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In this communication it is proved a fluctuation limit theorem for controlled branching
processes. Under the conditions that the offspring and control means tend to be crit-
ical, the obtained limit is a diffusion process. This result is applied to conclude that
the standard parametric bootstrap weighted conditional least squares estimate for the
offspring mean is asymptotically invalid in the critical case.

Keywords: Controlled branching processes, weak convergence theorem, diffusion pro-
cess, conditional least squares estimation, parametric bootstrap
2000 Math. Subject Classification: 60J80, 62M05

1. INTRODUCTION

Branching processes are regarded as appropriate probability models for the de-
scription of the extinction/growth of populations whose developments are subject
to the law of chance. In particular, controlled branching processes are useful to
model some situations which require control of the population size at each gener-
ation. This consists of determining the number of individuals with reproductive
capacity at each generation, mathematically through a control process.

Let us provide its formal definition: A controlled branching process (CBP) with
a random control function is a stochastic process, {Z, }n>0, defined recursively as

follows:
¢n(Zn)

Zy=N€eN, Zyp= Y Xn, n>0, (1)
j=1
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where {X,; : n = 0,1,...;5 = 1,2,...} and {¢,(k) : n,k = 0,1,...} are two
families of independent non-negative integer-valued random variables, with X,
n = 0,1,...; j = 1,2,... being independent and identically distributed (i.i.d.)
random variables having mean m and variance 72 (both assumed finite), and for
eachn =0,1,..., {¢n(k)}r>0 are independent stochastic processes with equal one—
dimensional probability distributions with E[¢,, (k)] = (k) and Var|¢, (k)] = o2 (k)
(both assumed finite for each £ > 0). The random variable Z,, represents the total
number of individuals in generation n, starting with Zy = N > 0 progenitors. Each
individual, independently of all others and all with identical probability distribu-
tions, gives rise to new individuals. The random variable X,; is the number of
offspring originated by the j-th individual of generation n. If in a certain gener-
ation n there are k individuals, i.e., Z,, = k, then, through the random variable
on(k), identically distributed for each n, there is produced a control in the process
fixing the number of progenitors which generate Z, ;. Thus the variable ¢, (k)
determines the migration process in a generation of size k: for those values of the
variable ¢, (k) such that ¢, (k) < k, k — ¢, (k) individuals are removed from the
population, and therefore do not participate in the future evolution of the process;
if ¢n(k) > k, ¢ (k) — k new individuals (immigrants) of the same type are added
to the population participating as progenitors under the same conditions as the
others. No control is applied to the population when ¢, (k) = k. It is easy to see
that {Z,, },>0 is a homogeneous Markov chain. This model was introduced in [10]
for degenerated control distributions (deterministic case) and in [11] for the random
case. The probabilistic theory on this model has been developed in [1], [6], [8] and
[11] (and references therein).

Let define 7,,,(k) = k= E[Z, 41 | Zn = k|, k =1,2,.... Intuitively 7,,(k) is in-
terpreted as the expected growth rate per individual when, in a certain generation,
there are k individuals. The process can be classified depending on the limit be-
haviour of the sequence {7,,(k)}x>1. In a broad sense, the cases lim sup;,_, ., Tm (k) <
1, liminfyx_ o0 7 (k) < 1 < limsupy_, . Tm(k), and liminfy_, . 7., (k) > 1 are re-
ferred to, respectively, as subcritical, critical, and supercritical situations for a
CBP. It is easy to obtain that 7,,(k) = mk~'e(k), k > 1. Hence the classification
of the process is determined essentially by the behaviour of the offspring and con-
trol means. Whenever exists the limit of the sequence {7,,(k)}r>1, as k — oo, we
refer to it as the asymptotic mean growth rate.

In this paper we consider an array of CBPs {an)}izo, n = 1,2,..., defined
recursively by

¢ (2{")
zZi"=NeN, zih= Y X, i=01,..;n=12.. (2
j=1
For each n, {XZ-(;%) :i=0,1,...;5 = 1,2,...} is a sequence of i.i.d. non—negative

integer—valued random variables with mean m,, and finite variance 72, and {qbz(-n) (k) :
i =0,1,...;k = 0,1,...} are independent non—negative integer—valued random
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variables with means ¢, (k) and finite variances o2 (k) for every k > 0. Also, for
each n, we assume that {Xz(jn)} and {ngZ(n)(k:)} are independent.

The main aim of this paper is to provide a Feller diffusion approximation for
an array of CBPs whose offspring and control means tend to be critical. Using
operator semigroup convergence theorems, it is proved that the fluctuation limit
is a diffusion process. From a practical viewpoint, the interest of developing this
result stems from the usefulness of it in determining the asymptotic distributions of
estimators of the main parameters of a controlled branching process. In particular,
we are interested in the weighted conditional least squares (WCLS) estimator of the
offspring mean. As an statistical application of the obtained fluctuation limit theo-
rem, it is determined, in a parametric framework, the bootstrapping distribution of
the WCLS estimator of the offspring mean in the critical case. From this, it is con-
cluded that the standard parametric bootstrap WCLS estimate is asymptotically
invalid in the critical case.

The communication is organized as follows. In Section 2 we prove that the
functional fluctuation limit of a sequence of CBPs is a diffusion process. We present
in Section 3 the WCLS estimator of the offspring mean of a CBP. We show its
limit distribution from a classical viewpoint and in a parametric framework, its
bootstrapping distribution by applying the obtained functional limit theorem. From
the last, it is concluded that the standard parametric bootstrap WCLS estimate is
asymptotically invalid in the critical case.

2. DIFFUSION APPROXIMATION THEOREM

Let consider an array of CBPs as given in (2). Let us introduce the sequence
of random functions {W,,},>1 as W, (t) = n_lZ[(st)], t>0, n=1,2,..., with []
denoting the integer part. It is clear that {W,, },>0 is a Djg o) [0, 00)-valued random
variable, with Dy [0, 00) the space of non-negative functions on [0, 00) that are
right continuous and have left limits. Denote by C2°[0,00) the space of infinitely
differentiable functions on [0, 00) which have compact supports. Throughout the
paper «B» denotes the convergence of random functions in the Skorokhod topology,

«hr the convergence of random variables in distribution and N(-,-) the normal
distribution.

Using operator semigroup convergence theorems, we prove a weak convergence
theorem for the sequence of random functions {W,,},>o.

Theorem 1. Assume that
(A1) mpy=m+ant+o(nt) as n—00, 0<m<oo, —00<a<o0;

(A2) 712 =72 as n— o0, 0< 712 < 005
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(A3)  for any sequence {xn}n>1 such that z, — x as n — 0o, 0 < x < 00,
and for all € > 0,

lim 7,°E 1x{m —mn|21{|x(§’f’—mn|zem} =0,
with 14 denoting the indicator function of a set A;
(Ad)  e,(k) =e(k) + fu(k), with lim, .o fn(k) =0 uniformly for k;
(A5) me(k)k~ ' =1+~k "t +o(k™!) as k=00, —c0o<y<00;
(A6) o2(k) = Buk + gn(k), with limg_ oo gn(k)k™! = 0 wuniformly for n,

Brn — 0 as n — oo.

Then W, B Wa as n — oo, weakly in the Skorohod space Dig ) [0,00), where
Wy s the diffusion process with generator

Aaf(@) = (y+ am™ 0 f (@) + srom e (@), fECED00) (3

The proof of Theorem 1 can be found in [7].

The process W, is the (unique) solution of the stochastic differential equation
AWo(t) = (v + am™ Wo(2))dt + (72m ™ W, (£))/2dB(t), t > 0,

where B is a standard Wiener process.
In next section it is necessary to consider a particular array version of CBPs
of the general situation considered in (2). Let {Zi(n)}izo, n=1,2,..., be an array

of CBPs with the same hypotheses about the offspring and control variables as in
the definition in (2), but with the additional condition that for each k& > 0, the
variables {@(-n)(k)}, i > 0; n > 1, are identically distributed with E[qbgn)(k)] = e(k)
and Var[qbgn)(k:)] = o%(k). In respect to the offspring law we assume conditions

(A1)-(A3). Moreover, in relation to the control mean and variance we consider the
following assumptions:

(B1) me(k)k ' =14~k +o(k™') as k — o0, —00 <y < 00;
(B2) limg_oo 02(k)k™1 =0,

which are the simplified version of (A4)-(A6) in this particular case. Then, applying
Theorem 1 one obtains
W, 2) Weo as n — oo,

where W, is the diffusion process with generator given in (3).
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3. WEIGHTED CONDITIONAL LEAST SQUARES ESTIMATION AND
ASYMPTOTIC RESULTS

Let consider a CBP given in (1) and let F,, be the o—algebra generated by the
random variables Zy, Z1, - -+ , Z,. From the fact that E[Z,,|F,_1] = me(Z,-1) a.s.,
we can represent Z,, as

Zn=me(Zn_1) + 80, n=1,2,..., (4)

where the error term 5n has F {5n|}"n_1] = 0. In order to obtain an efficient

estimator of the offspring mean, we divide both sides of (4) by (e(Z,—1) + 1)1/2

and rewrite the model as

Z, Z,_
_omelln) s 10

((Zn) + D2 (e(Zn-1) + 1)

with &, = 6,/ (e(Zn_1) + 1)
The WCLS estimator of m is obtained by minimizing the expression Y ., 62
It is easy to check that the value of m that minimizes it is

—1
~ - Zz'f:“(Zz‘—l) - 52(Zi—1)
m, = — _— : 5)
(L) (St ”

We are interested in the study of the limit distribution of the pivot

1/2
- 62(22‘*1)

V, = S S Y My, — M). 6
(g S ey BUISED ©

This presents different kinds of behaviour depending on the classification of the pro-
cess. In [5] it was established that a CBP {Z,, },,>¢ with P(Xo; =0) > 0, P(Xp <
1) < 1 and P(¢pp(i) > i) > 0,4 =0,1,..., converges in distribution to a positive,
finite and non-degenerate random variable Z.

Theorem 2. Assume that

i) limsup,_, . (k) < 1;

iii) P(¢o(i) >i) >0, ¢=0,1,...;

)
11) P(X01:O)>0, P<X01§1)<1,‘
)
iv)

Eluzss(2)] < oo, with p(z) = Ell¢o(z) — ()], k> 1.
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Then

where
v_T#El@éQJZ““z‘**El@ég?nJ
dEeen

The proof can be seen in [9)].
In the supercritical case, we consider that

lim 7,,(k) =m lim k& 'e(k) = nm > 1.

n— oo n— oo

Then the following result holds

P(Z, o) >0 and lim L,=L as, (7)

n— o0

with L, = (nm)~"Z, and P(L > 0) > 0. Indeed, conditions that guarantee (7)
can be found in the papers [3, 4].

Theorem 3. Assume that
i) limsup,_, . 7m(k) > 1 and (7) hold;
i) limg_eo k:_laz(k:) = 0.

Then
Va i)N(O,JQ), as mn — oo.

The details of the proof can be seen in [9)].
Regarding the critical case, we obtained:

Theorem 4. Assume that
i) 7n(k)=1+k"1y+o0(k™1) as k — oo, where v is a real number ;
i) limp_eo b to?(k) = 0.

Then
as n — 0o,

q W(1) —W(0) —l/fé
(& Jo wt)at)

where W is a diffusion process with generator (3) with oo = 0.

Vi
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The reader can find the proof in [9].

This result can be generalized to the particular array version of CBPs consid-
ered in the previous section (2). We provide the behaviour of the array version of
the estimator m,, and the pivot quantity V,,, which is the interest for the study of
the behaviour of the bootstrap estimator of m. Let

-1
] Z Ze(ZM)\ (= €2(Z™)
My, = —_—

—1 5(Zz(n)1 +1 i—1 5(Zz(n )+1

and

Theorem 5. Assume that assumptions (A1)—-(A3) and (B1)—-(B2) are satis-
fied. Then, as n — oo,

1/2

o Wa(l) = Wa(0) =y (% /01 Wa(t)dt> :

(% i wanar) "

with W, as in Theorem 1.

Briefly, three different limit distributions for V,, were obtained for three differ-
ent cases, as n — 0o, namely

( N(0,V), if limsup_, . Tm(k) < 1 (subcritical),

[ (?/ 0 ;vvgz)t;”/ if 7m(k) =1+k"'y+o(k™"), v €R (critical)
m JO

N(0,0?), if liminfy_, o 7, (k) > 1 (supercritical),

\

with V and W as previously defined. Hence the classical asymptotic theory does not
provide a unified estimation theory for the offspring mean. Thus it is of interest to
approximate the sampling distribution of V,, by alternative methods. In particular,
we are keen on the bootstrap procedure. We apply the fluctuation limit theorem
previously established to determine the asymptotic distribution of the bootstrap
WCLS estimator in the critical case. We consider a parametric framework and
obtain as a consequence of this last limit result that the standard bootstrap version
of the pivot quantity does not have the same limit distribution as V,, in such a
case. Although the behaviour of the parametric bootstrap for the subcritical and
supercritical cases is of interest as well, due to this fails in the critical case it will be
most interesting for the future to make efforts in developing a modified bootstrap
procedure to be valid in all the three cases. Let us introduce a parametric bootstrap
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for CBPs following analogous steps to those given in [2] for branching processes with
immigration. We assume that the offspring law, pg, has probability mass function

po(k) = Py(Xo1 = k), k=0,1,...,

depending on a parameter 6 where § € © C R.

Consider m = Ey[Xo1] = f(0) for some function f, which we will assume to be
a one-to-one mapping of © to [0, 00). Moreover, f is assumed to be homeomorphism
between its domain and range. For instance, the power series family of distributions
satisfies the conditions imposed above.

The bootstrap procedure can be defined as follows: given the sample M,, =
{Z1,...,Z,}, estimate the offspring mean by the estimator m,, given in (5), and

therefore let én = f~Y(my,). Conditional on M,,, define a sequence of i.i.d. random
variables X7, having distribution given by g, - The bootstrap sample M} =
{ZF,...,Z"} is obtained by

nj

$n(Z})
Zpoy= Y Xp,nm=0,1,..., with Zj = N.
j=1

We define the bootstrap estimator of m as m; given by
—1
m* = i Zz*g(Zz*—l) i 82(Z'Ek—1)
" im1 e(Zi,) +1 i—1 e(Zi,) +1 7

and the parametric bootstrap analogue, V*, of the pivot quantity V,,, given in (6),

as Lo
—~ X(Z)
V) = —_ my — Mpy) .
g (Z iz 1)

Note ¢(+) is assumed to be known and ¢,(-) are observable. In this context,
let denote the distribution function of V,, by F,,(m,x) = P(V,, < x), x € R. Then,
notice that

PV <z|M,) = F,(mp,z), © €R.

Our interest is to determine the limit behaviour of F,(m,,z), + € R, assuming
that the true model is a critical CBP. We check that for every x € R the random
variables F), (M., x) converge in distribution to a non degenerate random limit, and
consequently one has that it is not verified that

sup |En(m,z) — F(my,z)] =0 as. asn — oo, (8)

—oo<xr <00

obtaining the asymptotic invalidity of the bootstrap procedure in the critical case.
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Define

a,m, T2 :Wa(l)—Wa(O)—y_a 1 1 a 1/2
W(a,m, 7%, 7) (%fOIWa(t)dt)lm <m/0 W, (t)dt) ’

with W, the diffusion process defined in Theorem 1, and

F(a,m,7%,v,2) = PW(a,m,7%,7) < ), z € R.

As in [2], it is not hard to prove that, for each x € R, F(Vy, m, 72,7, x) is a random
—1

variable, with Vo = (W (1)—W (0)—~) (% fol W(t)dt) . Now, we are in conditions

to state the result that establishes that (8) does not hold:

Theorem 6. Assume that

2

(C1) The variance of the offspring law, 72, is a continuous function of 6.

(C2) The moment Ey[|Xo1|**°], for some §>0 is a continuous function of 6.

Then, it is verified that for every x € R, as n — oo,
Fn(rr/ﬁna .11) i) F<V07 m, 7-27 Y :U)

It is not hard to check that the power distribution family verifies (C1)-(C2).
The key of this proof is Theorem 5 and the details can be read in [7]. One of the
reasons for the standard parametric bootstrap does not work well in such a case is
the rate of convergence to the offspring mean parameter of its WCLS estimate.
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