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1. Introduction

Codes with additional structure are usually equipped with a priori properties,
which facilitate their characterization and decoding. For instance, algebro-geometric
Goppa codes allowed Tsfasman, Vlǎdut and Zink to improve the asymptotic Gilbert-
Varshamov bound on the information rate for a fixed relative minimum distance
(cf. [11]). Justesen, Larsen, Elbrønd, Jensen, Havemose, Høholdt, Skorobogatov,
Vlǎdut, Krachkovskii, Porter, Duursma, Feng, Rao and others developed efficient
algorithms for decoding Goppa codes after obtaining the error support of the received
word (Pellikaan’s [8] is a survey on these results). Duursma’s considerations from [3]
imply that the averaged homogeneous weight enumerator of Goppa codes, associated
with a complete set of representatives of the linear equivalence classes of divisors of
fixed degree is related to the 𝜁-polynomial of the underlying curve (cf. [6] for the exact
formulation). The realizations of codes by points of a Grassmannian, a determinantal
variety or a modification of an arc provide other examples for exploiting “an extra
structure” on the objects under study.
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The present article interprets the finite Zariski tangent spaces to an affine vari-
ety 𝑋, defined over a finite field F𝑞 as linear codes, in order to control the length, the
dimension and the minimum distance of these codes by the equations of 𝑋. A series
of extremal problems from coding theory minimizes the genus 𝑔 := 𝑛+1−𝑘−𝑑 > 0

of a not MDS F𝑞-linear [𝑛, 𝑘, 𝑑]-code 𝐶. We “deform” any such 𝐶 into infinite fam-
ilies of linear codes with parameters [𝑛 − 1, 𝑘, 𝑑], [𝑛, 𝑘 + 1, 𝑑], [𝑛, 𝑘, 𝑑 + 1], called
respectively a length, a dimension or an weight reductions of 𝐶. All of these families
decrease the genus by 1.

The parity check matrices of the tangent codes to an affine variety 𝑋 are the
values of the Jacobian matrix of a generating set of the absolute ideal of𝑋. That sug-
gests their possible applications to the theory of convolutional codes (cf. [2, Ch. 9]).
Tangent codes to appropriate families of affine varieties seem suitable for studying
optimization and asymptotic problems on linear codes, due to their “geometrically
integrable dynamical nature”.

Here is a synopsis of the paper. Section 2 comprises some preliminaries on the
Zariski topology and the Zariski tangent spaces 𝑇𝑎(𝑋,F𝑞𝑚) to an affine variety 𝑋.
Our research starts in Section 3 by studying the minimum distance 𝑑(𝑇𝑎(𝑋,F𝑞𝑚)) of
a finite Zariski tangent space 𝑇𝑎(𝑋,F𝑞𝑚) to an irreducible affine variety 𝑋/F𝑞 ⊂ F𝑞

𝑛
,

defined over F𝑞. Proposition 3.2 (i) establishes that if 𝑋 has some tangent code
of minimum distance ≥ 𝑑 + 1 then “almost all” finite Zariski tangent spaces to
𝑋 are of minimum distance ≥ 𝑑 + 1. The existence of a non-finite puncturing
Π𝛾 : 𝑋 → Π𝛾(𝑋) at |𝛾| = 𝑑 coordinates prohibits tangent codes of minimum distance
≥ 𝑑+1, according to Proposition 3.2 (ii). Proposition 3.2 (iii) provides two sufficient
conditions for the presence of a lower bound 𝑑+ 1 on “almost all” tangent codes to
𝑋. For an arbitrary F𝑞-linear [𝑛, 𝑘, 𝑑]-code 𝐶, Corollary 3.3 from Subsection 3.1
designs such a “twisted embedding” of F𝑘𝑞 in F𝑞

𝑛
, tangent to 𝐶 = 𝑇0𝑛(𝑋,F𝑞) at the

origin 0𝑛, whose finite Zariski tangent spaces “reproduce” the parameters [𝑛, 𝑘, 𝑑] of
at “almost all the points” of 𝑋. By Proposition 3.4, for any family 𝜋 : 𝒞 → F𝑛𝑞 of
linear codes 𝜋−1(𝑎) = 𝒞(𝑎) ⊂ F𝑛𝑞 there is an explicit (not necessarily irreducible)
affine variety 𝑋 ⊂ F𝑞

𝑛
, whose Zariski tangent spaces 𝑇𝑎(𝑋,F𝑞) ⊆ 𝒞(𝑎) are contained

in the members of the family for ∀𝑎 ∈ F𝑛𝑞 .
Chapter 4 is devoted to the construction of families of genus reductions of an

F𝑞-linear [𝑛, 𝑘, 𝑑]-code 𝐶 of genus 𝑔 := 𝑛+1−𝑘−𝑑 > 0. These are parameterized by
Zariski open, Zariski dense subsets of affine spaces and defined by explicit polynomial
parity check matrices. The length reduction of 𝐶 with parameters [𝑛−1, 𝑘, 𝑑] consists
of “almost all” tangent codes to the image Π𝑛(𝑋) of the puncturing Π𝑛 : 𝑋 →
Π𝑛(𝑋) of a “twisted embedding” of F𝑘𝑞 in F𝑛𝑞 , at the last coordinate. The dimension
reductions of 𝐶 with parameters [𝑛, 𝑘 + 1, 𝑑] are parameterized by “almost all the
points” of F𝑞

2(𝑛−𝑘)
. Their parity check matrices are obtained by projecting the

columns of a parity check matrix𝐻 ∈𝑀(𝑛−𝑘)×𝑛(F𝑞) of 𝐶 on appropriate hyperplanes

in F𝑞
𝑛−𝑘

. The existence of a polynomial parity check matrix of weight reductions of
𝐶 with parameters [𝑛, 𝑘,≥ 𝑑 + 1] is established by an induction on the columns of
the corresponding parity check matrices.
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A work in progress focuses on simultaneous decoding of tangent codes with
fixed error support and on the duals of the tangent codes. It relates some standard
operations on tangent codes with appropriate operations of the associated affine va-
rieties and constructs morphisms of affine varieties, whose differentials are Hamming
isometries of the corresponding tangent codes.

2. Algebraic geometry preliminaries

Let F𝑞 = ∪∞
𝑚=1F𝑞𝑚 be the algebraic closure of the finite field F𝑞 with 𝑞 elements

and F𝑞
𝑛

be the 𝑛-dimensional affine space over F𝑞. An affine variety 𝑋 ⊂ F𝑞
𝑛

is the
common zero set

𝑋 = 𝑉 (𝑓1, . . . , 𝑓𝑚) = {𝑎 ∈ F𝑞
𝑛 | 𝑓1(𝑎) = · · · = 𝑓𝑚(𝑎) = 0}

of polynomials 𝑓1, . . . , 𝑓𝑚 ∈ F𝑞[𝑥1, . . . , 𝑥𝑛]. We say that 𝑋 ⊂ F𝑞
𝑛

is defined over F𝑞
and denote 𝑋/F𝑞 ⊂ F𝑞

𝑛
if the absolute ideal

𝐼(𝑋,F𝑞) := {𝑓 ∈ F𝑞[𝑥1, . . . , 𝑥𝑛] | 𝑓(𝑎) = 0,∀𝑎 ∈ 𝑋}

of𝑋 is generated by polynomials 𝑓1, . . . , 𝑓𝑚∈F𝑞[𝑥1, . . . , 𝑥𝑛] with coefficients from F𝑞.
The affine subvarieties of 𝑋 form a family of closed subsets. The corresponding

topology is referred to as the Zariski topology on 𝑋. The Zariski closure 𝑀 of a
subset 𝑀 ⊆ 𝑋 is defined as the intersection of the Zariski closed subsets 𝑍 of 𝑋,
containing 𝑀 . It is easy to observe that 𝑀 = 𝑉 𝐼(𝑀,F𝑞) is the affine variety of the
absolute ideal 𝐼(𝑀,F𝑞) ▷ F𝑞[𝑥1, . . . , 𝑥𝑛] of 𝑀 . A subset 𝑀 ⊆ 𝑋 is Zariski dense if
its Zariski closure 𝑀 = 𝑋 coincides with 𝑋. A property 𝒫(𝑎), depending on a point
𝑎 ∈ F𝑞

𝑛
holds at a generic point of an affine variety 𝑋 ⊂ F𝑞

𝑛
if there is a Zariski

dense subset 𝑀 ⊆ 𝑋, such that 𝒫(𝑎) is true for all 𝑎 ∈𝑀 .
An affine variety 𝑋 ⊂ F𝑞

𝑛
is irreducible if any decomposition 𝑋 = 𝑍1 ∪𝑍2 into

a union of Zariski closed subsets 𝑍𝑗 ⊆ 𝑋 has 𝑍1 = 𝑋 or 𝑍2 = 𝑋. This holds exactly
when the absolute ideal 𝐼(𝑋,F𝑞)▷F𝑞[𝑥1, . . . , 𝑥𝑛] of 𝑋 is prime, i.e., 𝑓𝑔 ∈ 𝐼(𝑋,F𝑞) for
𝑓, 𝑔 ∈ F𝑞[𝑥1, . . . , 𝑥𝑛] requires 𝑓 ∈ 𝐼(𝑋,F𝑞) or 𝑔 ∈ 𝐼(𝑋,F𝑞). A prominent property
of the irreducible affine varieties 𝑋 is the Zariski density of an arbitrary non-empty
Zariski open subset 𝑈 ⊆ 𝑋. This is equivalent to 𝑈 ∩𝑊 ̸= ∅ for any non-empty
Zariski open subsets 𝑈 ⊆ 𝑋 and 𝑊 ⊆ 𝑋.

For an arbitrary irreducible affine variety 𝑋/F𝑞 ⊂ F𝑞
𝑛
, defined over F𝑞 and an

arbitrary constant field F𝑞 ⊆ 𝐹 ⊆ F𝑞, the affine coordinate ring

𝐹 [𝑋] := 𝐹 [𝑥1, . . . , 𝑥𝑛]/𝐼(𝑋,𝐹 )

of 𝑋 over 𝐹 is an integral domain. The fraction field

𝐹 (𝑋) :=

{︂
𝜙1

𝜙2

⃒⃒⃒
𝜙1, 𝜙2 ∈ 𝐹 [𝑋], 𝜙2 ̸= 0 ∈ 𝐹 [𝑋]

}︂
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of 𝐹 [𝑋] is called the function field of 𝑋 over 𝐹 . The points 𝑎 ∈ 𝑋 correspond to
the maximal ideals 𝐼(𝑎,F𝑞)▷F𝑞[𝑥1, . . . , 𝑥𝑛], containing 𝐼(𝑋,F𝑞). For any 𝐹 -rational
point 𝑎 ∈ 𝑋(𝐹 ) := 𝑋 ∩ 𝐹𝑛 the localization

𝒪𝑎(𝑋,𝐹 ) :=

{︂
𝜙1

𝜙2

⃒⃒⃒
𝜙1, 𝜙2 ∈ 𝐹 [𝑋], 𝜙2(𝑎) ̸= 0

}︂
of 𝐹 [𝑋] at 𝐹 [𝑋] ∖ (𝐼(𝑎, 𝐹 )/𝐼(𝑋,𝐹 )) is the local ring of 𝑎 in 𝑋 over 𝐹 . An 𝐹 -linear
derivation 𝐷𝑎 : 𝒪𝑎(𝑋,𝐹 ) → 𝐹 at 𝑎 ∈ 𝑋(𝐹 ) is an 𝐹 -linear map, subject to Leibnitz-
Newton rule 𝐷𝑎(𝜓1𝜓2) = 𝐷𝑎(𝜓1)𝜓2(𝑎) + 𝜓1(𝑎)𝐷𝑎(𝜓2), ∀𝜓1, 𝜓2 ∈ 𝒪𝑎(𝑋,𝐹 ). The
𝐹 -linear space

𝑇𝑎(𝑋,𝐹 ) := Der𝑎(𝒪𝑎(𝑋,𝐹 ), 𝐹 )

of the 𝐹 -linear derivations 𝐷𝑎 : 𝒪𝑎(𝑋,𝐹 ) → 𝐹 at 𝑎 ∈ 𝑋(𝐹 ) is called the Zariski
tangent space to 𝑋 at 𝑎 over 𝐹 .

In order to derive a coordinate description of 𝑇𝑎(𝑋,𝐹 ), note that any 𝐹 -linear
derivation 𝐷𝑎 : 𝒪𝑎(𝑋,𝐹 ) → 𝐹 at 𝑎 ∈ 𝑋(𝐹 ) restricts to an 𝐹 -linear derivation
𝐷𝑎 : 𝐹 [𝑋] → 𝐹 at 𝑎. According to

𝐷𝑎(𝜙1) = 𝐷𝑎

(︂
𝜙1

𝜙2

)︂
𝜙2(𝑎) +

𝜙1(𝑎)

𝜙2(𝑎)
𝐷𝑎(𝜙2)

for all 𝜙1, 𝜙2 ∈ 𝐹 [𝑋] with 𝜙2(𝑎) ̸= 0, any 𝐹 -linear derivation 𝐷𝑎 : 𝐹 [𝑋] → 𝐹 at
𝑎 ∈ 𝑋(𝐹 ) has unique extension to an 𝐹 -linear derivation 𝐷𝑎 : 𝒪𝑎(𝑋,𝐹 ) → 𝐹 at 𝑎.
In such a way, there arises an 𝐹 -linear isomorphism

𝑇𝑎(𝑋,𝐹 ) ≃ Der𝑎(𝐹 [𝑋], 𝐹 ).

Any 𝐹 -linear derivation𝐷𝑎 : 𝐹 [𝑋] → 𝐹 of the affine ring 𝐹 [𝑋] of𝑋 at 𝑎 ∈ 𝑋(𝐹 ) lifts
to an 𝐹 -linear derivation 𝐷𝑎 : 𝐹 [𝑥1, . . . , 𝑥𝑛] → 𝐹 of the polynomial ring at 𝑎, van-
ishing on the ideal 𝐼(𝑋,𝐹 ) of 𝑋 over 𝐹 . If 𝐼(𝑋,𝐹 ) = ⟨𝑓1, . . . , 𝑓𝑚⟩𝐹 ▷𝐹 [𝑥1, . . . , 𝑥𝑛] is
generated by 𝑓1, . . . , 𝑓𝑚 ∈ 𝐹 [𝑥1, . . . , 𝑥𝑛], then for arbitrary 𝑔1, . . . , 𝑔𝑚 ∈ 𝐹 [𝑥1, . . . , 𝑥𝑛]
one has

𝐷𝑎

(︃
𝑚∑︁
𝑖=1

𝑓𝑖𝑔𝑖

)︃
=

𝑚∑︁
𝑖=1

𝐷𝑎(𝑓𝑖)𝑔𝑖(𝑎)

and the Zariski tangent space

𝑇𝑎(𝑋,𝐹 ) ≃ {𝐷𝑎 ∈ Der𝑎(𝐹 [𝑥1, . . . , 𝑥𝑛], 𝐹 ) | 𝐷𝑎(𝑓1) = · · · = 𝐷𝑎(𝑓𝑚) = 0}

to 𝑋 at 𝑎 consists of the derivations 𝐷𝑎 : 𝐹 [𝑥1, . . . , 𝑥𝑛] → 𝐹 at 𝑎, vanishing on
𝑓1, . . . , 𝑓𝑚. In such a way, the coordinate description of 𝑇𝑎(𝑋,𝐹 ) reduces to the
coordinate description of

Der𝑎(𝐹 [𝑥1, . . . , 𝑥𝑛], 𝐹 ) = Der𝑎(𝐹 [F𝑞
𝑛
], 𝐹 ) = 𝑇𝑎(F𝑞

𝑛
, 𝐹 ).

In order to endow 𝑇𝑎(F𝑞
𝑛
, 𝐹 ) with a basis over 𝐹 , let us note that the polynomial

ring

𝐹 [𝑥1, . . . , 𝑥𝑛] = 𝐹 [𝑥1 − 𝑎1, . . . , 𝑥𝑛 − 𝑎𝑛] = ⊕∞
𝑖=0𝐹 [𝑥1 − 𝑎1, . . . , 𝑥𝑛 − 𝑎𝑛]

(𝑖)
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has a natural grading by the 𝐹 -linear spaces 𝐹 [𝑥1 − 𝑎1, . . . , 𝑥𝑛 − 𝑎𝑛]
(𝑖) of the homo-

geneous polynomials on 𝑥1 − 𝑎1, . . . , 𝑥𝑛 − 𝑎𝑛 of degree 𝑖 ≥ 0. An arbitrary 𝐹 -linear
derivation 𝐷𝑎 : 𝐹 [𝑥1, . . . , 𝑥𝑛] → 𝐹 at 𝑎 ∈ 𝐹𝑛 vanishes on 𝐹 [𝑥1−𝑎1, . . . , 𝑥𝑛−𝑎𝑛](0) =
𝐹 and on the homogeneous polynomials 𝐹 [𝑥1 − 𝑎1, . . . , 𝑥𝑛 − 𝑎𝑛]

(𝑖) of degree 𝑖 ≥ 2.
Thus, 𝐷𝑎 is uniquely determined by its restriction to the 𝑛-dimensional space

𝐹 [𝑥1 − 𝑎1, . . . , 𝑥𝑛 − 𝑎𝑛]
(1) = Span𝐹 (𝑥1 − 𝑎1, . . . , 𝑥𝑛 − 𝑎𝑛)

over 𝐹 . That enables to identify the Zariski tangent space

𝑇𝑎(F𝑞
𝑛
, 𝐹 ) ≃ Der𝑎(𝐹 [𝑥1, . . . , 𝑥𝑛], 𝐹 ) ≃ Hom𝐹 (𝐹 [𝑥1 − 𝑎1, . . . , 𝑥𝑛 − 𝑎𝑛]

(1), 𝐹 )

to F𝑞
𝑛

at 𝑎 with the space of the 𝐹 -linear functionals on the homogeneous linear
polynomials 𝐹 [𝑥1 − 𝑎1, . . . , 𝑥𝑛 − 𝑎𝑛]

(1). Note that 𝑥1 − 𝑎1, . . . , 𝑥𝑛 − 𝑎𝑛 is a basis
of 𝐹 [𝑥1 − 𝑎1, . . . , 𝑥𝑛 − 𝑎𝑛]

(1) over 𝐹 and denote by
(︁

𝜕
𝜕𝑥1

)︁
𝑎
, . . . ,

(︁
𝜕

𝜕𝑥𝑛

)︁
𝑎

its dual

basis. In other words,
(︁

𝜕
𝜕𝑥𝑗

)︁
𝑎
∈ 𝑇𝑎(F𝑞

𝑛
, 𝐹 ) are the uniquely determined 𝐹 -linear

functionals on 𝐹 [𝑥1 − 𝑎1, . . . , 𝑥𝑛 − 𝑎𝑛]
(1) with(︂

𝜕

𝜕𝑥𝑗

)︂
𝑎

(𝑥𝑖 − 𝑎𝑖) = 𝛿𝑖𝑗 =

{︃
1 for 1 ≤ 𝑖 = 𝑗 ≤ 𝑛,
0 for 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛.

As a result, the Zariski tangent space to 𝑋 at 𝑎 ∈ 𝑋(𝐹 ) over 𝐹 can be described as
the linear subspace

𝑇𝑎(𝑋,𝐹 ) =

⎧⎨⎩𝑣 =

𝑛∑︁
𝑗=1

𝑣𝑗

(︂
𝜕

𝜕𝑥𝑗

)︂
𝑎

⃒⃒⃒ 𝑛∑︁
𝑗=1

𝑣𝑗
𝜕𝑓𝑖
𝜕𝑥𝑗

(𝑎) = 0, 1 ≤ 𝑖 ≤ 𝑚

⎫⎬⎭
of 𝐹𝑛 for any generating set 𝑓1, . . . , 𝑓𝑚 of 𝐼(𝑋,𝐹 ) = ⟨𝑓1, . . . , 𝑓𝑚⟩𝐹 .

Definition 2.1. If 𝐹 = F𝑞𝑠 is a finite field and 𝑋/F𝑞 ⊂ F𝑞
𝑛

is an arbitrary
irreducible affine variety defined over F𝑞 then the linear space 𝑇𝑎(𝑋,F𝑞𝑠) ⊂ F𝑛𝑞𝑠 over
F𝑞𝑠 is called a tangent code. The parity check matrix of that code is the Jacobian
matrix

𝜕𝑓

𝜕𝑥
=
𝜕(𝑓1, . . . , 𝑓𝑚)

𝜕(𝑥1, . . . , 𝑥𝑛)
=

(︃
𝜕𝑓1
𝜕𝑥1

· · · 𝜕𝑓1
𝜕𝑥𝑛

𝜕𝑓𝑚
𝜕𝑥1

· · · 𝜕𝑓𝑚
𝜕𝑥𝑛

)︃
of a generating set 𝑓1, . . . , 𝑓𝑚 of 𝐼(𝑋,F𝑞𝑠) ▷ F𝑞𝑠 [𝑥1, . . . , 𝑥𝑛].

Let 𝑋/F𝑞 ⊂ F𝑞
𝑛

be an irreducible affine variety, defined over F𝑞 and 𝑎 =
(𝑎1, . . . , 𝑎𝑛) ∈ 𝑋. The minimal extension F𝑞𝛿(𝑎) := F𝑞(𝑎1, . . . , 𝑎𝑛) of the basic
field F𝑞, which contains the components of 𝑎 is called the definition field of 𝑎. If
F𝑞𝛿(𝑎𝑖) = F𝑞(𝑎𝑖) are the definition fields of 𝑎𝑖 ∈ F𝑞 over F𝑞, then 𝛿(𝑎) is the least
common multiple of 𝛿(𝑎1), . . . , 𝛿(𝑎𝑛). Note that 𝑎 ∈ 𝑋(F𝑞𝑚) := 𝑋 ∩ F𝑛𝑞𝑚 is an F𝑞𝑚 -
rational point if and only if 𝛿(𝑎) divides 𝑚. For all 𝑙 ∈ N the Zariski tangent spaces
𝑇𝑎(𝑋,F𝑞𝑙𝛿(𝑎)) have one and a same parity check matrix

𝜕𝑓

𝜕𝑥
(𝑎) :=

𝜕(𝑓1, . . . , 𝑓𝑚)

𝜕(𝑥1, . . . , 𝑥𝑛)
(𝑎) ∈𝑀𝑚×𝑛(F𝑞𝛿(𝑎))
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and are uniquely determined by 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) as the tensor products

𝑇𝑎(𝑋,F𝑞𝑙𝛿(𝑎)) = 𝑇𝑎(𝑋,F𝑞𝛿(𝑎))⊗F
𝑞𝛿(𝑎)

F𝑞𝑙𝛿(𝑎) .

In particular, 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) and 𝑇𝑎(𝑋,F𝑞𝑙𝛿(𝑎)) have one and a same dimension
𝑛 − rkF

𝑞𝛿(𝑎)

𝜕𝑓
𝜕𝑥 (𝑎) over F𝑞𝛿(𝑎) , respectively, over F𝑞𝑙𝛿(𝑎) . The minimum distances

of 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) and 𝑇𝑎(𝑋,F𝑞𝑙𝛿(𝑎)) coincide, as far as they equal the minimal natural
number 𝑑 for which 𝜕𝑓

𝜕𝑥 (𝑎) has 𝑑 linearly dependent columns. From now on, we write
dim𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) for the dimension of 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) over F𝑞𝛿(𝑎) .

Let 𝑋 = 𝑋1 ∪ · · · ∪ 𝑋𝑠 be a reducible affine variety and 𝑎 ∈ 𝑋𝑖1 ∩ · · · ∩ 𝑋𝑖𝑟

with 1 ≤ 𝑖1 < · · · < 𝑖𝑟 ≤ 𝑠 be a common point of 𝑟 ≥ 2 irreducible components
𝑋𝑖𝑗 of 𝑋. In general, 𝑋𝑖𝑗 have different Zariski tangent spaces at 𝑎 and the union
𝑇𝑎(𝑋𝑖1 ,F𝑞𝛿(𝑎)) ∪ · · · ∪ 𝑇𝑎(𝑋𝑖𝑟 ,F𝑞𝛿(𝑎)) is not an F𝑞𝛿(𝑎) -linear subspace of F𝑛

𝑞𝛿(𝑎) . That
is why we give the following definition of a tangent code to a reducible variety.

Definition 2.2. If 𝑋/F𝑞 ⊂ F𝑞
𝑛

is a reducible affine variety, defined over F𝑞,
then the tangent code 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) to 𝑋 at 𝑎 ∈ 𝑋 is the F𝑞𝛿(𝑎) -linear code of length
𝑛 with parity check matrix

𝜕𝑓

𝜕𝑥
(𝑎) =

𝜕(𝑓1, . . . , 𝑓𝑚)

𝜕(𝑥1, . . . , 𝑥𝑛)
(𝑎) ∈𝑀𝑚×𝑛(F𝑞𝛿(𝑎)),

for some generators 𝑓1, . . . , 𝑓𝑚 ∈ F𝑞[𝑥1, . . . , 𝑥𝑛] of 𝐼(𝑋,F𝑞) = ⟨𝑓1, . . . , 𝑓𝑚⟩F𝑞
.

For a systematic study of the Zariski tangent spaces to an affine variety see [1,
7, 9, 10] or [4].

3. Immediate properties of tangent codes construction

3.1. Typical minimum distance of a tangent code

Let us recall that the Hamming weight 𝑤(𝑥) of vector 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ F𝑛𝑞
is the number of the non-zero components and 𝑤(𝑥) ∈ {0, 1, . . . , 𝑛}. The Hamming
distance 𝑑(𝑥, 𝑦) between vectors 𝑥, 𝑦 ∈ F𝑛𝑞 is the number of the different components
𝑥𝑖 ̸= 𝑦𝑖 and 𝑑 : F𝑛𝑞 × F𝑛𝑞 → {0, 1, . . . , 𝑛}, where 𝑑(𝑥, 𝑦) := 𝑤(𝑥− 𝑦).

For an arbitrary finite set 𝑆 and an arbitrary natural number 𝑡 ≤ |𝑆| let us
denote by

(︀
𝑆
𝑡

)︀
the collection of the 𝑡-sets of 𝑆, i.e., the family of the unordered

subsets of 𝑆 of cardinality 𝑡. In the case of 𝑆 = {1, . . . , 𝑛}, we write
(︀
1,...,𝑛

𝑡

)︀
instead

of
(︀{1,...,𝑛}

𝑡

)︀
. For an arbitrary subset 𝛾 ∈

(︀
1,...,𝑛

𝑑

)︀
of {1, . . . , 𝑛} of cardinality 𝑑, the

erasing
Π𝛾 : F𝑞

𝑛 −→ F𝑞
𝑛−𝑑

of the components 𝑥𝛾 = (𝑥𝛾1
, . . . , 𝑥𝛾𝑑

), labeled by 𝛾 = {𝛾1, . . . , 𝛾𝑑} is called the
puncturing at 𝛾. If ¬𝛾 = {1, . . . , 𝑛} ∖ 𝛾 = {𝛿1, . . . , 𝛿𝑛−𝑑} is the complement of 𝛾,
then

Π𝛾(𝑥1, . . . , 𝑥𝑛) = 𝑥¬𝛾 = (𝑥𝛿1 , . . . , 𝑥𝛿𝑛−𝑑
).
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Any codeword of a linear code 𝐶 ⊂ F𝑛𝑞 , whose weight equals the minimum Hamming
distance is in the kernel of some puncturing Π𝛾 of 𝐶 at 𝛾 ∈

(︀
1,...,𝑛

𝑑

)︀
. Note that the

puncturing
Π𝛾 : 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) −→ Π𝛾𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) ⊆ F𝑛−|𝛾|

𝑞𝛿(𝑎)

of a finite Zariski tangent space to 𝑋 coincides with the differential

Π𝛾 = (𝑑Π𝛾)𝑎 : 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) −→ 𝑇Π𝛾(𝑎)(Π𝛾(𝑋),F𝑞𝛿(𝑎))

of the puncturing
Π𝛾 : 𝑋 −→ Π𝛾(𝑋)

of the corresponding irreducible affine variety 𝑋. That allows to study the minimum
distance of 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) by the global properties of the puncturing Π𝛾 : 𝑋 → Π𝛾(𝑋)
of 𝑋.

In order to formulate precisely, let us recall that a finite morphism 𝜙 : 𝑋 →
𝜙(𝑋) is called separable if the finite extension F𝑞(𝜙(𝑋)) ⊆ F𝑞(𝑋) of the corre-
sponding function fields is separable. This means that the minimal polynomial
𝑔𝜉(𝑡) ∈ F𝑞(𝜙(𝑋))[𝑡] of an arbitrary element 𝜉 ∈ F𝑞(𝑋) over F𝑞(𝜙(𝑋)) has no multi-
ple roots.

A morphism 𝜙 : 𝑋 → 𝜙(𝑋) is infinitesimally injective at some point 𝑎 ∈ 𝑋,
if the differential (𝑑𝜙)𝑎 : 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) → 𝑇𝜙(𝑎)(𝜙(𝑋),F𝑞𝛿(𝑎)) of 𝜙 at 𝑎 is an F𝑞𝛿(𝑎) -
linear embedding. Let us denote by Inf Inj(𝜙) the set of the points 𝑎 ∈ 𝑋, at which
the morphism 𝜙 : 𝑋 → 𝜙(𝑋) is infinitesimally injective.

Lemma 3.1. Let us suppose that 𝑋/F𝑞 ⊂ F𝑞
𝑛

is an irreducible affine variety,
defined over F𝑞 and

Π𝛾 : 𝑋 −→ Π𝛾(𝑋) ⊆ F𝑞
𝑛−𝑑

is its puncturing at 𝛾 ∈
(︀
1,...,𝑛

𝑑

)︀
.

(i) The infinitesimally injective locus

Inf Inj(Π𝛾) = 𝑋 ∖ 𝑉
(︂
det

𝜕𝑓𝛿
𝜕𝑥𝛾

⃒⃒⃒
𝛿 ∈

(︂
1, . . . ,𝑚

𝑑

)︂)︂
(3.1)

is a Zariski open subset of 𝑋.

(ii) If the set Inf Inj(Π𝛾) ∩ Π−1
𝛾 (Π𝛾(𝑋)smooth) ̸= ∅ is non-empty, then the

puncturing Π𝛾 : 𝑋 → Π𝛾(𝑋) is a finite morphism,

Inf Inj(Π𝛾) ∩Π−1
𝛾 (Π𝛾(𝑋)smooth) ⊆ 𝑋smooth

and the differentials

(𝑑Π𝛾)𝑎 : 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) −→ 𝑇Π𝛾(𝑎)(Π𝛾(𝑋),F𝑞𝛿(𝑎))

are surjective at all the points 𝑎 ∈ Inf Inj(Π𝛾) ∩Π−1
𝛾 (Π𝛾(𝑋)smooth).
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(iii) If the puncturing Π𝛾 : 𝑋 → Π𝛾(𝑋) is a finite separable morphism then
the intersection Inf Inj(Π𝛾) ∩ Π−1

𝛾 (Π𝛾(𝑋)smooth) ̸= ∅ is a Zariski dense
subset of 𝑋. In particular, for a finite Π𝛾 : 𝑋 → Π𝛾(𝑋), whose degree
degΠ𝛾 := [F𝑞(𝑋) : F𝑞(Π𝛾(𝑋))] is relatively prime to 𝑝 = charF𝑞, the
subset ∅ ̸= Inf Inj(Π𝛾) ∩Π−1

𝛾 (Π𝛾(𝑋)smooth) ⊆ 𝑋 is Zariski dense.

Proof. (i) The kernel of the differential

(𝑑Π𝛾)𝑎 : 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) −→ 𝑇Π𝛾(𝑎)(Π𝛾(𝑋),F𝑞𝛿(𝑎))

consists of the tangent vectors 𝑣(𝑎) ∈ 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) with Supp(𝑣(𝑎)) ⊆ 𝛾. Thus,
ker(𝑑Π𝛾) ̸= {0𝑛} exactly when rk 𝜕𝑓

𝜕𝑥𝛾
(𝑎) < 𝑑. That justifies

𝑋 ∖ Inf Inj(Π𝛾) = 𝑋 ∩ 𝑉
(︂
det

𝜕𝑓𝛿
𝜕𝑥𝛾

⃒⃒⃒
𝛿 ∈

(︂
1, . . . ,𝑚

𝑑

)︂)︂
,

whereas (3.1).
(ii) Let us recall that dim𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) ≥ dim𝑋 = 𝑘 at all the points 𝑎 ∈ 𝑋.

If 𝑎 ∈ Inf Inj(Π𝛾) ∩Π−1
𝛾 (Π𝛾(𝑋)smooth), then

(𝑑Π𝛾)𝑎 : 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) −→ 𝑇Π𝛾(𝑎)(Π𝛾(𝑋),F𝑞𝛿(𝑎))

is injective and dim𝑇Π𝛾(𝑎)(Π𝛾(𝑋),F𝑞𝛿(𝑎)) = dimΠ𝛾(𝑋). Combining with the in-
equality dimΠ𝛾(𝑋) ≤ dim𝑋, one obtains

dim𝑋 ≤ dim𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) = dim(𝑑Π𝛾)𝑎𝑇𝑎(𝑋,F𝑞𝛿(𝑎))

≤ dim𝑇Π𝛾(𝑎)(Π𝛾(𝑋),F𝑞𝛿(𝑎)) = dimΠ𝛾(𝑋) ≤ dim𝑋.

Therefore (𝑑Π𝛾)𝑎𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) = 𝑇Π𝛾(𝑎)(Π𝛾(𝑋),F𝑞𝛿(𝑎)), dim𝑋 = dim𝑇𝑎(𝑋,F𝑞) and
the dimensions dimΠ𝛾(𝑋) = dim𝑋 coincide. In other words, the differential
(𝑑Π𝛾)𝑎 : 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) −→ 𝑇Π𝛾(𝑎)(Π𝛾(𝑋),F𝑞𝛿(𝑎)) is surjective, 𝑎 ∈ 𝑋smooth is a
smooth point and Π𝛾 : 𝑋 → Π𝛾(𝑋) is a finite morphism.

(iii) Without loss of generality, assume that 𝛾 = {1, . . . , 𝑑}, whereas ¬𝛾 :=
{1, . . . , 𝑛} ∖ 𝛾 = {𝑑 + 1, . . . , 𝑛}. Note that the puncturing Π𝛾 : 𝑋 → Π𝛾(𝑋) is
a finite morphism if and only if 𝑥𝑠 := 𝑥𝑠 + 𝐼(𝑋,F𝑞) ∈ F𝑞(𝑋) are algebraic over
F𝑞(Π𝛾(𝑋)) = F𝑞(𝑥¬𝛾) for all 1 ≤ 𝑠 ≤ 𝑑. Let 𝑔𝑠(𝑥𝑠) ∈ F𝑞(Π𝛾(𝑋))[𝑥𝑠] be the minimal
polynomial of 𝑥𝑠 over F𝑞(Π𝛾(𝑋)) and 𝑓𝑠(𝑥𝑠, 𝑥¬𝛾) ∈ F𝑞[𝑥𝑠, 𝑥¬𝛾 ] be the product of
𝑔𝑠 with the least common multiple of the denominators of the coefficients of 𝑔𝑠.
Then 𝑓𝑠(𝑥𝑠, 𝑥¬𝛾) is irreducible in F𝑎[𝑥𝑠, 𝑥¬𝛾 ] and defined up to a multiple from
F𝑞

*
. Moreover, 𝑓𝑠(𝑥𝑠, 𝑥¬𝛾) ∈ 𝐼(𝑋,F𝑞) is of minimal degree deg𝑥𝑠

𝑓𝑠(𝑥𝑠, 𝑥¬𝛾) =

deg 𝑔𝑠(𝑥𝑠) = degF𝑞(Π𝛾(𝑋)) 𝑥𝑠 with respect to 𝑥𝑠. According to 𝑓1, . . . , 𝑓𝑑 ∈ 𝐼(𝑋,F𝑞),
the Zariski tangent space 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) at an arbitrary point 𝑎 ∈ 𝑋 is contained in
the F𝑞𝛿(𝑎)-linear code 𝐶(𝑎) with parity check matrix

𝜕(𝑓1, . . . , 𝑓𝑑)

𝜕(𝑥1, . . . , 𝑥𝑛)
(𝑎) =

⎛⎜⎜⎝
𝜕𝑓1
𝜕𝑥1

(𝑎) · · · 0 𝜕𝑓1
𝜕𝑥𝑑+1

(𝑎) · · · 𝜕𝑓1
𝜕𝑥𝑛

(𝑎)
...

. . .
...

...
. . .

...
0 · · · 𝜕𝑓𝑑

𝜕𝑥𝑑
(𝑎) 𝜕𝑓𝑑

𝜕𝑥𝑑+1
(𝑎) · · · 𝜕𝑓𝑑

𝜕𝑥𝑛
(𝑎)

⎞⎟⎟⎠ .
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Note that Π−1
𝛾 (Π𝛾(𝑋)smooth) is a non-empty, Zariski open, Zariski dense subset of

the irreducible affine variety 𝑋 and Inf Inj(Π𝛾) ⊆ 𝑋 is Zariski open by (i), so that
the intersection Inf Inj(Π𝛾)∩Π−1

𝛾 (Π𝛾(𝑋)smooth) = ∅ only when Inf Inj(Π𝛾) = ∅. We
claim that Inf Inj(Π𝛾) = ∅ requires the inseparability of 𝑥𝑠 := 𝑥𝑠+𝐼(𝑋,F𝑞) ∈ F𝑞(𝑋)
over F𝑞(Π𝛾) for some 1 ≤ 𝑠 ≤ 𝑑. This suffices for Inf Inj(Π𝛾)∩Π−1

𝛾 (Π𝛾(𝑋)smooth) ̸=
∅ in the case of a finite separable morphism Π𝛾 : 𝑋 → Π𝛾(𝑋). The inseparability
of 𝑥𝑠 := 𝑥𝑠+ ∈ 𝐼(𝑋,F𝑞) ∈ F𝑞(𝑋) over F𝑞(Π𝛾) holds only when 𝑝 = charF𝑞 divides
the degree

degF𝑞(Π𝛾(𝑋)) 𝑥𝑠 := [F𝑞(Π𝛾(𝑋))(𝑥𝑠) : F𝑞(Π𝛾(𝑋))]

of 𝑥𝑠 over F𝑞(Π𝛾(𝑋)). Bearing in mind that the degree degF𝑞(Π𝛾(𝑋)) 𝑥𝑠 of 𝑥𝑠 divides
the degree degΠ𝛾 = [F𝑞(𝑋) : F𝑞(Π𝛾(𝑋))] of Π𝛾 , one concludes that the intersection
Inf Inj(Π𝛾)∩Π−1

𝛾 (Π𝛾(𝑋)smooth) ̸= ∅ is non-empty in the case of gcd(degΠ𝛾 , 𝑝) = 1.
By the very definition of an etale morphism, Inf Inj(Π𝛾) = ∅ amounts to

the existence of a nowhere vanishing vector field 𝑣 : 𝑋 →
∐︀

𝑎∈𝑋

𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) with

Supp 𝑣(𝑎) ⊆ 𝛾 for all 𝑎 ∈ 𝑋. Then 𝑣(𝑎) ∈ 𝐶(𝑎) for all 𝑎 ∈ 𝑋 and rk 𝜕(𝑓1,...,𝑓𝑑)
𝜕(𝑥1,...,𝑥𝑑)

(𝑎) <
𝑑. Thus,

det
𝜕(𝑓1, . . . , 𝑓𝑑)

𝜕(𝑥1, . . . , 𝑥𝑑)
(𝑎) =

𝑑∏︁
𝑠=1

𝜕𝑓𝑠
𝜕𝑥𝑠

(𝑎) = 0 for ∀𝑎 ∈ 𝑋

and
𝑑∏︀

𝑠=1

𝜕𝑓𝑠
𝜕𝑥𝑠

∈ 𝐼(𝑋,F𝑞). The absolute ideal 𝐼(𝑋,F𝑞) ▷ F𝑞[𝑥1, . . . , 𝑥𝑛] of the irre-

ducible affine variety 𝑋 is prime, so that there is 1 ≤ 𝑠 ≤ 𝑑 with 𝜕𝑓𝑠
𝜕𝑥𝑠

∈ 𝐼(𝑋,F𝑞).
Since 𝑓𝑠(𝑥𝑠, 𝑥¬𝛾) ∈ 𝐼(𝑋,F𝑞) is of minimal deg𝑥𝑠

𝑓𝑠(𝑥𝑠, 𝑥¬𝛾) and deg𝑥𝑠

𝜕𝑓𝑠(𝑥𝑠,𝑥¬𝛾)
𝜕𝑥𝑠

<

deg𝑥𝑠
𝑓𝑠(𝑥𝑠, 𝑥¬𝛾), there follows 𝜕𝑓𝑠(𝑥𝑠,𝑥¬𝛾)

𝜕𝑥𝑠
≡ 0F𝑞

∈ F𝑞[𝑥𝑠, 𝑥¬𝛾 ]. As a result, 𝜕𝑔𝑠(𝑥𝑠)
𝜕𝑥𝑠

≡
0 and 𝑥𝑠 is inseparable over F𝑞(Π𝛾(𝑋)).

Note that Lemma 3.1 (ii) is a sort of a generalization of the Implicit Func-
tion Theorem, according to which a puncturing Π𝛾 : 𝑋 → Π𝛾(𝑋) with an injective
differential at some 𝑎 ∈ Π−1

𝛾 (Π𝛾(𝑋))smooth is a finite morphism.
For an arbitrary irreducible affine variety 𝑋/F𝑞 ⊂ F𝑞

𝑛
, defined over F𝑞, let us

denote by
𝑋(≤𝑑) := {𝑎 ∈ 𝑋 | 𝑑(𝑇𝑎(𝑋,F𝑞𝛿(𝑎))) ≤ 𝑑}

the set of the points 𝑎 ∈ 𝑋, at which the finite Zariski tangent spaces are of minimum
distance ≤ 𝑑. Similarly, put

𝑋(𝑑) := {𝑎 ∈ 𝑋 | 𝑑(𝑇𝑎(𝑋,F𝑞𝛿(𝑎))) = 𝑑} and 𝑋(≥𝑑) := {𝑎 ∈ 𝑋 | 𝑑(𝑇𝑎(𝑋,F𝑞𝛿(𝑎))) ≥ 𝑑}.

The next proposition establishes that if an irreducible affine variety 𝑋 admits
a tangent code 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) of minimum distance ≥ 𝑑 + 1 then “almost all” finite
Zariski tangent spaces to 𝑋 are of minimum distance ≥ 𝑑+1. If there is a non-finite
puncturing Π𝛾 : 𝑋 → Π𝛾(𝑋) at |𝛾| = 𝑑 variables, we show that all the tangent codes
to 𝑋 are of minimum distance ≤ 𝑑. When all the puncturings Π𝛾 : 𝑋 → Π𝛾(𝑋) at
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|𝛾| = 𝑑 variables are finite and separable, the minimum distance of a finite Zariski
tangent space to 𝑋 is bounded below by 𝑑+ 1 at “almost all” points of 𝑋.

Proposition 3.2. Let 𝑋/F𝑞 ⊂ F𝑞
𝑛

be an irreducible affine variety of dimension
𝑘 ∈ N, defined over F𝑞.

(i) For an arbitrary natural number 𝑑 ≤ 𝑛− 𝑘 + 1 the locus

𝑋(≥𝑑+1) = ∩𝛾∈(1,...,𝑛𝑑 ) Inf Inj(Π𝛾)

= 𝑋 ∖ 𝑉

⎛⎜⎝ ∏︁
𝑖∈(1,...,𝑛𝑑 )

det
𝜕𝑓𝜙(𝑖)

𝜕𝑥𝑖

⃒⃒⃒⃒
𝜙 :

(︂
1, . . . , 𝑛

𝑑

)︂
→
(︂
1, . . . ,𝑚

𝑑

)︂⎞⎟⎠
is a Zariski open subset of 𝑋.

(ii) If there is a non-finite puncturing Π𝛾 : 𝑋 → Π𝛾(𝑋) at |𝛾| = 𝑑 coordinates,
then 𝑋 = 𝑋(≤𝑑). Moreover, in the case of 𝑋(𝑑) ̸= ∅ the locus 𝑋(𝑑) =
𝑋(≥𝑑) is a Zariski dense, Zariski open subset of 𝑋.

(iii) If for any 𝛾 ∈
(︀
1,...,𝑛

𝑑

)︀
the puncturing Π𝛾 : 𝑋 → Π𝛾(𝑋) is finite and

separable, then the subset 𝑋(≥𝑑+1) ⊆ 𝑋 is Zariski dense. In particular, if
for any 𝛾 ∈

(︀
1,...,𝑛

𝑑

)︀
the puncturing Π𝛾 : 𝑋 → Π𝛾(𝑋) is a finite morphism

with gcd(degΠ𝛾 , charF𝑞) = 1 for degΠ𝛾 := [F𝑞(𝑋) : F𝑞(Π𝛾(𝑋))], then
𝑋(≥𝑑+1) is a Zariski dense subset of 𝑋.

Proof. (i) Let us observe that 𝑎 ∈ 𝑋(≥𝑑+1) if and only if there is no tangent vector
𝑣 ∈ 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) ∖ {0𝑛} with Supp(𝑣) ⊆ 𝛾 for some 𝛾 ∈

(︀
1,...,𝑛

𝑑

)︀
. That amounts to

ker(𝑑Π𝛾)𝑎 = {𝑣 ∈ 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) | Supp(𝑣) ⊆ 𝛾} = {0𝑛}

and holds exactly when 𝑎 ∈ Inf Inj(Π𝛾) for all 𝛾 ∈
(︀
1,...,𝑛

𝑑

)︀
.

Let 𝐼(𝑋,F𝑞) = ⟨𝑓1, . . . , 𝑓𝑚⟩ ▷ F𝑞[𝑥1, . . . , 𝑥𝑛] be generated by some polynomials
𝑓1, . . . , 𝑓𝑚 ∈ F𝑞[𝑥1, . . . , 𝑥𝑛]. Then 𝑎 ∈ 𝑋(≥𝑑+1) exactly when any 𝑑-tuple of columns
of 𝜕𝑓

𝜕𝑥 (𝑎) is linearly independent. In other words, rk 𝜕𝑓
𝜕𝑥𝑖

(𝑎) = rk 𝜕(𝑓1,...,𝑓𝑚)
𝜕(𝑥𝑖1

,...,𝑥𝑖𝑑
) (𝑎) = 𝑑

for all 𝑖 ∈
(︀
1,...,𝑛

𝑑

)︀
. By 𝑘 = dim𝑋 ≥ 𝑛 − 𝑚 there follows 𝑚 ≥ 𝑛 − 𝑘 ≥ 𝑑 and

rk 𝜕𝑓
𝜕𝑥𝑖

(𝑎) = 𝑑 is equivalent to det
𝜕𝑓𝛾
𝜕𝑥𝑖

(𝑎) ̸= 0 for some 𝛾 ∈
(︀
1,...,𝑚

𝑑

)︀
. Thus,

𝑋(≥𝑑+1) = ∩𝑖∈(1,...,𝑛𝑑 )

[︂
∪𝛾∈(1,...,𝑚𝑑 )

(︂
𝑋 ∖ 𝑉

(︂
det

𝜕𝑓𝛾
𝜕𝑥𝑖

)︂)︂]︂
= ∩𝑖∈(1,...,𝑛𝑑 )

[︂
𝑋 ∖ 𝑉

(︂
det

𝜕𝑓𝛾
𝜕𝑥𝑖

⃒⃒⃒⃒
𝛾 ∈

(︂
1, . . . ,𝑚

𝑑

)︂)︂]︂
= 𝑋 ∖ ∪𝑖∈(1,...,𝑛𝑑 )𝑉

(︂
det

𝜕𝑓𝛾
𝜕𝑥𝑖

⃒⃒⃒⃒
𝛾 ∈

(︂
1, . . . ,𝑚

𝑑

)︂)︂

= 𝑋 ∖ 𝑉

⎛⎜⎝ ∏︁
𝑖∈(1,...,𝑛𝑑 )

det
𝜕𝑓𝜙(𝑖)

𝜕𝑥𝑖

⃒⃒⃒⃒
𝜙 :

(︂
1, . . . , 𝑛

𝑑

)︂
→
(︂
1, . . . ,𝑚

𝑑

)︂⎞⎟⎠ ,

(3.2)
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where 𝜙 :
(︀
1,...,𝑛

𝑑

)︀
→
(︀
1,...,𝑚

𝑑

)︀
vary over all the maps of the collection of the subsets of

{1, . . . , 𝑛} of cardinality 𝑑 in the family of the subsets of {1, . . . ,𝑚} of cardinality
𝑑. The last equality in (3.2) follows from

∪𝑖∈(1,...,𝑛𝑑 )𝑉 (𝑆𝑖) = 𝑉

⎛⎜⎝ ∏︁
𝑖∈(1,...,𝑛𝑑 )

𝑆𝑖

⎞⎟⎠
for

∏︁
𝑖∈(1,...,𝑛𝑑 )

𝑆𝑖 :=

⎧⎪⎨⎪⎩
∏︁

𝑖∈(1,...,𝑛𝑑 )

𝑔𝑖 | 𝑔𝑖 ∈ 𝑆𝑖

⎫⎪⎬⎪⎭ , 𝑆𝑖 :=

{︂
det

𝜕𝑓𝛾
𝜕𝑥𝑖

⃒⃒⃒⃒
𝛾 ∈

(︂
1, . . . ,𝑚

𝑑

)︂}︂
.

(ii) We claim that at any point 𝑎 ∈ Π−1
𝛾 (Π𝛾(𝑋)smooth) the Zariski tangent space

𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) contains a non-zero word, supported by 𝛾. To this end, it suffices to
establish that the differential

(𝑑Π𝛾)𝑎 : 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) −→ 𝑇Π𝛾(𝑎)(Π𝛾(𝑋),F𝑞𝛿(𝑎))

of Π𝛾 at 𝑎 is non-injective. Assume the opposite, i.e., that ker(𝑑Π𝛾)𝑎 = 0. Then

𝑘 ≤ dim𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) ≤ dim𝑇Π𝛾(𝑎)(Π𝛾(𝑋),F𝑞𝛿(𝑎)) = dimΠ𝛾(𝑋).

The morphism Π𝛾 : 𝑋 → Π𝛾(𝑋) is not finite, so that dimΠ𝛾(𝑋) < dim𝑋 = 𝑘.
That leads to a contradiction and implies that ker(𝑑Π𝛾)𝑎 ̸= 0 at any point 𝑎 ∈
Π−1

𝛾 (Π𝛾(𝑋)smooth). As a result, Π−1
𝛾 (Π𝛾(𝑋)smooth) ⊆ 𝑋(≤𝑑). According to (i),

𝑋(≤𝑑) is a Zariski closed subset of 𝑋. The non-empty, Zariski open, Zariski dense
subset Π−1

𝛾 (Π𝛾(𝑋)smooth) of 𝑋 is Zariski dense, so that

𝑋 = Π−1
𝛾 (Π𝛾(𝑋)smooth) ⊆ 𝑋(≤𝑑) = 𝑋(≤𝑑),

whereas 𝑋 = 𝑋(≤𝑑). Now, 𝑋(𝑑) = 𝑋(≤𝑑) ∩𝑋(≥𝑑) = 𝑋 ∩𝑋(≥𝑑) = 𝑋(≥𝑑) is a Zariski
open subset of 𝑋, whereas Zariski dense for 𝑋(𝑑) ̸= ∅.

(iii) According to Lemma 3.1 (iii), if Π𝛾 : 𝑋 → Π𝛾(𝑋) is a finite separable
morphism or a finite morphism with gcd(degΠ𝛾 , charF𝑞) = 1, then Inf Inj(Π𝛾) ∩
Π−1

𝛾 (Π𝛾(𝑋)smooth) ̸= ∅. In particular, Inf Inj(Π𝛾) ̸= ∅. Since Inf Inj(Π𝛾) is Zariski
open by Lemma 3.1 (i), the finite intersection 𝑋(≥𝑑+1) = ∩𝛾∈(1,...,𝑛𝑑 ) Inf Inj(Π𝛾) of
the non-empty, Zariski open subsets Inf Inj(Π𝛾) ⊆ 𝑋 is a non-empty, Zariski open,
Zariski dense subset of the irreducible affine variety 𝑋.

The above proposition reveals that for any point 𝑎 ∈ 𝑋(𝑑) there exists a 𝑑-tuple
of indices 𝛾 ∈

(︀
1,...,𝑛

𝑑

)︀
, such that Π𝛾 : 𝑋 → Π𝛾(𝑋) is not infinitesimally injective

at 𝑎.
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3.2. Reproducing the dimension and the minimum distance of a code

For an arbitrary F𝑞-linear [𝑛, 𝑘, 𝑑]-code 𝐶 we provide explicit equations of a
twisted embedding of F𝑞

𝑘
in F𝑞

𝑛
, whose tangent codes 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) at a generic

point reproduce the length 𝑛, the dimension 𝑘 and the minimum distance 𝑑 of 𝐶.
If not specified otherwise, 𝐻 = (𝐻1 . . . 𝐻𝑛) is a parity check matrix of the linear

code under consideration. For any 𝜆 ∈
(︀
1,...,𝑛

𝑡

)︀
we denote by 𝐻𝜆 the columns of 𝐻,

labeled by 𝜆. If 𝜇 ∈
(︀
1,...,𝑚

𝑠

)︀
, then 𝐻𝜇,𝜆 is the collection of the rows of 𝐻𝜆, labeled

by 𝜇.

Corollary 3.3. Let 𝐶 be an F𝑞-linear [𝑛, 𝑘, 𝑑]-code and 𝜎 ∈
(︀
1,...,𝑛

𝑑

)︀
be the

support of a non-zero word 𝑐 ∈ 𝐶 ∖ {0𝑛}. Then there is a smooth irreducible 𝑘-
dimensional affine variety 𝑋/F𝑞 ⊂ F𝑞

𝑛
, isomorphic to F𝑞

𝑘
, such that 0𝑛 ∈ 𝑋,

𝑇0𝑛(𝑋,F𝑞) = 𝐶 and 𝑐 ∈ 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) for all 𝑎 ∈ 𝑋.
In particular, 𝑋 = 𝑋(≤𝑑), so that 𝑋(𝑑) = 𝑋(≥𝑑) ̸= ∅ is a Zariski open, Zariski

dense subset of 𝑋 and 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) are [𝑛, 𝑘, 𝑑]-codes for all 𝑎 ∈ 𝑋(𝑑).

Proof. Let 𝐻 ∈𝑀(𝑛−𝑘)×𝑛(F𝑞) be a parity check matrix of the code 𝐶 with columns
𝐻𝑠 ∈ 𝑀(𝑛−𝑘)×1(F𝑞) and 𝜎′ = 𝜎 ∖ {𝜎𝑑} for some 𝜎𝑑 ∈ 𝜎. Since 𝐶 is of minimum
distance 𝑑, the columns of 𝐻, labeled by 𝜎′ are linearly independent. Bearing in
mind that 𝐻 is of rk(𝐻) = 𝑛 − 𝑘, one concludes the existence of 𝜏 ∈

(︀{1,...,𝑛}∖𝜎
𝑛−𝑘−𝑑+1

)︀
,

such that the square matrix 𝐻𝜎′∪𝜏 = (𝐻𝜎′𝐻𝜏 ) ∈ 𝑀(𝑛−𝑘)×(𝑛−𝑘)(F𝑞) is non-singular.
If 𝑠 ∈ 𝜎∪𝜏 and 1 ≤ 𝑖 ≤ 𝑛−𝑘, then let 𝑓𝑖,𝑠(𝑥𝑠) := 𝐻𝑖,𝑠𝑥𝑠. For 𝑠 ∈ {1, . . . , 𝑛}∖ (𝜎∪𝜏)
and 1 ≤ 𝑖 ≤ 𝑛− 𝑘 take

𝑓𝑖,𝑠(𝑥𝑠) := 𝐻𝑖,𝑠𝑥𝑠 +

𝑚𝑖,𝑠∑︁
𝑟=2

𝑏𝑖,𝑠,𝑟𝑥
𝑟
𝑠 ∈ F𝑞[𝑥𝑠]

for some 𝑚𝑖,𝑠 ∈ N ∖ {1} and 𝑏𝑖,𝑠,𝑟 ∈ F𝑞, ∀2 ≤ 𝑟 ≤ 𝑚𝑖,𝑠. Consider

𝑓𝑖(𝑥1, . . . , 𝑥𝑛) :=

𝑛∑︁
𝑠=1

𝑓𝑖,𝑠(𝑥𝑠) =

𝑛∑︁
𝑠=1

𝐻𝑖,𝑠𝑥𝑠 +
∑︁

𝑠∈{1,...,𝑛}∖(𝜎∪𝜏)

𝑚𝑖,𝑠∑︁
𝑟=2

𝑏𝑖,𝑠,𝑟𝑥
𝑟
𝑠

for all 1 ≤ 𝑖 ≤ 𝑛−𝑘 and the affine variety 𝑋 := 𝑉 (𝑓1, . . . , 𝑓𝑛−𝑘) ⊂ F𝑞
𝑛
, defined over

F𝑞. Let us denote 𝜌 := {1, . . . , 𝑛} ∖ (𝜎′ ∪ 𝜏) and observe that 𝑓𝑖(𝑥1, . . . , 𝑥𝑛) = 0 are
equivalent to∑︁

𝑠∈𝜎′∪𝜏

𝐻𝑖,𝑠𝑥𝑠 = 𝑔𝑖(𝑥𝜌) for some 𝑔𝑖(𝑥𝜌) ∈ F𝑞[𝑥𝜌] and all 1 ≤ 𝑖 ≤ 𝑛− 𝑘.

Viewing 𝑥𝜎′∪𝜏 as a column of variables, labeled by 𝜎′ ∪ 𝜏 ∈
(︀
1,...,𝑛
𝑛−𝑘

)︀
, one can write

the equations of 𝑋 in the form

𝐻𝜎′∪𝜏 𝑥𝜎′∪𝜏 =

⎛⎜⎝ 𝑔1(𝑥𝜌)
...

𝑔𝑛−𝑘(𝑥𝜌)

⎞⎟⎠ .
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The invertibility of 𝐻𝜎′∪𝜏 allows to represent the equations of 𝑋 in the form

𝑥𝜎′∪𝜏 = (𝐻𝜎′∪𝜏 )
−1

⎛⎜⎝ 𝑔1(𝑥𝜌)
...

𝑔𝑛−𝑘(𝑥𝜌)

⎞⎟⎠ .

Thus, the puncturing Π𝜎′∪𝜏 : 𝑋 → F𝑞
𝑘

at 𝜎′ ∪ 𝜏 ∈
(︀
1,...,𝑛
𝑛−𝑘

)︀
is biregular, with inverse

(Π𝜎′∪𝜏 )
−1(𝑥𝜌) =

⎛⎜⎝(𝐻𝜎′∪𝜏 )
−1

⎛⎜⎝ 𝑔1(𝑥𝜌)
...

𝑔𝑛−𝑘(𝑥𝜌)

⎞⎟⎠ , 𝑥𝜌

⎞⎟⎠ .

In particular, 𝑋 is a smooth irreducible affine variety of dimension dim𝑋 = 𝑘.
The tangent spaces 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) at all the points 𝑎 ∈ 𝑋 are linear codes of

length 𝑛 and dimension 𝑘, whose parity check matrices 𝜕(𝑓1,...,𝑓𝑛−𝑘)
𝜕(𝑥1,...,𝑥𝑛)

(𝑎) have columns
𝐻𝜎∪𝜏 , labeled by 𝜎 ∪ 𝜏 ∈

(︀
1,...,𝑛
𝑛−𝑘+1

)︀
. That is why 𝑐 ∈ 𝐶 with Supp(𝑐) = 𝜎 belongs

to 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) for ∀𝑎 ∈ 𝑋 and the minimum distance 𝑑(𝑇𝑎(𝑋,F𝑞𝛿(𝑎))) ≤ 𝑑 at
∀𝑎 ∈ 𝑋. In other words, 𝑋 = 𝑋(≤𝑑). By the very construction of 𝑓𝑖(𝑥1, . . . , 𝑥𝑛)
one has 0𝑛 ∈ 𝑋 and 𝜕(𝑓1,...,𝑓𝑛−𝑘)

𝜕(𝑥1,...,𝑥𝑛)
(0𝑛) = 𝐻, whereas 𝑇0𝑛(𝑋,F𝑞) = 𝐶. As a result,

0𝑛 ∈ 𝑋(𝑑) = 𝑋(≥𝑑) is non-empty and the Zariski tangent space 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) at a
generic 𝑎 ∈ 𝑋 is an [𝑛, 𝑘, 𝑑]-code.

The above proposition reveals that a single linear code 𝐶 does not reflect global
properties of the affine varieties 𝑋, tangent to 𝐶 at some point 𝑎 ∈ 𝑋. It illustrates
how the equations of 𝑋 govern the behavior of a generic tangent code to 𝑋.

3.3. Inscription of Zariski tangent spaces in families of linear codes

Proposition 3.4. Let 𝒞 → 𝑆 be a family of F𝑞-linear codes 𝒞(𝑎) ⊂ F𝑛𝑞 , 𝑎 ∈ 𝑆
of arbitrary dimension and minimum distance, parameterized by a subset 𝑆 ⊆ F𝑛𝑞 .
Then there exists a (not necessarily irreducible) affine variety 𝑋 ⊆ F𝑞

𝑛
, containing

all the F𝑞-rational points F𝑛𝑞 of F𝑞
𝑛

and such that 𝑇𝑎(𝑋,F𝑞) ⊆ 𝒞(𝑎) at ∀𝑎 ∈ 𝑆.

Proof. Let ℋ → 𝑆 be a family of parity-check matrices ℋ(𝑎) ∈ 𝑀(𝑛−𝑘)×𝑛(F𝑞) of
𝒞(𝑎) ⊂ F𝑛𝑞 for all 𝑎 ∈ 𝑆 and denote by ℋ(𝑎)𝑖𝑗 ∈ F𝑞 the entries of these matrices. For
an arbitrary 𝛽 ∈ F𝑞, consider the Lagrange basis polynomial

𝐿𝛽
F𝑞
(𝑡) :=

∏︁
𝛼∈F𝑞∖{𝛽}

𝑡− 𝛼

𝛽 − 𝛼

with 𝐿𝛽
F𝑞
(𝑡)(𝛽) = 1 and 𝐿𝛽

F𝑞
(𝑡)
⃒⃒
F𝑞∖{𝛽}

= 0. Straightforwardly,

𝐿0
F𝑞
(𝑡) = −𝑡𝑞−1 + 1 and 𝐿𝛽

F𝑞
(𝑡) = −𝑡𝑞−1 −

𝑞−2∑︁
𝑠=1

𝛽−𝑠𝑡𝑠, ∀𝛽 ∈ F*𝑞 .
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Let us denote by

Φ𝑝 : F𝑞
𝑛 −→ F𝑞

𝑛
, Φ𝑝(𝑎1, . . . , 𝑎𝑛) = (𝑎𝑝1, . . . , 𝑎

𝑝
𝑛), ∀𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ F𝑞

𝑛

the Frobenius automorphism of degree 𝑝 = charF𝑞 and consider

𝑓𝑖(𝑥1, . . . , 𝑥𝑛)

:=
∑︁

𝑏∈Φ𝑝(𝑆)

⎡⎣ 𝑛∑︁
𝑗=1

ℋ(Φ−1
𝑝 (𝑏))𝑖𝑗(𝑥𝑗 − 𝑥𝑞𝑗)

⎤⎦𝐿𝑏1
F𝑞
(𝑥𝑝1) . . . 𝐿

𝑏𝑛
F𝑞
(𝑥𝑝𝑛) ∈ F𝑞[𝑥1, . . . , 𝑥𝑛]

for 1 ≤ 𝑖 ≤ 𝑛−𝑘. The affine algebraic set 𝑋 := 𝑉 (𝑓1, . . . , 𝑓𝑛−𝑘) ⊂ F𝑞
𝑛

is claimed to
satisfy the announced conditions. First of all, 𝑋 passes through all the F𝑞-rational
points F𝑛𝑞 of the affine space F𝑞

𝑛
, since ∀𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ F𝑛𝑞 has components

𝑎𝑗 = 𝑎𝑞𝑗 and 𝑓𝑖(𝑎1, . . . , 𝑎𝑛) = 0 for ∀1 ≤ 𝑖 ≤ 𝑛 − 𝑘. The partial derivatives of 𝑓𝑖
are 𝜕𝑓𝑖

𝜕𝑥𝑗
=

∑︀
𝑏∈Φ𝑝(𝑆)

ℋ(Φ−1
𝑝 (𝑏))𝑖𝑗𝐿

𝑏1
F𝑞
(𝑥𝑝1) . . . 𝐿

𝑏𝑛
F𝑞
(𝑥𝑝𝑛) and their values at 𝑎 ∈ 𝑆 ⊆ F𝑛𝑞

equal 𝜕𝑓𝑖
𝜕𝑥𝑗

(𝑎) = ℋ(Φ−1
𝑝 Φ𝑝(𝑎))𝑖𝑗 = ℋ(𝑎)𝑖𝑗 . Note that the composition of Lagrange

interpolation polynomials with the Frobenius automorphism Φ𝑝 is designed in such
a way that to adjust

𝜕(𝑓1, . . . , 𝑓𝑛−𝑘)

𝜕(𝑥1, . . . , 𝑥𝑛)
(𝑎) = ℋ(𝑎)

at all the points 𝑎 ∈ 𝑆. By 𝑓1, . . . , 𝑓𝑛−𝑘 ∈ 𝐼(𝑋,F𝑞) = 𝑟(⟨𝑓1, . . . , 𝑓𝑛−𝑘⟩) for the
radical 𝑟(⟨𝑓1, . . . , 𝑓𝑛−𝑘⟩)▷F𝑞[𝑥1, . . . , 𝑥𝑛] of ⟨𝑓1, . . . , 𝑓𝑛−𝑘⟩▷F𝑞[𝑥1, . . . , 𝑥𝑛], the Zariski
tangent space 𝑇𝑎(𝑋,F𝑞) ⊆ 𝒞(𝑎) to 𝑋 at an arbitrary point 𝑎 ∈ 𝑆 is contained in the
linear code 𝒞(𝑎) with parity check matrix 𝜕(𝑓1,...,𝑓𝑛−𝑘)

𝜕(𝑥1,...,𝑥𝑛)
(𝑎).

4. Families of genus reductions of a code

The genus of an F𝑞-linear [𝑛, 𝑘, 𝑑]-code 𝐶 is defined as the deviation 𝑔 := 𝑛+1−
𝑘−𝑑 of its parameters from the equality in the Singleton Bound 𝑛+1−𝑘−𝑑 ≥ 0. One
of the problems in coding theory is to obtain a linear code 𝐶 ′ of genus 𝑔′ = 𝑔−1 ≥ 0
from the given linear code 𝐶 of genus 𝑔 ≥ 1. We say that 𝐶 ′ is a genus reduction of
𝐶. There are three standard ways for construction of a genus reduction 𝐶 ′. These
are, respectively, the length, the dimension and the weight reductions of 𝐶 with
parameters [𝑛 − 1, 𝑘, 𝑑], [𝑛, 𝑘 + 1, 𝑑], [𝑛, 𝑘, 𝑑 + 1]. In the next three subsections we
use the set up of tangent codes, in order to construct families of length, dimension
and weight reductions of 𝐶, parameterized by appropriate Zariski dense subsets of
affine spaces over F𝑞.

4.1. A family of length reductions of a linear code

Here is a simple lemma from coding theory, which will be used for the construc-
tion of a family of length reductions of a linear code.
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Lemma 4.1. Let 𝐶 be an F𝑞-linear code of genus 𝑔 = 𝑛+ 1− 𝑘 − 𝑑 > 0 with
a parity check matrix 𝐻 = (𝐻1 . . . 𝐻𝑛) ∈𝑀(𝑛−𝑘)×𝑛(F𝑞). If

𝐻𝑛 /∈ ∪𝜆∈(1,...,𝑛−1
𝑑−1 ) SpanF𝑞

(𝐻𝜆), (4.1)

then the image Π𝑛(𝐶) ⊂ F𝑛−1
𝑞 of the puncturing Π𝑛 : 𝐶 → Π𝑛(𝐶) of the last com-

ponent is an F𝑞-linear [𝑛− 1, 𝑘, 𝑑]-code.

Proof. If 𝐻𝑛 /∈ ∪𝜆∈(1,...,𝑛−1
𝑑−1 ) SpanF𝑞

(𝐻𝜆) and 𝑐 = (𝑐1, . . . , 𝑐𝑛) ∈ 𝐶 is a word of weight

wt(𝑐) = 𝑑, then 𝑐𝑛 = 0 and Supp(𝑐) ∈
(︀
1,...,𝑛−1

𝑑

)︀
. As a result, wt(Π𝑛(𝑐)) = wt(𝑐) = 𝑑

and Π𝑛(𝐶) ⊂ F𝑛−1
𝑞 is of minimum distance 𝑑. Let us suppose that there is a non-zero

𝑐 ∈ ker(Π𝑛) ∩ 𝐶 = {(0𝑛−1, 𝑐𝑛) ∈ 𝐶}. Then 𝐻𝑛 = 0𝑛 ∈ ∩𝜆∈(1,...,𝑛−1
𝑑−1 ) SpanF𝑞

(𝐻𝜆).
The contradiction with the assumption (4.1) reveals that ker(Π𝑛) ∩ 𝐶 = {0𝑛} and
dimF𝑞

Π𝑛(𝐶) = dimF𝑞
(𝐶) = 𝑘.

Recall that a linear code 𝐶 ⊂ F𝑛𝑞 is non-degenerate if it is not contained in a
coordinate hyperplane 𝑉 (𝑥𝑖) = {𝑎 ∈ F𝑛𝑞 | 𝑎𝑖 = 0} for some 1 ≤ 𝑖 ≤ 𝑛.

Proposition 4.2. Let 𝐶 be a non-degenerate F𝑞-linear [𝑛, 𝑘, 𝑑]-code of genus
𝑔 = 𝑛 + 1 − 𝑘 − 𝑑 > 0. Then there exist a finite extension F𝑞𝑚 ⊇ F𝑞, a smooth
irreducible affine variety 𝑋/F𝑞𝑚 ⊂ F𝑞

𝑛
, isomorphic to F𝑞

𝑘
and a Zariski dense

subset 𝑆 ⊆ 𝑋, such that 0𝑛 ∈ 𝑆, 𝑇0𝑛(𝑋,F𝑞𝑚) = 𝐶⊗F𝑞F𝑞𝑚 , the puncturing Π𝑛 : 𝑋 →
Π𝑛(𝑋) at 𝑥𝑛 is a finite morphism and the images

(𝑑Π𝑛)𝑎𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) = 𝑇Π𝑛(𝑎)(Π𝑛(𝑋),F𝑞𝛿(𝑎))

of the puncturings of 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) at all the points 𝑎 ∈ 𝑆 are [𝑛− 1, 𝑘, 𝑑]-codes.

Proof. Let 𝐻 ′ ∈𝑀(𝑛−𝑘)×𝑛(F𝑞) be a parity check matrix of 𝐶 with columns 𝐻 ′
𝑗 for all

1 ≤ 𝑗 ≤ 𝑛. There is no loss in assuming that 𝐻 ′
𝑘+1, . . . ,𝐻

′
𝑛 are linearly independent

and form the identity matrix 𝐼𝑛−𝑘. Any finite union of proper F𝑞-linear subspaces of
the linear space 𝑀(𝑛−𝑘)×1(F𝑞) over the infinite field F𝑞 has non-empty complement
and there exists

𝑐 =

⎛⎜⎝ 𝑐1
...

𝑐𝑛−𝑘

⎞⎟⎠ ∈𝑀(𝑛−𝑘)×1(F𝑞) ∖
{︁[︁

∪𝜆∈(1,...,𝑛−1
𝑑−1 ) SpanF𝑞

(𝐻 ′
𝜆)
]︁
∪ 𝑉 (𝑦𝑛−𝑘)

}︁
.

Let us denote by F𝑞𝑚 := F𝑞(𝑐1, . . . , 𝑐𝑛−𝑘) the definition field of 𝑐, put 𝑝 := charF𝑞 for
the characteristic of F𝑞 and consider the affine variety 𝑋 := 𝑉 (𝑓1, . . . , 𝑓𝑛−𝑘) ⊂ F𝑞

𝑛
,

cut by the polynomials

𝑓𝑖(𝑥1, . . . , 𝑥𝑘, 𝑥𝑘+𝑖, 𝑥𝑛) :=

𝑘∑︁
𝑠=1

𝐻 ′
𝑖,𝑠𝑥𝑠 + 𝑥𝑘+𝑖 + 𝑐𝑖𝑥

𝑝+1
𝑛 for ∀1 ≤ 𝑖 ≤ 𝑛− 𝑘.
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In order to construct a biregular morphism 𝑋 → F𝑞
𝑘
, note that 𝑐𝑛−𝑘 ̸= 0 by the

very choice of 𝑐 and

𝑋 = 𝑉

(︂
𝑓𝑖 −

𝑐𝑖
𝑐𝑛−𝑘

𝑓𝑛−𝑘, 𝑓𝑛−𝑘

⃒⃒⃒
1 ≤ 𝑖 ≤ 𝑛− 𝑘 − 1

)︂
.

The equations

𝑓𝑖(𝑥1, . . . , 𝑥𝑘, 𝑥𝑘+𝑖, 𝑥𝑛)−
𝑐𝑖
𝑐𝑛−𝑘

𝑓𝑛−𝑘(𝑥1, . . . , 𝑥𝑘, 𝑥𝑛)

=

𝑘∑︁
𝑠=1

(︂
𝐻 ′

𝑖,𝑠 −
𝑐𝑖
𝑐𝑛−𝑘

𝐻 ′
𝑛−𝑘,𝑠

)︂
𝑥𝑠 + 𝑥𝑘+𝑖 −

𝑐𝑖
𝑐𝑛−𝑘

𝑥𝑛 = 0

for ∀1 ≤ 𝑖 ≤ 𝑛− 𝑘 − 1 are equivalent to 𝑥𝑘+𝑖 = 𝜓𝑘+𝑖(𝑥1, . . . , 𝑥𝑘, 𝑥𝑛) for

𝜓𝑘+𝑖(𝑥1, . . . , 𝑥𝑘, 𝑥𝑛) :=

𝑘∑︁
𝑠=1

(︂
𝑐𝑖
𝑐𝑛−𝑘

𝐻 ′
𝑛−𝑘,𝑠 −𝐻 ′

𝑖,𝑠

)︂
𝑥𝑠 +

𝑐𝑖
𝑐𝑛−𝑘

𝑥𝑛,

∀1 ≤ 𝑖 ≤ 𝑛 − 𝑘 − 1. We claim the existence of 1 ≤ 𝑠 ≤ 𝑘 with 𝐻 ′
𝑛−𝑘,𝑠 ̸= 0, since

otherwise the last row of the parity check matrix 𝐻 ′ of 𝐶 is (0𝑛−1, 1) and the non-
degenerate code 𝐶 is contained in the coordinate hyperplane with equation 𝑥𝑛 = 0.
Up to a permutation of the first 𝑘 components of F𝑞

𝑛
, we assume that 𝐻 ′

𝑛−𝑘,𝑘 ̸= 0.
Then 𝑓𝑛−𝑘(𝑥1, . . . , 𝑥𝑘, 𝑥𝑛) = 0 is equivalent to 𝑥𝑘 = 𝜓𝑘(𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑛) for

𝜓𝑘(𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑛) := −(𝐻 ′
𝑛−𝑘,𝑘)

−1

(︃
𝑘−1∑︁
𝑠=1

𝐻 ′
𝑛−𝑘,𝑠𝑥𝑠 + 𝑥𝑛 + 𝑐𝑛−𝑘𝑥

𝑝+1
𝑛

)︃
.

Thus, 𝑋 ⊂ F𝑞
𝑛

is cut by the equations

𝑥𝑘 − 𝜓𝑘(𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑛) = 0,

𝑥𝑘+𝑖 − 𝜓𝑘+𝑖(𝑥1, . . . , 𝑥𝑘−1, 𝜓𝑘(𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑛), 𝑥𝑛) = 0 for ∀1 ≤ 𝑖 ≤ 𝑛− 𝑘 − 1

and the puncturing Π𝛼 at 𝛼 = {𝑘, 𝑘 + 1, . . . , 𝑛 − 1} ∈
(︀
1,...,𝑛
𝑛−𝑘

)︀
provides a biregular

morphism Π𝛼 : 𝑋 → F𝑞
𝑘
. In particular, 𝑋 is a smooth irreducible affine variety,

defined over F𝑞𝑚 . Note that the puncturing Π𝑛 : 𝑋 → Π𝑛(𝑋) at 𝑥𝑛 is a finite
morphism, as far as the equation

𝑓𝑛−𝑘(𝑥1, . . . , 𝑥𝑘, 𝑥𝑛) =

𝑘∑︁
𝑠=1

𝐻 ′
𝑛−𝑘,𝑠𝑥𝑠 + 𝑥𝑛 + 𝑐𝑛−𝑘𝑥

𝑝+1
𝑛 = 0

implies the algebraic dependence of the element 𝑥𝑛 + 𝐼(𝑋,F𝑞) ∈ F𝑞(𝑋) over the
function field F𝑞(Π𝑛(𝑋)) = F𝑞(𝑥1 + 𝐼(𝑋,F𝑞), . . . , 𝑥𝑛−1 + 𝐼(𝑋,F𝑞)).

For the rest of the proof, 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)), respectively, 𝑇Π𝑛(𝑎)(Π𝑛(𝑋),F𝑞𝛿(𝑎)) are
the Zariski tangent spaces over the definition fields F𝑞𝛿(𝑎) := F𝑞𝑚(𝑎1, . . . , 𝑎𝑛) of
𝑎 ∈ 𝑋 over F𝑞𝑚 . Note that

𝜕(𝑓1, . . . , 𝑓𝑛−𝑘)

𝜕𝑥
(𝑥1, . . . , 𝑥𝑛) = (𝐻 ′

1 . . . 𝐻
′
𝑛−1𝐻𝑛(𝑥𝑛)) =

𝜕𝑓

𝜕𝑥
(𝑥𝑛) (4.2)



Ann. Sofia Univ., Fac. Math. and Inf., 111, 2024, 91–114 107

with 𝐻𝑛(𝑥𝑛) = 𝐻 ′
𝑛 + 𝑥𝑝𝑛𝑐 depends only on 𝑥𝑛. The columns of the Jacobian matrix

𝜕(𝑓1,...,𝑓𝑛−𝑘)
𝜕𝑥 (𝑥𝑛), labeled by 𝛽 = {𝑘 + 1, . . . , 𝑛} ∈

(︀
1,...,𝑛
𝑛−𝑘

)︀
form the matrix

𝜕(𝑓1, . . . , 𝑓𝑛−𝑘)

𝜕𝑥𝛽
(𝑥𝑛) =

⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 0 𝑐1𝑥

𝑝
𝑛

0 1 · · · 0 𝑐2𝑥
𝑝
𝑛

...
...

. . .
...

...
0 0 · · · 1 𝑐𝑛−𝑘−1𝑥

𝑝
𝑛

0 0 · · · 0 1 + 𝑐𝑛−𝑘𝑥
𝑝
𝑛

⎞⎟⎟⎟⎟⎟⎠
with determinant det 𝜕(𝑓1,...,𝑓𝑛−𝑘)

𝜕𝑥𝛽
(𝑥𝑛) = 1 + 𝑐𝑛−𝑘𝑥

𝑝
𝑛. Thus, at any point 𝑎 ∈

𝑋 ∖ 𝑉 (𝑐𝑛−𝑘𝑥
𝑝
𝑛 + 1), the matrix 𝜕(𝑓1,...,𝑓𝑛−𝑘)

𝜕𝑥 (𝑎𝑛) ∈ 𝑀(𝑛−𝑘)×𝑛(F𝑞𝛿(𝑎)) is of rank
rk 𝜕𝑓

𝜕𝑥 (𝑎𝑛) = 𝑛− 𝑘. According to

𝑓1, . . . , 𝑓𝑛−𝑘 ∈ 𝐼(𝑋,F𝑞) = 𝐼𝑉 (𝑓1, . . . , 𝑓𝑛−𝑘) = 𝑟(⟨𝑓1, . . . , 𝑓𝑛−𝑘⟩) ▷ F𝑞[𝑥1, . . . , 𝑥𝑛],

the Zariski tangent space 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) at 𝑎 ∈ 𝑋 is contained in the linear code 𝒞(𝑎)
with parity check matrix 𝜕(𝑓1,...,𝑓𝑛−𝑘)

𝜕𝑥 (𝑎). Since 𝑋 is smooth, dim𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) =

dim𝑋 = 𝑘 at ∀𝑎 ∈ 𝑋 and 𝜕(𝑓1,...,𝑓𝑛−𝑘)
𝜕𝑥 (𝑎) is a parity check matrix of 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) if

and only if rk 𝜕(𝑓1,...,𝑓𝑛−𝑘)
𝜕𝑥 (𝑎) = 𝑛 − 𝑘. In particular, 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) has parity check

matrix 𝜕(𝑓1,...,𝑓𝑛−𝑘)
𝜕𝑥 (𝑎) at all the points 𝑎 of the non-empty, Zariski open, Zariski

dense subset 𝑋 ∖ 𝑉 (𝑐𝑛−𝑘𝑥
𝑝
𝑛 + 1) of 𝑋. Note that 0𝑛 ∈ 𝑋 = 𝑉 (𝑓1, . . . , 𝑓𝑛−𝑘) and

0𝑛 /∈ 𝑉 (𝑐𝑛−𝑘𝑥
𝑝
𝑛 + 1), so that 𝑇0𝑛(𝑋,F𝑞𝑚) has parity check matrix 𝜕(𝑓1,...,𝑓𝑛−𝑘)

𝜕𝑥 (0) =
𝐻 ′ and 𝑇0𝑛(𝑋,F𝑞𝑚) = 𝐶 ⊗F𝑞

F𝑞𝑚 .
Let Π𝑛 : 𝒞(𝑎) → Π𝑛𝒞(𝑎) be the puncturing at 𝑛 and 𝑆𝑜 be the set of those

𝑎 ∈ 𝑋, at which Π𝑛𝒞(𝑎) is an [𝑛− 1, 𝑘, 𝑑]-code. By Lemma 4.1,

𝑆𝑜 ⊇
{︁
𝑎 ∈ 𝑋 | 𝐻𝑛(𝑎𝑛) /∈ ∪𝜆∈(1,...,𝑛−1

𝑑−1 ) SpanF𝑞𝛿(𝑎)
(𝐻 ′

𝜆)
}︁
,

whereas

𝑌 := 𝑋 ∖ 𝑆𝑜 ⊆ 𝑍 :=
{︁
𝑎 ∈ 𝑋 | 𝐻𝑛(𝑎𝑛) ∈ ∪𝜆∈(1,...,𝑛−1

𝑑−1 ) SpanF𝑞
(𝐻 ′

𝜆)
}︁
.

We claim that 𝑍 is a proper Zariski closed subset of 𝑋. If so, then 𝑋 ∖ 𝑍 is a non-
empty, Zariski open, Zariski dense subset of 𝑋 and has non-empty, Zariski open,
Zariski dense intersection 𝑈 := (𝑋 ∖𝑍)∩ [𝑋 ∖ 𝑉 (𝑐𝑛−𝑘𝑥

𝑝
𝑛 +1)] with the Zariski open

subset 𝑋 ∖ 𝑉 (𝑐𝑛−𝑘𝑥
𝑝
𝑛 + 1) ̸= ∅ of the irreducible affine variety 𝑋. That suffices for

𝑆′ := 𝑆𝑜 ∩ [𝑋 ∖ 𝑉 (𝑐𝑛−𝑘𝑥
𝑝
𝑛 + 1)] ⊇ 𝑈 to be a Zariski dense subset of 𝑋, containing

0𝑛 and such that (𝑑Π𝑛)𝑎𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) are [𝑛− 1, 𝑘, 𝑑]-codes at all 𝑎 ∈ 𝑆′.
Towards the study of 𝑍, let

𝑍𝜆 := {𝑎 ∈ 𝑋 | 𝐻𝑛(𝑎𝑛) ∈ SpanF𝑞
(𝐻 ′

𝜆)} = {𝑎 ∈ 𝑋 | rk(𝐻 ′
𝜆𝐻𝑛(𝑎𝑛)) < 𝑑}

for 𝜆 ∈
(︀
1,...,𝑛−1

𝑑−1

)︀
and represent 𝑍 = ∪𝜆∈(1,...,𝑛−1

𝑑−1 )𝑍𝜆. If 𝜇 ∈
(︀
1,...,𝑛−𝑘

𝑑

)︀
and

𝑔𝜇,𝜆(𝑥𝑛) := det
𝜕𝑓𝜇

𝜕(𝑥𝜆, 𝑥𝑛)
(𝑥𝑛) ∈ F𝑞𝑚 [𝑥𝑛]
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is the determinant of the matrix

𝜕𝑓𝜇
𝜕(𝑥𝜆, 𝑥𝑛)

(𝑥𝑛) = (𝐻 ′
𝜇,𝜆𝐻

′
𝜇,𝑛(𝑥𝑛)) = (𝐻 ′

𝜇,𝜆𝐻
′
𝜇,𝑛 + 𝑥𝑝𝑛𝑐𝜇,𝑛)

formed by the rows of (𝐻 ′
𝜆𝐻𝑛(𝑥𝑛)), labeled by 𝜇 ∈

(︀
1,...,𝑛−𝑘

𝑑

)︀
, then

𝑍𝜆 = 𝑋 ∩ 𝑉
(︂
𝑔𝜇,𝜆(𝑥𝑛)

⃒⃒⃒
∀𝜇 ∈

(︂
1, . . . , 𝑛− 𝑘

𝑑

)︂)︂
is a Zariski closed subset of 𝑋 and, therefore, 𝑍 = ∪𝜆∈(1,...,𝑛−1

𝑑−1 )𝑍𝜆 is Zariski closed
in 𝑋. The assumption

∪𝜆∈(1,...,𝑛−1
𝑑−1 )𝑍𝜆 = 𝑍 = 𝑋

for the irreducible affine variety 𝑋 requires

𝑋 = 𝑍𝜆 ⊆ 𝑉

(︂
𝑔𝜇,𝜆(𝑥𝑛)

⃒⃒⃒
∀𝜇 ∈

(︂
1, . . . , 𝑛− 𝑘

𝑑

)︂)︂
for some 𝜆 ∈

(︀
1,...,𝑛−1

𝑑−1

)︀
. Recall that the puncturing Π𝛼 : 𝑋 −→ F𝑞

𝑘
at the (𝑛− 𝑘)-

tuple 𝛼 = {𝑘, 𝑘 + 1, . . . , 𝑛 − 1} is biregular and consider the sequence of affine
varieties

Π−1
𝛼 (0𝑘−1 × F𝑞) ⊆ 𝑋 ⊆ 𝑉

(︂
𝑔𝜇,𝜆(𝑥𝑛)

⃒⃒⃒
∀𝜇 ∈

(︂
1, . . . , 𝑛− 𝑘

𝑑

)︂)︂
,

where 0𝑘−1 × F𝑞 = 𝑉 (𝑥1, . . . , 𝑥𝑘−1) ⊂ F𝑞
𝑘
. Then 𝑔𝜇,𝜆(𝑥𝑛) ≡ 0 for all 𝜇 ∈

(︀
1,...,𝑛−𝑘

𝑑

)︀
,

which holds exactly when det(𝐻 ′
𝜇,𝜆𝐻

′
𝜇,𝑛) = 0 and det(𝐻 ′

𝜇,𝜆𝑐𝜇) = 0 for all 𝜇 ∈(︀
1,...,𝑛−𝑘

𝑑

)︀
. As a result, rk(𝐻 ′

𝜆𝑐) < 𝑑 for 𝐻 ′
𝜆 ∈ 𝑀(𝑛−𝑘)×(𝑑−1)(F𝑞) of rk𝐻 ′

𝜆 = 𝑑 − 1
and 𝑐 ∈ SpanF𝑞

(𝐻 ′
𝜆). That contradicts the choice of 𝑐 and shows that 𝑍 ⊊ 𝑋 is a

proper Zariski closed subset of 𝑋.
Note that the puncturing Π𝑛 : 𝑋 → Π𝑛(𝑋) has injective differentials

(𝑑Π𝑛)𝑎 : 𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) −→ 𝑇Π𝑛(𝑎)(Π𝑛(𝑋),F𝑞𝛿(𝑎)) at ∀𝑎 ∈ 𝑈,

so that the non-empty, Zariski open, Zariski dense subset 𝑈 ⊆ 𝑋 is contained
in the infinitesimally injective locus of Π𝑛, i.e., 𝑈 ⊆ Inf Inj(Π𝑛). Intersecting 𝑈
with the non-empty, Zariski open subset Π−1

𝑛 (Π𝑛(𝑋)smooth) of the irreducible affine
variety 𝑋, one obtains a non-empty, Zariski open, Zariski dense subset 𝑊 := 𝑈 ∩
Π−1

𝑛 (Π𝑛(𝑋)smooth) ⊆ 𝑋. Then

𝑆 := 𝑆′ ∩Π−1
𝑛 (Π𝑛(𝑋)smooth) = 𝑆𝑜 ∩ [𝑋 ∖ 𝑉 (𝑐𝑛−𝑘𝑥

𝑝
𝑛 + 1)] ∩Π−1

𝑛 (Π𝑛(𝑋)smooth) ⊇𝑊

is such a Zariski dense subset of 𝑋 that

(𝑑Π𝑛)𝑎𝑇𝑎(𝑋,F𝑞𝛿(𝑎)) = 𝑇Π𝑛(𝑎)(Π𝑛(𝑋),F𝑞𝛿(𝑎))

are [𝑛− 1, 𝑘, 𝑑]-codes for all 𝑎 ∈ 𝑆 according to Lemma 3.1 (ii).
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4.2. A family of dimension reductions of a linear code

The next proposition provides a family of dimension reductions of an F𝑞-linear
[𝑛, 𝑘, 𝑑]-code 𝐶 of genus 𝑔 = 𝑛 + 1 − 𝑘 − 𝑑 > 0, which is parameterized by a non-
empty, Zariski open, Zariski dense subset of F𝑞

2(𝑛−𝑘)
. The codes from the family

are not tangent to a specific affine variety. We choose a parity check matrix of the
original [𝑛, 𝑘, 𝑑]-code 𝐶 and project it on various hyperplanes in F𝑞

𝑛−𝑘
, in order to

obtain parity check matrices of [𝑛, 𝑘 + 1, 𝑑]-codes over finite extensions of F𝑞.

Proposition 4.3. Let us suppose that 𝐶 is an F𝑞-linear [𝑛, 𝑘, 𝑑]-code of genus
𝑔 = 𝑛 + 1 − 𝑘 − 𝑑 > 0. Then there exist a Zariski open, Zariski dense subset
𝒲 ⊂ F𝑞

2(𝑛−𝑘)
and a family 𝒞 → 𝒲 of F𝑞𝛿(𝑢,𝑣)-linear [𝑛, 𝑘 + 1, 𝑑]-codes 𝒞(𝑢, 𝑣),

containing 𝐶 for any (𝑢, 𝑣) ∈ 𝒲, 𝑢, 𝑣 ∈ F𝑞
𝑛−𝑘

.

Proof. Let 𝐻 = (𝐻1 . . . 𝐻𝑛) ∈ 𝑀(𝑛−𝑘)×𝑛(F𝑞) be a parity check matrix of 𝐶 with
columns𝐻1, . . . ,𝐻𝑛 ∈ F𝑛−𝑘

𝑞 . For any 𝜆 ∈
(︀
1,...,𝑛
𝑑−1

)︀
let us consider 𝑍𝜆 := SpanF𝑞

(𝐻𝜆)≃

F𝑞
𝑑−1

as an irreducible affine subvariety of 𝑀(𝑛−𝑘)×1(F𝑞) ≃ F𝑞
𝑛−𝑘

and put

𝑉 (𝑄) :=

{︃
(𝑢, 𝑣) ∈ F𝑞

𝑛−𝑘 × F𝑞
𝑛−𝑘 | 𝑄(𝑢, 𝑣) = ⟨𝑢, 𝑣⟩ =

𝑛−𝑘∑︁
𝑠=1

𝑢𝑠𝑣𝑠 = 0

}︃

for the quadric in F𝑞
2(𝑛−𝑘)

, given by the inner product in F𝑞
𝑛−𝑘

. Observe that
𝑍𝜆 × F𝑞

𝑛−𝑘
, 𝑉 (𝑄) and, therefore,

𝑍 := 𝑉 (𝑄) ∪
(︁
∪𝜆∈(1,...,𝑛𝑑−1 )

𝑍𝜆 × F𝑞
𝑛−𝑘

)︁
are proper affine subvarieties of F𝑞

2(𝑛−𝑘)
, due to the irreducibility of the affine space

F𝑞
2(𝑛−𝑘)

and the assumption 𝑔 > 0. Thus, 𝒲 := F𝑞
2(𝑛−𝑘)∖𝑍 is a non-empty, Zariski

open, Zariski dense subset of F𝑞
2(𝑛−𝑘)

. For any (𝑢, 𝑣) ∈ 𝒲 with 𝑢, 𝑣 ∈ F𝑞
𝑛−𝑘

, note
that 𝑢 /∈ ∪𝜆∈(1,...,𝑛𝑑−1 )

𝑍𝜆 = ∪𝜆∈(1,...,𝑛𝑑−1 )
SpanF𝑞

(𝐻𝜆) and

𝑢 /∈ ℋ𝑣 := {𝑧 ∈ F𝑞
𝑛−𝑘 | ⟨𝑧, 𝑣⟩ = 0}

for the hyperplane ℋ𝑣 ⊂ F𝑞
𝑛−𝑘

with gradient vector 𝑣. That allows to consider the
F𝑞-linear maps

ℒ𝑢,𝑣 : F𝑞
𝑛−𝑘 −→ ℋ𝑣,

ℒ𝑢,𝑣(𝑦) := 𝑦 − ⟨𝑦, 𝑣⟩
⟨𝑢, 𝑣⟩

𝑢 for ∀𝑦 ∈ F𝑞
𝑛−𝑘

, ∀(𝑢, 𝑣) ∈ 𝒲,

which project F𝑞
𝑛−𝑘

on ℋ𝑣, parallel to kerℒ𝑢,𝑣 = SpanF𝑞
(𝑢). Here we use that

for any 𝑧 ∈ ℋ𝑣 one has ℒ𝑢,𝑣(𝑧) = 𝑧. Let us consider the definition field F𝑞𝛿(𝑢,𝑣) =
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F𝑞(𝑢1, . . . , 𝑢𝑛−𝑘, 𝑣1, . . . , 𝑣𝑛−𝑘) of (𝑢, 𝑣) ∈ 𝒲 over F𝑞 and the matrix 𝐻(𝑢, 𝑣) :=
(ℒ𝑢,𝑣(𝐻1) . . .ℒ𝑢,𝑣(𝐻𝑛)) ∈ 𝑀(𝑛−𝑘)×𝑛(F𝑞𝛿(𝑢,𝑣)). The linear code 𝒞(𝑢, 𝑣) with parity
check matrix 𝐻(𝑢, 𝑣) contains 𝐶, as far as the F𝑞-linear map ℒ𝑢,𝑣 transforms any

non-trivial linear dependence
𝑛∑︀

𝑠=1
𝑐𝑠𝐻𝑠 = 0𝑛−𝑘 of the columns of 𝐻 into a non-trivial

linear dependence relation
𝑛∑︀

𝑠=1
𝑐𝑠ℒ𝑢,𝑣(𝐻𝑠) = 0𝑛−𝑘 of the columns of 𝐻(𝑢, 𝑣). In

particular, 𝒞(𝑢, 𝑣) contains words of weight 𝑑 and the minimum distance 𝑑(𝒞(𝑢, 𝑣)) ≤
𝑑. If there is a non-zero word 𝑎 ∈ 𝒞(𝑢, 𝑣)∖{0𝑛} with Supp(𝑎) ⊆ 𝜆 = {𝜆1, . . . , 𝜆𝑑−1} ∈(︀
1,...,𝑛
𝑑−1

)︀
, then 0𝑛 =

𝑑−1∑︀
𝑠=1

𝑎𝜆𝑠
ℒ𝑢,𝑣(𝐻𝜆𝑠

) = ℒ𝑢,𝑣

(︂
𝑑−1∑︀
𝑠=1

𝑎𝜆𝑠
𝐻𝜆𝑠

)︂
, whereas

𝑑−1∑︀
𝑠=1

𝑎𝜆𝑠
𝐻𝜆𝑠

∈

kerℒ𝑢,𝑣 = SpanF𝑞
(𝑢) and

𝑑−1∑︀
𝑠=1

𝑎𝜆𝑠
𝐻𝜆𝑠

= 𝜆0𝑢 for some 𝜆0 ∈ F𝑞. According to 𝑢 /∈

SpanF𝑞
(𝐻𝜆), there follow 𝜆0 = 0 and rk𝐻𝜆 = rk(𝐻𝜆1 , . . . ,𝐻𝜆𝑑−1

) < 𝑑 − 1. That
contradicts the fact that 𝐶 is of minimum distance 𝑑 and shows that 𝒞(𝑢, 𝑣) is of
minimum distance 𝑑(𝒞(𝑢, 𝑣)) = 𝑑 for ∀(𝑢, 𝑣) ∈ 𝒲.

There remains to be checked that rk𝐻(𝑢, 𝑣) = 𝑛 − 𝑘 − 1 for all (𝑢, 𝑣) ∈ 𝒲,
in order to derive that dim 𝒞(𝑢, 𝑣) = 𝑘 + 1 and to conclude the proof of the
proposition. To this end, note that ℒ𝑢,𝑣(𝐻𝑠) ∈ ℋ𝑣 for ∀1 ≤ 𝑠 ≤ 𝑛, whereas
SpanF𝑞

(ℒ𝑢,𝑣(𝐻1), . . . ,ℒ𝑢,𝑣(𝐻𝑛)) ⊆ ℋ𝑣 and rk𝐻(𝑢, 𝑣) ≤ dimF𝑞
ℋ𝑣 = 𝑛 − 𝑘 − 1.

On the other hand, 𝐻𝑠 = ℒ𝑢,𝑣(𝐻𝑠) +
⟨𝐻𝑠,𝑣⟩
⟨𝑢,𝑣⟩ 𝑢 for all 1 ≤ 𝑠 ≤ 𝑛 imply that

F𝑞
𝑛−𝑘

= SpanF𝑞
(𝐻1, . . . ,𝐻𝑛) ⊆ SpanF𝑞

(ℒ𝑢,𝑣(𝐻1), . . . ,ℒ𝑢,𝑣(𝐻𝑛), 𝑢).

If rk𝐻(𝑢, 𝑣) ≤ 𝑛− 𝑘 − 2, then

𝑛− 𝑘 ≤ dimF𝑞
SpanF𝑞

(ℒ𝑢,𝑣(𝐻1), . . . ,ℒ𝑢,𝑣(𝐻𝑛), 𝑢) ≤ rk𝐻(𝑢, 𝑣) + 1 ≤ 𝑛− 𝑘 − 1

is an absurd, justifying rk𝐻(𝑢, 𝑣) = 𝑛 − 𝑘 − 1 and dim 𝒞(𝑢, 𝑣) = 𝑘 + 1 for all
(𝑢, 𝑣) ∈ 𝒲 := F𝑞

2(𝑛−𝑘) ∖
[︁
𝑉 (𝑄) ∪

(︁
∪𝜆∈(1,...,𝑛𝑑−1 )

𝑍𝜆 × F𝑞
𝑛−𝑘

)︁]︁
, 𝑢, 𝑣 ∈ F𝑞

𝑛−𝑘
.

4.3. A family of weight reductions of a linear code

Let 𝐶 be a linear [𝑛, 𝑘, 𝑑]-code, which is not MDS. The next proposition es-
tablishes the existence of a family 𝒞 → 𝑈 of [𝑛, 𝑘]-codes 𝒞(𝑎), 𝑎 ∈ 𝑈 of minimum
distance ≥ 𝑑+ 1, parameterized by a non-empty, Zariski open, Zariski dense subset
𝑈 ⊆ F𝑞

𝑛
. The codes from 𝒞 are defined by a polynomial parity check matrix in 𝑛

variables, but are not tangent to a specific affine subvariety of F𝑞
𝑛
.

Proposition 4.4. Let us suppose that 𝐶 is an F𝑞-linear [𝑛, 𝑘, 𝑑]-code of genus
𝑔 = 𝑛 + 1 − 𝑘 − 𝑑 > 0. Then there exist a finite extension F𝑞𝑚 ⊇ F𝑞, a non-
empty, Zariski open, Zariski dense subset 𝑈 ⊆ F𝑞

𝑛
and a family 𝒞 → F𝑞

𝑛
of linear

codes 𝒞(𝑎) ⊂ F𝑛
𝑞𝛿(𝑎) over the definition fields F𝑞𝛿(𝑎) of 𝑎 ∈ F𝑞

𝑛
over F𝑞𝑚 , such that

𝒞(0𝑛) = 𝐶 ⊗F𝑞
F𝑞𝑚 and 𝒞(𝑎) are of length 𝑛, dimension 𝑘 and minimum distance

≥ 𝑑+ 1 at all the points 𝑎 ∈ 𝑈 .
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Proof. Let 𝐻 ′ = (𝐻 ′
1 . . . 𝐻

′
𝑛) ∈ 𝑀(𝑛−𝑘)×𝑛(F𝑞) be a parity check matrix of 𝐶 ⊆ F𝑛𝑞 ,

whose first 𝑛 − 𝑘 columns form a non-singular square matrix (𝐻 ′
1, . . . ,𝐻

′
𝑛−𝑘) ∈

GL(𝑛 − 𝑘,F𝑞). By an induction on 𝑑 ≤ 𝑗 ≤ 𝑛, we choose appropriate 𝑐𝑑, . . . , 𝑐𝑛 ∈
𝑀(𝑛−𝑘)×1(F𝑞), in order to set

𝐻𝑗 := 𝐻 ′
𝑗 for 1 ≤ 𝑗 ≤ 𝑑− 1,

𝐻𝑗(𝑥𝑗) := 𝐻 ′
𝑗 + 𝑥𝑗𝑐𝑗 for 𝑑 ≤ 𝑗 ≤ 𝑛

and to obtain a polynomial matrix

𝐻(𝑥𝑑, . . . , 𝑥𝑛) = (𝐻 ′
1 . . . 𝐻

′
𝑑−1𝐻𝑑(𝑥𝑑) . . . 𝐻𝑛(𝑥𝑛)) ∈𝑀(𝑛−𝑘)×𝑛(F𝑞[𝑥𝑑, . . . , 𝑥𝑛]).

Let F𝑞𝑚 = F𝑞(𝑐𝑖𝑗 | 1 ≤ 𝑖 ≤ 𝑛−𝑘, 𝑑 ≤ 𝑗 ≤ 𝑛) be the common definition field of all the
entries of 𝑐𝑑, . . . , 𝑐𝑛 over F𝑞. At any point 𝑎 ∈ F𝑞

𝑛
, define 𝒞(𝑎) to be the linear code

over the definition field F𝑞𝛿(𝑎) = F𝑞𝑚(𝑎1, . . . , 𝑎𝑛) of 𝑎 over F𝑞𝑚 , with parity check
matrix 𝐻(𝑎) = 𝐻(𝑎𝑑, . . . , 𝑎𝑛) ∈ 𝑀(𝑛−𝑘)×𝑛(F𝑞𝛿(𝑎)). Our choice of 𝐻(𝑥𝑑, . . . , 𝑥𝑛) is
such that 𝐻(0𝑛) = 𝐻 ′, whereas 𝒞(0𝑛) = 𝐶×F𝑞

F𝑞𝑚 . It suffices to show the existence
of non-empty, Zariski open, Zariski dense subsets 𝑈 ′ ⊆ F𝑞

𝑛
, 𝑈 ′′ ⊆ F𝑞

𝑛
, such that

𝒞(𝑎) are of minimum distance ≥ 𝑑 + 1 at all 𝑎 ∈ 𝑈 ′ and 𝒞(𝑏) are of dimension 𝑘
at all 𝑏 ∈ 𝑈 ′′. Then 𝑈 := 𝑈 ′ ∩ 𝑈 ′′ ⊆ F𝑞

𝑛
is a non-empty, Zariski open, Zariski

dense subset, over which the codes 𝒞(𝑎), 𝑎 ∈ 𝑈 are of length 𝑛, dimension 𝑘 and
minimum distance ≥ 𝑑 + 1. Regardless of the choice of 𝑐𝑑, . . . , 𝑐𝑛 ∈ 𝑀(𝑛−𝑘)×1(F𝑞),
let 𝛾 := {1, . . . , 𝑛− 𝑘} and note that

𝑈 ′′ := F𝑞
𝑛 ∖ 𝑉 (det𝐻𝛾(𝑥𝑑, . . . , 𝑥𝑛−𝑘))

is a Zariski open subset of F𝑞
𝑛

with dim 𝒞(𝑏) = 𝑘 at all 𝑏 ∈ 𝑈 ′′. Since 0𝑛 ∈ 𝑈 ′′, the
set 𝑈 ′′ is non-empty and, therefore, Zariski dense in F𝑞

𝑛
.

By an induction on 𝑑 ≤ 𝑗 ≤ 𝑛, we choose 𝑐𝑗 ∈𝑀(𝑛−𝑘)×1(F𝑞) and show the exis-
tence of a non-empty, Zariski open, Zariski dense subset 𝑈𝑗 ⊆ F𝑞

𝑗
with rk𝐻𝛽(𝑢) = 𝑑

for all 𝛽 ∈
(︀
1,...,𝑗

𝑑

)︀
and all 𝑢 ∈ 𝑈𝑗 . Then 𝑈 ′ := 𝑈𝑛 will be a non-empty, Zariski open,

Zariski dense subset of F𝑞
𝑛
, such that 𝒞(𝑎) is of minimum distance ≥ 𝑑 + 1 at all

𝑎 ∈ 𝑈 ′. To this end, let 𝑗 = 𝑑, 𝜆 := {1, . . . , 𝑑−1} and note that SpanF𝑞
(𝐻 ′

𝜆) ≃ F𝑞
𝑑−1

is a proper subspace of 𝑀(𝑛−𝑘)×1(F𝑞) ≃ F𝑞
𝑛−𝑘

, according to 𝑔 > 0. That allows to
choose

𝑐𝑑 ∈𝑀(𝑛−𝑘)×1(F𝑞) ∖ SpanF𝑞
(𝐻 ′

𝜆)

and to put 𝐻𝑑(𝑥𝑑) := 𝐻 ′
𝑑+𝑥𝑑𝑐𝑑. The family {𝐻𝑑(𝑎𝑑)}𝑎𝑑∈F𝑞

of columns is claimed to
have at most one common entry 𝐻𝑑(𝜅𝑑) with SpanF𝑞

(𝐻 ′
𝜆), so that rk𝐻𝜆∪{𝑑}(𝑥𝑑) = 𝑑

at all the points of the non-empty, Zariski open, Zariski dense subset 𝑈𝑑 := F𝑞
𝑑−1 ×

(F𝑞 ∖ {𝜅𝑑}) of F𝑞
𝑑
. Indeed, if 𝐻𝑑(𝑥𝑑) /∈ SpanF𝑞

(𝐻 ′
𝜆) for all 𝑥𝑑 ∈ F𝑞, there is nothing

to be proved. In the case of 𝐻𝑑(𝜅𝑑) ∈ SpanF𝑞
(𝐻 ′

𝜆) for some 𝜅𝑑 ∈ F𝑞, let us move
the origin of 𝑀(𝑛−𝑘)×1(F𝑞) at 𝐻𝑑(𝜅𝑑) ∈ 𝑀(𝑛−𝑘)×1(F𝑞). The 1-dimensional linear
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subspace𝐻𝑑(𝑥𝑑) of the (𝑛−𝑘)-dimensional space𝑀(𝑛−𝑘)×1(F𝑞) intersects the (𝑑−1)-
dimensional linear subspace SpanF𝑞

(𝐻 ′
𝜆) in more than one point if and only if it is

contained in SpanF𝑞
(𝐻 ′

𝜆). Then for arbitrary 𝑥𝑑 ̸= 𝑦𝑑 from F𝑞, one has (𝑥𝑑−𝑦𝑑)𝑐𝑑 ∈
SpanF𝑞

(𝐻 ′
𝜆), contrary to the choice of 𝑐𝑑 /∈ SpanF𝑞

(𝐻 ′
𝜆). That provides the base of

the induction.
Suppose that 𝑑+1 ≤ 𝑗 ≤ 𝑛 and 𝑐𝑑, . . . , 𝑐𝑗−1 ∈𝑀(𝑛−𝑘)×1(F𝑞) have been chosen

in such a way that there exists a non-empty, Zariski open, Zariski dense subset
𝑈𝑗−1 ⊆ F𝑞

𝑗−1
with rk𝐻𝛽(𝑢) = 𝑑 for all 𝛽 ∈

(︀
1,...,𝑗−1

𝑑

)︀
and all 𝑢 ∈ 𝑈𝑗−1. Fix an

arbitrary 𝑢 ∈ 𝑈𝑗−1 and choose

𝑐𝑗 ∈𝑀(𝑛−𝑘)×1(F𝑞) ∖
[︁
∪𝜆∈(1,...,𝑗−1

𝑑−1 ) SpanF𝑞
(𝐻𝜆(𝑢))

]︁
. (4.3)

The existence of 𝑐𝑗 is due to the fact that ∪𝜆∈(1,...,𝑗−1
𝑑−1 ) SpanF𝑞

(𝐻𝜆(𝑢)) is a finite union

of proper subspaces SpanF𝑞
(𝐻𝜆(𝑢)) ≃ F𝑞

𝑑−1
of the linear space 𝑀(𝑛−𝑘)×1(F𝑞) ≃

F𝑞
𝑛−𝑘

over the infinite field F𝑞. We claim that

𝑊𝑗−1 := {𝑤 ∈ 𝑈𝑗−1 | 𝑐𝑗 /∈ ∪𝜆∈(1,...,𝑗−1
𝑑−1 ) SpanF𝑞

(𝐻𝜆(𝑤))}

is a Zariski open subset of 𝑈𝑗−1. Indeed,

𝑈𝑗−1 ∖𝑊𝑗−1 = ∪𝜆∈(1,...,𝑗−1
𝑑−1 ){𝑡 ∈ 𝑈𝑗−1 | 𝑐𝑗 ∈ SpanF𝑞

(𝐻𝜆(𝑡))}

= ∪𝜆∈(1,...,𝑗−1
𝑑−1 ){𝑡 ∈ 𝑈𝑗−1 | rk(𝐻𝜆(𝑡)𝑐𝑗) = 𝑑− 1},

as far as rk𝐻𝛽(𝑢) = 𝑑 for all 𝛽 ∈
(︀
1,...,𝑗−1

𝑑

)︀
and all 𝑢 ∈ 𝑈𝑗−1 implies rk𝐻𝜆(𝑡) = 𝑑−1

for all 𝜆 ∈
(︀
1,...,𝑗−1

𝑑−1

)︀
and all 𝑡 ∈ 𝑈𝑗−1. Denoting by Σ𝑑−1

𝑑 the set of the maps
𝜇 :
(︀
1,...,𝑗−1

𝑑−1

)︀
→
(︀
1,...,𝑛−𝑘

𝑑

)︀
and putting

𝑌𝑗 := 𝑉

⎛⎜⎝ ∏︁
𝜆∈(1,...,𝑗−1

𝑑−1 )

det(𝐻𝜇(𝜆),𝜆𝑐𝜇(𝜆),𝑗)
⃒⃒⃒
∀𝜇 ∈ Σ𝑑−1

𝑑

⎞⎟⎠ ,

one concludes that

𝑈𝑗−1 ∖𝑊𝑗−1 = ∪𝜆∈(1,...,𝑗−1
𝑑−1 )

{︁
𝑡 ∈ 𝑈𝑗−1 | det(𝐻𝜈,𝜆(𝑡)𝑐𝜈,𝑗) = 0, ∀𝜈 ∈

(︀
1,...,𝑛−𝑘

𝑑

)︀}︁
= ∪𝜆∈(1,...,𝑗−1

𝑑−1 )

[︁
𝑈𝑗−1 ∩ 𝑉

(︁
det(𝐻𝜈,𝜆𝑐𝜈,𝑗) | ∀𝜈 ∈

(︀
1,...,𝑛−𝑘

𝑑

)︀)︁]︁
= 𝑈𝑗−1 ∩ 𝑌𝑗

is a Zariski closed subset of 𝑈𝑗−1, so that 𝑊𝑗−1 = 𝑈𝑗−1 ∖ 𝑌𝑗 is Zariski open in
𝑈𝑗−1. According to 𝑢 ∈𝑊𝑗−1 for the point 𝑢 ∈ 𝑈𝑗−1, used in the choice (4.3) of 𝑐𝑗 ,
𝑊𝑗−1 ̸= ∅ is non-empty and, therefore, Zariski dense in F𝑞

𝑗−1
. Note that

𝑈𝑗 :=
{︁
(𝑤,𝑤𝑗) ∈ F𝑞

𝑗−1 × F𝑞 | rk𝐻𝛽(𝑤,𝑤𝑗) = 𝑑, ∀𝛽 ∈
(︀
1,...,𝑗

𝑑

)︀}︁
=
{︁
(𝑤,𝑤𝑗) ∈𝑊𝑗−1 × F𝑞 | rk(𝐻𝜆(𝑤)𝐻𝑗(𝑤𝑗)) = 𝑑, ∀𝜆 ∈

(︀
1,...,𝑗−1

𝑑−1

)︀}︁
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has complement

(𝑊𝑗−1 × F𝑞) ∖ 𝑈𝑗 = ∪𝜆∈(1,...,𝑗−1
𝑑−1 )

{︀
(𝑤,𝑤𝑗) ∈𝑊𝑗−1 × F𝑞 | rk(𝐻𝜆(𝑤)𝐻𝑗(𝑤𝑗)) < 𝑑

}︀
= ∪𝜆∈(1,...,𝑗−1

𝑑−1 )

{︁
(𝑤,𝑤𝑗) ∈𝑊𝑗−1 × F𝑞 | ℎ𝜈,𝜆(𝑤,𝑤𝑗) = 0, ∀𝜈 ∈

(︀
1,...,𝑛−𝑘

𝑑

)︀}︁
,

where ℎ𝜈,𝜆(𝑥𝑑, . . . , 𝑥𝑗) := det(𝐻𝜈,𝜆(𝑥𝑑, . . . , 𝑥𝑗−1)𝐻𝜈,𝑗(𝑥𝑗)) ∈ F𝑞[𝑥𝑑, . . . , 𝑥𝑗 ]. If

𝑍𝑗 := 𝑉

⎛⎜⎝ ∏︁
𝜆∈(1,...,𝑗−1

𝑑−1 )

ℎ𝜇(𝜆),𝜆(𝑥𝑑, . . . , 𝑥𝑗)
⃒⃒⃒
∀𝜇 ∈ Σ𝑑−1

𝑑

⎞⎟⎠ ,

then

(𝑊𝑗−1 × F𝑞) ∖ 𝑈𝑗 = (𝑊𝑗−1 × F𝑞) ∩
[︁
∪𝜆∈(1,...,𝑗−1

𝑑−1 )𝑉
(︁
ℎ𝜈,𝜆 | ∀𝜈 ∈

(︀
1,...,𝑛−𝑘

𝑑

)︀)︁]︁
= (𝑊𝑗−1 × F𝑞) ∩ 𝑍𝑗

is Zariski closed in 𝑊𝑗−1 × F𝑞, so that 𝑈𝑗 = (𝑊𝑗−1 × F𝑞) ∖ 𝑍𝑗 is Zariski open in
𝑊𝑗−1 × F𝑞 and in F𝑞

𝑗
. The assumption 𝑈𝑗 = ∅ implies 𝑊𝑗−1 × F𝑞 ⊆ 𝑍𝑗 and holds

exactly when

ℎ𝜇(𝜆),𝜆 = det(𝐻𝜇(𝜆),𝜆(𝑥𝑑, . . . , 𝑥𝑗−1)𝐻
′
𝜇(𝜆)𝑗 + 𝑥𝑗𝑐𝜇(𝜆)𝑗)

= det(𝐻𝜇(𝜆),𝜆(𝑥𝑑, . . . , 𝑥𝑗−1)𝐻
′
𝜇(𝜆)𝑗) + 𝑥𝑗 det(𝐻𝜇(𝜆),𝜆(𝑥𝑑, . . . , 𝑥𝑗−1)𝑐𝜇(𝜆)𝑗)

is independent of 𝑥𝑗 for all 𝜆 ∈
(︀
1,...,𝑗−1

𝑑−1

)︀
and all 𝜇 :

(︀
1,...,𝑗−1

𝑑−1

)︀
→
(︀
1,...,𝑛−𝑘

𝑑

)︀
. That,

in turn, is equivalent to det(𝐻𝜈,𝜆(𝑥𝑑, . . . , 𝑥𝑗−1)𝑐𝜈𝑗) = 0 for all 𝜈 ∈
(︀
1,...,𝑛−𝑘

𝑑

)︀
and all

𝜆 ∈
(︀
1,...,𝑗−1

𝑑−1

)︀
and specializes to det(𝐻𝜈,𝜆(𝑢)𝑐𝜈𝑗) = 0 at the point 𝑢 ∈ 𝑈𝑗−1, used

in the choice (4.3) of 𝑐𝑗 . As a result, rk(𝐻𝜆(𝑢)𝑐𝑗) < 𝑑 for all 𝜆 ∈
(︀
1,...,𝑗−1

𝑑−1

)︀
. The

inductive hypothesis rk𝐻𝛽(𝑢) = 𝑑 for all 𝛽 ∈
(︀
1,...,𝑗−1

𝑑

)︀
requires rk𝐻𝜆(𝑢) = 𝑑 − 1

for all 𝜆 ∈
(︀
1,...,𝑗−1

𝑑−1

)︀
and rk(𝐻𝜆(𝑢)𝑐𝑗) < 𝑑 is equivalent to 𝑐𝑗 ∈ SpanF𝑞

(𝐻𝜆(𝑢)) for
all 𝜆 ∈

(︀
1,...,𝑗−1

𝑑−1

)︀
. That contradicts the choice (4.3) of 𝑐𝑗 and shows that 𝑈𝑗 ̸= ∅ is

a non-empty, Zariski open, Zariski dense subset of F𝑞
𝑗
.
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