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In the present paper the authors consider the so-called (Vilℬ𝑠 ;𝛼; 𝛾)-diaphony as a suit-
able tool to investigate sequences constructed in arbitrary Cantor systems. The defini-
tion of this kind of the diaphony is based on using Vilenkin function system and depends
on two arguments – a vector 𝛼 of exponential parameters and a vector 𝛾 of coordinate
weights. This diaphony is used to investigate the distribution of the points of the Van
der Corput sequence 𝜔𝐵 constructed in the same 𝐵-adic Cantor system. In this way a
process of synchronization between the technique of a construction of the sequence 𝜔𝐵

and the tool of its studying is realized. Upper and low bounds of the (Vil𝐵 ;𝛼)-diaphony
of the sequence 𝜔𝐵 are presented. This permit us to show the influence of the exponen-
tial parameter 𝛼 to the exact order of the (Vil𝐵 ;𝛼)-diaphony of this sequence. When

𝛼 = 2 the exact order is 𝒪
(︂√

log𝑁

𝑁

)︂
and when 𝛼 > 2 the exact order is 𝒪

(︂
1

𝑁

)︂
.

Keywords: Cantor number systems, Van der Corput sequence constructed in Cantor
systems, Vilenkin function system, (Vil𝐵 ;𝛼)-diaphony, exact orders

2020 Mathematics Subject Classification: Primary: 11K06; Secondary: 11K31,
11K36, 11K38, 11K45, 65C05, 65C20

1. Introduction

Let 𝑠 ≥ 1 be a fixed integer which will denote the dimension through the paper.
Following Kuipers and Niederreiter [17] we will remind the concept of uniformly
distributed sequence. Let 𝜉 = (x𝑛)𝑛≥0 be an arbitrary sequence of points in the
unit cube [0, 1)𝑠. Let 𝐽 be an arbitrary subinterval of [0, 1)𝑠 with Lebesque measure
𝜇(𝐽). For an arbitrary integer 𝑁 ≥ 1 let us denote 𝐴𝑁 (𝐽 ; 𝜉) = #{𝑛 : 0 ≤ 𝑛 ≤
𝑁 − 1,x𝑛 ∈ 𝐽}.
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The sequence 𝜉 is called uniformly distributed in [0, 1)𝑠 if the limit equality
lim

𝑁→∞
𝐴𝑁 (𝐽;𝜉)

𝑁 = 𝜇(𝐽) holds for each subinterval 𝐽 of [0, 1)𝑠.
Some classes of complete orthonormal function systems are used as an analytical

tools for studying the distribution of the points of sequences.
For an arbitrary integer 𝑘 the function 𝑒𝑘 : [0, 1) → C is defined as 𝑒𝑘(𝑥) =

𝑒2𝜋i𝑘𝑥, 𝑥 ∈ [0, 1). For an arbitrary vector k = (𝑘1, . . . , 𝑘𝑠) ∈ Z𝑠 the function

𝑒k : [0, 1)
𝑠 → C is defined as 𝑒k(x) =

𝑠∏︀
𝑗=1

𝑒𝑘𝑗
(𝑥𝑗), x = (𝑥1, . . . , 𝑥𝑠) ∈ [0, 1)𝑠. The set

𝒯𝑠 = {𝑒k(x) : k ∈ Z𝑠, x ∈ [0, 1)𝑠} is called trigonometric function system.
Let 𝑏 ≥ 2 be a fixed integer. The so-called Walsh functions in base 𝑏 are defined

in the following manner: For an arbitrary integer 𝑘 ≥ 0 and a real 𝑥 ∈ [0, 1) with

the 𝑏-adic representations 𝑘 =
𝜈∑︀

𝑖=0

𝑘𝑖𝑏𝑖 and 𝑥 =
∞∑︀
𝑖=0

𝑥𝑖𝑏
−𝑖−1, where 𝑘𝑖, 𝑥𝑖 ∈ {0, 1, . . . ,

𝑏−1}, 𝑘𝜈 ̸= 0 and for infinitely many values of 𝑖 we have 𝑥𝑖 ̸= 𝑏−1, the corresponding
𝑘-th Walsh function 𝑏wal𝑘 : [0, 1) → C is defined as 𝑏wal𝑘(𝑥) = 𝑒

2𝜋i
𝑏 (𝑘0𝑥0+···+𝑘𝜈𝑥𝜈).

Let us denote N0 = N ∪ {0}. For an arbitrary vector k = (𝑘1, . . . , 𝑘𝑠) ∈ N𝑠
0

the k-th function of Walsh in base 𝑏 is defined as 𝑏walk(x) =
𝑠∏︀

𝑗=1
𝑏wal𝑘𝑗

(𝑥𝑗), x =

(𝑥1, . . . , 𝑥𝑠) ∈ [0, 1)𝑠. The set 𝒲(𝑏) = {𝑏walk(x) : k ∈ N𝑠
0, x ∈ [0, 1)𝑠} is called

the system of the Walsh functions in base 𝑏. In 1923 Walsh [24] defined the Walsh
functions in base 𝑏 = 2 and in 1955 Chrestenson [6] consider the Walsh functions in
arbitrary base 𝑏 ≥ 2.

In 2011 Hallekalek and Niederreiter [16] introduced the concept of the so-called
𝑏-adic function system. So, let the base 𝑏, the arbitrary integer 𝑘 ∈ N0 and the real
𝑥 ∈ [0, 1) be as above. Then, the corresponding 𝑘-th 𝑏-adic function 𝑏𝛾𝑘 : [0, 1) → C
is defined as

𝑏𝛾𝑘(𝑥) = 𝑒2𝜋i(
𝑘0
𝑏 +

𝑘1
𝑏2

+···+ 𝑘𝜈
𝑏𝜈+1 )(𝑥0+𝑥1𝑏+𝑥2𝑏

2+··· ).

For an arbitrary vector k = (𝑘1, . . . , 𝑘𝑠) ∈ N𝑠
0 the k-th 𝑏-adic function is defined as

𝑏𝛾k(x) =
𝑠∏︀

𝑗=1
𝑏𝛾𝑘𝑗

(𝑥𝑗), x = (𝑥1, . . . , 𝑥𝑠) ∈ [0, 1)𝑠. The set Γ𝑏 = {𝑏𝛾k(x) : k ∈ N𝑠
0,

x ∈ [0, 1)𝑠} is called 𝑏-adic function system.
First in 2010 Hallekalek [13] introduced the concept of the so-called Γp function

system. So, let p = (𝑝1, . . . , 𝑝𝑠) ∈ N𝑠
0 be an arbitrary vector of not distinct different

prime numbers. For an arbitrary vector k = (𝑘1, . . . , 𝑘𝑠) ∈ N𝑠
0 the k-th p-adic func-

tion is defined as p𝛾k(x) =
𝑠∏︀

𝑗=1
𝑝𝑗
𝛾𝑘𝑗

(𝑥𝑗), x = (𝑥1, . . . , 𝑥𝑠) ∈ [0, 1)𝑠. The function

system Γp is defined as Γp = {p𝛾k(x) : k ∈ N𝑠
0, x ∈ [0, 1)𝑠}.

Baycheva and Grozdanov [4] made a chronological survey of the diaphony as
a quantitative measure for the irregularity of the distribution of sequences. Some
reasons, related to the practice of the Quasi-Monte Carlo integration in weighted
reproducing kernel Hilbert spaces are used, to present the different version of the
diaphony. Special attention is devoted to the hybrid version of the diaphony, as
quantitative measure for studying classes of hybrid sequences and nets. So, we
will remind some kinds of the diaphony. In 1976 Zinterhof [25] proposed the first
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example of the diaphony, which today is called a classical diaphony. The concept of
the classical diaphony is based on using the trigonometric function system 𝒯𝑠. So,
for an arbitrary integer 𝑁 ≥ 1 the diaphony 𝐹𝑁 (𝒯𝑠; 𝜉) of the first 𝑁 elements of the
sequence 𝜉 = (x𝑛)𝑛≥0 of points in [0, 1)𝑠 is defined as

𝐹𝑁 (𝒯𝑠; 𝜉) =

⎛⎝ ∑︁
k∈Z𝑠∖{0}

𝑅−2(k)

⃒⃒⃒⃒
⃒ 1𝑁

𝑁−1∑︁
𝑛=0

𝑒k(x𝑛)

⃒⃒⃒⃒
⃒
2
⎞⎠ 1

2

,

where for each vector k = (𝑘1, . . . , 𝑘𝑠) ∈ Z𝑠 the coefficient 𝑅(k) =
𝑠∏︀

𝑗=1

𝑅(𝑘𝑗) and for

an arbitrary integer 𝑘 the coefficient 𝑅(𝑘) is defined as

𝑅(𝑘) =

{︃
1, if 𝑘 = 0,
|𝑘|, if 𝑘 ̸= 0.

In 1997 Hellekalek and Leeb [15] used the system 𝒲(2) of Walsh functions
to define the so-called dyadic diaphony. In 2001 Grozdanov and Stoilova [9, 10]
generalized the concept of the dyadic diaphony to the notion of the 𝑏-adic diaphony.
So, for an arbitrary integer 𝑁 ≥ 1 the 𝑏-adic diaphony 𝐹𝑁 (𝒲(𝑏); 𝜉) of the first 𝑁
elements of the sequence 𝜉 = (x𝑛)𝑛≥0 of points in [0, 1)𝑠 is defined as

𝐹𝑁 (𝒲(𝑏); 𝜉) =

⎛⎝ 1

(𝑏+ 1)𝑠 − 1

∑︁
k∈N𝑠

0∖{0}

𝜌(k)

⃒⃒⃒⃒
⃒ 1𝑁

𝑁−1∑︁
𝑛=0

𝑏walk(x𝑛)

⃒⃒⃒⃒
⃒
2
⎞⎠ 1

2

,

where for each vector k = (𝑘1, . . . , 𝑘𝑠) ∈ N𝑠
0 the coefficient 𝜌(k) =

𝑠∏︀
𝑗=1

𝜌(𝑘𝑗) and for

an arbitrary integer 𝑘 ≥ 0

𝜌(𝑘) =

{︃
1, if 𝑘 = 0,
𝑏−2𝑔, if 𝑏𝑔 ≤ 𝑘 < 𝑏𝑔+1, 𝑔 ≥ 0, 𝑔 ∈ Z.

In 2010 Hallekalek [13] introduced the notion of the so-called p-adic diaphony,
which is based on using the system Γp. So, for an arbitrary integer 𝑁 ≥ 1 the p-adic
diaphony 𝐹𝑁 (Γp; 𝜉) of the first 𝑁 elements of the sequence 𝜉 = (x𝑛)𝑛≥0 of points in
[0, 1)𝑠 is defined as

𝐹𝑁 (Γp; 𝜉) =

⎛⎝ 1

𝜎p − 1

∑︁
k∈N𝑠

0∖{0}

𝜌p(k)

⃒⃒⃒⃒
⃒ 1𝑁

𝑁−1∑︁
𝑛=0

p𝛾k(x𝑛)

⃒⃒⃒⃒
⃒
2
⎞⎠ 1

2

,

where for each vector k = (𝑘1, . . . , 𝑘𝑠) ∈ N𝑠
0 the coefficient 𝜌p(k) =

𝑠∏︀
𝑗=1

𝜌𝑝𝑗
(𝑘𝑗) and

for an arbitrary integer 𝑘 ≥ 0 and a prime 𝑝

𝜌𝑝(𝑘) =

{︃
1, if 𝑘 = 0,
𝑝−2𝑔, if 𝑝𝑔 ≤ 𝑘 < 𝑝𝑔+1, 𝑔 ≥ 0, 𝑔 ∈ Z.
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Here, the quantity 𝜎p is defined as 𝜎p =
𝑠∏︀

𝑗=1

(𝑝𝑗 + 1).

Hallekalek [14] constructed the so-called hybrid function system, which is a
tensor product of the trigonometric system, the system of Walsh function in base 𝑏
and the 𝑏-adic function system. This function system is used to introduce the hybrid
version of the diaphony.

2. The Vilenkin function system and the (Vilℬ𝑠
;𝛼; 𝛾)-diaphony

We will present the constructive principle of the so-called Cantor systems.
They are natural generalizations of the ordinary 𝑏-adic number system. Let 𝐵 =
{𝑏0, 𝑏1, 𝑏2, . . . : 𝑏𝑖 ≥ 2 for 𝑖 ≥ 0} be given sequence of integers. By using the se-
quence 𝐵, the so-called generalized powers are defined by the next recursive equal-
ities: 𝐵0 = 1 and for 𝑗 ≥ 0 we put 𝐵𝑗+1 = 𝐵𝑗 .𝑏𝑗 . For this system we will use the
name 𝐵-adic system.

An arbitrary integer 𝑘 ≥ 0 and a real 𝑥 ∈ [0, 1) in the 𝐵-adic system have

representations of the form 𝑘 =
𝜈∑︀

𝑖=0

𝑘𝑖𝐵𝑖 and 𝑥 =
∞∑︀
𝑖=0

𝑥𝑖

𝐵𝑖+1
, where for 𝑖 ≥ 0 𝑘𝑖, 𝑥𝑖 ∈

{0, 1, . . . , 𝑏𝑖 − 1} and 𝑘𝜈 ̸= 0. This representation of 𝑘 is unique. In additional
condition that for infinitely many 𝑖 we have that 𝑥𝑖 ̸= 𝑏𝑖 − 1 the representation of 𝑥
is also unique.

Vilenkin [23] proposed new orthonormal function system defined in 𝐵-adic sys-
tem. We will remind the construction of the functions of this system.

Definition 2.1. For an arbitrary integer 𝑘 ≥ 0 and a real 𝑥 ∈ [0, 1) with

the 𝐵-adic representations of the form 𝑘 =
𝜈∑︀

𝑖=0

𝑘𝑖𝐵𝑖 and 𝑥 =
∞∑︀
𝑖=0

𝑥𝑖

𝐵𝑖+1
, where for

𝑖 ≥ 0, 𝑘𝑖, 𝑥𝑖 ∈ {0, 1, . . . , 𝑏𝑖 − 1}, 𝑘𝜈 ̸= 0 and for infinitely many values of 𝑖 we have
𝑥𝑖 ̸= 𝑏𝑖 − 1, the 𝑘-th Vilenkin function 𝐵Vil𝑘 : [0, 1) → C is defined as

𝐵Vil𝑘(𝑥) =

𝜈∏︁
𝑖=0

𝑒
2𝜋i
𝑏𝑖

𝑘𝑖𝑥𝑖 .

Now, we will give the multidimensional version of the Vilenkin functions. For
this purpose, for 1 ≤ 𝑗 ≤ 𝑠 let 𝐵𝑗 = {𝑏(𝑗)0 , 𝑏

(𝑗)
1 , 𝑏

(𝑗)
2 , . . . : 𝑏

(𝑗)
𝑖 ≥ 2 for 𝑖 ≥ 0} be given

𝑠 sequences of integer numbers. Let us signify ℬ𝑠 = (𝐵1, . . . , 𝐵𝑠). The multidimen-
sional Vilenkin functions are defined in the following manner:

Definition 2.2. For an arbitrary vector k = (𝑘1, . . . , 𝑘𝑠) ∈ N𝑠
0 the k-th function

of Vilenkin ℬ𝑠
Vilk : [0, 1)

𝑠 → C is defined as ℬ𝑠
Vilk(x) =

𝑠∏︀
𝑗=1

𝐵𝑗
Vil𝑘𝑗

(𝑥𝑗), x =

(𝑥1, . . . , 𝑥𝑠) ∈ [0, 1)𝑠. The set Vilℬ𝑠
= {𝐵𝑠

Vilk(x) : k ∈ N𝑠
0, x ∈ [0, 1)𝑠} is called

multidimensional Vilenkin function system.

In 1947 the function system Vilℬ𝑠
was introduced by Vilenkin [23] and in 1957

independently from him this system was proposed by Price [18]. Some names are
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used about the system Vilℬ𝑠 in the literature: both Price system, see Agaev et al. [1]
and Vilenkin system, see Schipp, Wade and Simon [21]. For the system Vilℬ𝑠

the
name multiplicative system is also used. In this work we will use the name Vilenkin
function system.

Now, we will remind the concept of the so-called (Vilℬ𝑠
;𝛼; 𝛾)-diaphony. Bay-

cheva and Grozdanov [2, 3] introduced the general concept of the so-called hybrid
weighted diaphony. The construction of this diaphony is closely related to the worst-
case error of the integration in reproducing kernel Hilbert spaces. These Hilbert
spaces are characterized by two arguments. The first is a vector 𝛼 = (𝛼1, . . . , 𝛼𝑠),
where 𝛼𝑗 > 1 for 1 ≤ 𝑗 ≤ 𝑠 of exponential parameters. They determine the rate
of inclining to zero of the Fourier’s coefficients of the functions of this class. The
second one is a vector 𝛾 = (𝛾1, . . . , 𝛾𝑠), where 𝛾1 ≥ 𝛾2 ≥ · · · ≥ 𝛾𝑠 > 0, of coordinate
weights. They determine the dependence of the functions on their arguments. These
two arguments 𝛼 and 𝛾 are used to define the diaphony. In this way the worst-case
error and the diaphony are connected.

On other side, the definition of the diaphony is based on using some concrete
orthonormal function system. For example the definition of the hybrid weighted
diaphony is based on using special kind of a hybrid function system.

Here in our work we will present very special kind of the hybrid weighted
diaphony. The hybrid function system will be replaced by the system Vilℬ𝑠

of the
Vilenkin functions. The details are as follows: Let 𝐵 be an arbitrary sequence of
bases and {𝐵0, 𝐵1, 𝐵2, . . . } be the corresponding sequence of generalized powers.
For arbitrary reals 𝛼 > 1, 𝛾 > 0 and an arbitrary integer 𝑘 ≥ 0 let us define the
coefficient

𝜌(𝐵;𝛼; 𝛾; 𝑘) =

{︃
1, if 𝑘 = 0,
𝛾/𝐵𝛼

𝑔 , if 𝐵𝑔 ≤ 𝑘 ≤ 𝐵𝑔+1 − 1, 𝑔 ≥ 0, 𝑔 ∈ 𝑍.

For an arbitrary vector k = (𝑘1, . . . , 𝑘𝑠) ∈ N𝑠
0 by using the set ℬ𝑠 let us define

the coefficient

𝑅(ℬ𝑠;𝛼; 𝛾;k) =

𝑠∏︁
𝑗=1

𝜌(𝐵𝑗 ;𝛼𝑗 ; 𝛾𝑗 ; 𝑘𝑗). (2.1)

Let us define the constant

𝐶(ℬ𝑠;𝛼; 𝛾) =
∑︁

k∈N𝑠
0∖{0}

𝑅(ℬ𝑠;𝛼; 𝛾;k). (2.2)

We have that 𝐶(ℬ𝑠;𝛼; 𝛾) =
𝑠∏︀

𝑗=1

[1 + 𝛾𝑗 · 𝜇(𝐵𝑗 ;𝛼𝑗)]−1, where 𝜇(𝐵;𝛼) =
∞∑︀
𝑔=0

𝑏𝑔 − 1

𝐵𝛼
𝑔 − 1

.

Definition 2.3. For an arbitrary integer 𝑁 ≥ 1 the weighted (Vilℬ𝑠
;𝛼; 𝛾)-

diaphony of the first 𝑁 elements of the sequence 𝜉 = (x𝑛)𝑛≥0 of points in [0, 1)𝑠 is
defined as

𝐹𝑁 (Vilℬ𝑠 ;𝛼; 𝛾; 𝜉) =

⎛⎝ 1

𝐶(ℬ𝑠;𝛼; 𝛾)

∑︁
k∈N𝑠

0∖{0}

𝑅(ℬ𝑠;𝛼; 𝛾;k)

⃒⃒⃒⃒
⃒ 1𝑁

𝑁−1∑︁
𝑛=0

ℬ𝑠Vilk(x𝑛)

⃒⃒⃒⃒
⃒
2
⎞⎠ 1

2

,
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where for an arbitrary vector k ∈ N𝑠
0 the coefficient 𝑅(ℬ𝑠;𝛼; 𝛾;k) is defined by

equality (2.1) and the constant 𝐶(ℬ𝑠;𝛼; 𝛾) by equality (2.2).

In the case when 𝛼 = 2 = (2, . . . , 2) and 𝛾 = 1 = (1, . . . , 1) the (Vilℬ𝑠
;2;1)-

diaphony was introduced by Grozdanov and Stoilova [11].
It is well-known fact that the sequence 𝜉 is uniformly distributed in [0, 1)𝑠 if

and only if the limit equality lim
𝑁→∞

𝐹𝑁 (Vilℬ𝑠 ;𝛼; 𝛾; 𝜉) = 0 holds for each choice of the
vectors 𝛼 and 𝛾.

We note the fact that in the one-dimensional case the coordinate weight 𝛾
from Definition 2.3 is canceled. This gives us the right in the place of the no-
tion of (Vil𝐵 ;𝛼; 𝛾)-diaphony 𝐹𝑁 (Vil𝐵 ;𝛼; 𝛾; 𝜉) of the sequence 𝜉 to use the notion of
(Vil𝐵 ;𝛼)-diaphony and the denotation 𝐹𝑁 (Vil𝐵 ;𝛼; 𝜉). We will follow this significa-
tion to the end of our work.

The sequence of Van der Corput is a classical example of well uniformly dis-
tributed sequence, which has a long history and many generalization related to
different purposes. Bednařik et al. [5] consider the construction of this sequence, as
also its multidimensional version, in Cantor systems. So, following their idea we will
remind the concept of this sequence. Let 𝐵 be the sequence as above.

Definition 2.4. For an arbitrary integer 𝑛 ≥ 0 which has the 𝐵-adic represen-
tation

𝑛 = 𝑛𝑚𝐵𝑚 + 𝑛𝑚−1𝐵𝑚−1 + · · ·+ 𝑛1𝐵1 + 𝑛0𝐵0,

where 𝑛𝑖 ∈ {0, 1, . . . , 𝑏𝑖 − 1} for 0 ≤ 𝑖 ≤ 𝑚 and 𝑛𝑚 ̸= 0, we put

𝑝𝐵(𝑛) =
𝑛0

𝐵1
+

𝑛1

𝐵2
+ · · ·+ 𝑛𝑚

𝐵𝑚+1
.

The sequence 𝜔𝐵 = (𝑝𝐵(𝑛))𝑛≥0 is called Van der Corput sequence constructed
in the 𝐵-adic Cantor system.

Let the sequence 𝐵 of bases is 𝐵 = {𝑏, 𝑏, . . . : 𝑏 ≥ 2}, i.e. all bases are equal to
𝑏. In this case the sequence 𝜔𝑏 = (𝑝𝑏(𝑛))𝑛≥0 is obtained. If the base 𝑏 = 2, then we
find the classical Van der Corput [22] sequence 𝜔2 = (𝑝2(𝑛))𝑛≥0.

In 1960 Halton [12] used pairwise coprime integers 𝑏1, . . . , 𝑏𝑠 to construct the
sequence ((𝑝𝑏1(𝑛), . . . , 𝑝𝑏𝑠(𝑛)))𝑛≥0, which is the 𝑠-dimensional version of the Van der
Corput sequence.

Faure [7, 8] developed an another approach to generalize the construction of
the Van der Corput sequence. He proposed to include permutations chosen either
deterministically or randomly in the radical-inverse function.

In 1987 Proinov and Grozdanov [19,20] investigated the diaphony 𝐹𝑁 (𝒯𝑠;𝜔𝑏) of
the Van der Corput sequence. It is shown that the classical diaphony of the sequence

𝜔𝑏 has an exact order 𝒪
(︂√

log𝑁

𝑁

)︂
. In 2001 Grozdanov and Stoilova [10] showed

that the 𝑏-adic diaphony 𝐹𝑁 (𝒲(𝑏);𝜔𝑏) has an exact order 𝒪
(︂√

log𝑁

𝑁

)︂
.
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3. Statements of the results

Now, we will present the main results of the paper. In Theorem 3.1 an upper
bound of the (Vil𝐵 ;𝛼)-diaphony of the sequence 𝜔𝐵 is presented. This bound permits
us to obtain the asymptotic behaviour depending on the exponential parameter 𝛼
of the (Vil𝐵 ;𝛼)-diaphony of the sequence 𝜔𝐵 .

Theorem 3.1. Let us assume that the sequence 𝐵 of bases is limited from
above, i.e. there exists a constant 𝑀 such that for each 𝑖 ≥ 0 we have 𝑏𝑖 ≤ 𝑀 . Let
𝑁 ≥ 1 be an arbitrary integer which in the 𝐵-adic system has a representation of
the form

𝑁 = 𝑎1𝐵𝜈1
+ 𝑎2𝐵𝜈2

+ · · ·+ 𝑎𝑡𝐵𝜈𝑡
,

where 𝜈1 > 𝜈2 > · · · > 𝜈𝑡 ≥ 0 and 𝑎𝑖 ∈ {1, 2, . . . , 𝑏𝑖 − 1} for 1 ≤ 𝑖 ≤ 𝑡. Let the
exponential parameter 𝛼 ≥ 2. Then, the following holds:

(i) (an upper bound) The (Vil𝐵 ;𝛼)-diaphony of the sequence 𝜔𝐵 satisfies the
inequality

[𝑁 · 𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵)]
2

≤ 1

𝜇(𝐵;𝛼)

[︃(︂
2𝛼+2

2𝛼 − 2

)︂2

𝑀4 − 𝑀2𝛼 −𝑀𝛼+1 +𝑀𝛼 − 1

(𝑀𝛼 − 1)(𝑀𝛼 −𝑀)

]︃
𝑡∑︁

𝑖=1

𝐵2−𝛼
𝜈𝑖

;

(ii) (an asymptotic behaviour) The (Vil𝐵 ;𝛼; 𝛾)-diaphony of the sequence 𝜔𝐵

has the following asymptotic behaviour:

(ii1) If 𝛼 = 2, then 𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵) ∈ 𝒪
(︂√

log𝑁

𝑁

)︂
;

(ii2) If 𝛼 > 2, then 𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵) ∈ 𝒪
(︂

1

𝑁

)︂
.

Let us note the fact that the quantity
𝑡∑︀

𝑖=1

𝐵2−𝛼
𝜈𝑖

gives the orders of the (Vil𝐵 ;𝛼; 𝛾)-

diaphony of the sequence 𝜔𝐵 . The main sense of this quantity is that it shows the
influence of the exponential parameter 𝛼 to these orders. This result shows the im-
portance of the parameter 𝛼 to the orders of the considered diaphony. The authors
think that this is the priority of using the parameter 𝛼 to obtain the wide spectrum
of the orders of the (Vil𝐵 ;𝛼)-diaphony of the sequence 𝜔𝐵 .

We also note the fact that Grozdanov and Stoilova [11] obtain the order

𝒪
(︂√

log𝑁

𝑁

)︂
of the 𝐵-adic diaphony of the sequence 𝜔𝐵 . But in this result missing

the idea for the exponential parameter an only this order is obtained.
With a purpose to prove the exactness of the obtained in Theorem 3.1 orders, in

Theorem 3.2 a lower bound of the (Vil𝐵 ;𝛼)-diaphony of the sequence 𝜔𝐵 is presented.
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Theorem 3.2. Let us assume that the sequence 𝐵 of bases is limited from
above, i.e. there exists a constant 𝑀 such that for each 𝑖 ≥ 0 we have 𝑏𝑖 ≤ 𝑀 . Let
𝑁 ≥ 1 be an arbitrary integer with the 𝐵-adic representation of the form

𝑁 = 101 . . . 101,

where the number of the ones is exactly 𝑟 and 𝑟 ≥ 2. Let the exponential parameter
𝛼 ≥ 2. Then, the following holds:

(i) (a lower bound) For infinitely many values of 𝑁 of the above form the
(Vil𝐵 ;𝛼)-diaphony of the sequence 𝜔𝐵 satisfies the inequality

[𝑁 · 𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵)]
2 >

1

𝑀6𝜇(𝐵;𝛼)

𝑟−2∑︁
ℎ=0

𝐵2−𝛼
2ℎ+1;

(ii) (an asymptotic inclusions) The (Vil𝐵 ;𝛼)-diaphony of the sequence 𝜔𝐵 has
the following asymptotic inclusions:

(ii1) If 𝛼 = 2, then 𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵) ∈ Ω

(︂√
log𝑁

𝑁

)︂
;

(ii2) If 𝛼 > 2, then 𝐹𝑁 (Vil𝐵 ;𝛼; 𝜉𝐵) ∈ Ω

(︂
1

𝑁

)︂
.

We note the fact that the quantity
𝑟−2∑︀
ℎ=0

𝐵2−𝛼
2ℎ+1, which is related to the special

form of 𝑁 , again gives us the dependence of the exact orders of the (Vil𝐵 ;𝛼)-
diaphony of the sequence 𝜔𝐵 on the exponential parameter 𝛼. In this way the

exactness of the orders 𝒪
(︂√

log𝑁

𝑁

)︂
and 𝒪

(︂
1

𝑁

)︂
is proved.

4. Preliminary statements

To prove the main results of the paper we need to present some preliminary
statements, related to the exact value of the trigonometric sum of the sequence 𝜔𝐵

with respect to the functions of the Vilenkin system.

Lemma 4.1. Let 𝜔𝐵 = (𝑝𝐵(𝑛))𝑛≥0 be the sequence of Van der Corput con-
structed in the 𝐵-adic system. Let 𝑘 ≥ 1 be an arbitrary integer with the 𝐵-adic
representation

𝑘 = 𝑘1𝐵𝛼1
+ 𝑘2𝐵𝛼2

+ · · ·+ 𝑘𝑝𝐵𝛼𝑝
,

where 𝛼1 > 𝛼2 > · · · > 𝛼𝑝 ≥ 0 and 𝑘𝑗 ∈ {1, 2, . . . , 𝑏𝛼𝑗 − 1} for 1 ≤ 𝑗 ≤ 𝑝. Let 𝑁 be
an arbitrary integer with the 𝐵-adic representation

𝑁 = 𝑎1𝐵𝜈1
+ 𝑎2𝐵𝜈2

+ · · ·+ 𝑎𝑡𝐵𝜈𝑡
,



Ann. Sofia Univ., Fac. Math. and Inf., 109, 2022, 71–90 79

where 𝜈1 > 𝜈2 > · · · > 𝜈𝑡 ≥ 0 and 𝑎𝑗 ∈ {1, 2, . . . , 𝑏𝑗 − 1} for 1 ≤ 𝑗 ≤ 𝑡. Then, the
trigonometric sum of the sequence 𝜔𝐵 with respect to the functions of the Vilenkin
system satisfies the equalities⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

𝐵Vil𝑘(𝑝𝐵(𝑛))

⃒⃒⃒⃒
⃒

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝜈𝑡 > 𝛼𝑝,⃒⃒⃒⃒
𝑎𝑡−1∑︀
ℎ=0

𝑒
2𝜋i
𝑏𝛼𝑝

𝑘𝑝ℎ
⃒⃒⃒⃒
𝐵𝜈𝑡

, if 𝜈𝑡 = 𝛼𝑝,
𝑡∑︀

𝑗=𝑠+1

𝑎𝑗𝐵𝜈𝑗 , if there is some 𝑠,

1 < 𝑠 ≤ 𝑡− 1, 𝜈𝑠 > 𝛼𝑝 > 𝜈𝑠+1,⃒⃒⃒⃒
⃒𝑎𝑠−1∑︀
ℎ=0

𝑒
2𝜋i
𝑏𝜈𝑠

𝑘𝑝ℎ ·𝐵𝜈𝑠 + 𝑒
2𝜋i
𝑏𝜈𝑠

𝑘𝑝𝑎𝑠
𝑡∑︀

𝑗=𝑠+1

𝑎𝑗𝐵𝜈𝑗

⃒⃒⃒⃒
⃒ , if there is some 𝑠,

1 ≤ 𝑠 ≤ 𝑡− 1, 𝜈𝑠 = 𝛼𝑝 > 𝜈𝑠+1,

𝑁, if 𝛼𝑝 > 𝜈1;

Proof. For arbitrary integers 𝛼, 𝜈 ≥ 0 let us define the function

𝛿𝐵𝛼(𝜈) =

{︃
1, if 𝛼 ≥ 𝜈,
0, if 𝛼 < 𝜈.

First of all we will prove an useful equality. Let 𝜈 ≥ 0 and 𝑃 ≡ 0 (mod 𝐵𝜈) be
arbitrary and fixed integers. Then, for each integer 𝑘 as in the condition of the
Lemma, the equality holds⃒⃒⃒⃒

⃒
𝑃+𝐵𝜈−1∑︁

𝑛=𝑃

𝐵Vil𝑘(𝑝𝐵(𝑛))

⃒⃒⃒⃒
⃒ = 𝐵𝜈 · 𝛿𝐵𝛼𝑝

(𝜈). (4.1)

Really, let an arbitrary integer 𝑛, 𝑃 ≤ 𝑛 ≤ 𝑃 + 𝐵𝜈 − 1, have the 𝐵-adic
representation 𝑛 = 𝑛𝑞𝑛𝑞−1 . . . 𝑛𝜈𝑛𝜈−1𝑛𝜈−2 . . . 𝑛1𝑛0, where 𝑛𝑖 ∈ {0, 1, . . . , 𝑏𝑖 − 1} for
0 ≤ 𝑖 ≤ 𝑞. Here 𝑛𝑖, 0 ≤ 𝑖 ≤ 𝜈 − 1, are variable digits and 𝑛𝑖, 𝜈 ≤ 𝑗 ≤ 𝑞, are fixed
digits. Then, we have that 𝑝𝐵(𝑛) = 0.𝑛0𝑛1 . . . 𝑛𝜈−1𝑛𝜈 . . . 𝑛𝑞 and hence

𝑃+𝐵𝜈−1∑︁
𝑛=𝑃

𝐵Vil𝑘(𝑝𝐵(𝑛)) =

𝑏0−1∑︁
𝑛0=0

𝑏1−1∑︁
𝑛1=0

· · ·
𝑏𝜈−1−1∑︁
𝑛𝜈−1=0

𝑒
2𝜋i
𝑏𝛼𝑝

𝑘𝑝𝑛𝛼𝑝 ·𝑒
2𝜋i

𝑏𝛼𝑝−1
𝑘𝑝−1𝑛𝛼𝑝−1 · · · 𝑒

2𝜋i
𝑏𝛼1

𝑘1𝑛𝛼1.

(4.2)

Let us assume that 𝛼𝑝 ≤ 𝜈−1. Then, the corresponding sum
𝑏𝛼𝑝−1∑︀
𝑛𝛼𝑝=0

𝑒
2𝜋i
𝑏𝛼𝑝

𝑘𝑝𝑛𝛼𝑝=0

and from equality (4.2) we obtain that
𝑃+𝐵𝜈−1∑︀

𝑛=𝑃
𝐵Vil𝑘(𝑝𝐵(𝑛)) = 0.

Let us assume that 𝛼𝑝 ≥ 𝜈. Then, from equality (4.2) we obtain that
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⃒⃒⃒⃒
⃒
𝑃+𝐵𝜈−1∑︁

𝑛=𝑃

𝐵Vil𝑘(𝑝𝐵(𝑛))

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
𝑒

2𝜋i
𝑏𝛼𝑝

𝑘𝑝𝑛𝛼𝑝 · 𝑒
2𝜋i

𝑏𝛼𝑝−1
𝑘𝑝−1𝑛𝛼𝑝−1 · · · 𝑒

2𝜋i
𝑏𝛼1

𝑘1𝑛𝛼1

⃒⃒⃒⃒
·
𝑏0−1∑︁
𝑛0=0

1 · · ·
𝑏𝜈−1−1∑︁
𝑛𝜈−1=0

1 = 𝐵𝜈 .

According to the defined function 𝛿𝐵𝛼
(𝜈) the above two results can be written

as ⃒⃒⃒⃒
⃒
𝑃+𝐵𝜈−1∑︁

𝑛=𝑃

𝐵Vil𝑘(𝑝𝐵(𝑛))

⃒⃒⃒⃒
⃒ = 𝐵𝜈 · 𝛿𝐵𝛼𝑝

(𝜈).

Now, we can prove the statements of the Lemma. For this purpose let us
introduce the significations

𝑁0 = 0,

𝑁1 = 𝑎1𝐵𝜈1 ,

𝑁2 = 𝑎1𝐵𝜈1
+ 𝑎2𝐵𝜈2

,

. . . . . . . . . . . . . . . . . . . . . . . .

𝑁𝑡 = 𝑎1𝐵𝜈1
+ 𝑎2𝐵𝜈2

+ · · ·+ 𝑎𝑡𝐵𝜈𝑡
, so 𝑁𝑡 = 𝑁.

Then, for each integer 𝑘 ≥ 0 we have that

𝑁−1∑︁
𝑛=0

𝐵Vil𝑘(𝑝𝐵(𝑛)) =

𝑡−1∑︁
𝑗=0

𝑎𝑗+1−1∑︁
ℎ=0

𝑁𝑗+(ℎ+1)·𝐵𝜈𝑗+1
−1∑︁

𝑛=𝑁𝑗+ℎ·𝐵𝜈𝑗+1

𝐵Vil𝑘(𝑝𝐵(𝑛)). (4.3)

I. Let us assume that 𝜈𝑡 > 𝛼𝑝. From equality (4.1) for each integers 0 ≤ 𝑗 ≤ 𝑡−1

and 0 ≤ ℎ ≤ 𝑎𝑗+1−1 we have that
𝑁𝑗+(ℎ+1)·𝐵𝜈𝑗+1

−1∑︀
𝑛=𝑁𝑗+ℎ·𝐵𝜈𝑗+1

𝐵Vil𝑘(𝑝𝐵(𝑛)) = 0 and from (4.3)

we obtain that
𝑁−1∑︀
𝑛=0

𝐵Vil𝑘(𝑝𝐵(𝑛)) = 0.

II. Let us assume that 𝜈𝑡 = 𝛼𝑝. According to equality (4.1) for arbitrary integers

0 ≤ 𝑗 ≤ 𝑡−2 and 0 ≤ ℎ ≤ 𝑎𝑗+1−1 we have that
𝑁𝑗+(ℎ+1)·𝐵𝜈𝑗+1

−1∑︀
𝑛=𝑁𝑗+ℎ·𝐵𝜈𝑗+1

𝐵Vil𝑘(𝑝𝐵(𝑛)) = 0.

Let the integer ℎ such that 0 ≤ ℎ ≤ 𝑎𝑡 − 1 be fixed. Let an arbitrary integer 𝑛
such that 𝑁𝑡−1+ℎ ·𝐵𝜈𝑡 ≤ 𝑛 ≤ 𝑁𝑡−1+(ℎ+1) ·𝐵𝜈𝑡 −1 have the 𝐵-adic representation
𝑛 = 𝑛𝜇𝑛𝜇−1 . . . 𝑛𝜈𝑡+1ℎ𝑛𝜈𝑡−1 . . . 𝑛1𝑛0. Hence from (4.3) we obtain that⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

𝐵Vil𝑘(𝑝𝐵(𝑛))

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
𝑒

2𝜋i
𝑏𝛼𝑝−1

𝑘𝑝−1·𝑛𝛼𝑝−1 · · · 𝑒
2𝜋i
𝑏𝛼1

𝑘1·𝑛𝛼1

⃒⃒⃒⃒

×

⃒⃒⃒⃒
⃒
𝑎𝑡−1∑︁
ℎ=0

𝑒
2𝜋i
𝑏𝛼𝑝

𝑘𝑝·ℎ
⃒⃒⃒⃒
⃒ ·

𝑁𝑡−1+(ℎ+1)·𝐵𝜈𝑡−1∑︁
𝑛=𝑁𝑡−1+ℎ·𝐵𝜈𝑡

1 =

⃒⃒⃒⃒
⃒
𝑎𝑡−1∑︁
ℎ=0

𝑒
2𝜋i
𝑏𝛼𝑝

𝑘𝑝·ℎ
⃒⃒⃒⃒
⃒ ·𝐵𝜈𝑡 .
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III. Let us assume that there is some 𝑠, 1 < 𝑠 ≤ 𝑡−1, such that 𝜈𝑠 > 𝛼𝑝 > 𝜈𝑠+1.
For each fixed integer 𝑗, 0 ≤ 𝑗 ≤ 𝑠−1, we have that 𝜈𝑗+1 > 𝛼𝑝. Then, from (4.1) for

each fixed ℎ, 0 ≤ ℎ ≤ 𝑎𝑗+1−1, the equality holds
𝑁𝑗+(ℎ+1)·𝐵𝜈𝑗+1

−1∑︀
𝑛=𝑁𝑗+ℎ·𝐵𝜈𝑗+1

𝐵Vil𝑘(𝑝𝐵(𝑛)) = 0.

For each fixed integer 𝑗, 𝑠 ≤ 𝑗 ≤ 𝑡 − 1, the inequality 𝛼𝑝 > 𝜈𝑗+1 holds. Let
the integer ℎ, 0 ≤ ℎ ≤ 𝑎𝑗+1 − 1, be fixed. Then, an arbitrary integer 𝑛 such that
𝑁𝑗 + ℎ · 𝐵𝜈𝑗+1

≤ 𝑛 ≤ 𝑁𝑗 + (ℎ + 1) · 𝐵𝜈𝑗+1
− 1 has the 𝐵-adic representation of the

form
𝑛 = 𝑛𝜇 . . . 𝑛𝛼1 . . . 𝑛𝛼2 . . . 𝑛𝛼𝑝 . . . 𝑛𝜈𝑗+1+1ℎ𝑛𝜈𝑗+1−1 . . . 𝑛1𝑛0,

where 𝑛𝜈𝑗+1−1, . . . , 𝑛1, 𝑛0 are variable digits and 𝑛𝜈𝑗+1+1, . . . , 𝑛𝜇 are fixed digits.

Hence we obtain that 𝐵Vil𝑘(𝑝𝐵(𝑛)) =
𝑝∏︀

𝛽=1

𝑒
2𝜋i
𝑏𝛼𝛽

𝑘𝛽𝑛𝛼𝛽 .

Then, from (4.3) and the above suppositions we obtain that⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

𝐵Vil𝑘(𝑝𝐵(𝑛))

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒⃒ 𝑝∏︁
𝛽=1

𝑒
2𝜋i
𝑏𝛼𝛽

𝑘𝛽𝑛𝛼𝛽

⃒⃒⃒⃒
⃒⃒ · 𝑡−1∑︁

𝑗=𝑠

𝑎𝑗+1−1∑︁
ℎ=0

𝐵𝜈𝑗+1
=

𝑡−1∑︁
𝑗=𝑠

𝑎𝑗+1𝐵𝜈𝑗+1

=

𝑡∑︁
𝑗=𝑠+1

𝑎𝑗𝐵𝜈𝑗 .

IV. Let us assume that there is some 𝑠, 1 ≤ 𝑠 ≤ 𝑡−1, such that 𝜈𝑠 = 𝛼𝑝 > 𝜈𝑠+1.
According to equality (4.3) we will use the presentation

𝑁−1∑︁
𝑛=0

𝐵Vil𝑘(𝑝𝐵(𝑛)) =

𝑠−2∑︁
𝑗=0

𝑎𝑗+1−1∑︁
ℎ=0

𝑁𝑗+(ℎ+1)·𝐵𝜈𝑗+1
−1∑︁

𝑛=𝑁𝑗+ℎ·𝐵𝜈𝑗+1

𝐵Vil𝑘(𝑝𝐵(𝑛))

+

𝑎𝑠−1∑︁
ℎ=0

𝑁𝑠−1+(ℎ+1)·𝐵𝜈𝑠−1∑︁
𝑛=𝑁𝑠−1+ℎ·𝐵𝜈𝑠

𝐵Vil𝑘(𝑝𝐵(𝑛)) +

𝑡−1∑︁
𝑗=𝑠

𝑎𝑗+1−1∑︁
ℎ=0

𝑁𝑗+(ℎ+1)·𝐵𝜈𝑗+1
−1∑︁

𝑛=𝑁𝑗+ℎ·𝐵𝜈𝑗+1

𝐵Vil𝑘(𝑝𝐵(𝑛)).

(4.4)

For each 𝑗, 0 ≤ 𝑗 ≤ 𝑠− 2, the inequality 𝛼𝑝 < 𝜈𝑗+1 holds. Then, from (4.1) for

each fixed integer ℎ, 0 ≤ ℎ ≤ 𝑎𝑗+1−1, the equality
𝑁𝑗+(ℎ+1)·𝐵𝜈𝑗+1

−1∑︀
𝑛=𝑁𝑗+ℎ·𝐵𝜈𝑗+1

𝐵Vil𝑘(𝑝𝐵(𝑛)) = 0

holds.
It is obvious that 𝑁𝑠−1 has the 𝐵-adic representation of the form

𝑁𝑠−1 = 𝑎10 . . . 0𝑎20 . . . 0 . . . 𝑎𝑠−1 00 . . . 0⏟  ⏞  
𝜈𝑠−1

,

where for 1 ≤ 𝑞 ≤ 𝑠−1 the digit 𝑎𝑞 stays on the 𝜈𝑞-th position. Let ℎ, 0 ≤ ℎ ≤ 𝑎𝑠−1,
be a fixed integer. Then, an arbitrary integer 𝑛 such that 𝑁𝑠−1 + ℎ · 𝐵𝜈𝑠

≤ 𝑛 ≤
𝑁𝑠−1 + (ℎ+ 1)𝐵𝜈𝑠 − 1 has the 𝐵-adic representation of the form

𝑛 = 𝑎10 . . . 0𝑎20 . . . 0 . . . 𝑎𝑠−10 . . . 0ℎ𝑛𝜈𝑠−1𝑛𝜈𝑠−2 . . . 𝑛1𝑛0,
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hence 𝑝𝐵(𝑛) = 0.𝑛0𝑛1 . . . 𝑛𝜈𝑠−1ℎ0 . . . 0𝑎𝑠−1 . . . 0 . . . 0 . . . 𝑎1 and let us signify

𝑝𝐵(𝑛) = 0.𝑛0𝑛1 . . . 𝑛𝜈𝑠−1ℎ𝑛𝜈𝑠+1𝑛𝜈𝑠+2 . . . 𝑛𝜈1 . (4.5)

Then, we have that 𝐵Vil𝑘(𝑝𝐵(𝑛)) = 𝑒
2𝜋i
𝑏𝜈𝑠

𝑘𝑝ℎ
𝑝−1∏︀
𝑟=1

𝑒
2𝜋i
𝑏𝛼𝑟

𝑘𝑟𝑛𝛼𝑟 .

For each integer 𝑗, 𝑠 ≤ 𝑗 ≤ 𝑡− 1, the number 𝑁𝑗 has the 𝐵-adic representation
of the form 𝑁𝑗 = 𝑎10 . . . 0𝑎20 . . . 0 . . . 𝑎𝑠−10 . . . 0 . . . 𝑎𝑗 00 . . . 0⏟  ⏞  

𝜈𝑗

, where for 1 ≤ 𝑞 ≤ 𝑗

the digit 𝑎𝑞 stays on the 𝜈𝑞-th position. Let the index ℎ, 0 ≤ ℎ ≤ 𝑎𝑗+1 − 1, be fixed.
Then, an arbitrary integer 𝑛, 𝑁𝑗 + ℎ ·𝐵𝜈𝑗+1

≤ 𝑛 ≤ 𝑁𝑗 + (ℎ+ 1) ·𝐵𝜈𝑗+1
− 1, has the

𝐵-adic representation of the form

𝑛 = 𝑎10 . . . 0𝑎20 . . . 0 . . . 𝑎𝑠−10 . . . 0 . . . 𝑎𝑗0 . . . 0ℎ𝑛𝜈𝑗+1−1𝑛𝜈𝑗+1−2 . . . 𝑛1𝑛0.

Hence we have that 𝑝𝐵(𝑛) = 0.𝑛0𝑛1 . . . 𝑛𝜈𝑗+1−1ℎ0 . . . 0 . . . 𝑎𝑗0 . . . 0 . . . 𝑎1 and let us
signify

𝑝𝐵(𝑛) = 0.𝑛0𝑛1 . . . 𝑛𝜈𝑗+1−1ℎ𝑛𝜈𝑗+1+1𝑛𝜈𝑗+1+2 . . . 𝑛𝜈1
. (4.6)

Then, we obtain that 𝐵Vil𝑘(𝑝𝐵(𝑛)) = 𝑒
2𝜋i
𝑏𝜈𝑠

𝑘𝑝𝑎𝑠 ·
𝑝−1∏︀
𝑟=1

𝑒
2𝜋i
𝑏𝛼𝑟

𝑘𝑟𝑛𝛼𝑟 .

We note the important fact that for 𝜈𝑠 + 1 ≤ 𝑞 ≤ 𝜈1 the digits 𝑛𝑞 in the
presentations (4.5) and (4.6) are equal.

Hence from the presentation (4.4) and the above assumptions we obtain that⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

𝐵Vil𝑘(𝑝𝐵(𝑛))

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒
𝑝−1∏︁
𝑟=1

𝑒
2𝜋i
𝑏𝛼𝑟

𝑘𝑟𝑛𝛼𝑟

⃒⃒⃒⃒
⃒ ·
⃒⃒⃒⃒
⃒⃒𝑎𝑠−1∑︁
ℎ=0

𝑒
2𝜋i
𝑏𝜈𝑠

𝑘𝑝ℎ𝐵𝜈𝑠 + 𝑒
2𝜋i
𝑏𝜈𝑠

𝑘𝑝𝑎𝑠

𝑡−1∑︁
𝑗=𝑠

𝑎𝑗+1𝐵𝜈𝑗+1

⃒⃒⃒⃒
⃒⃒

=

⃒⃒⃒⃒
⃒⃒𝑎𝑠−1∑︁
ℎ=0

𝑒
2𝜋i
𝑏𝜈𝑠

𝑘𝑝ℎ𝐵𝜈𝑠 + 𝑒
2𝜋i
𝑏𝜈𝑠

𝑘𝑝𝑎𝑠

𝑡∑︁
𝑗=𝑠+1

𝑎𝑗𝐵𝜈𝑗

⃒⃒⃒⃒
⃒⃒ .

V. Let us assume that 𝛼𝑝 > 𝜈1. An arbitrary integer 𝑛, 0 ≤ 𝑛 ≤ 𝑁 − 1,
has the 𝐵-adic representation 𝑛 = 𝑛𝜈1𝑛𝜈1−1 . . . 𝑛𝜈2 . . . 𝑛𝜈𝑡𝑛𝜈𝑡−1 . . . 𝑛1𝑛0. This means
that on the positions biggest that 𝜈1 the digits of 𝑛 are equal to zero and hence

𝐵Vil𝑘(𝑝𝐵(𝑛)) =
𝑝∏︀

𝛽=0

𝑒
2𝜋i
𝑏𝛼𝛽

𝑘𝛽 ·0
= 1. This gives us that

𝑁−1∑︀
𝑛=0

𝐵Vil𝑘(𝑝𝐵(𝑛)) = 𝑁 .

By using the equalities presented in Lemma 4.1 it is easy to prove the following
result.

Corollary 4.1. Let 𝜔𝐵 = (𝑝𝐵(𝑛))𝑛≥0 be the Van der Corput sequence con-
structed in the 𝐵-adic system. Let 𝑘 and 𝑁 be as in the condition of Lemma 4.1.
Then, the trigonometric sum of the sequence 𝜔𝐵 with respect to the functions of the
Vilenkin system satisfies the inequality⃒⃒⃒⃒

⃒
𝑁−1∑︁
𝑛=0

𝐵Vil𝑘(𝑝𝐵(𝑛))

⃒⃒⃒⃒
⃒ ≤

𝑡∑︁
𝑖=1

𝑎𝑖𝐵𝜈𝑖𝛿𝐵𝛼𝑝
(𝜈𝑖).
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5. Proof of Theorem 3.1

(i) According to Definition 2.3 the (Vil𝐵 ;𝛼)-diaphony of the sequence 𝜔𝐵 sat-
isfies the equality

[𝑁 · 𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵)]
2
=

1

𝜇(𝐵;𝛼)

∞∑︁
𝑔=0

1

𝐵𝛼
𝑔

𝐵𝑔+1−1∑︁
𝑘=𝐵𝑔

⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

𝐵Vil𝑘(𝑝𝐵(𝑛))

⃒⃒⃒⃒
⃒
2

. (5.1)

For an arbitrary integer 𝑔 ≥ 0 let us introduce the set

𝐵(𝑔) = {𝑘 : 𝑘 = 𝑘𝑔𝐵𝑔, 𝑘𝑔 ∈ {1, 2, . . . , 𝑏𝑔 − 1}}.

For arbitrary integers 𝑔 ≥ 1 and 𝑞 such that 0 ≤ 𝑞 ≤ 𝑔 − 1 let us introduce the
set

𝐴(𝑔; 𝑞) = {𝑘 : 𝑘 = 𝑘𝑔𝐵𝑔 + 𝑘𝑔−1𝐵𝑔−1 + · · ·+ 𝑘𝑞+1𝐵𝑞+1 + 𝑘𝑞𝐵𝑞, 𝑘𝑔 ∈ {1, 2, . . . , 𝑏𝑔−1},
𝑘𝑞 ∈ {1, 2, . . . , 𝑏𝑞 − 1} for 𝑞 + 1 ≤ 𝑗 ≤ 𝑔 − 1, 𝑘𝑗 ∈ {0, 1, . . . , 𝑏𝑗 − 1}}.

The cardinalities |𝐵(𝑔)| = 𝑏𝑔 − 1 and |𝐴(𝑔; 𝑞)| = (𝑏𝑔 − 1)(𝑏𝑔−1 . . . 𝑏𝑞+1)(𝑏𝑞 − 1) hold.
In this way from the equality (5.1) we obtain that

[𝑁 · 𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵)]
2
=

1

𝜇(𝐵;𝛼)

⎡⎣ ∞∑︁
𝑔=0

1

𝐵𝛼
𝑔

∑︁
𝑘∈𝐵(𝑔)

⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

𝐵Vil𝑘(𝑝𝐵(𝑛))

⃒⃒⃒⃒
⃒
2

+

∞∑︁
𝑔=1

1

𝐵𝛼
𝑔

𝑔−1∑︁
𝑞=0

∑︁
𝑘∈𝐴(𝑔;𝑞)

⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

𝐵Vil𝑘(𝑝𝐵(𝑛))

⃒⃒⃒⃒
⃒
2
⎤⎦ =

1

𝜇(𝐵;𝛼)
(Σ1 +Σ2). (5.2)

Now, we will obtain upper bounds of the sums Σ1 and Σ2. According to the
statement of Corollary 4.1 we consecutively obtain the next results:

Σ1 =

∞∑︁
𝑔=0

1

𝐵𝛼
𝑔

∑︁
𝑘∈𝐵(𝑔)

⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

𝐵Vil𝑘(𝑃𝐵(𝑛))

⃒⃒⃒⃒
⃒
2

≤
∞∑︁
𝑔=0

1

𝐵𝛼
𝑔

∑︁
𝑘∈𝐵(𝑔)

⎡⎣2 𝑡∑︁
𝑖=1

𝑖∑︁
𝑗=1

𝑎𝑖𝑎𝑗𝐵𝜈𝑖
𝐵𝜈𝑗

𝛿𝐵𝑔
(𝜈𝑖)𝛿𝐵𝑔

(𝜈𝑗)−
𝑡∑︁

𝑖=1

𝑎2𝑖𝐵
2
𝜈𝑖
𝛿𝐵𝑔

(𝜈𝑖)

⎤⎦
= 2

𝑡∑︁
𝑖=1

𝑎𝑖𝐵𝜈𝑖

𝑖∑︁
𝑗=1

𝑎𝑗𝐵𝜈𝑗

∞∑︁
𝑔=0

1

𝐵𝛼
𝑔

𝛿𝐵𝑔 (𝜈𝑖)𝛿𝐵𝑔 (𝜈𝑗)
∑︁

𝑘∈𝐵(𝑔)

1

−
𝑡∑︁

𝑖=1

𝑎2𝑖𝐵
2
𝜈𝑖

∞∑︁
𝑔=0

1

𝐵𝛼
𝑔

𝛿𝐵𝑔 (𝜈𝑖)
∑︁

𝑘∈𝐵(𝑔)

1

≤ 2(𝑀 − 1)
3

𝑡∑︁
𝑖=1

𝐵𝜈𝑖

𝑖∑︁
𝑗=1

𝐵𝜈𝑗

∞∑︁
𝑔=0

1

𝐵𝛼
𝑔

𝛿𝐵𝑔
(𝜈𝑖)𝛿𝐵𝑔

(𝜈𝑗)−
𝑡∑︁

𝑖=1

𝐵2
𝜈𝑖

∞∑︁
𝑔=0

1

𝐵𝛼
𝑔

𝛿𝐵𝑔
(𝜈𝑖).

(5.3)
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The condition 𝑗 ≤ 𝑖 shows that 𝜈𝑗 ≥ 𝜈𝑖. If we put the condition 𝑔 ≥ 𝜈𝑗 we will
have that 𝑔 ≥ 𝜈𝑖 and 𝛿𝐵𝑔

(𝜈𝑖) ·𝛿𝐵𝑔
(𝜈𝑗) = 1. By analogy in the second sum of (5.3) we

put the condition 𝑔 ≥ 𝜈𝑖 and we will have that 𝛿𝐵𝑔 (𝜈𝑖) = 1. In this way from (5.3)
we obtain

Σ1 ≤ 2(𝑀 − 1)
3

𝑡∑︁
𝑖=1

𝐵𝜈𝑖

𝑖∑︁
𝑗=1

𝐵𝜈𝑗

∞∑︁
𝑔=𝜈𝑗

1

𝐵𝛼
𝑔

−
𝑡∑︁

𝑖=1

𝐵2
𝜈𝑖

∞∑︁
𝑔=𝜈𝑖

1

𝐵𝛼
𝑔

≤ 2(𝑀 − 1)
3 2𝛼

2𝛼 − 1

𝑡∑︁
𝑖=1

𝐵𝜈𝑖

𝑖∑︁
𝑗=1

1

𝐵𝛼−1
𝜈𝑗

− 𝑀𝛼

𝑀𝛼 − 1

𝑡∑︁
𝑖=1

𝐵2−𝛼
𝜈𝑖

≤ 2(𝑀 − 1)
3 2𝛼

2𝛼 − 1

𝑡∑︁
𝑖=1

𝐵𝜈𝑖

∞∑︁
𝑗=𝜈𝑖

1

𝐵𝛼−1
𝑗

− 𝑀𝛼

𝑀𝛼 − 1

𝑡∑︁
𝑖=1

𝐵2−𝛼
𝜈𝑖

≤ 2(𝑀 − 1)
3 2𝛼

2𝛼 − 1

2𝛼

2𝛼 − 2

𝑡∑︁
𝑖=1

𝐵2−𝛼
𝜈𝑖

− 𝑀𝛼

𝑀𝛼 − 1

𝑡∑︁
𝑖=1

𝐵2−𝛼
𝜈𝑖

=

[︂
2(𝑀 − 1)3

22𝛼

(2𝛼 − 1)(2𝛼 − 2)
− 𝑀𝛼

𝑀𝛼 − 1

]︂ 𝑡∑︁
𝑖=1

𝐵2−𝛼
𝜈𝑖

. (5.4)

We will use again the facts that the equalities 𝛿𝐵𝑔 (𝜈𝑖)𝛿𝐵𝑔 (𝜈𝑗) = 1 and 𝛿𝐵𝑔 (𝜈𝑖) =
1 hold for 𝑗 ≤ 𝑖 and 𝑔 ≥ 𝜈𝑗 . In this way, for the sum Σ2 we consecutively obtain the
next results:

Σ2 =

∞∑︁
𝑔=1

1

𝐵𝛼
𝑔

𝑔−1∑︁
𝑞=0

∑︁
𝑘∈𝐴(𝑔;𝑞)

⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

𝐵Vil𝑘(𝑝𝐵(𝑛))

⃒⃒⃒⃒
⃒
2

≤
∞∑︁
𝑔=1

1

𝐵𝛼
𝑔

𝑔−1∑︁
𝑞=0

∑︁
𝑘∈𝐴(𝑔;𝑞)

⎡⎣2 𝑡∑︁
𝑖=1

𝑖∑︁
𝑗=1

𝑎𝑖𝑎𝑗𝐵𝜈𝑖𝐵𝜈𝑗𝛿𝐵𝑞 (𝜈𝑖)𝛿𝐵𝑞 (𝜈𝑗)−
𝑡∑︁

𝑖=1

𝑎2𝑖𝐵
2
𝜈𝑖
𝛿𝐵𝑞 (𝜈𝑖)

⎤⎦
= 2

𝑡∑︁
𝑖=1

𝑎𝑖𝐵𝜈𝑖

𝑖∑︁
𝑗=1

𝑎𝑗𝐵𝜈𝑗

∞∑︁
𝑔=1

1

𝐵𝛼
𝑔

𝑔−1∑︁
𝑞=0

∑︁
𝑘∈𝐴(𝑔;𝑞)

𝛿𝐵𝑞
(𝜈𝑖)𝛿𝐵𝑞

(𝜈𝑗)

−
𝑡∑︁

𝑖=1

𝑎2𝑖𝐵
2
𝜈𝑖

∞∑︁
𝑔=1

1

𝐵𝛼
𝑔

𝑔−1∑︁
𝑞=0

∑︁
𝑘∈𝐴(𝑔;𝑞)

𝛿𝐵𝑞 (𝜈𝑖)

≤ 2(𝑀 − 1)
2

𝑡∑︁
𝑖=1

𝐵𝜈𝑖

𝑖∑︁
𝑗=1

𝐵𝜈𝑗

∞∑︁
𝑔=𝜈𝑗+1

1

𝐵𝛼
𝑔

𝑔−1∑︁
𝑞=𝜈𝑗

∑︁
𝑘∈𝐴(𝑔;𝑞)

1

−
𝑡∑︁

𝑖=1

𝐵2
𝜈𝑖

∞∑︁
𝑔=𝜈𝑖+1

1

𝐵𝛼
𝑔

𝑔−1∑︁
𝑞=𝜈𝑖

∑︁
𝑘∈𝐴(𝑔;𝑞)

1

≤ 2(𝑀 − 1)2
𝑡∑︁

𝑖=1

𝐵𝜈𝑖

𝑖∑︁
𝑗=1

𝐵𝜈𝑗

∞∑︁
𝑔=𝜈𝑗+1

1

𝐵𝛼
𝑔

𝑔−1∑︁
𝑞=𝜈𝑗

(𝑏𝑔 − 1)(𝑏𝑔−1 . . . 𝑏𝑞+1)(𝑏𝑞 − 1)
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−
𝑡∑︁

𝑖=1

𝐵2
𝜈𝑖

∞∑︁
𝑔=𝜈𝑖+1

1

𝐵𝛼
𝑔

𝑔−1∑︁
𝑞=𝜈𝑖

(𝑏𝑔 − 1)(𝑏𝑔−1 . . . 𝑏𝑞+1)(𝑏𝑞 − 1)

≤ 2(𝑀 − 1)4
𝑡∑︁

𝑖=1

𝐵𝜈𝑖

𝑖∑︁
𝑗=1

𝐵𝜈𝑗

∞∑︁
𝑔=𝜈𝑗+1

1

𝐵𝛼
𝑔

𝑔−1∑︁
𝑞=𝜈𝑗

(𝑏𝑔−1 . . . 𝑏𝑞+1)

−
𝑡∑︁

𝑖=1

𝐵2
𝜈𝑖

∞∑︁
𝑔=𝜈𝑖+1

1

𝐵𝛼
𝑔

𝑔−1∑︁
𝑞=𝜈𝑖

(𝑏𝑔−1 . . . 𝑏𝑞+1)

≤ 2(𝑀 − 1)4

2

𝑡∑︁
𝑖=1

𝐵𝜈𝑖

𝑖∑︁
𝑗=1

𝐵𝜈𝑗

∞∑︁
𝑔=𝜈𝑗+1

1

𝐵𝛼
𝑔

𝑔−1∑︁
𝑞=𝜈𝑗

𝐵𝑔

𝐵𝑞
− 1

𝑀

𝑡∑︁
𝑖=1

𝐵2
𝜈𝑖

∞∑︁
𝑔=𝜈𝑖+1

1

𝐵𝛼
𝑔

𝑔−1∑︁
𝑞=𝜈𝑖

𝐵𝑔

𝐵𝑞

= (𝑀 − 1)4
𝑡∑︁

𝑖=1

𝐵𝜈𝑖

𝑖∑︁
𝑗=1

𝐵𝜈𝑗

∞∑︁
𝑔=𝜈𝑗+1

1

𝐵𝛼−1
𝑔

𝑔−1∑︁
𝑞=𝜈𝑗

1

𝐵𝑞
− 1

𝑀

𝑡∑︁
𝑖=1

𝐵2
𝜈𝑖

∞∑︁
𝑔=𝜈𝑖+1

1

𝐵𝛼−1
𝑔

𝑔−1∑︁
𝑞=𝜈𝑖

1

𝐵𝑞

≤ (𝑀 − 1)4
𝑡∑︁

𝑖=1

𝐵𝜈𝑖

𝑖∑︁
𝑗=1

𝐵𝜈𝑗

∞∑︁
𝑔=𝜈𝑗+1

1

𝐵𝛼−1
𝑔

∞∑︁
𝑞=𝜈𝑗

1

𝐵𝑞
− 1

𝑀

𝑡∑︁
𝑖=1

𝐵2
𝜈𝑖

∞∑︁
𝑔=𝜈𝑖+1

1

𝐵𝛼−1
𝑔

· 1

𝐵𝜈𝑖

= (𝑀 − 1)4
𝑡∑︁

𝑖=1

𝐵𝜈𝑖

𝑖∑︁
𝑗=1

𝐵𝜈𝑗

∞∑︁
𝑔=𝜈𝑗+1

1

𝐵𝛼−1
𝑔

· 1

𝐵𝜈𝑗

(︂
1 +

1

𝑏𝜈𝑗

+
1

𝑏𝜈𝑗 𝑏𝜈𝑗+1
+ · · ·

)︂

− 1

𝑀

𝑡∑︁
𝑖=1

𝐵𝜈𝑖

∞∑︁
𝑔=𝜈𝑖+1

1

𝐵𝛼−1
𝑔

≤ 2(𝑀 − 1)4
𝑡∑︁

𝑖=1

𝐵𝜈𝑖

𝑖∑︁
𝑗=1

∞∑︁
𝑔=𝜈𝑗

1

𝐵𝛼−1
𝑔

− 1

𝑀

𝑡∑︁
𝑖=1

𝐵𝜈𝑖

∞∑︁
𝑔=𝜈𝑖+1

1

𝐵𝛼−1
𝑔

= 2(𝑀 − 1)4
𝑡∑︁

𝑖=1

𝐵𝜈𝑖

𝑖∑︁
𝑗=1

1

𝐵𝛼−1
𝜈𝑗

(︃
1 +

1

𝑏𝛼−1
𝜈𝑗

+
1

(𝑏𝜈𝑗
𝑏𝜈𝑗+1)𝛼−1

+ · · ·

)︃

− 1

𝑀

𝑡∑︁
𝑖=1

𝐵𝜈𝑖

1

𝐵𝛼−1
𝜈𝑖+1

(︃
1 +

1

𝑏𝛼−1
𝜈𝑖+1

+
1

(𝑏𝜈𝑖+1𝑏𝜈𝑖+2)𝛼−1
+ · · ·

)︃

≤ 2(𝑀 − 1)4
𝑡∑︁

𝑖=1

𝐵𝜈𝑖

𝑖∑︁
𝑗=1

1

𝐵𝛼−1
𝜈𝑗

(︂
1 +

1

2𝛼−1
+

1

(2𝛼−1)2
+ · · ·

)︂

− 1

𝑀

𝑡∑︁
𝑖=1

𝐵𝜈𝑖
· 1

𝐵𝛼−1
𝜈𝑖 · 𝑏𝛼−1

𝜈𝑖+1

(︂
1 +

1

𝑀𝛼−1
+

1

(𝑀𝛼−1)2
+ · · ·

)︂

≤ 2𝛼+1

2𝛼 − 2
(𝑀 − 1)4

𝑡∑︁
𝑖=1

𝐵𝜈𝑖

𝑖∑︁
𝑗=1

1

𝐵𝛼−1
𝜈𝑗

− 1

𝑀𝛼 −𝑀

𝑡∑︁
𝑖=1

𝐵2−𝛼
𝜈𝑖

≤ 2𝛼+1

2𝛼 − 2
(𝑀 − 1)4

𝑡∑︁
𝑖=1

𝐵𝜈𝑖

∞∑︁
𝑗=𝜈𝑖

1

𝐵𝛼−1
𝑗

− 1

𝑀𝛼 −𝑀

𝑡∑︁
𝑖=1

𝐵2−𝛼
𝜈𝑖
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≤
(︂

2𝛼+1

2𝛼 − 2

)︂2

(𝑀 − 1)4
𝑡∑︁

𝑖=1

𝐵2−𝛼
𝜈𝑖

− 1

𝑀𝛼 −𝑀

𝑡∑︁
𝑖=1

𝐵2−𝛼
𝜈𝑖

=

[︃(︂
2𝛼+1

2𝛼 − 2

)︂2

(𝑀 − 1)4 − 1

𝑀𝛼 −𝑀

]︃
𝑡∑︁

𝑖=1

𝐵2−𝛼
𝜈𝑖

. (5.5)

From (5.2), (5.4) and (5.5) we obtain that

[𝑁 · 𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵)]
2 ≤ 𝐶(𝐵;𝛼;𝑀)

𝑡∑︁
𝑖=1

𝐵2−𝛼
𝜈𝑖

, (5.6)

where 𝐶(𝐵;𝛼;𝑀) =
1

𝜇(𝐵;𝛼)

[︃(︂
2𝛼+2

2𝛼 − 2

)︂2

𝑀4 − 𝑀2𝛼 −𝑀𝛼+1 +𝑀𝛼 − 1

(𝑀𝛼 − 1)(𝑀𝛼 −𝑀)

]︃
. The

part (i) of the Theorem is proved.
(ii) Now, by using the statement (i) of the Theorem we are able to show the

asymptotic behaviour of the (Vil𝐵 ;𝛼)-diaphony of the sequence 𝜔𝐵 .
(ii1) Let us assume that 𝛼 = 2. Then, from (5.6) we obtain the inequality

[𝑁 · 𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵)]
2 ≤ 𝐶(𝐵;𝛼;𝑀) · 𝑡. (5.7)

From the conditions 𝜈1 > 𝜈2 > · · · > 𝜈𝑡 ≥ 0 we consecutively obtain that
𝜈𝑡 ≥ 0, 𝜈𝑡−1 ≥ 1, 𝜈𝑡−2 ≥ 2, . . . , 𝜈1 ≥ 𝑡− 1. From the 𝐵-adic representation of 𝑁 we
have that 𝑁 ≥ 2𝜈1 +2𝜈2 + · · ·+2𝜈𝑡 > 2𝑡−1+2𝑡−2+ · · ·+21+20 = 2𝑡− 1 and obtain

that 𝑡 <
log(𝑁 + 1)

log 2
. Hence from (5.7) we obtain that

𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵) ≤

√︃
𝐶(𝐵;𝛼;𝑀)

log 2
·
√︀
log(𝑁 + 1)

𝑁
.

The last inequality gives us that 𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵) ∈ 𝒪
(︂√

log𝑁

𝑁

)︂
.

(ii2) The condition 𝛼 > 2 permits us to obtain an upper bound of the sum
𝑡∑︀

𝑖=1

𝐵2−𝛼
𝜈𝑖

. So, the following inequalities holds

𝑡∑︁
𝑖=1

𝐵2−𝛼
𝜈𝑖

=

𝑡∑︁
𝑖=1

1

𝐵𝛼−2
𝜈𝑖

<
1

𝐵𝛼−2
0

+
1

𝐵𝛼−2
1

+
1

𝐵𝛼−2
2

+ · · · ≤ 1 +
1

2𝛼−2
+

1

(2𝛼−2)2
+ · · ·

=
2𝛼

2𝛼 − 4
.

From (5.6) and the above result we obtain that

𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵) ≤
√︂
𝐶(𝐵;𝛼;𝑀) · 2𝛼

2𝛼 − 4
· 1

𝑁
,

which gives us that 𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵) ∈ 𝒪
(︀

1
𝑁

)︀
. Theorem 3.1 is finally proved.
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6. Proof of Theorem 3.2

Let the integer 𝑁 be as in the condition of Theorem 3.2, so we have that

𝑁 = 𝐵2𝑟−2 +𝐵2𝑟−4 + · · ·+𝐵2 +𝐵0. (6.1)

We will use the general concept of the 𝐵-adic representation of 𝑁 exposed in
the condition of Lemma 4.1. Especially the representation of 𝑁 of the form (6.1)
gives us that 𝜈1 = 2(𝑟− 1), 𝜈2 = 2(𝑟− 2), . . . , 𝜈𝑟 = 2(𝑟− 𝑟) = 0. For 0 ≤ 𝑔 ≤ 2𝑟− 2
let us introduce the set 𝐵(𝑔) = {𝑘 : 𝑘 = 𝑘𝑔𝐵𝑔, 𝑘𝑔 ∈ {1, 2, . . . , 𝑏𝑔 − 1}}. Then, from
Definition 2.3 the low bound holds

[𝑁 · 𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵)]
2 ≥ 1

𝜇(𝐵;𝛼)

2𝑟−2∑︁
𝑔=0

𝐵−𝛼
𝑔

∑︁
𝑘∈𝐵(𝑔)

⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

𝐵Vil𝑘(𝑝𝐵(𝑛))

⃒⃒⃒⃒
⃒
2

.

In the first sum of the above expression we will realize a summation only on the
odd subscripts 𝑔. So, let 𝑔 = 2ℎ + 1, where ℎ = 0, 1, 2, . . . , 𝑟 − 1. Then, we obtain
that

[𝑁 · 𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵)]
2 ≥ 1

𝜇(𝐵;𝛼)

𝑟−2∑︁
ℎ=0

𝐵−𝛼
2ℎ+1

∑︁
𝑘∈𝐵(2ℎ+1)

⃒⃒⃒⃒
⃒
𝑁−1∑︁
𝑛=0

𝐵Vil𝑘(𝑝𝐵(𝑛))

⃒⃒⃒⃒
⃒
2

. (6.2)

Now, for each integer 𝑘 ∈ 𝐵(2ℎ+1) we will obtain a low bound of the trigono-

metric sum
⃒⃒⃒⃒
𝑁−1∑︀
𝑛=0

𝐵Vil𝑘(𝑝𝐵(𝑛))

⃒⃒⃒⃒
. An arbitrary integer 𝑘 ∈ 𝐵(2ℎ+ 1) has the 𝐵-adic

representation 𝑘 = 𝑘2ℎ+1𝐵2ℎ+1, i.e. we have that 𝛼𝑝 = 2ℎ+1. The presentation (6.1)
of 𝑁 shows us that there is some 𝑠, 1 ≤ 𝑠 ≤ 𝑡 − 1, 𝜈𝑠 > 𝛼𝑝 > 𝜈𝑠+1. In our case
𝑠 = 𝑟 − ℎ. Hence the third case of Lemma 4.1 is realized. From this statement we
have that ⃒⃒⃒⃒

⃒
𝑁−1∑︁
𝑛=0

𝐵Vil𝑘(𝑝𝐵(𝑛))

⃒⃒⃒⃒
⃒ =

𝑡∑︁
𝑗=𝑠+1

𝑎𝑗𝐵𝜈𝑗 =

𝑟∑︁
𝑗=𝑟−ℎ+1

𝐵2(𝑟−𝑗) > 𝐵2(ℎ−1)

=
𝐵2ℎ+1

𝑏2ℎ−2 · 𝑏2ℎ−1 · 𝑏2ℎ
≥ 1

𝑀3
·𝐵2ℎ+1.

We put the above inequality in (6.2) and obtain

[𝑁 · 𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵)]
2 >

1

𝜇(𝐵;𝛼)

𝑟−2∑︁
ℎ=0

𝐵−𝛼
2ℎ+1

∑︁
𝑘∈𝐵(2ℎ+1)

(︂
1

𝑀3
·𝐵2ℎ+1

)︂2

=
1

𝑀6 · 𝜇(𝐵;𝛼)

𝑟−2∑︁
ℎ=0

𝐵2−𝛼
2ℎ+1 ·

∑︁
𝑘∈𝐵(2ℎ+1)

1 ≥ 1

𝑀6 · 𝜇(𝐵;𝛼)

𝑟−2∑︁
ℎ=0

𝐵2−𝛼
2ℎ+1 (6.3)

and the part (i) of the Theorem is proved.
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(ii1) Let us assume 𝛼 = 2. Then, from (6.3) we obtain that

[𝑁 · 𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵)]
2 >

1

𝑀6𝜇(𝐵;𝛼)
(𝑟 − 1) ≥ 𝑟

2𝑀6𝜇(𝐵;𝛼)
.

From the presentation of 𝑁 of the form (6.1) the inequality holds

𝑁 ≤ 𝑀0 +𝑀2 + · · ·+𝑀2𝑟−2 =
𝑀2𝑟 − 1

𝑀 − 1
,

whence we find that 𝑟 ≥ log𝑁

2 log𝑀
. Finally, we obtain that

𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵) >
1

2𝑀3
√︀

𝜇(𝐵;𝛼) log𝑀
·
√
log𝑁

𝑁
,

which gives us that 𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵) ∈ Ω

(︂√
log𝑁

𝑁

)︂
.

(ii2) Let us assume that 𝛼 > 2. Then, from the inequality (6.3) we obtain that

[𝑁 · 𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵)]
2 >

1

𝑀6𝜇(𝐵;𝛼)

𝑟−2∑︁
ℎ=0

𝐵2−𝛼
2ℎ+1

=
1

𝑀6𝜇(𝐵;𝛼)
(𝐵2−𝛼

1 +𝐵2−𝛼
3 + · · ·+𝐵2−𝛼

2𝑟−3)

>
1

𝑀6𝜇(𝐵;𝛼)
𝐵2−𝛼

1 =
1

𝑀6𝜇(𝐵;𝛼)
· 1

𝑏𝛼−2
0

≥ 1

𝑀𝛼−2 ·𝑀6𝜇(𝐵;𝛼)
=

1

𝑀4+𝛼𝜇(𝐵;𝛼)
.

From the above inequality we obtain that

𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵) >
1√︀

𝑀4+𝛼𝜇(𝐵;𝛼)
· 1

𝑁
,

which gives us that 𝐹𝑁 (Vil𝐵 ;𝛼;𝜔𝐵) ∈ Ω
(︀

1
𝑁

)︀
. In this way Theorem 3.2 is finally

proved.
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