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Our main question of interest is the existence or the non-existence of a subrecursive
reduction between different representations of the irrational numbers. For any repre-
sentation, considered as a total function, we consider the characteristic function of its
graph. The graph is computably equivalent to the function itself, but not subrecursively
equivalent. In some cases, the graph of a representation is subrecursively equivalent to
an already known representation, but in other cases it is a new representation. In the
present paper we undertake a systematic study of the graphs of standard and dual Baire
sequences. By combining our new results with the previously known results on the graph
of the continued fraction, we obtain a total of eight new subrecursive degrees, which lie
strictly between the Dedekind cut and the continued fraction.
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1. INTRODUCTION

Let us consider some popular representations of the irrational numbers. Any
irrational « € (0,1) has a unique expansion in base 10 and we denote by Ej the
enumeration of its decimal digits. A Cauchy sequence for « is a function C: N — Q,
such that |C(n) — a| < (n+1)~1. We want to know if it possible to compare the
complexity of these two representations and we ask the question: is it possible to
convert one of these representations into the other without using unbounded search?
We will call such conversions subrecursive. The answer is yes for converting from
E1p to C, because we can take C(n) = 0.E19(1)E19(2) ... Ejg(n). But now let us
assume we have access to C' and we would like to compute E1g. The first decimal
digit E10(1) is the unique natural number d, such that 1% <a< dl—'gl. In order to
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find d, we need to compute a proper n, such that C(n) is close enough to « so that
we can decide the two inequalities. To find this n we need unbounded search. For
example, suppose 0.1 = C'(0) = C(1) = ---. Since « is irrational, we know that
there exists n, such that C(n) is far enough from 0.1, but as long as C'(n) = 0.1
we cannot tell if F19(1) is 0 or 1. Of course, we could potentially have the same
problem with all the other decimal digits. Indeed, it turns out that there does not
exist a subrecursive reduction from C to Ej9. So we shall say that C is strictly
subrecursive in Fg.

Consider also the Dedekind cut D: Q — {0, 1}, such that D(¢) = 0 if and only
if ¢ < . It is possible to subrecursively convert D to Ejg (and in fact to Ej for
any base b). We can test if d is the right decimal digit by asking two questions to
D. In this way, we can successively compute all decimal digits of a. No unbounded
search is needed, because d < 10. In the other direction, assume we have access to
F1y. For some rational numbers ¢ we can tell whether ¢ < o without unbounded
search. For example, if ¢ = 0.3 we need to check only if E19(1) < 3 to compute
D(q). The situation is the same for all ¢, which have finite decimal expansion. But
now consider ¢ = . Then we might have 3 = Fyo(1) = F19(2) = ---. Since « is
irrational, there will be some n, such that E1(n) # 3 which allows to compute D(3),
but we need unbounded search to find this n. Indeed, it can be formally shown that
no subrecusive reduction exists from F1¢ do D, therefore Fjj is strictly subrecursive
in D.

More formally, we say that the representation R; is subrecursive in the rep-
resentation Rg, if there exists a subrecursive reduction, which given as oracle any
Rs-representation of an irrational a € (0, 1), produces a R;-representation of a.

The study of the structure of representations of irrationals with respect to

subrecursive reduciblity was formally initiated in [0, 7] and since then it has been
actively further investigated in [1-4,8].
In the last of these papers [1], the following topic was posed: For a representa-

tion R, viewed as a function, we consider its graph G(R), which we may also regard
as a representation. In general, R is not subrecursive in G(R) and we are mostly
interested in the case when G(R) is not subrecursively equivalent to any of the known
representations. Such is the case with the graph of the continued fraction, as shown
in [1]. In the present paper, we shall see that the graphs of the dual and the stan-
dard Baire sequences are also in a similar very interesting and intricate position with
respect to the already studied representations.

2. SOME FACTS ON SUBRECURSIVE CLASSES

In our computational model we will use total functions of several arguments
over the natural numbers N. We will also freely use other discrete domains, such
as the rational numbers Q and the finite strings {L,R}*, which are assumed to be
properly coded with natural numbers. We also assume a monotonic coding is fixed
of finite sequences of natural numbers.
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For a function f, we denote by G(f) the graph of f, considered as a relation,
that is G(f)(z,y) has value true if f(x) =y and value false if f(x) # y.

Given two functions f, g, we denote f <g g and we say that f is subrecursive in
g, if there exists an algorithm, which given input & computes the value f(z), where
the algorithm is allowed to invoke g(y) for any y already computed, but it is not
allowed to use unbounded search.

For two functions f, g, let us denote by (f, g) the function, defined with

(fr9)(x,y) = (f(x),9())-

It is easy to see that <g is a preorder on the set of all functions and (f, g) is
the least upper bound of f and g with respect to <g.
We denote:

f=sgif f<sgand g<g f; [<sgif f<ggandg£s f.

Of course, =g is an equivalence relation on the set of functions and we will call
its equivalence classes subrecursive degrees.

One easily verifies that G((f, 9)) =s (G(f),G(9)).
For a function f: N — N, we denote by f*: N — N its bounded sum

FPy) =i f(@).
Lemma 2.1. For any function f: N — N we have
(a) G(f) <s f;
(b) G(f*) <s G(f)-

Proof. In order to check, given (z,y), whether f(x) =y, we can just compute f(z)
and then compare the result with y. This simple observation shows (a).
For (b) we have

z=f(y) <= 3Ju (Vm <ylug = f(z)] & z = Zum>
=0

and the code of the sequence u can be bounded by the code of the sequence z, z, ..., z
of length y + 1. O

We will need the notion of a subrecursive class in order to give precise estimates
for the complexity of functions.

Definition 2.2. A non-empty set S of functions will be called a subrecursive
class if:

1. S is contained in an efficiently enumerable class, which means that there exists
a computable function U: N? — N, such that for any f € S there exists e with

flxi,xa, ... xy) = Ule, (x1,22,...,2,));
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2. if f<ggand g€ S, then feS.

For our purposes we may safely assume that S contains all primitive recursive
functions.

Informally, we may say that f € S implies that f is simple and accordingly
f ¢ S implies that f is complex.

We will need two important tools for working with subrecursive classes.

Lemma 2.3. For any subrecursive class S, there exists f: N — N\ {0}, such
that f ¢ S and G(f) € S.

For a proof, see |3, Sect. 2, 3|. We have f £s G(f) and thus by Lemma 2.1(a)
we obtain G(f) <g f. So we may say that f is complex, but its graph G(f) is simple.

Lemma 2.4. For any subrecursive class S, there exists s: N — N\ {0}, such

that G(s) ¢ S and G(s*) € S.

For a proof, see [I, Theorem 1] (we can add 1 to produce a function s with
non-zero values). Applying Lemma 2.1(b), we obtain G(s*) <g G(s). Thus we may
say that the graph G(s) of s is complex, but the graph G(s*) of its bounded sum
s* is simple. Observe that we have s =g s*, but G(s) Zs G(s). This shows that
the graph G is not a degree-theoretic operation, that is two functions from the same
subrecursive degree may have graphs, which belong to different subrecursive degrees.

3. REPRESENTATIONS OF IRRATIONAL NUMBERS

A Farey pair is a pair (¢, ) of rational numbers, such that bc—ad = 1. We will
only consider Farey pairs with ¢, 5 € [0,1]. It will also be convenient to consider a
Farey pair as an open interval in R.

All Farey pairs can be generated using an infinite binary tree (called the Farey

pair tree) in the following way: For 7 € {L,R}* we denote I[r] = (%, 5), where
Il = (%, 1) and I[rL] = (§, #£5), I[7R] = (#£5, )
The fraction ‘;jr's is called the mediant of § and 5. An easy computation shows

that if § < £, then § < ‘gig < g

For any rational ¢ € (0,1) there exists a unique 7 € {L,R}*, such that ¢ is the
mediant of the endpoints of I[7].

For more details on Farey pairs, see [L1, Chapter 6].

Let a € (0,1) be an irrational number.

On each fixed level, the intervals in the Farey pair tree determine a partition
of the irrationals in the interval (0, 1), therefore o belongs to exactly one of these
intervals. Moreover, the length of the intervals converges to 0 as the level goes to
infinity. This justifies the following

Definition 3.1. The Hurwitz characteristic H*: N — {L, R} is the unique
infinite string over {L, R}, such that a € I[7] for any finite prefix 7 of H®.
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Note that the infinite strings H®, which represent irrationals o € (0,1) are
exactly those, which contain infinitely many occurrences of both L and R.

Lemma 3.2. Let H* be the Hurwitz characteristic of a. Then the Hurwitz
characteristic H' = is obtained from H* by exchanging the symbols L and R.

Proof. For any finite string 7 € {L,R}*, let 7/ be obtained from 7 by exchanging L
and R. We will prove that for all 7 € {L,R}*:

_(ac n_(d—c b—a «
1=(3.5) = 1= (550 S
For 7 = ¢, we have 7 = € and I[r] = (2,1) = (132,152) = I[7']. Suppose
_ (o c qn_[d—c b—a _[(a atc
I[T]_(b7d) andI[T]—< ., ).ThenI[TL]—<b,b d) and

I[(rL)] = I7'R] = <d—cciil;—a’b;a) _ <(b+d;;fla c),b;a>’

therefore (*) is true for 7L. Similarly, I[7R] = (Zig’ 2) and

(rRY] = I171] = (d;c’d—sil;)—a) _ (d;c7 <b+d2;;a+c))7

therefore (*) is true for 7R. So by induction on 7, (*) is true for all 7 € {L,R}*.
Now by definition, « € I[7] for any finite prefix 7 of H* and the claim implies

that (1 — «) € I[7] for all such 7. Therefore, 7’ is a prefix of H'~® and the lemma

follows. O

Definition 3.3. Let o € (0,1) be irrational with Hurwitz characteristic H*.
We can write H* = LARLAMR ... LACIR ... for a unique function

A: N — N, which will be called the dual Baire sequence of a.

Similarly, H* = REOLREML .. . REML. .. for a unique function

B: N — N, which will be called the standard Baire sequence of a.

Dual and standard Baire sequences are introduced in [3], where it is shown that
they are subrecursively equivalent to the complete left and right best approximations
and to the general sum approximations from below and from above.

Observe the symmetry between the dual and the standard Baire sequences A
and B, which follows from Lemma 3.2: A% = B1=® and B® = A~

Let D*: Q — {0,1} be the Dedekind cut of o, D*(q) =0 & ¢ < a.

We sketch a proof that H* =g D, for more details see [9, 10].

Given input n, we can compute H(n) by successively constructing the corre-
sponding intervals. We decide whether to go left or right by asking for D*(m), where
m is the mediant of the current interval. This algorithm shows that H* <g D“ (no
unbounded search is used).
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Given ¢ € QN(0,1), we compute the level s of its first occurrence as an endpoint
of an interval in the Farey pair tree (an upper bound for s is the sum of the numerator
and the denominator of ¢). Then using H* we construct the interval (as, bs) on level
s, which contains «. Since ¢ ¢ (as,bs), we have D*(q) =0 if ¢ < as and D*(¢q) =1
if ¢ > bs. So we have a subrecursive reduction, which shows D% <g H®.

It is easy to see that D =g D=2, therefore H* =g H'~* for all a (of course,
this also follows from Lemma 3.2).

Definition 3.4. The unique sequence ¢: N — N\ {0}, such that

will be called the continued fraction of c.
We also denote ¢ = [ ]* and sometimes, for convenience, we use the standard
notation a = [0; ¢(0), ¢(1), ..., c(k), ...].

The next lemma shows that, similarly to the Dedekind cut and the Hurwitz
characteristic, the subrecursive degrees of the continued fractions of @ and 1 — «
coincide and the same is true for their graphs.

Lemma 3.5. For all irrational o € (0,1):
[1% =s [I'™* and G([]7) =s G([]'™).

Proof. We will use the following elementary algebraic fact:

l-a= %
14+ —
~ -1
Let a = [0; ¢(0), ¢(1), ..., c(k), ...]. In the case ¢(0) # 1, we have 1 — a =
[0; 1, ¢(0) =1, ¢(1), ¢(2), ..., ¢(k), ...]. In the case ¢(0) = 1, we have 1 — a =
[0; c(1)+1, ¢(2), ..., c(k), ...]. Therefore, [ ]}~ can be obtained from [ ]* by the
following definition by cases:
ifn=04%&[]*0) #1,
[12(0) =1 ifn=1& []*(0) #1,
o) = { ([ = 1) ifn>18&[]°0) £ 1,
[1*(1))+1 ifn=0&[]*0) =1,
[[*(n+1) ifn>0&][]*(0)=1.

It trivially follows that [ ]!~ <g []® and G([ ]'7®) <s G([ |*). By applying the
same argument for 1 — «, the proof is finished. O
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Now we present a key observation that links the Hurwitz characteristic and
the continued fraction. It is an old result of Hurwitz (also cited in a modified form
in [10]) and we include a proof for completeness.

Lemma 3.6 (Hurwitz). For any irrational o € (0, 1), its Hurwitz characteristic
and its continued fraction are connected by the equality

H® = O~ 1pe@ [e@) pe®) (3.1)

Proof. We will need some standard facts about continued fractions (see [5]). We

have o = lim &, where 22 = [0; ¢(0), ¢(1), ... e(n —1)] is the finite part of the
n=00 n

continued fraction of « up to the term c¢(n — 1) and p, ¢ satisfy the equalities:

po=0, p1=1, pora=cn+1) puy1+pn,
qo = 1; q1 = C(O)v gn+2 = C(TL-I— ]-) *Qn+1 + qn,

for any n € N. The sequence P yas the following behavior:
an

Poo_ P2 Pao_ o, oo o bso_ps P
do a2 qa ds q3 q1
Since H® is unique, we need to prove that « lies in each of the intervals, determined

by the right-hand side of (3.1).

1 )
We have o < L = {0)’ therefore o € I[L'] = (%m%) for each i < ¢(0).
a1 c
: bo P11\ c(0)—1
Notice also that [ —,— | = I[L ].
G 01

Suppose inductively that for some even n, I[LSO=1Re(M) | L¢()] coincides with

&, Pnil ) Consider I[r;] = ILe@=1ReM)  LeMR) for i = 0,1,...,c(n + 1).
n  dn+1

Clearly, I[7;] = (pn i Z Prtl , pn+1)' The left endpoints can be computed by
Gn T 1 gnt1 Gn+1
taking mediants successively with the fixed right endpoint. Therefore, the left end-

points form an increasing sequence for ¢ = 0,1,...,¢(n + 1). Its last element is the
pntc(n+1) pny pn+1> _ (Pn+2 pn+1> In

Gn +c(n+1) - gui1’ Guta Gnt2’ Gnt1)
particular, all these left endpoints lie to the left of a and a <

foralli=0,1,...,¢(n+1).

The other case when for an odd n, I[L¢@ 1R | Le(»=DRe(M)] coincides with
(pnﬂ Pu
qn+1 ’ dn

left endpoint of I[7.n11)] = (

Pn+1
n+1

, that is o € I[7]

> is completely symmetric. O

It turns out that the subrecursive degree of the continued fraction is the least
upper bound of the subrecursive degrees of the dual and the standard Baire se-
quences. A proof of this result can be found in [8] using contractors or in [6] using
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trace functions and general sum approximations (contractors and trace functions are
subrecursively equivalent to continued fractions). Here we will give a direct proof,
using equality (3.1).

Proposition 3.7. For all irrational o € (0,1): [|* =g (A%, B*).

Proof. Let us fix a and omit the superscripts for brevity. First we provide algorithm
for A <g [].

Input: natural number n. Output: A(n) € N.

1. Compute 7 = LEO=1ReMLe@) | ReC@n+D) where c(i) = [](i).

2. Let 7’ be the shortest prefix of 7, containing n + 1 occurrences of R.

3. Write 7’ in the form L*RL%'R...L%"R.

4. Return the result a,,.

End of algorithm.

Observe that 7 is chosen to contain at least n+ 1 occurrences of R, therefore 7/
is well defined. Moreover, 7’ is a prefix of H*, because 7’ is a prefix of 7, which in
turn is a prefix of H* by equality (3.1). Therefore, a; = A(%) for all « < n and the
algorithm is correct.

A symmetric algorithm shows that B <g []. We take

= Lc(O)—ch(l)Lc(Q) o Rc(2n+1)Lc(2n+2)

and in 2., 3. we exchange L and R. We can also use Lemma 3.5 to obtain
B = A <g [|'" =5[]

Now let us show that [ ] <g (A4, B). We will use primitive recursion (as well as
A and B as oracles).

Input: natural number n. Output: [1(n) e N\ {0}.

1. If n = 0, return output A(0) +

2. Assume that n > 0 is even and that [1(0),...,[](n—1) have been computed.
Then compute r = [](1) + [](3) +--- 4+ [ ](n — 1) and return output A(r).

3. Assume that n > 0 is odd and that [](0),...,[](n — 1) have been computed.
Then compute I = [](0) —14+[](2)+- -+ [](n — ) and return output B(l).

End of algorithm.

The algorithm gives a correct output for n = 0, because H® begins with
A(0) symbols L by the definition of A and also with [ ](0) — 1 symbols L by
equality (3.1). Assume that n > 0 is even and that [ ](0),...,[ ](n — 1) have
been computed correctly. The Hurwitz characteristic H® begins with the prefix
7 = LHO=1R0M)  pHe=2R[(=1)  We want to compute [ ](n), which on one
hand, by equality (3.1), is the number of L-s that come after 7 in H*. On the other
hand, the number of occurrences of R in 7 is the number r, computed in Step 2.
Therefore, we can write 7 = LAORLAMR ... LACT~DR (note that 7 ends in R). By
the definition of A, the next symbols in H® after 7 are LA")R. But this entails that
A(r) symbols L follow 7 in H?®, therefore the output is indeed correct. The case
when n > 0 is odd is justified in a completely symmetric way. O
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Observe that the proposition can be used to show that [ |* =g (A%, B*) =
(Bl=2 A=) =5 []'~®. But as we shall see the situation with the graphs G([]),
G(A), G(B) is a lot more complicated. We know from [1]| that G([]) is subrecursively
incomparable with A and B (note that in [1] the subrecursive degrees of A and
B are represented by the complete left and right best approximations L and R,
respectively). At the end of the next section, we will be able to see the exact
position of the subrecursive degrees of the three graphs G([]), G(A), G(B) relative
to the subrecursive degrees of D, A, B, [].

4. MAIN RESULTS

Theorem 4.1. Let a € (0,1) be irrational and A¥, B* be the bounded sums
of its dual and standard Baire sequence A, B. Then G(A¥) =5 D® =g G(B>).

Proof. First we prove H® <g G(A¥). For each given n € N, the prefix

LAORLAMR . LAMR

of H* contains at least n + 1 symbols. Therefore we can compute H*(n) by the
following algorithm.

Input: natural number n. Output: H*(n) € {L,R}.

Test whether: there exists k < n, such that A¥(k) =n = k.

Return R if the test succeeds and L, otherwise.

End of algorithm.

Let us check that the algorithm is correct. If the test succeeds for some k < n,
then n =k + A% (k) = k + Zf:o A(3). Therefore, n is equal to length of the prefix
LAORLAMR, . . LAKR=DRLAK) of H* and H%(n) is the symbol immediately after
this prefix, which is R. Conversely, if H*(n) = R and this is the k-th occurrence
of R in H®, then the test succeeds with the value k — 1. The algorithm is clearly
subrecursive in G(A*), so we have proved H® <g G(A%).

Now we prove G(A¥) <g H*.

Input: natural numbers k, n. Output: A*(k) = n (true or false).

1. Compute 7 = H*(0)H*(1)... H*(n + k).

2. If the last symbol of 7 is L, return false.

3. If 7 does not contain k£ + 1 occurrences of R, return false.

4. Otherwise, compute the number m of occurrences of L in 7.

5. If m = n, return true, else return false.

End of algorithm.

For correctness: first, assume A*(k) = n. Since 7 is the unique prefix of H®
having length n + k + 1, we have 7 = LAQRLAMR ... LAKR. Therefore, the output
false in 2. and 3. is correct. Moreover, the number of occurrences of L in 7 is
m = A¥(k) = n, therefore the output false in 5. is also correct. Second, suppose we
output true in 5. so that m = n. Since we have reached 4., 7 must have the same
form as above. Therefore, m = A*(k) and since m = n, the output true is correct.
This proves G(A¥) <g H?.
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Now we can consider 1 — a: we have B® = A'~® and the proof shows that
Q(BE) =g H'=®. Since D® =g H* =g H'~®, the theorem follows. O

Observe that all results on representations that we have considered so far are
positive, in the sense that one representation is subrecursive in another and the
reduction works (uniformly) for all irrational o € (0,1). In the next corollary we
present some negative results. To prove the claim that one representation is not
subrecursive in another, we construct a specific irrational number « for which the
claim holds.

Corollary 4.2. D* <g G(A%) <g A% and D* <g G(B%) <gs B“.

Proof. Let us take the irrational number o with dual Baire sequence A = s, where s is
the function from Lemma 2.4 (note that A attains non-zero values at infinitely many
arguments, because A ¢ S). On one hand, by the choice of A, G(A%) £5 G(A¥®),
because G(A*) € S and G(A%) ¢ S. On the other hand, by Lemma 2.1(b) we have
G(A¥) <5 G(A®) for any irrational a. Therefore, G(A¥) <g G(A%). The theorem
gives G(A¥) =g D%, thus D* <g G(A®).

Similarly, let us take the irrational « with dual Baire sequence A = f, where
[ is the function from Lemma 2.3. Then A% £g G(A®), because G(A*) € S and
A® ¢ S. Moreover, by Lemma 2.1(a) G(A®) <g A for any irrational a. We obtain

g(AO‘) <g A“.
The proof of the second part is analogous using standard Baire sequences. It
also follows from the first part by considering 1 — «. O

The corollary shows that the subrecursive degrees of G(A®) and G(B®*) are
different from the subrecursive degrees of any of the considered representations. Our

main motivation is to compare them with the degree of the graph of the continued
fraction G([]%).

Theorem 4.3. The following hold: G(A%*) <g G([ ]%), G(A®) fs B® and
G(B*) <5 G([]*), 6(B*) £s A°.

Proof. Again we omit the superscripts. First we show G(A4) <g G([]) with a primi-
tive recursive algorithm (using the graph of [] as oracle).

Input: natural numbers k, n. Output: A(k) =n (true or false).

1. If k =0, return true if n + 1 =[](0) and false if n+ 1 # [](0).

2. If k > 0, suppose we have determined the truth values in the sequence
A0) =0, ..., A(k —1) = 0. Compute ! = the number of ¢rue values in this
sequence and I’ = the number of true values that come at the end of the sequence.

3. Ifl=kletp=1LTIfl#4k letp=1+1.

4. IE[)(0) =1, let m = (2k = 21) + 1. If [](0) # 1, let m = (2k = 21) = 1.

5. If [ ](m) # p, then return true if n =0 and false if n > 0.

6. If [ ](m) = p, then return true if n =[](m + 1) and false if n # [ |(m + 1).

End of algorithm.
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For k = 0 the algorithm gives correct answer, because [ ](0) = A(0) + 1.
Suppose k > 0 and consider 7 = LARLAMR .. . LAK*=DR. The values of p and m
are computed in such a way that

7 = LHO=151ML@RIG)  p[m=1)gp (%)

We show this by induction on k. First, consider the base case k = 1. If A(0) = 0,
that is [ ](0) = 1, we have | = I’ = 1. Following 3. and 4. we have p = | = 1,
m= 2k - 2l)+1=1. If A(0) # 0, that is [ ](0) # 1, we have I =1’ = 0, so by 3.
and 4. p=1U+1=1,m=(2k = 2]) = 1 =1. In both cases, we obtain p=m =1
and 7 = LAOR = LUO=1RP_therefore (**) is true. Now let us assume that m and p
have been computed correctly for some &k > 1, so that we have (**) for 7. Consider
71 = 7LAMIR and let Iy, 14, p1, m1 be the corresponding new values of I, ', p, m.

Case A(k)=0. Wehave [y =1+ 1,1} =U'+1. If [y =k +1, thenp; =1; =
I+1=p+1.Ifly #k+1,thenpy =11 +1=10'+2=p+ 1. Therefore, py =p+1
and also by 4. m; = m (this is true in both cases, since 2(k + 1) = 2l; = 2k = 21).
We obtain (**) is true for 7;:

= LARR = 7R = LHO-1R[IMW 1 [I@RIIEG) L m=1)gp+1
— L[ ](0)*1R[ ](1)L[ ](Q)R[ 1(3) o L[ ](mlfl)Rpl.

Case A(k) #0. We have [y = [, 1] =0 and p; =1f +1 = 1. By 4. we obtain
mi =m+ 2 (in both cases). We have:

= FLARR — 7R = LIO-1R1IMLII@RIIG)  [1m—1)gpr1 AK)g
= LHO=111MIIRRIEG)  pHm=1)gl[l(m)1 [1(m+1)g
— L[ ](0)*1R[ ](1)L[ ](Z)R[ 1(3) o L[ ](mlfl)R}h'

Indeed, p = [](m) and A(k) = [](m + 1), because p > 0, A(k) > 0 and 71 is a prefix
of H*, so that the length of each portion of consecutive L-s and R-s is uniquely
determined by a. We obtained that (**) is true for 7 in this case as well.

Now assuming (**), let us have [ ](m) # p. Then the next symbol after 7 in the
Hurwitz characteristic is R. It follows that A(k) = 0 and the output in 5. is correct.
Finally, let us have [ ](m) = p. Then LI(™*DR comes immediately after 7 in the
Hurwitz characteristic. It follows that A(k) = [](m + 1) and thus the output in 6.
is also correct.

We succeeded in proving G(A4) <g G([]).

For the next part we consider the irrational o with dual Baire sequence A = s,
where s is the function from Lemma 2.4. Then G(A*¥) € S and by Theorem 4.1,
D* € §, which also implies H* € S. Now we show that B* € S by subrecursively
reducing B* to H®. The important observation is that H* = LAORLAMRLARIR . .
and A(z) > 0 for all .

Given input n: 1. We compute 7 = H*(0)H*(1)... H*(2n). 2. We take the
shortest prefix 7/ of 7 containing n + 1 occurrences of L. 3. We represent 7’ in the
form RPLRY'L...R*"L and return output b,,.
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The algorithm correctly computes B(n). The only thing that is not obvious is
that 7/ exists. Assume that 7 contains < n occurrences of L. Since the length of 7 is
2n+1 it must contain > n+ 1 occurrences of R. But the choice of o guarantees that
there are no consecutive R symbols in H*. So immediately before any occurrence
of R in 7, there is an occurrence of L. But this means that 7 contains > n + 1
occurrences of L, which is a contradiction.

Now we have B* € S and by the choice of a, G(A%*) ¢ S. We conclude that

G(A®) 25 Be.
The other half G(B*) <gs G([ ]%), G(B*) £s A* of the theorem follows by
considering 1 — a. O

Corollary 4.4. G(A®) <s G([ ]), G(B%) <s G(| ]) and G(A*), G(B®) are
subrecursively incomparable.

Proof. Assume that G(A¥) <g G(B*). By Lemma 2.1(a), G(B*) <g B, therefore
G(A*) <g B“, which contradicts the theorem. It follows that G(A*) £s G(B®).
Symmetrically, G(B®) £s G(A®), thus G(A%) and G(B®*) are subrecursively incom-
parable.

For the first part, we have G(A%*) <g G([]) and G(B*) <g G([]) by the theorem.
IfG([]) <s G(A%) or G([ ]) <s G(B%), it would follow that G(B®) <g G(A%) or
G(A®) <g G(B®), which as we saw is impossible. So indeed we have G(A%¥) <5 G(]])
and G(B*) <s G([]). O

Theorem 4.5. G([]*) £5 (B®,G(A%)) and G([]*) £5 (A®,G(B%)).

Proof. Let s be the function from Lemma 2.4, t = s~ and let us take o with Hurwitz

characteristic
H* = LHORsO s H2ps(2)

that is a = [0; t(0) + 1, s(0), #(1), s(1), ¢(2), s(2), ...]. By the choice of s, we
have G(s) ¢ S. Tt follows that G([ |*) ¢ S, because s(k) =n < [|*(2k+1) =n
for all k&, n.

Now the dual and the standard Baire sequences A% and B® have the following
form:

A =10), 0, 0, ..., 0, £(1),0, 0, ..., 0, £(2), ...,
s(0)—1 s(1)—1
B*=0,0,...,0,s(0),0,0, ..., 0, 5(1),0, 0, ..., 0, 5(2), ....
—_————

£(0) t(1)—1 £(2)—1

More precisely, A*(0) = t(0), A*(s(0)) = (1), A*(s(0) + s(1)) = t(2) and so on,
A%*(t(z)) = t(x + 1) for all z, A*(k) =0 for k ¢ Range(t) U {0}.

Similarly, B*(¢(0)) = s(0), B(t(0)+t(1)) = s(1), B*(t(0) +¢(1) +¢(2)) = s(2)
and so on, B*(t*(x)) = s(x) for all z, B*(k) = 0 for k ¢ Range(t®).

First we show that G(A) € S. We will use that G(t) = G(s¥) € S by the choice
of s.
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Input: natural numbers k, n. Output: A%(k) = n (true or false).

1. If k = 0, return true if n = ¢(0) and false if n # t(0).

2. If k > 0, search for z < k, such that k = t(x). If the search is successful, go
to 3. If not, proceed to 4.

3. Return true if n = ¢t(x + 1) and false if n # t(xz + 1).

4. Return true if n = 0 and false if n # 0.

End of algorithm.

The algorithm is correct due to the above equalities for A%. Note that if & = t(x)
for some x, then x < s¥(z) = t(z) = k and the search will be successful.

Now we show that B € S. We will again use G(t) and also G(#*), which belongs
to S thanks to Lemma 2.1(b).

Input: natural number k. QOutput: B*(k) € N.

1. Search for x < k, such that k = ¢*(z). If the search is not successful, return
output 0.

2. If x = 0, return output k.

3. If x > 0, search for y < k and z < k with y = ¢(z) and z = t(z =~ 1). Return
output y - z.

End of algorithm.

The correctness of the outputs follows from the above equalities for B%. Indeed,
if the search for x is not successful, k ¢ Range(t*) and B*(k) = 0. Suppose the
search for z is successful. For z = 0, we have s(z) = s(0) = t(0) = t*(0) = k. For
x > 0, we have t(z — 1) < t(z) < t¥(z) = k. Therefore, the search for y and z is
successful and s(z) =t(z) ~t(z —1) =y = z.

We succeeded in proving: G([ ]%) ¢ S, G(A*) € S and B® € S, so we can
conclude G([]%) £s (B*,G(A%)).

The other half of the theorem follows symmetrically. O

Corollary 4.6. The subrecursive degrees of G([]%), (A%, G(B®)), (B*,G(A%))
are pairwise subrecursively incomparable.

Proof. We must further prove that (B* G(A%)) %s G([ |*) and symmetrically
(A*,G(B®*)) £s G([ ]*). These follow easily from [l, Theorem 4|, where it is
shown that A% £g (B, G([]%)) and also B* £g (A%, G([]%)). If (B*,G(A%)) <s
(A*,G(B®)), then B® <g (A% G(B%)) <gs (A*,G([]*)), which contradicts [I, The-
orem 4]. Of course, (A%, G(B?%)) <g (B* G(A%)) leads to a symmetric contradic-
tion. O

Corollary 4.7. (G(A%),G(B*)) <s G([]%)-
Proof. We know that G(A%*) <g G([]%) and G(B*) <g G([]%), therefore
(G(A%),G(B%)) <s G([]7).

If G([]%) <s (G(A*),G(B?%)), then we also have G(] ]¢) <g (B*,G(A%)), which
contradicts the theorem. O
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We are ready to give the final picture, which shows the partial ordering of all

of the considered subrecursive degrees (Figure 1). The points represent the corre-
sponding subrecursive degrees of representations. For any two degrees, represented
by two points, the lowest reachable point which lies above them, represents the least
upper bound of the two degrees.

Figure 1. Subrecursive degrees between D and [].

ACKNOWLEDGEMENTS

This work is supported by the Sofia University Science Fund through contract

SU-FNI 80-10-210,22.05.2023.

(1]

2]

3l

(4]

(5]

REFERENCES

1. Georgiev, Subrecursive graphs of representations of irrational numbers, in: Unity
of Logic and Computation, CiE 2023, ed. by G. Della Vedova, B. Dundua, S. Lempp
and F. Manea, Lecture Notes in Computer Science, 13967, 2023, 154—165.

I. Georgiev, Dedekind cuts and long strings of zeros in base expansions, in: Connect-
ing with Computability, CiE 2021, ed. by L. De Mol, A. Weiermann, F. Manea and
D. Fernandez-Duque, Lecture Notes in Computer Science, 12813, 2021, 248-259.

I. Georgiev, L. Kristiansen and F. Stephan, Computable irrational numbers with rep-
resentations of surprising complexity, Ann. Pure Appl. Log. 172(2) (2021) 102893.

I. Georgiev, L. Kristiansen and F. Stephan, On general sum approximations of irra-
tional numbers, in: Sailing Routes in the World of Computation, CiE 2018, ed. by
F. Manea, R. Miller and D. Nowotka, Lecture Notes in Computer Science, 10936,
2018, 194-203.

A. Ya. Khintchine, Continued Fractions, P. Noordhoff Ltd, Groningen, The Nether-
lands, 1963.



Ann. Sofia Univ., Fac. Math. and Inf., 109, 2022, 41-55 55

[6]
(7]
18]

9]

[10]

[11]

L. Kristiansen, On subrecursive representability of irrational numbers, Computability
6 (2017) 249-276.

L. Kristiansen, On subrecursive representability of irrational numbers, part II, Com-
putability 8 (2019) 43-65.

L. Kristiansen, On subrecursive representation of irrational numbers: Contractors and
Baire sequences, in: Connecting with Computability, CiE 2021, ed. by L. De Mol,
A. Weiermann, F. Manea and D. Fernandez-Duque, Lecture Notes in Computer Sci-
ence, 12813, 2021, 308-317.

L. Kristiansen and J. G. Simonsen, On the complexity of conversion between classic
real number representations, in: Beyond the Horizon of Computability, CiE 2020, ed.
by M. Anselmo, G. Della Vedova, F. Manea and A. Pauly, Lecture Notes in Computer
Science, 12098, 2020, 75-86.

R.S. Lehman, On primitive recursive real numbers, Fundamenta Mathematica 49(2)
(1961) 105-118.

I. Niven, H.S. Zuckerman and H.L. Montgomery, An Introduction to the Theory of
Numbers, Fifth Edition, John Wiley & Sons Inc, New York, USA, 1991.

Received on November 7, 2023
Accepted on November 17, 2023

IvaN GEORGIEV

Faculty of Mathematics and Informatics
Sofia University “St. Kliment Ohridski”
5 James Bourchier Blvd.

1164 Sofia

BULGARIA

E-mail: ivandg@fmi.uni-sofia.bg



	Introduction
	Some facts on subrecursive classes
	Representations of irrational numbers
	Main results

