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Das Wesen der Mathematik liegt eben in shrer
Freiheit.
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Hean Hobawoe. BBEIEHUE B AJITEBPAUYECKYIO TEOPUIO CKOJIb34-
IIMX BEKTOPOB, II. 31a pabora asaserca BTOpodi uYacTbio CTaThbM [1] Moz TeMm e
HAMMEHOBAHUEM, ONYGNUKOBAHNON HECKOJILKO JIET TOMY Ha3al B TeMm e Eocezodnuxe, B
KoTopoll npeanomena anreGpanueckas TEOPUA PeARLHHIX CKOJL3IAUIMX BEKTOPOB HA OCHO-
Be AKCHMOMATHYECKN BBEJEHHBIX DeaNbHLIX CTaHIAPTHHIX BEeKTOpPoB. Mexay TeM apTOpOM
ony6/MKOBaHa KOMINJIEKCHAA BePCHMA [2] peaiHBIX CTAHAAPTHHIX BEKTOPHBIX IPOCTPAHCTB
¥ Pa3BUT2 COOTBETCTBYIOWAA KOMMNJEKCHaA Bepcua [3] peanbHoii TpexmepHo#t nuuelinok
aHanuTHYecKol reomeTpum [4]. HacToaman paBoTa ApnseTca xomnaekcHolt Bepcueit Konc-
TpyKumik, usnoxenuulx B pabore [1]. Kak uapecTHo, TpaauumonHoit MexaHnueckol MHTep-
npeTinueil peanbHEIX CKONB3AIMX BEKTODOB ABJISIOTCA KOHIEH TPMPOBaHHEIE CUJTLL AHAJIM-
THUYECKOM CTATHKH M BHRNHTHYECKOH NMHAMMEN. BO3MOMXHOCTE NOCTPOEHMA KOMNJEKCHBIX
CKONbL3AWMX BEKTOPOB MMeeT rnybokue nocaencTsus. Ee riaBHbIM pe3ynbTaToM sBIIA-
€TCA BO3MOXXHOCTh NOCTPOEHHA KOMIJIEKCHOH aHANMMTHYECKOH MEXaHMKH CO BCEMM NMPOMC-
TEKaIOWMUMU OT DTOrO KOHCEKBEHUMAMH JJIA JIOrMYecKoro GpyHAaMeHTa oToM Hayku M Ana
pemienus mwectol npobnemu 'unnbepra 06 ee akcMoMaTHUECKOH KOHCOMMAAMH.

Iyan Chobanov. INTRODUCTION TO AN ALGEBRAIC THECORY OF ARROWS, II. This
paper represents the second part of the article [1] under the same title published some years ago
in this Annual, in which an algebraic theory of arrows or sliding vectors has been proposed, based
on the axiomatically defined real standard vectors. Meanwhile the author has proposed a complex
version [2] of the real standard vector spaces and has developed the corresponding complex version
[3] of the real 3-dimensional linear analytic geometry {4]. This paper represents a complex version

‘of the constructions exposed in [1]. As it is wellknown, the traditional mechanical interpretation
of the real sliding vectors are the concentrated forces in analytical statics and analytical dynamics.
The possibility of defining complex arrows has far reaching consequences. Its main result consists
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in the potenciality to develop a complex analytical mechanics with all the after-effects this fact
implies for the logical foundations of this science and for the solution of Hilbert’s sixth problem
concerning its axiomatical consolidation.

The present paper represents the second part of the article [1] under the same
title published in this Annual about ten years ago. In the latter an algebraic
theory of the real arrows (or sliding vectors, vecteurs glissants, gleitende Vectoren,
cxoasasuue sexmoput) has been proposed, based on the axiomatically defined real
standard vectors. ' .

Meanwhile some important .development has taken place. It has been discov-
ered [2] that, by the aid of mot-G-mot the same system of 15 axioms, by means of
which the real standard vector space may be described axiomatically, it is possible
to define a complex standard vector space (infinitely many such spaces, as a matter
of fact), by introducing a fourth operation vector multiplication in an Hermitean
space (which turns out to be probably 3-dimensional), this operation being charac-
terized by two only specific axioms. At that, as it turned out to be, these complex
standard vector spaces possess verbatim the same algebraic properties as the real
one, mutatis mutandis, as it is clear by itself. '

This mathematical phenomenon has far-reaching consequences.

First of all, analytic geometries in complex standard vector spaces may be
developed, as it has been manifested in the article [3]. This mathematical process
provides the geometry, necessary as well as sufficient, for all the following construc-
tions. :

Second, an algebraic theory of arrows in complex standard vector spaces may
be developed, as this paper and its continuations display. This fact is important in
the following two respects.

On the one hand, the real arrows interpret mathematically the (sometimes)
so-called concentrated forces, i.e. those active and passive forces that are specific for
analytical statics and analytical dynamics. Now the possibility to define complex
forces is a conditio sine qua non for the potentiality to develop a complez analytical
mechanics (i.e. an analytical inechanics in complex standard vector spaces), and
this condition is satisfied by the complex arrows proposed in this paper.

On the other hand, by means of the so-called statical-kinematical analogy, the
arrows have a direct relationship with the rigid body kinematics. Strictly speaking,
a dictionary may be composed (that may be called the statical-kinematical dictio-
nary), by the aid of which a bijection may be established between the mathematical
facts in the algebra of arrows, on the one hand, and of the kinematics of rigid bodies,
on the other hand. In the presence of this dictionary it is out and out superfluous
to seek and prove theorems of rigid body kinematics which concern the velocity
distribution in a moving rigid body: it is perfectly sufficient to point out the terms
of the arrow-algebra that correspond to the respective kinematical terms involved
in the kinematical theorems in question, and to prove corresponding theorems for
these arrow-algebraic terms. Afterwards, the conclusions of these theorems have to
be translated into the kinematical language by means of the statical-kinematical
dictionary. In such a way, to any proposition of the algebra of arrows there corre-
sponds automatically a true proposition of the analysis of rigid body kinematics.
At that, theorems are discovered and proved out and out easier in the former than
in the latter. In such a manner, the possibility to define complex arrows has a direct
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bearing to the potentiality to develop a rigid body kinematics in complex standard
vector spaces (established, by the way, earlier, in the more general mathematical
situation proposed by Hermitean spaces, at that, see [5]), and a complex analytical
dynamics in the long run, as it will be. 1mmedlately seen.

Namely, complex forces and rigid body kinematics in complex standard vector
spaces being once developed, all that remains to be done for the building:up of a
complex rigid body dynamics is to form those fundamental for this science quan-
tities, the momentum and the moment of momentum (alias kinetical moment) of a
rigid body in complex standard vector spaces, and to formulate the corresponding.
Eulerian dynamical arioms (or laws, or principles), viz. those of momentum and of
moment of momentum of rigid bodies, without which in analytical dynamics terra,
aqua, aere et tgns interdicli sumus.

The importance of all these constructions is predominantly an 1deologlca.l one,
since all they result in a mathematical Weltanschauung which affects profoundly
the logical foundations of the great science of analytical mechanics.

A wide-spread prejudice even today and even among prof&sslona.l mathemati-
cians is that rational mechanics, in general and analytical mechanics, in particular,
are not mathematics — al least not in the sense this term is a.ccepted nowadays.
This bias is supported bilaterally.

On the one hand, there is the multitudinous army of mechanicians and of the
ingratiated themselves to mechanics physicists and engineers with such a level of
mathematical schooling that, at the best, cannot but call forth condescending smiles
on the part of the modern professional mathematicians. For these mechanicians the
standpoint that rational mechanics is mathematics, and: not applied mathematics-
at that, is a rather disadvantageous — we should say, unprofitable, unproductive,
even contraproductive — one. This attitude once adopted, all mechanical writings
should unconditionally satisfy the severe modern mathematical criteria of logical
rigour — a demand that goes many times beyond the possibilities of their authors.
Herefrom the myth of those would-be specific peculiarities of rational mechanics
that presumably does not permit its insertion in the confined frames of pure math-
ematics, in the downright sense of the word. If we try to persuade these people in
the contrary, then we purely and simply canimus surdis, putting it mildly.

On the other hand, there is the not lesser army of those mathematicians who
have wound up with rational mechanics on the very student’s desks and, in their
horror vacui, regard it as a little short of a monsirum horrendum, informe, ingens.
The fear of the unknown is instinctive; it 1s proverbial, too: ignoti nulla supido ..
damnant quod non intellegunt. As to mechanical ignorance of some pure mathe-
maticians, it is comparable only with the mathematical ignorance of some applied
mechanicians: Banach, for instance, went as far as to write in his Mechanics [6]
neither more nor less than ”if a rigid body is at rest, we shall say that it is in
equilibrium* (p. 234) 717

Things being as they are, is it strange that rational mechanics is nowadays a
persona non grata in the United Kingdom of Mathematical Sciences?

There are lucky exceptions, though. One of them was Hxlbert Another one is
Truesdell.

As a pure mathematician, Hilbert needs no recommendations. Corvo quoque
rarior albo, however, he was one of those few pure mathematicians who are complete
strangers to the very idea of mathematical chauvinism. Hilbert was a mathematical
cosmopolitan. The final chord of his famous Mathematische Probleme [7] is a vivid
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incarnation of his mathematical credo: _

”...und es drangt sich uns die Frage an, ab der Mathematik einst bevorsteht,
was anderen Wissenschaften langst widerfahren ist, nimlich da8 sie in einzelne
Teilwissenschaften zerfallt, deren Vertreter sich kaum noch einmal verstehen und
deren Zusammenhang daher immer loser wird. Ich glaube und wiinsche dies nicht.
Die mathematische Wissenschaft ist meiner Ansicht nach ein unteilbares Ganzes,
ein Organismus, dessen Lebensfahigkeit durch den Zusammenhang seiner Teile be-
dingt wird. Denn bei aller Verschiedenheiten des mathematischen Wissenstoffes
im einzelnen, gewahren wir doch sehr deutlich die Gleichheit der logischen Hilf-
smitteln, die Verwandschaft der Ideenbildungen in der ganzen Mathematik, und
die zahlreichen Analogien in ihren verschiedenen Wissensgebieten. Auch bemerken
wir: je weiter eine mathematische Theorie ausgebildet wird, desto harmonischer
und einheitlicher gestaltet sich ihr Aufbau, und ungeahnte Beziehungen zwischen
bisher getrennten Wissenszweigen werden entdeckt. So kommt es, daB mit der
Ausdehnung der Mathematik ihr einheitlicher Charakter nicht verlorengeht, son-
dern desto deutlicher offenbar wird.

Aber — so fragen wir — wird es bei der Ausdehnung des mathematischen Wis-
sens fiir den einzelnen Forscher nicht schlieBllich unméglich, alle Teile dieses Wissens
zu umfassen? Ich mééhte als Antwort darauf hinweisen, wie sehr es im Wesen der
mathematischen Wissenschaft liegt, daB jeder wirkliche Fortschritt stets Hand in
Hand geht mit der Auffindung scharferen Hilfsmittel und einfacheren Methoden,
die zugleich das Verstandnis fritheren Theorien erleichtern und umstandliche altere
Entwicklungen beseitigen, and daB es daher dem einzelnen Forscher, indem er sich
diese scharferen Hilfsmitter und einfacheren Methoden zu eigen macht, leichter
gelingt, sich in den verschiedenen Wissenszweigen der Mathematik zu orientieren,
als dies fur irgend eine andere Wissenschaft der Fall ist.

Der einheitliche Charakter der Mathematik liegt im inneren Wesen dieser Wis-
senschaft begriindet ...”

~ Like Archimedes, Hilbert stood firm on his physical legs. Although he has never

taught mechanics and has written not a single specific line on rational mechanics,
he nevertheless did not deny its purely mathematical core and believed steadily
in its potentialities of being developable as an axiomatically deducible structure.
In point of fact, Hilbert included in his list of 23 mathematical problems [7] the
nineteenth century bequeaths to the twentieth to solve, as problem number six,
that of the axiomatical foundation of rational mechanics.

As a pure mechanician Truesdell needs no recommendations either. Thirty
years ago he performed such a bright mathematical apology of rational mechanics
that I shall never get tired of quoting it over and over again:

“. .. rational mechanics is a part of mathematics. It is a mathematical science,
and in its relations to experience, intuition, abstraction, and everyday life it does
not differ in essence from other branches of mathematics ...

Is rational mechanics a part of pure mathematics? To most mathematicians
today pure mathematics means topology, abstract algebra, or analysis in abstract
spaces. These, most certainly, rational mechanics makes no attempt to imitate.
While in spirit it is nearest to geometry, its problems, its aims, and its methods
bear little evident similarity to those of other parts of mathematics. A theorem in
topology is not evaluated in terms of its bearing on the theory of numbers. It is
equally ridiculous, though unfortunately not infrequent, to deprecate theorems of
rational mechamics when they do not also contribute to the more popular branches
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of pure mathematics.

Is rational mechanics a part of applied mathematics? Most certainly not” [8,
p. 335, 337].

Tormented words, it is true. Nuda veritas, though. Alas, one swallow does not
make a summer. Sunt verba et voces, praetereque nihil: the physica.l the engineer-
ing, the antimathematical mental constitution — mathematics in no wise means
formulas only — of the prevalent majority of contemporary - ‘mechanicians that has
driven Ilias malorum in rational mechanics, persevers in being ‘the predominating
1deology, the retrograde philosophy in this great science, in which the certamen pro
aris et focis has not yet begun.

However modest, the present paper contributes my mite in the noble strug-
gle against present—day obscurantism in mechanics conceived by Lagrange’s ip-
sissima verba “la maniere dont j’ai tiché de remplir cet ob_]et. ne laissera rien a
desirer”. At the same time, it incarnates Hilbert’s dictim in [7), nicht blog die der
Wirklichkeit nahe kommendcn, sondern uberhaupt alle logisch méglichen Theorien
berucksichtigen zu haben.

§ 1. PRAELIMINARIA

The complex standard vector space being principium ab Jove for the whole
following exposition, the most important moments of their introduction will be
now reminded. '

The following notations are permanently used throughout this paper.

The symbols Ax, Df, Pr, Dm, Sch, Sgn, and sgn: replace the words aziom,
definition, proposilion, proof, scholium, notation and denote respectively.

The letters R and C are reserved for the fields of all real and all complez
numbers respectively.

The letters F' amd P are reserved for any ordered field and for any Pythagorean
field respectively. An ordered field P is called Pythagorean iff 0 £ o € P implies the
existance of a § € P with 0S8 and 32 = a. Then f is called the square root of
and is denoted by /a.

The sgmbol C(F) is reserved for the complez eztension of F. In other words,

C(F) = F* supplied with the two operations

(1) (2L )+ (v, 1) sgn: (zit+yi, T2+ )

(addition in C(F)) and

(2) (21, 22)(31, y2)  sgn: (2131 — Z2Y2, Z1y2 + Z2th)
(multiplication in C(F)). Besides, by definition

3) (z1,22) sgn: (21— 22) ((z1, 22) € F?),

(4) (21, 22)]  sgn: /ol +23 ((z1, z2) € P?).

The symbols in the left-hand sides of (3) and (4) are called the conjugate number
of (21, 22) and the module of (z1, 3:2) respectively. Obviously, (2)~(4) imply

(5) (21, 22)|* = (z1, 22) (21, 2) (21, x2) € P?),
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the “real” element (z,0) of C(F') being identified with the element z of F' by means
of the traditional convention

(6) z sgn: (z,0).

Quotations.are made in the following manner (the example is a fictitious one):
Sgn 1, Ax 2, Df 3, Pr 4, Sch 5, and relation (6) of §7, for instance, are cited by
Sgn 1, Ax 2, Df 3, Pr 4, Sch 5, and (6) respectively in §7 itself, but by 7Sgn 1, TAx
2 7Df 3, 7Pr 4, 7Sch 5, and 7(6) respectively anywhere else.

The whole of the followmg exposition is based on the following definition.

Df 1. S denoting F or C(F), a standard vector space over S (an S-standard
vector space) is called any set Vg for which mappings

(7) my @ VE—Vs

(addition in Vs),

(8) my : SxVs— Vs

(multiplication of the elements of S and V),

9 mz : V&—S

(scalar multiplication of the elements of Vs), and

(10) my : VE—Vs

(vector multiplication in Vs) are defined, such that, if
(11) a+b sgn: my((a, b))

(sum of @ and b),

(12) - aa  sgn: mz((ae, a))

(product of & and a),

(13) ab sgn: ms((a, b))

(scalar product of @ and b),

(14) axb sgn: my((a,bd))

(vector product of a and b), and

(15) a-b sgn: a+(-b)

(difference of a and b), then the following conditions are satisfied:

Ax 1S.a,b,ce Vs imply (a+b)+c=a+ (b+¢).

Ax 2S. There exists 0 € Vs witha € Vs impliesa+o=a.’

Ax 38. a € Vs implies: there exists —a € Vs with a + (—a) = o.
Ax 4S. a € V5 implies la = a.

Ax 58. ), p€ S, a € Vs imply (Ap)a = A(pa).

Ax 6S. /\ BES, a€ Vs imply (A + p)a = Aa+ pua.

Ax 7S. X € S, a, b € Vs imply A(a + b) = Aa + Ab.
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Ax 8S. a, b € Vs imply ab = ba.

Ax 9S5. A €S, a, b € Vs imply (Aa)b = A(ab).

Ax 10S. a, b, ¢ € Vs imply (a + b)c = ac + be.

Ax 118. a € Vs implies aa>0.

Ax 125 a € Vs, aa=0 imply a=o.

Ax 13S.a,b,c€ Vs imply'axb-c=bxc-a.

Ax 14S. a, b, ¢ € Vs imply (@ x b) x ¢ = (ac)b — (bc)a.

Ax 15S. There exist a, b € Vs -with a x b # o.

Df 2. The elements of Vs are called stantard- vectors over S (S-standard
vectors).

Sch 1. The conditions Ax 1S-15S are called azioms of a standard vector space
over S (of a S-standard vector space).

Sch 2. The symbols 0 in Ax 115, Ax 12S and 1 in Ax 4S denote the zero-
element and the unit-element of S respectively.

Df 3. o is called the zero-vector.

Df 4. —a is called the opposite vector of a.

Df 5. a x b- ¢ is called the right-hand compound product of a, b, c.

Df 6. a- b x c is called the lefi-hand compound product of a, b, c.

Df 7. (a x b) x c is called the right-hand double vector product of a. b c.

Df8. a X (b x ¢) is called the left-hand double vector product of a,

Sgn 1. a sgn: aa ifa € Vs.

Df 9. a? is called the scalar square of a.

Sgn 2. a, |a|, moda sgn: Va?ifa€ Vporac€ Vep)-

Df 10. a, |a|, moda is called the module of a.

Sgn 3. V sgn: Vg.

Df 11. V is called the real standard vector space.

Df 12. The elements of V' are called real standard vectors.

Df 13. V¢ is called the complez standard vector space.

Df 14. The elements of V¢ are called complez standard vectors.

Sgn 4. a° sgn: %a ifa € Vp or a € Vg(p) and a # o.

Df 15. a° is called the unit-vector (the ort) of a.

Sch 2. The basic algebraic properties of Vs and especially of V¢ (r) and Vi(p)
are discussed at length in the article [2], see also [9, 10]. Therefrom we shall not
dwell on this question in details here and, if necessary, we shall refer the reader
to these sources. Yet, a compendium of the basic situations of Vs-algebra will be
found to be useful. Therefore, such one is exposed immediately below.

Pr 1. The system of axioms Ax 15-15S is consistent.

Sch 3. Pr 1 is proved by constructing a model of Vg. It is proposed by
S3, supplied with the following operations corresponding to the mappings (7)~(10)
respectlvely

(16) (21, z2, £3) + (¥1, y2, y3) sgn: (214 wy, 22+ y2, 23+ ¥3),
(17) Mz, 22, z3) sgn: (Azy, Az, Azj),
(18) (mla Ty, 1’3)(3]1, Y2, y3 sgn . quyu»
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(19) (z1, 2, 23) X (31, Y2, ¥3) sgn:
(Z2Ys — Z5Y, T3Y, — T1¥s, 17, — T27;)
Now it is verified that (16)-(19) satisfy Ax 1S-158S.

Pr 2. The system of axioms Ax 15-155 is categorical.

Sch 4. Pr 2 is an immediate corollary from Pr 5 below and from the fact,
well-known from the algebra of Hermitean spaces, that the theory of any ﬁmtedl-
mensional Hermitean space is categorical, i.e. any two of its models are zsomorpluc

Pr 3. Vs is a group with respect to the operation (7).

Pr 4. Vs is'a linear space over S with respect to the mappings (7), (8).

Pr 5. Vs is a 3-dimensional Hermitean space over 'S with respect to the
mappings (7)-(9).

Pr 4 implies

Pr 6. Vs is a commutative group.

Sch 5. Pr 3-6 represent, as the saying is, a global characteristic of the S-
standard vector spaces. A local picture is proposed by the following propositiens.

Pr 7. A€ S; a, b€ Vs imply a(Ab) = )«(ab)

Pr8.a, bceVsimpyaxb-c=a -bxec.

Pr 9. a, be Vs imply (a x b)? = a?b? — (ab).

Pr 10. a, b € Vs imply: a and b are linearly independent iff a x b # o.

Pr 11. a, b € Vs imply

a’? ab ac
(20) (axb-c)laxb-¢)=| ba b* bc
ca cb ¢?

Pr 12. a, b, ¢ € Vs imply: a, b and c are linearly independent iff a x b-c # 0.

Pr 13. a, b Vsimplyaxb=-bxa. _

Pr 14. A€ S; a, b € Vs imply (Aa) X b= A(a x b).

Pr 15. a,b,ceVsimply(a+b)xc=axc+bxec

Pr 16. a, b, c € Vs imply a x (b x ¢) = (ca)b — (ba)c.

Pr 17. A€ S; a, b € Vs imply a x (Ab) = A(a x b).

Pr 18. a, b, cEVs implyax (b+c)=axb+axec.

Sch 6. A most important role in Vs-algebra play the so-called Gibbs’ vectors.
They are defined in the following manner.

Let
(21) a, € Vs (r=1,23),
(22) a; X az-az # 0. |
Then
(23) a;!  sgn: % (r=1,23)
provided
(24) a3 Sgn: @y | (r=12)
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are called Gibbs’ or reciprocal vectors of the vectors (21).
The basic properties of (23) are described by the following propositions.
Pr 19. (21), (22) imply

(25) _ajla, = { (1) gj : Z; (p,v=1,2 3).
Pr 20. (21), (22) imply .
(26) a;’ xay izt £10
Pr 21. (21), (22) imply
(27) (a1 x az-a)(a;! xa;'-az') = 1.
Pr 22. (21), (22) imply
(28) (@ = ., (v=1%.3).
Pr 23. (21), (22) imply
(29) =iy (v=1,2,3).
iff
(30 sa={y o (v =1,2,3).
Pr 24. (21), (22),
(31) 7 € Vs
imply
3
(32) P E(ra;l)a,,.
v=1
Pr 25. (21), (22), (31) imply
3
(33) r= Z:('ra,,)a;1
v=1
Pr 26. (21), (22),
(34) ay, €S v=1,213)
imply: there exists exactly one (31) with
(35) r,6, = Q, (r=1,123)

namely
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3
(36) r= Za,fa;l.
. v=1

Pr 27. (21), (22) imply: thére exists exactly one (31) with

(37) ra, =0 (v=1,2,3),
namely '
(38) r=o.

Pr 28. (31),
(39) a, €Vs (2= 1,2);
(40) b, Vs (v=1,2),
(41) rxa,=b, (=1, 2)
imply |
(42) a,b, +a,b, =0 (p,v=1,2).

Pr 22. (31), (39),

(43) a; X az # o,
(44) rxa,=o0 (r=1,9)
imply (38).

Pr 30. (21), (22),
(45) b, € Vs (p=1,%3),
(46) a,b, +a,b,=0 (g, v=1,2).

imply: there exists exactly one (31) with

(47) rxa,=b, (V =1, 2, 3):
namely
1 3
(48) r= —iza;l be.
v=1

Pr 31. (39), (40), (42), (43) imply: there exists exactly one (31) with (41),
namely (48) provided

(49) ‘a3 sgn: @ Xay,
(50) bs . sgn: (bl -ag X 81)01—1 + (bz ‘@9 X 01)051.
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Sch 7. There are four basic systems of vector-algebraic equations which are
routinely applied to Vs-algebra and in its applications to various problems, mainly
in geometry and mechanics. Three of them are the systems (35), (41), and (47).
With regard to the fourth one, it is regarded in the following propositions Pr 33-
Pr 35.

Pr 32, (31),

(51) a, be Vs,

(52) a# o,

(53) ab=0

mmply:

(54) rxa=>b

iff there exists

(55) a€S

with

(56) r=aa+ e x2b

a

Pr 33. (51), (53), (55),

(57) c€ Vs,

(58) ac#0

imply: there exists exactly one (31) with (54) and

(59) re=u,

namely

(60) poaatexb

Pr 34. (51), (55), (57),
(61) ac =0,
(62) aa+cxb#o

imply: there exists no (31) with (54), (59).
35. (51)-(53), (55), (57), (61),

(63) c# o,
(64) aat+cxb=o0
imply: any (31) satisfying (54) is satisfving (59) too, but there exists one at least

(31) satisfying (59) which does not satisfy (54).
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§ 2. BASIC DEFINITIONS -

This paragraph contains the basic deﬁmtlons relating mamly to a single arrow
and its fundamental attributes. :

Sgn 1. Ws sgn: {(s,m)eVZ: s#o0,sm=0Vs=m=o0}.

Df 1. The elements of Wy are called arrows in Vs or S-arrows.

Df 2. s is called the basis of 5 if

(1) s € Ws,
(2) s = (s, m).
Df 3. m is called the moment of 5 if (1), (2).

Sgn 2. o sgn: (o, o).
Df 4. o is called the zero-arrow.

Df 5. 5 is called a non-zero arrow if (1),
(3) T # 7.

Pr 1. (2) implies (3) iff
(4) s # 0, sm = 0.

Dm. Sgn 1, Sgn 2.
Sgn 3. As sgn: {(s, m) € VZ: s+#o0,sm=0}.

Pr 2. (1) implies (3) iff 3" € As.
Dm. Sgn 1, Pr 1, Sgn 3.
Pr 3. If

(5) o #£F eWs,
then there exists exactly one [ € Ls with
(6) S &L

Dm. Pr 2, Sgn 3, [3] 1, Pr 19.
Sgn 4. dir s sgn: { € Lg with (6) if (5).
Df 6. dir 5 is called the directriz of s

Pr 4. If
(7) S € Ag,
then
®) rd T A

Dm. Sgn 3, Sgn 1, Pr 2, Pr 3, Sgn 4.
Sgn 5. mom,’s sgn: m + s x r if (1), (2),

(9) v E Vs
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Df 7. mom, s is called the r-moment of 5.
Df 8. ris called the pole of momy 5 .

Pr 5. (1), (2), (9) imply s - mom, s = 0.
Dm. Sgn 5, Sgn 1.

Pr 6. (1), (2) imply m = momo 5 .

Dm. Sgn 5.

Pr 7. (9) implies mom; o = o.

Dm. Sgn 5, Sgn 2.

Pr 8. (5), (9) imply

(10) mom; s = 0
iff
(11) r Z dir 7.

Dm. Sgn 5 implies (10) iff
(12) X8 = m.

Pr 3, Sgn 4 imply: dir 5 exists. Now Sgn 4, [3] 4 Sgn 1 imply (11) iff (12).
Pr 9. (5), (9),

(13) PE Vs,

(14) 5 Z dir 7

imply

(15) mom:s = (p—7) X 8.

Dm. (13), (14), Sgn 4, [3] 4Sgn 1 imply
(16) pPXs=m.

Now (16), Sgn 5 imply (15).
Sch 1. Traditionally text-books on analytical mechanics define mom,s (in
the case of V-arrows, naturally) by (15) rather than by

17 mom; s =m+8XT.

The definition (17) obviously surpasses the definition (15) in being more economical.
Pr 10. (1), (2),

(18) ry € Vs : (v=1,2)

mmply
(19) momy, 8§ — MOM, 5 = 8 X (7] — 7).
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Dm. Sgn 5.
Sch 2. The relation (19) is usually called the connection between the momenis
of an arrow with respect to two poles.

Sch 3. (19) implies
(20) 8-momg, § =8 -momyg, s .

The inference (20) from (19) is, however, a trivial one, in the light of Pr £.
Pr 11. (1). (18) imply

(21) (ry—72) -momy, 3 = (ry —73) -momy, 5 .
Dm. Pr 10.
Pr 12. (1), (18),

(22) L # T2,

(23) g=F ot 5=0{P)

imply

(24) (11— 72)° -momy, 3 = (r; — r2)° momy,’s

Dm. Pr 11,1 Sgn 4. ‘
Sch 4. The relation (24) gives an utterance of the fact that if (23) holds and

if (18) are different poles, then the projections of momy, s (v = 1, 2) on the line
[ connecting them, i.e. defined by

(25) (1'1 - Ta, g X 'I‘1) & 1,
are equal
P A3, L),
(20) 1, € Vg ) (V = 1; 2, 3)z
(2?) 7'1XT3+1”3X7'3+1'3XT1#0,
(28) lllO]]l.l-u? =0 . (»=1,2,3)
unply
(29) 8 =T

Dm.. (2), (28), Sgn 5 imply

(30) v, X a=m (r=1,2,3),
whence
(31) (ry—T3)X8=0 (r=1,2,3).

On the other hand, (27) is equivalent to
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(32) (ri—r3)x(ra—73)#o
and (31), (32), 1 Pr 29 imply

(33) s=o. ‘.
Now (33), (30) imply
(34) m=o

and (2), (33), (34), Sgn 2 imply (29).
Sch 5. The condition (27) implies that (26) are not colinear, i.e. that there
exists no line ! € Lg with

(35) r &l (v=1,2,3).

In such a manner, 5 is cetainly the zero-arrow if there exist three non-colinear
poles (26) with (28). The inverse statement (i.e: that if (29), then there exist (26)
and (27), (28)) is trivial in the light of Pr 7.

Sch 6. Pr 13 admits the following inversion.

Pr 14. (1), (26), (27),

(36) nec Vs,
(37) momy, 5 =n (=12 8
imply
(38) n=o0
and (29).
Dm. (2), (37), Sgn 5 imply
(39) T, XS=m-—-n (=1, 2, 3],

whence (31) Since (27) is equivalent to (32), the relations (31), (32), 1 Pr 29 imply
again (33). Now (33), (39) imply

(40) m=n.

On the orher hand, (2), (33), Sgn 1 imply (34), and (34), (40) imply (38). - .
Sch 7. Pr 13 and Pr 14 imply that the zero-arrow is the only arrow, the
moments of which with respect to three non-colinear poles are invariable with
respect to the latter.
The followmg two propositions give an idea of the dlstrlbutlon of the moments

of an arrow in space.
Pr 15. (1),(2),(18),

(41) sx(ri—-m)=o0
imply |
(42) momy, § = momm:.?.
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Dm. (41) implies
(43) m+38Xr; =m+8 X7y,

whence (42) (Sgn 5).
Pr 16. (1), (2), (18),

(44) S sx(rmi—7r)#o.
imply
(45) momy, § # Mmomy, § .

Dm. (44) implies
(46) - m+8X 7T Fm+8 X7y,

whence (45) (Sgn 6).

Sch 8. Let (25) hold good. Then (41) implies that [ is coherent to dir 5" (Sgn
4,[3] 1 Sgn 6), ie. lis parallel or coincides with dir 3", while (44) implies that [
is non-coherent to dir 5" (Sgn 4, [3] 1 Sgn 7). Now Pr 15 and Pr 16 display that

a necessary and sufficient condition for the equality of the moments of a non-zero
arrow with respect to two different poles is the coincidence or the parallelism of

dir 3° with the line incident with these poles.
Pr 17. (1), (2) imply (—s, —-m) € W5s.
Dm. Sgn 1.
Sgn 6. — 3 sgn: (—s, —m) if (1), (2).
Df 9. —75 is called the opposite arrow of 5 .
Pr 18. (1) implies —(—=5) = 5.
Dm. Sgn 6.
Pr19. - 9o =7.
Dm. Sgn 6, Sgn 2.
Pr 20. (1) implies (3) iff =5 # 0.
Dm. Pr 18, Pr 19.
Pr 21. (1) implies (3) iff =5 € As.
Dm. Pr 20, Pr 2.
Pr 22, (1) implies (29) iff

(47) — 8 = B
Dm. Pr 19 and: (2), Sgn 6 imply that (47) is equivalent to
(48) . —s =3, —-m =m. |

Now (48) imply (33), (34), whence (29) (Sgn 2).
Pr 23. (1), (2), .

(49) €S
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imply (s, Am) € Ws.
Dm. Sgn 1.
Sgn7. A5 sgn: (As, Am) if (1), (2), (49).
Df 10. A5 is called the product of A and 5.
Pr 24. (1) implies 03 = 0. :
Dm. Sgn 7, Sgn 2.
Pr 25. (49) implies A0 = 0. .
Dm. Sgn 7, Sgn 2.
Pr 26. (1) implies 15 =75
Dm. Sgn 7. :
Pr 27. (1) implies (-1)5 = =75 .
Dm. Sgn 7, Sgn 6.
Pr 28. (1), (49) imply (=)\)5 = —(A7).
Dm. Sgn 7, Sgn 6.
Pr 29. (1), (49) imply A(—5") = —-(A7%").
Dm. Sgn 6, Sgn 7.
Pr 30. (1), (49) imply (=A)s = A(—=7).
Dm. Pr 28, Pr 29. ’
Pr 31. (1), (49) imply (-A)(—%) = A5
Dm. Sgn 6, Sgn 7.
Pr 32. (1), (49),

(50) BES

imply (M) s = A(p8).
Dm. Sgn 7.
Pr 33. (1),

1) 0# A€ S,
(52) | X% =0

imply (29).
Dm. Pr 32, Pr 26, Pr 25. :
Pr 34. (5), (49), (52) imply A = 0.
Dm. Pr 33.
Pr 35. (5), (1) imply A5 # ©.
Dm. Pr 33, Pr 34.
Pr 36. (5), (51) imply A3 € As.
Dm. Pr 35, Pr 2. ’ '

Pr 37. (51),
(53) . T, EWs

(54) Ti=Asy

(v=1, 2,
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imply = %?1

Dm. Pr 32, Pr 26.

Pr 38. (5), (51) imply- 3" ~ A7.

Dm. Pr 2, Pr 36, Sgn 7, [3] 1 Sgn 2.
Pr 39. (5), (51) imply: dir 13" exists.
‘Dm. Pr 35, Sgn 4. '

Pr 40. (5), (51) imply dir A" =dir 5
Dm. Sgn 4, Pr' 39, Pr 38, [3]1Ax3
Pr 41. (5) implies dir (—7") =dir 7
Dm. Pr 27, Pr 40.

Pr 42. If :

(55) 0 #7,eWs - v=1,2),
(56) dir ?1 = dir ?2,

thenr there exists (51) with (54).
Dm. (56), Sgn 4, Pr 2, [3] 1 Ax 5 imply

(57) F1~TFa

Now (57), [3] 1 Sgn 2 imply that there exists (51) with (54)
Pr 43. (55) imply (56) iff (54).
Dm. Pr 40, Pr 42.
Pr 44. (49), (53), (54), (9) imply

(58) mom; §1 = Amom; 5 2
Dm. If
(59) Ty = (s, m)) ' w=1,2)
then |
(60) 81 = Aso, my = Am,

(Sgn 7). Now (60), Sgn 5, 1 Pr 14 imply

(61) mom; 3 = my+8 x7=2Amg+(As2) x T

= Amga+ A(s2 X 7) = X mom; 5 3.

Sgn 8. mom (1, 72) sgn: 81my + sym; if (53), (59).

Df 11. mom (3'y, 5'3) is called the mutual moment of 5, (v =1, 2).
Pr 45. (53) imply mom (73, 32) = mom (53, 51).

Dm. Sgn 8.

Pr 46. (1) implies mom (5", @) = 0.

Dm. Sgn 2, Sgn 8.
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Pr 47. (1) implies mom (7, 5°) = 0.

Dm. Sgn 8, Sgn 1.

Pr 48. (1), (49) imply mom (5", A3) =0."
Dm. Sgn 8, Sgn 7, Ax 95,1 Pr 7, Sgn 1.
Pr 49. (1) implies mom (3, —3") = 0.
Dm. Pr 48, Pr 27. '

Pr 50. (55), (59), (18),

(62) ry 2 dir 7,  w=1,2)
imply
(63) 8y -MOMy, §2 = 83 -MOMy, 5 1.

Dm. Pr9,1Pr9,1Ax8S, 1 Pr 13 imply

(64) 8;-momMy, S2=38;-(r2—71) X82 =81 X (r2—71)-82

=872 -8 X (T2 —-7’-1) = 89 - (1‘1 —1'2) X 8 = 89 - momrz?.l.

Pr 51. (53), (59), (9) imply
(65) mom( 5’1, 5'z) = 8; - mom; §3 + 83 - momy 55
| Dm. Sgn 5 implies
(66) 81 -MOM; 52+ 82 : Mom; 51 = 81(M2 + 82 X 7) + 82(my + 81 X 7).

On the other hand, lPr 8,1 Ax 85, 1 Pr 13 imply

(67) 81 -8, XT+82:8 XT =28, X8 T+82 X 8T

=7r-8; X82+r-8X8 =7(8) X8+382X8)=ro=0.

Now (66), (67), Sgn 8 imply (65).
- Pr 52. (18), (53), (59), (62) imply

(68)  mom(Fy, §2)=(r1—12)- si X 83.

Dm. (62), Sgn 4, [3] 4 Sgn 1 imply.
(69) Ty X 8, =my ' » (v=12)
Now Sgn 8, (69), 1 Ax 8S, 1Pr 8, 1 Pr 13 imply (68).
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§3. PARALLELISM

Sgn 1. ?1 l _8)2 sgn:. 8] X 82 = O if 2(53), 2(59)
Df 1. 5 is called adherent to 5o if 51| 5 9.
Sgn 2. 5 | 52 sgn: 81 X 82 # o if 2(53), 2(59).
Df 2. 5, is called non-adherent to §3 if 31 | 5.
Pr 1. 2(53) imply: exactly one of the relations

{1) 1|52
or

(2) 1| T2
holds.

Dm. Sgn 1, Sgn 2.

Pr 2. 2(53), (1) imply 52 | 5'1.
Dm. Sgn 1, 1 Pr 13. _
Pr 3. 2(53), (2) imply 52 | 51.
Dm. Pr 1, Pr2.

Pr 4. 2(1) implies 3 | 5.

Dm. Sgn 1.

Pr 5. 2(1) implies 5 | 0.

Dm. Sgn 1, 2 Sgn 2.

Pr 6. 2(1) implies 3| — 5.
Dm. Sgn 1,2 Sgn 6.

Pr 7. 2(1;, 2(49) imply & | AF.
Dm. Sgn 1, 2 Sgn 7.

Sgn 3. 57 ||| T2sgn: 57 | 52 1ﬁ' 2(55)

Df 3. 3 is called cokerent to. 3> if 37 ||| o
Sgn 4. si Il $2sgn: 357 | S20r 5, = 0 (1= =2)iff 2(53).
Df 4. 7. is called non-coherent Yo 55 if 57 ||| 5 2. :

Pr 8. 2(53) imply: exactly one of the relations

(3) e Il S
or

@ kel
Holds.

Dm. Sgn 3, Sgn 4.

Pr 9. 2(55}, (3) imply ¥y ||| #1.
Dm. Sgn 3, Pr 2.

Pr 10. 2(53), (4) imply 5 |||
Dm. Pr 8, Pr 9.
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Pr 11. 2(5) implies 5 {|| 5.

Dm. Sgn 3, Pr 4.

Pr 12. 2(5) implies 5 ||| — 5.

Dm. Sgn 3, 2 Pr 21, Pr 4.

Pr 13. 2(5), 2(51) imply 5 ||| A5

Dm. Sgn 3,2 Pr 35, Pr 7.

Pr 14..2(1) implies 5 ||| @.

Dm. Sgn 4.

Sgn 5. 57 || 32 sgn: 57 ||| 2, F1 # AT 2 iff 2(53), 2(51).
Df 5. 5, is called parallelto 5, if 57 || 5 2.

Sgn 6. 57 || T2 sgn: 57 ||| T2 or ) = AT, iff 2(53), 2(51).
Df 6. 5, is called non-parallel to &5 if 57 TI S g

Pr 15. 2(53) imply: exactly one of the relations

5) Tl T
or

(6) Tl %
holds.

Dm. Sgn 5, Sgn 6.

Pr 16. 2(53), (5) imply 52 || 1.
Dm. Sgn 5, Pr 9, 2 Pr 37. _
Pr 17. 2(53), (6) imply 572 || .
Dm. Pr 15, Pr 16.

Pr 18. 2(1) implies 5 || 5.

Dm. Sgn 6, 2 Pr 26.

Pr 19. 2(1) implies 3 || — 7.
Dm. Sgn 6, 2 Pr 27.

Pr 20. 2(1) implies 5" || T

Dm. Sgn 6, Pr 14.

Sgn 7. 57 T| 5 2sgn: 81+ 82 = 0, my +my # o iff 2(53), 2(59).

Df 7. 5 is called dipolarto 5,if 57 1| 5.

Sgn 8. 37 T] %o sgn: 81 + 83 # 0 or m,; + m = o ff 2(53), 2(59).

Df 8. 5, is called non-dipolarto 55 if 57 1] 5 2.
Pr 21. 2(53) imply: exactly one of the relations

(M) 51 1l S
or
(8) BN IGE
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holds.

Dm. Sgn 7, Sgn 8.

Pr 22. 2(53), (7) imply 55 1| ;.

Dm. Sgn 7. .

Dm. Pr 21, Pr 22

Pr 24. 2(53) (7) imply-(1). -

Dm. Sgn 7, Sgn 1.

Pr 25. 2(53), (7) imply 2(55).

Dm. Let 2(59) hold and let, for instance, 3; = ©. Then 2 Sgn 2 implies

8; =m; = 0. Now s; = o and Sgn 7 imply s2 = o, whence m; = o according to
2 Sgn 1. Then m; + m, = o contrary to Sgn 7.

Pr 26. 2(1) implies 5 ] o
Dm. Pr 25, Pr 21.
Pr 27. 2(1) implies 3 T] 7.

Dm. Pr 26,2 Pr 1, Sgn

Pr 28. 2(1) implies 5 Tl - 7.

Dm.2Sgn 6, Sgn 8. :

Pr 29. 2(1), -1# A€ Simply 3 T] A7

Dm. If 3 = ', then 2 Pr 25, Pr 26. ?;6 0, then 2(2) implies s # o (2

Pr 1) whence s + As # o by virtue of X # —1. Now Sgn 8.

(9)

(10)
(11)

Pr. 30. 2(53), (7) imply (3).

Dm. Sgn 3, Pr 24, Pr 25.

Pr 31. 2(53), (7) imply (5). -
Dm. Sgn 5, Pr 28-Pr 30, 2 Pr 24.
Pr 32. 2(18), 2(53), (7), 2(62) imply

momy, 5’2 = momy, 5 1.

Dm. 2(62), 2 Sgn 4, [3] 4 Sgn 1 imply 2(69). 2 Sgn 5 implies

3z :
MOMly; §2 = M3+ 83 X7,

momr2?1 = m;+8; XT3

Sgn 7, (7) imply

(12)

(13)
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81+ 8 = 0.

Now 2(69) and (10)—(12) imply (9).
Pr 33. 2(53), (1) imply \

mom( 8y, 55) =0
Dm. 2 Pr 46 or 2 Pr 52, Sgn 1.

Pr 34. 2(53), (3) imply (13).
Dm. Sgn 3, Pr 33.



Pr 35. 2(53) (5) 1mply (13).
Dm. Sgn 5, P

Pr 36. 2(53), (7) 1mply (13).
Dm. Sgn 7, Pr 33.

§ 4. PERPENDICULARITY

Sgn 1. 5; T 7 2 sgn: 838 = 0 iff 2(53), 2(59).
Df 1. 5, is called normalto 52 if 57 T 73.
Sgn 2. 5, T 32 sgn: 8182 # 0iff 2(53), 2(59).
Df 2. 7, is called non-normalto 3, if 37 T 52
Pr 1. 2(53) imply: exactly one of the relations

(1) 1T %,
or

(2) 1T 5
holds.

Dm. Sgn 1, Sgn 2.

Pr 2. 2(53), (1) imply 32 T 7.

‘Dm. Sgn 1.

Pr 3. 2(53), (2) imply 32 T 7.

Dm. Pr 1, Pr 2.

Pr 4. 2(53) (1) imply 3(4).

Dm. f3,=7(1Sv<2),then3Sgnd K7, #7
8, # 0 (v =1,2) (2 Pr 1). Now 8183 = 0 implies (s; X 82)
whence s; x 82 :ﬁ o (1 Ax 12S). Then 3 Sgn 2, 3 Sgn 4.

Pr 5. 2(53), () imply 3(6).

Dm. Pr 4, Sg

Pr 6. 2(53) \1) 1mply 3(8).

Dm. 3 Pr21,3 Pr31,Pr 5,3 Pr15.

Pr 7. 2(1) implies 3 T 7.

Dm. 2 Sgn 2, Sgn 1.

Pr 8. 2(5) implies 7 T 7.

Dm. 2 Pr 1,1 Ax 12§, Sgn 2.

Pr 9. 2(5) implies 3 T -3

Dm. 2 Pr 1,2 Sgn 6, 1 Ax 12S, Sgn 2.

Pr 10. 2(5), 2(51) imply ¥ T A 7.

Dm. 2Pr1,2Sgn7, 1"Ax 12S,Sgn - 2

Pr 11. 2(5), 2(53), & | 51, 3 T &2 imply (1).

2), then
1

v=1,
s1s3 (1 Pr 9)

Dm. 2(2), 2(59) lmply s#o (2 Pr 1), s x 8y = 0 (2 Sgn 1), 883 = 0 (Sgn
1). Then there exists 1(55) with s; = as (1 Pr'13, 1 Pr 32), hence 8382 = 0. Now

Sgn 1.
Pr 12. 2(1), 2(53), & ||| 3’1, & T &2 imply (1).
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Dm. 2 Sgn 3, Pr 11.

Pr 13. 2(1),2(53), 5 || 3y, 3 T 53 imply (1).

Dm. 2 Sgn 5, Pr 12.

Pr 14. 2(1),2(53), ¥ 1l 1, & T 5 imply (1).

Dm. 2 Pr 31, Pr 13.

Sgn 3. Ef L 5 sgn: s18p = 0 iff 2(55), 2(59).

Df3. 5 1 is called perpendicular to 54 if 57 L 5.

‘Sgn 4. sl L 55 sgn: 8183 #0o0rs, =0 (1 SvE 2) iff 2(53), 2(59).
Df 4. 5| is called non-perpendicular to 5 5 if 37 1 7

Pr 15. 2(53) imply: exactly one of the relations

(3) P L T
or

(4) 115,
holds.

Dm. Sgn 3, Sgn 4.
Pr 16. 2(53), (3) imply 5’2 L 5';.
Dm. Sgn 3.
Pr 17. 2(53), (4) imply 3, L 5
Dm. Pr 15, Pr 16.
Pr 18. 2(53), (3) imply (1).
Dm. Sgn 3, 5gn 1.
Pr 19. 2(53), (3) imply 3(2).
Dm. 2(59) imply s, #0 (v =1,2) (Sgn 3, 2 Pr 1). Now s;8, = 0 implies
(s1 % 82)% = 8252 (1 Pr 9) whence s; x 83 # 0 (1 Ax 12S). Then 3 Sgn 2
Pr 20. 2(53), (3) imply 3(4).-
Dm. Pr 18, Pr 4.
PrEl. 2(53), (3) imply 3(6).
Dm. Pr 18, Pr 5.
Pr 22, 2(53), (3) imply 3(8).
Dm. Pr 18, Pr 6.
Pr 23. 2(1) implies 3 L 7.
Dm. Sgn 4, 2 Sgn 2.
Pr 24. 2(1) implies 3 1 5.
Dm. Sgn4,2Sgn2,2Pr 1
- Pr 25. 2(1) implies 3 L — 5.
Dm. Sgn 4, 2 Sgn 6, 2Sgn2 2Prl, 1 Ax 12S.
Pr 26. 2(1), 2(49) imply ¥ L A%
Dm. Sgn 4, 2 Pr 24, 2 Pr 25, 2Prl 1 Ax 128.
Pr 27. 2(1), 2(53), 5 | 1, § L1 52 imply (1).
Dm. Pr 18, Pr 11. . :
Dm. 3 Sgn 3, Pr 12, Sgn 1, Sgn 3.



Pr 29. 2(1), 2(53), 5 || 3'1, 3 1 3, imply (3).
Dm. 2 Sgn 5, Pr 28. ‘

Pr 30. 2(1),2(53), 3 1l 31, § L 52 imply (3).
Dm. 2 Pr 31, Pr 29. : .

§ 5. OTHER RELATIONS

Sgn 1. 57 A 52sgn: 8; X 83 # 0, ymy + somy = 0 iff 2(53), 2(59).

Df 1. 57, is called tntersecting 52if 57 A 5 2.

Sgn 2. 57 A 52 8gn: 8, x 82 =0, s1my + samy # 0 iff 2(53), 2(59).

Df 2. 5 is called non-intérsecting 5o if 57 A 5 2.
Pr 1. 2(53) imply: exactly one of the relations

(1) F1 A T
or

(2) S1ATE,
holds.

3)

Dm. Sgn 1, Sgn 2.

Pr 2. 2(53), (1) imply 35 A 5.
Dm. Sgn 1.

Pr 3. 2(53), (2) imply 52 A5 1.
Dm. Pr1, Pr 2.

Pr 4. 2(53), (1) imply

TyFE T ' | (=

Dm. Sgn 1, 2 Pr 1.

Pr 5. 2(53) (1) imply 3(2).
Dm. Sgn 1, 3 Sgn 2.

Pr 6. 2(53) (1) imply 3(4).
Dm. 3 Sgn 4, Pr 5.

Pr 7. 2(53), (1) imply 3(6).-
Dm. 3.Sgn 6, Pr 6.

Pr 8. 2(53), (1) imply 3(8).
Dm. Sgn 1, 3 Sgn 8.

Pr 9. 2(1) implies 3 A 5.

- Dm. Sgn 2.

Pr 10. 2(1) impltes 3 A 7.

Dm. Pr4.

Pr 11. 2¢1) implies 3 A — 5.

Dm. 2 Sgn 6, Sgn- 2.

Pr 12. 2(1), 2(49) imply 3 A A5 .
Dm. 2 Sgn 7, Sgn 2.

Pr 13. 2(53), (1) imply 51 A —75 5.
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Dm. 2 Sgn 6, Sgn 1.

Pr 14. 2(53), (1), 2(51) imply 5, A A s 2.

Dm. 2 Sgn i Sgn 1.

Sgn 3. 31 ® i 9 SgNn: 8; X 89 # 0yS1mM3y + 821, # 0 iff 2(53), 2(59)
Df 3. 5 is called crossed with 55 if 57 ® 2.

Sgn 4. 57 ® 5 2sgn: 81 X 83 = 0 or s;m2 + samy = 0 iff 2(53), 2(59).
Df 4. 5, is called non-crossed with 55 if 37 ® 5 2.

Pr 15. 2(53) imply: exactly one of the relations

(4) T1® §2
or

(5) 7.8 7
holds.
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Dm. Sgn 3, Sgn 4.

Pr 16. 2(53) (4) 1mply 52 ® 51.

Dm. Sgn 3.

Pr 17. 2(53), (5) imply 52 ® ;.

Dm. Pr 15, Pr 16.-

Pr 18. 2(53), (4) imply (3).

Dm. Sgn 3,2 Pr 1.

Pr 19, 2(53) (4) imply 3(2).

Dm. Sgn 3, 3 Sgn 2. 3
Pr 20. 2(53), (4) imply 3(4).

Dm. 3 Sgn 4, Pr 19.

Pr 21. 2(53), (4) imply 3(6).

Dm. 3 Sgn 6, Pr 20.

Pr 22. 2(53), (4) imply 3(8).

Dm. 3 Pr 21, 3 Sgn 7, Sgn 3.

Pr 23. 2(53), (4) imply (2).

Dm. Sgn 1, Sgn 4.

Pr 24. 2(53), (1) imply (5).

Dm. Sgn 1, Sgn 4.

Pr 25. 2(1) implies 3 5

Dm. 2 Sgn 1, Sgn 4.

Pr 26. 2(1) implies 3 ® 0.

Dm. 2 Sgn 2, Sgn 4.

Pr 27. 2(1) implies 3 ® — s

Dm. 2 Sgn 6, Sgn 4.

Pr 28. 2(1), 2(49).imply 3 ® A5

Dm. 2 Pr 24, 2 Pr 25, Pr 26, 2 Sgn 7, Sgn 4.
Pr 29. 2(53), (4) imply 5"; ® —752.

Dm. 2 Sgn 6, Sgn 3.

Pr 30. 2(53), (4), 2(51) lmply ?1 ® )t?z
Dm. 2 Sgn 7, Sgn 3.

Pr 31. 2(53), (1) imply: there exists exactly one 2(9) with



(6) v ZdirS, (r=1,2),

namely
13
(7) r:iz.s;lxm,,
v=1
provided 2(59), -
(8) 83 sgn : 81 X 83,
9) ma sgn : (my - 82 X 81)87 1 + (my - 82 x 81)s5 L.

Dm. dir 5, (v = 1, 2) exist by virtue of Pr 4, 2 Sgn 4. The rélations (6) are
equivalent to ,

(10) X 8, =m,y ‘ (=1, 2)

respectively, provided 2(59) (2 Sgn 4, [3] 4 Sgn 1). In view of Sgn 1, 1 Pr 31 the
system (10) has exactly one solution 2(9), namely (7) provided (8), (9).

Pr 32. 2(53), (4) imply: there exists no 2(9) with (6).

Dm. dir 3°, (v =1, 2) exist by virtue of Pr 18, 2 Sgn 4. The relations (6) are
equivalent to (10) respectively provided 2(59) (2 Sgn 4, [3] 4 Sgn 1). In view of Sgn
3, 1 Pr 28, there exists no 2(9) with (10), since the necessary for the consistency of
the system of vector equations (10) condition 8;m3 + sam; = 0 is violated.

§ 6. ARMS & FEET

Sch 1. Let 7 € Vs and 5 = (s, m) € Wy be given, 5 # ©. Let p € Vs be
wanted satisfying

(1) p Zdir 5,

(2) (7-r)s=0.

The condition ( 1) is equivalent to
(3) pxs=m

(2 Sgn 4, [3] 4 Sgn 1). In other words, 7 is sought as a solution.of the system of
vector equations (3) and -

(4) ps=rs.
provided s # o, sm = 0. According to 1 Pr 33, this system has exactly one solution

_ (rs8)s+sxm
p= 5 -
s

(5)
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It is called the foot or  on 5 and is denoted by foot, s*. On the other hand, (5)
implies
sx(m+sxr)

=

©) por=

The right-hand side of (6) is called the arm of 5" with respect to r and is denoted by
armg 5 . These and other circumstances are formalized in the present paragraph.
sx(m+sxr)

( 2 ) iff 2(5), 2(2), 2(9).
Df 1. arm; 5 is called the arm of s* with respect to = (the r-arm of 5").
Pr 1. 2(5), 2(2), 2(9) imply

Sgn 1. arm; 5 sgn:

8 X momy s

(M army s = 2

Dm. Sgn 1, 2 Sgn 5.
Pr. 2. 2(5), 2(2), 2(9) imply s - arm; s = 0.

Dm. Sgn 1.

Pr 3. 2(5), 2(2), 2(9) imply mom, s - army 5 = 0.
Dm. Pr 1. _ |

Pr 4. 2(5), 2(2), 2(9) imply 8 x mom, s = s%arm, s .
Dm. Pr 1. ‘ _

Pr 5. 2(5), 2(2), 2(9) imply mom,s = army,s X s.
Dm. Pr 1, Prb.

Pr 6. 2(5), 2(2), 2(9) imply

®) army 5 = 5% m;- (rs)s

Dm. Sgn 1, Pr 16.
Pr 7. 2(5), 2(9) imply army(—75") = arm; s .
Dm. 2 Sgn 6, Sgn 1.
Pr 8. 2(5), 2(9), 2(51) imply army(A3") = arm, .
Dm. 2 Sgn 7, Sgn 1.
2 : 2
Pr 9. 2(5), 2(2), 2(9) imply (momr?) = (armr?) :
Dm. Pr5 Pr2,1Pr9.
Pr 10. 2(5), 2(9) imply 2(10) iff

9 army;s = o.
Dm. Pr 9,1 Ax 12S.
Pr 11. 2(5), 2(9) imply (1) iff (9).
Dm. Pr 10,2 Pr 8.
Pr 12. 2(53), 3(5), 2(18), 2(62) imply

—
(10) arme, 51 +army, 52 = 0.
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Dm. 3(5) imply 5(3) (3. Pr 20, 2 Pr 15), whenle dir ¥, and arm, 3, (v =
1, 2) exist for any 2(9) (2 Sgn 4, Sgn 1). The relations 2(62) are equivalent with
2(69) provided 2(59) (2 Sgr 4, [3] 4 Sgn 1). On the other hand, Sgn 1 implies

8 X (.ml + 81 X 1'2)

(11) arr‘nrz?l = 3 ;
3
82 X (Mgy+82X7P
(12) arme, 52 = 2 ( 2.92 2 X 1)
; 2

and (11), (12), 2(69) imply

81 X ((r1 —73) x 81)

(13) armg, 81 = v .
: 1
8o x((ro—7y) X8
(14) arme, 52 = 2 X ((ra . 1) X $2)

83
respectively. At last, 3(5) and 2(59) imply
(15) 8; X8, =0
(3 Sgn 5, 3 Sgn 3, 3 Sgn 1) and (15), 5(3), 2 Pr 1 imply that there exists (51) with
(16) 82 = As;.
Now (16), (14), 1Ax 8S, 1 Pr 7, 1Sgn 1, 1 Pr 14, 1 Pr 17 imply

— 81 X((rg—7r1) X8
(17) army, §2 = 1 x (( 23% 1) 1)

and (13), (17) imply (10).
Pr 13. 2(53), 3(7), 2(18), 2(62) imply (10).
Dm. 3 Pr 31, Pr 12.

Sgn 2. foot, 5 sgn: FR e (Yol

S iff 2(5), 2(2), 29).

Df 2. foot, s is called the foot of » on 5.

Pr 14. 2(5), 2(2), 2(9) imply footy 3 = 7 + arm; 5
Dm. Sgn 2, Pr 6.

Pr 15. 2(5), 2(9) imply footy(—7") = foot; 5

Dm. Pr 14, Pr 7.

Pr 16. 2(5), 2(9), 2(51) imply footr(,\'?) foot, 5.
Dm. Pr 14, Pr 8.

Pr 17. 2(5), 2(9),

(18) rZdirF
imply
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(19) (armr'?, r X arm,?) € As.

Dm. 2(5) implies: dir 8" exists (2 Sgn 4). Now (18) is equivalent to
(20) army 3 # 0

(Pr 11) whence (19) (2 Sgn 3).
“Pr 18. 2(5), 2(9), (18) imply: there exists exactly one | € Lg with

(21) (arm,.—s", r X aer,"E’) &1

Dm. Pr 17,]3] 1 Pr 19. .

Sgn 3. axis, 5 sgn: [ € Lg with (21) iff 2(5), 2(9), (18).
Df 3. axis, 5 is called the r-azis of 5.

Pr 19. 2(5), 2(9), (18) imply » Z axis; 5.

Dm. [3]4Sgn 1.

Pr 20. 2(5), 2(9), (18) imply axis,(—75") = axis; s .

Dm. Sgn 3, Pr 7

Pr 21. 2(5), 2(9), (18), 2(51) imply axis,(A3’) = axisy 5 .
Dm. Sgn 3, Pr 8

Sch 2. Let

(22) (av, bv) e AS., -1, € Ls, (“v: bv) & lu; (V =1, 2):

(23) a; X ag 7‘: 0.

Then
(61 X 02)2 ]

Let 1 € Lg be defined by

(25) —_— (01 X ag - bg)al + (02 X ay - bl)az 2 (01 " 02) &l
(a1 X ag):"

Then it is proved [3, p. 122] that there exists exactly one couple r, € Vs (v =1, 2)
withe, Z1, 7,71, (u = 1, 2) respectively, namely

(26) - r (01 Xas- 52)01 + (a2 Xa- bl)ﬂz + (0261)01 X a2

t | (a1 x @2)? ,
(27) r (@1 X @3- by)a; + (a3 X @y - b)a; — (a1bg)a; x gz
. 7 (a1 x a3)?

Now (26), (27) imply

(28) a1ba+ axb;

L —Te= a; X as.
1 2 (a;xag)z 1 X Gz
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These geometrical facts give rise to the following considerations concerning V-

arTows.
Pr 22. s,, m, € V5 (v =1, 2),

(29) 81 X 82 # 0,

& yma + $am,

(30) 8 sgn B

81 X 89,

(31) m sgn : X ((32 X 8 - m2)31 + (81 X 89 -m1)32) 5

(81 X 82)2

2(2) imply 2(1).
Dm. 2 Sgn 1.
Sgn 4. ax(5'1, 52) sgn: (s, m) iff 1(563), 2(59), (29) — (31).
Df 4. ax(s'1, §2) is called the azis of 51, 5 2.
Pr 23. 2(53), 2(59), 3(2) imply ax(751, 5 2) # o iff 5(4).
Dm. 2Pr 1, Sgn 4, 5 Sgn 3.
Pr 24. 2(53), 2(59), 3(2) imply ax(5"1, 52) = —ax( 52, §1).
Dm. Sgn 4, 2 Sgn 6.
Pr 25. 2(53), 2(59), 3(2) imply ax(5"y, 52)T s, (v=1, 2).
Dm. Sgn 4,4 Sgn 1. )
Pr 26. 2(53), 2(59), 5(4) imply ax(51, 32)L75, (v=1, 2).
Dm. Sgn 4,.4 Sgn 3, Pr 23, 5 Pr 18.
Pr 27. 2(53), 2(59), 5(4) imply ax(5'1, 52) A5, (v =1,2).
Dm. Sgn 4, 5 Sgn 1, [3] 1 Pr 106.
Pr 28. 2(53), 2(59), 5(4) imply: there exists exactly one couple ¢, € Vs
(v =1, 2) with 2(62) and

(32) Ty Z dir a.x(?l, ?2) ‘ (l’/ = ]., 2),
. namely
1 :
(33) 1= m’f ((81 X 82m2)31 + (32 X 81m1)82 + (82m1)81 X 82) 5
1
(34) Po = m ((31 X 82m2.)81 -+ (82 X 81m1)82 — (31m2)3; X 32) 3

Dm. [3] 4 Pr 47.
Pr 29.-2(53), 2(59), 5(4), (30), (38), (39) imply s = r; — rs.
Dm. Clear.
§ 7. ADDITION
Pr1.If
(1) (8v, mu) € Ws (=1, 2},
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then

(2) (81 + 82, my + m2) € W5

iff

3 81+ 383 =0, my +me =0

or

(4) 81+ 82 # o, 81m3 + somy = 0:
Dm. 2Sgn 1.
Pr 2. (1) imply (2) iff one of the following conditions is satisfied:

(5) 81 = ~83, m; = —mg

or

(6) 81 # —8,, 81 X :52 =0

or

(M 81 X 82 # 0, sima + 8amy = 0.

Dm. By virtue of Pr 1 it must be proved that the systems of conditions (3)
and (4), on the one hand, and (5) — (7), on the other hand, are equivalent. Since
(3) and (5) are equlvalent it remains to be proved that the ‘conditions (4), on the
one hand, and (6) and (7), on the other hand, are equivalent.

The first condition (4), i.e.

(8) 81+ 82 # 0,

is consistent with the alternative

9) 31X 8 =0
or
(10) 8; X 83 # o.

The case (8), (10) with
(11) s81mg + 8amy =0,

i.e. the case (7), is equivalent to (4).

As regards the case (8), (9), the followmng two subcases are possible: at least
one of the vectors 8; and s5 is zero; or none is zero.

In the first subcase, let for instance

(12)- 81 =o0.

Now (12), (1), 2 Sgn 1 imply m; = o, and (11) is satisfied tn-\rlal]y
In the second subcase, (9) 1mp11es that there exist A, € S (v = 1, 2) with
Ay #0(r=1,2)and
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(13) 8 = A\183, 872 = A28;.

On the other hand, (1) and 2 Sgn 1 imply

(14) Bty =10 ’ _ (r==1,72].

Now (13), (14) imply (11) again. . |
In such a manner, it is proved that the conditions (4) are equivalent to the

conditions (6) in the case (9), and with (7), in the case (10), ¢.e.d.
Pr 3. (1) imply

(15) (51 + 82, m1 + m2) & Ws
iff
(16) : 8 = —83, my # —m;
or
a7 8ymso + samy # 0.

Dm. Pr 1, Pr 2.

Pr 4. (1) imply
(18) (81 + 52, my + m2) € Ag
iff (4).

Dm. 2Sgn 3, 2 Sgn 1.

Pr 5. (1) imply (18) iff (6) or (7).
Dm. Pr 2, 2 Sgn 3.

Sgn 1. 51+ 5 28gn: § with

(19) _ T = (814 82, my + M)

provided

(20) Ty=(s,m)EWs (v=1,2)
i (2). |

Df 1. 5, + 52 is called the sum of 5°; and 5.
Df 2. The operation in Wg defined by means of Sgn 1, is called addition in

Ws.
Pr 6. (20), (2) imply

(21) (81, m1) + (82, m2) = (81 + 83, My + M)
Dm. Sgn 1. '
Pr 7. 2(53) imply:

(22) T+ 5 exists

iff
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(23) T2, Till T,

or

(24) FT1A T,
Dm. Sgn 1, Pr 2,3 Sgn 1, 3.Sgn 8, 5 Sgn 1.
Pr 8. 2(53).imply:

(25) 1+ 52  does not exist

iff

(26) FallT

or |

(27) 107,
i)m. Sgn 1, Pr3,3Sgn7 Pr2 5Sgn3.
Pr 9. 2(53), (22) imply

(28) T4+ F2=S24+ 51

Dm. The right-hand side of (28) exists (Pr 7, 3 Pr 2, 3 Pr 23, 5 Pr 16). Then
Sgn 1. ' |
Pr 10. 2(1) implies
(29) T+0=T75.

Dm. The left-hand side of (29) exists (2 Sgn 2, Sgn 1, 2 Sgn 1). Then Sgn 1.
Pr 11. 2(1) implies

(30) T+(-F)=7.

Dm. The left-hand side of (30) exists (2'Sgn 6, Sgn 1,"2 Sgn 1). Then Sgn 1,
"2 Sgn 2. '

Pr 12. If _
(31) T, €Ws (v=1,213),
then
(32) (F1+732)+F3=51+(F2+ 73),

provided all sums exist.
Dm. Sgn 1,1 Ax 1S.

Sgn 2. L(3)sgn: {03 : A€ S}iff 0 #£75 € Ws.

Df 3. L(7) is called the linear span of 5. ‘

Pr 13. 2(55), 2(49), 31 = A5 2 imply L(51) = L(52).
Dm. Sgn 2,2 Sgn 7.

Pr14. If
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(33) 7, €L(?) (v=1,2),

then (22).
Dm. (33), Sgn 2 imply: there exist

(34) A, ES (ee=1,2)
with
(35) B =0T (=1, 2.

Then (35) and 2(2) imply

(36) P = B, 5m) | w=1,12),
in view of 2 Sgn 7, and (36), 2(59) imply

(37) 814+ 8o = (A1 + Ag)s, my +my = (A + dg)m.

If \; + A2 = 0, then (37) imply (3) whence (22) (Sgn 1, Pr1). If Ay + A3 # 0, then
(8) (Sgn 2). On the other hand, (36), 2(59) imply

(38) 81M2a + Sy = 2/\1-):2(3m) =1.

(1 Ax9S,1Pr7,28Sgn 1),ie. (11), and (8), (11) imply (22) (Pr 1, Sgn 1).
Pr 15. L(3) is a group with respect to the addition in Ws.
Dm. Pr 14, Pr 12, Sgn 2 with A = 0, 2 Pr 24, Pr 10, Sgn 2 with A = -1, 2 Pr
27, Pr 11 display that 1 Ax 1S — 1 Ax 3S are satisfied (with L(7s") instead of Vs).
Pr 16. 2(1),

(39) A peS
imply
(40) (A+ A)‘s* =T +45.

Dm. Both sides of (40) exist: in case of 3 = @ all members in (40) are the

zero-arrows (2 Pr 25); in case of 5 # 0 see Pr 14. Now (40) follows from 2 Sgn 7
and Sgn 1.
Pr 17. A € S, 2(53), (22) imply

Dm. Both sides of (41) exist: in case of A = 0, all members in (41) are the
zero-arrows (2 Pr 24); in case of A :£ 0 see Pr 1 and 2 Sgn 7. Now (41) follows from
2 Sgn 7 and Sgn 1:

Pr 18. L(7F) is a 1-dimensional linear space over S with respect to the
addition in Wy and to the multiplication 2 Sgn 7 of the elements of S and W.
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Dm. As regards the addition see Pr 15. Now 2 Sgn 7, 2 Pr 26, 2 Pr 32, Pr 16,
Pr 17 display that 1 Ax 45 — 1 Ax 7S are satisfied (with L(3") instead of Vs).

As regards the dimension of the linear space L(5’) over S, let uz note, first,
that there exists a linearly independent element of L(3"), namely 7'; and, second,

that any two elements of L(3"), are linearly dependent. Indeed, let (33) hold. Then
Sgn 2 implies that there exist (34) with (35). If both of (34) are zeroes, then both of
(33) are zeroes too (2 Pr 24), and they are, therefrom, trivially linearly dependent;
if at least one of (34) iz non-zero, then the linear combination

(42) /\2?1 + (-—-)\1)?2 = A1/\2(? - ?) = /\1/\2?

vanishes with non-zero coefficients (34): consequently, (33) are linearly dependent.
Sch 1. The record (42) is not a quite orthodoxal one: it exploits the undefined

still notion of a difference of two arrows (the difference s — 75", as a matter of fact).
In actually, (42) may be rewritten in the almost equivalent form

(43) AT+ (=A) T2 =M T )+ (=A1)(A2 )

= (A2A1) T + (mAA2) T2 = AA1 + (mAAg)) 5 =03 =0

(2 Pr 32, Pr 16, 2 Pr 24). As it is, the difference of two arrows (if it exists) is
defined immediately below.

Sgn 3. 51— Sasgn: 51+ (=752)iff 2(53) and F"; + (=75 2) exist.

Df 4. 51 — 52 is called the difference of 5, and 5 5.

Df 5. The operation in Ws defined by means of Sgn 3 is called subtraction in

Ws. :
Pr 19. 2(53) imply
(44) | . S1— 82  exists
iff
(45) TiT2 Tl
or
(46) T1A T,

Dm. Sgn 3, Pr 7, 2S5gn 6,3Sgn 1,5 Sgn 1.
Pr 20. 2(53) imply

(47) F1— 52  does not exist

iff :
(48) T1lF2, F11L-T

or

(49) FT1® T2
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Dm. Sgn 3, Pr 8, 2 Sgn 6, 5 Sgn 3.

Pr 21. (20)
(50) (81— 82, m; —my) € Ws
imply
(51) (81, my) — (82, M) = (81 — 82, my — my).

Dm. Sgn 3,2 Sgn 6, Pr 6.
Pr 22. 2(53), (44) imply

(52) ?1 == ?2 = —-?g + ?1.

Dm. Sgn 3, Pr 9.
Pr 23. 2(1)) implies

(53) i

Dm. Sgn 3,2 Pr 19, Pr 10
Pr 24. 2(1) implies

(54) T~FT= 0.
Dm. Sgn 3, Pr 11.
Sch 2. Pr 24 has been used on the sly in (42).
Pr 25. 2(53), (22) imply
(55) —(?1 + ?2) = —?1 - ?2.
Dm. The right-hand side of (55) exists (P°r 7, Sgn 3, 2 Sgn 6, 3 Sgn 1, 3 Sgn 8,

5 Sgn 1). Then Pr 6, 2 S;a 6, Pr 21.
Pr 26. 2(53), (22) imply

(56) - —(?1 = ?2) = —?1 + ?2. :

Dm. Pr 25, Sgn 3, 2 Sgn 6.
Pr 27. (31) imply

(57) (F1-F2)+Fa=F1+(-F2+ )

provided all sums and differences exist.
Dm. Sgn 3, Pr 12.
Pr 28. (31) imply

(58) ‘ (?1 + ?2) - ?3 = 14 (?2 - ?3)
provided all sums and differences exist.

Dm. Sgn 3, Pr 12.
Pr 29. (31) imply
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(59) (B1—52)— F3=71-(F2+73)

provided all sums and differences. exist.
Dm. Sgn 3, Pr 12.
Pr 30. (39), 2(1) imply

(60) A—p)F =AF -pu7"

Dm. If 3 = 7, then all members in (60) are zeroes (2 Pr 25). f 5" # 7,
then (60) is simplified by Pr 18.
Pr 31. 2(49), 2(53), (44) imply

(61) M7y =T X~ XTs

Dm. The right-hand side of (61) exists: if A = 0, then all members 1n (61) are
zeroes €2 Pr 24); if A # 0, then Pr 19, 2 Sgn 7, 3 Sgn 1,3 Sgn 8,5 Sgn 1. Now 2
Sgn 7 and Pr 21.

Pr 32. 2(53), (24), (34),

(62) Az £ 0
imply
(63) NE AT

Dm. (24) implies (10), (11) (5 Sgn-1). If 2(59), then

(64) AF = (Ausy, Aym,) (v=1,2)
(2 Sgn 7). Now (64), 1 Pr 14, 1 Pr 17, 1 Ax 8S, 1 Pr 7, (62), (10), (11) imply
(65) (A181) X (A282) = (A1X2)s1 X 82 # 0,

(66) (M181)(Agma) + (A282)(Aim1) = (A do)(s81m2 + s2my) = 0,

and (65), (66) imply (63) (5 Sgn 1).
Pr 33. 2(53), (24), (34) imply

(67) /\1?1 4+ A5 exists.

Dm. If A\; = 0 or A3 = 0, then (67) is implied by 2 Pr 24, Pr 10, Pr 9. If (62),
then Pr 32, Pr 7.

Sgn 4. L(7F,)2., sgn: {Al?l +22F2: A ES(v=1, 2)} Iff 5, € Ws
(v=1,2), T1A 7>
Df 6. L(5’,)2_, is called the linear span of 3, (v = 1, 2).

Pr 34. 2(53), (24),
(68) Ty € L(TV)m (B=1,2)
imply
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(69) ?1 + ?2 exists.

Dm. (68), Sgn 4 imply: there exist

(70) Auw €8 (4, v=1;2)
with

(71) Tu=A1 T 1+ A2 52 (r=1,2)
Now (71) and 2(59) imply

(72) ?“ = (A“181 + /\uzsg, X,uml + X,‘gmg) (,u =1 2).
(2Sgn 7, Pr 6), and (72), 1 Ax8S,1Pr 7,1Pr 14,1 Pr 17 imply

(73) (A1181 + A1282) X (A2181 + Aa283) = (Anadaz — A1zher)s) X 8,

(74) (A1181 +A1282) A2rmy +A2ama) + (A2181 + A2282)(A1amy + Ajamy)

= (M1Az22 + Ai2A21)(81m2 + 82my) = 0.

in view of (14) (2 Sgn 1) and (11) (5 Sgn 1).
The alternative

(75) A11d22 — Ap2A #0
or
(76) A11A22 — A12A2; =0
now arises _ | :
If (75), then (73) and (10) (5 Sgn 1) imply
(77) (Auag + A1232) X (/\2181 + 32282) :,\‘-' o -
and (72), (77), (74), 5 Sgn 1 imply
(78) ?1 A ?2.

consequently (69) (Pr 7).
If (76), then (73) implies

(79) . (A1181 + A1282) X (A2181 + A2282) = 0,
and(79), (72) imply
(80) 71|72

in view of 3 Sgn 1.
The supposition

(81) 71117
is wrong. Indeed, (72) and 3 Sgn 7 imply that (81) is equivalent to
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(82) A1181 + A1282 = —(A218; + Ag283),

(83) Xiimy + Azmy # —(Rermy + Agzzmy)

ie. with |

(84) (A11 4+ A21)81 + (A2 + Az2)82 = o,

(85) (1 + Xarymy + A1z + Azz)ms # 0.
Now (84) and (10) (5 Sgn 1) imply

(86) A1+221=0,  Aiz+ A2 =0,

and (86) imply
(87) (P11 + X20)ma + (A2 + Azz)ma =0,

contrary to (85).' In such a manner,
(88) 71117

(3 Pr 21) and (80), (88) imply (69) (Pr 7).

Pr 35. L(5,)2., is a group with respect to the addition in Ws.

Dm. Pr 34, Pr 12, Sgn 4 with A; = A2 = 0, 2 Pr 24, Pr 10, Sgn 4 with A,,
A2, on the one hand, and —)\;, —A2, on the other hand, 2 Pr 27, Pr 11 display that
1 Ax 1S — 1 Ax 3S are satisfied (with L(F",)2_, instead of Vs).

Pr 36. L(75',)%_, is a 2-dimensional linear space over S with respect to the
addition in Wg and to the multiplication 2 Sgn 7 of the elements of S and Wy.
Dm. As regards the addition, see Pr 35. Now 2 Sgn 7, 2 Pr 26, 2 Pr 32, Pr 16,

Pr 17 display that 1 Ax 45 — 1 Ax 7S are satisfied (with L(75",)Z_, instead of Vs).
As regards the dimension of the linear space L(7 ,)2_, over S, let us note,
first, that there exist two linearly independent elements of L(5,)2_, namely 35
and F5; and, second, that any three elements of L(5*,)2_, are linearly dependent.
Indeed, ?“ € L(?y)?}:l (}l = 1, 2) since ?1 = 1?1 + 0?2, ?2 = 0?1 “+
1753 (2 Pr 24, 2 Pr 26, Pr 10, Pr 9). Let now (34) and

(89) MTFT 1+ X052=7

hold. If 2(59), then (89) is equivalent to

(90) (A181 + X282, Aym; + Aym3) = (o0, 0)
(2 Sgn 7, Pr 6, 2 Sgn 2), whence

(91) A181 + X282 = o.

Now (91) and (100 (5 Sgn 1) imply A\; = Az = 0, hence the linear independency of
—_ —_
§1 and § 3.

On the other hand, let
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(92) ?I‘ € L(_;V)izl ("‘ = 11 2’ 3)
Now (92) and Sgn 4 imply that, there exist

(93) Auv €S _ ‘ r=1,23v=12)
with ‘ |
(94) Tu=AnT1+ A2 50 o . (p=1,% 9.

If 2(59), then (94) is equivalent to

(95) T u = (M8 + A28z, Apimy + Ayams) (p=1,2,3)
Let 1(34) be a non-zero solution of the system of equations
_ ' 3 3
; (96) ZapApl =0, ' E_a"/\yg =4,
- ' u=1 . p=1 ‘
i.e. with |
(97) Z ety # 0.
p=1 '
Now (96) imply
o 5. 3
p=1 pu=1

and (95), (96), {98),

. 3
(99) Z ap?“_ sgn : (01?1 + ag?g)ﬂ—}- aa?s,
us=1 ¢ '

. Pr 6, 2 Sgn 2 imply
‘ 3
(100) Y 0, Tu="7
=

with (97), i.e. the linear dependency: of (92).

Pr 37. If
10)  FeLFL,
e B (v=1,9),
‘then J
(103) TAT, - . (v ='1, 2).
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Dm, (101), Sgn 4 imply: there-exist (34) with

(104) T=MT1+A7T

If 2(2), 2959), then (102), 3 Sgn 2 imply

(105) sxs, #0 o (v =1, 2).
Besides, (104), 2(2), 2(59), 2 Sgn.7, Pr-6 imply '

(106) s=M81+ A8, m= 'Xpl.mi + Xgmz.

now (106), 2 Sgn 1, 1 Ax 85, 1 Pr 7, Sgn 4, 5 Sgn 1 imply

(107) . smy+sm= Ag(simg + 8om4) =0,

(108) smy + 8om = A\i(8ymg + 8omy ) =0,

and (105), (107), (108), 5 Sgn 1 imply (103).
~ Pr 38. (68), |

-

(109) N
imply
(110) L(o v)2—-1 =.I(s V)v-i

Dm. As in proof of Pr 34 it is proved that (73), (74) hold good. The case (76) .
is impossible since it implies (80) contrary to (109) (3 Pr 1). Now as in the proof
of Pr 34 it is proved that (78) holds. Hence the left-hand side of (110) exists (Sgn
4). Then Pr 36 and Sgn 4.

Pr 39:. If
(111) T, =(s,m,) €Ws (r=1,213),
(112) 8 X 82-83#0,
(113) symy, +s,m,; =0 (n,v=12,3),

then there exists exactly one 1(31) with
(114) rZdir’s, ' ‘ el 2.3)

namely 5(7).
Dm. (112) imply s, # 0 (v =1, 2, 3), whence

(115) TLET ' (v=1,23)

(2 Pr 1). Now (115) and 2 Sgn 4 imply: dir 5, (v = 1, 2 3) exist and (114)
equivalent to

(116) rxs,=m, (r=1,23).

104



Then (112), (113), 1 Pr 30 imply that there exists exactly one 1(31) with (116),
namely 5(7).
Pr 40. (111) — (113) imply

(117) Ta A T _ ' (B, v=1,23 p#v).
Dm. 5Sgn1l. |
Pr 41. (111) — (113),
(118) MES | | - (»=123),
(119) MAAz #£0
imply
(120) AT A NTFy . mv=12,3 p#v).

Dm. Pr 40, Pr 32.
Pr 42, (111) — (113), (118), (119) imply

(121)”" 3 1\1—8)1 + Az?g A Aa?a. .
Dm. Pr 40, Pr 33 imply (67). Besides, (111), 2 Sgn 7, Pr 6 imply

(-122:) | 1\1_8’1 + /\2?2 = (1\181 + A28, :\'1m1 +§2m2).

'On the other hand, (111) and 2 Sgn 7 imply .

(123) Aa?s = (A383, -Xam;g).

" Now (122), (123) imply

(124) (/\181 + )282) X (A383) = —Xa(xl(&_ X 83) -i--A-z(Sg X 83))
(1 Pr 14, 1 Pr 17), whence
(125) (/\181 + Agsg) X (A383) ?‘-‘ 0.

Indeed, otherwise (124), (119) imply

(126) A1(s1 % 83) + Az(s2 X 83) =0

. and scalar mﬁltiplication of (126) with s; implies
(127) Aa(s1- 83 X 83) =0 |

by virtue of 1 Pr 7, contrary to (119), (112) in view of 1 Pr 8. On t.he other ha.nd
1Pr7,(113) lmply
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(128) (Al"’l 'f— h’z’z)‘"?.a + aa(xl'ml + -Xgmg)

= A1(s1m3 + s3my ) + Az(s2m3 4 s3m2) = 0,

and (122), (123), (125), 5 Sgn 1 imply (121).
Pr 43. (111) — (113), (118) imply

(129) (/\1 51+ A2 2) + X253 exists.

Dm. If A\;A2X; = 0, then (129) is implied by 2 Pr 24, Pr 10, Pr 9. 1f (119)
then Pr 33, Pr 42, Pr 7.

Sgn 5. 51+ 5o+ sasgn: (5, + 32)+s31f(31) ‘

Sgn 6. L(3,)0_; sgn: {1+ AT 2+ 3T 3 A, GS(V:I 2, 3)} iff
(111) — (113).

Df 7. L(5,)3_, is called the linear span of 5, (V =1, 2, 3)

- Pr 44. (111) — (113),

(130) T, € L(F )5 . F - (u=1, 2)
imply (69). o -

Dm. (130), Sgn 6 imply: there exist g g5,
(131) AL €S L (w=1,%v=1,23)
with | o V | | o o h
(132) Fus AT+ Tt he s (=19

Now (132) and (111) imply

(133) ?,‘ — (/\,‘181 + /\,,282 + /\#383, -X,,lml +X#2m2 -!-;-X‘uam;;)(p = l, 2)
(2 Sgn 7, Pr 6), and (133), 1'Ax 85,1 Pr 7, 1 Pr 14, 1 Pr 17 imply- -
(134) - (M1sr + A1z + Aiass) X (Aasy + A2283 + A2383)

= (A11A22 — A12221)81 X 83 4+ (12223 — A13h22)82 X 83 + (Apadar — A11he3)s3 X 8,
and : I R
(135) (AM1181 + A1282 + A13s3) (A2 + X?z_m%- + Xz:}ma) .
+(Az2181 + Az282 + /\2383)(511"11 + Xnmz + A13ms)
= (A11h22 + A12A21 )(s1ma + 82m1) + (Awkza + /\13)*22)(82"&3 + 83m2)
+(A13A21 + A11A23)(83m) + s1ms) = 0 '
in view of
(186) =% .2 togriny =0 £ . . (v=1,2,3)
(2 Sgn 1) and (113) (Sgn 6). | o i

The alternative
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(137) |A11A22 = A12da1|? + A i2Az = A13dzzf + [Aadar — Anndag|? #0

or

(138) AnAz2—A12421 =0,  A12Adz1—-A13A22 =0 Aizhai—Airraz =0
now arises. ' |

If (137), then (1340 implies |
(139) (Ansl + A28 + 1\1383) x (Aglsl + Ago8q + A2333) ¢ o.

Indeed, the right-hand side of (134) represents a linear combination of Gibbs’ vec-

tors &, ! (v =1, 2, 3) defined by 1(23) provided 1(24); they exist by virtues of
(112) (Sgn-6): in view of 1 Pr 20 and 1 Pr 12 such a combination may be zerro it,
and only if, all coefficients are zeroes, and this is not the case if (137) holds. Now
(132), (139) (135), 5 Sgn 1 imply (78), consequently (69) (Pr 7).

If (138), then (134) implies

(140) (1\1181 + A1282 + A1383) X (A2181 + A2282 + A383) = o,

and (140), (132) lmply (80) in view of 3 Sgn 1.
~ The supposition (81) is wrong. Indeed (132) and 3 Sgn 7 imply that (81) is
equivalent to

(141) A1181 + A1282 + A13s3 = —(Ag181 + )‘2282 + A2383),

(142) dumy + Aigmg + Ajamg # ‘(Xnml + Xzam3 + dazmas),
ie. to | | »

(143) (i da)ss + Oz dao)sa+ (has + Aas)as = o,

(144) 11+ Aa)my + A2 + Azz)mz + (A3 + Agz)ms # o.
Now (143) and (112), 1 Pr 12 1mply

(145) A1+ A21 =0, A2+ A2z =0, A13+ A3 =0,

and (145) imply

(146) . gz + Xga}ony + (Biz + Az)mng + (Bgs + Aza)ns = 0.

E:ontra.ry to (144). In such a manner, (88) holds (3 Pr 21) and.(80), (88) 1mply (69)
Pr7)

Pr 45. L(5,)3_, is a group with respect to the addition in Ws.

Dm. Pr 44, Sgn 6 with A, = 0 (v = 1, 2, 3), 2 Pr 24, Pr 10, Sgn 6 with Ay,
Az, As, on the one hand, and —A;, —A,, —-/\3, r&spectlvely, on the other hand, 2 Pr
27, Pr 1] display.that 1 Ax 1S — 1 Ax 3S are satisfied (with L(s l,)3_1 instead of
Vs).

Pr 46. L(5,)3_, is a 3-dimensional linear space over S w1th regpect to the
addition in Ws and to the multiplication 2Sgn 7 of the elements of 3"and Ws.
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Dm. As regards the addition, see Pr 45. Now 2 Sgn 7, 2 Pr 26, 2 Pr 32, Pr 16,
Pr 17 display that 1 Ax 4S — 1 Ax 7S are satisfied with L(5,)3_, instead of V).

As regards the dimension of the linear space L(3,)3_, over S, let us note,
first, that there exist three linearly independent elements of L(5 ,)3_,, namely
3, (v = 1,2, 3); and second, that any four elements of L(3,)2_; are linearly
dependent.

Indeed, —s’,‘ € L(F,)3_; (u= 1,2, 3),.since 5, =15, +032+ 073,
52—'031+132+033, 33—081+032+133(2P1‘24 2P1‘26 Pr 10
Pr 9, Sgn 6). Let now (118) and ;

(147) A151+,\232+)\353_?

hold. If (111), then (147) is equivalent to

(148) (A8 + Aesa + )\333, A1m1 + Xgmy + Agm3) = (o, 0)
(2 Sgn 7, Pr 6, 2 Sgn 2, Sgn 5), whence

(149) A181 + A282 + A3zsz = 0.

Now (149) and (112) imply A, = 0 (v = 1,2, 3) (1 Pr 12), hence the linear
independency of 5, (v = 1, 2, 3).
On the other hand, let :

(150) W € LT3 (r=1,2,3,4).
Now (150) and Sgn 6 imply that there exist ' |
(151)  Am €S - | (#=1,2,34'v=123)
with | .

(152) R W W we e N (w=1,23,4).

If (111), then (152) is equivalent to

(153) T p= ()\,.131 + /\“282 -+ /\#383, A“1m1 + Apgmz + )\”31’11.3)
(r=1,23,4). '

Let

(154) €S | (n=1,2,3,4)

be a non-zero solution of the system of equations

(155) Za,, w =0 : (v=1,23),
p=1

1.e.
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(156) Y oud, #0.

B=1
Now (155) imply
; s
(157) > Eag =0 (v=1,2,3)
p=1 :

and (153), (155), (157) imply

4
(158) Y T, =7
p=1
with (156), i.e. the linear dependency of (150).
Pr 47. If
(159) TELFY,,
(160) 5|5, | * (r=1,2,3),
then | A
(161) TAT, |  (w=1,2,3):

"Dm. (159), Sgn 6 imply: there exist (118) with

(162) = = {\1 ?1 + /\2?2 + A3?3. '
If 2(2), 2(59), then (160), 3 Sgn 2 imply
(163) $x 8, #o0 7 ' (v=1,2, 3]

Besides, (162), 2(2), 2(59), 2 Sgn 7, Pr 6 imply
(164) 8= A8y + Agsy + A383, m = Aym; + damy + Azms,

Now (164), 2 Sgn 1,1 Ax 8S, 1 Pr 7, Sgn 6, 5 Sgn 1 imply

(165) smy + sym = Ay(syma +33m;) + A3(syms + s3m1) =0,

(166) 8Smy + Som = A]_('SIMQ + 8omy) + A3(sgm3 + §3m2) =0,

(167) sm3 + s3m = \1(81m3 + 8amy ) + As(83m3 + s3m2) =0,

and(163), (165) — (167), 5 Sgn 1 imply (161). | "
Pr 48. If ' A

(168) 7€ L(F)5o | (k=1,23),
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(169) 7o =) f (k=1,2,3),

(170) Gy X 72 03 #£0,
then
(171) L(®)o = L(F)oar-

Dm. (168), Sgn 6 imply: there exist

(172) D €S (p,v=1273)
with
(173) ?M = Au1 _8+1 +‘A“2?2 —+ /\“3?3 (y, =1, Z. 3)

If (111), then (169) and (173) imply

(174) CTa=Masi+ Auas2+ Ausss (n=12 3

(175) n, = X;‘lml +-X“2m2 +X“3m3 ) (y, = 1, 2, 3)

and

(174), (175), 1 Ax 10S,1 Ax 8S, 1 Pr 7, 2 Sgn 1, Sgn 6 imply

(176) _ gun,+o,n,=0 - : (g, v=1,2:3})

Now

(170) and (176) imply that the left-hand side of (171) exists (Sgn 6). Then

Pr 46:

Sgn 7. Fi5s sgn: 8,8, iff (20).
Df 8. 51753 is called the scalar product of 5’1 and 5 5.
2 .
Sgn 8..5 sgn: 5 s iff 2(1).
Df9. 5 is called the scalar square of 5.
Pr 49. 2(53) lmp!y ?1?2 = ?2?1.
Dm. Sgn 7, 1 Ax 8S. |
Pr 50. 2(49), 2(53) imply (A1) T 2=A(51752).
Dm. Sgn 7,2 Sgn 7, 1 Ax 9S.
Pr 51. (31), (22) 1mply (?1 - ?2)—?3 = '?1’?3 + ?2?3.
Dm. Sgn 7, Pr 6, 1 Ax 10S.
Pr 52. 2(1) implies 5 >0
Dm. Sgn 8, Sgn27 1 Ax 11S.
Pr 53. 2(1), 3 =0imply 3 =70
Dm. Sgn 8, Sgn 7, 1 Ax 128§, 2 5gn 1.
Pr 54. L( )3_1 is a 3—d1mens1onal Henmtean space over S with respect to

the addition in Wg, to the multiplication 2 Sgn 7 of the elements of S and Wys, and
to the scalar multiplication Sgn 7 of the elements of Ws.

Dm. Pr 45, Pr 46, Pr 49 — Pr 53.

- Sch 3. The following considerations will be useful in the sequel.
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Let the following problem be solved. If 3°, = (s,, m,) v = 1, 2) be given
intersecting arrows, then find a third arrow 5" .= (83, m3) such that, first, s3 =
81 X 82; and, second, that there exists a r € Vs with r Z dir 3°, (v = 1,‘_12, 3),
ie. rx8 =m, (v =1,2,3). (The directrices of 5, exist, since 5, # 0
(v =1, 2, 3), as 5 Sgn 1 and the definition of 3’3 imply.) in other words, conditions
are sought for the consistency of the system of vector equattons X8 =m,

(v = 1, 2, 3), provided 83 = s8; x 85. Accordmg to 1 Pr 30, it is necessary and
suﬂic1ent to this end that

(177) s,m,+s,m, =0 | (B, v= 1,-2; 3)
hold, i.e. that | | T

. (178) M3s; = —m183, M3y = —mzsg, o m333 Z0.

are satisfied (1 Ax 85, 2 Sgn 1). The system (178) is equivalent to

(179) m3s; = M-8z X 8y, masy = My 82X 41, m3s -8 x'sg =0

{1 Pr 13). accordlng to 1 Pr 26, the only solution mg of the system (179) of vector
equations is : ,

(180)7 ms3 = (ml -89 X 81)3;1 + (m2 -89 X 81)351 »

i.e.

(my - 32 X 81)(82 x (81 X 32)) +(mz - 83X 81) (sl X (82) x .91)
(81 % 82)%

Now (181) and 1 Pr 14,1 Pr 15, 1 Pr 8 imply

(181) m3 =

81 X 822

m ((82 X 8- m2)31 + (81 X 89 - m;)sg)

(182) Hig

These conclusions give rise to the following definitions.
Sgn 9. §; x 5 sgn: 0 iff 2(63), 3(1), 3(8).
Sgn 10. 5’ x 52 sgn: (s, m) with

(183) 8= 8; X 83,
‘ o - _ 8 X 822 - ‘ )
(184) T R ({82 X 81 - m3)81 + (81 X 83-m1)83)

ff (20), 5(1).
Df 10. 51 x 53 is called the vector product of 5’ and 55
Pr 55. 2(53) imply: 5, x 52 exists iff 31+ & 2 exists. -
Dm. Sgn 9, Sgn 10, Pr 7.
Pr 56. (130) imply: 71 x 72 exists.
Dm. Pr 55, Pr 44.
- Pr 57. (31) imply
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(185) = F1x Ty - FTi=T2xTs T,

provided the vector product exist.
Dm. Two cases are possible: -

(186) . . F,.=7 | o 1€v<3)
or 7 ,
(187) T, £ | B v=1,2,3).
If (186), then both sides of (185) are zeroes (2 Sgn 2, Sgn 9, 3 Pr 5, 3 Pr 26,
* Q-(IBT); then the following subcases are possible:
(188) 1|
or
" (189) 217
or
(190) = T, A Tum - w=12).

Let (111) hold.

If (188), then 81 X 8; = 0 (3 Sgn 1) and (187) imply 81 = As2*(A € S). Besides,
the left-hand side of (185) is zero because of Sgn 9, Pr 54. Now if (189), then the
right-hand side of (185) is zero too by the same reasons, hence (185) holds. If

72| Fs, then 33 A 73 by the assumption that 55 x 73 exists (Sgn 9, Sgn 10),
and Sgn 10 implies 32 X 7’3 = (82 X 83, m) with an appropriate m € V5. Hence
Ty X F3-81=282%x83-(A82)=0(Sgn 7,1Pr7),ie. (185) holds again.
In the same way it is proved that (185) holds in the subcase (189) of (187).
Let now (190) hold. Then Sgn 10 implies

(191) ?1 X ?2 = (81 X 83, p), ?2 X ?3 = (82 X 83, q)
“with appropriate p, g € Vs. Now (191) and Sgn 7 imply
(192) ; ?1X?2-?3=81X82-33, ?2)(?3-?]::.'92)(33-81

and the validity of (185) is a direct corollary of (192) and 1 Ax 13S.
Pr 58. (111) — (113), 5(7), s € Vs,

(i93) T =(s,rx8)

imply
199)  FTeL(T

Dm. (111) — (113), 5(7) imply (116) and s € Vg, (112) imply
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3
(195) = Z(ss;' a,
v=1

(1 Pr 30). Now (195) implies

.
I

3

(196) rxs= E(s;la)r X 8,

v=1
(1 Pr 15,1 Pr 13, 1 Pr 17, 1 Ax 8S) and (196), (116) imply
5 3
(197) rxs=)» (s;'8)m,.

v=1
Then (193), (195), (197), (111), 2 Sgn 7 imply (162) with
(198) A, = s8]t ' (=123},

whence (194) (Sgn 6).

Pr 59. (111) — (113), 5(7), (194), 2(2) imply (193).

Dm. Sgn 6 implies: there exist (118) with (162), and (162), 2(1), (111) imply
(164). The first relation (164) implies (198) (1 Pr 24). Now (198), (116), and the
second relation (164) imply '

3 3
(199) m=) (s;'s)rx s, =7x Z(ss;‘)s,, =7rx.8
r=1

v=1

in view of 1 Pr 15, 1 Pr 13, 1 Pr 17, 1 Ax 8S.
Pr 60. (111) — (113), (130) imply

(200) F1 X T2 € L(TW)oey

Dm. The existence of @1 X 72 is proved in Pr 56. Let

(201) Ty = (Fp; y) — br=1,2)-
Then (201) and Pr 59 imply
(202) B =rXT _ : (= 17,‘2),

r being defined by 5(7).
Two cases are now possible:

(203) T XTa=0
or
(204) o X '3"2 -',f 0.

If (203), then _&"1 | 72 (3 Sgn 1). The supposition @y | 73 is wrong.
Indeed, together with (201) it implies
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(205) Ty+0:=0,r ni4n#o

(3 Sgn 7). Now the first relation (205) and (202) imply n, + ny=rX (0'1 - 0'2) =
rX0s= 0, contra.ry to the second relation (205). In such a manner, 7, 1 7,

whence 9’1 x @2 = o (Sgn 9), i.e. (200) holds good in the case (203) in view of
Pr 45.
If (204), then 71 A T2 (5 Sgn 1), since (202) 1m_ply

(206) TiN2+ 0N =1 T X T+ 02 TXTL =T X0T2:0,+7 XT1 03

=7r-09 X 01 +1'-31-XE;;:1‘-(’(?2 X 01+ 01 XFQ)Z‘I'O:O
(1 Ax 85, 1 Pr 8, 1 Pr 13). Now (201), (204), Sgn 10 imply
(207) ?1 X ?2 = (?T-I X '5';2, n)
with

01 X 02

(208) n= Fil—x%)_j X ((32 X 01 - nz)'ﬁ’l + (3_'1 X 09 ;111)32) ;

On the other hand, (201), (202) and 2 Sgn 4 imply S
(200)  rZdir 7, \ | | (s, 9
Now @1 A 72, (209), 5 Pr 31 Imply '

(210) == Z* —1 x

provided
(211) 03 = 01 X Oa,
(212) ng = (n; - 09 X.'O“_l)ﬁl—l -+ (’ng <03 X 31)-0'—2'1.‘

At'that’, (210) satisfies

(213) rZ dir(73, ns),
ie. |
(214) r X T3 = na.

Now (211), (212) imply

(215)  ma _ (n1-% x T3)(02 X (71 X 7)) + (nz - 72 X 7)((31 x 72) X 71)

(71 x 7)? :
l1.e.
1 X% . B e -,
(215) ng = (mz“)g X ((72 X 7y - n3)T, + (64 X T3 - m4)73),
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and (208), (216) imply

(217) n=mng.
Now (211), (214), (217) imply
(218)  rx (G xT)=mn,

and (207), (218), Pr 58 imply (200) in the case (204)

Sch 4. The following remark may be useful in the capacity of an economizer
of technical and intellectual work. » .

As it i3 immediately seen, two different definitions are giiren of the vector

product 5; x 32 (when it exist:} of two arrows &; and~s7, rnamely Sgn. 9
and Sgn 10, in-accordance with tne mutual disposition of 5°; and 5'3: whether

51| F20r T3 A T2 This distinction may be avoided by virtie of Pr 58 and
Pr 59. Indeed, if » denotes the intersecting point of the directrices of the arrows

S'1 and 3’3 in the case 'y A 52 (i.e. v is defined by 5(7) provided 5(8), 5(9),
see 5 Pr 31), then 5’1 x 5’3 may be defined by means of the relation

(219)‘ ?1 X ?2_ sgn : (81 X823, ™ X (81 X 8.2')),
as it ‘hias been shown in the proof of Pr 60. Now the same relation (219) may be
used in the case F1 | F 2 too, T denot.ing in this latter case an arbitrary vector.
Indeed, if 5"y | 52, then 3'1 X 5’3 = © according *o "on 9; the right-hand side
of (219) is, however, also equal to 0, since 81 X 83 = v, in view of 3Sgn 1.

To summarize S 1XF o may be deﬁned by means of- (219) with 5(7) if 3 1/\ 5 o

andw1thanyr1f 51|50

" Sch 5. In order to manifest the effectiveness of the “new deﬁmtlon” (219) let

us prove, by its aid, the relation (185): we know, from the proof of Pr 57, that its

direct deduction of the basis of Sgn 9.and Sgn 10 is a rather con., hcated one.
‘And so, let (111) hold. Then, accordmg to (219),

(220) ’ 1 x5 2= (31 X 82, T X (81-)( 82)),
(221) 2o _S-)z X ?3 = (82 X 83, Ty X (82 x 83)).

At that, »; is any vector if 5°; | 3'; and it is defined by the conditiong vy Z dir 5",
(v=1,2)if 31 A 52 similarly, r; is-any vector if 35 | '3, and it is defined

by the conditions 7o Z dir 5, (r=2,3)if 2 A 53
Now (220), (221), (111), and Sgn 7 imply

(222)’ ?1 X ?2 -1?3 = (81 X 82, 71 X (81_’?(' 82)) -(83, ma)'='81 X 89 - 83,
(223) | Ta2X §3-851= (325(»33, Ty xz('ag X 83)) - (81, my) = 83 X 83 - 8y,

and (185) is implied by (222) (223), and 1 Ax 13S.

Pr 57 has been proved directly above in order to afford an opportumty for-a
parallel between the two approaches. Some abridgements in the proofs of Pr 44,
Pr 46, etc. are also posible, on the basis of Pr 58 and Pr 59. :

Pr 61. (111) — (113), (168) imply .
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(224) (T1xT3)x T3=(T1703)702— (?27‘:'3)?1~

Dm. Let

(225) 7, =(3,rx7,) (v¥=1,2,3),
r being defined by 5(7) (Pr 59). Then, according to Sch 4, the relations

(2.26) ' ?1 X ?2 =»(-51 X0Tq, T X (3"1 X 3’2)),

(221)  (T1x T2)x T3 =((F1 x T2) x T3, 7 x ((T1 X 72) X 73)),

hold good. At that, the left-hand sides of (226), (227) exist by virtue of Pr 56.
On the other hand, (225) and Sgn 7, 2 Sgn 7, 1 Pr 17, Pr 21 imply

(228) (T173)T2— (T273) 7
— (?173)('0'_2, rX0Ty)— (?23"3)('6"'1, T X 3'_1)
= (('513-'3)77-2, X ((_51?3)52)) —_ ((52?3)31, T X ((.(-7'-2-0'-3)31))
= ((?133)32 - '(3"25"3)3-’1, rX ((3-'1'(73)32) — (7203)71)) -
Now (224) is a direct corollary from (227), (228), and 1 Ax 14S:

Pr 62. L(73,)3_., is a standard vector space over S with respect to the
addition in Wg, to the multiplication 2 Sgn 7 of the elements of S and W, to the
scalar multiplication Sgn 7 of the elements of Wg, and to the vector multiplication
Sgn 9, Sgn 10 in Ws.

Dm. Pr 45, Pr 46, Pr 54, Pr 56, Pr 57, Pr 61,and 5'; X 52 # o (Sgn 10).

Sch 6. A comparison of the present paper with the article [1] at once displays
the complete analogy between the real and the complex algebras of arrows.

Further developments exposed in [1] will not be extended here for the complex
case. They concern mainly the associativity of addition of arrows, as well as some
_ facts about incidence of poles and arrows and metrical relations (distances, etc.).

Some questions about incidence of arrows and planes are also omitted here, since
they concern mainly systems of arrows.

In the third part of this series of articles dedicated to the algebraic theory of
arrows finite systems of arrows will be discussed.
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