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We prove that for 𝑞 ∈ (−1, 0)∪(0, 1), the partial theta function 𝜃(𝑞, 𝑥) :=
∑︀∞

𝑗=0 𝑞
𝑗(𝑗+1)/2𝑥𝑗

has no zeros in the closed unit disk.
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1. Introduction

We consider the partial theta function 𝜃(𝑞, 𝑥) :=
∑︀∞

𝑗=0 𝑞
𝑗(𝑗+1)/2𝑥𝑗 , where 𝑞 ∈

[−1, 1] is a parameter and 𝑥 ∈ R is a variable. In particular, 𝜃(0, 𝑥) ≡ 1, 𝜃(1, 𝑥) =∑︀∞
𝑗=0 𝑥

𝑗 = 1/(1− 𝑥) and

𝜃(−1, 𝑥) =

∞∑︁
𝑗=0

(−1)𝑗𝑥2𝑗 +

∞∑︁
𝑗=0

(−1)𝑗+1𝑥2𝑗+1 = (1− 𝑥)/(1 + 𝑥2).

For each 𝑞 ∈ (−1, 0) ∪ (0, 1) fixed, 𝜃 is an entire function of 𝑥 of order 0.
The name “partial theta function” is connected with the fact that the Jacobi

theta function equals Θ(𝑞, 𝑥) :=
∑︀∞

𝑗=−∞ 𝑞𝑗
2

𝑥𝑗 while 𝜃(𝑞2, 𝑥/𝑞) =
∑︀∞

𝑗=0 𝑞
𝑗2𝑥𝑗 . “Par-

tial” refers to the fact that summation in 𝜃 is performed only from 0 to ∞. One can
observe that

Θ*(𝑞, 𝑥) := Θ(
√
𝑞,
√
𝑞𝑥) =

∞∑︁
𝑗=−∞

𝑞𝑗(𝑗+1)/2𝑥𝑗 = 𝜃(𝑞, 𝑥) + 𝜃(𝑞, 1/𝑥)/𝑥.
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The function 𝜃 satisfies the relation

𝜃(𝑞, 𝑥) = 1 + 𝑞𝑥𝜃(𝑞, 𝑞𝑥). (1.1)

Applications of 𝜃 to questions concerning asymptotics and modularity of partial and
false theta functions and their relationship to representation theory and conformal
field theory (see [6] and [4]) explain part of the most recent interest in it. Previously,
this function has been studied with regard to Ramanujan-type 𝑞-series (see [25]),
statistical physics and combinatorics (see [24]), the theory of (mock) modular forms
(see [5]) and asymptotic analysis (see [3]); see also [1].

Another domain in which 𝜃 plays an important role is the study of section-
hyperbolic polynomials. These are real polynomials with all roots real negative and
all whose finite sections (i.e., truncations) have also this property, see [9,21,22]; the
cited papers are motivated by results of Hardy, Petrovitch and Hutchinson (see [7,8,
23]). Various analytic properties of the partial theta function are proved in [11–20]
and other papers of the author.

The basic result of the present text is the following theorem (proved in Sec-
tion 3):

Theorem 1. For each 𝑞 ∈ (−1, 0)∪ (0, 1) fixed, the function 𝜃 has no zeros in
the closed unit disk D1.

In the next section we discuss the question to what extent Theorem 1 pro-
poses an optimal result. In Section 4 we make comments and formulate some open
questions.

2. Optimality of the result

2.1. The theorem of Eneström-Kakeya

For 𝑞 ∈ (0, 1), the theorem of Eneström-Kakeya about polynomials with positive
coefficients (see [2]) implies that the modulus of each root of a polynomial 𝑎0+𝑎1𝑥+
· · · + 𝑎𝑛𝑥

𝑛, 𝑎𝑗 > 0, is not less than min𝑗 |𝑎𝑗−1/𝑎𝑗 |. When this polynomial equals
1 + 𝑞𝑥 + · · · + 𝑞𝑛(𝑛−1)/2𝑥𝑛−1, the minimum equals 1/𝑞. Thus all zeros of all finite
truncations of 𝜃(𝑞, .) (and hence all zeros of 𝜃 itself) lie outside the open disk D1/𝑞.

Hence for 𝑞 ∈ (0, 1) (but not for 𝑞 ∈ (−1, 0)), Theorem 1 follows from the
theorem of Eneström-Kakeya. A hint how to obtain for 𝑞 ∈ (−1, 0) a disk of a
radius tending to ∞ as 𝑞 → 0− and free from zeros of 𝜃 is given in Remark 4.

Remark 2. For 𝑞 ∈ (−1, 0), it is not true that 𝜃(𝑞, .) has no zeros inside the
disk D1/|𝑞|. Indeed, the function 𝜃(−0.4, .) has a zero 1.96 . . . < 1/0.4 = 2.5. More
generally, the zero of 𝜃(𝑞, .) closest to the origin can be expanded in a Laurent series
(convergent for 0 < |𝑞| sufficiently small) of the form −1/𝑞 − 1 +𝑂(𝑞), see [11]. For
𝑞 ∈ (−1, 0) and |𝑞| sufficiently small, this number belongs to the interval (0, 1/|𝑞|).
See also [20], where the zero set of 𝜃 is illustrated by pictures.
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2.2. Optimality with respect to the parameter 𝑞

(1) This result cannot be generalized in the case when 𝑞 and 𝑥 are complex.
Indeed, suppose that 𝑞 ∈ D1 and 𝑥 ∈ C. Then the function 𝜃 has no zeros 𝑥 with
|𝑥| < 1/2. In fact, it has no zero for |𝑥| ≤ 1/2|𝑞|, see [10, Proposition 7]. On the
other hand, the radius of the disk in the 𝑥-space centered at 0 in which 𝜃 has no
zeros for any 𝑞 ∈ D1 is not larger than 0.56 . . . . Indeed, consider the series 𝜃 with
𝑞 = 𝜔 := 𝑒3𝜋𝑖/4. It equals (︂ 7∑︁

𝑗=0

𝜔𝑗(𝑗+1)/2𝑥𝑗

)︂⧸︂
(1− 𝑥8).

Its numerator has a simple zero 𝑥* := 0.33 . . . + 0.44 . . . 𝑖 whose modulus equals
0.56 . . . . Hence for 𝜌 ∈ (0, 1) sufficiently close to 1, the function 𝜃(𝜌𝑒3𝑖𝜋/4, .) has a
zero close to 𝑥*. To see this one can fix a closed disk 𝒟 about 𝑥* of radius < 0.1
in which 𝑥* is the only zero of 𝜃(𝑒3𝑖𝜋/4, .). As 𝜌 tends to 1−, the modulus of the
difference 𝜃(𝑒3𝑖𝜋/4, 𝑥) − 𝜃(𝜌𝑒3𝑖𝜋/4, 𝑥) tends uniformly to 0 for 𝑥 ∈ 𝜕𝒟 (the border
of 𝒟), because the series 𝜃 converges uniformly for |𝑥| < |𝑥*| + 0.1, |𝑞| ≤ 1. The
Rouché theorem implies that the function 𝜃(𝜌𝑒3𝑖𝜋/4, .) has the same number of zeros
in 𝒟 (counted with multiplicity) as the function 𝜃(𝑒3𝑖𝜋/4, .).

(2) Set 𝑞 := |𝑞|𝑒𝑖𝜑. We show that there exists no interval (i.e., arc) 𝐽 on the
unit circle centered at 1 or −1 and such that for 𝜑 ∈ 𝐽 and |𝑞| < 1, the zeros of 𝜃(𝑞, .)
are all of modulus ≥ 1. Suppose that 𝑛 ∈ N, 𝑛 > 2, and that 𝜔 is a primitive root of
unity of order 𝑛. If 𝑛 is odd, then the sequence of numbers 𝜔𝑘(𝑘+1)/2 is 𝑛-periodic,
because (𝑛+ 1)/2 ∈ N, and one obtains

𝜃(𝜔, 𝑥) = 𝑃 (𝑥)/(1− 𝑥𝑛), 𝑃 :=

𝑛−1∑︁
𝑗=0

𝑎𝑗𝑥
𝑗 , 𝑎𝑗 = 𝜔𝑗(𝑗+1)/2.

If 𝑛 is even, then this sequence is clearly (2𝑛)-periodic, but it is not 𝑛-periodic,
because 𝜔𝑛(𝑛+1)/2 = −1. One has

𝜃(𝜔, 𝑥) = 𝑄(𝑥)/(1− 𝑥2𝑛), 𝑄 :=

2𝑛−1∑︁
𝑗=0

𝑏𝑗𝑥
𝑗 , 𝑏𝑗 = 𝜔𝑗(𝑗+1)/2.

The polynomials 𝑃 and 𝑄 are self-reciprocal, i.e., 𝑎(𝑛−1)/2−𝑠 = 𝑎(𝑛−1)/2+𝑠 and
𝑏(2𝑛−1)/2−𝑠 = 𝑏(2𝑛−1)/2+𝑠. Indeed, for the polynomial 𝑃 this follows from

((𝑛− 1)/2− 𝑠)((𝑛− 1)/2− 𝑠+ 1)/2 ≡ (𝑛− (𝑛− 1)/2 + 𝑠)(𝑛− (𝑛− 1)/2 + 𝑠− 1)/2

= ((𝑛− 1)/2 + 𝑠)((𝑛− 1)/2 + 𝑠+ 1)/2 mod [𝑛].

For the polynomial 𝑄 one gets

((2𝑛−1)/2−𝑠)((2𝑛−1)/2−𝑠+1)/2 ≡ (2𝑛−(2𝑛−1)/2+𝑠)(2𝑛−(2𝑛−1)/2+𝑠−1)/2

= ((2𝑛− 1)/2 + 𝑠)((2𝑛− 1)/2 + 𝑠+ 1)/2 mod [2𝑛].
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We show that at least one root of the polynomial 𝑃 and at least one root of 𝑄
belong to the interior of the unit disk. Indeed, these polynomials are monic and
𝑃 (0) = 𝑄(0) = 1. The product of their roots being equal to ±1, the only possibility
for 𝑃 and 𝑄 not to have roots in D1 is all their roots to be of modulus 1. These
polynomials are self-reciprocal, so 𝑃 (𝑧) = 0 (resp. 𝑄(𝑧) = 0) implies 𝑃 (1/𝑧) = 0
(resp. 𝑄(1/𝑧) = 0). But if |𝑧| = 1, then 1/𝑧 = 𝑧. This means that 𝑃 and 𝑄 can have
as roots either ±1 or complex conjugate pairs, i.e., 𝑃 and 𝑄 must be real which is
false as their coefficients of 𝑥 equal 𝜔 ̸= ±1.

So 𝑃 and 𝑄 have each at least one root in D1. As in part (1) of this subsection
one deduces that for |𝑞| sufficiently close to 1 and for 𝑒𝑖𝜑 = 𝜔, the function 𝜃(𝑞, .) has
a zero in D1. Primitive roots are everywhere dense on the unit circle. This implies
the absence of an interval 𝐽 as above.

2.3. Optimality with respect to the variable 𝑥

Suppose first that 𝑞 ∈ (−1, 0). Then in the formulation of Theorem 1 one
cannot replace the unit disk by a disk of larger radius. Indeed, the zero of the
numerator of 𝜃(−1, 𝑥) (which equals 1) is the limit as 𝑞 tends to −1+ of the smallest
positive zero of 𝜃(𝑞, 𝑥), see [20, Part (2) of Theorem 3], so in any disk D1+𝜀, 𝜀 > 0,
there is a zero of 𝜃 for some 𝑞 ∈ (−1, 0).

Suppose now that 𝑞 ∈ (0, 1).

Conjecture 3. Theorem 1 does not hold true if one replaces in its formulation
the unit disk by a disk of larger radius.

The following numerical example shows why this conjecture should be con-
sidered plausible. Set 𝜃100 :=

∑︀100
𝑗=0 𝑞

𝑗(𝑗+1)/2𝑥𝑗 (the 100th truncation of 𝜃). For
𝑞 = 0.98, the function 𝜃100(0.98, .) has a zero 𝜆0 := 1.209 . . .+0.511 . . . 𝑖, of modulus
1.312 . . . . For 𝑞 = 0.98 and 𝑥 = 1.32, the first two terms of 𝜃 which are not in 𝜃100
equal 𝑦101 := 7.407 . . .×10−33 and 𝑦102 := 1.270 . . .×10−33, respectively. Their ratio
is 𝑦101/𝑦102 > 5.5 and the moduli of the terms of 𝜃 decrease faster than a geometric
progression. Hence for |𝑥| < 1.32, one has

𝑇0 := |𝜃(0.98, 𝑥)− 𝜃100(0.98, 𝑥)| < 𝑦101/(1− 5.5−1) = 9.053 . . .× 10−33.

On the other hand, Λ0 := (𝜕𝜃/𝜕𝑥)(0.98, 𝜆0) = 27.180 . . .+18.959 . . . 𝑖 with |Λ0| > 33.
Thus one should expect to find a zero of 𝜃(0.98, .) close to 𝜆0 (the truncated terms
are expected to change the position of 𝜆0 by ≈ 𝑇0/|Λ0| which quantity is of order
10−34. So in the formulation of Theorem 1 one should not be able to replace the
unit disk by a disk of radius larger than 1.32.

3. Proof of Theorem 1

We remind first that the Jacobi triple product is the identity

Θ(𝑞, 𝑥2) =

∞∏︁
𝑚=1

(1− 𝑞2𝑚)(1 + 𝑥2𝑞2𝑚−1)(1 + 𝑥−2𝑞2𝑚−1)
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which implies Θ*(𝑞, 𝑥) =
∏︀∞

𝑚=1(1− 𝑞𝑚)(1 + 𝑥𝑞𝑚)(1 + 𝑞𝑚−1/𝑥). Thus

∞∏︁
𝑚=1

(1− 𝑞𝑚)(1 + 𝑥𝑞𝑚)(1 + 𝑞𝑚−1/𝑥) = 𝜃(𝑞, 𝑥) + 𝜃(𝑞, 1/𝑥)/𝑥. (3.1)

Suppose that 𝑞 ∈ (−1, 0) ∪ (0, 1), 𝑥0 ∈ C, |𝑥0| = 1 (hence 𝑥0 = 1/𝑥0), and that
𝜃(𝑞, 𝑥0) = 0. The coefficients of 𝜃 being real, one has 𝜃(𝑞, 𝑥0) = 𝜃(𝑞, 𝑥0) = 0, so
the right-hand side of equation (3.1) equals 0 for 𝑥 = 𝑥0. However for 𝑥 = 𝑥0, the
left-hand side vanishes only for 𝑥0 = −1.

For 𝑞 ∈ (0, 1), one has 𝜃(𝑞,−1) =
∑︀∞

𝑗=0(−1)𝑗𝑞𝑗(𝑗+1)/2, and the latter function
takes only values from the interval (1/2, 1), with lim𝑞→1− = 1/2, see [10, Proposi-
tions 14 and 16]. For 𝑞 ∈ (−1, 0), one sets 𝑢 := −𝑞, so

𝜃(𝑞,−1) = 𝜃(−𝑢,−1) = 1 + 𝑢− 𝑢3 − 𝑢6 + 𝑢10 + 𝑢15 − 𝑢21 − 𝑢28 + · · ·
= 1− 𝑢3 + 𝑢10 − 𝑢21 + · · ·+ 𝑢− 𝑢6 + 𝑢15 − 𝑢28 + · · · > 0,

because this is the sum of two Leibniz series with positive initial terms. Thus for
𝑞 ∈ (−1, 0) ∪ (0, 1), the partial theta function has no zeros of modulus 1.

For −1/2 < 𝑞 < 1/2, one has 𝜃(𝑞, 𝑥) ̸= 0 for any 𝑥 ∈ D1, because

|𝜃(𝑞, 𝑥)| ≥ 1−|𝑞|−|𝑞|3−|𝑞|6−· · · ≥ 1−|𝑞|−|𝑞|2−|𝑞|3−· · · = (1−2|𝑞|)/(1−|𝑞|) > 0.

As the parameter 𝑞 varies in (0, 1) or in (−1, 0), the zeros of 𝜃 depend continuously
on 𝑞. For |𝑞| < 1/2, there are no zeros of 𝜃 in D1 and for 𝑞 ∈ (−1, 0)∪ (0, 1), no zero
of 𝜃 crosses 𝜕D1 (the border of the unit disk). Hence for 𝑞 ∈ (−1, 0) ∪ (0, 1), there
are no zeros of 𝜃 in D1.

Remark 4. One can prove that for |𝑞| ≤ 0.4, the function 𝜃(𝑞, .) has no zeros
in the closed disk D

1/
√

|𝑞|. Indeed,

|𝜃(𝑞, 1/
√︀
|𝑞|)| ≥ 1−

∞∑︁
𝑗=1

|𝑞|𝑗(𝑗+1)/2−𝑗/2 = 1−
∞∑︁
𝑗=1

|𝑞|𝑗
2/2 ≥ 1−

∞∑︁
𝑗=1

0.4𝑗
2/2 = 0.19 . . .>0.

4. Comments and open questions

4.1. The case 𝑞 ∈ (0, 1)

In Figure 1 we show the images for 𝑞 = 0.2 (the smaller oval) and for 𝑞 = 0.7
(the larger oval) of the unit circle in the 𝑥-plane under the mapping 𝑥 ↦→ 𝜃(𝑞, 𝑥),
together with the vertical line Re𝑥 = 1/2.

It would be interesting to know whether:

1. for any 𝑞 ∈ (0, 1), the image of the unit circle is a convex oval about the point
(1, 0) and belonging to the half-plane Re𝑥 > 1/2;
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Figure 1. The vertical line Re𝑥 = 1/2 and the images of the unit circle under the map 𝑥 ↦→ 𝜃(𝑞, 𝑥)
for 𝑞 = 0.2 and 𝑞 = 0.7

2. for 0 < 𝑞1 < 𝑞2 < 1, the image of the unit circle for 𝑞 = 𝑞1 lies inside its image
for 𝑞 = 𝑞2.

These questions are motivated by the fact that for 𝑞 = 1, one has 𝜃(1, 𝑥) =

1/(1− 𝑥), and for |𝑥| = 1, it is true that Re(1/(1− 𝑥)) = 1/2, i.e., the vertical line
Re(1/(1− 𝑥)) = 1/2 is the image of the unit circle for 𝑞 = 1; on the other hand, the
point (1, 0) is the image of the unit circle for 𝑞 = 0.

4.2. The case 𝑞 ∈ (−1, 0)

In Figure 2 we show the images for 𝑞 = −0.2 (small oval in dashed line),
𝑞 = −0.53 (closed contour in dotted line), 𝑞 = −0.7 (curve with self-intersection in
dashed line) and 𝑞 = −0.85 (curve with self-intersection in solid line) of the unit
circle in the 𝑥-plane under the mapping 𝑥 ↦→ 𝜃(𝑞, 𝑥).

The following questions are natural to ask:

3. Is it true, and for which value of 𝑣 ∈ (0, 1), that for 𝑞 ∈ (−𝑣, 0), the corre-
sponding image is a convex oval about the point (1, 0)?

4. Is it true that for 𝑞 ∈ (−𝑤,−𝑣), −1 < −𝑤 < −𝑣 < 0, the corresponding image
changes convexity twice “at its right” (as this seems to be the case of the curve
given in dotted line)?
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Figure 2. The images of the unit circle under the map 𝑥 ↦→ 𝜃(𝑞, 𝑥) for 𝑞 = −0.2, 𝑞 = −0.53,
𝑞 = −0.7, and 𝑞 = −0.85

Figure 3. The image of the unit circle under the map 𝑥 ↦→ 𝜃(𝑞, 𝑥) for 𝑞 = −1
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5. Is it true that for 𝑞 ∈ (−1,−𝑤), the image has a self-intersection point? One
can expect that for 𝑞 = −𝑤, the image has a cusp point.

6. Is it true that for 𝑞 ∈ (−1,−𝑤′), −1 < −𝑤′ < −𝑤, the image has still self-
intersection and changes convexity twice “at its left”?

7. Is it true that for 𝑞 ∈ (−1,−𝑤′′), −1 < −𝑤′′ < −𝑤′, the image has still self-
intersection, changes convexity twice “at its left” and intersects the vertical axis
at four points? (For 𝑞 = 𝑤′′, the image is supposed to have two tangencies
with the vertical axis.)

8. Is it true that these are all transformations which the image undergoes for
𝑞 ∈ (−1, 0)?

9. Is it true that for −1 < 𝑞2 < 𝑞1 < 0, the image of the unit circle for 𝑞 = 𝑞1 lies
inside its image for 𝑞 = 𝑞2? “Inside” means “inside the contour excluding (for
𝑞2 > 𝑤) the loop”.

It should be observed that for values of 𝑞 close to −1, the image seems to pass
through the origin. In reality, it passes very close to it, but nevertheless to its right,
according to Theorem 1. The image of the unit circle for 𝑞 = −1 is the hyperbola
𝑌 2 −𝑋2 −𝑋 = 0, where 𝑋 := Re𝑥 and 𝑌 := Im𝑥, see Figure 3. (The centre of the
hyperbola is at (1/2, 0), its asymptotes are the lines 𝑌 = ±(𝑋 − 1/2).) Following a
similar logic one can assume that the point (1, 0) remains in the exterior of the loop
of the image (the loop existing for 𝑞 > 𝑤). The proximity of the image to the origin
makes it seem unlikely that one could prove the absence of zeros of 𝜃 in a disk of a
radius larger than 1 (for all 𝑞 ∈ (−1, 0)).

Acknowledgements. The author is grateful to A. Vishnyakova and B. Shapiro
for the useful comments of this text.
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