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1. Introduction

In 1932 Gustav Herglotz gave a series of lectures on contact transformations,
the generalized Hamiltonian system

𝑑

𝑑𝑡
𝑥𝑗 =

𝜕ℋ
𝜕𝑝𝑗

,

𝑑

𝑑𝑡
𝑧 = 𝑝𝑗

𝜕ℋ
𝜕𝑝𝑗

−ℋ,

𝑑

𝑑𝑡
𝑝𝑗 = − 𝜕ℋ

𝜕𝑥𝑗
− 𝑝𝑗

𝜕ℋ
𝜕𝑧

, 𝑗 = 1, . . . , 𝑛,

where ℋ is a function of 𝑥1, . . . , 𝑥𝑛, 𝑧, 𝑝1, . . . , 𝑝𝑛, and the relationship between them.
The generalized Hamiltonian system is closely related to the variational principle,
proposed by Herglotz [15,16]. It is very powerful for giving a variational description
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of nonconservative processes involving one independent variable. It is more general
than the classical variational principle with one independent variable and contains
it as a special case.

In the variational principle of Herglotz the functional 𝑧, whose extrema are
sought, is defined by an ordinary differential equation rather than by an integral:

𝑑𝑧

𝑑𝑡
= 𝐿(𝑡, 𝑥, �̇�, 𝑧), 0 ≤ 𝑡 ≤ 𝑠,

where 𝑡 is the only independent variable, 𝑥 ≡ (𝑥1, . . . , 𝑥𝑛) are the argument functions
of 𝑡, �̇� = 𝑑𝑥/𝑑𝑡. We denote 𝑧 = 𝑧[𝑥; 𝑠]. Herglotz showed that the value of this
functional is an extremum when its argument-functions 𝑥𝑘(𝑡) are solutions of the
generalized Euler-Lagrange equations

𝜕𝐿

𝜕𝑥𝑘
− 𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�𝑘
+

𝜕𝐿

𝜕𝑧

𝜕𝐿

𝜕�̇�𝑘
= 0, 𝑘 = 1, . . . , 𝑛.

His lectures revealed the remarkable geometry which underlines the generalized
Hamiltonian system and its integrability in terms of a complete set of first inte-
grals. They provide a method for generating first integrals for such systems. In
the present paper we review these results. The summation convention on repeated
indices is used throughout the paper.

Furta et al. show in [4] a close link between the Herglotz variational principle
and control and optimal control theories. It is also related to contact transfor-
mations, see Guenther et al. [14]. Herglotz’s work was motivated by ideas from
S. Lie [17,18] and others. For historical remarks through 1935 see Caratheodory [2].
The contact transformations, which can be derived from the generalized variational
principle, have found applications in thermodynamics. Mrugala shows in [20] that
the processes in equilibrium thermodynamics can be described by successions of
contact transformations acting in a suitably defined thermodynamic phase space.
The latter is endowed with a contact structure, closely related to the symplectic
structure. In [5] and [7] Georgieva et al. formulated and proved first and second
Noether-type theorems which yields a first integral corresponding to a known sym-
metry of the functional defined by the Herglotz variational principle; and an identity
corresponding to an infinite-dimensional symmetry of the Herglotz functional. For a
summary of the resent results related to the variational principle of Herglotz see [9].

In [6] Georgieva, Guenther and Bodurov introduce a new variational principle,
which extends the Herglotz principle to one with several independent variables. In
honor of Gustav Herglotz they named it in his name. This new varational principle
contains as special cases both the classical variational principle with several inde-
pendent variables and the Herglotz variational principle. It can describe not only
all physical processes which the classical variational principle can, but also many
others for which the classical variational principle is not applicable. It can give a
variational description of nonconservative processes involving physical fields.

The generalized variational principle with several independent variables is as
follows:
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Let the functional 𝑧 = 𝑧[𝑢; 𝑠] of 𝑢 = 𝑢(𝑡, 𝑥) be defined by an integro-differential
equation of the form

𝑑𝑧

𝑑𝑡
=

∫︁
Ω

ℒ(𝑡, 𝑥, 𝑢, 𝑢𝑡, 𝑢𝑥, 𝑧) 𝑑
𝑛𝑥, 0 ≤ 𝑡 ≤ 𝑠, (1.1)

where 𝑡 and 𝑥 ≡ (𝑥1, . . . , 𝑥𝑛) are the independent variables, 𝑢 ≡ (𝑢1, . . . , 𝑢𝑚) are the
argument functions, 𝑢𝑥 ≡ (𝑢1

𝑥, . . . , 𝑢
𝑚
𝑥 ), 𝑢𝑡 ≡ (𝑢1

𝑡 , . . . , 𝑢
𝑚
𝑡 ) and 𝑢𝑖

𝑥 ≡ (𝑢𝑖
𝑥1 , . . . , 𝑢𝑖

𝑥𝑛),
𝑖 = 1, . . . ,𝑚, 𝑑𝑛𝑥 ≡ 𝑑𝑥1 . . . 𝑑𝑥𝑛, and where the function ℒ is at least twice differ-
entiable with respect to 𝑢𝑥, 𝑢𝑡 and once differentiable with respect to 𝑡, 𝑥, 𝑧. Let
𝜂 ≡ (𝜂1(𝑡, 𝑥), . . . , 𝜂𝑚(𝑡, 𝑥)) have continuous first derivatives and otherwise be arbi-
trary except for the boundary conditions:

𝜂(0, 𝑥) = 𝜂(𝑠, 𝑥) = 0,

𝜂(𝑡, 𝑥) = 0 for 𝑥 ∈ 𝜕Ω, 0 ≤ 𝑡 ≤ 𝑠,

where 𝜕Ω is the boundary of Ω. Then, the value of the functional 𝑧[𝑢; 𝑠] is an
extremum for functions 𝑢 which satisfy the condition

𝑑

𝑑𝜀
𝑧[𝑢+ 𝜀𝜂; 𝑠]

⃒⃒⃒⃒
𝜀=0

= 0.

The function ℒ, just as in the classical case, is called the Lagrangian density. It
should be observed that when a variation 𝜀𝜂 is applied to 𝑢, the integro-differential
equation defining the functional 𝑧 must be solved with the same fixed initial condition
𝑧(0) at 𝑡 = 0 and the solution evaluated at the same fixed final time 𝑡 = 𝑠 for all
varied argument functions 𝑢+ 𝜀𝜂.

Every function 𝑢 ≡ (𝑢1, . . . , 𝑢𝑚), for which the functional 𝑧 defined by the
integro-differential equation (1.1) has an extremum, is a solution of

𝜕ℒ
𝜕𝑢𝑖

− 𝑑

𝑑𝑡

𝜕ℒ
𝜕𝑢𝑖

𝑡

− 𝑑

𝑑𝑥𝑘

𝜕ℒ
𝜕𝑢𝑖

𝑥𝑘

+
𝜕ℒ
𝜕𝑢𝑖

𝑡

∫︁
Ω

𝜕ℒ
𝜕𝑧

𝑑𝑥 = 0, 𝑖 = 1, . . . ,𝑚. (1.2)

These equations are called (in correspondence with the classical case) the generalized
Euler-Lagrange equations.

It is important to observe that the definition of the functional 𝑧 by the integro-
differential equation reduces to the classical definition of a functional by an integral
when ℒ does not depend on 𝑧. Similarly, the generalized Euler-Lagrange equations
reduce to the classical Euler-Lagrange equations when ℒ does not depend on 𝑧.

Many examples of physical processes described with the generalized variational
principle of Herglotz are available in the papers [3, 5–10, 12]. Here we give two
applications for the convenience of the reader:

The first is the set of equations which describe the propagation of electromag-
netic waves in a conductive medium

𝑐2∇2E− 𝜕2E

𝜕𝑡

2

− 𝜎

𝜀

𝜕E

𝜕𝑡
= 0, (1.3)
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where E = (𝐸1, 𝐸2, 𝐸3) is the electric field vector, 𝑐 is the velocity of the electro-
magnetic waves, 𝜎 is the electrical conductivity and 𝜀 is the dielectric constant
of the medium. Exactly the same equation holds for the magnetic field vector
B = (𝐵1, 𝐵2, 𝐵3). These equations are direct consequence of the Maxwell’s equa-
tions in conjunction with the medium’s property equations J = 𝜎E and 𝜌 = 0, where
J = (𝐽1, 𝐽2, 𝐽3) is the current density and 𝜌 is the charge density. Equation (1.3)
and the equation for the magnetic vector field B = (𝐵1, 𝐵2, 𝐵3) can not be described
variationally via the classical variational principle, because their Frechet derivative is
not selfadjoint. Remarkably, they can be described variationally via the variational
principle proposed in [6]. In more detail:

One can easily verify that this system is the system of generalized Euler-
Lagrange equations for the functional 𝑧 defined by the integro-differential equation
with

ℒ = 𝑐2
𝜕𝐸𝑖

𝜕𝑥𝑗

𝜕𝐸𝑖

𝜕𝑥𝑗
− 𝜕𝐸𝑖

𝜕𝑡

𝜕𝐸𝑖

𝜕𝑡
+ 𝛼(𝑥)𝑧, 𝑖, 𝑗 = 1, 2, 3

and
𝜎

𝜀
=

∫︁
Ω

𝛼(𝑥) 𝑑3𝑥 = const.

As a second example of a physical process which can not be described variation-
ally via the classical variational principle, but can be given a variational description
with the variational principle of Bodurov [6] consider the nonlinear Schrödinger
equation with electromagnetic interaction and losses or gains

𝑖
𝜕Ψ

𝜕𝑡
− ΦΨ+ 𝜇

(︂
𝜕

𝜕𝑥𝑘
− 𝑖𝐴𝑘

)︂2

Ψ−𝐺(ΨΨ*, 𝑥)Ψ− 𝛽
𝑖

2
Ψ = 0, 𝛽 = const

for the wave function Ψ(𝑡, 𝑥1, 𝑥2, 𝑥3) with electromagnetic interaction and losses or
gains, where the summation index 𝑘 = 1, 2, 3. Here (Φ(𝑡, 𝑥1, 𝑥2, 𝑥3),A(𝑡, 𝑥1, 𝑥2, 𝑥3))

is the electromagnetic potential, 𝐺 is a real-valued function, and A is the vector
potential A = (𝐴1, 𝐴2, 𝐴3). The losses (𝛽 > 0) or gains (𝛽 < 0) are represented
with the term −𝛽 𝑖

2Ψ. This equation does not have a variational description with
the classical variational principle, because its Frechet derivative operator is not self-
adjoint. In [3] such a description is presented for this process via the generalized
variational principle of Herglotz with several independent variables, due to Bodurov.
In [3] it is shown that the functional 𝑧 is invariant under the gauge transformation

Φ′ = Φ− 𝜕𝑔

𝜕𝑡
, A′ = A+∇𝑥𝑔, Ψ′ = 𝑒𝑖𝑔Ψ,

where 𝑔 = 𝑔(𝑡, 𝑥1, 𝑥2, 𝑥3) is an arbitrary function, and an identity is found using
the main theorem in [12], due to Georgieva and Bodurov, which is satisfied by the
four-potential

(Φ(𝑡, 𝑥1, 𝑥2, 𝑥3),A(𝑡, 𝑥1, 𝑥2, 𝑥3))
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of the electromagnetic field. When the wave function Ψ is a solution to the nonlin-
ear Schrödinger equation with electromagnetic interaction and losses or gains, this
identity becomes

𝜕𝑄0

𝜕𝑡
−∇𝑥 ·Q− 𝛽𝑄0 = 0,

where Q = (𝑄1, 𝑄2, 𝑄3). In the classical case when 𝛽 = 0 this is the common
conservation law with 𝑄0-conserved density and Q conserved current. When 𝛽 ̸=
0 this identity becomes a continuity law – 𝑄0 is not conserved but generated or
dissipated (depending on the sign of 𝛽) at a rate proportional to 𝑄0 itself.

In [10] Georgieva introduces a method for finding the variational symmetries
of the functional in the generalized variational principle with several independent
variables proposed by Bodurov et al. in [6]. In [12] Georgieva and Bodurov formulate
and prove a theorem which gives an identity corresponding to an infinite-dimensional
symmetry of that functional.

After this brief overview of the variational principle of Herglotz and its general-
ization to one with several independent variables, let us return to contact transfor-
mations, the generalized Hamiltonian system and their connection to the variational
principle of Herglotz.

Let 𝑆 be a continuously differentiable one-to-one transformation defined on a
domain of R𝑛 ×R1 ×R𝑛 with range in R𝑛 ×R1 ×R𝑛 which we write in the form

𝑆(𝑥, 𝑧, 𝑝) = (𝑋(𝑥, 𝑧, 𝑝), 𝑍(𝑥, 𝑧, 𝑝), 𝑃 (𝑥, 𝑧, 𝑝)).

We assume that both it and its inverse are sufficiently differentiable so that the
computations below make sense, and that the Jacobian is distinct than zero. Such
a transformation is called an element transformation.

Definition 1.1. A contact transformation is an element transformation which
is one-to-one, on to, and for which 𝑝 · 𝑑𝑥− 𝑑𝑧 = 0 implies 𝑃 · 𝑑𝑋 − 𝑑𝑍 = 0.

Theorem 1.1. Equation (1.1) represents a contact transformation if and only
if there is a function 𝜌 = 𝜌(𝑥, 𝑧, 𝑝) ̸= 0 such that 𝑃 · 𝑑𝑋 − 𝑑𝑍 = 𝜌(𝑝 · 𝑑𝑥− 𝑑𝑧).

The proof can be found in [14].

Example 1.1. The Legendre transformation in 3-dimensional space

𝑋 = 𝑝, 𝑌 = 𝑞, 𝑍 = 𝑝𝑥+ 𝑞𝑦 − 𝑧, 𝑃 = 𝑥, 𝑄 = 𝑦

is a contact transformation, with 𝜌 = −1.

2. Special contact transformations

Definition 2.1. A contact transformation of the form

𝑋 = �̃�(𝑥, 𝑝), 𝑍 = 𝑍(𝑥, 𝑝) + 𝑧, 𝑃 = 𝑃 (𝑥, 𝑝) (2.1)

is called a special contact transformation.
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Some of the most important applications of special contact transformations are
to Hamiltonian systems.

Theorem 2.1. A (general) contact transformation 𝑈 in the (𝑛+1)-dimensional
𝑥𝑧-space, R𝑛+1, can be extended to a special contact transformation 𝑈 in the (𝑛+2)-
dimensional �̄�𝑧-space, R𝑛+2, which when restricted to the subspace R𝑛+1 of R𝑛+2

has the same effect as 𝑈 .

Proof. Let
𝑈 : 𝑋 = 𝑋(𝑥, 𝑧, 𝑝), 𝑍 = 𝑍(𝑥, 𝑧, 𝑝), 𝑃 = 𝑃 (𝑥, 𝑧, 𝑝) (2.2)

be a general contact transformation in R𝑛+1. By Theorem 1.1, there is a function
𝜌 = 𝜌(𝑥, 𝑧, 𝑝) ̸= 0 such that

𝑃 · 𝑑𝑋 − 𝑑𝑍 = 𝜌(𝑝 · 𝑑𝑥− 𝑑𝑧). (2.3)

Let �̄� = (�̄�1, . . . , �̄�𝑛, �̄�𝑛+1) be a point in R𝑛+1, where �̄�𝑖 = 𝑥𝑖 for 𝑖 = 1, . . . , 𝑛 and
�̄�𝑛+1 = −𝑧. Then (�̄�, 𝑧) ∈ R𝑛+2. In the image space, we adjoin an additional coor-
dinate, 𝑍, so that (𝑋,𝑍) is in a domain in R𝑛+2, where 𝑋 = (𝑋1, . . . , 𝑋𝑛, 𝑋𝑛+1),
𝑋𝑖 = 𝑋𝑖 for 𝑖 = 1, . . . , 𝑛 and 𝑋𝑛+1 = −𝑍. Next, let 𝑝𝑛+1, 𝑃𝑛+1 be direction
coefficients. We shall choose 𝑃𝑛+1 appropriately below. Equation (2.3) becomes

𝑃𝑖𝑑𝑋𝑖 + 𝑑𝑋𝑛+1 = 𝜌 (𝑝𝑖𝑑�̄�𝑖 + 𝑑�̄�𝑛+1) . (2.4)

Let 𝑝1, . . . , 𝑝𝑛+1 be direction coefficients, where 𝑝1, . . . , 𝑝𝑛 are related to 𝑝1, . . . , 𝑝𝑛
by 𝑝𝑖 = 𝑝𝑖𝑝𝑛+1, 𝑖 = 1, . . . , 𝑛. Also, define 𝑃 1, . . . , 𝑃𝑛 by 𝑃 𝑖 = 𝑃𝑖𝑃𝑛+1, 𝑖 = 1, . . . , 𝑛,
and 𝑃𝑛+1 is chosen as follows. From (2.4) we have

𝑃 𝑖

𝑃𝑛+1

𝑑𝑋𝑖 + 𝑑𝑋𝑛+1 = 𝜌

(︂
𝑝𝑖

𝑝𝑛+1
𝑑�̄�𝑖 + 𝑑�̄�𝑛+1

)︂
or

𝑃 𝑖 𝑑𝑋𝑖 =
𝜌𝑃𝑛+1

𝑝𝑛+1
𝑝𝑖 𝑑�̄�𝑖, 𝑖 = 1, . . . , 𝑛+ 1.

The transformation 𝑈 : (𝑥, 𝑧, 𝑝) → (𝑋,𝑍, 𝑃 ) is extended to the transformation
𝑈 : (�̄�, 𝑧, 𝑝) → (𝑋,𝑍, 𝑃 ) by adjoining to the 2𝑛 + 1 equations defining 𝑈 , the two
additional equations 𝑍 = 𝑧, 𝑃𝑛+1 = (1/𝜌)𝑝𝑛+1. The system of equations

𝑋𝑗 = 𝑋𝑗(𝑥,−𝑥𝑛+1, 𝑝) ≡ 𝑋𝑗(�̄�, 𝑝), 𝑗 = 1, . . . , 𝑛,

𝑋𝑛+1 = −𝑍(𝑥,−𝑥𝑛+1, 𝑝) ≡ 𝑋𝑛+1(�̄�, 𝑝),

𝑍 = 0 + 𝑧 (i.e. 𝑍(�̄�, 𝑝) = 0),

𝑃 𝑗 = (𝑝𝑛+1/𝜌)𝑃𝑗(𝑥,−𝑥𝑛+1, 𝑝) ≡ 𝑃 𝑗(�̄�, 𝑝), 𝑗 = 1, . . . , 𝑛,

𝑃𝑛+1 = (1/𝜌)𝑝𝑛+1 ≡ 𝑃𝑛+1(�̄�, 𝑝)

(2.5)

is a special contact transformation in R𝑛+2 which satisfies 𝑃 ·𝑑𝑋 = 𝑝·𝑑�̄�. Conversely,
when restricted to R𝑛+1, (2.5) defines a contact transformation which coincides
with (2.2).
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Example 2.1. The extension 𝑈 of the Legendre transformation in Example 1.1
is

𝑋𝑖 = 𝑋𝑖 = 𝑝𝑖 =
𝑝𝑖

𝑝𝑛+1
, 𝑖 = 1, . . . , 𝑛,

𝑋𝑛+1 = −𝑍 = −
(︂

𝑝𝑖
𝑝𝑛+1

�̄�𝑖 + �̄�𝑛+1

)︂
,

𝑍 = 𝑧,

𝑃 𝑖 = 𝑃𝑖𝑃𝑛+1 = 𝑥𝑖𝑃𝑛+1 = �̄�𝑖𝑃𝑛+1 = −�̄�𝑖𝑝𝑛+1, 𝑖 = 1, . . . , 𝑛,

𝑃𝑛+1 = −𝑝𝑛+1.

Returning now to transformations in R𝑛+1, we drop the bar notation.

Theorem 2.2. An element transformation of the form (2.1)

𝑋 = 𝑋(𝑥, 𝑝), 𝑍 = 𝑍(𝑥, 𝑝) + 𝑧, 𝑃 = 𝑃 (𝑥, 𝑝)

is a special contact transformation if and only if the equation

𝑃 · 𝑑𝑋 − 𝑝 · 𝑑𝑥 = 𝑑(𝑍 − 𝑧) = 𝑑𝑍 (2.6)

holds, where 𝑑𝑍 is the total differential of a function 𝑍 of (𝑥, 𝑝).

Condition (2.6) yields(︂
𝑃𝑖

𝜕𝑋𝑖

𝜕𝑥𝑗
− 𝑝𝑗

)︂
𝑑𝑥𝑗 + 𝑃𝑖

𝜕𝑋𝑖

𝜕𝑝𝑗
𝑑𝑝𝑗 =

𝜕𝑍

𝜕𝑥𝑗
𝑑𝑥𝑗 +

𝜕𝑍

𝜕𝑝𝑗
𝑑𝑝𝑗

or, comparing coefficients,

𝜕𝑍

𝜕𝑥𝑗
= 𝑃𝑖

𝜕𝑋𝑖

𝜕𝑥𝑗
− 𝑝𝑗 , 𝑗 = 1, . . . , 𝑛,

𝜕𝑍

𝜕𝑝𝑗
= 𝑃𝑖

𝜕𝑋𝑖

𝜕𝑝𝑗
, 𝑗 = 1, . . . , 𝑛.

(2.7)

These conditions characterize contact transformations of the form 𝑋 = 𝑋(𝑥, 𝑝),
𝑃 = 𝑃 (𝑥, 𝑝) in the 2𝑛-dimensional 𝑥𝑝-space. Such transformations are also referred
to as canonical transformations.

Using the equivalence of the mixed second partial derivatives for 𝑍 and (2.7)
one obtains conditions on (𝑋(𝑥, 𝑝), 𝑃 (𝑥, 𝑝)) that are independent of 𝑍:

𝜕𝑃𝑖

𝜕𝑥𝑘

𝜕𝑋𝑖

𝜕𝑥𝑗
− 𝜕𝑃𝑖

𝜕𝑥𝑗

𝜕𝑋𝑖

𝜕𝑥𝑘
= 0, 𝑗, 𝑘 = 1, . . . , 𝑛,

𝜕𝑃𝑖

𝜕𝑝𝑘

𝜕𝑋𝑖

𝜕𝑥𝑗
− 𝜕𝑃𝑖

𝜕𝑥𝑗

𝜕𝑋𝑖

𝜕𝑝𝑘
= 𝛿𝑗𝑘, 𝑗, 𝑘 = 1, . . . , 𝑛,

𝜕𝑃𝑖

𝜕𝑝𝑘

𝜕𝑋𝑖

𝜕𝑝𝑗
− 𝜕𝑃𝑖

𝜕𝑝𝑗

𝜕𝑋𝑖

𝜕𝑝𝑘
= 0, 𝑗, 𝑘 = 1, . . . , 𝑛,

where 𝛿𝑗𝑘 is the Kronecker delta.



62 B. Georgieva / The integrability of the generalized Hamiltonian system

3. Characterization of the general contact transformation

Consider the transformation (𝑥, 𝑧, 𝑝) → (�̄�, 𝑧, 𝑝), where we use the bar notation:

�̄�𝑖 = 𝑥𝑖, �̄�𝑛+1 = −𝑧, 𝑝𝑖 = 𝑝𝑛+1𝑝𝑖, 𝑖 = 1, . . . , 𝑛. (3.1)

Let 𝑓 = 𝑓(𝑥, 𝑧, 𝑝), 𝑔 = 𝑔(𝑥, 𝑧, 𝑝) be two differentiable functions, and

𝑓(𝑥, 𝑧, 𝑝) = 𝑓(𝑥1, . . . , 𝑥𝑛, 𝑧, 𝑝1, . . . , 𝑝𝑛)

= 𝑓(�̄�1, . . . , �̄�𝑛,−�̄�𝑛+1, 𝑝1/𝑝𝑛+1, . . . , 𝑝𝑛/𝑝𝑛+1)

≡ 𝑓(�̄�, 𝑝)

and similarly 𝑔(𝑥, 𝑧, 𝑝) ≡ 𝑔(�̄�, 𝑝). The Poisson bracket for the pair of functions 𝑓
and 𝑔 is given by

[𝑓, 𝑔]�̄�𝑝 =
𝜕𝑓

𝜕�̄�𝑗

𝜕𝑔

𝜕𝑝𝑗
− 𝜕𝑓

𝜕𝑝𝑗

𝜕𝑔

𝜕�̄�𝑗
. (3.2)

We may now rewrite this expression in terms of the original variables

𝜕𝑓

𝜕�̄�𝑖
=

𝜕𝑓

𝜕𝑥𝑖
,

𝜕𝑓

𝜕𝑝𝑖
=

1

𝑝𝑛+1

𝜕𝑓

𝜕𝑝𝑖
, 𝑖 = 1, . . . , 𝑛,

𝜕𝑓

𝜕�̄�𝑛+1
= −𝜕𝑓

𝜕𝑧
,

𝜕𝑓

𝜕𝑝𝑛+1
= − 𝜕𝑓

𝜕𝑝𝑖

𝑝𝑖
𝑝2𝑛+1

= − 1

𝑝𝑛+1
𝑝𝑖

𝜕𝑓

𝜕𝑝𝑖
, 𝑝𝑖 =

𝑝𝑖
𝑝𝑛+1

,

and similar formulas for 𝑔 hold. Then formula (3.2) takes the form

[𝑓, 𝑔]�̄�𝑝 =
1

𝑝𝑛+1

(︂
𝜕𝑓

𝜕𝑥𝑗

𝜕𝑔

𝜕𝑝𝑗
− 𝜕𝑓

𝜕𝑝𝑗

𝜕𝑔

𝜕𝑥𝑗

)︂
+

1

𝑝𝑛+1

(︂
𝜕𝑓

𝜕𝑧
𝑝𝑗

𝜕𝑔

𝜕𝑝𝑗
− 𝜕𝑔

𝜕𝑧
𝑝𝑗

𝜕𝑓

𝜕𝑝𝑗

)︂
=

1

𝑝𝑛+1

(︂(︂
𝜕𝑓

𝜕𝑥𝑗
+ 𝑝𝑗

𝜕𝑓

𝜕𝑧

)︂
𝜕𝑔

𝜕𝑝𝑗
−
(︂

𝜕𝑔

𝜕𝑥𝑗
+ 𝑝𝑗

𝜕𝑔

𝜕𝑧

)︂
𝜕𝑓

𝜕𝑝𝑗

)︂
.

(3.3)

The symbol

{𝑓, 𝑔}𝑥𝑧𝑝 =

(︂
𝜕𝑓

𝜕𝑥𝑗
+ 𝑝𝑗

𝜕𝑓

𝜕𝑧

)︂
𝜕𝑔

𝜕𝑝𝑗
−
(︂

𝜕𝑔

𝜕𝑥𝑗
+ 𝑝𝑗

𝜕𝑔

𝜕𝑧

)︂
𝜕𝑓

𝜕𝑝𝑗
(3.4)

is called the Mayer bracket of 𝑓 and 𝑔. Equation (3.3) in terms of the Mayer bracket
takes the form

[𝑓, 𝑔]�̄�𝑝 =
1

𝑝𝑛+1
{𝑓, 𝑔}𝑥𝑧𝑝. (3.5)

The Mayer bracket satisfies properties similar to those of the Poisson bracket.

Theorem 3.1. Let 𝑓 , 𝑔, ℎ be differentiable functions of the variables (𝑥, 𝑦, 𝑧)
and let 𝛼 be a constant. Then:

i) {𝑓, 𝑔} = −{𝑔, 𝑓}, {𝑓, 𝑓} = 0;

ii) {𝛼, 𝑓} = 0, {𝛼𝑓, 𝑔} = 𝛼{𝑓, 𝑔};
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iii) {𝑓 + 𝑔, ℎ} = {𝑓, ℎ}+ {𝑔, ℎ};

iv) {𝑓𝑔, ℎ} = 𝑔{𝑓, ℎ}+ 𝑓{𝑔, ℎ};

v) The Jacobi identity holds in the form

{𝑓{𝑔, ℎ}}+ {𝑔{ℎ, 𝑓}}+ {ℎ{𝑓, 𝑔}}+ 𝑓𝑧{𝑔, ℎ}+ 𝑔𝑧{ℎ, 𝑓}+ ℎ𝑧{𝑓, 𝑔} = 0.

Note that the subscripts 𝑥𝑧𝑝 have been dropped.
Equation (3.5) leads to a formula describing how the Mayer bracket changes

under a contact transformation.

Theorem 3.2. The element transformation

𝑋 = 𝑋(𝑥, 𝑧, 𝑝), 𝑍 = 𝑍(𝑥, 𝑧, 𝑝), 𝑌 = 𝑌 (𝑥, 𝑧, 𝑝)

is a contact transformation with multiplier 𝜌 if and only if up to a factor 1/𝜌 it
leaves the Mayer bracket of two arbitrary differentiable functions invariant

{𝐹,𝐺}𝑋𝑍𝑃 =
1

𝜌
{𝑓, 𝑔}𝑥𝑧𝑝.

Proof. Let
𝑋 = 𝑋(𝑥, 𝑧, 𝑝), 𝑍 = 𝑍(𝑥, 𝑧, 𝑝), 𝑃 = 𝑃 (𝑥, 𝑧, 𝑝)

be contact transformation, and let

𝑥 = 𝑥(𝑋,𝑍, 𝑃 ), 𝑧 = 𝑧(𝑋,𝑍, 𝑃 ), 𝑝 = 𝑝(𝑋,𝑍, 𝑃 )

be its inverse. Set

𝐹 (𝑋,𝑍, 𝑃 ) = 𝐹 (𝑋(𝑥, 𝑧, 𝑝), 𝑍(𝑥, 𝑧, 𝑝), 𝑃 (𝑥, 𝑧, 𝑝)) ≡ 𝑓(𝑥, 𝑧, 𝑝),

𝐺(𝑋,𝑍, 𝑃 ) = 𝐺(𝑋(𝑥, 𝑧, 𝑝), 𝑍(𝑥, 𝑧, 𝑝), 𝑃 (𝑥, 𝑧, 𝑝)) ≡ 𝑔(𝑥, 𝑧, 𝑝).

Now lift the variables one dimension and set

𝑋𝑖 = 𝑋𝑖, 𝑋𝑛+1 = −𝑍, 𝑃 𝑖 = 𝑃𝑛+1𝑃𝑖, 𝑃𝑛+1 =
1

𝜌
𝑝𝑛+1.

We use the fact that canonical transformations preserve the form of the Poisson
bracket, and formula (3.5) to get

1

𝑝𝑛+1
{𝑓, 𝑔}𝑥𝑧𝑝 = [𝑓, 𝑔]�̄�𝑝 = [𝐹 , �̄�]𝑋𝑃 =

1

𝑃𝑛+1

{𝐹,𝐺}𝑋𝑍𝑃 ,

or since 𝑃𝑛+1/𝑝𝑛+1 = 1/𝜌, {𝐹,𝐺}𝑋𝑍𝑃 = (1/𝜌){𝑓, 𝑔}𝑥𝑧𝑝.

Theorem 3.2 suggests that the Mayer bracket plays the same role for gen-
eral contact transformations as the Poisson bracket plays for the special (canonical)
transformations.
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Theorem 3.3. In order for the one-to-one element transformation 𝑋 =
𝑋(𝑥, 𝑧, 𝑝), 𝑍 = 𝑍(𝑥, 𝑧, 𝑝), 𝑌 = 𝑌 (𝑥, 𝑧, 𝑝), which satisfies the relationship

𝑃𝑗 𝑑𝑋𝑗 − 𝑑𝑍 = 𝜌(𝑝𝑘 𝑑𝑥𝑘 − 𝑑𝑧) (3.6)

with 𝜌(𝑥, 𝑧, 𝑝) ̸= 0, to be a contact transformation, it is necessary and sufficient that
the following relations are satisfied :

{𝑋𝑖, 𝑋𝑗}𝑥𝑧𝑝 = 0, 𝑖, 𝑗 = 1, . . . , 𝑛,

{𝑋𝑖, 𝑃𝑗}𝑥𝑧𝑝 = 𝜌𝛿𝑖𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑛,

{𝑋𝑖, 𝑍}𝑥𝑧𝑝 = 0, 𝑖 = 1, . . . , 𝑛,

{𝑃𝑖, 𝑃𝑗}𝑥𝑧𝑝 = 0, 𝑖, 𝑗 = 1, . . . , 𝑛,

{𝑃𝑖, 𝑍}𝑥𝑧𝑝 = −𝜌𝑃𝑖, 𝑖 = 1, . . . , 𝑛.

(3.7)

Moreover, the following conditions hold :

{𝜌,𝑋𝑗}𝑥𝑧𝑝 = 𝜌
𝜕𝑋𝑗

𝜕𝑧
,

{𝜌, 𝑍}𝑥𝑧𝑝 = 𝜌
𝜕𝑍

𝜕𝑧
− 𝜌2,

{𝜌, 𝑃𝑗}𝑥𝑧𝑝 = 𝜌
𝜕𝑃𝑗

𝜕𝑧
.

(3.8)

Proof. Notice that {𝑋𝑖, 𝑋𝑗}𝑥𝑧𝑝 = 𝜌{𝑋𝑖, 𝑋𝑗}𝑋𝑍𝑃 = 0, 𝑖, 𝑗 = 1, . . . , 𝑛. The rest of
the equations (3.7) are obtained similarly. The derivations of equations (3.8) are
lengthy and can be found in [14].

Corollary 3.1. The functions (𝑋,𝑃 ) of a contact transformation are indepen-
dent of 𝑧 if and only if 𝜌 is a constant.

Proof. We observe that

𝜕𝜌

𝜕𝑋𝑗
=

𝜕𝑃𝑗

𝜕𝑧
+

1

𝜌

𝜕𝜌

𝜕𝑧
𝑃𝑗 , 𝑗 = 1, . . . , 𝑛,

𝜕𝜌

𝜕𝑃𝑗
= −𝜕𝑋𝑗

𝜕𝑧
, 𝑗 = 1, . . . , 𝑛,

𝜕𝜌

𝜕𝑍
= −1

𝜌

𝜕𝜌

𝜕𝑧
.

We will show how to obtain the second of these equations

{𝜌,𝑋𝑗}𝑋𝑍𝑃 =

(︂
𝜕𝜌

𝜕𝑋𝑖
+ 𝑃𝑖

𝜕𝜌

𝜕𝑍

)︂
𝜕𝑋𝑗

𝜕𝑃𝑖
−
(︂
𝜕𝑋𝑗

𝜕𝑋𝑖
+ 𝑃𝑖

𝜕𝑋𝑗

𝜕𝑍

)︂
𝜕𝜌

𝜕𝑃𝑖
= − 𝜕𝜌

𝜕𝑃𝑗
,

since 𝜕𝑋𝑗/𝜕𝑃𝑖 = 𝜕𝑋𝑗/𝜕𝑍 = 0 and 𝜕𝑋𝑖/𝜕𝑋𝑗 = 𝛿𝑖𝑗 . Also, by one of the identi-
ties (3.8), {𝜌,𝑋𝑗}𝑋𝑍𝑃 = (1/𝜌){𝜌,𝑋𝑗}𝑥𝑧𝑝 = 𝜕𝑋𝑗/𝜕𝑧. Similar calculations produce
the other two equations.
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Theorem 3.4. Let 𝑋1, . . . , 𝑋𝑛, 𝑍 be 𝑛 + 1 independent functions which are
pairwise in involution with respect to the Mayer bracket. Then there is precisely one
contact transformation for which these are the first 𝑛+1 functions and the remaining
𝑛+1 functions 𝑃1, . . . , 𝑃𝑛, 𝜌 may be obtained by solving a linear system of equations.

Proof. If the 𝑛 + 1 independent functions 𝑍,𝑋1, . . . , 𝑋𝑛 of (𝑥, 𝑧, 𝑝) are pairwise in
involution, that is if they satisfy {𝑍,𝑋𝑖}𝑥𝑧𝑝 = 0, {𝑋𝑖, 𝑋𝑗}𝑥𝑧𝑝 = 0, then the functions
𝑃1, . . . , 𝑃𝑛, 𝜌 can be calculated as follows. By equating coefficients in the defining
identity (3.6) for a contact transformation, we obtain the system

𝑃𝑖

𝜌

𝜕𝑋𝑖

𝜕𝑥𝑗
− 1

𝜌

𝜕𝑍

𝜕𝑥𝑗
= 𝑝𝑗 , 𝑗 = 1, . . . , 𝑛,

𝑃𝑖

𝜌

𝜕𝑋𝑖

𝜕𝑧
− 1

𝜌

𝜕𝑍

𝜕𝑧
= −1,

𝑃𝑖

𝜌

𝜕𝑋𝑖

𝜕𝑝𝑗
− 1

𝜌

𝜕𝑍

𝜕𝑝𝑗
= 0, 𝑗 = 1, . . . , 𝑛.

(3.9)

Since 𝑋1, . . . , 𝑋𝑛, 𝑍 are functionally independent, the rank of the matrix(︂
𝑋𝑥 𝑍𝑥

𝑋𝑧 𝑍𝑧

)︂
=

(︃
𝜕𝑋𝑖

𝜕𝑥𝑗

𝜕𝑍
𝜕𝑥𝑗

𝜕𝑋𝑖

𝜕𝑧
𝜕𝑍
𝜕𝑧

)︃
(3.10)

is 𝑛 + 1, so the first 𝑛 + 1 equations in the above system can be solved for 𝑃𝑖/𝜌,
𝑖 = 1, . . . , 𝑛, and 1/𝜌. We now must show that the last 𝑛 equations in system (3.9)
are satisfied identically. For that consider the expression

𝑃𝑗

𝜌
{𝑋𝑖, 𝑋𝑗} −

1

𝜌
{𝑋𝑖, 𝑍} =

(︂
𝜕𝑋𝑖

𝜕𝑥𝑘
+ 𝑝𝑘

𝜕𝑋𝑖

𝜕𝑧

)︂(︂
𝑃𝑗

𝜌

𝜕𝑋𝑗

𝜕𝑝𝑘
− 1

𝜌

𝜕𝑍

𝜕𝑝𝑘

)︂
−
(︂
𝜕𝑋𝑗

𝜕𝑥𝑘

𝑃𝑗

𝜌
− 1

𝜌

𝜕𝑍

𝜕𝑥𝑘

)︂
𝜕𝑋𝑖

𝜕𝑝𝑘
− 𝑝𝑘

(︂
𝜕𝑋𝑗

𝜕𝑧

𝑃𝑗

𝜌
− 𝜕𝑍

𝜕𝑧

1

𝜌

)︂
𝜕𝑋𝑖

𝜕𝑝𝑘
.

Taking in consideration the validity of the first two equations in system (3.9) and
that {𝑋𝑖, 𝑋𝑗} = 0 and {𝑋𝑖, 𝑍} = 0, we obtain(︂

𝜕𝑋𝑖

𝜕𝑥𝑘
+ 𝑝𝑘

𝜕𝑋𝑖

𝜕𝑧

)︂(︂
𝑃𝑗

𝜌

𝜕𝑋𝑗

𝜕𝑝𝑘
− 1

𝜌

𝜕𝑍

𝜕𝑝𝑘

)︂
= 0. (3.11)

Since the columns of the matrix (3.10) are linearly independent, identity (3.11)
implies that the last 𝑛 equations in system (3.9) are identically satisfied.

4. One-parameter families of contact transformations

We now consider the special system of 2𝑛+ 1 differential equations for 2𝑛+ 1
unknowns 𝑋 = (𝑋1, . . . , 𝑋𝑛), 𝑍, 𝑋 = (𝑃1, . . . , 𝑃𝑛)

�̇� = 𝜉(𝑋,𝑍, 𝑃, 𝑡), �̇� = 𝜁(𝑋,𝑍, 𝑃, 𝑡), �̇� = 𝜋(𝑋,𝑍, 𝑃, 𝑡), (4.1)
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which satisfy the initial conditions

𝑋 = 𝑥, 𝑍 = 𝑧, 𝑃 = 𝑝, when 𝑡 = 0. (4.2)

The functions 𝜉 = (𝜉1, . . . , 𝜉𝑛), 𝜁, 𝜋 = (𝜋1, . . . , 𝜋𝑛) are all assumed to be continuously
differentiable. The solutions to (4.1), (4.2)

𝑋 = 𝑋(𝑥, 𝑧, 𝑝, 𝑡), 𝑍 = 𝑍(𝑥, 𝑧, 𝑝, 𝑡), 𝑃 = 𝑃 (𝑥, 𝑧, 𝑝, 𝑡) (4.3)

determine a family of transformations

𝑆𝑡 : (𝑥, 𝑧, 𝑝) → (𝑋,𝑍, 𝑃 ). (4.4)

In this section we give the necessary and sufficient conditions for the transforma-
tions (4.4) to be contact transformations uniformly in 𝑡.

Theorem 4.1. In order for solution (4.3) of system (4.1) to represent a one-
parameter family of contact transformations containing the identity, it is neces-
sary that (4.1) be a canonical system, that is, that there exists a function, ℋ =
ℋ(𝑋,𝑍, 𝑃, 𝑡) called the characteristic function, such that the system (4.1) has the
form

𝑑

𝑑𝑡
𝑋𝑗 =

𝜕ℋ
𝜕𝑃𝑗

,

𝑑

𝑑𝑡
𝑍 = 𝑃𝑗

𝜕ℋ
𝜕𝑃𝑗

−ℋ,

𝑑

𝑑𝑡
𝑃𝑗 = − 𝜕ℋ

𝜕𝑋𝑗
− 𝑃𝑗

𝜕ℋ
𝜕𝑍

, 𝑗 = 1, . . . , 𝑛.

(4.5)

Proof. In Section 3 we had found that the transformations must satisfy

𝑃 · 𝑑𝑋 − 𝑑𝑍 = 𝜌(𝑝 · 𝑑𝑥− 𝑑𝑧), 𝜌 ̸= 0. (4.6)

(4.6) is supposed to hold when the differentials are calculated only with respect to
the spatial variables. When 𝑋, 𝑍, 𝑃 also depend on 𝑡, then 𝑑𝑍 is given by

𝑑𝑍 =
𝜕𝑍

𝜕𝑥𝑗
𝑑𝑥𝑗 +

𝜕𝑍

𝜕𝑧
𝑑𝑧 +

𝜕𝑍

𝜕𝑝𝑗
𝑑𝑝𝑗 +

𝜕𝑍

𝜕𝑡
𝑑𝑡.

A similar assertion holds for the 𝑑𝑋𝑖. Thus, condition (4.6) must be replaced by

𝑃𝑖 𝑑𝑋𝑖 − 𝑑𝑍 −
(︂
𝑃𝑖

𝜕𝑋𝑖

𝜕𝑡
− 𝜕𝑍

𝜕𝑡

)︂
𝑑𝑡 = 𝜌(𝑝𝑖 𝑑𝑥𝑖 − 𝑑𝑧). (4.7)

By (4.1), 𝜕𝑋𝑖/𝜕𝑡 = 𝜉𝑖(𝑋,𝑍, 𝑃, 𝑡), 𝜕𝑍/𝜕𝑡 = 𝜁(𝑋,𝑍, 𝑃, 𝑡). Let us introduce the
function

ℋ ≡ ℋ(𝑋,𝑍, 𝑃, 𝑡) ≡ 𝑃𝑖𝜉𝑖(𝑋,𝑍, 𝑃, 𝑡)− 𝜁(𝑋,𝑍, 𝑃, 𝑡). (4.8)

Then relation (4.7) takes the form

𝑃 · 𝑑𝑋 − 𝑑𝑍 = 𝜌(𝑝 · 𝑑𝑥− 𝑑𝑧) +ℋ 𝑑𝑡. (4.9)
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If 𝑑𝑡 = 0, equation (4.9) reduces to (4.6). (4.9) represents a system of 2𝑛 + 2
equations relating the variables (𝑋,𝑍, 𝑃, 𝑡) with those of (𝑥, 𝑧, 𝑝, 𝑡), which is obtained
by expanding the differentials and comparing coefficients. To obtain the conditions
we seek, we shall rewrite these conditions in the (𝑋,𝑍, 𝑃, 𝑡) variables. This is most
simply done by working directly with (4.9). First differentiate (4.9) with respect to
𝑡 and note that the differential operator, 𝑑, commutes with the differentiation 𝑑/𝑑𝑡.
This leads to

𝜋𝑗 𝑑𝑋𝑗 + 𝑃𝑗 𝑑𝜉𝑗 − 𝑑𝜁 = �̇�(𝑝𝑗 𝑑𝑥𝑗 − 𝑑𝑧) + ℋ̇ 𝑑𝑡, (4.10)

where 𝜕𝑃𝑗/𝜕𝑡 = 𝜋𝑗(𝑋,𝑍, 𝑃, 𝑡), the dot, as usual, represents 𝑑/𝑑𝑡. From (4.9)
and (4.10) we obtain

𝜋𝑗 𝑑𝑋𝑗 + 𝑃𝑗 𝑑𝜉𝑗 − 𝑑𝜁 − ℋ̇ 𝑑𝑡 =
�̇�

𝜌
(𝑃𝑗 𝑑𝑋𝑗 − 𝑑𝑍 −ℋ 𝑑𝑡) . (4.11)

From (4.8) we find 𝑑ℋ = 𝜉𝑗 𝑑𝑃𝑗 + 𝑃𝑗 𝑑𝜉𝑗 − 𝑑𝜁 so that (4.11) takes the form

𝑑ℋ+ 𝜋𝑗 𝑑𝑋𝑗 − 𝜉𝑗 𝑑𝑃𝑗 =
�̇�

𝜌
(𝑃𝑗 𝑑𝑋𝑗 − 𝑑𝑍) +

(︂
ℋ̇ − �̇�

𝜌
ℋ
)︂

𝑑𝑡. (4.12)

Expand 𝑑ℋ in the form

𝑑ℋ =
𝜕ℋ
𝜕𝑋𝑗

𝑑𝑋𝑗 +
𝜕ℋ
𝜕𝑍

𝑑𝑍 +
𝜕ℋ
𝜕𝑃𝑗

𝑑𝑃𝑗 +
𝜕ℋ
𝜕𝑡

𝑑𝑡,

insert the result into (4.12) and compare coefficients to obtain the following system

𝜕ℋ
𝜕𝑋𝑗

= −𝜋𝑗 +
�̇�

𝜌
𝑃𝑗 ,

𝜕ℋ
𝜕𝑃𝑗

= 𝜉𝑗 ,

𝜕ℋ
𝜕𝑍

= − �̇�

𝜌
,

𝜕ℋ
𝜕𝑡

= ℋ̇ − �̇�

𝜌
ℋ.

(4.13)

The 𝜉𝑗 and 𝜋𝑗 are obtained directly from (4.13) by eliminating the quotient �̇�/𝜌 and
solving. To obtain 𝜁 combine (4.8) with (4.13). We find

𝜉𝑗 =
𝜕ℋ
𝜕𝑃𝑗

,

𝜁 = 𝑃𝑗𝜉𝑗 −ℋ = 𝑃𝑗
𝜕ℋ
𝜕𝑃𝑗

−ℋ,

𝜋𝑗 = − 𝜕ℋ
𝜕𝑋𝑗

− 𝑃𝑗
𝜕ℋ
𝜕𝑍

, 𝑗 = 1, . . . , 𝑛,

(4.14)

which is system (4.5).

The converse of this theorem is also valid. We state and prove

Theorem 4.2. The solution to the canonical equations (4.5), which satisfy the
initial conditions (4.2), generates a one-parameter family of contact transformations,
which for 𝑡 = 0 contains the identity.
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Proof. We must show that every solution of (4.5) and (4.2) satisfies the strip con-
dition (4.9). For notational purposes let us set Ω = Ω(𝑡) ≡ 𝑃𝑗 𝑑𝑋𝑗 − 𝑑𝑍 −ℋ 𝑑𝑡 and
Ω(0) ≡ 𝜔 = 𝑝𝑗 𝑑𝑥𝑗 − 𝑑𝑧. Then the strip condition (4.9) takes the form Ω(𝑡) = 𝜌𝜔.
Set up a differential equation for Ω making use of (4.5). The proof is simply a
calculation. We find Ω̇ = �̇�𝑗 𝑑𝑋𝑗 + 𝑃𝑗 𝑑�̇�𝑗 − 𝑑�̇� − ℋ̇ 𝑑𝑡. Since ℋ = 𝑃𝑗 𝑑�̇�𝑗 − 𝑑�̇�,

Ω̇ = �̇�𝑗 𝑑𝑋𝑗 − �̇�𝑗𝑃𝑗

= −
(︂

𝜕ℋ
𝜕𝑋𝑗

+ 𝑃𝑗
𝜕ℋ
𝜕𝑍

)︂
𝑑𝑋𝑗 −

𝜕ℋ
𝜕𝑃𝑗

𝑑𝑃𝑗

= −
(︂

𝜕ℋ
𝜕𝑋𝑗

𝑑𝑋𝑗 +
𝜕ℋ
𝜕𝑃𝑗

𝑑𝑃𝑗

)︂
− 𝜕ℋ

𝜕𝑍
(𝑃𝑗 𝑑𝑋𝑗)

= −
(︂

𝜕ℋ
𝜕𝑋𝑗

𝑑𝑋𝑗 +
𝜕ℋ
𝜕𝑃𝑗

𝑑𝑃𝑗

)︂
+

𝜕ℋ
𝜕𝑍

𝑑𝑍 +
𝜕ℋ
𝜕𝑡

𝑑𝑡

− 𝜕ℋ
𝜕𝑍

(𝑃𝑗 𝑑𝑋𝑗) +
𝜕ℋ
𝜕𝑍

𝑑𝑍 +
𝜕ℋ
𝜕𝑡

𝑑𝑡

= − 𝑑ℋ− 𝜕ℋ
𝜕𝑍

(𝑃𝑗 𝑑𝑋𝑗 − 𝑑𝑍 −ℋ 𝑑𝑡)− 𝜕ℋ
𝜕𝑍

ℋ 𝑑𝑡+
𝜕ℋ
𝜕𝑡

𝑑𝑡

= − 𝑑ℋ− 𝜕ℋ
𝜕𝑍

Ω− 𝜕ℋ
𝜕𝑍

ℋ 𝑑𝑡+
𝜕ℋ
𝜕𝑡

𝑑𝑡.

Thus we obtain the ODE for Ω

Ω̇ = −𝑑ℋ− 𝜕ℋ
𝜕𝑍

Ω− 𝜕ℋ
𝜕𝑍

ℋ 𝑑𝑡+
𝜕ℋ
𝜕𝑡

𝑑𝑡.

Next we calculate, using (4.5)

𝑑ℋ
𝑑𝑡

=
𝜕ℋ
𝜕𝑋𝑗

𝑑𝑋𝑗

𝑑𝑡
+

𝜕ℋ
𝜕𝑃𝑗

𝑑𝑃𝑗

𝑑𝑡
+

𝜕ℋ
𝜕𝑍

𝑑𝑍

𝑑𝑡
+

𝜕ℋ
𝜕𝑡

=
𝜕ℋ
𝜕𝑋𝑗

𝜕ℋ
𝜕𝑃𝑗

− 𝜕ℋ
𝜕𝑃𝑗

(︂
𝜕ℋ
𝜕𝑋𝑗

+ 𝑃𝑗
𝜕ℋ
𝜕𝑍

)︂
+

𝜕ℋ
𝜕𝑍

(︂
𝑃𝑗

𝜕ℋ
𝜕𝑃𝑗

−ℋ
)︂
+

𝜕ℋ
𝜕𝑡

= −ℋ𝜕ℋ
𝜕𝑍

+
𝜕ℋ
𝜕𝑡

.

Thus,

𝑑ℋ = −ℋ𝜕ℋ
𝜕𝑍

𝑑𝑡+
𝜕ℋ
𝜕𝑡

𝑑𝑡

and so from the previous calculation

Ω̇ = −𝜕ℋ
𝜕𝑍

Ω.

We integrate to obtain Ω = 𝜌𝜔, where

𝜌 = exp

(︂
−
∫︁ 𝑡

0

𝜕ℋ
𝜕𝑍

𝑑𝑡

)︂
, (4.15)

which proves the assertion.
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We close this section with a few remarks on the characteristic function ℋ =
ℋ(𝑋,𝑍, 𝑃, 𝑡). From the forth equation in (4.13), we have

𝜌
𝜕ℋ
𝜕𝑡

= 𝜌ℋ̇ − �̇�ℋ.

Divide by 𝜌2 to find
1

𝜌

𝜕ℋ
𝜕𝑡

=
𝜌ℋ̇ − �̇�ℋ

𝜌2
=

𝑑

𝑑𝑡

(︂
ℋ
𝜌

)︂
.

Integrate with respect to 𝑡 to find

ℋ
𝜌

− ℋ0

𝜌0
=

∫︁ 𝑡

0

1

𝜌

𝜕ℋ
𝜕𝑡

𝑑𝑡, (4.16)

where the superscript indicates that the arguments of ℋ and 𝜌 are to be taken at
𝑡 = 0: 𝜌0 = 𝜌(𝑥, 𝑧, 𝑝, 0), ℋ0 = ℋ(𝑥, 𝑧, 𝑝, 0). The fact that 𝜌0 = 1 is a consequence
of (4.15).

We consider two special cases.
Case 1. 𝜕ℋ/𝜕𝑡 = 0 so that ℋ does not depend explicitly on 𝑡.
Then the family {𝑆𝑡} represents a one-parameter group of contact transforma-

tions. (The proof can be found in [14].) Relation (4.16) implies that

ℋ(𝑋,𝑍, 𝑃 ) = ℋ0(𝑥, 𝑧, 𝑝)𝜌(𝑥, 𝑧, 𝑝). (4.17)

(4.17) has a geometric interpretation. Let us think of the parameter 𝑡 as the time
and the curve along which (𝑋,𝑍, 𝑃 ) = 𝑆𝑡(𝑥, 𝑧, 𝑝) moves in R2𝑛+1 as its orbit under
the group of contact transformations. Along this orbit the function ℋ(𝑋,𝑍, 𝑃 ), up
to the factor ℋ0, coincides with 𝜌(𝑋,𝑍, 𝑃 ).

If in particular ℋ0 = 0 at a point (𝑥, 𝑧, 𝑝), then ℋ(𝑋,𝑍, 𝑃 ) = 0 along the whole
orbit through it. The strip condition is along the orbit. If we think of (𝑋,𝑍, 𝑃 ) as
an element in R𝑛+1, then we refer to the orbit as an orbital strip of the group of
contact transformations in R𝑛+1. For points on the orbital strip, the second equation
in (4.5) simplifies to

𝑑𝑍

𝑑𝑡
= 𝑃𝑗

𝜕ℋ
𝜕𝑃𝑗

, 𝑗 = 1, . . . , 𝑛.

Case 2. 𝜕ℋ/𝜕𝑍 = 0 so that ℋ does not depend explicitly on 𝑍 and by (4.15)
𝜌 = 𝜌(𝑋,𝑍, 𝑃, 𝑡) ≡ 1.

The canonical equations (4.5) reduce to

𝑑𝑋𝑗

𝑑𝑡
=

𝜕ℋ
𝜕𝑃𝑗

,
𝑑𝑃𝑗

𝑑𝑡
= − 𝜕ℋ

𝜕𝑋𝑗
(4.18)

together with the additional equation

𝑑𝑍

𝑑𝑡
= 𝑃𝑗

𝜕ℋ
𝜕𝑃𝑗

−ℋ, 𝑗 = 1, . . . , 𝑛 (4.19)
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for the construction of 𝑍.
The transformations determined by (4.18) are the special, or 𝑥𝑝-transformations

which commute with translations along the 𝑧-axis. Equation (4.9) in this case reads

𝑃𝑗 𝑑𝑋𝑗 − 𝑝𝑗 𝑑𝑥𝑗 = 𝑑(𝑍 − 𝑧) +ℋ 𝑑𝑡.

If in addition, 𝜕ℋ/𝜕𝑡 = 0, then ℋ = ℋ0. The family determined by solutions
to (4.18) is a group of contact transformations which on the orbit passing through
(𝑥, 𝑧, 𝑝) satisfies ℋ(𝑋,𝑍, 𝑃 ) = ℋ0(𝑥, 𝑧, 𝑝).

5. Transformations of canonical differential equations

In this section we show that the form of the generalized Hamiltonian system is
preserved by contact transformations.

Consider the generalized Hamiltonian system

�̇�𝑗 =
𝜕ℋ
𝜕𝑝𝑗

,

�̇� = 𝑝𝑗
𝜕ℋ
𝜕𝑝𝑗

−ℋ,

�̇�𝑗 = − 𝜕ℋ
𝜕𝑥𝑗

− 𝑝𝑗
𝜕ℋ
𝜕𝑧

, 𝑗 = 1, . . . , 𝑛,

(5.1)

where 𝐻 = 𝐻(𝑥, 𝑧, 𝑝, 𝑡), and with initial values

𝑥𝑗(0) = 𝑥0
𝑗 , 𝑧(0) = 𝑧0, 𝑝𝑗(0) = 𝑝0𝑗 , 𝑗 = 1, . . . , 𝑛. (5.2)

Theorem 5.1. If system (5.1) with initial values (5.2) is transformed with the
contact transformation

𝑇𝑡 :

𝑋𝑗 = 𝑋𝑗(𝑥, 𝑧, 𝑝, 𝑡),

𝑍 = 𝑍(𝑥, 𝑧, 𝑝, 𝑡),

𝑃𝑗 = 𝑃𝑗(𝑥, 𝑧, 𝑝, 𝑡), 𝑗 = 1, . . . , 𝑛,

(5.3)

then the transformed system is a generalized Hamiltonian system with characteristic
function 𝜎𝐻 +𝐾, where 𝐾(𝑋,𝑍, 𝑃, 𝑡) and 𝜎(𝑋,𝑍, 𝑃, 𝑡) are the characteristic func-
tion and the multiplier of the contact transformation 𝑇𝑡, i.e., 𝑃𝑗 𝑑𝑋𝑗 − 𝑑𝑍 −𝐾 𝑑𝑡 =
𝜎(𝑝𝑗 𝑑𝑥𝑗 − 𝑑𝑧).

Proof. Let 𝑆𝑡 denote the contact transformation defined by the solution of the gen-
eralized Hamiltonian system (5.1)–(5.2), i.e., let (𝑥, 𝑧, 𝑝) = 𝑆𝑡(𝑥

0, 𝑧0, 𝑝0). Now carry
out the substitution indicated by (5.3). The initial values transform as follows

(𝑋0, 𝑍0, 𝑃 0) = 𝑇0(𝑥
0, 𝑧0, 𝑝0) =

(︀
𝑋(𝑥0, 𝑧0, 𝑝0, 0), 𝑍(𝑥0, 𝑧0, 𝑝0, 0), 𝑃 (𝑥0, 𝑧0, 𝑝0, 0)

)︀
and the solutions to (5.1)– (5.2) transform to functions of (𝑋0, 𝑍0, 𝑃 0, 𝑡) according
to

(𝑋,𝑍, 𝑃 ) = 𝑇𝑡𝑆𝑡𝑇
−1
0 (𝑋0, 𝑍0, 𝑃 0). (5.4)
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Let 𝑆*
𝑡 ≡ 𝑇𝑡𝑆𝑡𝑇

−1
0 . {𝑆*

𝑡 } is a one parameter family of contact transformations, so
there exists a canonical system for it which is determined by a characteristic function
ℋ* = ℋ*(𝑋,𝑍, 𝑃, 𝑡). We must determine ℋ* in terms of known quantities.

Since 𝑇0 is a contact transformation, we find from (5.3)

𝑃 0
𝑗 𝑑𝑋0

𝑗 − 𝑑𝑍0 = 𝜎0
(︀
𝑝0𝑗 𝑑𝑥

0
𝑗 − 𝑑𝑧0

)︀
, (5.5)

where 𝜎0 = 𝜎(𝑋0, 𝑍0, 𝑃 0, 0). Further,

𝑝𝑗 𝑑𝑥𝑗 − 𝑑𝑧 = 𝜌
(︀
𝑝0𝑗 𝑑𝑥

0
𝑗 − 𝑑𝑧0

)︀
+ℋ 𝑑𝑡. (5.6)

Now, using (5.3), (5.6), and (5.5) we find

𝑃𝑗 𝑑𝑋𝑗 − 𝑑𝑍 = 𝜎
(︀
𝑝𝑗 𝑑𝑥𝑗 − 𝑑𝑧

)︀
+𝐾 𝑑𝑡

= 𝜎
(︀
𝜌(𝑝0𝑗 𝑑𝑥

0
𝑗 − 𝑑𝑧0) +ℋ 𝑑𝑡

)︀
+𝐾 𝑑𝑡

= 𝜎
(︁ 𝜌

𝜎0
(𝑃 0

𝑗 𝑑𝑋0
𝑗 − 𝑑𝑍0) +ℋ 𝑑𝑡

)︁
+𝐾 𝑑𝑡

=
𝜎𝜌

𝜎0
(𝑃 0

𝑗 𝑑𝑋0
𝑗 − 𝑑𝑍0) + (𝜎ℋ+𝐾) 𝑑𝑡.

The coefficient of 𝑑𝑡 represents the desired characteristic function ℋ*=ℋ*(𝑋,𝑍, 𝑃, 𝑡)

= (𝜎ℋ+𝐾). Observe that 𝜎 and 𝐾 are already evaluated at (𝑋,𝑍, 𝑃, 𝑡). The func-
tion 𝐻, initially evaluated at (𝑥, 𝑧, 𝑝, 𝑡) must simply be rewritten in terms of the new
variables (𝑋,𝑍, 𝑃 ) = 𝑇−1

𝑡 (𝑥, 𝑧, 𝑝). Having determined the characteristic function ℋ*

we can rewrite the system (5.1) immediately in terms of the new variables.

We close this section with a final remark. Suppose ℋ is independent of 𝑧 so
that the canonical equations are

�̇�𝑗 =
𝜕ℋ
𝜕𝑝𝑗

, �̇�𝑗 = − 𝜕ℋ
𝜕𝑥𝑗

. (5.7)

Now make the substitution

𝑋 = 𝑋(𝑥, 𝑝), 𝑃 = 𝑃 (𝑥, 𝑝) with 𝑃 · 𝑑𝑋 = 𝑝 · 𝑑𝑥. (5.8)

This is a special contact transformation which is independent of the parameter 𝑡.
Then 𝜎 = 1, 𝐾 = 0 and ℋ* is obtained by evaluating ℋ at 𝑥 = 𝑥(𝑋,𝑃 ), 𝑝 = 𝑝(𝑋,𝑃 )

and the canonical equations in the (𝑋,𝑃 ) variables are

�̇�𝑗 =
𝜕ℋ
𝜕𝑃𝑗

, �̇�𝑗 = − 𝜕ℋ
𝜕𝑋𝑗

. (5.9)

Since (5.7) transforms in (5.9) with ℋ* arising from ℋ by means of (5.8), the special
contact transformation is also called a canonical transformation.
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6. Liouville-type integrability theorem

This section reviews two remarkable theorems. The first gives a necessary and
sufficient condition for the integrability of the generalized Hamiltonian system in
terms of a complete set of first integrals. The second provides a method of generating
such first integrals.

Consider the generalized Hamiltonian system (5.1). The following theorem
extends the classical theorem of Liouville which gives a necessary and sufficient
condition for the integrability of the classical Hamiltonian system in terms of a
complete set of first integrals which are in involution with respect to the Poisson
bracket.

Theorem 6.1. Suppose 𝑋1(𝑥, 𝑧, 𝑝, 𝑡), . . . , 𝑋𝑛(𝑥, 𝑧, 𝑝, 𝑡), 𝑍(𝑥, 𝑧, 𝑝, 𝑡) are 𝑛 + 1
independent first integrals for (5.1) which are pairwise in involution with respect to
the Mayer bracket:

{𝑋𝑖, 𝑋𝑗}𝑥𝑧𝑝 = 0, 𝑖, 𝑗 = 1, . . . , 𝑛,

{𝑋𝑖, 𝑍}𝑥𝑧𝑝 = 0, 𝑖 = 1, . . . , 𝑛.

Then the general solution to the system (5.1) can be constructed by means of a
quadrature.

Proof. Construct the functions 𝑃1, . . . , 𝑃𝑛 so that (𝑋,𝑍, 𝑃 ) is a contact transfor-
mation (follow the procedure in the proof of Theorem 3.4). Let 𝐻*(𝑋,𝑍, 𝑃 ) be
the characteristic function of this contact transformation. Along a solution of the
system (5.1), 𝑋𝑖 = 𝑐𝑖, 𝑍 = 𝛾, where 𝑐𝑖 and 𝛾 are constants, so that �̇�𝑖 = �̇� = 0.
From the proof of Theorem 5.1 we know that

𝜕𝐻*

𝜕𝑃𝑗
= �̇�𝑖 = 0, 𝑗 = 1, . . . , 𝑛,

hence 𝐻* = 𝐻*(𝑐, 𝛾, 𝑡). In the new variables

�̇�𝑗 = −𝜕𝐻*

𝜕𝑐𝑗
− 𝑃𝑗

𝜕𝐻*

𝜕𝛾
, 𝑗 = 1, . . . , 𝑛,

which is immediately solvable. The complete solution is given by

𝑋𝑖(𝑥, 𝑧, 𝑝, 𝑡) = 𝑐𝑖, 𝑖 = 1 . . . , 𝑛,

𝑍(𝑥, 𝑧, 𝑝, 𝑡) = 𝛾,

𝑃𝑖(𝑥, 𝑧, 𝑝, 𝑡) = −
(︀∫︀

exp
(︀∫︀ 𝜕𝐻*(𝑐,𝛾,𝑡)

𝜕𝛾 𝑑𝑡
)︀
𝜕𝐻*

𝜕𝑐𝑗
(𝑐, 𝛾, 𝑡) 𝑑𝑡

)︀⧸︀
exp

(︀∫︀
𝜕𝐻*

𝜕𝛾 𝑑𝑡
)︀
, 𝑖 = 1, . . . , 𝑛.

We now solve this system for 𝑥1, . . . , 𝑥𝑛, 𝑧, 𝑝1, . . . , 𝑝𝑛.

Theorem 6.2. 𝐹 (𝑥, 𝑧, 𝑝, 𝑡) = const is a first integral for the generalized Hamil-
tonian system (5.1) if and only if it satisfies 𝐹𝑡 + {𝐹,𝐻} − 𝐹𝑧𝐻 = 0, where {𝐹,𝐻}
is the Mayer bracket of 𝐹 and the characteristic function 𝐻 of system (5.1). The
subscripts denote partial differentiation.
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Proof. We observe that if 𝐹 (𝑥, 𝑧, 𝑝, 𝑡) is a first integral for system (6.1), then

0 = 𝐹𝑡 +
𝜕𝐹

𝜕𝑥𝑗
�̇�𝑗 +

𝜕𝐹

𝜕𝑧
�̇� +

𝜕𝐹

𝜕𝑝𝑗
�̇�𝑗

= 𝐹𝑡 + 𝐹𝑥𝑗𝐻𝑝𝑗 + 𝐹𝑧(𝑝𝑗𝐻𝑝𝑗 −𝐻) + 𝐹𝑝𝑗 (−𝐻𝑥𝑗 − 𝑝𝑗𝐻𝑧)

= 𝐹𝑡 + (𝐹𝑥𝑗 + 𝑝𝑗𝐹𝑧)𝐻𝑝𝑗 − (𝐻𝑥𝑗 + 𝑝𝑗𝐻𝑧)𝐹𝑝𝑗 − 𝐹𝑧𝐻.

We therefore obtain the equality 𝐹𝑡+{𝐹,𝐻}−𝐹𝑧𝐻 = 0, which is a first order partial
differential equation for 𝐹 having (5.1) as its system of characteristic equations.

The following theorem gives a method for generating first integrals for the
generalized Hamiltonian system.

Theorem 6.3. If 𝐹 (𝑥, 𝑧, 𝑝, 𝑡) = 𝛼, 𝐺(𝑥, 𝑧, 𝑝, 𝑡) = 𝛽, with 𝛼 and 𝛽 constants,
are first integrals for the system (5.1), then 𝜌{𝐹,𝐺} is also a first integral for the
same system.

Proof. Let 𝐹 (𝑥, 𝑧, 𝑝, 𝑡) = 𝛼, 𝐺(𝑥, 𝑧, 𝑝, 𝑡) = 𝛽, 𝛼 and 𝛽 constants, be two first integrals
for system (5.1). The Jacobi identity for the Mayer bracket is

{𝐹, {𝐺,𝐻}}+ {𝐺, {𝐻,𝐹}}+ {𝐻, {𝐹,𝐺}}+𝐹𝑧{𝐺,𝐻}+𝐺𝑧{𝐻,𝐹}+𝐻𝑧{𝐹,𝐺} = 0.

Replace {𝐹,𝐻} and {𝐺,𝐻} using the identity provided by Theorem 6.2 and rear-
range to obtain the identity

− 𝜕

𝜕𝑡
{𝐹,𝐺} − {{𝐹,𝐺}, 𝐻}+𝐻

𝜕

𝜕𝑧
{𝐹,𝐺}+ 𝜕𝐻

𝜕𝑧
{𝐹,𝐺} = 0.

We can rewrite this identity as 𝑑(𝜌{𝐹,𝐺})/𝑑𝑡 = 0, where 𝜌 = exp
(︀
−
∫︀ 𝑡

0
𝜕𝐻
𝜕𝑧 𝑑𝜏

)︀
and

conclude that along a solution, 𝜌{𝐹,𝐺} is a constant.

7. The connection with the variational principle of Herglotz

Let us denote by ℒ ≡ ℒ(𝑥, �̇�, 𝑧, 𝑡) ≡ ℒ(𝑥1, . . . , 𝑥𝑛, �̇�1, . . . , �̇�𝑛, 𝑧, 𝑡) the Lagrange
function, or Lagrangian, of the variables (𝑥, �̇�, 𝑧, 𝑡), 𝑧 = 𝑧(𝑡) is a scalar valued
function of 𝑡. The variable 𝑧 is to be determined as the solution to the differential
equation

�̇� = ℒ(𝑥, �̇�, 𝑧, 𝑡). (7.1)

Observe that (7.1) represents a family of differential equations, since for each 𝑥(𝑡) a
different differential equation arises, that is, given 𝑥(𝑡), 𝑧(𝑡) is determined by (7.1)
so that 𝑧(𝑡) depends on 𝑥(𝑡). A fact which we make explicit by writing 𝑧 = 𝑧[𝑥; 𝑡] =
𝑧(𝑥, �̇�, 𝑡). Problem (7.1) is a kind of control problem. The differential equation for
𝑧 describes a process which depends on (𝑥, �̇�) and which in turn can be chosen, that
is they give us the opportunity to control or guide the process and are therefore
referred to as controls.
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Theorem 7.1. The functions (𝑥, 𝑧) for which the functional 𝑧 has stationary
values satisfies the following system of ordinary differential equations

�̇�𝑗 = ℒ𝑗 + ℒ𝑧𝑝𝑗 , 𝑗 = 1, . . . , 𝑛,

�̇� = ℒ with ℒ𝑗 ≡
𝜕ℒ
𝜕𝑥𝑗

, 𝑝𝑗 ≡
𝜕ℒ
𝜕�̇�𝑗

.
(7.2)

The proof of this theorem can be found in [14].
Herglotz named equations (7.2) generalized Euler-Lagrange equations.

Theorem 7.2. Let ℒ = ℒ(𝑥, �̇�, 𝑧, 𝑡) and suppose det(𝜕2ℒ/𝜕�̇�𝑖𝜕�̇�𝑗) ̸= 0. Then
the solutions to (7.2) determine a family of contact transformations. If ℒ is inde-
pendent of 𝑡, the family is a one-parameter group.

The proof can be found in [9].
Observe that system (7.2) is a generalized Hamiltonian system with

𝐻(𝑥, 𝑝, 𝑧, 𝑡) ≡ 𝑝𝑗 �̇�𝑗 − 𝐿(𝑥, �̇�, 𝑧, 𝑡), 𝑝𝑗 ≡
𝜕𝐿

𝜕�̇�𝑗
.

We can summarize these considerations in the following general statement.

The following four kinds of problems are equivalent:

• Variational problems for the functional 𝑧 defined by the differential equation
(7.1).

• Euler-Lagrange equations for the stationary values of the functional 𝑧 defined
by (7.1).

• The generalized Hamiltonian system.

• One parameter families of contact transformations.

Example 7.1. Consider the Lagrangian function 𝐿 = 𝑚�̇�2/2 − 𝑙𝑥2/2 − 𝛼𝑧,
where 𝑚, 𝑙, 𝛼 are positive constants. Then 𝐿�̇� = 𝑚�̇� = 𝑝, 𝐿𝑥 = −𝑙𝑥, 𝐿𝑧 = −𝛼. The
Hamiltonian or characteristic function 𝐻 is

𝐻 = 𝐻(𝑥, 𝑝, 𝑧) =
𝑝2

2𝑚
+

𝑙𝑥2

2
+ 𝛼𝑧.

The canonical system is

�̇� =
𝑝

𝑚
,

�̇� =
𝑝2

2𝑚
− 𝑙𝑥2

2
− 𝛼𝑧,

�̇� = −(𝑙𝑥+ 𝛼𝑝)

and the Lagrange equation is 𝑚�̈� = −𝑙𝑥− 𝛼𝑚�̇� or

�̈�+ 𝛼�̇�+ 𝜔2𝑥 = 0, where 𝜔2 =
𝑙

𝑚
,

which is the equation of the damped harmonic oscillator.
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Conclusion. Remarks for further research

Every reader of this paper will find suitable directions for his/her research,
nevertheless, I like to mention a few. It will be valuable to see how these results
extend to the variational principle of Herglots with several independent variables,
which is so useful for the variational description of physical fields.

Another direction is to find methods for solving the generalized Euler-Lagrange
equations obtained from Herglotz variational principle, perhaps using the results in
this paper. In addition, to find further properties of the generalized Euler-Lagrange
equations.

Is it possible to extend, in an appropriate sense, the variational principle of
Herglotz to evolution equations? If so, then to investigate their relationship to the
Hamiltonian evolution equations.

A more in-depth treatment of the theory of contact transformations, the gen-
eralized Hamiltonian system and the variational principle of Herglotz can be found
in [14].

In the last 12 years or so about 200 new applications of the variational principle
of Herglotz and the variational principle which generalizes it to one with several
independent variables were published. They are in theoretical and applied physics,
quantum mechanics, field theory, chemistry, mathematics, cosmology, dynamical
systems, and many more branches of the exact sciences. I like to mention [1] and [25].
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