).

Observe that the singularities of v, and v lie on incoming ( & 0) and out-

going (5% > 0) rays, respectively. Recalling (4a), we may write v, = Vg1 + Va2,
‘Ub = Ubl -l- vpg, Where

(14) o= e“l{”’lﬁ(f,n) and vp; = e“if"’lﬁ(—f, n).

The assertion about EBv? follows immediately from the fact that since (with

1l'2(t,‘$, Y7, 5’ 77) = (T: Es 77))
(15) 72 WFv? N char() = 7, WFv N charlJ,

v? provides nothing new for E to propagate. To verify (15) just note that
maWEF v, = K{'; moWF va1v,2 C B¥%? (which satisfies B“*“2 N char] =
KU K2, a.nd similarly for the remaining terms constituting »2. So we have
reduced to considering C((EBv?)|ba)- It is worth noting that the above argument
indicates the main reason why smgulantnes of strength ~ 2s — % never appear in
solutions ta E]u = f(2 u) due to mteract:ons in free space.

Writing v? = (v — vavs) + (vZ — vavs), we examine first

(16) © C((EBv)lba) — C((EBvavs)lba).
After expanding (16) in terms of the v,;, vs;, one must consider differences like
'(17) C((Eﬂval vaZ)le) = C((Eﬂval’vw)'bﬂ)
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We claim that each term in (17) has singularities of strength ~ 25 — 2 on A;.
This illustrates an interesting feature of spreading at the boundary. Anomalous
singularities of strength ~ 2s — 2 arise at the boundary from three sources: in-
teractions of incoming rays with incoming rays, incoming rays with outgoing (or
reflected) rays, and outgoing rays with outgoing rays. We will seée that the sin-
gularities produced by the incoming-outgoing interactions (represented in (17) by
the secortd term) are strictly weaker than the other two types, so although some
cancellations occur, singularities of stfength ~ 25 — 3 remain. .

. Return now to the first term in (17). It is not hard to show that Sva; Va2 and
therefore also Efv,1v42 have singularities of strength ~ 25 — 2 throughout B“*:¥2
over (t,z,y) = 0. Consequently, (EBv,1v42)|bn has singularities of strength ~ 25 —
‘2 on Ci = xB“1*3 over 0 € bQ2. Since C; C {7? > |n|*}, all of these singularities
are propagated by the operator C. Hence C{(EBva1va2)|bn) has singularities of
strength ~ 25 — 3 throughout A;. Since 7 WFfvavp2 = B*1%3  where Wi =
( :7%, 5%, 0), and *B“**3 also equals C}, the same argument shows that the second

term in (17) also has singularities of strength ~ 25— t% throughout A;. We will now
a

show that these latter singularities are weaker by a factor strictly less than one.

Let us focus attention on v4(0,(7,7)), the outgoing null bicharacteristic pass-
ing over a fixed point (0, (7, 7)) € T+bQ\0 with (7,7) € C1 (50 74.(0, (F, M) C A1).
Setting I = (T,7), without loss of generality we may take i = (1,0). Our start-
ing point is the observation that for the purpose of studying the singularities on
v4+(0, %) of either term in (17), the rather awkward operator E can be replaced by
a simple multiplier. -

Lemma .1. Let H(7,&,n) be the characteristic function of a small conic

neighborhood of A = (1, J5,0) = 3(1,w1) + (1, w;) € B***2, and set U(r, ¢, 1) =

F5E0 Bug1 vaz. Then WE[C((EBva1va2)|ba) — C(Ulba)] N 74(0, ) = 4.
Proof. Set V = EPvaivaz — C((EBvarvaz)lba) and V = U — C(Ulbn). Thus
V -V satisfies (in Q)

(18) oVv-vV)=(1- H(b))ﬂvalvag, (V=V)lpa =0,

V-VeEC®int< -4

NoW Bva1 Vg2 is rapidly decreasing outside B“!*2. Thus the fact that H = 1
near A implies WF(1— H(D))Bva1va2N[y-(0,7)U74(0,H)] = ¢ (where v_ denotes
the incoming bicharacteristic) and (0,7) € WFp(l — H(D))Bv41v42. Classical
results on reflection of WFy, (e.g. [5]) then imply WF(V —V)Nv,(0,%) = ¢, since
this clearly holds for 7_. Because Efv,1v,2 and U have no singularities on 7,4, the

lemma follows. ' ‘

' Oi_'_ course an analogous result holds for C((EBva1va2)|bn), where now one,
takes H(r,£,n) to be the characteristic function of a small conic neighborhood of

B =(1,0,0) € B“*“3 (recall, w = (34, 54,0)) and sets U = ZOEH g1 105, In
Fig. 3 we have drawn the crosssection of 72 = |¢,9]? at = 1, indicating A, B,
B¥+%a B“1“3 and the singular directions of the vg;, vy;.
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In view of Lemma 1 it suffices to compare C(U lba) with C(U|pg). Now Ulm =

I ?":I'E_nl"'ﬂv“lv‘ﬂ d¢ while U |bﬂ = | ?’:]e—q[’ﬁ"dl”n d€. Since suppH lies closer to

72 = |¢, 1|? than supp H does, it follows that for (r, E ,n) € suppH(7,€',n) € suppH,
and (r,7n) sufficiently large, we have’

(19) ("2 ~ )t <e(r® = ¢, n|?)" forane < 1.

A comparison of the above two integrals using (19) yields easily that
singularities of C(U|pgn) on 74+(0,7) are strictly weaker than those of C(U lbn)
([9], Lemma 3.18), so the difference still has singularities of strength ~ 2s — %
on y4+. Since the same argument applies to the terms like G((EBvsits2)lbn) —
C((EBva1vs2)lbn) in RAv?, we can summarize the above as follows:

(20) The anomalous singularities on a fixed ray in A; produced by interact_ions of incom-

ing rays with incoming rays (va, va) , or by interactions of outgoing rays with out-

* going rays (vs, vs) , are strictly stronger than those produced by incoming-outgoing

interactions (va,vs). Moreover, as the incoming rays approach being gliding rays,

the difference in strength decreases, and so cancellations become increasingly sig-
nificant.

Essentla.lly the same arguments applied to the remaining terms constltutlng
Rpv? show that they contribute singularities of the same strength and sign as those
of (17) So this ends our discussion of RBv? in the case when v is defined using
w as in (4a). When w as in (4b) (resp.(4c)) is used, the analysis follows the same
outline with the plane B“*~“2 (resp. B“) in the Tole of B*12, Note that C,
(resp. Cs) is properly contained in #B“1~%2 (resp. mB%). We restrict to 72 > |n|?,
of course, because the only singularities in (Efv?)|pn that C can propagate are
those at points (IO (7,m)) with 72> |n|%. In each of the three cases one obtains
RBv? ¢ H**~3+2+¢ op the appropriate A;.

THE REMAINDER RA(u? — v?).

Recalling that u = v + RBu? , we have RB(u®? — v?} = Rﬂ(?vRﬁu2) +
RB(RPu?)?. Since each application of R smooths by one derivative, it is reasonable
to expect that any singularities of RB(u? — v?) are strictly weaker than those of
Rpv? on A;. The proof that this is so (see[9]) uses the following results:
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(21) a) a microlocal H* algebra lemma for interior points (namely, Rauch’s
Lemma. [6]);

b) a microlocal H** algebra lemma for boundary points analogous to
Rauch’s Lemma ([8, Lemma 1.10]);
1

¢) the fact that for « as in (1), microlocal H"-regularity for r < 25— 5+ 3
propagates along generalized bicharacteristics ([4, Theorem 1.3});

d) a theorem describing propagation of microlocal H**' regularity along
generalized bicharacteristics for second-order, linear, mixed problems
with Dirichlet boundary conditions ([8, Theorem 1.3]).

The first step is to obtain a careful estimate of the re§ularity of v2 on A;.
With this (21 a-d) yield fairly easily that the term RB(RAu®)? is strictly weaker
than RBv? on A;, but such an argument does not quite yield sufficient regularity
of RB(vRBu®). (The difference arises because RBu? € H !, while v € HY..) To.
find the extra smoothness needed, we write Rfu? = RAAu® + RB(I — A)u?, where
A is a tangential pseudo-differential operator equal to 1 and supported near the
strong (s) singularities of u%. Since the incoming singularity-bearing rays meet bQ
transversally, A can be .chosen with-support.in. the hyperbolic region of T *x b{l.
This permits one to extend RFAu? (originally defined only in z > 0) across the
boundary as the solution U of a wave equation in free space. Using this property

of U, estimates like ir,E,n)’+1¢§Fu2 € L? can be improved to estimates like

(r = [, n){r,&,n)° U € L2 These in turn are used to obtain a more refined
estimate of vRBu? on A;. A final application of (21d) then shows that RA(vRBu?)
is strictly weaker than RBv? on A;.

OPEN PROBLEMS

It is interesting to consider the analogues of Problems I and II when the in-
coming rays are gliding rays. The remark (20) suggests, if gliding rays are thought
of as limits of transversal rays, that anomalous singularities arising from the cross-
ing of two gliding rays may be significantly weaker than ~ 2s — 2. In Problem
IT note that if I'y = {(2(¢),%()} are gliding rays, the tangent plane to char(d at
+( projects under (7,£,7) — (7,7) to a set that misses the hyperbolic region. In
view of the role played by B“ in the preceding analysis, this suggests that new
singularities due to the self-spreading of a gliding ray may be much weaker than in

the transversal case, perhaps only of strength ~ 3s — n.
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