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1. INTRODUCTION

Branching processes are regarded as appropriate probability models for the de-
scription of the extinction/growth of populations whose developments are subject
to the law of chance. In particular, controlled branching processes are useful to
model some situations which require control of the population size at each gener-
ation. This consists of determining the number of individuals with reproductive
capacity at each generation, mathematically through a control process.

Let us provide its formal definition: A controlled branching process (CBP) with
a random control function is a stochastic process, {Zn}n≥0, defined recursively as
follows:

Z0 = N ∈ N, Zn+1 =

φn(Zn)∑

j=1

Xnj , n ≥ 0, (1)
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where {Xnj : n = 0, 1, . . . ; j = 1, 2, . . .} and {φn(k) : n, k = 0, 1, . . .} are two
families of independent non–negative integer–valued random variables, with Xnj ,
n = 0, 1, . . .; j = 1, 2, . . . being independent and identically distributed (i.i.d.)
random variables having mean m and variance τ2 (both assumed finite), and for
each n = 0, 1, . . ., {φn(k)}k≥0 are independent stochastic processes with equal one–
dimensional probability distributions with E[φn(k)] = ε(k) and V ar[φn(k)] = σ2(k)
(both assumed finite for each k ≥ 0). The random variable Zn represents the total
number of individuals in generation n, starting with Z0 = N > 0 progenitors. Each
individual, independently of all others and all with identical probability distribu-
tions, gives rise to new individuals. The random variable Xnj is the number of
offspring originated by the j-th individual of generation n. If in a certain gener-
ation n there are k individuals, i.e., Zn = k, then, through the random variable
φn(k), identically distributed for each n, there is produced a control in the process
fixing the number of progenitors which generate Zn+1. Thus the variable φn(k)
determines the migration process in a generation of size k: for those values of the
variable φn(k) such that φn(k) < k, k − φn(k) individuals are removed from the
population, and therefore do not participate in the future evolution of the process;
if φn(k) > k, φn(k) − k new individuals (immigrants) of the same type are added
to the population participating as progenitors under the same conditions as the
others. No control is applied to the population when φn(k) = k. It is easy to see
that {Zn}n≥0 is a homogeneous Markov chain. This model was introduced in [10]
for degenerated control distributions (deterministic case) and in [11] for the random
case. The probabilistic theory on this model has been developed in [1], [6], [8] and
[11] (and references therein).

Let define τm(k) = k−1E[Zn+1 | Zn = k], k = 1, 2, . . . . Intuitively τm(k) is in-
terpreted as the expected growth rate per individual when, in a certain generation,
there are k individuals. The process can be classified depending on the limit be-
haviour of the sequence {τm(k)}k≥1. In a broad sense, the cases lim supk→∞ τm(k) <
1, lim infk→∞ τm(k) ≤ 1 ≤ lim supk→∞ τm(k), and lim infk→∞ τm(k) > 1 are re-
ferred to, respectively, as subcritical, critical, and supercritical situations for a
CBP. It is easy to obtain that τm(k) = mk−1ε(k), k ≥ 1. Hence the classification
of the process is determined essentially by the behaviour of the offspring and con-
trol means. Whenever exists the limit of the sequence {τm(k)}k≥1, as k → ∞, we
refer to it as the asymptotic mean growth rate.

In this paper we consider an array of CBPs {Z(n)
i }i≥0, n = 1, 2, . . ., defined

recursively by

Z
(n)
0 = N ∈ N, Z

(n)
i+1 =

φ
(n)
i (Z

(n)
i )∑

j=1

X
(n)
ij , i = 0, 1, . . . ; n = 1, 2, . . . (2)

For each n, {X(n)
ij : i = 0, 1, . . . ; j = 1, 2, . . .} is a sequence of i.i.d. non–negative

integer–valued random variables with meanmn and finite variance τ2n, and {φ(n)i (k) :
i = 0, 1, . . . ; k = 0, 1, . . .} are independent non–negative integer–valued random
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variables with means εn(k) and finite variances σ2n(k) for every k ≥ 0. Also, for

each n, we assume that {X(n)
ij } and {φ(n)i (k)} are independent.

The main aim of this paper is to provide a Feller diffusion approximation for
an array of CBPs whose offspring and control means tend to be critical. Using
operator semigroup convergence theorems, it is proved that the fluctuation limit
is a diffusion process. From a practical viewpoint, the interest of developing this
result stems from the usefulness of it in determining the asymptotic distributions of
estimators of the main parameters of a controlled branching process. In particular,
we are interested in the weighted conditional least squares (WCLS) estimator of the
offspring mean. As an statistical application of the obtained fluctuation limit theo-
rem, it is determined, in a parametric framework, the bootstrapping distribution of
the WCLS estimator of the offspring mean in the critical case. From this, it is con-
cluded that the standard parametric bootstrap WCLS estimate is asymptotically
invalid in the critical case.

The communication is organized as follows. In Section 2 we prove that the
functional fluctuation limit of a sequence of CBPs is a diffusion process. We present
in Section 3 the WCLS estimator of the offspring mean of a CBP. We show its
limit distribution from a classical viewpoint and in a parametric framework, its
bootstrapping distribution by applying the obtained functional limit theorem. From
the last, it is concluded that the standard parametric bootstrap WCLS estimate is
asymptotically invalid in the critical case.

2. DIFFUSION APPROXIMATION THEOREM

Let consider an array of CBPs as given in (2). Let us introduce the sequence

of random functions {Wn}n≥1 as Wn(t) = n−1Z
(n)
[nt], t ≥ 0, n = 1, 2, . . . , with [·]

denoting the integer part. It is clear that {Wn}n≥0 is aD[0,∞)[0,∞)–valued random
variable, with D[0,∞)[0,∞) the space of non–negative functions on [0,∞) that are
right continuous and have left limits. Denote by C∞c [0,∞) the space of infinitely
differentiable functions on [0,∞) which have compact supports. Throughout the

paper “
D→” denotes the convergence of random functions in the Skorokhod topology,

“
d→” the convergence of random variables in distribution and N(·, ·) the normal

distribution.

Using operator semigroup convergence theorems, we prove a weak convergence
theorem for the sequence of random functions {Wn}n≥0.

Theorem 1. Assume that

(A1) mn = m+ αn−1 + o(n−1) as n→ ∞, 0 < m <∞, −∞ < α <∞ ;

(A2) τ2n → τ2 as n→ ∞, 0 < τ2 <∞;
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(A3) for any sequence {xn}n≥1 such that xn → x as n→ ∞, 0 < x <∞,
and for all ǫ > 0,

lim
n→∞

τ−2n E

[
|X(n)

01 −mn|21{|X(n)
01 −mn|≥ǫ

√
nxnτ2n

}
]
= 0,

with 1A denoting the indicator function of a set A ;

(A4) εn(k) = ε(k) + fn(k), with limn→∞ fn(k) = 0 uniformly for k ;

(A5) mε(k)k−1 = 1 + γk−1 + o(k−1) as k → ∞, −∞ < γ <∞ ;

(A6) σ2n(k) = βnk + gn(k) , with limk→∞ gn(k)k
−1 = 0 uniformly for n,

βn → 0 as n→ ∞.

Then Wn
D→ Wα as n → ∞, weakly in the Skorohod space D[0,∞)[0,∞), where

Wα is the diffusion process with generator

Aαf(x) = (γ + αm−1x)f ′(x) +
1

2
τ2m−1xf ′′(x), f ∈ C∞c [0,∞). (3)

The proof of Theorem 1 can be found in [7].

The process Wα is the (unique) solution of the stochastic differential equation

dWα(t) = (γ + αm−1Wα(t))dt+ (τ2m−1Wα(t))
1/2dB(t), t ≥ 0,

where B is a standard Wiener process.

In next section it is necessary to consider a particular array version of CBPs

of the general situation considered in (2). Let {Z(n)
i }i≥0, n = 1, 2, . . ., be an array

of CBPs with the same hypotheses about the offspring and control variables as in
the definition in (2), but with the additional condition that for each k ≥ 0, the

variables {φ(n)i (k)}, i ≥ 0; n ≥ 1, are identically distributed with E[φ
(n)
i (k)] = ε(k)

and V ar[φ
(n)
i (k)] = σ2(k). In respect to the offspring law we assume conditions

(A1)-(A3). Moreover, in relation to the control mean and variance we consider the
following assumptions:

(B1) mε(k)k−1 = 1 + γk−1 + o(k−1) as k → ∞, −∞ < γ <∞ ;

(B2) limk→∞ σ2(k)k−1 = 0,

which are the simplified version of (A4)-(A6) in this particular case. Then, applying
Theorem 1 one obtains

Wn
D→Wα as n→ ∞,

where Wα is the diffusion process with generator given in (3).

250 Ann. Sofia Univ., Fac. Math and Inf., 102, 2015, 247–256.



3. WEIGHTED CONDITIONAL LEAST SQUARES ESTIMATION AND
ASYMPTOTIC RESULTS

Let consider a CBP given in (1) and let Fn be the σ−algebra generated by the
random variables Z0, Z1, · · · , Zn. From the fact that E[Zn|Fn−1] = mε(Zn−1) a.s.,
we can represent Zn as

Zn = mε(Zn−1) + δ̃n, n = 1, 2, . . . , (4)

where the error term δ̃n has E
[
δ̃n|Fn−1

]
= 0. In order to obtain an efficient

estimator of the offspring mean, we divide both sides of (4) by (ε(Zn−1) + 1)
1/2

and rewrite the model as

Zn

(ε(Zn−1) + 1)
1/2

=
mε(Zn−1)

(ε(Zn−1) + 1)
1/2

+ δn, n = 1, 2, . . . ,

with δn = δ̃n/ (ε(Zn−1) + 1)
1/2

.

The WCLS estimator of m is obtained by minimizing the expression
∑n

i=1 δ
2
i .

It is easy to check that the value of m that minimizes it is

m̂n =

(
n∑

i=1

Ziε(Zi−1)

ε(Zi−1) + 1

)(
n∑

i=1

ε2(Zi−1)

ε(Zi−1) + 1

)−1
. (5)

We are interested in the study of the limit distribution of the pivot

Vn =

(
n∑

i=1

ε2(Zi−1)

ε(Zi−1) + 1

)1/2
(m̂n −m). (6)

This presents different kinds of behaviour depending on the classification of the pro-
cess. In [5] it was established that a CBP {Zn}n≥0 with P (X01 = 0) > 0, P (X01 ≤
1) < 1 and P (φ0(i) > i) > 0, i = 0, 1, . . ., converges in distribution to a positive,
finite and non-degenerate random variable Z.

Theorem 2. Assume that

i) lim supk→∞ τm(k) < 1 ;

ii) P (X01 = 0) > 0, P (X01 ≤ 1) < 1 ;

iii) P (φ0(i) > i) > 0, i = 0, 1, . . . ;

iv) E[µ2+δ(Z)] <∞, with µk(z) = E[|φ0(z)− ε(z)|k], k ≥ 1.
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Then
Vn

d→ N(0, V ) as n→ ∞ ,

where

V =

m2E

[(
ε(Z)

ε(Z)+1

)2
σ2(Z)

]
+ σ2E

[
ε3(Z)

(ε(Z) + 1)2

]

E

[
ε2(Z)

ε(Z) + 1

] .

The proof can be seen in [9].

In the supercritical case, we consider that

lim
n→∞

τm(k) = m lim
n→∞

k−1ε(k) = ηm > 1.

Then the following result holds

P (Zn → ∞) > 0 and lim
n→∞

Ln = L a.s., (7)

with Ln = (ηm)−nZn and P (L > 0) > 0. Indeed, conditions that guarantee (7)
can be found in the papers [3, 4].

Theorem 3. Assume that

i) lim supk→∞ τm(k) > 1 and (7) hold ;

ii) limk→∞ k−1σ2(k) = 0.

Then
Vn

d→ N
(
0, σ2
)
, as n→ ∞.

The details of the proof can be seen in [9].

Regarding the critical case, we obtained:

Theorem 4. Assume that

i) τm(k) = 1 + k−1γ + o(k−1) as k → ∞, where γ is a real number ;

ii) limk→∞ k−1σ2(k) = 0.

Then

Vn
d→ W (1)−W (0)− γ
(

1
m

∫ 1
0
W (t)dt

)1/2 as n→ ∞,

where W is a diffusion process with generator (3) with α = 0.
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The reader can find the proof in [9].

This result can be generalized to the particular array version of CBPs consid-
ered in the previous section (2). We provide the behaviour of the array version of
the estimator m̂n and the pivot quantity Vn, which is the interest for the study of
the behaviour of the bootstrap estimator of m. Let

m̄n =

(
n∑

i=1

Z
(n)
i ε(Z

(n)
i−1)

ε(Z
(n)
i−1) + 1

)(
n∑

i=1

ε2(Z
(n)
i−1)

ε(Z
(n)
i−1) + 1

)−1

and

V̄n =

(
n∑

i=1

ε2(Z
(n)
i−1)

ε(Z
(n)
i−1) + 1

)1/2
(m̄n −mn).

Theorem 5. Assume that assumptions (A1)–(A3) and (B1)–(B2) are satis-
fied. Then, as n→ ∞,

V̄n
d→ Wα(1)−Wα(0)− γ
(

1
m

∫ 1
0
Wα(t)dt

)1/2 − α

(
1

m

∫ 1

0

Wα(t)dt

)1/2
,

with Wα as in Theorem 1.

Briefly, three different limit distributions for Vn were obtained for three differ-
ent cases, as n→ ∞, namely

Vn
d→





N(0, V ), if lim supk→∞ τm(k) < 1 (subcritical),

W (1)−W (0)−γ

( 1
m

∫ 1
0
W (t)dt)

1/2 , if τm(k) = 1 + k−1γ + o(k−1), γ ∈ R (critical)

N(0, σ2), if lim infk→∞ τm(k) > 1 (supercritical),

with V andW as previously defined. Hence the classical asymptotic theory does not
provide a unified estimation theory for the offspring mean. Thus it is of interest to
approximate the sampling distribution of Vn by alternative methods. In particular,
we are keen on the bootstrap procedure. We apply the fluctuation limit theorem
previously established to determine the asymptotic distribution of the bootstrap
WCLS estimator in the critical case. We consider a parametric framework and
obtain as a consequence of this last limit result that the standard bootstrap version
of the pivot quantity does not have the same limit distribution as Vn in such a
case. Although the behaviour of the parametric bootstrap for the subcritical and
supercritical cases is of interest as well, due to this fails in the critical case it will be
most interesting for the future to make efforts in developing a modified bootstrap
procedure to be valid in all the three cases. Let us introduce a parametric bootstrap
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for CBPs following analogous steps to those given in [2] for branching processes with
immigration. We assume that the offspring law, pθ, has probability mass function

pθ(k) = Pθ(X01 = k), k = 0, 1, . . .,

depending on a parameter θ where θ ∈ Θ ⊆ R.

Consider m = Eθ[X01] = f(θ) for some function f , which we will assume to be
a one-to-one mapping of Θ to [0,∞). Moreover, f is assumed to be homeomorphism
between its domain and range. For instance, the power series family of distributions
satisfies the conditions imposed above.

The bootstrap procedure can be defined as follows: given the sample Mn =
{Z1, ..., Zn}, estimate the offspring mean by the estimator m̂n given in (5), and

therefore let θ̂n = f−1(m̂n). Conditional on Mn, define a sequence of i.i.d. random
variables X∗nj having distribution given by pθ̂n . The bootstrap sample M∗

n =
{Z∗1 , . . . , Z∗n} is obtained by

Z∗n+1 =

φn(Z
∗

n)∑

j=1

X∗nj , n = 0, 1, . . . , with Z∗0 = N.

We define the bootstrap estimator of m as m̂∗n given by

m̂∗n =

(
n∑

i=1

Z∗i ε(Z
∗
i−1)

ε(Z∗i−1) + 1

)(
n∑

i=1

ε2(Z∗i−1)

ε(Z∗i−1) + 1

)−1
,

and the parametric bootstrap analogue, V ∗n , of the pivot quantity Vn, given in (6),
as

V ∗n =

(
n∑

i=1

ε2(Z∗i−1)

ε(Z∗i−1) + 1

)1/2
(m̂∗n − m̂n) .

Note ε(·) is assumed to be known and φn(·) are observable. In this context,
let denote the distribution function of Vn by Fn(m,x) = P (Vn ≤ x), x ∈ R. Then,
notice that

P (V ∗n ≤ x|Mn) = Fn(m̂n, x), x ∈ R.

Our interest is to determine the limit behaviour of Fn(m̂n, x), x ∈ R, assuming
that the true model is a critical CBP. We check that for every x ∈ R the random
variables Fn(m̂n, x) converge in distribution to a non degenerate random limit, and
consequently one has that it is not verified that

sup
−∞<x<∞

|Fn(m,x)− Fn(m̂n, x)| → 0 a.s. as n→ ∞, (8)

obtaining the asymptotic invalidity of the bootstrap procedure in the critical case.
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Define

W(α,m, τ2, γ) =
Wα(1)−Wα(0)− γ
(

1
m

∫ 1
0
Wα(t)dt

)1/2 − α

(
1

m

∫ 1

0

Wα(t)dt

)1/2
,

with Wα the diffusion process defined in Theorem 1, and

F (α,m, τ2, γ, x) = P (W(α,m, τ2, γ) ≤ x), x ∈ R.

As in [2], it is not hard to prove that, for each x ∈ R, F (V0,m, τ2, γ, x) is a random

variable, with V0 = (W (1)−W (0)−γ)
(

1
m

∫ 1
0
W (t)dt

)−1
. Now, we are in conditions

to state the result that establishes that (8) does not hold:

Theorem 6. Assume that

(C1) The variance of the offspring law, τ2, is a continuous function of θ.

(C2) The moment Eθ[|X01|2+δ], for some δ>0 is a continuous function of θ.

Then, it is verified that for every x ∈ R, as n→ ∞,

Fn(m̂n, x)
d→ F (V0,m, τ2, γ, x).

It is not hard to check that the power distribution family verifies (C1)-(C2).
The key of this proof is Theorem 5 and the details can be read in [7]. One of the
reasons for the standard parametric bootstrap does not work well in such a case is
the rate of convergence to the offspring mean parameter of its WCLS estimate.
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