T'OJUNITHNUK HA CO®UINICKUY YHUBEPCUTET ,CB. KJIMMEHT OXPUICKI“
DOAKVJITET 110 MATEMATUKA 1 THOOPMATUKA
Tom 111

ANNUAL OF SOFIA UNIVERSITY “ST. KLIMENT OHRIDSKI”
FACULTY OF MATHEMATICS AND INFORMATICS
Volume 111

TANGENT CODES

AZNIV K. KASPARIAN anpD EVGENIYA D. VELIKOVA

The present article studies the finite Zariski tangent spaces to an affine variety X as
linear codes, in order to characterize their typical or exceptional properties by global
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length, dimension or minimum distance of a single code by families of tangent codes.
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1. INTRODUCTION

Codes with additional structure are usually equipped with a priori properties,
which facilitate their characterization and decoding. For instance, algebro-geometric
Goppa codes allowed Tsfasman, V1ddut and Zink to improve the asymptotic Gilbert-
Varshamov bound on the information rate for a fixed relative minimum distance
(cf. [L1]). Justesen, Larsen, Elbrgnd, Jensen, Havemose, Hgholdt, Skorobogatov,
Vladut, Krachkovskii, Porter, Duursma, Feng, Rao and others developed efficient
algorithms for decoding Goppa codes after obtaining the error support of the received
word (Pellikaan’s [8] is a survey on these results). Duursma’s considerations from [3]
imply that the averaged homogeneous weight enumerator of Goppa codes, associated
with a complete set of representatives of the linear equivalence classes of divisors of
fixed degree is related to the (-polynomial of the underlying curve (cf. [6] for the exact
formulation). The realizations of codes by points of a Grassmannian, a determinantal
variety or a modification of an arc provide other examples for exploiting “an extra
structure” on the objects under study.
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The present article interprets the finite Zariski tangent spaces to an affine vari-
ety X, defined over a finite field F, as linear codes, in order to control the length, the
dimension and the minimum distance of these codes by the equations of X. A series
of extremal problems from coding theory minimizes the genus g :=n+1—k—d >0
of a not MDS Fg-linear [n, k, d]-code C'. We “deform” any such C' into infinite fam-
ilies of linear codes with parameters [n — 1,k,d], [n,k + 1,d], [n,k,d + 1], called
respectively a length, a dimension or an weight reductions of C'. All of these families
decrease the genus by 1.

The parity check matrices of the tangent codes to an affine variety X are the
values of the Jacobian matrix of a generating set of the absolute ideal of X. That sug-
gests their possible applications to the theory of convolutional codes (cf. [2, Ch. 9]).
Tangent codes to appropriate families of affine varieties seem suitable for studying
optimization and asymptotic problems on linear codes, due to their “geometrically
integrable dynamical nature”.

Here is a synopsis of the paper. Section 2 comprises some preliminaries on the
Zariski topology and the Zariski tangent spaces T (X,F,m) to an affine variety X.
Our research starts in Section 3 by studying the minimum distance d(T,(X,Fym)) of
a finite Zariski tangent space T, (X, F m ) to an irreducible affine variety X/F, c F,",
defined over F,. Proposition 3.2 (i) establishes that if X has some tangent code
of minimum distance > d + 1 then “almost all” finite Zariski tangent spaces to
X are of minimum distance > d + 1. The existence of a non-finite puncturing
II,: X — II,(X) at |y| = d coordinates prohibits tangent codes of minimum distance
> d+1, according to Proposition 3.2 (ii). Proposition 3.2 (iii) provides two sufficient
conditions for the presence of a lower bound d 4 1 on “almost all” tangent codes to
X. For an arbitrary F,-linear [n,k,d]-code C, Corollary 3.3 from Subsection 3.1
designs such a “twisted embedding” of I[T’(j in IFTL, tangent to C' = Ty (X, F,) at the
origin 0™, whose finite Zariski tangent spaces “reproduce” the parameters [n, k, d] of
at “almost all the points” of X. By Proposition 3.4, for any family 7: C — Fj of
linear codes 7~ '(a) = C(a) C F} there is an explicit (not necessarily irreducible)
affine variety X C F, ", whose Zariski tangent spaces T,,(X,F,) C C(a) are contained
in the members of the family for Va € Fy.

Chapter 4 is devoted to the construction of families of genus reductions of an
F,-linear [n, k, d]-code C of genus g := n+1—k—d > 0. These are parameterized by
Zariski open, Zariski dense subsets of affine spaces and defined by explicit polynomial
parity check matrices. The length reduction of C' with parameters [n—1, k, d] consists
of “almost all” tangent codes to the image IL,(X) of the puncturing II,,: X —
I, (X) of a “twisted embedding” of I[T’; in F7, at the last coordinate. The dimension
reductions of C' with parameters [n,k + 1, d] are parameterized by “almost all the
points” of Eg(n_k) Their parity check matrices are obtained by projecting the
columns of a parity check matrix H € M, _p)xn(Fy) of C on appropriate hyperplanes

—n—k
in IFqn . The existence of a polynomial parity check matrix of weight reductions of
C with parameters [n, k, > d + 1] is established by an induction on the columns of
the corresponding parity check matrices.
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A work in progress focuses on simultaneous decoding of tangent codes with
fixed error support and on the duals of the tangent codes. It relates some standard
operations on tangent codes with appropriate operations of the associated affine va-
rieties and constructs morphisms of affine varieties, whose differentials are Hamming
isometries of the corresponding tangent codes.

2. ALGEBRAIC GEOMETRY PRELIMINARIES

Let F, = UX_,F,m be the algebraic closure of the finite field F, with ¢ elements
and F," be the n-dimensional affine space over F,. An affine variety X C F," is the
common zero set

X:V(fly---afm):{C‘GEH|f1(a):"':fm(a)zo}

of polynomials fi, ..., fm € Fylz1,...,2,]. We say that X C Eﬂ is defined over F,
and denote X/F, C En if the absolute ideal

(X, ) = {f € Fylor,...,an] | f(a) = 0,a € X}

of X is generated by polynomials fi, ..., fm€F4[z1,. .., z,] with coefficients from F,.

The affine subvarieties of X form a family of closed subsets. The corresponding
topology is referred to as the Zariski topology on X. The Zariski closure M of a
subset M C X is defined as the intersection of the Zariski closed subsets Z of X,
containing M. It is easy to observe that M = VI(M,F,) is the affine variety of the
absolute ideal I(M,F,) <Fy[z1,...,2,) of M. A subset M C X is Zariski dense if
its Zariski closure M = X coincides with X. A property P(a), depending on a point
a € En holds at a generic point of an affine variety X C En if there is a Zariski
dense subset M C X, such that P(a) is true for all a € M.

An affine variety X C En is irreducible if any decomposition X = Z; U Z; into
a union of Zariski closed subsets Z; C X has Z; = X or Z, = X. This holds exactly
when the absolute ideal I(X,F,)<F,[z1,...,z,] of X is prime, i.e., fg € I(X,F,) for
f.g9 € Fylz1,...,x,] requires f € I(X,F,) or g € I(X,F,). A prominent property
of the irreducible affine varieties X is the Zariski density of an arbitrary non-empty
Zariski open subset U C X. This is equivalent to U N W # & for any non-empty
Zariski open subsets U C X and W C X.

For an arbitrary irreducible affine variety X/F, C En, defined over IF, and an
arbitrary constant field F, C F C F,, the affine coordinate ring

F[X] := Flay,...,a0)/I(X,F)

of X over F' is an integral domain. The fraction field

F(X) ::{i;‘gpl,(mEF[X], Wz?éOGF[X}}
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of F[X] is called the function field of X over F. The points a € X correspond to
the maximal ideals I(a,F,)<F4[x1, ..., z,], containing I(X,F,). For any F-rational
point a € X (F) := X N F™ the localization

Ou(X, F) == {22 ‘ ¢1, 92 € FX], pa(a) # 0}

of F[X] at F[X]\ (I(a,F)/I(X, F)) is the local ring of @ in X over F. An F-linear
derivation D, : Oq(X, F) — F at a € X(F) is an F-linear map, subject to Leibnitz-
Newton rule Dg,(11%2) = Dq(¥1)2(a) + ¢1(a)Dy(¢2), Yih1,12 € Ou(X, F). The
F-linear space

Tu(X, F) := Der,(Ou(X, F), F)

of the F-linear derivations D,: Oy (X, F) — F at a € X(F) is called the Zariski
tangent space to X at a over F'.

In order to derive a coordinate description of T, (X, F'), note that any F-linear
derivation D,: Ou(X,F) — F at a € X(F) restricts to an F-linear derivation
D,: F[X] — F at a. According to

Dalen) = D (2] oala) + 243 D)

for all 1, p2 € F[X] with pa(a) # 0, any F-linear derivation D,: F[X] — F at
a € X (F') has unique extension to an F-linear derivation D,: O,(X,F) — F at a.
In such a way, there arises an F-linear isomorphism

T.(X, F) ~ Der,(F[X], F).

Any F-linear derivation D, : F[X] — F of the affine ring F[X] of X at a € X (F) lifts
to an F-linear derivation D,: Flxy,...,2,] — F of the polynomial ring at a, van-
ishing on the ideal I(X, F) of X over F. If (X, F) = (f1,..., fm)F<F[2x1,...,2p] is
generated by f1,..., fm € Flz1,...,2,], then for arbitrary ¢1,...,gm € Flx1,..., %]

one has
m

D, (Z fi.%’) = Da(fi)gi(a)
i=1 i=1
and the Zariski tangent space
T.(X,F) ~{D, € Dero(Flz1,..., 2], F) | Da(f1) = -+ = Do(fm) = 0}

to X at a consists of the derivations D,: F[z1,...,2,] — F at a, vanishing on
fis--+y fm. In such a way, the coordinate description of T,(X, F') reduces to the
coordinate description of

Dery(Flxy,. .., x,), F) = Der,(F[F,"], F) = T.(F,", F).

In order to endow T, (En, F) with a basis over F, let us note that the polynomial
ring

Flzy,...,zp) =Flz1 —a1,...,2p — ap) = O Flr1 —a1,...,xn — an](i)
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has a natural grading by the F-linear spaces Flx; —ay,..., 2, — an](i) of the homo-
geneous polynomials on x1 — a1, ..., T, — a, of degree ¢ > 0. An arbitrary F-linear
derivation D, : F|x1,...,2,] — F at a € F" vanishes on F[x) —ay, ..., 2, —a,]®) =
F and on the homogeneous polynomials Flz1 — ay,..., 2, — a”](i) of degree 7 > 2.
Thus, D, is uniquely determined by its restriction to the n-dimensional space

Flzy —ay, ...,y — an](l) = Spang(z1 — a1,...,Tn — an)
over F. That enables to identify the Zariski tangent space
Ta(En, F) ~Dery(Flzy,..., 2], F) ~ Homp(Flz, — ay,. .., 2, — ay]V, F)

to En at a with the space of the F-linear functionals on the homogeneous linear

polynomials F[z; — ay,...,%, — an](l). Note that =1 — ay,...,x, — a, is a basis
of Flxy — ay,...,x, — a,]") over F and denote by (8%1) e, (ag ) its dual
a "/ a

basis. In other words, (%) eT, (I[-an7 F) are the uniquely determined F-linear

functionals on Flx; — ai, ..., 2, — a,]*) with

0 1 for1<i=j<n,
o) (@i—a) =0y = o
ox; ), 0 forl1<i#j<n.
As a result, the Zariski tangent space to X at a € X(F') over F can be described as
the linear subspace

T.(X,F) = U—Zv](ax) ‘Xn: afl )=0,1<i<m

of F" for any generating set fi,..., fm of I(X, F) = (f1,.-., fm)F

Definition 2.1. If F' = F,- is a finite field and X/F, C En is an arbitrary
irreducible affine variety defined over F, then the linear space T,,(X,F4+) C Fy. over
Fgs is called a tangent code. The parity check matrix of that code is the Jacobian

matrix ) b
of _ 01, fm) _ <6zi 8xi>

8f" af””.
e, Om .. O
or  O(z1,...,Tn) oL T

of a generating set fi,..., fm of I(X,Fgs) <Fys[x1,. .., 20

Let X/F, C Eﬂ be an irreducible affine variety, defined over F, and a =
(a1,...,a,) € X. The minimal extension Fys@ := Fy(as,...,a,) of the basic
field F,, which contains the components of a is called the definition field of a. If
F s = Fq(a;) are the definition fields of a; € Fy over Fy, then 6(a) is the least
common multiple of §(ay),...,d(a,). Note that a € X (Fym) := X NFyn is an Fym-
rational point if and only if 6(a) divides m. For all [ € N the Zariski tangent spaces
To(X,Fi50a)) have one and a same parity check matrix

af (f17"‘7fm)

890( a) == m(a) € Mnsen(Fyoa))
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and are uniquely determined by 75, (X,F s ) as the tensor products
Ta(X, quzs(a)) = TH(X, Fq5(a,)) ®]Fq5(a) qua).

In particular, T,(X,F @) and To(X,Fj s ) have one and a same dimension

of
o) Dz
of T, (X, an<a>) and T, (X, qua<a>) coincide, as far as they equal the minimal natural

n — rkg (a) over F s, respectively, over F is@). The minimum distances

number d for which %(a) has d linearly dependent columns. From now on, we write
dim T4 (X, F sy ) for the dimension of T, (X, F s)) over Fyaq).

Let X = X; U---U X, be a reducible affine variety and ¢ € X;, N--- N X;,
with 1 < i; < --- < i, < s be a common point of r > 2 irreducible components
X;; of X. In general, X;, have different Zariski tangent spaces at a and the union
To(Xi), Fys) U+ UTa(Xi,, Fs) is not an Fsea-linear subspace of Fi';(,,. That
is why we give the following definition of a tangent code to a reducible variety.

Definition 2.2. If X/F, C En is a reducible affine variety, defined over F,
then the tangent code T, (X, an(a>) to X at a € X is the an(a>—linear code of length
n with parity check matrix

g ):a(fl7"'7fm)

oz A(z1,- . n) (@) € Minscn(Fgsco),

for some generators fi,..., fm € Fylz1,...,2,) of I(X,Fy) = (f1,.. "fm>E'

For a systematic study of the Zariski tangent spaces to an affine variety see |1,

,9,10] or [4].
3. IMMEDIATE PROPERTIES OF TANGENT CODES CONSTRUCTION

3.1. TYPICAL MINIMUM DISTANCE OF A TANGENT CODE

Let us recall that the Hamming weight w(z) of vector z = (x1,...,2,) € Fy
is the number of the non-zero components and w(x) € {0,1,...,n}. The Hamming
distance d(z,y) between vectors x,y € [y is the number of the different components
r; #y; and d: Fy x Fy — {0,1,...,n}, where d(z,y) := w(z — y).

For an arbitrary finite set S and an arbitrary natural number ¢ < |S| let us
denote by (f) the collection of the t-sets of S, i.e., the family of the unordered
subsets of S of cardinality ¢. In the case of S = {1,...,n}, we write (1t") instead
of ({1"‘t""}). For an arbitrary subset v € (1";1"") of {1,...,n} of cardinality d, the
erasing

H,Y: F—qn N F—qn—d
of the components =, = (z,,...,%,), labeled by v = {y1,...,74} is called the
puncturing at v. If -y = {1,...,n} \ v = {d1,...,0n—a} is the complement of =,
then
H’)’(:Ela s 7xn) =Ty = (1'51, s axﬁn,d)'
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Any codeword of a linear code C' C Fy, whose weight equals the minimum Hamming
distance is in the kernel of some puncturing 11, of C at v € (1"&""). Note that the
puncturing

Ty Ta(X, Fysior) — T, Ta(X, Fysior) © Flp !

of a finite Zariski tangent space to X coincides with the differential
ny = (dH,y)ai Ta(X, an(a)) — an(a) (HFY(X), an(a))

of the puncturing

I,: X — I, (X)
of the corresponding irreducible affine variety X. That allows to study the minimum
distance of T, (X, F s ) by the global properties of the puncturing IT,: X — IL,(X)
of X.

In order to formulate precisely, let us recall that a finite morphism ¢: X —
©(X) is called separable if the finite extension F,(¢(X)) C F,(X) of the corre-
sponding function fields is separable. This means that the minimal polynomial
ge(t) € Fy(o(X))[t] of an arbitrary element £ € F,(X) over F,(¢(X)) has no multi-
ple roots.

A morphism ¢: X — ¢(X) is infinitesimally injective at some point a € X,
if the differential (dp)a: To(X,Fysa)) = Ty (0(X), Fysw ) of ¢ at a is an Fs-
linear embedding. Let us denote by Inf Inj(¢) the set of the points a € X, at which
the morphism ¢: X — ¢(X) is infinitesimally injective.

Lemma 3.1. Let us suppose that X/F, C En is an irreducible affine variety,
defined over Fy and

(i) The infinitesimally injective locus

Iannj(Hﬁ:X\V(detSﬁ’ée (1"‘d"m)) (3.1)

is a Zariski open subset of X.

(i) If the set InfInj(IL,) N II; (I, (X)) £ & is non-empty, then the
puncturing IL,: X — I1,(X) is a finite morphism,

Inf IIlj (ny) N H;l (H,Y(X)smOOth) g Xsmooth
and the differentials
(AT )t Ta(X, Fysier) — Tin, (T (X), Fysco)

are surjective at all the points a € Inf Inj(IT,) N II*(IT, (X )smeoth),
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(iii) If the puncturing IL,: X — IL,(X) is a finite separable morphism then
the intersection Inf Inj(IL,) N I (IL, (X)¥m0°™) + & is a Zariski dense
subset of X. In particular, for a finite I1,: X — I1,(X), whose degree
deglIl, := [Fy(X): F,(II,(X))] is relatively prime to p = charF,, the
subset @ # Inf Inj(IL,) NI (IL, (X)5m°t) C X is Zariski dense.

Proof. (i) The kernel of the differential
(dH'y)a : Ta()(7 ]an(a)) — TH,Y(a) (H,Y(X), Fqé(a))

consists of the tangent vectors v(a) € To(X,Fse)) with Supp(v(a)) € . Thus,
ker(dIL,) # {0"} exactly when rk %(a) < d. That justifies

X\Iannj(Hﬁ:XﬂV(dtafé ‘56 ( ..d.,m)>7

whereas (3.1).
(ii) Let us recall that dim 7, (X,Fs)) > dim X = k at all the points a € X.
If a € Inf Inj(IL,) N IL; Y (IL, (X)5m°°th) then

(dIly)a: Ta(X, Fys@) — T, (o) (Hy (X)), F o)

is injective and dim Tt (4) (I, (X), Fysa)) = dimIL,(X). Combining with the in-
equality dimIL,(X) < dim X, one obtains

dim X <dimT,(X, Fqs(a>) dlm(dH JoTu(X,F 5(a>)
< dim Trp () (1, (X), Fys(a)) = dim 11, (X) < dim X.

Therefore (dIL,)To (X, Fys0)) = Tir, (@) (1 (X), F s ), dim X = dim T, (X, F,) and
the dimensions dimII (X ) = dim X coincide. In other words, the differential
(dILy)a: To(X,Fps@)) — T, (o)L, (X),Fys)) is surjective, a € Xsmooth jg g
smooth point and IL,: X — II,(X) is a finite morphism.

(iii) Without loss of generality, assume that v = {1,...,d}, whereas —y :=
{1,...,n} \v = {d +1,...,n}. Note that the puncturing IL,: X — IL,(X) is
a finite morphism if and only if Z; := x5 + I[(X,F,) € Fy(X) are algebraic over
Fy (T, (X)) = Fo(7=) for all 1 < s < d. Let g,(z,) € F (1L, (X))[gcs] be the minimal
polynomial of Z; over F, (I, (X)) and fs(xs,2—,) € Fylzs,7-,] be the product of
gs with the least common multiple of the denominators of the coefficients of g;.
Then fs(zs,2-) is irreducible in F,[zs,7-,] and defined up to a multiple from
E*. Moreover, fs(zs,2-y) € I(X,F,) is of minimal degree deg, fs(zs,2-y) =
deg gs(zs) = degﬂ(nv(x)) T, with respect to z5. According to f1,..., fs € I(X,F,),
the Zariski tangent space T, (X, s(a)) at an arbitrary point a € X is contained in
the F s -linear code C(a) with parity check matrix

" . %(a) 0 aiﬁl (@) - gfi (a)
1y---5Jd _ . : :
8(1’1, . ,xn) ((Z) - . . 6fd. 8fd. . afd.

0 - i) (o) - H(a)
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Note that IT3* (I, (X )smeoth) s a non-empty, Zariski open, Zariski dense subset of
the irreducible affine variety X and InfInj(Il,) C X is Zariski open by (i), so that
the intersection Inf Inj(IT, )NIL; ! (IL, (X)smeeth) = g only when Inf Inj(IL,) = @. We
claim that Inf Inj(IL,) = @ requires the inseparability of T; := zs+I(X,F,) € F,(X)
over F(IL,) for some 1 < s < d. This suffices for Inf Inj(IL,) NII; ' (TL, (X )smoothy £
@ in the case of a finite separable morphism II,: X — II,(X). The inseparability
of Ty := x5+ € I(X,F,) € F,(X) over F,(IL,) holds only when p = charF, divides
the degree
degg i1, (x)) Ts := [Fq(I1y (X)) (T5) : Fo(IL, (X))]

of T3 over F,(IL,(X)). Bearing in mind that the degree degr— (1, (x)) Ts of T5 divides

the degree degIl, = [F,(X): F,(IL,(X))] of IL,, one concludes that the intersection
Inf Inj(IL,) NII; (IL, (X )¥m°°™) £ & is non-empty in the case of ged(deg Iy, p) = 1.

By the very definition of an etale morphism, InfInj(Il,) = @ amounts to
the existence of a nowhere vanishing vector field v: X — [] Tu(X,F ) with
acX

Suppwv(a) C « for all @ € X. Then v(a) € C(a) for all a € X and rk H(a) <
d. Thus,

If1,---s fa) 3]2 B
dti@(xl,..., Haxs =0 for YVae X

d _ .
and H af*’ € I(X,F,). The absolute ideal I(X,F,) «Fy[x1,...,z,] of the irre-

duc1b1e affine variety X is prime, so that there is 1 < s < d with af = ¢ I(X,F
afé(w Loy )

CE

deg, fs(xs, ), there follows w =0, € Fy[zs, 2-,]. Asaresult, 895; z2)
0 and T is inseparable over F,(IL,(X)).

Fy).
Since fy(xs,2-,) € I(X,F,) is of minimal deg, fs(zs,2-,) and degw <

O

Note that Lemma 3.1 (ii) is a sort of a generalization of the Implicit Func-
tion Theorem, according to which a puncturing II,: X — II,(X) with an injective
differential at some a € I17*(IL,(X))*™°*" is a finite morphism.

For an arbitrary irreducible affine variety X/F, C En, defined over [y, let us
denote by

XD = {ae X | d(T.(X,Fw)) < d}

the set of the points a € X, at which the finite Zariski tangent spaces are of minimum
distance < d. Similarly, put

XD = {a € X |d(To(X,Fpw)) =d} and XCD = {a € X | d(T,(X,Fys)) > d}.

The next proposition establishes that if an irreducible affine variety X admits
a tangent code T,(X, Fq5<a>) of minimum distance > d + 1 then “almost all” finite
Zariski tangent spaces to X are of minimum distance > d+ 1. If there is a non-finite
puncturing IT, : X — II,(X) at |y| = d variables, we show that all the tangent codes
to X are of minimum distance < d. When all the puncturings II,: X — II,(X) at
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|7] = d variables are finite and separable, the minimum distance of a finite Zariski
tangent space to X is bounded below by d 4+ 1 at “almost all” points of X.

Proposition 3.2. Let X/F, C ﬁn be an irreducible affine variety of dimension
k € N, defined over IF,.

(i) For an arbitrary natural number d < n —k + 1 the locus

X (2d+1) _ mwe( _____ )Inf Inj(IL,)

Of pi
-x\v| ]I det%

is a Zariski open subset of X.

(ii) If there is a non-finite puncturing IL,: X — I1,(X) at |y| = d coordinates,
then X = XS4, Moreover, in the case of X # & the locus XD =
X9 s q Zariski dense, Zariski open subset of X .

(iii) If for any v € (1";1"") the puncturing IIy: X — IL,(X) is finite and
separable, then the subset X (Z4+Y) C X is Zariski dense. In particular, if
for any v € ( ™) the puncturing 11, : X — I1,(X) is a finite morphism
with gcd(degHW,charFq) =1 for degll, := [F,(X): F,(II,(X))], then
X(2d+1) s o Zariski dense subset of X.

Proof. (i) Let us observe that a € X (241 if and only if there is no tangent vector
v € To(X,Fs) \ {0"} with Supp(v) C « for some v € (Y™). That amounts to

ker(dIl,), = {v € To(X,Fs0) | Supp(v) € v} = {0"}

and holds exactly when a € InfInj(II,) for all v € ( ).
Let [(X,F,) = (f1,..., fm) <Fgylz1,...,2,] be generated by some polynomials

fi,oo oy fm €Fglza,...,zp]. Thena € X (2441 exactly when any d-tuple of columns
O(f1,-- fm) (a) =d

(.’1311 9 Tig )
for all 7 € (1"&""). By £k = dim X > n — m there follows m > n — k > d and
rk gg (a) = d is equivalent to det af”( ) # 0 for some v € ( ™). Thus,

. e
= Nie(ts) {X\V(det‘ ( d’m))]

| e ()
()= )

of %(a) is linearly independent. In other words, rk g—i(a) =rk
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where @: (1";1"") — (1"&’"7‘) vary over all the maps of the collection of the subsets of

{1,...,n} of cardinality d in the family of the subsets of {1,...,m} of cardinality
d. The last equality in (3.2) follows from

for

H S; = H 9i l9i€Sip, Si:{detg?

ie(l,,(.i,,n) ie(l,g,n) z

)

(ii) We claim that at any point a € II7 L(IL, (X )smeoth) the Zariski tangent space
T.(X, an(a>) contains a non-zero word, supported by . To this end, it suffices to
establish that the differential

(dHW)a : Ta(X, an(a)) — TH—Y(G.) (H7 (X), Fqs(a))
of IL, at a is non-injective. Assume the opposite, i.e., that ker(dIl,), = 0. Then
k < dimTa(X, ]Fqé(a)) < dianv(a) (H,Y(X),Fqé(a)) = dlmH,y(X)

The morphism II,: X — II,(X) is not finite, so that dimIL,(X) < dim X = k.
That leads to a contradiction and implies that ker(dIL,), # 0 at any point a €
I (IL, (X)smooth) - As a result, ITJ(IL,(X)smeoth) € X (S, According to (i),
X (=4) is a Zariski closed subset of X. The non-empty, Zariski open, Zariski dense

subset H;l(HW(X)SmOOth) of X is Zariski dense, so that

X = H;l(H’Y(X)smooth) C X(Ed = X(Sd)’

whereas X = X9 Now, X = X(E) 0 x=d) = X 0 X (2D = X2 i a Zariski
open subset of X, whereas Zariski dense for X (@ #£ .

(iii) According to Lemma 3.1 (iii), if IIy: X — II,(X) is a finite separable
morphism or a finite morphism with ged(degIL,,charF,) = 1, then InfInj(IL,) N

I (IL, (X)smeeth) 2 @, In particular, Inf Inj(IL,) # @. Since Inf Inj(IL,) is Zariski

the non-empty, Zariski open subsets Inf Inj(Il,) € X is a non-empty, Zariski open,
Zariski dense subset of the irreducible affine variety X. O

The above proposition reveals that for any point a € X (? there exists a d-tuple
1,...,n

of indices v € ( 4 ), such that IT,: X — II,(X) is not infinitesimally injective
at a.
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3.2. REPRODUCING THE DIMENSION AND THE MINIMUM DISTANCE OF A CODE

For an arbitrary F,-linear [n,k,d]-code C we provide explicit equations of a
twisted embedding of F, in IFqn, whose tangent codes T, (X, Fsa)) at a generic
point reproduce the length n, the dimension k& and the minimum distance d of C.

If not specified otherwise, H = (H; ... H,,) is a parity check matrix of the linear
code under consideration. For any \ € (1") we denote by H) the columns of H,

t
labeled by A. If u € (1""’m), then H,,  is the collection of the rows of H}, labeled

S
by u.

Corollary 3.3. Let C be an Fy-linear [n,k,d]-code and o € (1"‘01"") be the
support of a non-zero word ¢ € C \ {0™}. Then there is a smooth irreducible k-
dimensional affine variety X/F, C En, isomorphic to Ek, such that O™ € X,
Ton (X, Fy) = C and c € T,(X,F o)) for alla € X.

In particular, X = X | so that XD = X2 £ & is a Zariski open, Zariski
dense subset of X and T,(X,F ) are [n, k, d]-codes for all a € X9,

Proof. Let H € M;,_1)xn(FF4) be a parity check matrix of the code C' with columns
H, € M(,—iyx1(Fy) and ¢’ = o\ {04} for some o4 € 0. Since C is of minimum
distance d, the columns of H, labeled by ¢’ are linearly independent. Bearing in

mind that H is of tk(H) = n — k, one concludes the existence of 7 € (Ebl_",'c"_";l‘f),
such that the square matrix Hy/yr = (HorHy) € My—k)x (n—k)(Fq) is non-singular.
IfseoUrand 1 <i<n-—k,thenlet f; s(zs) :== H; sx5. For s € {1,...,n}\(cUT)
and 1 <7 <n—k take

My, s

fi,s(xs) = Hi,sxs + Z bi78,7“$§ € FQ[xs]
r=2

for some m; s € N\ {1} and b; 5, € F,, V2 <r < m, . Consider

n Mi,s

fi(xla cee ;xn) = Z fi,s(ajs) = ZHi,sxs + Z Z bi,sn‘xz
s=1

s=1 se{l,...,n}\(cUr) r=2

for all 1 <14 < n—k and the affine variety X :=V(f1,..., fn—r) C En, defined over
F,. Let us denote p := {1,...,n} \ (¢/ U7) and observe that f;(x1,...,z,) =0 are
equivalent to

Z H; sxs = gi(z,) for some g;(z,) € Fylr,] andalll <i<n—k.
s€o’'Ut

Viewing x5/, as a column of variables, labeled by ¢/ U7 € (17}:}?)7 one can write
the equations of X in the form

91(zp)
HU’UT To'Ur = .

gn,;;(xp)
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The invertibility of H,., allows to represent the equations of X in the form

g1 (xp)
Torur = (HU’UT)_l
In—1(Tp)
Thus, the puncturing Iy, : X — Ek at o’ UT € (17’1';’,:) is biregular, with inverse
91(zp)
(HU’UT)il(xp) = (HU’UT)il y Lp
gn—k(xp)

In particular, X is a smooth irreducible affine variety of dimension dim X = k.
The tangent spaces To(X,F s)) at all the points a € X are linear codes of

O(f1y s fn—tk)
Nx1,...\Tn)
H,y,, labeled by cU T € (nl_k_fl) That is why ¢ € C with Supp(¢) = o belongs
to To(X,F s ) for Va € X and the minimum distance d(T,(X,Fs))) < d at
VYa € X. In other words, X = X (=% By the very construction of fi(x1,...,x,)
one has 0" € X and %(O") = H, whereas Ton (X,F,) = C. As a result,
0" € X4 = X9 is non-empty and the Zariski tangent space To(X,Fpw) at a
generic a € X is an [n, k, d]-code. O

length n and dimension k, whose parity check matrices (a) have columns

The above proposition reveals that a single linear code C' does not reflect global
properties of the affine varieties X, tangent to C' at some point a € X. It illustrates
how the equations of X govern the behavior of a generic tangent code to X.

3.3. INSCRIPTION OF ZARISKI TANGENT SPACES IN FAMILIES OF LINEAR CODES

Proposition 3.4. Let C — S be a family of Fy-linear codes C(a) C Fy, a € S
of arbitrary dimension and minimum distance, parameterized by a subset S C Fy.
Then there exists a (not necessarily irreducible) affine variety X C En, containing

all the F,-rational points Fy of F," and such that T,(X,F,) C C(a) at Va € S.

Proof. Let H — S be a family of parity-check matrices H(a) € M,_p)xn(Fy) of
C(a) C Fy for all @ € S and denote by H(a);; € F, the entries of these matrices. For
an arbitrary 8 € IFy, consider the Lagrange basis polynomial

t—a
e, 0= II 3=,
a€F,\ {5}

with qu (t)(B) =1 and qu = 0. Straightforwardly,

)]\ (59

q—2
LR () =—t""+1 and L{ (t)=—t""" =) B, VBeTF;
s=1
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Let us denote by

mn

D, En —>F7qn, ®,(a1,...,a,) = (a},...,a), Va=(ai,...,a,) €F,
the Frobenius automorphism of degree p = charFF, and consider
filwy, .. @)

n

= 3 @ )iy —ah) | L8 (@) L (ah) € Fyfan, .. 0]

bed,(S) | j=1

for 1 <i < n—k. The affine algebraic set X := V(f1,..., fan—k) C I[an is claimed to
satisfy the announced conditions. First of all, X passes through all the F,-rational

points [y of the affine space En, since Va = (ay,...,a,) € F} has components

a; = a? and f;(ay,...,a,) = 0 for V1 < i < n — k. The partial derivatives of f;

are gi = be;(g)?—[(@;l(b))ijllgz («h). ..LIbF’q‘ (zb) and their values at a € S C Fyy
P

equal gj; (a) = H(®,'®,(a))i; = H(a)ij. Note that the composition of Lagrange
interpolation polynomials with the Frobenius automorphism ®,, is designed in such
a way that to adjust

8(f17~ . ~afn—k)

O(z1,...,%n,)

at all the points a € S. By fi,..., fo—r € I(X,Fy) = r({f1,..., fa—k)) for the
radical r({f1,..., fa—k))<Fq[z1, ..., @0 of (f1,..., fa—k)<Fq[z1, ..., 2], the Zariski
tangent space To(X,F,) C C(a) to X at an arbitrary point a € S is contained in the

Ofr.vosfu i)
Do m) (@): =

(a) = H(a)

linear code C(a) with parity check matrix

4. FAMILIES OF GENUS REDUCTIONS OF A CODE

The genus of an F-linear [n, k, d]-code C is defined as the deviation g := n+1—
k—d of its parameters from the equality in the Singleton Bound n+1—k—d > 0. One
of the problems in coding theory is to obtain a linear code C’ of genus ¢’ = g—1>0
from the given linear code C' of genus g > 1. We say that C’ is a genus reduction of
C. There are three standard ways for construction of a genus reduction C’. These
are, respectively, the length, the dimension and the weight reductions of C with
parameters [n — 1, k,d], [n,k + 1,d], [n,k,d + 1]. In the next three subsections we
use the set up of tangent codes, in order to construct families of length, dimension
and weight reductions of C, parameterized by appropriate Zariski dense subsets of
affine spaces over F,.

4.1. A FAMILY OF LENGTH REDUCTIONS OF A LINEAR CODE

Here is a simple lemma from coding theory, which will be used for the construc-
tion of a family of length reductions of a linear code.
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Lemma 4.1. Let C' be an Fy-linear code of genus g =n+1—k —d > 0 with
a parity check matriv H = (Hy ... Hy) € M(y,_pyxn(Fq). If

H,, ¢ UAE(I,.a.Lvifl) SpanFq (I‘I)\)7 (41)

then the image IL,(C) C F2~1 of the puncturing I, : C — IL,(C) of the last com-
ponent is an Fy-linear [n — 1, k, d]-code.

Proof. If H,, ¢ U)\e(l‘.éﬂ_l) Spang, (Hx) and ¢ = (c1,...,cp) € C is a word of weight

wt(c) = d, then ¢, = 0 and Supp(c) € (1""’d"_1). As aresult, wt(II,,(c)) = wt(c) = d
and IT,,(C) C F;‘fl is of minimum distance d. Let us suppose that there is a non-zero

d
The contradiction with the assumption (4.1) reveals that ker(Il,) N C = {0"} and
dimg, I1,,(C) = dimg, (C) = k. O

Recall that a linear code C' C Fy is non-degenerate if it is not contained in a
coordinate hyperplane V'(z;) = {a € F} | a; = 0} for some 1 <i < n.

Proposition 4.2. Let C' be a non-degenerate F,-linear [n, k,d]-code of genus
g=n+1—k—d>0. Then there exist a finite extension Fom O F,, a smooth

irreducible affine variety X/Fgm C By, isomorphic to Ek and a Zariski dense
subset S C X, such that 0" € S, Ton (X, Fgm) = C®p, Fym, the puncturing I1,,: X —
I, (X) at , is a finite morphism and the images

(dILy,) o To (X, F o)) = T, (@) (Hn (X)), Fysa))
of the puncturings of To(X,F ) at all the points a € S are [n — 1,k,d]-codes.

Proof. Let H' € M(;,_)xn(Fq) be a parity check matrix of C' with columns H} for all
1 <j < n. There is no loss in assuming that Hj_ ,,..., H, are linearly independent
and form the identity matrix I,,_;. Any finite union of proper E—linear subspaces of
the linear space M(,,_)x1 (E) over the infinite field E has non-empty complement
and there exists

C1

Cn—k

Let us denote by Fgm :=TF,(c1,. .., ch—k) the definition field of ¢, put p := charF, for
the characteristic of F,; and consider the affine variety X := V(f1,..., fn—k) C ]Fqn7
cut by the polynomials

k
filxr, oo Xk, Ty Ty 1= ZH{,sxs + Tpys + c,;:vfﬁr1 for V1<i<n-—k.
s=1
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. . =k
In order to construct a biregular morphism X — F, , note that c¢,—, # 0 by the
very choice of ¢ and

(fz fn kvfnk1<’t<n—ki—1>.

The equations

ci
fi(mlv"-7xkal‘k+i;xn)_ fnfkt(xla 7mk7xn>
n—k
_ o Ci /
- E Qs n—k,s Ts + Th+i — Tn = 0
— Cn—k n—k
s=1
for V1 <i <mn —k — 1 are equivalent to zyq; = Yryi(z1,..., Tk, zs) for

k
Cj 7 / Cj
/l/}k+i(xl7 e 7Ikaxn) = § < n—k,s Hi,s> Ts + 071:77,7
n

o—1 Cn—k —k

V1 <i<n—k—1 We claim the existence of 1 < s < k with H),_, . # 0, since

otherwise the last row of the parity check matrix H' of C'is (0"~!,1) and the non-
degenerate code C' is contained in the coordinate hyperplane with equation x,, = 0.
Up to a permutation of the first k& components of E , we assume that H), gk 7 0.
Then f,_g(z1,..., 2k, x,) = 0 is equivalent to xx = Yr(x1,. .., Tp—1, %) for

— +1
¢k(‘r17-~75€k717$n) = (A, kk ( E n—k,sTs T Tn + cn—pah > .

Thus, X C En is cut by the equations

T — Yp(r1, ..., 21, 2,) =0,

Thgi — Vrgi (@1, - T, YR(T1, . Tp—1, @), ) =0 for VI<i<n—k—1

and the puncturing I, at o = {k,k+1,...,n — 1} € ( ) provides a biregular

—k
morphism II,: X — F, . In particular, X is a smooth irreducible affine variety,
defined over Fym. Note that the puncturing II,: X — II,(X) at x, is a finite
morphism, as far as the equation

_ E / +1 _
fn—k(xla"'axk7xn) - Hn_kﬂsxs +xn +Cn—km]:l =0

implies the algebraic dependence of the element x, + I(X, ) € F,(X) over the
function field F,(I1,,(X)) = Fy(z1 + I(X,Fy), ..., 21 + [(X,F,)).
For the rest of the proof, T, (X,F ), respectlvely7 Tn, ( )(Hn(X)7Fq5(a)> are

the Zariski tangent spaces over the definition fields F s = Fym(ai,...,a,) of
a € X over Fym. Note that
O(fiy- s fne 0
W(ml, ) = (HY . H._ Hy(2,)) = a—i(mn) (4.2)
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with H,(x,) = H] + 2P ¢ depends only on z,. The columns of the Jacobian matrix
M(xn), labeled by S ={k+1,...,n} € (17’;’;) form the matrix

ox
10 --- 0 cizh
01 --- 0 coxh
a(fla”'vfnfk)(x )_ .
or n, — . . : .
? 00 -+ 1 cppr2l
0 0 0 14 cp_pa?

with determinant det W“T’Bf"*’“)(

ZTn) = 1+ cp_gaP. Thus, at any point a €

X \ V(cp—pzP + 1), the matrix W(an) € Mpm—ryxn(Fps) is of rank
rk %(an) =n — k. According to

fiseoosfok ELXLFY) = IV (f1y s frook) =r({f1y ooy foei)) 9Fg @1, ..o, 20,
the Zariski tangent space T, (X, F s()) at a € X is contained in the linear code C(a)
with parity check matrix W(a). Since X is smooth, dim 75 (X,F s@) =
dim X =k at Va € X and W(a) is a parity check matrix of T, (X, F s ) if
and only if rk W(a) =n — k. In particular, 75 (X, F s ) has parity check
matrix W(a) at all the points a of the non-empty, Zariski open, Zariski
dense subset X \ V(c,—x2E + 1) of X. Note that 0" € X = V(f1,..., fn—x) and
0" ¢ V(cp—ra? + 1), so that Tyn (X,Fym) has parity check matrix W(O) =
H' and Tyn (X, Fym) = C @, Fym.

Let II,,: C(a) — II,C(a) be the puncturing at n and S, be the set of those
a € X, at which II,C(a) is an [n — 1, k, d]-code. By Lemma 4.1,

d—1

c
S, D {a € X | Hu(an) & Uye(rpnmy Spang (H;)} :

whereas

We claim that Z is a proper Zariski closed subset of X. If so, then X \ Z is a non-
empty, Zariski open, Zariski dense subset of X and has non-empty, Zariski open,
Zariski dense intersection U := (X \ Z)N[X \ V(cp—r2? + 1)] with the Zariski open
subset X \ V(cp—rzP + 1) # @ of the irreducible affine variety X. That suffices for
S =S, N[X \ V(en—rz? +1)] 2 U to be a Zariski dense subset of X, containing
0" and such that (dI1,,),7T6 (X, F s ) are [n — 1, k, d]-codes at all a € 5"

Towards the study of Z, let

Zy={a € X | Hy(an) € Spang—(H})} = {a € X | rk(H\Hy(an)) < d}
for A € (17'('1"_"171) and represent Z = UAE(I,.;l.,nfl)Z)\. If pe (1""’”7]@) and
-1

d
Ofu

a($>\7$n) (.’En) € qu [.’En]

Jur(xpn) = det
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is the determinant of the matrix

Ofu

D) ) = (H}, \H,,(x)) = (H), \H,, +atc,n)

formed by the rows of (H}H,(z,)), labeled by p € (1""&”7’“), then

1,....,.n—k
we (M)

is a Zariski closed subset of X and, therefore, Z = U re(t .a..n_l)Z \ is Zariski closed
1

Z)\ =XNnV <gu,A(xn)

in X. The assumption

for the irreducible affine variety X requires

1,....n—k
we (")

for some A € (1 "7"). Recall that the puncturing IT, : X — Ek at the (n — k)-

tuple o = {k,k ji— 1,...,n — 1} is biregular and consider the sequence of affine

varieties
1,....n—k
= ’ ’ ,
1,....,n—k

where 0F~1 x IFTI =V(x1,...,z-1) C Ek. Then g, x(x,) =0 for all p € ( i ),
which holds exactly when det(H, ,H, ,) = 0 and det(H,, \c,) = 0 for all u €
(" R). As aresult, tk(Hje) < d for HY € M,—_pyx(a—1)(Fq) of tk H} = d — 1
and ¢ € SpanE(H 4). That contradicts the choice of ¢ and shows that Z ¢ X is a
proper Zariski closed subset of X.

Note that the puncturing IT,,: X — II,,(X) has injective differentials

X=27ZCV <gu,/\(zn)

I (0 xF,)CcXCV (gu,x(fﬂn)

(dHn)aZ Ta(X, Fqé(a)) — THn(a) (Hn(X),Fqs(a)) at Va € [j7

so that the non-empty, Zariski open, Zariski dense subset U C X is contained
in the infinitesimally injective locus of II,, i.e., U C InfInj(Il,). Intersecting U
with the non-empty, Zariski open subset IT;!(IT,, (X )*™°°th) of the irreducible affine
variety X, one obtains a non-empty, Zariski open, Zariski dense subset W := U N
I 1T, (X)smeeth) € X. Then

S = 8" AT (I, (X)¥00h) = S, N [X \ V(en_ga?, + 1)] NI (I, (X)500h) D W
is such a Zariski dense subset of X that

(ATL,) o Ta (X, Fysior) = T, (@) (T (X), Fysta )

are [n — 1, k, d]-codes for all a € S according to Lemma 3.1 (ii). O



Ann. Sofia Univ., Fac. Math. and Inf., 111, 2024, 91-114 109

4.2. A FAMILY OF DIMENSION REDUCTIONS OF A LINEAR CODE

The next proposition provides a family of dimension reductions of an F,-linear
[n, k,d]-code C of genus ¢ = n+1—k —d > 0, which is parameterized by a non-
empty, Zariski open, Zariski dense subset of Ez(n_k). The codes from the family
are not tangent to a specific affine variety. We choose a parity check matrix of the
original [n, k, d]-code C' and project it on various hyperplanes in En_k, in order to
obtain parity check matrices of [n, k + 1, d]-codes over finite extensions of F,.

Proposition 4.3. Let us suppose that C is an Fq-linear [n, k, d]-code of genus
g=n+1—k—d > 0. Then there exist a Zariski open, Zariski dense subset
W C EQ(nik) and a family C — W of F s -linear [n,k + 1,d]-codes C(u,v),
containing C for any (u,v) € W, u,v € Fiqnik.

Proof. Let H = (Hy...H,) € M@_j)xn(IFy) be a parity check matrix of C' with

I[quil as an irreducible affine subvariety of M, _g)x1(Fy) ~ I[anfk and put

k n—k

n—~k
V(Q) = {(u,v) eF," " xTF,"" | Qu,v) = (u,v) = Zusvs = O}
s=1

—2(n—k —n—k
for the quadric in qu(n ), given by the inner product in Fqn . Observe that

7y X ]ﬂnik7 V(Q) and, therefore,

Z:=V(Q)U (UAe(l’d';’l")ZA X E"_k>

. —2(n—k . e
are proper affine subvarieties of F, (m ), due to the irreducibility of the affine space

]ITqQ(n_k) and the assumption g > 0. Thus, W := EQ(n_

- —2(n—k
open, Zariski dense subset of I, (n=k)

k
)\Z is a non-empty, Zariski
) —n—k
. For any (u,v) € W with u,v € F," ", note

—n—k
ugH, ={z€el, | (z,v) =0}
for the hyperplane H, C En_k with gradient vector v. That allows to consider the
Fg-linear maps

n—

Eu,'u: E g _>Hv7

(y,v)
(u, v)

which project ]Fiqnik on H,, parallel to ker £, , = SpanE(u). Here we use that

u for Vy e Fiqnik, Y(u,v) € W,

Lyw (y) =Y -

for any z € H, one has £, ,(z) = z. Let us consider the definition field Fosuwy =
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Fo(ui, ... Un—k,v1,...,Un—g) of (u,v) € W over F; and the matrix H(u,v) :=
(Luw(Hy) - Luw(Hp)) € M—pyxn(Fysws). The linear code C(u,v) with parity
check matrix H(u,v) contains C, as far as the Fy-linear map £, , transforms any

n
non-trivial linear dependence > ¢, Hs = 0"~ of the columns of H into a non-trivial
s=1

linear dependence relation Y ¢sL, ,(Hs) = 0% of the columns of H(u,v). In
s=1
particular, C(u, v) contains words of weight d and the minimum distance d(C(u, v)) <

d. If there is a non- zero word a € C(u, v)\{O”} with Supp(a) CA={A1,..., Ag-1} €
d—1
(1d71)7then 0" = ZaA Loyv(Hy,) = (Z ax, HA>7whereas ZGASHAS S

d-1 -
ker £, , = Spaan( u) and Z ax,Hyx, = Aou for some \g € F,. According to u ¢

SpanE(H,\) there follow /\0 0 and rtk Hy = rk(H»,,...,Hx,_,) < d—1. That
contradicts the fact that C' is of minimum distance d and shows that C(u,v) is of
minimum distance d(C(u,v)) = d for ¥(u,v) € W.

There remains to be checked that rk H(u,v) = n —k — 1 for all (u,v) € W,
in order to derive that dimC(u,v) = k + 1 and to conclude the proof of the
proposition. To this end, note that £, ,(Hs) € H, for V1 < s < n, whereas
Spang(Luw(H1), .- Luw(Hn)) S Ho and tk H(u,v) < dimg-Hy = n -k — 1.

On the other hand, H, = L, ,(H,) + <<Hs”;>u for all 1 < s < n imply that

n—

F," " = Spang(Hy. ..., Hy,) C Spang—(Loo(H1),. .. Low(Hn), u).
If vk H(u,v) <n—k— 2, then
n—k< dimESpanE(Eu,v(H1)7...,EWJ(Hn),u) <rtkH(u,v)+1<n—-k-1

is an absurd, justifying rk H(u,v) = n — k — 1 and dimC(u,v) = k + 1 for all
2(n—k) —n—k —n—k
(u,v) €W =T, \[V(Q)U (U/\e( 1oy x Ty )},u,uewq . O

4.3. A FAMILY OF WEIGHT REDUCTIONS OF A LINEAR CODE

Let C be a linear [n, k, d]-code, which is not MDS. The next proposition es-
tablishes the existence of a family C — U of [n, k]-codes C(a), a € U of minimum
dlstance > d+ 1, parameterized by a non-empty, Zariski open, Zariski dense subset
UC ]F . The codes from C are defined by a polynomial parity check matrix in n
varlables but are not tangent to a specific affine subvariety of IF

Proposition 4.4. Let us suppose that C is an Fq-linear [n, k, d]-code of genus
g=n+1—k—d > 0. Then there exist a ﬁm'te extension Fgm 2 Fq, a mon-
empty, Zariski open, Zariski dense subset U C IF and a famzly C — Fy of linear
codes C(a) C IE‘”E(&) over the definition fields F s of a € F, over Fym, such that
C(0") = C ®r, Fym and C(a) are of length n, dzmenszon k and minimum distance
>d+1 at all the points a € U.
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Proof. Let H' = (Hj ... H;) € M(,_g)xn(Fy) be a parity check matrix of C' C Fy,
whose first n — k columns form a non-singular square matrix (Hi,...,H) ;) €
GL(n — k,F,). By an induction on d < j < n, we choose appropriate cq,...,c, €
M(n,k)xl(fq), in order to set

Hj::H§ for 1<j<d—-1,
Hj(x;) := Hj +xjc; for d<j<n

and to obtain a polynomial matrix
H(zq,...,xn) = (H{...Hy_ Hq(xq) ... Hy(2p)) € Mn_iysn(Fglza, -, zn)).

Let Fgm = Fy(ci5 | 1 <i<n—k,d<j<n)bethe common definition field of all the
entries of cq, ..., ¢, over Fy. At any point a € En, define C(a) to be the linear code
over the definition field Fy s = Fgm(ai1,...,a,) of a over Fym, with parity check
matrix H(a) = H(ag,--.,an) € Mpm_gyxn(Fys@). Our choice of H(zg,...,x,) is
such that H(0") = H’', whereas C(0") = C xp, Fym. It suffices to show the existence
of non-empty, Zariski open, Zariski dense subsets U’ C F,", U” C F,", such that
C(a) are of minimum distance > d + 1 at all @ € U’ and C(b) are of dimension k
at all b € U”. Then U := U' NnU" C En is a non-empty, Zariski open, Zariski
dense subset, over which the codes C(a), a € U are of length n, dimension k and
minimum distance > d + 1. Regardless of the choice of ¢4, ..., ¢, € M(n,k)xl(Fiq)v
let v:={1,...,n — k} and note that

U":=TF," \V(det Hy(za,. .., Tn_4))

is a Zariski open subset of F," with dim C(b) = k at all b € U". Since 0" € U”, the
set U” is non-empty and, therefore, Zariski dense in IFqn.
By an induction on d < j < n, we choose ¢; € M,,_p)x1(FF,) and show the exis-

tence of a non-empty, Zariski open, Zariski dense subset U; C IBT with tk Hg(u) = d
for all g € (1"0'1"3) and all u € U;. Then U’ := U,, will be a non-empty, Zariski open,
Zariski dense subset of En7 such that C(a) is of minimum distance > d + 1 at all

a € U'. To thisend, let j =d, A :={1,...,d—1} and note that SpanE(H;) ~ ]FTJ(F1

is a proper subspace of M, _p)x1(Fy) ~ ]Fiqnfk7 according to g > 0. That allows to
choose

cq € M(n—k)xl(E) \ SpanE(HS\)

and to put Hq(zq) := H);+x4¢q. The family {Hd(ad)}adeE of columns is claimed to

have at most one common entry Hy(rq) with SpanE(H;), so that rk Hyytay(zq) = d
at all the points of the non-empty, Zariski open, Zariski dense subset Uy := Ed_l X
(Fy \ {ka}) of Ed. Indeed, if Hq(xq) ¢ SpanE(Hg\) for all x4 € Fy, there is nothing

to be proved. In the case of Hy(kq) € SpanE(Hg\) for some 4 € Fy, let us move

the origin of M(,,_p)x1(Fq) at Hq(kq) € M,—p)x1(Fg). The 1-dimensional linear
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subspace Hq(zq) of the (n—k)-dimensional space M(,,_x)x1(F,) intersects the (d—1)-
dimensional linear subspace SpanFq(H {) in more than one point if and only if it is
contained in SpanE(Hg\). Then for arbitrary z4 # y, from F,, one has (x4 —ya)ca €
Spang—(H}), contrary to the choice of ¢q ¢ Spang_(H}). That provides the base of
the induction.

Suppose that d+1 < j <nand cg,...,cj_1 € M(n,k)xl(fq) have been chosen
in such a way that there exists a non-empty, Zariski open, Zariski dense subset

Uy C T, with tk Hg(u) = d for all B € (*/~') and all u € U;_;. Fix an
arbitrary u € U;_; and choose

cj € M(nfk)xl(ﬂ“iq) \ |:U)\€(l,.‘.l.:7'1—1) SpanE(HA(u))} . (4.3)
The existence of ¢; is due to the fact that U/\e( ..... ) SpanE(HA(u)) is a finite union
of proper subspaces SpanE(HA( u)) =~ Fq ' of the linear space M, _pyx1(Fq) ~
En_k over the infinite field F,. We claim that

Wi =A{w € Uj-1 | ¢j § Uyg(rpa-1) Spang (Hx(w))}
is a Zariski open subset of U;_;. Indeed,
Ui \W;_1 = Une(tyi- 1){15 €Uj-1 | ¢; € Spang; (HA( )}
= Une(tyi- 1){25 € Uj_1 | tk(Hx(t)c;) =d — 1},

as far astk Hg(u) = d for all 8 € ( ’] 1) and all u € U;_; implies tk H\(t) = d—1
for all A € (";77") and all t € U]_l. Denoting by %471 the set of the maps
e (1"C'l'f1_1) — (1""’d"_k) and putting

Y} =V H det( w(N),ACu(N), ) V/,L S Zd ! s

xe(tiTh
one concludes that

Ui \ W1 = Uyepny {0 € Upr [det(Hya(ten) =0, v € (M)

j—10Y;

is a Zariski closed subset of U;_1, so that W,_; = U;_; \ Y; is Zariski open in
Uj-1. According to u € W;_; for the point u € U;_1, used in the choice (4.3) of ¢;,

W;_1 # @ is non-empty and, therefore, Zariski dense in IF . Note that
Uj = {(U%wj) eF, Xy |tk Hy(w,w;) =d, VBe (1"(2"j)}

= {(w,"wj) S Wj_l X E | I‘k(H)\(w)H ( )) =d, Vle ( s — 1)}
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has complement

d—1

= U)\e(l ..... j—l) {(w,wj) € Wj_l X E | h%)\(w,w]—) =0, Yve (1,-4.211'7,—147)} 7

where hy x(zq,...,2;) = det(Hy\(xq, ..., xj_1)H, j(x;)) € Fglza,... z;]. If

Zj =V H h#(A)J\(id,...,.’Ej)’V,U,E 2271 R

is Zariski closed in W;_; x F,, so that U; = (W;_; x F,) \ Z; is Zariski open in
W,_1 x F, and in F,”. The assumption U; = @ implies W;_; x F, C Z; and holds
exactly when

hM(A)J\ = det(HH()\),A(xd, R 7'/1:j_1)H[/L(/\)j + l‘jcu()\)j)
= det(Hﬂ(A)’A(ch, oo 7xj—1)HL(A)j) + x; det(H‘u()\)y)\(.’L‘d, e ,xj_l)cu()\)j)

is independent of x; for all A € (1"L'i"_j171) and all p: (1d_jfl) — (1""21"7’“). That,
in turn, is equivalent to det(H, x(zq,...,zj-1)cy;) =0 for all v € (1"“’;_k) and all
A€ (1"[‘1"_j1_1) and specializes to det(H, x(u)c,;) = 0 at the point u € U;_q, used
in the choice (4.3) of ¢;. As a result, tk(H(u)c;) < d for all A € (";77"). The
inductive hypothesis rk Hg(u) = d for all 8 € (1""(’571) requires tk Hy(u) = d — 1
for all A € (;77") and rk(Hy(u)c;) < d is equivalent to ¢; € Spang—(Hx(u)) for
all A € (;7"). That contradicts the choice (4.3) of ¢; and shows that U; # @ is

a non-empty, Zariski open, Zariski dense subset of ]FT. O
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