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. mechanica rationalis erit scientia motuum,
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Isaac Newton: Philosophiae Naturalis Principia
Mathematica (Auctoris praefacio ad lectorem)

Haax Yobanoce. BBEIEHWE B AJITEBPAMYECKYIO TEOPHUIO CKOJIb34-
IIUX BEKTOPOB, III. 9T1a paboTa ABAfAeTCA TpPeThel YACTBHIO CEPMM CTaTbelt, HOCBe-
HEeHHLX anre6panuecKoif TEOPMM CKONB3AIMX BEKTOPOB, NepBrle ABe yacTH [1, 2] xoTopoit
ony6nuxoBanu B eToM Eacezoonuxe. OHa 3aHMMaeTCA TNABHEIM 06pa30M KOHEUHHIMM CHC-
TEMAMH CKOJb3ANMX BEKTOPOB B KOMRJIEKCHBIX CTAHJAPTHHX BEKTODHBLIX MPOCTPAHBCTBAX,
B YACTHOCTH, MJIM B CTAHIAAPTHHX BEKTOPHHIX HPOCTPRHCTBAaX HaJ KOMINOKCHHIMH Ppac-
IIHPERNAMM TPON3BONLHEIX YNOPAAOUEHHEIX MOMNAX, B obmem. OnpeneneHna eTYX mpocT-
PAHCTB, a TaKKe HEKOTOPHE OCHOBHLIE MOMEHTH MX anre6p, NpHBEJEHE B BBOAHYA UacCThb
cTaThbH [2]; Ana Gonee MoAPO6HOPO O3HAKOMIIEHHA B ©TOM CBA3M MHTATENO PEKOMMEHAYET-
ca craTha [3] nau xuura [4). 3ameuaTensHo, UTO He HaBNIOARIOTCA HUKAKME CYIIECTBEHHbIE
PACXOMACHMA MEXKAY PEAJIbHBEIMA M KOMIIJIEKCHBIMM CIYyYaAMM aareb6p CKONb3AMIMX BEKTO-
poB. Teopema o paHre mrpaer Ty ke CaMy}O HEHTPAJIbHYIO POJib B TEOPHM KOMIJIEKCHBIX
CKONb3fIiMX BEKTODPOB, KAK ¥ B TEOPHM PeaJIbHbIX. :

Ivan Chobanov. INTRODUCTION TO AN ALGEBRAIC THEORY OF ARROWS, III.
This article is the third part of 2 series of investigations on an algebraic theory of arrows or
sliding vectors, the first two parts [1, 2] of which are published in this Annual. It is dedicated
mainly to the finite systems of arrows in complex standard vector spaces or, more generally, in
standard vector spaces over the complex extensions of arbitrary ordered fields. The definitions of
these spaces, as well as some basic moments of their algebras, are given in the introductory part
-of the article [2]; for a more detailed exposition in this connection the reader is referred to the
paper [3] or to the booklet [4]. It is remarkable that no essential divergences are observed between
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the real and the complex cases of arrow algebras, The rank-theomm plays the same central role
in the theory of complex arrows as in that of the real ones. ]

This article is the third part of a series of investigations on an algebraic theory
of arrows or sliding vectors (vecteurs glissanis, gleitende Velctonen, CXOABITULUE
sexmopui), the first two parts [1, 2] of which are published in this. Annual. The
definitions and notations from [2] are systematically used in this third part, the
following ma.nner of quotation being adopted (the example is a ficticious one):
notation 1, axiom 2, definition 3, proposition 4, scholium 5, and relation (6) of §7
of [2], for instance, are cited here by [2, 7 Sgn 1] [2, 7 Ax 2] (2,7 Df3],[2,7Pr
4),.[2, 7 Sch 5], and [2, 7(6)] respectively. In general, the exposition of the present
paper is an immediate continuation of the exposition of the second part [2] of the
series in quest.lon

This article is dedicated mainly to the theory of finite systems of arrows in real
and complex standard vector spaces, in particular, and of standard vector spaces
over ordered fields and over the complex extensions of such fields, in general. As
it has been emphasized in [2], the definitions and the basic algebraic properties of
the standard vector space Vr over the ordered field F' and of the standard vector
space Vg (r) over the complex extension C(F') of F may be found in the article [3],
as well as in the booklet [4]. In any case, a brief account in this connection is given
in the introductory paragraph (§1. Praeliminaria) of [2], where the notation Vj is
used in order to reduce the real case S = F, as well as the complex one 5 = C(F)
to a common denominator.

In order to simplify references and to ease the exposu;lon some most fun-
damental notations from [2] are reproduced over ‘again here. Such cases are, by
the way, extremely rare: as a matter of fact, they are exceptions made in case of
emergency. ' |

Since the main, if not exclusive, domain of applications of arrows is proposed
by analytical mechanics, kinematics as well as dynamics, and since the analytical
mechanics deals predominantly, if not exceptionally, with finite systems of arrows,
our interest will be focused on such systems in the main. In other words, we shall
consider sets consisting of a finite number of arrows. Since the properties of such
sets depend exclusively on the properties of the smgle arrows, it is quite natural to
fix our attention on the latter. This has been done in [2], where the following basic
definition has been adopted.

Sgn 1. Ws sgn: {(s,m)€VZ: s#o0, sm=0o0r s =m = o}.

Df 1. The elements of Wg are called S-arrows or arrows in Vs.

Df 2. Any set

n
(1) s={7} _
of arrows
(2) T, EWs (=1, 0 050)

is called a (finite) system of S-arrows or of arrows in Vs.
Sch 1. For the sake of brevity (1) is usually called a system of arrows, S and
Vs being implied by the context.
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Sgn 2. X sgn: the set of all finite systems of S-arrows.
Df 3. The vector

3) 8= Z 8y
v=1
provided (1) and

(4) ?v:'(su)my)eWS -. | (V=1,...,n)

is called the basis of 8. )
Df 4. The vector

(5) m= Zm.,

provided (1), (4), is called the moment of s.

Sch 2. In the light of Df 3, Df 4, as well as of [2, 2 Df 2, 2 Df 3], it is clear,
that the basis and the moment of a system of arrows are the sums of the bases
and of the moments respectively of the particular arrows composing the system in
question.

Sch 3. Whereas there is a certain dependence between the basis s and the
moment m of a single arrow 3, as it is seen from Sgn 1, there is no compulsory
relation between the basis (3) and the moment (5) of a system of arrows (1). In
other words, the vectors s and m, defined by (3) and (5) respectively, may be
completely arbitrary. It may be proved that for any couple (s, m) of S-vectors s
and m there exists one at least (infinitely many, as a matter of fact) systems (1) of
arrows (4) for which the equalities (3) and (5) respectively take place. In particular,
there exist systems (1) of arrows (4), for which (3) and (5) imply sm = 0, as in
the case of a single arrow, but there exist also systems for which sm is equal to
any value in S.

Sch 4. Similarly, whereas the basis s and the moment m of a single arrow 5
determine it completely by virtue of the definition

(6) T = (s, m),

the basis s and the moment m of a system of arrows. 3 by no means determine 3,

unanimously: as it has been mentioned above, there are infinitely many systems of
arrows with the same basis and the same moment. In such sense, the notation

(7) 8 =(s,m),

similar to (8), is void of meaning. It is convenient, however, to mtroduce the
following notation.
Sgn 3. s (s, m) sgn:" 8 aud m are the basis and the moment respectively of

the system of arrows s .
3 —
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Sch 5. As it has been mianifested in [2], an extremely: important attribute
of an arrow 5 is its r-moment, denoted by mom,s" and defined in the following
manner. If

(8) ¥ " VS:
(9) s =(s,m) € Ws,
then by definition

(10) mom; ¥ =m+ s x 7.

In the same way, the notion of »-moment of a system of arrows S denoted by
mom; $ , plays an extremely important role in the theory of the systems of arrows.

It is introduced by the aid of the following definition, which is complete imitation

of the definition (10).
Sgn 4. mom; s sgn: m + s x 7 iff (8) and

(1) s(s,m)€Ts

Df 5. momy 5 is called the r-moment of_s_) or the moment of_s_) with respect

to r.
Df 6. » is called the pole of mom; 3.

Pr 1. (4), (1), (8) imply . ~
(12) momy § = Zmomr?,,.
: 7 v=1 ’

Dm. By definition
(13) momy sy, =m,+8, Xr w=1...,n).
Now (13), (3), (5), Sgn 4 imply

n n n
(14) Zmom,-"s",.zZm,,+z.9,,xr=n'1+sxr=momri.
v=1 v=1 v=1

Pr 2. (11) implies m = mome s,

Dm.'Sgn 4. | |

Pr 3. (11) implies: momy s is invariant with respect to 7 iff
(15) s=o.

Dm. If (15), then Sgn 4 implies mom; 8, = m for any '(8). _
et mom, 5 be invariant with respect to the poles (8), i.e. let

(16) - mom 5 =n
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for any (8). Sgn 4 and (16) imply

(17) m+sxr=n - (revVs).
L |

(18  pev | (v=1,23)
(19) P XTatraXF3Er3XT F O '

Then (17), (18) imply |

(20) R -  w=1,2,3)
whence - ' |

(21) sx(r,—r3)=o0 "= 52)
The relation (19) is equivalent with ‘
(22) (rl = 1'3) X (1'2 == 73) # 0.

The system of vector equations (21) with (22), where s is unknown, has, according
to [2, 1 Pr 29], the only solution (15), ¢. e. d.
Pr 4. (8), (11) imply

(23) 8 -momg 8 = sm.

Dm. Sgn 4.
Sch 6. The relation (23) displays that the scalar product s - mom; s is in-

variant with respect to the pole r of mom, 5. This important fact is an analogue
of [2, 2 Pr 5] and deserves a special attention.

Sgn 5. I( s ) sgn: sm iff (11).

Df7.1(s ) is called the first scalar invariant of X

Sgn 6. II(_') sgn: a:n iff (11) and

(24) s#o.

Df8. II( s ) is called the second scalar invariant of 3.

Sch 7. The analogue of the notion of directriz of a smgle arrow [2, 2 Sgn 4]
is played, in the theory of systems of arrows, by the so-called azis of a system of
arrows. This notion is generated by the following considerations.

Let a system of arrows (11) be given and let the following question be put: do
there exist poles (8) for which momy 8 are parallel to 87 (Naturally, this problem

is meaningless unless (24) is satisfied. ) The affirmative answer of this question is
equivalent with the assumption that the vector equation with respect to r:

(25) s X momr 8 =0
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is consistent provided (11), (24). By virtue of Sgn 4, (25) is equivalent with

(26) 8 X (m +sxr)=o0,
i.e. with
(27) (rxs)xs=mxs

in view of [2, 1 Pr 13]. Now (27), (24), and [2, 1 Pr 32] lmply there exists a € S-
with
(28) rx.s:as-i—iz(—-g-:—;-ﬁl.

A scalar multiplication of (28) by s implies
(29) as? =0,
and (29), (24), [2, 1 Ax 125] imply o = 0; therefore (28) implies

‘ s$X mX3s
(30) sz:v——(—s'z—'—-'—)'

In such a way, if (8) satisfies (25) or, just the same, (26), then it must be
sought among the solutions r of the vector equation (30). We shall establish now
that any r satisfying (30) satisfies (25) too: any solution (8) of,(30) is; at the same
time, a solution of our initial problem (25).

Indeed let (8) satisfy (30) Since [2, 1 Pr 16] implies

(31) | 8 X (m X 8) = - s¥m — - (ms)s,

the relation (30) is equivalent with

(32) m +8xT - (-—T;-%f) s.

Now (32) and Sgn 4 imply

(33) momy 5 = (T—ﬁ) s,

82

and (33) implies (25).

On the other hand, (30) is the equatxon of a lme I, if 7 is regarded as’a fluent
radius-vector. Consequently, all poles (8), for which the stiomiits of 416 system of
arrows s are parallel to the basis s of s , are located on the line (30). This line is

‘called the azis of 3.

Let us now formalize this conclusion.
Sgn 7. ax s sgn: | with

(34) (s, f—’i'ﬂ"—")) &l

82
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iff (11), (24). |

Sch 8. The meaning of Sgn 7 is disclosed by the aid of Sgn 4 of §1 (p.86) of
the article [5].

Df 9. ax s is called the azis of s .

Pr 5. (11), (24), (8),
(35) rZ ax s

imply (33).
Dm. Sgn 7 and Sgn 1 of §4 (p. 117) of [5] imply that (35) is equivalent with
(30), which on its part is equivalent with (32). Now (32) and Sgn 4 imply (33).
Sch 9. The following proposition discloses why ax s is an analogue of dir 7,
as it has been mentioned in Sch 7.

Pr 6. If:
(36) "o #F € Ws,
(37 8 = {‘s’} ;
then
(38) ax s =dir 7.

Dm. (36), (6) imply
(39) s #o, sm = 0.
On the other hand, (37) and Df 3, Df 4 imply (11). Now (11), (39), Sgn 7 imply
(40) (s, m) & ax 5. J
On the other hand, [2, 2 Sgn 4] imply

@  (s,m) & dir 7,

and (40), (41) imply (38) by virtue of Pr 18 of §1 (p. 86) of [5]. -
* Seh 10. The following proposition displays that the moments of a system of
arrows have a minimal property for the poles located on the axis of the system.
Pr 7. (8), (11), (24), (35),

(42) PEVs,

(43) pZax 3,

imply

(44) (mon'l,t-_q’)2 < (mom;i)z :
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Dm. Sgn 7 implies that (35) and (43) are equivalent with (30) and

. 8% (mx8)

5)  Fxepr

respectively, and Sgn 4 implies that (30) and (45) are equivalent ﬁvith'(_33) and

ms
(46) moms s, # (S5 )
respectively. Let
(47) ) mom;iz(m)s-i-?i,.

where, in view of (46),

- (48) T #o.

Now (47) and (335 imply

(49) momy § = momy 5 + 7T,

and (49), Pr 4 imply

(50) 87 = 0.

‘Then (33) and (50) imply

(51) 7 - momy 8, =0,

and l(49), (51) imply

(52) (mom,-,:_si’)2 = (momr_ﬂ) ’ + 7.

At last, (52) and (48) imply (44).
Sch 11. The same minimal property characterizes dir's’: let us remind [2,
2 Pr 8]. - : ' ‘
-Sch 12. If lis a line parallel to ax s, then all moments of s with respect to

poles incident with ! are equal between themselves. Indeed, let
(53) 1| ax s.

Then there exists a n € Vs with sn =0 and

(54) (s,n) &1

If (8) is incident with /, then

(85) rXs=mn.
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Now (55) and Sgn 4 imply-
(56) mom; 8§ = m — n.

In such a way, the following proposition has been proved.
Pr 8. (11), (24), (54), (8), r Z I imply (56).

Sch 13. Another important property of ax S 1s dlsclosed by the following

considerations. Let

(57) T, €Vs - (v=1,2)
and 16t |
(58) dist(r1, ax 5 ) = dist(rz, ax s)),

i.e. the end-points of #; and r, are at equal distances from ax 5. Since

sx(mxs

(59) dist(r,, ax 5) = % -

T'yXS-'-

(v=1,2), as Sgn 7 and Sgn 9 of §4 (p. 124) of [5] imply, (58) is equivalent to

sx (mx s))? s x (m x 8)\?
(60) (rlxs—T) z(rgxs—w-—-g—— -
Now (60) and Sgn 4 imply
. ms\ \2 . ([mS 2
(61) (mom.-,_a; - (-—;—2—) s) — (momr,i - (72-) a) ;

and (61), Pr 4 imply

2 T \2
(62) (mom.l.1 s, ) = (mom,-2 A ) .
In such a manner, the following proposition has been proved.
Pr 9. (11), (24), (57), (58) imply (62)

Sch 14. The following proposition is an analogue of [2 2Pr 9]
Pr 10. (11), (24), (8), (42), (35) imply

_ ms
(63) . mom;i—(rwp)xs-i-(—s-z—)s.

Dm. Sgn 4, (30).
Pr 11. (11), (57) imply

(64) ~ momy, § —momy, 5§ =8 X (r1 — 7).
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Dm. Sgn 4. '

Sch 15. The relation (64) is called the connection between the moments of a
system of arrows with respect 16 two poles, and it plays a fundamental rolc in the
so-called statical-kinematical analogy, which will be discussed briefly below. The
connection (64) is a complete analogue of the connection between the moments of
an arrow With respect to two poles [2; 2(19)].

Sch 16. (64) implies

(65) 8- momy, § = 4-MOMr, $,

The inference (65) from (64) is, however, trivial in the light of Pr 4.
Pr 12. (57),

(66) AR

imp.ly |

(67) (r1—72) -momy, 8 = (r1—r2)-momy, 5
Dm. Pr 11.
Pr 13. (66),’ (57),

(68) T £ 72, _ |

(69) S=P o S=0C(P).

imply |

(70) (r1—72)° -momy, § = (ry — r3)° »momy, § .

Dm. Pr 12, [2, 1 Sgn 4].
Sch 17. The relation (70) gives expression of the fact that if (68) holds and
if (57) are different poles, then the projections of momy, s (v =1, 2) on the line ]

connecting them, i.e. on
(1) (r1—r2, raxr) &1,

are equal.
Pr 14. (11), (18), (19),

(72) momg, 5 =n - ir=123

imply (15).
Dm. (72), Sgn 4 imply

(73) m+sxr,=n (v=1,2,3)
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and (73) imply (21). Since (19) is equivalent to (22), the system of equations (21)
implies (15).

Sch 18. The condition (19) implies that (18) are non-colinear, i.e. there exists
no line I with », Z I (v = 1,.2, 3). In such a manner, the basis of the system s

is certainly zero if there exist three non-colinear poles, the moments of A w1th

respect to which are equal. The inverse statement is trivial in the light of Pr 3.

Sch 19. Before we proceed further, let us make a brief remark of an ideological
character. The above exposition reveals the most important role the notion of
moment of an arrow plays in the theory of arrows. It would not be far-fetched to
state thut both notions are genetically connected.

Indeed, an arrow 5 being given by (6), its r~-moment is determined by (10).

On the other hand, (10) implies m = mom, 3, so that (6) may be written in the
form

(74) T = (8, momo 7).

In other words, a special r-moment of 5, namely its o-moment, takes part in
the very definition of 5 by means of (6). In other words, the arrow-concept is
unthinkable at all without the moment-concept. On the other hand, not a step could
be made in the theory of arrows without the intensive exploxtatlon of moments. The
rank-theorem, the discussion of which lies yet ahead, is a brilliant illustration of
this assertion.

The general connection between arrow-concept and moment-concept being
once comprehended, a problem of cardinal importance arises at once, and quite
naturally at that. It concerns the logical possibilities for a formal, purely mathe-
matical, generalization of the arrow theory.

. As it has been emphasized at the very end of the introductory remarks of [2],
discussing in his Vortrag [6] the problem of the axiomatical consolidation of the
logical foundations of rational mechanics, Hilbert underlines that, in the course of
this process, “auch wird der Mathematiker, wie er es in der Geometrie getan hat,
nicht bloB die der Wirklichkeit nahe kommenden, sondern tiberhaupt alle logisch
moglichen Theorien berticksichtigen zu haben”. The real arrows (i.e. the elements
of Wg) ”sind der Wirklichkeit nahe kommende” mathematical entities; the complex
ones are obviously not, to say nothing of the C(F)-arrows. And yet, maybe there
are other generallzatlons of the arrow-concept, for instance, in multldlmenswnal
Hermitean or, at least, Euclidean spaces?

This questlon is answered in the negative, and the main reason for this state
of affairs lies in the fact that the introduction of a fourth operation (vector mul- -
tiplication) in an Euclidean or in a Hermitean space with the most economical
requirement that it must satisfy the two only specific conditions [2, 1 Ax 13S,
1 Ax 14S] inevitably reduces the dimensions of the spaces in question to 3 (w1th
the additional condition that this operation should not be trivial, i.e. that there
must exist two at least Euclidean or Hermitean vectors, the vector product of which
is different from zero). And this fourth operation is used most essentially in the
definition (10) of the moment of an arrow.

It is true that there are made efforts to generalize the vector multiplication
in multidimensional cases, but it is still a controversial point to what extent these
generalizations may be rated as not far-fetched ones.
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Sch 20. If G C Vs and a mapping
(75) i1 - GV

is defined, then it is said that-a vector field over G is at hand. Now, a system of
arrows (11) being given, a vector field

(76) T Vs — Vs

is eo ipso defined, determined by the relation

(1) ur)sgn: mom T . (r € V),
(78) p(r)=m+sxr ' _ . (r € Vs),

by virtue of Sgn 4.
Df 10. The vector field (76) defined by (77) is called the moment field of s .

Sch 21. Let us regard the image u(Vs) of Vs through the mapping (78). By
definition, it is a set consisting of S-vectors. Now any set of vectors has a natural
characteristic, namely the maximal number of linearly independent elements of this
set. Since any four standard vectors are linearly dependent, this maximal number
may be 0, or 1, or 2, or 3 at most. After these explanations, the following definition

may be accepted
- Sgn 8. rank s sgn: the maximal number of linearly independent elements of

w(Vs) iff (11), (77).

Df 11. rank 8 is called the rank of kX

Sch 22. The rank of a system of arrows s is, as it will be seen in the sequel,
a most important characteristic of 3. Therefore a system of arrows: s being
given, the problem of the determma.tlon of rank s is a most actual one. The direct

application to this end of the definition Sgn 8 is, however, a very clumsy approach
to the goal.

Indeed, let us get aware of the nature of this direct application. What must
one do in otder to determinate rank X '3

To prove that rank s = 3 means to find such three particular poles (18) that
momy, § (v =1, 2.3) are lmear!y independent, i.e.

(719) momy, § X momy, S -momy, 8§ # 0.

To prove that rank 5, = 2 means, first, to establish that mom;, s (v= >1, 2,' 3)
are linearly dependent for any three poles (18), i.e. :

(80) mom;, § X MoMy, § - momy, 5=0

and second, to find such twa, particular poles (57), that mom;, 3 (v =1,2) are
linearly independent, i.e. : | |
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(81) momg, 8 X momy, 8 # o.

To prove that rank 8= 1 means, first, to demonstrate that mom;y, s v.=
1, 2) are linearly dependent for any two poles (57), i.e.

(82) mom;, 8 X momy, 8 = 0;

and second, to find such a particular pole (8), that mom, 8 is linearly independent,
ie.

(83) | morny 8, # 0.

At last, to prove that rank =0 means to establish that mom 8 -is linearly
dependent for any pole (8), i.e.

(84) mom; § = o.

It is obvious that all these procedures cannot be assessed as a very attractive
mathematical task. They certainly require some amount of inventiveness. Therefore
it is quite natural to seek a certain Schablon that would permit to determinate rank
8, automatically, as the saying goes.

This Schablon is proposed by the so-called theorem of the rank of a system of

arrows (or, concisely, the rank-theorem). It consists in the following proposmon
Pr 15 (the rank-theorem). If (11), then

(85) rank s =0

iff

(86) s=o, m = o;
(87) ~ ranks =1

-

(88) 8 =o0, m # o;
(89) rank § =2

" |

(90) s # o, sm = o;
(91) rank s =3

iff

92) = sm=o0.
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Sch 23. The following scheme proposes an abbreviated formulation of the
rank-theorem:
s=o0, m=o,
s=0, m#o,
s$#0, sm=0,
sm #0.

(93) rank s =

W N = O

2 g ' Sch 24. Two different proofs of the rank-theorem (93) will be given below.
Before proceeding to these, let us get aware of the meaning of Pr 15.

Let a system (1) of arrows (4) be given. Then its basis s and its moment m are
trivially determined by (3) and (5) respectively. Now, in order to determine rank
s, one must simply check up which of the cases (86), or (88); or (90), or (92) is at
hand. This is why the rank-theéorem has been called a Schablon in Sch 22. Where
did the difficulties in the determination of rank s, described in Sch 22, vanish?
The answer is: these difficulties are overcome, once for ever, in the proof of Pr 15.

First proof of the rank-theorem. Sufficiency. Let (86) hold. Then (8) and
Sgn 4 imply (84), whence (85) (Sgn 8).

Let (88) hold. Then (86) and Sgn 4 imply (83). On the other hand, (57) and
Pr 3 imply (82), whence (87) (Sgn 8).

 Let (90) hold. If (8), (35), then the second relation (90) and (30) (Sgn 7) imply

(94) rXxs=m.

Let

(95) sy € Vs ’ | (=1, 2),
(96) 81X 8283 # 0, |

and let by definition

(97) r,=7r+43, (v=1,23).
Then (97), Sgn 4, (94) imply

(98) momg, $ =m+8x(r+s,)=sxs, (v=1,2),
whence

99) momy; 8 X momy, 8 = (8 X 81) X (8 X 83),

Le.

(100) MoMy) § X MOMr, § = (8 X7y - 82)s.

Now (100), (96), and the first relation (90) imply (81). On the other hand, if (18)
then Sgn 4 and the second relation (90) imply

140



(101 mom;; s X MOMy, § - MOMyy 5

= ((rym — rim + 8 X 71 - 73)8)(Mm + 8 X 13).

Now (101) afid the second relation (90) imply (80), whence (89) (Sgn 8).
At last, let (92) hold. If (8), (35), then (30) holds. Let (95), (96),

(102) ©  s3=s,

and let by definition

(103) r,=r+8, _ o (i=1,%,3).

Then (103), Sgn 4, (30) imply

(104) momryi=m+sxry=m+3X(r)és,,):(T—:)s+squ
(v=1,23),

and (104), (102) imply

(105) mom;, § X MOMr; S, - MOMyy S,

= () sroxa) < ((5) s+ox2) - (5)#)
- (’:") (s X 81 - 82)8°.

Now (105), (92), (96) imply (79), whence (91) (Sgn 8).
Necessity. The sufficiency of the conditions (86), (88), (90), (92) for (85), (87),
(89), (91) respectively once proved, the necessity of these conditions is trivial, since

they are mutually inconsistent.
Second proof of the rank-theorem. Necesszty Let (85) hold. Then Sgn 8
implies (84) for any (8) whence

(106) m=o

(Pr 2) and (15) (Pr 3). Now (15), (106) imply (86).
Let (87) hold. Then Sgn 8 implies that there exists (42) thh

(107) momy 5 # o
and that (57) imply (82). If
(108 7= momys,
then (82) implies

(109) - momr § X =0

for any (8), and (109), Pr 2 imply
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(110) mxpg=o0.

On the other hand, (109) and Sgn 4 1mply
(111) (m+sxr) x'p-o,

and (110), (111) imply

(112) (sxr)xE=o

for any (8). If (24), then there exist (57) with
(13) e TS

Since (112) holds for @y (8),

(114) (sx7)xF=0. | v=1,2),
and (113), (114) imply

(115) E=o,

contrary to (107). This consideration is due to the supposﬂ;lon that (24) holds.
Therefore (15). Now Pr 3, Pr 2 imply m = i, whence

(116) m # o,

and (15), (116) imply (88).
Let (89) hold. Then Sgn 8 implies that there exist 7 p,, € Vs (v =1, 2) with

*(1.'17) momp, 5 X momg, 5 # o,

"and that (18) imply (80). If (15), then (64) implies

(118) momy, § = momg, §

.contrary to (117), whence (24). On the other hand, if

(119) m, = mom-;y‘_s_) | Lir=1, 2).
Then (80), Pr 2, (8) imply

(120) my X my-m =0,

(121) | ™My X My momy $ =10.

Now (121), Sgn 4 imply

(122) myxmy-(m+sxr)=0,

and (120), (122) imply
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(123) myXmy-sxr=0
for any (8). Let (18), |
(124) TIX7y T3 F£0
hold. Then (123) implies

(125) (Mg x ma) x 8-7, =0 v=1,23).
and(124), (125) imply |

(126) (my x my) X 8 =0,

le. | r

(127) (m,18)mq — (m2s)m, = 0.

Now (127), (118), (119) imply |

(128) - my8 =0,

and (128), Pr 4 imply

(129) sm = 0.

‘Then (24), (129) imply (90).
Let (91) hold. Then there exist (18) with (79). Let

(130) m, = momy, $, - . - {p=1,2,3).

Now (130), (79), Pr 2, Pr 4 imply

(131) my X my-m3 #0,

(132) | sm = sm, ' (»=1,23).
If (129) then (131), {132) imply (15) and (15), (130), Sgn 4 imply ' |
(133) m, =m .{(r=l;23),

contrary to (131). Hence (92).

Sufficiency.  The necessity of the conditions (86) (88), (90), (92) for (85),
(87), (89), (91) respectlvely being, in such a manner, proved, the sufficiency of
these conditions is verified trivially, since they are mutua]ly inconsistent.

Sch 25. The first proof of the rank~theorem may be assessed as simpler than

the second one.
Pr 16. (18), (66)

(134) m, = mome, 5" 1 : (z) =1,2.3)
imply
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(135) (ry—7yp1)(m, —my, ) =0 (v=1,23)
provided
(136) ry=1r, my = my.

Dm. (134), (11), Sgn 4 imply

(137) m+s8sxr,=m, (»=1,2.3),
ie.
(i38) M4 8 X Ty =My . =1, 23)

provided (136). Now (137), (138) imply
(139) 8 x (ry —ro1) =my, —m, (r=1,2,3)

and (139) imply (135).

Sch 26. In such a manner, the conditions (135) provided (136) are necessary
for the consistency of the relations (134) or, just the same, of (137). As a matter
of fact, (134) imply seemingly much more burdensome necessary conditions than
(135), namely .

(140) (ru—m)(me —ms) + (ro — 77 )(my—my) =0
) ) (F: v, 61T=11 2) 3)
Indeed, (137) imply

(141) 8 X (ry—v,)=mu-my(p,v=1,23),
(142) 8 X (ro=7r;)=my,—m,(o,7=1,2,3),

and (141), (142) imply
(143) ) (ru—m)(m, —m;)+ (ro — - )(my —m,)
=(rp—r) - 8x(ro—7r)+(re—7;)-8x(ru—7,)

=8 (ro~rr)X(ru—1)+8-(ry—7)x(re—17s)

(4, v, 0, 7 = 1, 2, 3), whence (140).

It wﬂl be seen, however, that all the relations (140) are simple corollaries from
(135), rather than mutually independent.

As a matter of fact, the number of different among themselves relations (140)
is 6, rather than 81, as one might'think at a first glance. Indeed, let by definition

(149)  L( v, 0,7) = (r = )y — )+ (r = 7)(rmy — )
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(#, v, 0, 7=1, 2, 3). Now obviously

(145) L(p, p,0,7) = 0,
(146) L{g,v,0,0) = 0

(#, v, 0,7=1, 2, 3). On the other hand,

(147) L(V, K, 7, T) = —L(Pa v, e, T)’
(148) L(F‘: v, O’) = "‘L(}J, v, o, T))
(149) L(r,o,p,v) = L{p, v o,71)

(#, v, 0,7 = 1,2, 3), etc. In such a manner, the relations (140) reduce to the
following ones: (135) provided (136) and

(150) (r1 - rgA)(ml —mg) + (r1 —r3)(m; —m3y) = 0,
(151) (r2 —r3)(ma —my) + (r2 — 1) (m2 —m3) = 0,
(152) (rs - r%)(ma —my) + (rg —r3)(m3z —m;) = 0.
Now (135) imply

(153) (1"1 o= 1'2)(1'"-1 s m3) + (1‘1 - Ta)(ﬁll - mz)

= (£, — 7y)(Mmy — My + My — m3) + (7 — r3)(My — M3 + M3z —My)
(r1 = 7r2)(m1 — m2) + (71 — 72) (M2 — m3)
+(r1 — r3)(my — m3) + (r1— r3)(ms —m2)
= (r3 — r2)(m2 — m3) =0,
i.e. (150). Similarly, (135) imply
(154) (r2 — r3)(m2 — my) + (r2 — r1) (M2 — Mm3)
= (r2 — r3)(ma —m3+ m3 —my) + (r2 — 71) (M2 — My + My — Mm3)
= (r2 — r3)(m2 — m3) + (r2 — r3)(m3z — m,) '
+(r2 — r1)(m2 — my) + (r2 — r1) (M) — m3)
= (r3—r1)(m1 —m3) =0,
i.e. (151). At last, (135) imply
(155) (rs — rl‘)(m3 —~my) + (r3 — r3)(m3z ~ m,)
= (r3 — r1)(m3 — my +my —m3) + (r3 — r2)(m3 — M2 +niy —my)
(r3—r1)(ma—my) + (r3 —r1)(my — ma)
+(r3 = r2)(m3 — my) + (r3 — r2)(m2 — M)
= (r2 — r1)(m1—m3) =0,

i.e. (152). _
Now the following question quite naturally arises: are the conditions (135) also
sufficient for the consistency of the relations (134). In other words, (18) and '
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(156) m, € Vs (»=1,2,3)

with (135) being given, does there exist a system of arrows (66) satisfying (234)? Or
otherwise, does there exist, under the same conditions, a solution 8, m of the system
of vector equations (137). As the following proposition displays, this question is
answered in the affirmative, provided (19) holds.

Pr 17. (18), (19), (156), (135) provided (136) imply: there exist infinitely
many systems of arrows (11) with (134), namely all these for which

(157) FE —:1): ia:" x-b,

v=1
provided
(158) a =71y —7ry, o a; = 79 ~ 73,
(159) b = m; —mo, by = mgy — mg3,
(160) a3 =71 XT3 +7ryXr3+7r3XTY,
(161) bz = (b1 -az x al)afl +(b2-az x a1)az’,
and
(162) m=m; +r X s.

Dm. Since (134) is equivalent with (137), a solution s, m of this system of
vector equations at the hypothesis (135) provided (136) must be found. The system
(137) implies

(163) s8xa,=b, ' l _ (v=1,2)

provided (158), (159). As it is well-known [2, 1 Pr 28], necessary conditions for the
consistency of (163) are

(164) a,b, +a,b, =0 | - | C(wv=1,2).
Now the definitions (158), (159) imply that (164) are equivalent to |
(165) (ri=r)(mi—mg) =0, " (ry—rs)(miz—ms) =0

and | | | . _ |

(166) (r1 ~ r2)(ms —ms) + (73 = 75) (my — mg) = 0.

As regards the conditions (165), they are satisfied by virtue of the hypothesis (135);
as regards the condition (166), 1t is satisfied by virtue of (151), which is a corollary
from (135), as proved in Sch 26. ' =

On the other hand, the conditions (164) are sufficient for the consistency of
(163), provided ’ v

(167) a; Xaz#o |

[2, 1 Pr 31): if (167), (164) hold, then the system (163) has exactly one solution s,
namely (157), provided ' ' ,
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(168) G3 = @) X Gy
and (161). Now (158) imply that (167) is equivalent to
(169) (fl - ‘l'z) X (‘l‘z - 1'3) # o

by virtue of (19), and that (168) is equivalent to (160).
The basis s of s being once determmed in such a manner, the moment m is

defined by (162). Let

2

(170) p=m2+réx 8.
Now (162), (170) imply
(171) m-—p=m; —-mz+(r,—r) xs.

Smce 8 nullifies the right-hand side of (171) the last equation 1mp11es p = m and
(170) implies

(172) m=ma+ryx8. °
Similarly, let |
(173) : q=ms+1r3Xs.

Now (170), (173) imply
(174) P—g=m3—m3+(r; —r3) x 8.

.Since 8 annulates the right-hand side of (174), the last equation implies g = p = m,
and (173) implies

(175) m=mgz+7r;3X8s.

In such a manner, the proposition is proved.
Sch 27. Pr 17 being proved, the following problem arises: determine the rank
of the systems of arrows s | satisfying (137), (18) with (19) and (156) with (135)

being given.
According to Pr 3, Pr 15 and Pr 17, the following relations hold

0 iff m,=o0 (u=1,2,3),
1 iff m;=my;=m3#o.

(176) rank i={

as regards the other cases, they demand a more detailed discussion.
According to Pr 4, Pr 15 and Pr 17,

2" . {s;’:o, sm; =0,
iff
3 817117‘-‘0

Now (157) and the definition [2, 1(23) provided 1(24)] of the recnproca.l vectors a;
¥»=1,2, 3) imply

(177) rank s ={
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3

(178) 2(a;y x-a} -ag)s = Z(a,,.n X @yy2) X b,

’ v=1 i
provided
(179) ay43=0a, - (=1 2,
and (178) implies (24) iff '

3 .
(180) Z ((av+lby)av+2 — (av42b)ay41) # 0.
o=l

Oﬁ the other hand, by virtue of (179) the relation (180) may be written in the form

5 ,
(181) Z(au+2bu+1 == av+1bu+2)au ?l-' o
v=1
provided
(182) byysa=0b, (pel.2)
and (181), in view of
(183) - aub, +ayb, =0 (u,v=1,2,3)
is equivalent to
3
(184) > (@v41bi42)a, # 0.
v=1
Because of _
(185) a1 X ay-az #0,
the condition (184) is equivalent to
3
(186) > (auby11)(byra,) #0.
v=1
As regards the condition
(187) sm; =0,
the above considerations display that it is equivalent to
3
(188) ) (Gv41by42)(@,my) = 0,
v=1
and
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(189) smy #£0
is equivalent to

\ .
(190) Y (ay41by42)(@a,my) # 0.
v=1

Summing up, we may formulate the following proposition. '
" Pr 18. (18), (19), (156), (135) provided (136) imply: if (66) satisfies (134),
then '

my, =0 (=1, 2,3,
my =my =m3 ¥ o,

| (184), (188),

3 (190)

provided (158) — (161), (179), (182).
Sch 28. As it has been emphasized in Sch 4, although the basis s and the
moment m of a system of arrows s are extremely important characteristics of s

(see, for instance, the role of 8 and m in the rank-theorem Pr 15), they do not de-
termine s completely, so that the notation (7) is void of sense: there are infinitely

many systems of arrows that have the same basis 8 and the same moment m for
any (s, m) € VZ. And yet, in the applications of the theory of arrows to analytical
mechanics at least, dynamics as well as statics, the role of these characteristics of
the systems of arrows is, to the highest degree, a predestinating one. The reason
is concealed in the fact that, both in statics and dynamics, the systems of arrows
available in the mechanical problem in the capacity of forces (both active and pas-
sive) acting on mass-points and rigid bodies, are authoritative by means of their
bases and moments rather than by themselves as individual mechanical entities.
Putting it more specific, a system of arrows (66) is of interest to statics and dy-
namics inasmuch as its basis 8 and its moment m are concerned, rather than the
particular arrows entering into its composition. Figuratively speaking, one may say
that for analytical statics and analytical dynamics the definition of (66) by (11) is
sufficient, and the definition of (66) by (1) provided (2) is not necessary (inasmuch
as the determination of the particular reactions of the geometrical constraints im-
posed on the mass-points or on the rigid bodies is neg%ected),. To put it another
way, both the statical and the dynamical effects of a system of forces (arrows) s

remain unaffected if A is replaced by a system of forces o having the same basis

N = O

(191) rank s =

and the same moment as 5.

The causality of all these circumstances is rooted in the fact that a system of
forces acting on a mass-point or a rigid body is presented in the basis equations of
analytical statics and analytical dynamics by its basis and its moment namely, and
not by the particular arrow-components which this system involves. This question
is discussed in some details in the following three scholiums. ‘

Sch 29. Analytical statics and analytical dynamics are concerned with the
mechanical behaviour of mass-points and rigid bodies subjected to certain geo-
metrical constraints and to the action of active forces (wholly determined in the
conditions of the statical or dynamical problem in question) and of passive forces
or reactions of the constraints. More precisely, analytical statics is concerned with
the equilibrium of the said mass-points and rigid bodies, and analytical dynamics
with their motion.
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In order to fix the ideas, let a rigid body B be given, subjected to certain
geometrical constraints, restricting to [ its degrees of freedom, and let

(192) BER (A=1,...,10)

be mutually independent parameters of B. Let B be under the action of the active
forces (arrows) ,

(193) ?,,:(F‘;, M,) | (B=1,...,m),

" and let the geometrical constraints generate (by virtue of special statical or dynam-
ical axioms) the passive forces (reactions of the constraints)

(194) R,=(R, N, . (v=1,..., n).
For the sake of brevity let by definition

(195) Fage = Ry | (v=1,...,n),
i.e.
(196) " Fm+y = Ry, Mm+y = Ny (V = 1, ey ﬂ)
provided '
(197) _ _ﬁm+v = (Fm-_l-tn Mnyy) : . (V: LR "):
and let - | |
m+4n rﬁ+n
(198)  F=) F, M=) M,
- v=1 _ v=1 :
If
m+n
. - v=1

denotes the system of all forces cgboth active and passive) acting on B, then obvi-
ously F and M are the basis and the moment of F respectively.

In any statical and dynamical problem all active forces (193) are completely
determined functions ‘ -

(200) Fﬂ": ?#(ql:s sy 4 q"1,r. R q.l; t)

(1.=1,..., m) of the parameters (192) of B, of their velocities (derivatives with
respect to the time ¢) _ . '

(201) AER (A=1,...,),
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-and possibly of the time t itself. (As a matter of fact, tradionally in statics the active
forces (193) do not depend explicite}y on the velocities }201) and on t.) In other
words, the bases and the moments of (193) are completely determined functions

(202)  Fu=Fu(q, - @ 1 - @i 1)
and _
(203) M, = M,(q, s @41 e @15 )

(0 =1, ..., m) respectively of (192), (201) and ¢.

As regards the reactions of the geometrical constraints (194), the situation is
a quite different one: they are unknown quantities the determination of which is in
store for statics and dynamics, in the process of the solving of the corresponding
mechanical problem. Now, any of the reactions (194) is generated by a single
geometrical constraint imposed on B, so that the number of the passive forces is
equal to the number of these geometrical constraints, i.e. to n. Let

(204) c, €V : | (r=1; w5 n)

be the radius-vector of the corresponding point of contact.of the rigid body B with
the v-th geometrical constraint. Then (204) are wholly determined functions

(205) co=cu(q, ---,a5t) . (=1 oy )
of the parameters (192) of B and possibly of ¢. According to a kinetical (statica.l as
well as dynamical) axiom, the directrix of the v-th reaction _ﬁ, is incident with the
point oi'. contact ¢, of the geometrical constraint generating ﬁ, (7= 1; ey )

1.e.

(206) e xR, =N, (=1, .0 0)

In such a manner, it is enough to know the bases R, of the reactions ﬁy in order

to know _I_E’,, themselves (¢ = 1, ..., n). In other words, these namely bases R,
(v =1, ..., n) are unknown quantities 1n the statical or dynamical problem under
consideration, as well as the parameters (192) of B. In the case of a dynamical
problem, initial values :

(207) 20 = 0(0) | | A=1,...,0)
and 1 | | - ' | " o
(208) G =dx(0) =1,
are prescribed to (192) and;(201) respectively, and functions- '

(209) - o = aa(?) - . ' A=1,...,10)

of the time ¢ are sought.
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Sch 30. This information once grasped, let us proceed to the formulation of
a statical problem concerning a rigid body B-

The fundamental problem of rigid body statics may be described in the fol-
lowing manner.

Let a rigid body B be given, subjected to n geometrical constraints with pomts
of contact (204) which generate the reactions (194), and let B be under the attion
of the active forces (193). Find the equilibrium of B and the reactions of the
constraints.

In this formulation the term equilibrium has been used. It is a fund»amenta.l
statical notion ant it requires a special definition. This definition is given in the
followmg mannet.

" It is said that a rigid body is in equslibrium under the action of a system of
forces when the rank of this system iz zero.

Under the notations introduced in Sch 29, the rigid body will be in equilibrium
under the action of the active forces (193) and of the reactions of the constraints
(194) if, and only if, the following conditions are satisfied:

(210) F=0, M=0.

In such a manner, it is seen, that the necessary and sufficient condition (210)
for the equilibrium of the rigid body is expressed exclusively by the aid of the basis
F and the moment M of the system of forces (199) acting.on the rigid body. Let
us, however, discuss this formulation somewhat closer.

The equations (210) may be written in the form

(211) ZF,‘+ZR,, =

v=1
and
(212) ZM,,+Zc,,xR,,—O
p=1 r=1

respectively, by virtue of (198), (196), and (206). In such a manner, the fundamen-
tal problem of rigid body statics is reduced mathematically to the vector equations
(211), (212), where the unknown quantities are the parameters (192) of the rigid
body B and the reactions R, (¥ = 1, ..., n) of the constraints. In this general
formulation the statical problem is indeterminate: as a rule, the number of the
unknown quantities is much greater than the number of the equations (211), (212)
(two vectors equations, equivalent to six scalar ones) available for their determi-
nation. In order to make this problem mathematically wholly determinate one,
various additional hypotheses about the mechanical nature of the geometrical con-
straints are made, which reduce the number of the unknown quantities to six. (A
classical for analytical statics hypothesis of this kind, possessing a sound physi-
cal motivation at that, consists in the assumption that the geometrical constraints
are smooth, i.e. that they generate reactions perpendicular to the corresponding
constraints.) x
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It is clear that the equations (211), (212) include unknown quantities of
two kinds: ﬁrst the parameters (192) of B; and, second, the reactions R,
pes ], 1
; Wlth a view to a better understanding of the essence of the problem, let us
suppose that Ozyz is an orthonormal right-hand orientated Cartesian system of
reference, the origin O of which coincides with the zero-pole (i.e. the pole, with
respect to which the moments M, and N, (u=1, ..., m;v=1, ..., n) of (193)
and (194) respectively are taken). I %, 7, k denote the vectores of the axes Oz, Oy,
Oz respectively, then these condmons imply

(213) 2=72=k=1, ij=jk=ki=0

and |

(214) Tk=ix)y.

Let by definition 7
(215) Fy = Fupi+ Fuyj+ Fu.k ‘ (n=1,...,m),
(216) M, =M, s+M,3+M,.k (r=1,...,m),
(217) R, =R,.i+ Ryyj+ R..k (v=1,...,n),
(218) ¢, = cypi+cpitcuk w=1,..., 1)

At these notations the vector equatlon (211) is equivalent to the foliowmg three
scalar equations :

(219) f: pr o Zn: R,y = 0,
y:l v:l‘ =

(220) Y Fuy+) Ry = 0,
u=1 v=1 .

m n
(221) Zsz : ER"" = 0,
p=1 r=1

and the vector equation (212) is equivalent to the following three scalar equations

m n
(222) Y My + (coyRu: —cisRiy) = 0,
p=1 v=1
m n
(223) Z M,, + E(cvz R,z —¢:R);) = 0,
p=1 v=1
m n
(224) Y My +) (corRuy —coyRos) = 0.

p=1 v=1
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In such a way, the statical problem is reduced to the determination, by means,
of the equations (219) — (224), of the equilibrium values (if any) of the parameters
(192) of B and of the equilibrium reactions (if any) of the constraints -

(225) ) ‘ Ryx, Ryy, Ryz (V = 1, :. ;, n).'

The expression “if any” used above means“if such exist”. Now some explana-
tions in this connection are more than indispensable.
Any statical problem consists, as a matter of fact, of three subproblerns

1. Does equilibrium exist?
2. If yes, then which is the equilibrium position of the rigid body?
3. If yes, then which are the reactions that realize it?

The first question is equivalent with the problem of existence of a solution
of the statical problem. As in any mathematical problem, in a statical problem
the existence of a solution is a fact that must be proved ad hoc, rather than a
presumptive postulate.

* As a 1hatter of fact, the statical problem under consideration has a solution
if, and only if, the system of equations (219) — (224) is consistent. And it is
consistent if, and only if, there exist such quantities (192) and (225) that satisfy it.
Taut.ologlcaLthough these statements seem, they emphasize the 1mporta.nce of the
existence problem in statics, which in mechamcs in general not mfrequent is found
to be neglected.

The second question is equivalent with the problem of determination of the
equilibrium values (i.e. those satisfying the system of equations (219) — (224)) of
the parameters (192) of the rigid body.

The third problem is equivalent to the problem of determination of the equi-
librium values (i.e. those satisfying the system of equations (219) — (224)) of the
components (225) of the reactions of the geometrical constraints.

And that is that. In such, and in such only, sense the statement in Sch 28 must
be understoed, namely that“a system of arrows (66) is of interest to statics and
dynamics, inasmuch as its basis s and its moment m are concerned, rather than
the particular arrows entering into its composition”: the conditions of equilibrium
(210) are expressed by means of the basis F and the moment M of the system (199)
of all forces (passive as well as active) acting on the rigid body, and not by means
of the particular arrows this system contains.

Sch 31. An analogous situation is observed when dealing with a dynamical
problem concerning a rigid body.

The fundamental problem of rigid body dynamics may be formulated in the
following manner.

Let a rigid body B be given, subjected to n geometrical constraints with points
of contact (204) which generate the reactions (194), and let B be under the action
of the active forces (193). Initial conditions (207), (208) being prescribed to the
parameters (192) of B and to their velocities (201) find the motion of B and the
reactions of the constraints.

In this formulation the term motion has been used. It is a fundamental me-
chanical notion and it requires a special definition. Since this definition is a rather’

.
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intricate one, we shal not reproduce it here and, making a long story short, we
shall substitute a mathematical surrogate for it.

To this end, let us first introduce two fundamental dynamical a.ttnbutes for
any rigid body.

If P is an arbitrary point of the rigid body B, » = OP, v = dr/dt (the
derivative being taken with respect to the system of reference Ozyz), and dm
denotes a “mass-element” of B (all these terms being duly defined), then.

(226) K= / vdm
and
(227 . <+ L=/rxvdm

are by definition the momentum and the moment of momentum (lcmet:cal moment)
of B respectively with regard to Ozyz, the integrals in (226) and (227) bemg taken
over the part of the space occupled by the rigid body.

One of the greatesf discoveries in all the history not only of rational mechanics,
but of the whole mathematical physics as well, was made by Euler in 1775, and is
reflected in his article [7]. In accordance with it, there exists one at least system
of reference (inertial system’ of reference) that, all derivatives being taken with
respect, to it, for any rigid body B and for any system of forces F (passive as well

as active) acting on B, the derivative with respect to the time ¢ of the momentum
and of the. moment of momentum of B are equal to the basis and the moment of

F respectively, both moments being taken with respect to the origin of Ozyz.
These laws or principies of Euler are called the first and the second Eulerian
dynamical azioms respectively (or Euler’s laws or principles of momentum and of
moment of momentum of a rigid body respectively).
The mathematical formulation of both Eulerian dynamical axioms read

. d "
(228) ) / vdm = = F
and
d
(229) % /r x vdm =M

respectively provided (193) — ( 199).
. These preliminaries settled, it is said that a rigid body is movmg or is in motion
under the action of the system of forces F(F M) when (228) and (229) hold good.

In such a manner, it is seen that the necessary and sufficient conditions (228),
(229) for the motion of the rigid body are expressed exclusively by the aid of the
basis F' and the moment M of the system of forces (199) acting on the ngld body.
Let us, however, discuss this formulation somewhat closer.

The equatlons (228) and (229) may be written in the form
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(230) fvdm ZF +ZR

p=1

and
d m n )
(231) - a/?xvdmf ZM“+ZCVXR”

respectively, by virtue of (198), (196) and (206) In such a manner, the fundamental
problem of rigid body dynamics is reduced mathematically to the vector equations
(230), (231), where the unknown quantities are the parameters (192) of the rigid
body B as functions (209) of the time ¢t and the reactions R, (v = 1, ..., n) of
the constraints. As in the statical case, in this general formulation the dynanuca.l
problem is indeterminate: as a rule, the number of the unknown quantities is much
greater than the number of the equations (230), (231) (two vector.equations equiv-
alent to six scalar ones) available for their determination. In order to make this
problem mathematically a whole determinaté one, in dynamics, as well as in stat-
ics, various additional hypotheses about the mechanical nature of the geometrlcal
constraints are made, which reduce the number of the unknown quantities to six.
(As in statics, the most popular, traditional, and even classical hypothesis of this
kind is the pastulatc of smooth geometrical constraints.)

It is clear that the equations (230), (231) include unknown quantities of two
kinds: first, the parameters (192) of B, their velocities (201), and their accelerations

(232) heER (A=1...,0)

and, second, the reactions R, (v =1, ..., n). In other words, the equations (230),
(231) are, as the saying goes, of a helerogeneous type: being differential equations
of second order with respect to the time ¢ with regard to the unknown functions
(209), they are, m the same time, linear algebraic equations with regard to the
unknown reactions of the costraints R, (v =1, ..., n).

~ As in the statical case, Ozyz being an inertial system of reference with (213),
(214), let by definition the relations (215) — (218) hold. Then the vector equation
(230) is equivalent to the following three scalar equations:

(233) ::tjwdm — ZF‘,,+ZR‘,,,

v—l
d .
(234) at ydm = z Fuy + Z Ry,
p=1 v=1
d m n
(235) % [ @m = Y Fu.+)> R,
p=1 v=l1
provided
(236) r=zit+yi+zk
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and the vector equation (231) is equivalent with the following three scalar equations:

d . . m B
(237) ' E; /(yz = zy)dm = z Mpa: =+ Z(vaRyz — Cyz Ruy);
=1 v=1
d m n
(238) o /(Z:B - :nz)dm = Z Mpy o Z(Cyzsz - CV:I:RVZ)'J
T o=l v=1
: q . ' m n
(239) B‘i‘ /(31’ —yz)dm = Z M,, + Z(Cuz Ruy - vaRua,-)- :
; pu=1 ow=1 A

In such a way, the dynamical problem is reduced to the determination, by
means of the equations (233) — (235) and (237) — (239) (or by the aid of other
systems of differential equatipns, mathematically equivalent to (233) — (235) and
(237) — (239), but technically much more convenient; dynamical equations, con-
taining such characteristic for a rigid body qua.ntities, as its moments of inertia
and moments of deviation, have been proposed by Euler and are called today the
Eulerian dynamical equations), of those functions (209) (if any) that govern the
motion of rigid body and of the reactions of the constraints (225) (if any) that
produce this motion (along with the active forces (193) acting on the rigid body).

The expressmn “if any” used above means“if such exists”. As in statics, some
explanations in this connection are more than unavoidable.

As a matter of fact, any dynamical problem consists of three subproblems:

1. Does motion exist?
2. If yes, then which is the motion of the rigid body?
3.If yes, then which are the reactions that realize it?

The first question is equivalent to the problem of existence of a solution of the
dynamical problem. As in any mathematical problem, in a dynamical problem the
ezistence of a solution is not an a priori datum, but a fact that needs an ad hoc
demonstration. As a matter of fact, the dynamical problem under consideration
has a solution if, and only if, the system of equations (233) — (235) and (237) —
(239) is consistent.

This point needs a closer elucidation. Most of the authors of mechanical writ-
ings do not investigate at all the problem of existence of solutions of staticil and dy-
namical problems. One of the reasons for such a mathematical behaviour is purely
psychological. Solution of a statical or dynamical problem means, for these authors,
rest or motion of the rigid body involved, and the existence of rest and motion is
regarded by them as something self-apparent, self-evident, and self-explanatory.

This is not so. As Brelot [8] notes:

“On sait que lorsqu’on schématise selon ’habitude des problémes méchaniques
concrete physiquement possibles, on obtient parfois des problemes mathématiques
impossibles ... Exemples avec le frottement (Painlevé), exemple connu de la barre -
pesante diamétrale glissant sans frottement dans une sphére” (p. 7).

Writing “des problemes mathématiques impossibles” this author has in mind
mechanical problems without solutions. In this connection the reader may see, for
instance, our article [9].
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Another reason that explains the traditional carelessness of most authors of -
mechanical wrltmgs as regards the existence of dynamical solutions is rooted in
the fact that, in their majority, they solve dynamicai problems by t.he aid of the
Lagrangean dynamzcal equations

(240) e e . =0 (A=1,...,),

rather than by means of the Eulerian dynamical axioms (228), (229). Now the
equations (240) do not contain the unknown reactions of the costraints ( 194): these
reactions are expelled from-the mechanical paradise by the aid of the postulate of
ideal constraints

n
(241) > R,d¢, =0,

and this act of heroism is regarded by the adherents of Lagrangean dynamical
tradition as the chief achievement of their Teacher. The reactions of the constraints
are, however, the mathematical factor that may deprive a dynamical problem of
its solution. In such a manner, the Lagrangean dynamical equations (240), faced
with the existence problem, may be compared with daltonists faced with a colour-
table. Moreover, they are pointblank blind when confronted with this problem. It
is needless to underlme that the Lagrangeanists are as helpless in front of the third
of the above questions (which are the reactions of the constraints?) as they are in
front of the first of them: the only thing the Lagrangean dynamical equations (240)
can do is to describe mathematically the motion if any.

The second question is equivalent to the solving of the equations (240) which
are neither more nor less than the projections of the Eulerian dynamical axioms
(228), (229) on appropriate axes: these axes are chosen in such a manner that the
unknown reactions of the constraints (194) vanish when (228), (229) are projected
on them. In such a way the functions (209) are determined, satisfying the initial
conditions (207), (208).

The third question is-equivalent to the problem of determination of the re-
actions (194) of the constraints. Since they take part linearly in the equations
(230), (231), this determination, provided the functions (209) are known, offers no
difficulties. |

And that is that. In such, and in such only, sense the statement in Sch 28
must be understood, namely that “the systems of arrows available in the mechanical
problem in the capacity of forces ... are authoritative by means of their bases
and moments rather than by themselves as individual mechanical entities”: the
conditions of motion (228), (229) are expressed by means of the basis F and the
moment M of the system (199) of all forces (passive as well as active) acting on
the rigid body, and not by means of the particular arrows this system contains.

Sch 32. Analytical mechanics is sometimes described as the mathematics of
the equilibria and motions of mass-points and rigid bodies, and of the forces that
generate these equilibria and motions and are generated by them.

This description is clear in the light of the above explanations in connection
with the fundamental problems of statics and dynamics. Not less clear is also that
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the theory of arrows is predestinated to play an important role in the problems of
analytical mechanics.

Still the first generations of mechan1c1a.ns have become well aware of this fact
Not a few experlmental and intellectual work has been dedicated to the doctrine
of forces, aiming at the elucidation of various aspects of the force-concept from
all a.ngles In order to realize that it is sufficient to remember the amount of
painstaking work accomplished by mathematicians and physicists in. connection
with the problem of the parallelogram of forces.

This problem is a most remarkable one. Let B be a physicalrigid body and let
P, and P; be its points. Let Q; and Q, be small fixed pulleys and let w; and w,
be weights fastened to the ends of two inextensible flexible strings, the other ends
of which are fastened to P, and P, respectively, and which are passed through @,
and Q, respectively. If B is in equilibrium under the action of its weight ws and of
the weights'w; and ws, then Qi, Q2, and the mass-center G of B lie in a vertical
plane, as a gsimple experiment displays.

Let e, be the unit vectors of the vectors P,Q, (v = 1, 2) respectively and
let e3 be the unit vector of the downwards dlrected vertical. Let by definition
s, =wye, (v=1,2,3). If O is any fixed point, chosen for the zero-pole, let by
definition m, = OP, x 8, (v = 1, 2), m3 = OG x 83. Then obviously

(242) T, = (8, my,) € Ws . (v=1,2,3),
and the rigid body B is in equilibrium under the action of the forces (242)j_iﬁ'

.3 3
o Fa-e Yom-
v=1l -

v=1

Only a genius could guess that the action of the forces 5" and “s’5 could be
replaced, without disturbing the equilibrium of B, by a single force 3, the basis s
of which is equal to the sum s; + 8o of the bases of 5°; and 53, and the directrix
of which is passing through G.. The name of this genius is unknown. It is also
an enigma where, when, and who was the first-to confirm this brilliant conjecture
by an experiment fated to become classical.even in the primary course in physics
today. It is easily seen that

(244) T = (81 + 82, m; + my),
i.e. that-
(245) 3 = ?1 + ?2.

This story is instructive to the highest degree. -

In the first place, here lies the germ of the idea of reduction of a system of
forces.

In the second place, here lies the germ of the notion of equivalent systems of
forces.

In thé third place, here lies the germ of the concept of sum of two forces.

In the fourth. place, here lies the germ of the idea of elementary statical oper-
ations.
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In the fifth place, this proces has provoked the mathematicians to solve the

problem of the parallelogram of forces and to initiate, in such a manner, a scientific
politics in mechanics aimed at its mathematification — a tendency half-finished as
yet. : :
For what reason did the ancient mechanician invent the intricate mechanism
with the pulleys described above? The answer is obvious: simplicity. Two arrows
are something more complex than a single one. Now this simple discovery may be
generalized. Anyone knows from his school-days how this device is accomodated to
the addition of two arrows with parallel directrices, etc. The common of all these
processes is the simplification of a system of arrows by diminishing the number of
its elements. ,

It must not be left unnoticed that replacing two arrows by their sum in a
system of arrows s one does not change the basis and the moment of 5. In
the due course of time the mechanicians became concious of the fact-that there
exist four elementary operations, by means of which any system of forces may be
transformed into the simplest possible form; at that it preserves unchanged its basis
and its moment. This mathematical process has been called the reduction of the
system of forces in question.

All these facts, initially established in the statical case, have been inductively
transferred from it to the dynamical one. The fact, that a reduced system of forces
has the same, dynamical as well as statical, effect as the starting system, has been
realized long before the definition (210) of equilibrium has been formulated in its
complete generality, and out and away earlier than the Eulertan dynamical axioms
(228), (229) have been proclaimed. _

After these explications the aim of which is to give a physical motivation and
a heuristic background for the following considerations, we shall proceed now to
the mathematical formalization of the circumstances described,

Sgn 9. 81~ 53 sgn:

(246) 81 = 83, my) =m;y
iff
(247) $y(8,, my) € Is (v=1,2).

Df 12. 351 is called equivalent to s3if
(248) $1 ~ $2.
- Pr 19. (66) implies 5~ 5.
Dm. Sgn 9.
Pr 20. If
(249) g€ Ts (v=1,2),

(248), then 83~ 81
Dm. Sgn 9.



Pr2l1. If
(250) sy €Zs | (v=1,23),

(248), 83 ~ 53, then 81 ~ $3.

Dm. Sgn 9. g

- Pr 22, The relation ~ in Es defined by Sgn 9 is an equivalence relation in
Ls.

Dm. Pr 19 — Pr 21

Df 13. Any equivalence . class in Eg, generated by the relation ~ in Xg, is
called an S-action or an action in Vs.

Sgn 10. Ag sgn: the set of all actions in V.

Sch 33. In the light of the explanation given in Sch 29 — Sch 31 one could say
* that namely the actions in V, alias the elements of Ag, rather than the particular
systems of arrows in V, alias the elements of £ R, are that determine the mechanical
{dynamical as well as statlcal) behaviour of a l'lgld body in analytical mechanics,
the term behaviour meaning equilibrium or motion.

Sch 34. s being a system of arrows, the qualification of 3, as simple or as
complicated is depnved of the possibilities of an objective Judgement save, maybe,
by means of the number of its elements. And yet, immediately beiow. four types of
systems of arrows are proposed, any of them with its particular designation, in the
capacity of the simplest possible kinds of systems.

Sgn 11. o sgn: {0}

Df 14. A is called the zero-system.

Df 15. {5’} is called a monosysiem iff 0 # 5 € Ws.
Df 16. {7, }2_, is a called a dipole iff

(251) 5, = (s, m,) € Ws ’ | v=1,2),
(252) 81+ 82=o0, my + ma # o. '

Df 17. {5°,}2_, is called a bisystem iff (251),
(253) : 8) X 82 # o0, syma + somy # 0.
Sgn 12. Z,(v =0, 1, 2, 3) sgn: o iff v = 0; the set of all dipoles iff » = 1;

the set of all monosystems iff » = 2; the set of all bisystems iff v = 3.
Sgn 13. X sgn: the union of £, (v =0, 1, 2, 3).

Pl‘23{ }...GE lmlleSS1T182
Dm. Sgn 12 Df16 [2, 3 Sgn 7].

Pr 24. , € T3 implies 3 ® 7 2.
Dm.Sn12 bf17zssgn3] '
Pr 25. (66) 1mplles there exists o € X with

(254) s~0.

Dm. If (11), then one exactly of the cases (86), (88j, (90), and (92) is possible.
~ If (86), then ¢ = 0 satisfies (254) (Sgn 11, [2, 2 S'gn 2], Sgn 9, Sgn 12,
Sgn 13). .
If (88), let p,aeVs, =m, '? = (=7, 0), T2 = (F,m): Then m # o
implies & # 0. Besides, obmlisly 0. Hence
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(255) =, EWs - w=1,2)
(Sgn 1). ¥

(256) E_, = {?V}2=1:

then ¢ € E; (Df 16, Sgn 12) and ¢ satisfies (254) (Sgn 9, Sgn 13).

If (90) let by definition (9) hold (Sgn 1). If & = {75 5}, then U € X, (Df 15,
Sgn 12) and o satisfies (254) (Sgn 9, Sgn 13). _

If (92), let 8 € Vs,

(257) . s1 xs#0, sm=sm

and let by definition

(258) Trv=06,my) @=1,2)"
provided. '
(259) ~ mp=o, Sy =8— 81, mo=m.

Then (257) — (259) imply (255) (Sgn 1) If (256), then o € X3 (Di 17, Sgn 12),
since (257), (269), (92) imply

(260) 8 X 8, =8; x8# o, 81mo + 8oy = sSyMm # 0,

and o satisfies (254) (Sign 9, Sgn 13).

The following proposition is an immediate corollary from Pr 25 and from the
rank-theorem.
Pr 26. (66) implies: a necessary and sufficient condition for the existence of a

(261) g €L, : - (#=0,1,2,3)
with (254) is | | o
(262) rank s = v 1 ) , v = 0,1, 2,3)
respectively. |

Sch 35. Naturally, the ancient mechamcians worked, technically at least in a
quite different way. Not disposing with an algebraic definition of the arrow concept
and with all the technical facilitations this definition proposes, they were compelled
to work synthetic-geometrically and invented, with an eye on the reduction of the
systems of forces, the so-called elementary statical operations. We give here a non-
formal descnptlon of these operations.

Let s be a system of forces and let two of its elements T, € 8 (u =1, 9
possess a sum S+ 52 Let LA be a system of forces defined in the following

manner: g consists of all elements of A except for 51 and 5 ; besides, 51+ 2 €
o Then it is said that .o is obtamed from s by means of the first elementary
stat:cal operation, and the transition from s, to o or, alias,.the substitution of
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o, for s, in forthcoming mechanical considerations is called the first elemenia:sf
statzcal operation.
Let s be a system of forces and let one of its elements 5 € s be decomposed

in two addends (v =1,2),ie. § = 51+ 52 Let (A be a system of.forces

defined in the following manner: o, consists of all elements of s except for i
besides, 5", € g (v =1, 2). Then it is said that ¢ is obtained from s by means of
the second elementary statical operation, and the transition from 5 to o or, alias,
the substitution of o, for s in forthcoming mechanical considerations is called the
second elementary statical operation.

Let s be a system of forces including the zero-arrow, i.e. o € 5. Let o
be a system of forces defined in the following manner: A consists of all elements

of s except for 0. Then it is said that g is obtained from s by means of the
third elementary statical operation, snd the transition from s to g or, alias, the
substitution of ¢ for s in forthcoming mechanical considerations is called the third

elementary stattcal operatzon
Let A be any system of forces and let the system of forces o be deliie

in the followmg manner: 0 consists of all the elements of s and moreover, of

the zero-arrow 0. Then it is said that LA is obtained from 3, by means of the
fourth elementary statical operation and the transition from 3, to o or, alias, the
substitution of o for s in forthcoming mechanical considerations is called the

fourth elemehtary statical operation.
It is trivially seen that, if (A is obtained from A by means of any of the

described four elementary statlcal op-erations, then s~0. In other words, any of

the four elementary statical operations preserves the baszs and the moment of the
initial system of forces.

It is self-evident that the desultory application of the four elementary statical
operations on a particular system of forces S, leads to a dead-end. It turn out,

however, that by the aid of purposeful apphca.tlons of these operations on any
system of forces 8 the latter may be 1educed to a zero-system, or to a dipole, or to

a mono-system or at last, to a bi-system, in other words, to some of the systems
of £,(0 L v £3) [10 p. 115—122]. This fact reveals the meanmg of the term
reductlon of a system of arrows.

A system of arrows s being given, the process of discovering, by means of the

elementary statical operatlons asystem o € L, (0 £ v £ 3) with S~0,is called
a reduction of $.

N. B. 1. This is obviously a non-mathematical description of the term reduc-
tion. |

N. B. 2. In the above description it is said ”a reduction” and not ”the
reduction”. The reason for that is the fact that a reduction of a system of arrows
3 is not an univocally determined mathematical phenomenon: if (11) and s = o,
m # o, then there exist two at leasi different oy € X, with s~ g’g(u = 1,2)

Similarly, if (11) and sm # 0, then there exist two at least different oy € L3 with
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s ~o,(v=1,2).
— —

Sch 36. The indefiniteness of the simplest dipoles or bisystems equivalent with
a given system of arrows s in the cases rank 5 =1 and rank s = 3 respectively

leads to the formulation oﬂrarious problems aimed at the clarification of the nature
and degree of this indefiniteness. Some of these problems are discussed immediately
below.

Sch 37. The following question quite naturally arises. A system of arrows
(66) with (91), as well as (57), being given, do there exist (255) with

(263) r, Z disF, (r=1,2)
and '
(@68 s ~{TH

Pr 26 implies that a necessary and sufficient condition for (264) is

(265) {#.}=1 €35,

and Sgn 12 implies that (265) is equivalent with (253) provided (258). In other
words, the problem is equivalent with the following one.

If (57) and
(266) (s, m) € V&,
(92), then do there exist
(267) (s,, m,) € V2 (r=1,2)
with (253),
(268) s,m, =0 (=1, 2),
(269) 81+8=8, m+ma=m,
(270) T, X8, =m, (v=1,2).

In order to answer this question, let us first note that necessarily (68) must
hold. Indeed, the supposition r, = r, = », along with (270), implies

(271) rX 38, =m, (v=1,2),

contrary to the second relation (253) [2, 1 Pr 28].
Let us suppose that the above question is answered in the affirmative, and let
by definition ' '

(272) m = 7T X 8,
(273) 8 = s8-—as,
(274) my; = ryx(s—81).

In other words, the left-hand sides of (272) — (274) are certainly known if s; is
known, and the problem is reduced to the determination of s; namely.

Such a s; does not necessarily exist. Indeed, (272), (274), and the second
relation (269) imply
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(275) (1‘1 — 1‘2) X8 =m++ 38Xy,
and (275) implies that the condition
(276) (ri—m)(m+s8xr)=0

is necessary for the affirmative answer of the above question. Let us discuss this
problem somewhat closer.
Sgn 4 implies that (275) is equivalent with

(277) - (r1—72)x 81 = momrals_),
and (276) is equivalent to

(278) (r1 —r3)-momy, s =0.
On the other hand , (278) and (67) imply

(279) (71— r2) -momy, s =0,

and (279), Sgn 4 imply
(280) (r1=7r2)(m+sxry)=

The relations (276) and (280) are, however, not mutually independent. Indeed, the
supposition

(281) (r1—r)(m+sxr)#0
leads, along with (275), to the contradiction

(282) (r1—72)-8x(r1— 1'2) £D.

The conditions (68) and (276) display that the equation (275) with respect to
8; is consistent. As it is well known, (275) implies

(m+8)(1'2)><(1'1—-1'2)

(283) 81 = A7y —739) + — (re?s),
and (283) implies
(284) 81 X s=M(r1 —72) x 8) + oo 8(217‘2_);)(27'1 —r2) s
Two cases are possible:
(285) (ri—r2)xs=o.
or
(286) (r1—72)xs#o,
If (285), then (68), (92) imply

- (287) 8= p(ry —72) (0#ned),
and (284), (285), (287), (276) imply '
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' (288) 8 X 8= '/I(m + 8 X 1'2).
The supposition
(289) m+sxrs=o0

~ is wroAg, since it implies sm = 0 contrary to (92). In such a manner, if (185), then
(287), (288) imply } : :

(290) 81 X 8 # 0.
If (286), then (284) and.

(291) s X8=o0
imply
(292) )*((7'1 _ 7'2) % 8)2 - (7'1 _ 1,2) % B (m + 8(.X ?‘2) X)(zrl = 1"2)
3 T — 72

Let by definition
(293) O A=(ri—ry)) X s-8x((Mm+8xr) X (r; —12)).
Then |
(294) A = (s(r1—m))(m+sxr)X(r1—172)-8)

— ((m+8x73) x(r1—72)-(r1—72))8%
i.e. -
(295) ) A= (8(1‘1 — r2))((m +.8 X 1'2) X (1‘1 - 1‘2) ¢ 3)

and (292), (293), (295) imply"

_(s(rr=ra))((m+ 8 x73) X (r1 —73) - 8)
' (29.6) A= (r1=72)%((r1 — 72) x 8)?

In other words, (291) is equivalent to (296).
In such a manner, (290) holds good for any A-€ S if (285) and for any

(s(r1 —r))((m+8x73) X (r1 —73) - 8)

if (286).

( It)will be now proved that (283) with any A € S if (285) and with any A € §
satisfying (297) if (286), along with (272) — (274), propose a solution of the problem
under consideration. ;

Indeed, (273) implies the first relation (269). On the other hand, (272) and
(274) imply . ‘

(298) mi+my=(r,—72) X 8+72 X 8.
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Now (293 and (275) imply the second relation (269).

Besi 5272 ) and (274), (273% imply (270).

As regards the first relatlon (253), the definition (273) implies that it is equiv-
alent to (290 and, by hypothesis, is satisfied for any A € S in the case (285) and
“for any A € satlsfymg 328'9 in the case (285).

At last, the left-han e of the relatlon 253) is equal to

(299) 81-rax(8—81)F(8—81)-r1 X8
= 8 -P2X8+8-7 X8 =8-8X (1‘1-—1‘2). ’
' On the other hand, (283) implies

(b % s} o€ {ry = 92 « 8 % (s — 75}
(r1—12)?

by virtue of (276) and (92) i.e. the second relation (253) is satisfied for any A € S.
e.

There do not exist solutlons of the problem under consideration other than
the. ones described above, since the, latter are comsistent with all the necessary
;ondltions for the existence of a solution, bemg thelr corollaries, as a matter of
act

‘In such a way, the following proposition has been proved.

Pr 27. If r, € V5(v = 1, 2) and s(s,m) is a given system of arrows with

rank s = 3 then (68) and (276) are necessary conditions for the existence of

(300) 81-8%(r1—13) = =sm#0

(301) .= (8,m,) EWs v=1,2)

satisfying (263) and (264). These conditions are sufficient at the same time: if they
" are satisfied, then (301) defined by (283) with an arbitrary A € S in the case (285)
or with any AEeS satisfying (297) in the case (286) and by (272) — (274) are the
only arrows satisfying (263) and (264). :
Sch 38. The second problem may by formulated in the followmg manner. A
system of arrows (66) with (91) being given, let (42) be any point and ! with

(302) (a,b)&l (a #£0,ab=0)

a line. The question now arises whether there exist arrows (255) with (264) and

(303) pZdir 74, .

(304) l=dir7,.

The relations (303), (304) are equva.lent to

(305) P X 8 =my,

(306) s2=Xa, my=2Ab (A€S)

respectively, by virtue of (302); and (264) is eqmvalent to (269) Now (305), (306),
(269) imply

(307) '31+Aa§3, ﬁxal-!-'Xb:m,
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and (307) imply

(308) Ppx 8—Ap x a) =m —Ab.
Then (308), (302) imply
(309) - (pxs—m)a=0.

In other words, (309) is a necessary condition for the affirmative answer of the
problem under consideration.
Another necessary condition is that

(310) PX8s#m.
Indeed,
(311) PXs=m

and Sgn 4 imply

(312) mom; S = o.

§
—_—

Now (312) and Pr 4 imply sm = 0 contrary to (92) (Pr 15). .
A third necessary condition for the affirmative answer of the question under
consideration reads

(313) Pxa-b#o.
Indeed, otherwise (302), (304) imply

(314) p Z dir 35,
1 )
(315) P X 83 = mo.

Now (305) and (315) contradict (253).
~Let now (309), (310), and (313) be satisfied. The relations (307) imply

(316) px(s—2Aa)+Ab=m,
i.e. .
(317) Ab-pxa)=m+sxp,

and (317) implies 7
(318) - A(s(b-p x a)) = sm.

The right-hand side of (318) is different from zero by virtue of (92). Therefore
necessarily '

(319) (Fx a—b)s#0,
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and (318), (319) imply
sm
s(axp+b)

Let us note that the necessary condition (319) is obviously stronger than the
condition (313). Now (320) and the first relation (307) imply

(321) 8 =s8— (——"f-f——) a

s(axp+b)

(320) X

In such a manner, all unknown quantities are determined, provided the con-
ditions of the problem are consistent. Now it remains to be proved that these
quantities propose a solution of the problem.

First of all, (321) and the first relation (306) with (320) imply the first relation
(269

)In the second place, (305) and the second rela.tlon (306) with (320), along with
(308) and (321) imply

(322) my+my=px8 +Ab=pxs—Apxa)+Ab
=m —-Ab+ AP x a)— AP x a) + Ab=m,

1.e. the second relation (269).
In the third place, (321) with (320) and the first relation (306) imply

(323) 81 x 82 = s x (Aa) = A(s x a).

Now (320) and (92) imply X # 0. In other words, according to (323), the first
relation (253) is equivalent to

(324) sxa#o,

and it is clear that the necessary condition (324) must be also hypothesized.
At last, (321) with (320) and (305), (306), (302) imply

(325) sym3 + somy = (8 — Aa)(Ab) + (Aa)(P x (s — Aa))

=XN8b)+AXa-pxs)=A(sb+s-axp)=As(b+axp))#0

by virtue of A # 0 and (319).

In such a way, the followmg prOposxtxon 1s proved.

Pr 28. If s(s, m) is a given system of arrows with rank 5 =3p€Vs
and the line { is deﬁned by means of (302), then (309) (310), (319) and (324) are
necessary conditions for the existence of arrows (301) with (264) and (303), (304).
These conditions are sufficient too: if they are satisfied, then the only solution 1s
proposed by (321) and (305), (306) with (320).

Sch 39. The last problem of this kind we shall now discuss is the following
one. Let a system of arrows (11) with (91) be given and let

(326) lanb) &l e e (v=1,2)

be two lines, i.e. o 2T
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(327) a, # o, a,b, =0 (b= ] 2)‘.
Now we ask: do f.h_ere exist two arrows (301) with (264) and |
(328)  dir 7, =1, | | (v=1,2).
By virtue of (326), the relations (328) are equivalent to | |
(329) s =Ma, m,=Lb, a Cw=1,2
with appropriate | |
(330) AeES | | (v=1,2).
" In view of (329), the relation (264) is equivalent to

(331) Mai+deaz=s, by + Aaby = m.

Pr 26, Sgn 12, Df 17, and (264) imply (253). Hence (329) imply
(332) %D (v=1,2),
(333) a; X a % o, a1b; + axb; #0.

The first relation (331) implies
(33)  Mal¥M(aa)=sa;,  Aara:) +Aoad =saz,
sl e fesi, solsion. (5980 fuplies. ’ |
(335) ajaj — (a;a;)(aza;) # 0.
Now (334), (335) imply

2

s$a, (12(211 aq L1753}
: sa; aj a,a; 3a:
336 Ay = = A =
( ) ! (a.l X (12)2 2 (61 X 02)2

On the other hand, (331) implies that the condition
(337) s-a;xay=90

is necessary for the consistency of the problem under consideration. Now (337) and
the first relation (333) imply '

(338) s = (sa7")ay + (sa3')ay,

where

339 -1_ %2 X (a1 x ay) ~1 _ (a; x a3) x a4
(538) “ (a1 xaz)z = 2 (a1 x az)?
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and (339) imply

(340) (a1 x né)zaai'l = @ X az-8 X az = (sa;)a3 — (aza;)(say),
(341) (a1 x ag)zsagl = @) Xay -a; Xs=a’(say) - (aal)(alag);
Now (340), (341), and (3.36) imply

(342) A = sa;? ' w=1,72)

and (342), (331), (338), and the first relation {329) imply the first relation (269).
The second relation (269) is equivalent to the second relation (331), i.e. with

a? as
020.1 a8

a8 a4

b,
as al +

(343) by = (a) x az)’m

by virtue of (336). In other words, the condition (343) is necessary for the affirma-
tive answer of the questlon under consideration. As regards the conditions (253);
they are satisfied in view of (329), (332), (333).

In such a manner, the following proposition is proved.

Pr 29. If s(s, m) is a given system of arrows with rank = 3 and the lines

I, (v=1,2) are defined by means of (326) with (327), then the conditions (333),
(337), and (343) are necessary for the existence of arrows (301) with (264) and (328).
These conditions are sufficient too: if they are satisfied, then the only solution of
the problem is proposed by (329) with (336).

Sch 40. As it has been promised, we shall conclude our exposition with some
remarks in connection with the statical-kinematical analogy. Under this term the
following mathematical phenomenon is understood.

A rigid body B being given and a denoting any of its points, there exists
exactly one function @ of the time ¢ with the following property: a point r belongs
to B if, and only if, the condition

(344) %(r —a)=Tx(r—a)

1s satisfied for any t.
This discovery is due to Euler, and @ is called the instantaneous angular velocity

of B. Euler’s theorem (344) implies
' dry drs . .
(345) W—W—WX(Tl—Tg)
for any two points r, (¥ =1, 2) of B.
There is a formal analogy between (345) and the connection (64) between the
moments of a system of arrows with respect to two poles r, (v = 1, 2). Indeed, it
is sufficient to substitute mom;, A for dr, /dt (v = 1, 2) respectively and s for @

in (345) in order to obtain (64). Inversely, it is sufficient to substitute dr,/dt for
momy, 8§ (v = 1, 2) respectively and & for s in (64) in order to obtain (345). This

fact has far reaching consequences.
It turns out that for any theorem concerning systems of arrows there corre-
sponds a true theorem concerning rigid body kinematics. At that, there is no need
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to prove the kinematical theorem: it is certainly true, provided the arrow-theorgm
is proved. Furthermore, to any construction in the theory of the systems of arrows
there corresponds a meamngful kinematical construction concerning rigid bodies.
We shall enter in no details in this connection, and we shall confine our exposition
to two examples only.

Let w (w, % + a x W) be a system of arrows intrinsic to the rigid body . by

virtue of the statical-kinematical analogy. The kinematical analogue of the axis of
a system of arrows (11) with (24) (Sgn 7) is the helicoidal azis of the rigid body B
provided @ # o, i.e. ax w, in other words the line ! defined by

: o N »
(346) (U, o (% +w(21 X @) xw) B

The helicoidal axis (346) of B has important kinematical interpretations.

The second example is connected with the rank-theorem (Pr 15). Its kinemat-
ical analogue reads:

Pr 30. w (w, £2 4+ a x @) denoting a system of arrows intrinsic for the ngld

body B by vu'tue of the statical-kinematical analogy, the motion of B in the moment
of time ¢ is a rest, a translation, a rotation, or a-most general helicoidal movement
according to the ;’:ases_ra.nk w =0, 1,2, or 3 respectively.

-As mentioned, we shall enter in no more details here in connection with the
statical-kinematical analogy. A special study will be dedicated to this theme in due
time.
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