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We consider the groupoid C∗-algebra T = C∗(G), where the groupoid G is a Wiener-
Hopf groupoid, i. e., G a reduction of a transformation group G = (Y × G)|X, and Y

and X are suitable topological spaces. We give a method to construct continuous linear
cross-sections using contractions in G0 – the unit space of G.
We establish a criterion for an operator T ∈ B to be Fredholm.
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1. Introduction

Let G be a locally compact, second countable, unimodular group with identity
e and a left Haar measure µ. We fix a solid, closed, normal subsemigroup P of G of
positive measure containing the identity e of G.

For any f ∈ Cc(G) we define the Wiener-Hopf operator with symbol f on L2(P )
to be

Wfξ(t) =

∫
P

f(ts−1)ξ(s )dµ(s), ξ ∈ L2(P ).

The C∗-algebra generated by {Wf : f ∈ Cc(G)} is denoted by T .
In [5, § 3.1] and [7, § 3.1] is explained how to construct a locally compact space

Y such that there exist an inclusion i : G−→Y and a continuous action G×Y −→Y .
We define the space X to be the closure of i(P ) in Y and the groupoid G as a

reduction [5, § 2.2.5] of the transformation group Y ×G to X, i. e., G = (Y ×G)|X.
This groupoid is known as the Wiener-Hopf groupoid, associated with G and P .
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The groupoid G and its reduced C∗-algebra C∗
red(G) are important because in

[5, § 3.7] and [7, § 2.4.1] is proved that the C∗-algebra T of Wiener-Hopf operators
is isomorphic to C∗

red(G).
In the theory of groupoid C∗-algebras one may associate ideals with open in-

variant subsets of the unit space. If U is an open invariant subset of G0, then the
set IU = {f ∈ Cc(G) : supp(f) ⊂ G|U} is a two-sided ideal in Cc(G) and its closure
in C∗

red(G), IU is a closed two-sided ideal in C∗
red(G).

The following theorem is well known:

Theorem ([5, § 2.2.16, Prop. 2.16], [9, § 3.9, Prop. 4.5]). The map U 7→ IU
is a one to one order preserving map from the lattice of open invariant subsets of
G0 into the lattice of two-sided ideals of T = C∗

red(G). For an ideal J = IU of T ,
C∗

red(G)/J is canonically isomorphic to C∗
red(G|F ), where F = G0 \ U .

Let F be a closed invariant subset of G0 = X. Then U = X \ F is an open
invariant subset of X.

By the above theorem we obtain the following exact sequence:

0−→ J = C∗
red(G|U )

i−→C∗
red(G)

γ−→C∗
red(G|F )−→ 0 (1.1)

In this sequence γ maps a ∈ Cc(G) into its restriction to G|F . Thus γ(a) ∈
Cc(G|F ).

Let us consider the opposite problem: when b ∈ Cc(G|F ), we want to extend
b to a compactly supported function ψ(b) ∈ Cc(G). In this situation we obtain a
continuous function ψ : Cc(G|F )−→Cc(G), which may be extended to continuous
linear cross-section ψ : C∗

red(G|F )−→C∗
red(G).

The main purpose of this paper is to give a method how to construct continuous
linear cross-sections ψ : C∗

red(G|F )−→C∗
red(G).

This paper is organized as follows: In Section 2 the most interesting case (K ⊂
T ) is considered and we give a necessary and sufficient conditions for an operator in
T to be Fredholm. In the Section 3 we give a method how to construct a continuous
linear cross-section in Wiener-Hopf groupoid algebras using contractions in the unit
space of G, and we give some examples.

2. When K ⊂ C∗(G)

The most interesting case is when T contains K – the ideal of compact operators
on L2(P ).

Sufficient conditions (P ∩P−1 = {e} and X to be a regular compactification of
P ) are given in [5, § 3.7.2]. We recall that X is called a regular compactification of
P if i(P ) is open in X and the embedding of P in X is a homeomorphism of P to
i(P ). Later, Sheu [10, Theorem 1] proved that if X is not a regular compactification
of P , then T is not of type I and contains no nontrivial compact operators.

The algebras, discussed in [7] and [5] satisfy those conditions.
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Let X be a regular compactification of P . Then U = i(P ) is an open and
invariant subset of X = G0 and the above exact sequence (1.1) is

0−→K i−→C∗(G) γ−→C∗(G)/K = C∗(G|F )−→ 0.

This short exact sequence gives a criterion for operator T ∈ T to be Fredholm.

Theorem 2.1. An operator T ∈ B is Fredholm if and only if γ(T ) is invertible
in C∗(G|F ).

Proof. This theorem is a corollary of well known statement, called as Theorem of
Atkinson in [6, Theorem 1.4.16] and as Theorem of Nikolskii in [4, Ch. 3, § 3,
Theorem 19].

Remark 2.2. If a ∈ C∗(G), then a−ψγ(a) ∈ K, because γ(a−ψγ(a)) = 0 and
the exactness of the sequence.

So a is Fredholm iff ψγ(a) is Fredholm, and a and ψγ(a) have a same Fredholm
index.

3. A linear cross-section in C∗(G), generated
by contractions in the unit space of the groupoid G

It is natural to ask how to define a continuous linear cross-section.
In the case of groupoid C∗ algebras of Wiener-Hopf groupoids we may define

continuous linear cross-sections using contractions in X = G0 – the unit space of G.
Let F be a closed and invariant subset of X = G0 and let λ : X −→F be a

continuous contraction (i. e. λ(x) = x, for all x ∈ F ).

Theorem 3.1. In the above notations, the map

ψ(b)(x, n) = b(λ(x), n), b ∈ Cc(G|F )

is a continuous cross- section.

Example 3.1. Let G = Z, and P = Z+ = {0, 1, 2, . . . , n, . . . } be the subsemi-
group of the natural numbers. Define Y = Z∪{∞}. There is an obvious embedding
i : G ↪→ Y and let G acts as translations on the points of Z, and let ∞ remain fixed.
Put X = clos(i(P )). Define the groupoid G = (Y ×G)|X.

The orbits in G0 = X are Z+ and ∞. The isotropy group of ∞ is Z, while G|Z+

is principal and transitive. It is isomorphic to the trivial groupoid on Z+ under the
map (x, n) 7→

(
r(x, n), d(x, n)

)
= (x, x + n). So by [5, § 2.7.1] we conclude that

C∗(G|Z+) ∼= K, the ideal of the compact operators. By [5, Prop. 2.16] the quotient
C∗(G)/K is isomorphic to C∗(Z) = C(T ), since G|{∞} is topologically isomorphic
to Z.

We note that the element of T , defined with S(x, n) = δ1(n)χX(x)χX(x+1) is
an isometry and generates T . So, T is isomorphic to the C∗-algebra, generated by
one isometry and here we gave a new proof of Theorem 1 and Theorem 2 of [1].

In this example we put λ(y) = ∞, for all y ∈ Y and we obtain ψ(b(x, n)) =
b(∞, n). This cross-section is equal to the cross-section, given in [2, Theorem 1].
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There is an analogue of this formula, which defines continuous linear cross-
section in the case when F is an union of finite number of closed and invariant
subsets of X.

Suppose that F1, F2, . . . , Fn are closed and invariant subsets of X and F =
n⋃

i=1

Fi. For σ ⊂ {1, 2, . . . , n}, define rank(σ) to be the number of the elements of

σ and denote Fσ =
⋂
i∈σ

Fi. Let λσ : X −→Fσ be continuous contractions, such that

λσ∪τ = λσ ◦ λτ for all σ, τ ⊂ {1, 2, . . . , n}.

Theorem 3.2. In the above notations, the map ψ given by the formula

ψ(b)(x, n) =
∑

∅ ̸=σ⊂{1,2,...,n}

(−1)rank(σ)+1b(λσ(x), n), b ∈ Cc

(
G|F

)
is a continuous cross-section.

Proof. Let us choose x ∈ F . We may think that x ∈ F1. In this case we have
λ1(x) = x. We have to prove that ψ(b)(x, n) = b(x, n), i. e. ψ is an extension.

We will show that an appropriate grouping of the terms of the right hand sum
annihilate each other, and there will remain only one term, namely b(λ1(x), n) =
b(x, n).

Let σ ⊂ {1, 2, . . . , n}. In the case when 1 /∈ σ, we choose ρ = σ ∪ {1}. We
have rank(ρ) = rank(σ) + 1 and λρ(x) = λσ∪{1} = λσ ◦ λ1(x) = λσ(x). So the
terms, corresponding to σ and ρ have equal values and opposite signs and therefore
annihilate.

In the case when 1 ∈ σ, we choose τ = σ \ {1}. Again the terms, corresponding
to σ and τ have equal values and opposite signs and therefore annihilate. Thus we
see, that only one term stays on the right hand side, namely b(λ1(x), n) = b(x, n).
So the map ψ is a continuous cross-section.

Example 3.2. Let G = Z2, and P = (Z+)
2 be the subsemigroup of the integer

valued points in the first quarterplane. Define Y =
(
Z∪{∞}

)2. F is the C∗-algebra
of Toeplitz operators on the quarterplane, investigated in [3].

There is an obvious embedding i : G ↪→ Y . Let G act as translations on the
i-th coordinate yi of y ∈ Y when yi is a finite number, and let ∞ remain fixed. Put
X = clos(i(P )) =

(
Z+∪{∞}

)n. Define the groupoid G = (Y ×G)|X. For σ ⊂ {1, 2}
define

Fσ = {x ∈ X : xj = ∞ for j ∈ σ}.

Orbits in X are

F{1} = {x = (∞, x2) : x2 ∈ Z+ ∪ {∞}},
F{2} = {x = (x1,∞) : x1 ∈ Z+ ∪ {∞}},
F{1,2} = {x = (∞,∞)}.
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Define the contractions

λ1 : (x1, x2) 7→ (∞, x2),

λ2 : (x1, x2) 7→ (x1,∞),

λ1,2 : (x1, x2) 7→ (∞,∞).

The cross-section ψ in this example is given by the formula

ψb(x1, x2) = b(∞, x2) + b(x1,∞)− b(∞,∞).

This cross-section is equal to the cross-section given in [8, Prop. 2.2].
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