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For a given countable structure 2 and a computable ordinal o, we define its a-th jump
structure A, We study how the jump structure relates to the original structure.
We consider a relation between structures called conservative extension and show that
(@) conservatively extends the structure 2. It follows that the relations definable in
2 by computable infinitary X, formulae are exactly the relations definable in A(®) by
computable infinitary ¥; formulae. Moreover, the Turing degree spectrum of (%) is
equal to the a’-th jump Turing degree spectrum of 2, where o/ = oo+ 1, if « < w, and
o' = «a, otherwise.
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1. INTRODUCTION

The jump of an abstract structure is a notion that has gathered the attention
of many researchers for the past decade. Various versions were suggested and
studied independently. Montalban [6] uses predicates for computable infinitary 3,
formulae; Baleva [3], I. Soskov and A. Soskova [10] use Moschovakis extensions;
Stukachev [12] uses hereditarily finite extensions. In [7] the reader can find very
good historical notes and bibliography on this topic.

Here we consider the notion of jump structure as suggested by A. Soskova and
I. Soskov [10], where the first jump of a structure is defined. Later, the author
[13] extended their definition to arbitrary finite jumps and studied its properties
in the context of a relation between structures called conservative extension. In
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this paper, which is based on a chapter of the author’s Ph.D. dissertation [14], we
offer a natural continuation of this line of research. We lift the results from [13] to
arbitrary computable ordinals.

We work with abstract structures of the form 2 = (A; FPy,..., Ps_1), where
A is countable and infinite, the predicates P; C A™ and the equality is among
Py, ..., Ps_1. We will use the letters 2, B to denote structures and the letters A,
B to denote their domains. We call f an enumeration of the set A if f is a total
one-to-one mapping of N onto A. We say that f is an enumeration of the structure
21 if f is an enumeration of its domain A. For every k£ € N, we will implicitly use
an effective encoding of N*¥ onto N. By (z1,..., ;) we denote the natural number
corresponding to the tuple (z1,...,z). If R C A", we denote the pullback of R as
the set f~1(R) = {{zo,...,2n_1) | (f(x0),..., f(xn_1)) € R}.

Given a countable structure 2 = (A; Py, ..., Ps_1), we define the copy of 2 via
the enumeration f as the total function f~1(2l), where:

I, fu=s-(r1,...,2p,) +i & i<s & (f(z1),..., f(zn,)) € P
0, fu=s-(x1,...;2n,)+i&i<s& (f(z1),...,f(zn,)) & Pi.

We can also look at f~1(2A) as the structure with domain N obtained from 2
via the isomorphism f. Moreover, for a structure with domain N, let us denote by
D(2() the set of all codes of formulae belonging to the atomic diagram of 2, given
by some Godel numbering of all formulae in the relevant language. This means
that f=1(2A) gives us the set of codes of formulae belonging to the atomic diagram
of the structure obtained from 2 via the isomorphism f. When we say that the
structure 2l is computable, or belongs to the computability-theoretic class €, we
mean that its atomic diagram D(2l) is computable, or belongs to %.

Definition 1 (Richter [9]). The degree spectrum of the structure 2 is the set
of Turing degrees

DS() = {a | a computes a copy of A}.
For a computable ordinal o, we define the a-th jump degree spectrum of 2 as

DS, () = {a'® |ae DSA)}.

A countable structure 2 is automorphically trivial if there is a finite subset F'
of its domain A such that every permutation of A whose restriction to F' is the
identity, is an automorphism of 2. A set of Turing degrees <7 is closed upwards if
for all Turing degreesaand b,a€ o &a<b —>b e «.

Theorem 1 (Knight [5]). Let 2 be a countable structure in a (possibly infinite)
language. Then exactly one of the following holds:

1) the spectrum of A is closed upwards with respect to Turing reducibility ;
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2) A is automorphically trivial.

Henceforth, we suppose that the structures we consider are automorphically
non-trivial, so their degree spectra are closed upwards. The notion of degree spectra
gives us one way to compare structures. That is, for structures 2 and B and
computable ordinals «, 8, we ask whether DS, () = DSz(‘B).

Now we give an informal definition of the set of the computable infinitary ¥,
and II, formulae in the language of 2, denoted X¢ and II{,. The Xf and IIj
formulae are the finitary quantifier free formulae. For a > 0, a ¢ formula () is
a disjunction of a c.e. set of formulae of the form Iy (z,y), where ¥(z,7) is a 11
formula, for some 5 < a. The II¢ formulae are the negations of the X¢ formulae.
We list a few properties of the computable infinitary formulae, which will be used
throughout the paper:

- Given an index for a X¢, (or II¢) formula ¢, we can effectively find an index
for a TI¢, (or X¢) formula neg(y) that is logically equivalent to —¢.

- Given indices for a pair of X¢ (or a pair of II¢) formulae ¢ and 1, we can
effectively find indices for two X¢ (or two II) formulae logically equivalent

to (¢ V) and (¢ A ).

We refer the reader to the book of Ash and Knight [1, Chapter 7] for details and
more background information on computable infinitary formulae.

For a set of natural numbers X and a computable ordinal «, we denote by
X (@) the a-th Turing jump of X. Moreover, we define

AV (X)) =X if a < w,
Agz-i-l(X) = X(Oé-i-l), if a > W,

AL(X) = H{(y:p) |y € A1 (X))}, if @ = lima(p).

We write A9 for A2 (()). We remark that for technical reasons, we choose at limit
levels to work only with sequences of successors and if o is a computable limit
ordinal such that a = lim a(p), then «(0) > 1.

Theorem 2 (Ash [1]). Let 2 be an arbitrary structure with domain N. For a
formula (%), let us denote p* = {a € A |2 | p(a)}. If p(z) is a XS, formula, then
©* is L0 (D)), and if () is a IS formula, then ¢ is IO (D(A)). Moreover,
given an index for the 3¢ (or 11 ) formula ¢ and a notation for the ordinal o, we
can effectively find an index for ¢* as a set c.e. (or co-c.e.) relative to A (D(A)).
The index is independent of .

A relation R C A" is 3¢, (or II5) definable in the structure 21 if there is a X,
(or II5,) formula ¢(Z,7) and a finite number of parameters @ in A such that b € R
if and only if A = 1(b,a). We denote by X (A4) (or TI,(2(4)) the family of all
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relations X¢, (or II¢) definable in 2 with parameters in A. We will write 3¢ (2() (or
IIE (A)) for the family of relations definable in 2 by ¢ (or II¢) formulae without
parameters.

The notion of definability gives us another way to compare structures. That is,
for structures 2, B such that A C B and computable ordinals «, 5, we ask whether
(Vre N)(WVRC A")[R e X5 (™A4) < R € E%(ZBB)].

Definition 2. Let 2 be an arbitrary countable structure. We say that a relation
R on A is relatively intrinsically X° (or 112 ) on A if for every enumeration f of
2, f~Y(R) is c.e. (or co-c.e.) relative to A%(f~1(A)).
The relation R is uniformly relatively intrinsically X0 (or T12) on 21 if there
0 -1
is an index e such that for every enumeration f of A, f~1(R) = Wi @) (or

N\ f~YR) = Wf?"(f_l(gl))). In this case we say that the number e is a X9 (or 112)
index for R.

The next theorem gives a very nice syntactical characterisation of relatively
intrinsically X0 sets.

Theorem 3 (Ash-Knight-Manasse-Slaman [2], Chisholm [4]). Let 2 be a
countable structure. For every relation R on A, R is relatively intrinsically X2
(or T1I2) on A if and only if R is definable in A with a XS (or 11S) formula with
parameters.

Moreover, R is uniformly relatively intrinsically X° on 21 if and only if R is
definable in A by a X5 formula without parameters. Given a X0 index for R, we
can effectively find an index for the ¥¢ formula, and conversely, given an index for
the X3¢, formula, we can effectively find a X2 index for R.

Although the second part of Theorem 3 is not explicitly stated in [2], [4], it
follows in a straightforward manner from the proof of the first part of Theorem 3.

2. CONSERVATIVE EXTENSIONS

Before turning our attention to the notion of jump structure, we need to con-
sider how we will relate the original structure to its jump structure. I. Soskov ob-
served that many common features are shared between the structures constructed
by A. Soskova and I. Soskov [10], namely the Moschovakis’ extension, the jump
structure and the Marker’s extension of a structure, which is a construction for
obtaining jump-invert structures. It turns out that all these structures relate to
the initial structure in a similar way. In the terminology that we are going to in-
troduce, the Moschovakis’ extension of 2 is (1, 1)-conservative extension of 2. One
of our main results will be that the a-th jump structure of 2 is (a/, 1)-conservative
extension of A, where o/ = a+ 1, if o < w, and o’ = «, otherwise.

We begin by defining a relation between enumerations of structures.
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Definition 3 (Soskov). Let f and h be enumerations for the countable struc-
tures A and B respectively. We write f <3 h if

1) AY(fR) <p A(h(B)) and

2) E(f,h)={(z,y) |2,y e N & f(z) = h(y)} is BZ(h~'(B)).

Definition 4 (Soskov). Let 2 and B be countable structures, possibly in dif-
ferent languages.

1) A =3 B if for every enumeration h of B there exists an enumeration f of
2 such that f <3 h.

2) A <3 B if for every enumeration f of A there exists an enumeration h of

B such that h <P f.
3) AGEBif A=5 B and A <5 B.
We say that B is an («, B)-conservative extension of 2 if A C B and A <3 B.

The following theorem motivates the use of the term conservative extension, i.e.
if 9B is an (o, )-conservative extension of 2 then X¢ definability in 2 is equivalent
to X5 definability in B for the subsets of A.

Theorem 4. Let 2 and B be countable structures with A C B. For all
a, B < wa,

1) if A =9 B, then (VX C A)[X € £5(A4) — X € £5(Bp)];
2) if A =9 B, then (VX C A)[X € £5(Bp) — X € B (An));
3) if A4 B, then (VX C A)[X € B (A4) + X € 24(Bp)).

Proof. 1) Let 2 =3 B. Then for every enumeration h of B, there exists an enu-
meration f of 2 such that f <% h. Let X be a subset of A such that X € 3¢ (2%4).
According to Theorem 3, for every enumeration f of 2, f=1(X) is 30 (f~1()).
We will show that for every enumeration h of B, h='(X) is X% (h~1(B)).

Let us take an arbitrary enumeration h of 8. Since 2 =3 B, there is an enu-
meration f of A such that AY(f~1(A)) <r AJ(R~(B)) and E(f, h) is 5 (h~1(B)).
Moreover, f~1(X) is c.e. relative to AQ(f~1(A)) <r AZ(h~'(B)). Tt follows from
the equivalence z € h™'(X) + (Jy € N)[(y,z) € E(f,h) & y € f~1(X)] that
h=H(X) is X3(h~"(B)), which is what we wanted to show.

The proof of 2) is similar to that of 1). O

As remarked in [13], we do not always have the other directions in Theorem 4.
We give a very simple counterexample. Let A = (A; =) and take B = 2. It is easy to
see that for every computable ordinal «, (VX C A)[X € X (Aq) — X € XF(AA)].
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It we assume that we have the reverse directions in Theorem 4, then we would
have (Va < w{)[2l =¢ 2], which is evidently not true. To see this, it is enough
to take an enumeration f of 2 such that f~!(2) is computable. Then there is no
enumeration h of 2 such that h=1(A)" < f~1(A) =1 0.

For a computable ordinal o, we define the ordinal o’ as

o — a+1l, fa<w
- a, if a > w.

The reason behind this notation is that a set X is 9., if and only if X is c.e.

in 0, when n < w, and X is %, a > w if and only if X is ce. in (@),

We also have that for a countable structure 2, DS, () = {dr(AY (f~1(2))) |
f is an enumeration of 2}.

Theorem 5. Let 2 and B be countable structures with A C B.
1) IfA=% B then DSs(B) C DS, ().
2) IfA<«S B then DS, (A) C DSs(B);
3) If A <9 B then DS,(A) = DSs(B).

Proof. We prove only 1) since the others are similar.

Let A :>g,l B and b € DS3(B). We show that b € DS, (). Since 2 is a
non-trivial structure, DS, (2) is closed upwards and it is enough to prove that there
exists a Turing degree a € DS, (2) such that a <p b. Let f be an enumeration
of B and dr (A (f~1(B))) = b. Since A ég: B, there is an enumeration h of A

such that h <% f. For a = dp(A% (h~1(21))) we have a € DS, () and a <7 b. [

We note that we do not have the other directions in Theorem 5. For example,
let us consider the structures 91 = (N; =) and M = (N; Ggyce, =), where Ggyec 18
the graph of the successor function on N. It is easy to see that DS(M) = DS(IM) =
{a | 0 < a}. If we assume that 9 <1 N, then the 3¢ definable sets in 9 with
parameters are also 3¢ definable in 9t with parameters. But the sets X € X{(9y)
are just the finite and co-finite sets, whereas the sets X € X¢(9My) are all c.e. sets.
This is a contradiction.

2.1. THE NOTION OF FORCING

We define a forcing relation with conditions all finite injective mappings from
N into the domain of the countable structure A = (A; Py, ..., Ps_1). We call them
finite parts and we use the letters 7,p,d to denote them. Let P4 be the set of
all finite parts and let P, be the set of all finite functions on the natural numbers
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taking values in {0,1}. Given a finite part 7, we define the finite function 7—1(2l)
in the following way:

M) (u) I=1 ¢ (Fi < 8)(3x1,..., 20, € Dom(T))[u=5-(x1,...,20,) +i &
(T(x1)y...,7(xn,)) € P,
TN ) (w) I= 0 (Fi < 8)(3zq,..., 20, € Dom(T))[u=5-{(x1,...,2,,) +1i &
(T(x1)y...,7(xn,)) &€ P,

771(20)(u) 1 in all other cases. We should note that in the definition of 77(21) we
make the same assumptions about the coding of tuples of natural numbers as in
the definition of f~1(2A).

If ¢ is a partial function and e € N, then by W¥ we will denote the set of all
x such that the computation {e}¥(x) halts successfully. We assume that if during
a computation the oracle ¢ is called with an argument outside of its domain, then
the computation halts unsuccessfully.

For every e,z € N, every finite part 7 and every computable ordinal o > 1, we
define the forcing relations 7 Ik, F.(x) and 7 Ik, = F.(x) in the following way:

Q) 7l Fo(z) o aeWwd @,

(ii) Let =+ 1. Then

Tlkgy1 Fo(z) < (36 € Py)[z € W2 & (Vz € Dom(6))]
(0(z) =1& TlFg F,(2)) V
(0(2) =0 & TlFg =F,(2))]]-
(iii) Let a = lim a(p). Then

Tlke Fo(z) < (30 € Py)[z € W2 & (Vz € Dom(d))[z = (x.,p.) &
((6(2) =1 & T lrgp,) Fo (x2)) V
(0(2) = 0 & 7 lFagp,) ~Fa. (22)))]]
(iv) TlFg =Fe(z) < (Vo €P)[0 D7 — 0 IFo Fe(x)].

The forcing relation depends also on the structure 2. To avoid ambiguity, we
will write 7 IF? F,(z), when necessary.

Lemma 1. For every computable ordinal o > 1 and every e,x € N, we have
the following properties:

1) for any finite parts T C p, if T Ik Fe(x), then p by, Fe(x);

2) for any finite parts T C p, if T ko 2 Fc(x), then p ko ~Fe(x);
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Proof. We prove 1) and 2) simultaneously by transfinite induction on a. The
case o = 1 for 1) follows directly from the fact that 7 C p — 771(A) C p~1(2A).

For 2), let 7 |- —F.(x) and assume that p € P4 is such that 7 C p, but
p 1 —Fe(x). It follows that there exists 6 O p O 7 such that 6 Iy F.(x). But then
(36 2 7)[0 Iy Fe(z)] implies 7 Iff; =F.(x). We reach a contradiction. Therefore,

Tk =F.(z) = plFy = F(2).
Let a = 5+ 1. By the induction hypothesis for 1) and 2),
Tlkgy1 Fo(z) < (36 € Po)[z € W2 & (Vz € Dom(9))]
(0(2)=1& TlFg F,(2)) V(0(2) =0 & 7lFg =F,(2))]]
(36 € Po)[z € WP & (Vz € Dom(9))]

(5() =1 & plhs Fu(2) V(6(2) =0 & plig ~Fo()]
— plFgy1 Fe(x).

—

For 2), we apply the same argument as in the case of « = 1. Let 7 IF, = F.(x)
and assume that p € P4 is such that 7 C p, but p Iy, = Fe(z). Then (36 2 7)[6 Ik,
F,(z)], which implies 7 Iff, =F(z). We reach a contradiction.

Let o = lim a(p). Then, again using the induction hypothesis for 1) and 2),

T lko Fo(z) < (38 € Po)[z € W2 & (V2 € Dom(0))[z = (z.,p.) &

((6(z) = L& 7 IFagp.) Fr.(22)) V (0(2) = 0 & 7 IFa(p.) 7Fe. (22)))]]
(

(

— (36 € Py)[z € W2 & (Vz € Dom(d))[z = (x.,p.) &
(5(2) =1&p ”_a(pz) Fy, (1’2)) \ (5(2) =0&p ”_a(pz) —Fy, (*TZ)))H
< plky Fe(x).
For 2), we again use the same argument. U]

Proposition 1. There is a computable function h such that for any computable
ordinal o > 0, finite part T, and natural numbers e, x,

Tlro Fo(z) < Tlhas1 Fe)();
Tlro Fe(z) < Tlragr = Fpe ().

Moreover, there is a computable function h' such that for any computable limit
ordinal o = lim «(p), finite part T, and natural numbers e, x, p,

Tlrap) Fe(x) < TlFa Frpe)(T);
T“_a(p) ﬁFe(x) < 7_“_04 _‘Fh’(p,e)(x)'
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Proof. Firstly, it is easy to see by the relativised S]* theorem that there exists
a computable function g such that

(Vo ePo)lz e WS — W7, . =N]
(Vo €Po)fz g WS — Wi, . =0
Then we have for any o € Po,

reW. < Wi, =N gle,x) e Wi, .,

and it follows that for any computable ordinal o > 0,
T ko Fe(z) < 7k Fg(eaw)(g(e,x)).
Now we take h to be a computable function such that for any e and z,
(Vo € Po)lz € Wy, « o(g(e,x)) =1]. (2.1)

In other words, (Vo € P2)[z € Wy, <> {{g(e,2),1)} € Graph(c)]. Our goal is to
prove that 7 I, Fe(z) if and only if 7 IFq11 Fyey(z). It is enough to prove that
T Ik Fye,z)(g(e,z)) if and only if 7 IFo 1 Fie) ().

For the (—) part, we use that for the finite function o with Graph(o) =
{(g(e,x),1)}, we have € Wy ,. Thus,

Tlha Fyea(9(e,x)) < (3o € Py)[Graph(o) = {(g(e,x), 1)} & IFa Fye ) (g(e, x))]
< (3o € Po)[x € Wy, & Graph(o) = {{g(e,z), 1)} &

T H_oz Fg(e,x) (9(67 .CC))]
— (Jo € Po)[z € Wy, & (V2 € Dom(0))]

(0(2)=1& 7k F.(2)) V(0(2) =0 & 7 Ik, —F.(2))]]
— T “_a—i—l Fh(e)(:c).

For the (<) part, let 7 IFq 1 Fj(e)(x) and consider one such o € Py for which we
have that = € Wi and

(Vz € Dom(o))[(0(2) =1 & Tl F.(2)) V(0(2) =0 & 7 Iy = F,(2))]]-

By Equivalence (2.1), since # € Wy, it follows that the number g(e,z) is among

the numbers z € Dom/(o) for which o(z) = 1. In this way, for z = g(e, z), we obtain
g(e,z) € Dom(c), o(g(e,x)) = 1 and hence 7 - Fy(c )(g(e,z)). We conclude that

T “_oH-l Fh(e) (.’,E) — 7T lko Fg(e,m) (9(6, :l?))
It is easy to see that we also have the following:

Tlha 2Fe(z) < (Vo 2 7)[p o Fe(@)] ¢ (Vo 2 7)[p Wat1 Fhe)(@)]
— T ”_a—i—l _'Fh(e) (33)
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For the second part, let & = lim a(p) and take h’ to be a computable function
such that for any index e and natural numbers x, p,

(Vo € Po)lw € Wi,y ¢ ollgle.a),p)) = 11. (2.2)
In other words,
(Vo € Py)[x € Wiy < {({g(e,2),p),1)} S Graph(o)].

It suffices to prove that 7 I-o ) Fye,x)(g9(e, x)) iff 7 ko Fiyrep)(z). For the (—)
part, we have the equivalences:

T IFa(p) Fyew)(9(e,2)) > (30 € Po)[Graph(o) = {{{g(e,x),p), 1)}
& 7 lka@) Fogen)(9(e, )]
& (30 € Po)lr € Wi, ) & Graph(e) = {{{g(e,2),p),1)}
&7 ”_a(p) Fg(e,x)(g(ea r))]
— (30 € Py)[z € Wy, ) & (Vz € Dom(0))[z = (2.,p.)
& ((0(2) =1 & 7o) Fr.(2)) V

(0(2) =0 & 7 lFa(p.) ~Fe.(22)))]]
— T H‘a Fh/(e,p)(:t).

Now for the (<) part, let 7 Iy F}/(c p)(2) and consider one such o € Py for which

we have

€ Wiiep & (V2 € Dom(0))[z = (z,p:) & ((0(2) =1 & TlFop.) Fo.(22))
(c(z)=0& T IFa(p.) 7 Fe. ()]

By Equivalence (2.2), since z € Wy, it follows that the number (g(e,z),p) is
among the numbers (x,,p,) € Dom(o) for which o({x.,p,)) = 1. In this way,
for x, = g(e,x) and p, = p, we obtain (g(e,x),p) € Dom(o), oc({g(e,x),p)) = 1,
and hence 7 Iy Fyrer)(g(e,z)). We conclude that if 7 I- Fyr(cp)(x), then
T o) Fyex)(9(e,x)). It is again easy to see that 7 Iy, —Fe(z) if and only if
T ”_a _'Fh’(e,p)(x)- L]

Let f be an enumeration of 2. For every e,x € N and every computable
ordinal a > 1, we define the modelling relations f =, F.(z) and f |, —Fe(x) in
the following way:

() fliFu(z) < zewl ™
(ii) Let =+ 1. Then

fEpi1 Fo(x) & (30 € Py)[x € WP & (V2 € Dom(6))]
(6(z) =1 & [ =p Fa(2)) V
(6(2) =0 & f Fp ~F.(2))]]-
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(iii) Let a =lim «a(p). Then
fEa F.(z) < (36 € Py)[z € W2 & (Vz € Dom(d))[z = (x.,p.) &
((6(2) =1 & f Fagp.) Fo.(2:2)) V
(0(2) =0& f )Za(pz) —Fy, (22)))]]-
(iv) flra ~Fe(z) © f o Fe(z).
Lemma 2. For any computable ordinal o > 1, and any enumeration f of A,
= WAg(f_l(Q[)) & f Ea Fo(2),
x & W AL(fFTHR) & f o F(2).
Proof. The proof is by induction on «. The case @ = 1 follows from the

definition of |— . Let a = 4+ 1. Recall that for any set of natural numbers X,
AD(X) = (Aj(X))". For any p € Py, we have:

p CAL(fTHR)) > (V2 € Dom(p))[(p(2) =1 & 2 € AQ(f7H()))
Vo (p(2) =0 & 2 AL(FHR))]
& (V2 € Dom(p))[(p(z) = 1 & z € w2sY @y
v (p(z) =0 & 2 g W)
& (Vz € Dom(p))l(p(z) =1 & [ |=p Fi(2))
V (p(z) =0 & f = 2F.(2)),]
where the last equivalence follows from the induction hypothesis for 5. Thus, we
have the equivalences:
v e WS (Fp e Py)le € WP & p C AY(SH ()]
— (Fp e Py)[x € WP & (Vz € Dom(p))]
(p(2) =1& f=p Fi(2)) V
(p(2) =0 & [ |=p ~F.(2))]]
< [ Fa Fe(w).

Let a = lim a(p). For any p € Py, we have:
p CAL(fTHR)) < (V2 € Dom(p))[z = (22,p.) &
(p(2) =1 & z. € Ay (FTHERD))
V (p(z) =0 & a2 & Ay (1))
< (Vz € Dom(p))|z = (z,,p.) &

AO —1
(p(z) =1& z, € sza(”)(f (m)))

0 -1
V (p(z)=0& 2, ¢ Wéa(pz)(f (9‘)))]
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< (Vz € Dom(p))[z = (x.,p.) &

(p(2) =1 & f Fagp.) Fo.(22))
V ( ( ) =0& f |:o¢(pz) _‘sz (xz))]a

where we have used the induction hypothesis for ordinals a(p) < «a. Let us recall
that according to our definition for limit ordinals o = lim «a(p),

0

Thus, we have the equivalences:

& (FpeP)[z e W2 & pC AG(fH ()]
— (FpePy)[xe WP & (Vz € Dom(p))[z = (x,,p2)
(p(z2) =1 & [ Fa@p.) Fo.(22))V
(p(z2) =0 & f Fap.) 7Fe. (22))]]
& [ Ea Fe(z).

U

Definition 5. Let a > 1 be a computable ordinal and 2 a countable structure.
An enumeration f of 2 is called a-generic in the following two cases:

1) a=p+1, and for every e,x € N

(FrePy)r C f & (Tlkg Fe(x) V Tlkg —Fe(x))].

2) «a=lima(p), and for every e,z,p € N
(3’7’ € IEDQ)[T Crf& (’7’ H‘a(p) Fe(x) vV T ”_a(p) ﬁFe(.CC)ﬂ.

Proposition 2. For every computable ordinal o > 1, if g is a not a-generic
enumeration of A, then there exist numbers e, x such that

Proof. Let @ = 8+ 1. Since g is not a-generic, there exist numbers e, z such

that
(V1 C g)[T I Fe(z) & 7 I3 = Fe(x)].

By Proposition 1, let eg = h(e) be such that for every finite part 7
T||—5+1 FCO(SL‘) <~ T||—5 Fe(:c),

T||—5+1 —|Feo(:c) — T||—g ﬁFe(.CC).
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Since a = 8 + 1, it follows that

(V7 C 9T Vo Feo(x) & 7o ~Fe, ()]

Let a = lim a(p). Since g is not a-generic, there exist numbers e, x, p for which

(VT C 9)[T Waw) Fe(r) & T Faip) —Fe(x)].

Again by Proposition 1, let eg = h’(p, e) be such that for every finite part 7
Tlra Feo(z) < Tlhop) Fe(z) and 7lkg 2Fe (z) < 7 lbgp) 2 Fe(T).

It follows that
(VT C g)[7 Vo Feo() & T IF o ~Fey ()]

O

Lemma 3. 1) Leta > 1. If g is a (o + 1)-generic enumeration of A, then g
1s also a-generic.

2) Let a = lima(p). If g is a a-generic enumeration of A, then g is also a(p)-
generic for any number p.

Proof. For the first part, suppose that g is (a + 1)-generic, but g is not a-

generic. By Proposition 2, this means that there exist natural numbers e,z for
which

(V7 C 9)[7 Vo Fe(z) & 7 o —Fe(2)].

This contradicts the fact that g is (a + 1)-generic.

For the second part, suppose that g is a-generic, but g is not «(p)-generic, for
some natural number p. Again by Proposition 2, there exist numbers e, x for which

(V1 C g)[r ¥ a(p) F.(x) & T Vo (p) —F,.(x)].

This contradicts the fact that g is a-generic. 0

Lemma 4. For every e,x € N, we have the following properties:
1) for any enumeration f of A, f =1 Fe(x) iff (31 C f)[1 Ik Fe(x)];

2) for a > 1 and every a-generic enumeration g of A, g Fa Fe(x) iff
(3 C g)[7 ko Fe(z)];

3) for a>1 and every (o + 1)-generic enumeration g of A, g FEao —Fe(x) iff
(3 C g)[r IFo ~Fe(x)].

Proof. Part 1) follows from the facts:
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-if7 C fand w € WeT_l(Ql), then x € Wef_l(m);

-ifz e Wef_l(m), then there is 7 C f such that x € Wg_l(m).

We prove 2) and 3) by transfinite induction on . We start with 3) for « = 1. Let
g be 2-generic. For the (—) part, let g =1 —Fe(z), but assume (A1 C g)[r Ik
—F.(z)]. Since g is 2-generic, 7 Ik F(z), for some 7 C g. But by 1),

Tl Fe(z) &7 Cg — g1 Fe(x).

We reach a contradiction.

For the direction (+), let us fix a finite part 7 C g such that 7 IF; —=F,(z), but
assume g =1 —F.(x), which, by definition, means g =1 F.(x). Then by 1), there
is a finite part 6 C g such that 0 IF; F.(z). By 1) of Lemma 1, we can take J to be
such that 7 C §. But then again by Lemma 1,

T H‘l ﬁFe(LC) & T - O — 0 H‘l _IF6<$).

It follows that ¢ I Fe(x), which is a contradiction with our choice of 4.

Let « = 84 1 and let g be a-generic. We first consider the direction (—) of
2). Suppose we have g =541 Fe(x). Then

g s Fo(z) < (36 € Po)[x € W2 & (V2 € Dom(9))]
(6(2) =1& g FFp Fi(2)) V
(6(2) =0 & g Fp ~F:(2))]]

Fix one such § € P5. Then by the induction hypothesis for 2) and 3),

(Vz € Dom(9))[(0(2) =1 & (31, C g)[r: Ik Fx(2)])
(6(2) =0 & (372 C g)[7 IFp = FL(2)])]].

Choose appropriate finite parts 7. and let 7 = [ J_ Dom(s) Tz Then by Lemma 1,
since every 7, C T,
T, kg F.(2) — 7l F,(2),

Ty kg = F,(2) — 7lkg ~F,(2).
It follows that
g s Fo(z) — (36 € Po)[x € W2 & (Vz € Dom(9))]

(0(z)=1& TlFg Fy(2)) V
d(2) =0 & 7lFg = F,(2))]]
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Now we consider part (+—) of 2). Suppose thereis 7 C g such that 7 IFg4q Fe(x).
Then, by definition and the induction hypothesis for 2) and 3),

T lkgy1 Fo(z) < (36 € Po)[x € W2 & (Vz € Dom(d))]
(0(z)=1& TlFg Fy(2)) V
(0(2) =0 & 7lFg =F.(2))]]
— (36 € Py)[x € W2 & (Vz € Dom(d))]
(0(2) =1 & g F=p F.(2)) v
(0(2) =0 & g =g ~F.(2))]]
© g Fpp Felx).
We conclude that (37 C g)[7 IFgy1 Fe(x)] = g FEp+1 Fe(z).

The proof of 3) is essentially the same as in the case a = 1.

Let a = lima(p) and let g be a-generic. For the (—) part of 2), suppose
9 Ea Fe(z).

g Fo(z) < (30 €Py)jx € W2 & (Vz € Dom(d))[z = (x.,p.) &
(0(z)=1&g ):a(pz) Fy, (z.)) Vv
(0(2) =0 & g Fap.) ~Fe.(z2))]].

Fix one such § € Py. Then, by 1) and the induction hypothesis for 2) and 3),

(Vz € Dom(9))[z = (x.,p.) & (8(2) =1 & (31, C g)[12 Fagp.) Fu. (22)]) V
(0(2) =0 & (37 C g)l7= Fa(p.) ~Fa. (z2))]]-
Again, choose appropriate 7, and let 7 = J . om(8) T2+ Then by Lemma 1, since

every 7, C T,
Ty ”_oz(pz) sz (Ji‘z) — T ”_oz(pz) sz (.rz),

T ”_a(pz) —|sz (:cz) — T ”_oz(pz) —|sz (a:z)
It follows that
9o Fo(z) = (30 € Py)[x € W2 & (V2 € Dom(8))[z = (x.,p.) &
(0(z) =1 & Tlkqp.y Fr (22)) V

(6(2) =0 & 7 lbqp.) ~Fr. (22))]]
— T lFo Fe(x).

We conclude that
g Ea Fe(x) — (31 Cg)lrlk, Fe(x)].
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For part (+—) of 2), suppose that there is 7 C g such that 7 IFg4q Fe(x). Then, by
definition and the induction hypothesis for 2) and 3),

T o Fo(z) ¢ (30 € Py)[z € W2 & (V2 € Dom(6))[z = (x.,p.) &
(0(z) =1 & Tlkqp,y Fr (22)) V
(0(2) =0& T ”_oz(pz) —Fy (x2))]]
— (30 € Py)[z € W2 & (Vz € Dom(d))[z = (x.,p.) &
(0(2) =1 & g Fap.) Fr.(2:)) V
(0(2) =0 & g Fa(p.) 7Fe. (22))]]
© g Fa Fe().

We conclude that
(37 C 97 ko Fe(2)] = g Fa Fe(z).

The proof of 3) for a = lim a(p) is again very similar to the proof in the case
of  =1. O

Let var be a computable mapping of the natural numbers onto the variables.
By X; we denote the variable var(i). For a finite set D = {dy < dy < -+ < dp_1}
of natural numbers and a formula ® with free variables including {X; | i € D}, it
is convenient to denote

(HD)Q) = (Eleo-wElek,l)(I)-

Moreover, for any finite part p and any formula ®, by ®(p) we denote the formula
obtained from ® by replacing each occurrence of the free variable X; in ® by the
constant p(i), for every i € Dom(p).

Lemma 5 (Definability of forcing). Let 2 be a structure in the language
£ ={Py,...,Ps_1}, which include equality. Then for every non-empty finite set
D of natural numbers, every natural numbers e, x and a computable ordinal o > 1,
we can effectively find a g, formula @ , . and a 115, formula ©F , . in the lan-
guage £ with free variables in {X; | i € D} such that for every finite part § with
Dom(6) = D, we have the following:

§lra Fo(z) < AE DY . ,(0),

Sl ~Fo(z) < AE 0%, ()

Proof. We will define the formulae ®f, , by effective transfinite recursion on
the computable ordinals « following the definition of the forcing relation. For every
e,x, let W, , = {k € Py | x € W/}, which is a c.e. set.

Let a = 1. Then, by definition,

Tk Fe(x) < z € Wg_l(m) o (A eP)x e Wr & k C 7 1))

We define the atomic formulae \IllD,m,u in the following way:
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-ifu=s-{(iy,... 0, ) +rforr<sandiy,..., i, € D, then

\Ile = PT(Xil, PP Xinr)’ if /i(u)
SR P (X, X, ), if K(u)

L,
0.

- otherwise, we set \IllD’H,u —(Xg = X4), where d is some element of D.

We define the atomic formula W, . with free variables in {X; | i € D} as

Upe= N Xa#Xae &\ Uh,w

d#d’, u€Dom(k)
d,d'eD

We have the property:
K COTHRA) & (Yue Dom (k) E Yhym(s),ru(d)]

and hence

RCOHA) & A Uh,ne.00).

Dom

In the end, we define

1 _ 1
q)D,e,m - \/ \I]D,K‘J
KEWe &

which is a X formula with free variables in {X; | i € D}.
Let us fix e, x and 6 € P4. Let D = Dom(§). We have the equivalences:

Sl Fo(z) & Bk eP)z e WF & r C o 1(A))
AR\ U (0)

KEWe
o AR L, (0),

0 H_l _\Fe(l') A (/Hp € ]P)A)[p 2 o & A |: (I)})om(p),e,x(ﬁ)]

& (AD' 2 D) (3pp)®hr ... (0)]
A==\ @p\p)®h . ().

D'DD

We set

Let oo = 8+ 1. Let us consider k € W, .. Then for every u € Dom(k), we define

@%%u, if k(u) =1
%,Ke,u =
@5D,u,'w if k(u) = 0.
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By definition, V7, ., is either a 25 or a IIf formula. We let

aD,m = /\ X 7é Xar & /\ aD,Fc,u’

d=d/, u€EDom(k)
d,d'eD

which is a finite conjunction of %4 and 11§ formulae with free variables in {X; | i €
D}. We can view V%  as a finite conjunction of ¥%,, formulae and hence it is
equivalent to a ¥ ; formula. In the end, we define

«a — «
D,e,x — \/ \IJD,KJ
ﬁewe,x

which is a X¢ formula with free variables in {X; | i € D}.

Now we are ready to show that the formula @7, , , defines the forcing relation
d Ik Fe(x), where D = Dom/(d). We have the following equivalences:

dlFg Fe(z) < (3r € Py)[x € W & (Yu € Dom(k))|
(k(u) =1& dlFg Fy(uw) V (k(u) =0 & d IFg = F,(u))]]
oA\ N 95,0
KEWe o u€Dom(k)
o A%, . (0)

Again, it is easy to see that the II¢ formula

%,e,w = \/ (HD'\D)(I)%’,e,x
D'DD
defines in 2 the relation 6 I, = F(x).

Let o = lim (p) and consider k € W, 5. Then for every u € Dom/(k) we define
the formula ¥, | in the following way:

- if u = (x4, py), then

P if k(u) =1

D7mu 7wu ’
a pr—
D,ku —

(P if k(u) =0

D,$u7l’u7
- otherwise, we set W%, = = (X4, = Xq4,), where dj is some element of D.

Again we set

be= N\ Xa#tXe & N\ Doy

d#d’, u€Dom(k)
d,d'eD
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which is a finite conjunction of 25 and 15 formulae, for various 8 < «, with free
variables in {X; | i € D}. Therefore, ¥ _is also a 3¢ formula for some v < a.

In the end, we define the X¢ formula
bew= V Th.
KEWe o
By the induction hypothesis we obtain:
d o Fe(z) <> (3 € Py)jx € WI & (Yu € Dom(k))[u = (x4, pu) &

(k(u) =1 & 6 IFop,) Fr,(20)) V
(r(u) =0 & b Fagp,) =Fe, (zu))]]

SRSV AN P )

KEWe » u€Dom(k)

cAE \/ 1,0

KEWe o

AR 0p L (0),
where D = Dom(d). Moreover, 0 I-q =Fe(z) < 2= 0%, s e736(5), where

aD,e,m _'[ \/ (HD'\D)q)aD’,e,m]'
D'DD

2.2. MOSCHOVAKIS’ EXTENSION

We proceed with the investigation of conditions under which we have the other
directions in Theorem 4. For this purpose we need firstly to introduce some coding
machinery and then the sets K2 which will serve as universal predicates for the ¥¢
formulae.

Following Moschovakis [8], we define the least acceptable extension 2* of 2,
which we call the Moschovakis’ extension of 2l. Let 0 be an object which does
not belong to A and II be a pairing operation chosen so that neither 0 nor any

element of A is an ordered pair. Let A* be the least set containing all elements of
Ao = AU {0} and closed under II.

We associate an element n* of A* with each n € N by induction. Let
0* =0 and (n+ 1)* =II(0,n*).
We denote by N* the set of all elements n*. Let L and R be the functions on A*
satisfying the following conditions:
L(0) = R(0) = 0;
(vt € A)[L(t) = R(t) = 17];
(Vs,t € A%)[L(II(s,t)) = s & R(II(s,t)) = t].
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The pairing function allows us to code finite sequences of elements. Let
Hl(tl) = tl and Hn+1(t1, e ,tn+1) = H(tl,Hn(tQ, e ,tn+1)),

for every ty,..., t,41 € A*. For each predicate P; of the structure 2 define the
respective predicate P on A* by

Pr(t) <> (Far,...,an, € A)[t =11,,(a1,...,an,) & Pi(aq,...,an,)].

(3

For an enumeration f of A*, we denote

FHIL) (@0, an—1) =y (Gag, ... an—1 € A N fl2:) = a; &
<n

I, (ag, ... an-1) = f(y)]
Definition 6. Moschovakis’ extension of 2 is the structure
A = (A*; Ao, Py, ..., PG, G, GRr,=),
where G, G and G are the graphs of 11, L and R respectively.

When we have two structures 2l and 8 with domains A C B, we assume that
their respective Moschovakis’ extensions 2A* and 8* are defined so that A* C B*.
We proceed with a few technical results which will be used often when we want to
show that a property for 2 also holds for 2* or vice-versa.

Proposition 3. Let f be an enumeration of . We define the enumeration
fx of A* such that

f*(O) = 0*7
f*(2n + 1) - f(n)a
£ 25120 + 1)) = T(fu(k), fi(n))-

Then f, <} f, and f <} f..

Proof. We follow Lemma 7 of [10] to show that f=1(2() =7 £ ().

Let J(x,y) = 2271 (2y+1). Denote by induction for any x4, ..., z,, Ji(z1) = 21
and Jo11(x1,... xnt1) = J(z1, Jn(z2,...,Tnt1)). Let [ and r be computable
functions satisfying the equalities:

[(0) =r(0) = 0;
(2 +1)=r(2x+1) =2=J(0,0);
[(J(z,y) ==, r(J(z,y) =y

It is easy to see that
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fit(Ao) = {2n+1|n e N}tuU{0}
£ Gn) = {2,y 2) | T fa(@), o (y) = fo(2)} = {2y, 2) | J(z,y) = 2}
Fo(Gr) ={(z,y) [ L(fu(2)) = fe ()} ={{z,y) [ 1(z) = y};
[N (Gr) = {(z,y) | R(fu(2)) = fu(y)} = {{z, ) [ r(z) = y}.
Then for any relation P C A",
(x1,...,2,) € f[THP) < (f(z1),..., f(z,)) €P
o (f*(2:r;1 Y1), fo2zn + 1)) € P

IL,(fo(2z1 +1),..., fu(2zn + 1)) € P*
<—>Jn(2x1—|—1,...,2xn )ef*l(P)_

1

Since f and f, are bijective, f~1(=4) = f.(=*) = {{(z, 2) | z € N}, where =4 is the
equality on A and =* is the equality on A*. We conclude that f=1(A) = f-1(2A*).

To prove f, <i f and f <} f,, it is enough to check that E(f,, f) is c.e. in
f~1(2l). By the definition of f,, we have

E(fe,f)={2z+1,z) | v € N}.

Now it is clear that E(fs, f) is c.e. and hence it is clearly c.e. in f~1(2). O

Proposition 4. Let f be an enumeration of A*. There is an enumeration fia

of A such that fia <} f.

Proof. Since A is a relation in 20*, f~1(A) is computable in f~1(A*). Let us
fix a computable in f~(2*) enumeration {x, }n,en of the set f~1(A). Define the
enumeration fy4 of A as fia(n) = f(x,). Then E(f14,f) = {(n,z,) | n € N} is
clearly computable in f~1(2*). For any predicate P; in 2, the equivalences

W) € fra () © () = F T ) (g, - 2y,,) & 2 € fTH(P))],
Wiy & Fa (P« (32)[z = fH M) (g, 2y,,) & 2 & FTHEY),
show that f;, L(P) <p f~1(2A*). We conclude that fj4 <] f. O

Proposition 5. For any countable structure 2 and computable ordinal o > 0,
we have A <& A*. In other words, A* is (a, a)-conservative extension of .

Proof. Fix ae > 0. Let f be an enumeration of 2A* and let f;4 be defined as in
Proposition 4. Since f}a g% f, we have fi4 <& f. Thus, A =¢ A*.

For the other direction, let f be an enumeration of 2. Consider f,, defined as
in Proposition 3. Since f, <1 f, we have f, <% f. Thus, 2 <2 2*. O
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Fix an enumeration f of 21*. We define a coding scheme for finite sequences of
natural numbers in the following way:

Ji(z) =z, J,J:H(a:o, ) = J (o, T (@1, 1)),

We assign a measure ||z||/ for every natural number z in the following way:

C\m+1, it =J(y,2) & m=mazx{|ly|/, ||z]'}.

It is easy to see that J/ and ||.||/ are functions computable in f~1(A*).

Lemma 6. Let A and B be countable structures with domains A C B. Then
for any computable ordinals o, B > 0, A <5 B if and only if A* <3 B*.

Proof. We prove only the part 2 =% B if and only it 2A* =3 B*. Then it is easy
to see that we can apply a similar argument to prove that 20 <3 B <> 20* <35 B*.

Let A =3 B. We prove 20* =3 B*. Let h be an enumeration of B*. By
Proposition 4, h}p is an enumeration of %B. Since 2 =3 B, there exists f of 2 such
that f §g hyp. We shall show that for the enumeration f, of A*, we have f, Sg h.

Since hp §% h and f gg hip, we have
A (fHA) <0 AL Q) <p AY(hi5(B)) <z AZ(h1(BY)).

Thus, AY(f7H(2%)) < AR(h1(B*)), so we only need to prove that E(fs,h) is
Y% (h~(B*)). We remark that if (x,y) € E(fs,h), then |z||F* = ||ly||*. We define
the sets E; = {{(z,y) | [|z]|* = [[y|* <i & {(x,y) € E(fs,h)}. Clearly, E(f,h) =
Uien Ei- We define by recursion on ¢ a computable function x4 such that for every

[0] —1 *
i, By = W/ﬁf)(h ) We will use the fact that

(z,y) € Biy1 < (z,y) € By V Bu,v,¢,d)[z = J(u,v) & y = J"(c,d) &
(u,c) € E; & (v,d) € E;].

Let i = 0. Fix g = f,1(0*) and yo = h=1(0*). Then
Eo = {(zo,y0)} U {(z,9) | = € f71(A) & (w,y) € B(fs, h)}
and by the definitions of f, and hp, for u € f;1(A),
(u,v) € E(fy,h) if and only if (In)[u =2n+1 & (n,x,) € E(f, h1B)],

where {2, }nen is a computable in h~1(B*) enumeration of h~1(B), which was used
in the definition of /5 in Proposition 4. We know that E(f, hp) is ¥3(h~'(8*)).

0 -1 *
Thus, Ey = Werﬁ(h P for some index eo. Let u(0) = eq.

192 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 171-206.



Let i = j + 1. Since J/* and J" are functions computable in A%(h’l(%*)),
define p(j + 1) to be an index such that

AG(h™H(BY))
(2, ) €W, %
(Fu,v,¢,d)[x = J (u,v) & y = J"(c,d) &

AG(h™H(B)) AG(h™1(BY))
(u,c) € Wu(?) & (u,d) € Wu(?) ].

AG(h~(B7))
(@, y) € W54

Thus, E(f.,h) is $5,(h~(B*)) and hence f, <§ h.

Let 21" =3 B*. We will prove 2 =73 B. Take an enumeration h of B and h,
as defined in Proposition 3. Fix the enumeration f of 2* such that f <3 h.. We
will show that fj4 <3 h. By the following chain,

AQ(fia () < AL(f7HRA) <r AR(h, H(BY)) <r Aj(h™1(B)),

we have Ag(fr_Al(Ql)) < A%(h~(B). Moreover, (u,v) € E(fia,h) if and only if
ue fTUA) & 2v+1 € hyY(B) & (xy,20+ 1) € E(f,hy), where {z,}nen is a
computable in f~(2*) enumeration of f~'(A), Thus, E(fja,h) is Xj(h~"(B))
and fa §g h. O

2.3. CODING TUPLES IN A*

For each finite part 7 € P4, 7 # 0 with Dom(7) = {1 < 29 < -+ < z,} and
7(x;) = a;, we associate the element of A*, 7* = II,,(Il(x7, a1), ..., II(x},a,)). For
T =10, let 7* = 0*. We denote P% = {7* | 7 € P4 }.

Proposition 6. The sets N* and P’ are uniformly relatively intrinsically com-
putable in A*. Thus, N* and P%, are definable in A* by X and 1I{ formulae without
parameters.

Proof. We briefly describe why N* is uniformly relatively intrinsically com-
putable in 2A*. The proof for P’ is similar.

For an enumeration f of 2A*, fix z such that f(z) = 0*. This is the unique
element z € f~!(Ap) such that (z,2) € f~'(Gg). Then z € f~}(N*) if and

only if ¥ = z or x = JJ(z,...,2), where n > 2 is the least number such that
there are numbers y1,. .., y,_1, different from z, and (z,y1) € f~Y(GR), (y1,92) €
f_l(GR),..., (yn_1,2> Ef_l(GR). L]

Corollary 1. The following relations are uniformly relatively intrinsically
computable in A*:

— Dm(z,y) if and only if (37 € P4)ly = 7 & x € Dom(T)],
— Rn(z,y) if and only if (31 € P4)ly = 7 & = € Ran(1)],
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— Sb(z,y) if and only if (AT, p €Pa)x =7 & y=p* & 7 C pl.

Lemma 7. For a countable structure A = (A; Py, ..., Ps_1), computable ordi-
nal o > 1, and natural numbers e, x,

1) X¢, =A{m | 7 Ik} F.(2)} is definable in A* by a X, formula without
parameters;

2) Y2, =A{r* | 7 W3 =F.(x)} is definable in A* by a IIE, formula without
parameters;

3) 28, ={r* | (36 €PA)[0 2 7 & & IF3 F.(x)} is definable in A* by a X,
formula without parameters.

Given natural numbers e, x, and a computable ordinal o > 1, we can effectively
find these formulae.

Proof. Following the proof of Lemma 5 step by step, it is easy to see that for
every non-empty set D of natural numbers, every e, x, and computable ordinal

a > 1, we can effectively find a 3¢ formula @7 Dex and a II¢, formula © D?;m in the

language of A* with free variables in {X; | i € D} such that for every 6 € P4 with
Dom(d) = D, we have

Iy Felz) & AP, ,(0) « A" =255 ,(0),
Y H_i[ _|Fe(£13') < 2 ’: @%,e,m(g) < A IZ ®D ,€, x((s)

We will just show how to produce the X formulae @B;x. We start by defining
the finitary 3; formulae ¥’ D ot

-ifu=s-{(i1,... 0, ) +rforr<sandiy,..., i, € D, then

ol ) ODZ =10, X)) & PHZ)] i s(u) =1,
P\ (32)[Z2 =1(Xiy,..., Xs, ) & =PX(Z)], if &(u) =0,

- otherwise, we set \I/B}mu = (X4 = Xy4), where d is some element of D.

We define the finitary ¥; formula \I/Bi.C with free variables in {X; |i € D} as

= /\ A(X;) & /\ Xi# X5 & /\ ‘IJB,ln,uﬂ
1€D z,;;éjD u€Dom(k)

where A(X) = (3Y, 2)[A0(X) & Gr(Z,2) & Gu(Z,Z,Y) & Gr(X,Y)]. Here we
used the fact that A = {z |z € Ay & R(z) = 1*}. We have the property:

RCEHRA) & WS ().
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In the end, we define

D,e,ﬂc = \/ \I’D K
KEWe &

which is a X{ formula with free variables in {X; | i € D}. Now, we have the
following equivalences:

ue X, < \/ (Jaq, ..., a,)[L,(II(d7, a1), ..., 1(d},a,)) =u &
D={d1<---<dn}
A = <I>D eo(@i, . an)]
2 €78, \/ (3ar, ..., ap)[u(I(dE, ar), ..., I(d5, a,)) = 2 &
D={d1<---<dn}

w =\ Gonp)®h . (ar,. .., an)]

D'DD

Since @77 is a Xf formula, it should be clear that the right-hand sides of the
equivalences can be expressed as ¥f, formulae. Y%, = P% \ Z&, and by the fact
that P € II{(A*), it follows that Y%, € II¢, (=) O

Since we can produce the corresponding formulae uniformly in e and z, we
obtain the following corollary.

Corollary 2. The sets X*={Ilz(e* x* 7% |7ty Fe(x)} and Z¢={113(e*, z*, 77
| (30 D 7)[0 ko Fe(z)]} are definable in A* by XS formulae without parameters.
The set Y = {Ilz(e*,z*,7*) | 7 ko = Fc(x)} is definable in A* by a 11, formula
without parameters. We can find indices for these formulae effectively in a.

Proof. The sets X* and Z“ are definable by formulae, which are essentially
infinite disjunctions over e and x of all formulae 3¢, which define the sets X', and
Zg . Let Y., be definable by the IIf, formula ©7>7 in 2[*. Define the IIf, formula

ENX,Y,Z)= N\ [X=a" &Y =€ — 052(2)).
e,xeN

Since y € Y« if and only if A* =Z*(L(y), L(R(y)), R*(y)) & L(y) e N* & L(R(y)) e N*
and N* € II{(20*), we conclude that Y € II¢ (). O

Corollary 3. Since we have uniformity in e, x and «, for a computable limit
ordinal o = lim a(p), each of the following sets

— on = {H4<€*,ZC*,[)*,T*) | T “_a(p) Fe(x)}’
- i/a - {H4(€*,Jf*,p*,7'*) ’ T ||—a(p) ﬁFe(x)}’

- Za = {H4(e*,x*,p*,7'*) | (35 2 7—)[5 H_Oc(p) Fe(x)]}

Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 171-206. 195



is definable in A* by a X formula and by a IIS, formula without parameters. We
can find indices for these formulae effectively in the notation of .

Proof. The fact that X € X¢(2*) and Z¢ e X¢(A*) follows directly from
Corollary 2, because we can find indices for the formulae defining X*®) and Z*®)
uniformly in p. By the same argument Y € II¢ ().

Since a = lim(a(p) + 1) and X*®) ¢ IIE, (1 (2%), 7o) ¢ IIE, ()1 (A%), as
in Corollary 2 we can show that X e II%(2*) and Z® € IIS(A*). Similarly,
Yo e xe(AX). O

2.4. CHARACTERISATION

Let us fix an enumeration f of A*. Following [10], we show how to associate
a finite mapping 7 € P4 with natural numbers relative to f. For every natural
number n, we denote nf = f~1(n*) and N/ = f~}(N*). For finite parts 7 € P,
we associate with 7* the natural number 7/ = f~1(7*). For example, if 7% =
IL, (L(x}, a1), ..., X(2%, an)), then 7/ = JI(JF (2], f~Y(ar)), ..., JF (2L, fY(an))).

Sometimes we will look at 7/ as a finite mapping with Dom/(7/) = {3:{, ooxl}
and 7/ () = f~1(r(x;)). We assume that Dom(r/) = () if 7/ = 0. Notice that
f(r7(z)) = 7(z) for all z € Dom(7). By Corollary 1, there exists a computable
in f~1(A*) predicate P such that for 7,6 € P4, P(7/,6/) = 1 if and only if 7 C 4.
We will slightly abuse our notation and write 7/ C 6/ instead of P(7/,7) = 1.

The next results give conditions under which we have the other directions of
Theorem 4.

Theorem 6. Let 2 and B be countable structures with A* C B. Then for any
computable ordinals o, 5 > 0,

(VX C A)[X € Z5(A4.) — X € 55(Bp)] — A= B,

Proof. Let us fix an enumeration f of 8. We will show that there exists an
enumeration g of 2 such that g <7 f.

Since A € ¥{(2%.), we have A € ¥5(Bp) and then by Theorem 3, f71(A) is
Y% (f71(B)). Fix a bijection yu : N — f~(A), which is computable in A (f~(B)).
We have two cases to consider.

Let a = 1. We take the enumeration g of A defined as g(n) = f(u(n)). Clearly
the set E(g, f) is X3(f(B)), because

(z,y) € E(g, f) < g(x)=fly) < y=px).
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Let P; be any relation in 2. We have P; € X5(Bp) and A" \ P; € X5(Bp).
Thus, both f~(P;) and f~'(A™ \ P;) are ¥3(f~'(B)). Moreover,

we€ g N P) & Fri,...,zn, <w)|u=(z1,...,2,,) &
(1), - wen)) € FHP),

ueN\g N P) & —(Fxy,..., 00, <w)u={(x1,...,2,,)] V

(Fz1,...,zn, <w)u=(r1,...,20,) &

(1), plwn,)) € f7HA™ N\ P

Since g~ '(P;) and N\ g~'(P;) are both X3(f~1 (%)), g~ () is AR(f~'(B)) and
hence g <j f.

Let a > 1. We build an a-generic enumeration g of 2l such that g <3 f. We
essentially use the sets defined in Lemma 7.

- Let a = v+ 1. By Corollary 2, Y7 € II5(*) and hence Y7 € 3 (2%). It
follows that the sets X7, Y7 and Z7 are all in ¥5(%Bp). Thus, fHX),
YY) and f~1(Z7) are all E%(f_l(%)).

- Let a = lim a(p). By Corollary 3, for the fixed enumeration f of %, ft (Xa),
YY) and f~1(Z%) are all Z%(f_l(%)).

Recall that for any natural number x, we denote by x/ = f~!(z*) and N/ is the
set of all these x7.

Claim 1. There exists an «-generic enumeration g of A such that gf is

A% (fH(B)), where g/ NI — f71(A) is defined as g7 (z) = f~(g(x)).

Proof. We describe a construction in which at each stage s we define a finite
part 7, C 7s41. In the end, the a-generic enumeration of 20 will be defined as
g =, 7s. Let 79 = ) and suppose we have already defined 7.

a) Case s = 2r. We make sure that g is one-to-one and onto A. Let x be the least
natural number not in Dom(7s). Find the least p such that u(p) ¢ Ran(7{).
Set 7s11(x) = f(u(p)) and 7541(2) = 75(2) for every z # x and z € Dom(s).
Leave T4, 1(2) undefined for any other 2. Since N/ and p are A%(f71H(B)), we

can find 7'sf+1 effectively relative to A%(f~1(B)).

b) Case s = 2r + 1. We satisfy the requirement that g is a-generic.

Let « = v+ 1 and s = 2(e, z) + 1. Check whether there exists an extension § of
T, such that ¢ I, F(z). This is equivalent to asking which one of the following

is true:
T (el af 1) e A7) or Ji(ef 2t 1) e fH(2).

We can answer this question effectively relative to the oracle A%( f71(8)).
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- If Jg(ef,xf,T!) € fﬁl(YV), then 75 Iy —F,(z) and we set 7541 = Ts.

- It (el xf 7]) e f71(Z7), we search for 67 € P/, such that 7/ C 6/ and
Ji(el 2t 67y € f~1(X7). We can find such 6/ effectively in A 5(f1(B)).
Set 7,411 = &, where &/ is the first we find.

Let a = lim a(p) and s = 2(e, x, p) + 1. This time we check whether there exists
an extension 0 of 7y such that ¢ Iy, Fe(z). This is equivalent to asking:

T el pf 7]y e 7Yy or gl (e 2t 7)€ ;2.

Again we can answer this question effectively relative to the oracle AR (f~1(8)).
If there is no such §, we set 7541 = 7. If such § does exists, then 7441 = 9,
where 6/ is the first we find. Again, we can do all this effectively relative to the
oracle A%(f~1(B)), because, as explained above, the sets FrUX), fI (Y,

and f~1(Z%) are S5(f7H(B)).

End of construction
It follows from the construction that the graph of g/ is X%(f~(%B)). O

Claim 2. For the enumeration g of A we have the following:
i) the relation E(g, f) is $5(f~1(B));
ii) the relation 7/ C g/ is S5(f7H(B)).

Proof. i) The equivalences g(z) = f(y) < f~'g(x) =y < ¢/ () =y
and the fact that the graph of g/ is £4(f~!(%B)) imply that the set E(g, f) is
SR(fH(B)).

ii) Since f(g¢/(z/)) = g(z), f(vF(z/)) = 7(x), and equality is among the
relation symbols in the language of 20*, we have:

I gt & (Yol € Dom(r!))[r! (a!) = ¢/ (a7)]
& (Val € Dom(r)[f(! (27)) = 7(2) = g(x) = f(g” (27)))]
& (V! € Dom(r!))[f(r (27)) = g(x)]
& (Yol € Dom(17))3y)lg(x) = f(y) & f(r/(z1)) = f(y)]
(Va! € Dom(r))(3y) [z, y) € Eg. f) & (r!(a7),y) € F71(=")].

Here we denote by =* the equality on A*. Since we have all of the following:

(3)

(3)

- the sets {z/ | z € N} and {7/ [ 7 € P4} are 5(f~(B));

- given a number z € Dom(7/), we can effectively relative to Aj(f~'(%B)) find
the value of 7/ (z/);
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- the sets E(g, f) and f~!(=*) are X5(f~(B)),
it follows that the relation 7/ C g/ is L5(f~*(B)). O

We note that if E(g, f) is c.e. in the set Z, then the relation 7/ C g/ is c.e. in
A%(f71(B)) © Z. Since g is a-generic, we obtain the following equivalences.

Let « =~y + 1. Then
z € AL(gTHA) & g By Fu(z) & (31 Cg)lr Iy Fu(2)]
o @ CgH @ 2l ) e fH X))
g Ad(g ) < g =y Fp(z) < (31 Cg)[7 by ~Fy(z)]
o 3 C g @ 2 Ty e ).

Let o = lim a(p). Then

(r,p) € Aolg™H(A) &z eAl) (g1 (A) « g Fap Fula)
< (31 C gl lFag) Folz)).
& @rf g ! 2 pf 7)€ FH X))
(,p) & Aalg™ (A) &z €AY, (g 1(20) < g Fap) Fe(r)
< (31 C g7 ko) Fa(z)).
& @rf oI (! 2 pf ) e YY)

It follows that A (g~ (1)) is A(f~(B)). We conclude that for the enumer-
ation g of 2, g <7 f and hence 2 =3 B. O

Examining closely the proof of Theorem 6, we obtain the following corollary by
isolating the requirements we need in the construction of the generic enumeration.

Corollary 4. Let 2 and B be countable structures with A* C B, and let

a >0, >0 be computable ordinals. Suppose that for every relation P; in A*, P;
and (A*)" \ P; are in X5(Bp), and

-ifa>2and o=y +1, then X7 € £5(Bp), Y7 € £5(Bp), 27 € L5(Bp);
- if o is a limit ordinal, then X € ¥5(BB), Yo e ¥5(BB), Z® e Y5(BB).

Then we have A :>g B.

Moreover, for every enumeration f of B and every a-generic enumeration g

of A, if E(f,g) is c.e. in Z, then Ad (g~ (A)) <r AZ(f~'(B)) @ Z.

Corollary 5. For any two countable structures A, B with domains A C B
and computable ordinals o, B > 0,

=58 (VX CA")[X € X5 (A%.) = X € B5(B5.)].
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In the special case when A = B,
o508 < (VX CAY[X € X5 (™A%, ) « X € B5(B5.)].

Proof. (—) Let & =% B. By Lemma 6, we have 2A* =3 B*. Then by
Theorem 4, (VX C A*)[X € ¥¢(20.) — X € ¥5(B5.)].

(<) We apply Theorem 6 for the structures 2 and B* and obtain 2 =§ B*.
Take any enumeration h of 8 and consider h, of ®8*, defined as in Proposition 3.
There exists f of 2 such that f <§ h,. Since h;'(B*) =r h~(B), and E(h,,h) is
computable, we obtain E(f,h) is X%(h~'(B)) and AY(f~1(A)) <r A%(h~1(DB)).
It follows that f Sg h and hence 2 :>g B. OJ

3. JUMP STRUCTURES
For any countable structure 2, we will define its a-jump structure A, which
(a, 1)-conservatively extends the original structure 2.

Definition 7. Let 2l be a countable structure. We define, for every computable
ordinal o > 0, the set K2 in the following way:

— ifa<w, K2 = {lz(e*,2*,7%) | T IFy ~F.(7) & e,z €N & 7 € P4 }.
— ifa>wand a=+1,

K2 = {TI3(e*,2*,7%) | T kg =F.(x) & e,x € N & 7 € P4}.

— if a=lima(p),
Kil = {H4(e*,q;*,p*,7-*) | T H_a(p) —|Fe(x) & e,x € N & T € IP)A}

Definition 8. Let 2 be a countable structure. For every computable ordinal
a > 0, we define the a-th jump of A in the following way.

A = A and A = (A, K2,

where A* is the Moschovakis’ extension of A. The language of the jump structures
15 the language of the structure A* plus the predicate symbol K.

We remark that A. Soskova and I. Soskov [10] define the jump structure of 2
as A = (A*, R), where R = A* \ K}'. Recall that we defined o/ = a + 1, if a < w,
and o/ = a, otherwise. The next lemma explains why the definition of K2 involves
so many cases for different a.

Lemma 8. For any countable structure A and computable ordinal o > 0, K2
is uniformly relatively intrinsically AY, on 2A*.
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Proof. Essentially the proof is an application of Corollary 2 and Corollary 3.

Let o < w. Here o = a + 1. In this case we have K2 = Y and hence K2 is
definable by a II¢ formula without parameters. Thus, K2 is uniformly relatively
intrinsically AY; on 2*.

Let « > wand a = 8+ 1. Here K = Y# and hence K2 is 115 definable
without parameters in 2A*. Thus, K2 is uniformly relatively intrinsically A® on
A%,

Let o = lim a(p). We have that K2 = Y and by the fact that Y is defin-
able by both ¢ and II¢, formulae without parameters, K2 is uniformly relatively
intrinsically A% on 2A*. O

Corollary 6. For any countable structure 2l and computable ordinal oo > 0,
A =19,
More precisely, for any enumeration f of A*, f=H(A)) <p A2, (f~H(A¥)).

Proof. By Lemma 8, K2 is relatively intrinsically A%, on 20*. Then for any
enumeration f of 2*, f~H(K®) is A%, (f~1(A*)). Thus, f~HRA@) is A%, (f~H(A*))
and hence A(®) =1, 9(*. O

Proposition 7. For any computable ordinal o > 1, K2 and A* \ K2 are
definable by X5 formulae without parameters in At - Therefore, if a relation R
s XY definable without parameters in A given an index for this formula, we can
effectively find a X5 formula without parameters which defines R in A(@+1).

Proof. Here h and h' are the computable functions from Proposition 1. For
a = [+ 1, the proposition follows from the equivalence

we K & \/ [L(u) = e* & M3(n*, L(R(u)), R*(u)) € KX, ,].
(e,n)EGraph(h)

For a = lim a(p), we can define K2 in a similar way, but now we use that
My(e*, 2%, p*,7%) € KX < TI3((h'(e,p))*,a*,7%) € K2, ,.
U

Proposition 7 can be extended and it can be shown that if R is relatively
intrinsically c.e. on 2A(® then R is relatively intrinsically c.e. on A, for any
v > .

Lemma 9. Fiz a countable structure A. For every computable ordinal o >
0, and natural numbers e, z, we have that X2, € Zf(%[(a)). Moreover, we can
effectively find ¥ indices for these formulae uniformly in e, x and .
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Proof. The proof is by transfinite induction on «. The base case is for a = 1.
By Lemma 7, the sets X/ , are in X¢(2*) and thus they are definable in 2’ by the
same formulae. Now consider the ordinal o + 1 < w.

Tlhag1 Fo(z) < (30 € Py)[z € W2 & (Vz € Dom(0))[(6(2) =1 & 7% € X))
vV (0(2) =0 & M3(2*, 2%, 7%) € KY)]).

By the induction hypothesis, X', is definable in A by a 2.7 formula, denoted x¢ ,,
without parameters and we can effectively find an index for this formula uniformly
in e, x and . Let us define the X{ formula without parameters:

=V LA xe() A N\ K525 X)),

0EWe 2 6(2)=0 6(2)=1

where W, , = {§ € Py | z € W2}. By K we denote the relation symbol which is
interpreted as K2 in A(®), Therefore, 7 lFoq1 Fo(z) < A = Xet1 (7). Hence

Xott e EC(QL(Q)) and we can find an index for Yo1' effectively in e, 2 and our
notation for a + 1. By Proposition 7, we can effectlvely transform XQH to the X

formula XO‘H without parameters such that 7 I, 1 F.(z) < At = Xt ().
For the case of a + 1 > w, we have:
T lhag1 Fo(z) < (30 € Py)[z € W2 & (Vz € Dom(0))[(6(2) =1 & 7% € X))
v (B() = 0 & My(", 2,7 € K2,

By the induction hypothesis, we effectively produce the %7 formulae x¢ , for the sets
X¢, such that t € X2 A@) = X¢ z(t). Again by Proposition 7, we effectively

€e,r

transform them into the Xf formulae x¢ , which define the sets X&' in A(e+1)
without parameters. We define the ¥ formula
X?—g'c_l( \/ /\ Xzz N /\ K(H3(Z*7Z*7X))]a
SEW. o §(2)=0 §5(z)=1
for which we have 7 Ibq 41 Fe(z) < 2D =y F1(7%). Clearly, x2 1! defines the
set X1 in AT without parameters.
Let us consider the computable limit ordinal @ = lima(p). By induction

hypothesis, given e, x and a(p), we can effectively produce the 3¢ formula Ye. o(p)

which define the set Xg‘ 53’ ) in Y@) Wlthout parameters. Since Il3(e*,z*,7%) €

Ka(p) if and only if II4(e*,x*,p*,7*) € K2, we effectively transform each xe.» o(p)
a(p )

into the X{ formula e, (gép) which define X¢' ;" in (%) without parameters. Now we

define the 3 formula for X¢', as follows:

0=V I A P A A\ KILE 5 X))

0EWe 2 6({(z,p))=0 d({z,p))=1
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Since 7 Ik Fo(z) + A = X¢ . (7%), the formula x¢', defines the set X', in (@)
without parameters. [

We did all the hard work. Now we are ready to show that 2(*) is (o, 1)-
conservative extension of 2.

Corollary 7. For any countable structure 2l and computable ordinal oo > 0,
A= @),
Moreover, for any o'-generic enumeration g of 2,

A% (g7H @) =r g7 @)W =0 g @A) =1 g (QAW),

«

where g, 1s defined as in Proposition 3.

Proof. First we note that, having Lemma 9, we can prove analogues to Corol-
lary 2 and Corollary 3, that is, we can show that for any computable ordinal «,
X e 25(A®), 2 € 25(A), and X € T5(A), Z@ € 55(A®). Now all we
need to do is check the premises of Corollary 4 for 8 =1 and B = 2A(®) | where we
have a few cases for a to consider:

a < w, o/ = a+ 1. As noted above, we have that X® € (@), Z ¢
Y (A@). Since Y* = K2, we also have Y € 2§ ().

-a=v+1>w, o =a Wehave that X7 € X¢(A"M), Z7 € £$(AM)). Then
by Proposition 7, X7 € ¢ (2A(®)) and Z7 € £§(A(*)). We also have Y7 = K2
and hence Y7 € X§(2A).

- a=lima(p), & = a. Here we have that X e ne(A@), Zo e u¢(A@). By
definition, Y = K%, Thus, Y € X¢(2A®).

By Corollary 4, we conclude that A :>‘f‘/ (),
Now we will prove the second part. By Corollary 4, since ¢ is o/-generic,

Al (g7 @) <r gt AW) @ 2,
where Z is such that E(g, g4) is c.e. in Z. By Proposition 3, we have that E(g, gx)
is computable. Thus, we obtain A%, (¢7'(A)) <7 g7 '(A). By Corollary 6,
(@) =1, 9* and hence g7 '(A) < A2 (g71(2%)). Again by Proposition 3,
g () =7 g1 (A*). Combining all of the above, we conclude
A% (7M@) =7 g @) =1 g @)@ =1 g (A),

g

Theorem 7. For every countable structure A and computable ordinal o > 0,
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1) A <:>‘1"/ AW or in other words, A is a (o, 1)-conservative extension A;
2) A < A@ e AW s also a (of,1)-conservative extension A*;

3) Al = AT pyt Al@) g Yl

Proof. One direction of 1) is Corollary 7. For the other direction, let us take
an enumeration f of 2. By Proposition 3, f, is an enumeration of 21* and hence it
is an enumeration of A(*). Moreover, by Corollary 6, fi (@) <p AY, (f71(2A)).
Since f71(A*) =¢ f~1(A) and E(f., f) is computable, we get 2 <!, ().

2) We take any enumeration f of 2(®) and since by 1) A =% (@) we choose
h of A such that h <¢ f. h, is an enumeration of 2A*, E(h,, h) is computable and
AN (AY) =p h~1(). Thus, h, <¢ f and hence A* = A, The other direction
is exactly Corollary 6, because 2* and A(®) are structures with equal domains and
in this case A(®) =1, A* is equivalent to A* <:‘11/ (). Therefore, A* <:‘f‘/ A(@),

3) By Proposition 7, K2 ¢ %§(2A@+D). Then by Corollary 4, we obtain
A@ =1 et Assume A <1 Y@+ and let g be an (o + 1)-generic enumer-
ation of 2. Since g, is an enumeration of A(®), there exists an enumeration f of
2A(@+1) such that f <1 g, and hence f~1(A+tD) <7 ¢, (A@)). By Corollary 6 we
have g,(A(®) <y A% (g71(A*)) and by Proposition 3, g7 (A4*) =7 ¢~ 1(2A). We
conclude that f=1 (D) <7 A, (g1 (A)) = g(A)(@).

We apply Corollary 4 for 8 = 1, B = A(*tD and obtain that for the given
enumeration f of A+ and (a/+1)-generic g enumeration of A, A2, (¢~ 1(A)) <r
fHACTYY @ Z, where Z is such that E(f, g) is c.e. in Z. Since (z,y) € E(f, g) if
and only if (22 + 1,5) € E(f,g,) and E(f, g,) is c.e. in g7 (A)), we can replace
Z by g7 (A(®)). Therefore,

g @A) =¢ AL, (g7 @) <p FERCTD) @ g (A@) <p gAY,

We reach a contradiction. O

Corollary 8. For a countable structure 2 and computable ordinal o > 0,
1) (¥X CA)X €55(Aa) & X € TFAT));
2) DS(A) = DS, ().

Proof. Direct application of 1) of Theorem 7, Theorem 4 and Theorem 5. [

Theorem 8. For all countable structures A, B with A C B and computable
ordinals o, B > 0, A @g: B if and only if A <1 BB,

Proof. By Lemma 6, for any «, 5 > 0, % <3 B if and only if A* <3 B*. We
explain only why 2A* :>%‘// B* implies A =1 9B The other directions make use
of similar ideas.
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By 2) of Theorem 7, B* :>f/ B, Take any enumeration f of B and
let h be an enumeration of 8* for which h §f/ f. Since A* ig: B*, there
exists an enumeration g of 2A* such that ¢ <2, h. By Corollary 6, g HA®) <
AY, (g7H(A*)). We clearly have g1 (@) <7 A, (g7 1 () <p AY, (R=1(B*)) <r
F7HBW®). Since (x,y) € E(g, f) if and only if there is a number z such that

(x,2) € E(g,h) and (z,9) € E(h, f), the set E(g, f) is c.e. in f~1(B). Therefore,
g §‘1"/ f. We conclude that 2 ig: B implies A =1 BB), 0
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