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ouelkd 2 PeRTUBILIX CBOHCTD cycnel3uii: B cavuae MaJoil KoNUeNTPauun cep nomay-
YeHb aHAJINTHYECKHME Pe3VALTATH. '

Konstantin Markov, Krassimir Zvyathov. ON THE EFFECTIVE BEHAVIOUR OF
A NONLINEAR DISPERSION OF SPHERES

The effective behaviour of a nonlinear random dispersion of spheres is considered in
the context of hicat propagation: nonlinearity is understood in the sense that the coefficient
of thermal conductivity. being different for the matrix and for the spheres, depends on the
temperature gradient at each point. A variational technique is proposed which allows to
estimate the effective properties of the dispersion. In the case of a dilute dispersion the
estimates are explicitly evaluated.
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1. INTRODUCTION

Consider a two-phase random medium which is statistically homogeneous and
isotropic. For the sake of definiteness only, we shall call one of the constituents
matrix and the other filler, though our considerations will for the moment hold
for an arbitrary two-phase medium. All quantities connected with the matrix will
be supplied with the subscript “m”, and those connected with the filler — with
“f”. To describe the random constitution of the medium we introduce the random
field I;(x) which equals 1 if x lies in the filler and vanishes otherwise. The set of
all multipoint moments (or correlation functions) for Iy(x) defines adequately the
random medium [1, 2].

Consider the stationary heat propagation in the medium which we suppose to
be governed by the nonlinear version of the Fourier law:

V.q{x) = 0, q(x) = K(x; T(x))V8(x),

(1.1a) . L
K(x;T) = Ku(T)+[K(T) = Kn(T))Is(x),

T = T(x) = |V6(x)|?, where q(x) is the opposite heat flux vector, 6(x) is the tem;
perature field; this means that each of the constituents has a coefficient of thermal
conductivity that depends on the magnitude of the local temperature gradient. e
suppose that '

(1.2) 0< bk < K(x;T) < ka2 < 00, Vx, VT.

Let the medium be subject to constant macroscopic temperature gradient, i. e

(1.1b) (Vé(x)) = G,

where {-) denotes ansemble averaging. The condition (1.1b) plays the role of

- boundary one for the nonlinear random equation (1.1a). Under certain assum

tions about the functions K, (T) and K'y(T), see §2, the problem (1.1) possesses

solution #(x) which is unique. By means of the latter we can evaluate the averag
heat flux, Q, in the medium )

(1.3) Q = (q(x)) = (K(x; T(x))V8(x)) = K*(9)G;

here g = G- G and K" is the effective thermal conductivity of the medium whic
similarly to that of the constituents, represents a certain nonlinear function of th
average temperature gradient acting on the medium, K* = K'*(g). ,

Thus the given random geometry of the medium under study defines a nonh
ear operator K that transforms the functions K,,(r) and K,(7) into the functio
K*(g) which describes the effective behaviour of the medium;

(1.4) R*(:) = K[Km(-), Ks()).

The well-known homogenization problem consists in evaluation of the operato
K. Note that the problem of estimating the operator K for given statistics of th
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medium is considered by J. Willis [3] making use of a variational principle of the
type of the Hashin-Shtrikman’s. see also [4]. )
Certain remarks concerning_ the operator K are now warranted.
First. in the case of linear behaviour of the constituents we have XK', (T') = &
KNy(T) = ny. K*(y) = r°. where &7 is the effective conductivity of the medium,
that the operator K reduces to a scalar function of two scalar arguments

g 3

(1.5) K= K(u,.,,u!).

Even i this simplest case there is no general algorithm how to calculate x* for
an arbitrary random geometry: the difficulty of such a calculation is well acknow-
ledged in the literature. see. e. g.. [2, 5], and it stems from the fact the basic
random problem “1.1) is statisticallly noulinear even when the behaviour of the
cor.~tituent$ is livear. i. e.. when they obey the classical Fourier law. In the case
under consideration. the problem (1.1) is both statistically and physically nonlinear.
The latter makes the analysis of nonlinear random media much more comglicated.
The interest in such media however, has increased in the recent years. One of the
hasic reasons 1s that the nonlinear effects become unportant in certain polarizable
materials when the electric ficld (the exact counterpart of |V8(x)| here) is large,
e. g.. when a laser beam is directed into the material, ¢f. [6, 7] for details and
references,
Second. the operator K is homogeneous i the sense that

(l()) K[/\[\.m.(')- '\l\f()] - '\K[I\.m(')- 1\[()]‘

for any A €R. ln the linear case this yiclds that &° depends on the ratio K7 /K,
but in the nonlinear case the latter statement cannot be generalized, i. e., K*(-)
does not depend on the ratio KNy(-)/ Ny, (-) only, except when N, (-) = const.

Our aim here is to get certain results for the elfective behaviour of the nonlinear
composite. 1. e. for the function K (g). in the particular case of a randoin dispersion
of spheres. making use of the variational procedure introduced and briefly discussed
in [8].

2. THE VARIANTIONAL PRINCIPLE

We replace the sandom problem (1. 1) by the variational principle which states
that the true temperature ficld o the medinm mmimzes the functional

WA [00)

(b(x: |[TO0)]*)) — min.

P(x:7)

i
%/I\'(x: T)dr; T = T(x) = |V0(x)]".

over the class of random fields #(x) which satisly (1.1b). Morcover,

(2.2) min $¥4[0()] = %!\"(y)y. ¢y=G. G.
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This is a straightforward generalization of the classical variational principle in
the linear case [1]. .

It is noteworthy that the variational principle (2.1) allows to sketch a simple
proof of an existence and uniqueness theorem for the basic random problem (1.1).
~ Indeed, let us consider the class of random fields 8(x) whose gradients are sta-
tistically homogeneous. On using a statement of ergodic type, we replace ensemble

averages by spatial ones
(0= [
v

where V is a certain macro-region. We next introduce the standard Hilbert space
H1(V) and consider the set G C H;(V) of functions that satisfy the boundary

condition
B(x) |av =G -x

This is obviously a convex closed subset in A,(V). Moreover, the Gauss theorem
easily yields that the functions 8 € G comply with the condition (1.1b). The func-
tional W4 in (2.1) is strictly convex on H (V) if the function & is such with respect
to T. The latter holds in turn if the function K'(x; ) is strictly monotonically in-
creasing with respect to 7. Due to (1.1a), this will be true if both functions K;(7)
and K, (7) have the same monotonicity property:

d . d

(2.3) d—T]\I(T) > 0. E;I\'"(T) > 0
— something which will be assumed hereafter. The conditions (2.3) also yield that,
the functional Wy is coercitive, 1. e.,
(2.4) Walo()] — oo if [|6)) — oo. |
According to a classical result of the convex analysis, see, e. g, [9, Ch. II, prop,
1.2], the property (2.4) suffices to claim that the functional Wy, strictly convex
“under the assumptions (2.3), possesses a unique minimizing element 6*(x) over the
convex set G; this element is just the true temperature field in the medium, i. e.;
the solution of the basic problem (1.1). .

In what follows a special attention will be paid to the particular case of non{
linear constitutive relation [7] for which

(2.5) Ki(r)= h‘? + h‘}r, Rn(7) =2 4+ 57

The functional (2. 1) in this case becomes

(26) WAlB()] = S (L CITOC) + 1 (< (<) VO,
where
(27) K00 = Kby + K1 (),
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(] = &) — ki i = 0, 1. The condition of strict convexity for the functional (2.6)
reads

(2.8) Ky, ki >0, i=0,1,
A

cf. (2.3), which will be assumed hereafter in order to ensure the existence and
uniqueness for the solution of the random problem (1.1) in the particular case of
constitutive relations (2.5).

The variational principle, dual to (2.1), can be easily denved if we reformulate
the random problem (1.1) with respect to the heat flux q(x). From (1.1) and (2.5)
we get

(2.9) V(x) = L(x: q(x))q(x),
where L denotes the compliance field
Lixia(x)) = l/K(xT(x))
(2.10) ¥ = LO%x) - L'(x)lq(x)* + L3(x)lq(x){* -
Lo(x) = 1/x%x),
LY(x) = LOx)s'(x)/(x%(x))3, etc.

Obviously the compliance field does not have the form (2.5) of the conductivity
field. This form holds only if the nondiniensional temperature gradient gm, defined
in (4.5) below, is small, g,, < 1. In the latter case, within the accuracy o(gm), the
series (2.10) can be truncated after the second term and we thus will obtain the
counterpart of (2.5), namely.

(2.11) Vo(x) = {L%(x) - L' (x)|a(x)]*}a(x).

To the same order of accuracy we can reformulate the random problem (1. 1)
as follows

(2.12a) q(x) =V x ¥(x),
(2.12b) To(x) = {L%(x) - L* (x)|q(x)[*}a(x),
(2.12¢) (V x ¥(x)) =Q,

where Q is the prescribed macroscopic heat flux. The problem (2.12) is equivalent
to the variational principle

(2.13) Wy = 1:°(x)|v % W(x)[2) - %(Ll'(x)lv x W(x)[") —> min,
' *
where the functional 11 is considered over the class of vector potential fields ¥(x)

that sali'sl'.\' (2.12c). Moreover.
1 .
(2.11) minfl’g = EL'(q)q. q=Q- Q,
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where L¥(gq) is the effective compliance of the composite defined as follows

(2.15) ) G = L*(¢)Q,

the counterpart of (1.3). The relation between K*(g) and L*(q) is a consequence
of the identities

(2.16) ¢=K"(9)9. ¢=L"(g)q,

cf. (1.3) and (2.15).

Finally, let us recall once more that all relations (2.11) to (2.16) are correct only
to the order O(gm), i. e. for small values of the temperature gradient impressed
on the medium. _

As is well known, the variational principles allow to obtain estimates on the
effective properties of random media [10, 11]. Here we shall use the principles (2.1)
and (2.13) in order to derive such estimates on the function K*(-) that defines the
effective behaviour of a nonlinear dilute dispersion of spheres whose constituents
obey (2.5). '

3. THE VARIATIONAL PROCEDURE FOR A DISPERSION OF SPHERES

Let the medium be a random dispersion of equisized and nonoverlapping
spheres of radius a and let x be the set of random points that serve as centers
of spheres. After {12] we introduce the field

(3.1) ¥(x) = ) 6(x ~ x;),
J

called the random density field for the dispersion. Obviously, {¥(x)) = n, where n
is the number density of the spheres, n = ¢/V,; and ¢ is the volume fraction of the
spheres. The field /(x) provides an exhaustive description of the random set x;
and thus of the dispersion as well. Its application is very convenient here because
the random fields in (2.7) have simple integral representations by means of ¥(x),
namely,

(3.2) K'(x) = &l + [ni]/h(x - y)u(y)dy, i=0;1.

where h(x) is the indicator function for a single sphere of radius a located at the
origin. (Hereafter if the integration domain is not explicitly indicated, the integrals
are taken over the whole R3.)

Consider after [11] the class of trial ficlds

(3.3) 8(x) = G - x +/P(x — y)v'(y)d3y.
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where v'(y) = v(y) — n is the fluctuating part of (y) and P(x) is a nonrandom
kernel. The fields (3.3) are obviously admissible since they satisfy (1.1b). On intro-
ducing (3.2) and (3.3) into the functional (2.6) we make the latter an usual func-
tional of the kernel P(x) whose minimization yields the respective Euler-Lagrange
equation for the minimizing P(x). If this equation could be solved we would be
able to ohtain an upper bound of the function /X"(¢g). Making use of the argu-
ments of [11. p. 1]. it can be shown that this estimate would be the best possible
which employs the statistical information given by the [-point correlation functions
for the dispersion up to ! = 5. The said Enler-Lagrange equation is however very
complicated: even in the dilute case. ¢ € I, when its form is much simpler: .

(:")AP(x) + ¥ - {[x)h(x)[G + VP(x)]

(3.1 »
) +[{x") + [&"1)1(x)]IG + VP(x)|*(G + VP(x))} = 0,
it seems vers diffficult to be handled analytically. That is why we shall employ a
certain variational procedure of Ritz type, similar to that proposed by Beran [13]
and discussed by the authors in [14] in the linear case.

Considier 1he perturbation solution of the problem (1. l) in the case of weakly
mhomogencons medinm governed by the constitutive relations (2.5):

(3.5) 0(x) =G -x+0""x)+00V(x)+...,

where 0790 (x) are centeréid, (679(x)) = 0, and have the order of magnitude
PRy oy =00 )L

K" (x)

(~')

we suppose that both 88" € 1, but 85 and éx' could be small of different order
ol magnituees (The prime denotes the fluctuating part of the respective random
vartahle ) '

Stmple arguments show that the functions 01" (x) and 0“' D(x) comply with
He cquations

ox' = max
F

, i=0,1:

(B [(87) + (0] A0 x) + 2(")GG : TT0" M)+ V- (k¥ ()G} = 0

3 6h) (") + ,,(..-')]An'" Nix) 4+ 2(x")GG  TT0 M x) + V- (& (x)G} = 0

the colon means contraction with re s|u el Lo LwWo pairs of indexes.

We next introduee the new vanable z instead of x as follows: z = x +;1GG
x.with the sealar g to be specilied helow. Obviously, V, = (I+ pGG) - V,,which
allowes, alter stimple mampulations, to reduce eqns (3.6) to the Poisson cquations

Aty + T, _-_.{r.'"’(x)G} =0,

(37) ,
i+ ©, - (W (0)G) = 0.



provided p is chosen as one of the roots, ji; or g2, of the square equation
A+2Bu+Cu®=0; A=2("),

3.8 :
(38) B = 39(51) + (h'.o), = 392(1‘-:1) + 9(N0)|

whose discriminant
A = [3g(x') + (:)lg(s") + (%))

is obviously positive so that both roots p; and u» are real. In (3.7), A; =V, .V,
is the Laplace operator with respect to z.

In virtue of (3.7), the bounded everywhere solutions of eqns (3.6) have the
form

1 .
1O =G. [ — T A (v)d®
61" (z) = G /mz_ylvyn (y)d°y,

(3.9) | A .
60.)(z) = G ./mvyx' (¥)dy,
where z = x + uGG - x with u being one of the said roots, u; or u>. Note that
it does not matter which one of the roots, y; or pa, will be chosen becouse the
expressions, say, for 81:%)(x) thus obtained will both satisfy the nonhomogeneous
linear equation (3.6a); their difference will then solve the homogeneous equation
(3.6a) and since we deal with bounded everywhere solutions this difference will
vanish. '

Following the general idea of Beran [13], we introduce, instead of (3.3), the
class of trial fields

(3.10) B(x) = G - x + 1810 (x) + 2,6 (x),

where A;, A, are two adjustable scalar parameters. For two-phase media we, how-
ever, have

£ (x) = W (x),  i=0,1, -
see (2.7), where I7{x) is the fluctuating part of the indicator function Iy(x) for

the filler phase. That is why the two functions 6¢:9(x) and 8(%1)(x) in (3.9) ard
proportional, so that (3.10) can be replaced by the class

(3.11) 8(x) = G - x + A 10(x),

with a single adjustable parameter A € R. On introducing (3.11) into the function
(2.6) we make the latter a scalar function of A whose minimization brings-forth
certain upper Ritz’ type bound on the effective function A'*(-) defined in (1.3). Thi
bound takes into account statistical information given by the I-point correlatio
functions for the medium up to { = 5. Unlike the bound which could be obtaine
through the solution of the equation of the type (3.4), i. e., when considerin
the class (3.3) of trial functious, the said Ritz’ type bound will not be optimal i
general. .
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4. THE LOWER AN'I') UPPER BOUNDS FOR DILUTE DISPERSIONS

To illustrate the performance of the above considered scheme and to get certain
tangible results at the same time, we shall deal hereafter with the case of a dilute
dispersion for which ¢ < 1. The needed moments of the random density field ¥(x)
in this case are very simple, namely,

(4.1) (¥(y1) - - ¥(¥,)) = nb(ys —y1)...6(yo = ¥p-1) + o(n), ’

p=1,2, ..., where n, let us recall, is the number density of the spheres, n = ¢/V,.
Another simplification to be adopted consists in replacing the field (*:9)(x) from
(2.9) by the respective field from the linear case :

Py _ 1 .0’ 3
Making use of (3.2), it is easily seen that
(4.2b) i) = [Tix =y )y,

where 'f"(x) = G - Vé(x), with ¢(x) denoting the harmonic (Newtonian) potential
of a single sphere located at the origin. As is well-known the kernel ’T"(x) is propor-
tional to the disturbances to the temperature field in a linear unbounded matrix,
introduced by a single spherical inhomogeneities, when the temperature gradient
at infinity equals G.

We thus restrict the functional (2.6) over the class of trial ficlds

(4.3) 8(x) = G- x + A0(x), ) € R,

instead of the class (3.11), under the assumption (4.1).

Note that the choise of (-?'(x) is reasonable because in what follows we shall be
able to calculate explicitly the needed bounds only for small, in a certain sense to
be explained below. magnitudes of the macrogradient G for which the difference
between 81:%(x) and 0(x) is negligible.

The functional 114 from (2.6), when restricted over the class (4.3), becomes a
polynomial of fourth degree of A:s

(4.1a) Wal0()]) = wa(A) = _lh'?,,_i[{.“! + BA4+CX + DN+ ENY),

and simple algebra gives the following expressions for the coefficients of this poly-
nomial:

: 1
A=14’-1)c+ 5[1 + (a! = 1)c)gm,

B = 2(00 - l)C+ 2(0' - l)cym‘

1.4b
( ) -C= (00+2)(‘+(3-(jl +3.6)Cgm-

D= 2Aa’ = 04)cg. E = 3la’ +16)cym.
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. Here o' = n}/nfn, i=0,1, and

(4.5) gm = Ghm/Km, 91 = 951 /K]

are nondimensional temperature gradients with respect to the matrix and filler
constituent respectively, ¢ = G - G. The minimization of the fynction wA(A),
defined in (4.4a), with respect to A leads to the cubic equation

(4.6) B +2C)+3DA2 +4E)N =0.
This equation, under the assumption (2.8), has a unique real root
(47) )‘0 = '\U(ao)allgnhc)‘

On inserting (4.7) into (4.4) and mmaking use of the variational principle (2.1)
and (2.2), we get an upper bound on the effective function A'*(:) for the dilute
dispersion:

(4.8) Rl s K
. K¥ = K*(a% al,g.) = k0, {A+ Bio + CAZ + DA3 + EX}}.
Obviously, only numerical results for the bound K¥ can be obtained in general.‘:
It is important to note, however, that K%, unlike the form (2.5), will not be already
a quadratic function of G which indicates that in the constitutive law (1.3) for thd
dispersion all degrees of g will be present. The quadratic form (2.5) will hold for
the dispersion only for small values of the gradient g,,, i.e., within the accuracy‘
o(gm)- |
- To get a lower bound for the effective function K°(-), we shall employ the‘
variational principle (2.13), dual to (2.1), and the class of trial fields 1

(4.9a) ¥(x)

1 < -
-2-Q X X + n/\l'(x -y (y)d%, neR,

where the kernel \i'!(x) is chosen, similarly to the kernel T(x) in (4.2b), as the vecto
potential of the heat flux disturbance, introdused in an unbounded linear matrix
by a single spherical inhomogeneity, when the heat flux at infinity is kept constant
Q, e, ;
. 1

Q x x, if |x] € a :

4.9b ¥(x) = |
(4.90) (x) -a*Q x \"'—l— if x| > «a. :

x|’ i

The functional g, defined in (2.13), when restricted over the ciass (4.9), becomes
a polynomial of fourth degree of 3

(4.10) Wp[®(-)] = wa(n).
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whose: minimization leads to a cubic equation, similar to (4.6). The real root of
this equation.

(-1.11) No = J](,(u(',ul,q,c),

is unique under the assumption (2.8). On introducing (4.11) into (4.10) we get
an upper bound on the cffective compliance L°(¢) and thus, according to (2.16),a
lower bound on A*(g) which corresponds to the upper bound of Ritz’ type (4.8).

The evalnation of the above introduced bounds can be performed analytically
to the order ¢,,. at g,, € 1: it shows that the upper and lower hounds coincide
within this order of accuracy.” In this way we find the following exact result for the
eflictive conductivity Tunction A'7(+) for the dilute dispersion of spheres:

(1.120) KN (g) =Ry +Kigm+ ...,
(1.120) ki = Ko (1+33%) 3% = [RO)/(k5 + 285,),
(1.12¢) n] = kg (14 3B¢),

L] .
B = %[..'(1 = M)+ 163 + 1637 + 726 + 48° - 1).

As it shonld havee Leen expected, (4,120} comcides with the well-known
Maxwell formula for the cffective conductivity of a dilute dispersion of spheres,
el UI5] whieh s exact in the ease of a linear behaviour of the constituents.

Constder the other lnmting ease when g,, — > when we may neglect the
first terms i the o b sides of (2.5) aned think that both spheres and matrix obey
the himear Fourier law with conductivities vy g and &,,4 respectively: the variance
of ¢ beeomes negligible i this case. Making use of the above meationed Maxwell
formmla for the dilute dispersion, see ((112h), we get the following asymptotics for
the funetion K ():

Nlg) — ot

dom —
o=kl (4 3.0, 9 [l.‘,',,]/('lh‘} +x),).

iy

(1.13)

The relations (112) and (1 13) can be combined within a certain Padé approxi-
mation of the tvpe (27100 et [16)0 for the elleetive Tunetion K°(-) which may be
cruploved for all values of g2 onely
. ko 4 Ok + K + K0
(1 KNe(gy= xSl 00 T o e
I F

e formmla (4 11) s the central vesult of the paper; it provides correct pre-
diecnions for the Tunetion K70 ) i both cases of simall macrogradients, ¢, € 1, o
e onder alga, ). and g, —= 0 so that it conld be expected 1o vield a reasonable
approxunatum for the itermediate values of g, 0 < ¢, < 0 as well,
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5. CONCLUDING REMARKS

To conclude the paper we shall show how the results of §4, valid for the par-
ticular case (2.5) of linear functions Ny and R,,, could be employed in order to
give a certain approximation of Padé’s type for the homogenization operator K,
defined in (1.4), in general case of arbitrary analytical functions N;(-) and Ky, (-)
which comply with the monotonicity condition (2.3).  ~

Let us expand the functions Ky and A,,, analytical on [0, 2] by assumption,
as the Taylor series

(5.1) Km(g)=km+rhg+.... Kplg)=af+rp9+....

where

xS = Koy}, ,h‘? = K;(0),
(5.2) . i

kl, = Ki(0)," &} = K5(0)
are known constants. For small values of the nondimensional gradient g, =
grl /RS g <€ 1, we can replace the functions Ny(g) and A, (g) by their lin{
ear approximations (5.1): such a replacement yields result also valid Lo the sam
order o(g,;m).  That is why the formulas (4.12) are valid to the same order o(g,, ),

(5.3) Koy =ky+kigm+....

where the coefﬁ(:ie!)ts ky and k] are given in (4.12b, ¢), provided
a® = Kp(0)/Kwm(0). o' = K}(0)/K},(0).

cf. (5.2).

The limiting case g, — oc¢ is considered similarly to §4, though there are tw.
possibilities here which should be dealt with separately, namely, (i) The functio
K (-) is bounded on [0, x:) and (ii). This function is unbounded on [0, oc), so th
Kp () = 0.

In the first case (i), when N, (cc) < oc, we can think Both constituents line

al gy — 00, 50 that the Maxwell formula (4.12b) yields
Ne(x) = f\',,,(-x-)(l + 3d%e¢).
g%~ = (a™ = 1D)/(a™ +2). o® = Kp,(00)/ K y(00).

(H.1)

We cin combine the formulas (5.3) and (5.4) in the following [1/1] Padé a
proximation:

k3[R () = k3] + K (20)k} gm

LB h* =
(5.5) v (a) N (o) = b 1 Eigm

In the case (i) we suppose for definiteness that A,

—

g) has the asymptotics

v

(5.6) l\.m(.‘l) o N:;‘!f?n al gy — 00,7 l.
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(The case 0 < ¥ < 1 should be treated in a different manner.) Then the arguments,

given in the end of §4, are applicable so that we may employ again the Maxwell
formula (4.12b) which, together with (5.6), yields

K*(g) ~ k2,97, at g — 00, ki, = &2(1+38%¢),
(5.7) : , K (9)

B> = (aOO = 1)/(a°° +2), = ng I&m(g)

We then combine (5.3) and (5.7) into the Padé approximation, similar to (4.14):

k +(L0 +L )gm +Lcogm

(5.8) | Big)= L

The proposed formulas (4.14), (5.5) and (5.8), exact for both limiting cases
of small and big magnitudes of the macrogradient G can be expected to predict
reasonably enough the behaviour of the effective function I\ {g) in the whole region
[0, 00) for a dilute dispersion of spheres. j
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