
ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ „СВ. КЛИМЕНТ ОХРИДСКИ“

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

Том 111

ANNUAL OF SOFIA UNIVERSITY “ST. KLIMENT OHRIDSKI”

FACULTY OF MATHEMATICS AND INFORMATICS

Volume 111

EXPLORING SOFTWARE ENGINEERING KNOWLEDGE
DOMAINS

DILYAN GEORGIEV

Software engineering, as the primary value-based process, is influenced by the culture a
given company establishes, formal and informal procedures, and technological improve-
ments introduced during the implementation. Having this in mind it could be articu-
lated further how these innovative methods could result in best practices, communication
flows, strong-bonded teams, and successful projects. By adding an organisational do-
main to the model, the relationships between management’s organizational aspects and
technological development approaches are discussed.
This paper aims to explore and classify the software engineering domains in order to fa-
cilitate the process of managing knowledge within ICT companies. Based on a literature
overview, a model is proposed which combines the multiple perspectives for adopting
knowledge management practices more efficiently.
Keywords: software engineering, knowledge management, software process improve-
ment, knowledge domains, overview
2020 Mathematics Subject Classification: 68N01, 68N30
CCS Concepts:
• Software and its engineering∼Software organization and properties∼Contextual soft-
ware domains

1. Introduction

Software engineering is a relatively new knowledge domain that has been through
many changes during the last few decades. Considering the multiple perspectives
having its influence, it emerges out of the ICT, also recognized as an industry about
other industries because of the role it has in their growth and evolution. Further-
more, software engineering as a “knowledge-intensive activity” [6] results in solutions,
expected to play an even more critical role in society and the economy, for example,

DOI: 10.60063/GSU.FMI.111.35-53 35



36 Dilyan Georgiev / Exploring software engineering knowledge domains

by implementing artificial intelligence technologies in new cyber-physical solutions
such as robotised and autonomous systems – self-driving cars, unmanned aerial ve-
hicle (UAV), intelligent systems, and many more. Enabling software companies to
improve the way they manage their knowledge processes is increasingly important
in this specific moment when hardware-based infrastructures and systems are being
upgraded with digital functionalities. Suppose this is put through a more global per-
spective. In that case, digital solutions aim to tackle complex socio-economic and
ecological problems that, when solved, will cause a radical improvement in the way
our environment is being constructed. Concepts like smart cities, green economies,
and meta worlds could provide a new way of handling those problems and set up a
new course of the way software engineering is progressing.

Knowledge management, on second thought, introduces many instruments,
methods, practices, and approaches for value creation, especially in knowledge-
intensive industries which “has spurred an exponential increase in publications cover-
ing a broad spectrum of diverse and overlapping research areas” [43]. The processes
of codification and personalisation lay in the basis of those instruments since the
company should support knowledge generation, sharing, and transferring among the
employees. This is crucial, especially in software processes that require high exper-
tise since much of the knowledge used for a given solution is wrapped as intangible
assets. However, stimulating these processes could provide a valuable setup for the
project’s growth.

Furthermore, new software engineering methods and concepts are introduced
to validate requirements beforehand and to apply methodologies at the team level.
Hence, a value co-creation system could be established, involving different stake-
holders, and coordinating between complex business models. The user participates
more actively and provides feedback that helps developers work on well-defined func-
tionalities. On the other hand, new solutions require better cohesion between the
architecture of a given product, communication channels, and handling changes
through time. Considering how dynamic and sometimes unpredictable the software
industry is about technologies and paradigms, additional expertise is needed regard-
ing specific solutions and management on different levels for processes, experiences,
and integrations with other systems.

All this demonstrates the need for improved KM processes in software engi-
neering. Thus, a new paradigm is proposed that could provide bigger clarity on
how critical it is to create relations between the different management aspects, on
the one hand, and the software development, on the other hand. Through that
perspective, knowledge seems even more valuable highlighting how important it is
to introduce a new understanding of how it can be efficiently managed within the
software engineering aspect and the organizational and socio-economical contexts.

The main goal of this research is to overview the latest methods, approaches,
and trends in software process improvement, focusing on the domain and organisa-
tional concepts of management. To do that, two critical questions are answered:

• How the organisation handles its intellectual capital to achieve its purposes
and goals?



Ann. Sofia Univ., Fac. Math. and Inf., 111, 2024, 35–53 37

• How is different knowledge being handled in different domains?

After analysing how knowledge evolves within these two aspects, the idea is de-
veloped further by inspecting previous systematic literature reviews. The concepts
that lay the foundations of current ICT evolution are highlighted and a simple model
is introduced, which represents how knowledge can be categorised through the or-
ganisational and domain perspectives (Section 2). This will introduce an advanced
view of areas in which studies have been focused. Then, after overviewing papers
retrieved from different resources, many methods, architectures, and methodologies
are identified that are used to handle the issues related to knowledge management
(Section 3). A short discussion is presented in Section 4, and conclusions and pre-
dictions are made in Section 5.

2. Theoretical background foundations

There have been many changes in how knowledge is perceived in the software
industry. At first, knowledge was considered a possession, “something that could be
captured” [6]. However, currently, it is much more important to have the knowledge
applied than to possess it – it is called the knowledge-in-action concept, and it is
even more critical if not involved in the software process. Being context-dependent,
applying the knowledge is an activity that needs additional preparation, as inter-
nal stakeholders must be aware of the available explicit and tacit knowledge [39].
“Tailoring software development” by applying agile concepts draws the development
team’s attention, strengthens the decision-making process, increases inter-team coor-
dination, and builds collective-code ownership [31]. The creation, storage, transfer,
and retrieval activities must be introduced to generate new ideas that could support
the product, expand its scope, and implement its functionalities according to the
stakeholders’ expectations. Regarding product delivery, there are frameworks like
DevOps that could guarantee product quality and simplify and fasten integration
processes with the production environment [10]. This corresponds with the goals
regarding customer expectations – building trust, bringing satisfaction, and estab-
lishing the belief that “working software is the primary measure of progress” [34].

To define the SE Knowledge domain, a simple concept representation is made,
which includes 16 systematic reviews and their main topics (Figure 1). By compar-
ing different aspects, an analysis of the connections between domains is made, and
subdomains are identified and highlighted.

First, two significant distinctions must be made between KM and SE con-
cepts. When discussing organisational topics, the organisational culture and struc-
ture should be considered, as well as the mission, vision, learning, and growth. The
organisational structure supports transferring tacit knowledge through its levels of
management [3]. The culture company supports, on the other hand, is critical for
sharing between teams and departments. The mission and vision dictate the overall
motivation among the employees, and learning and growth could help to introduce
new opportunities and challenges.



38 Dilyan Georgiev / Exploring software engineering knowledge domains

Figure 1. Main SE and KM concepts found in research data

In terms of domains, the focus is on the knowledge that comes from the specific
environment and requires expertise that could provide solutions to a problem or set
of problems. In that manner, Knowledge management is used to drive at least one
of the five directions of development [43]:

• Ontology of Knowledge;

• Knowledge Management Systems (KMS);

• Role of Information Technologies;

• Managerial and Social issues;

• Knowledge Measurement.

All these directions aim to support the codification and personalisation pro-
cesses – previously defined in the SECI model, which describes the different types of
transformations between tacit and explicit knowledge – “organisational knowledge
creation involves continual interaction” between those two types of knowledge [28].
Those models can be added to the models defined by Nonaka and Takeuchi, Dav-
enport and Prusak, and Stewart, who define it as the “foundation of Knowledge
management and Intellectual Capital field” [50] and later try to set up a starting
point for the current overview.



Ann. Sofia Univ., Fac. Math. and Inf., 111, 2024, 35–53 39

2.1. Domain Knowledge in SE

The term domain is considered abstract since it expands the development field
by adding processes supporting a given product in its early-stage development.
These processes are critical in software engineering since they contribute to the
scope definition, architecture styles, product development, and delivery.

Approaches that establish concepts with higher agility coefficients affirm the
influence of the domain significantly when the scope is constantly changing, or the
software is planned to be supported in long-term exploitation. In both cases, all
decisions must be consistent within the context, technology trends, and other factors.

Most of the papers focus on how different requirements – functional and non-
functional affect the decisions regarding the software structure and the technol-
ogy stack used for its implementation. It is also necessary to distinguish between
methodologies focused on the development process and design patterns related to
the product’s overall performance. Having this in mind, Requirements engineering
is defined as the main driver in SE, on one hand, and Software architecture on the
other hand.

To clarify the approaches applied when generating knowledge, the domain
knowledge is split into Product and Process knowledge fields of research. Thus,
it will be acknowledged how a product could be described and normed according
to the client’s expectations and how the process defined during the project’s im-
plementation could contribute to the team’s efficiency by establishing a stable and
easy-to-follow workflow.

2.1.1. Product knowledge

When a product is described, it is essential to define it as a documented set of
components with their functionalities and relations. Descriptive languages often pro-
vide a machine-readable domain specification that could be enriched by introducing
meta-data and using conflict-detecting mechanisms based on a three-step analytic
process for validation, verification, and performance metrics.

In terms of the state KM is being introduced, this approach is used to transform,
for example, legacy systems “into easily accessible, well described, and interoperable,
modular services” [27]. Later, these descriptions could allow the team to apply
changes more quickly, especially within the agile software delivery process. Thus,
descriptive languages like UML, VEL [5], and WADL have a supportive role in
different development designs such as Quality-driven Architecture Design (QDAD),
Quality-Aware Rapid Software Development Design (Q-Rapids) [16], Transformation
models in dynamic environments [56] and older pipeline dev models like PLUSS
(Product Line Use case modelling for Systems and Software engineering) [1].

Meta-based models represent another perspective – focusing on the software
design, the business process, and its persistence, different data objects could be
categorised into relationships and correspondence models depending on the type,
usability, and consistency [11], prioritization [36], effort estimation, predictions, and
size measurement [42]. Compliance modelling, on the other hand, is focused on the



40 Dilyan Georgiev / Exploring software engineering knowledge domains

abstract level of requirements engineering and identifies challenges in system mod-
elling, such as “missing linkage with the business use cases” [57] or difficulties in
understanding the connection between compliance requirements and design rules.
This adds new ways of understanding and could be developed further into theories
that could provide formalization and focus on stakeholders, opportunities, human re-
sources, working practices, and the software system itself [14]. All these models and
methods could be monitored via classification methods such as Gamification, which,
when applied during the development process, improves the team’s overall perfor-
mance [18], Prototyping, which focuses on data science projects and its three main
elements: Experimentation, Development, and self-discipline [2], or CASE which
considers Technical Debt when trying to reconstruct already existing solutions [24].

In product-centric companies, knowledge networks could provide critical infor-
mation via internal and external communication. For example, PISA models are
based on feedback and use different rating systems so the company can “identify im-
provement indications for next releases” [12]. Including the user in the development
process is also applied in “User-Centred Designs”, used for software products whose
end users have different expertise. Using the software is defined as part of their
working routine [60]. Another way to establish effective product management is the
product road mapping approach [35] or the Visual Milestone Planning (VMP) [15]
approach, which supports the product discovery process and the agile transforma-
tion, including the stakeholders in features prioritization. This applies in industries
such as Video Gaming, where virtual environment simulation is a crucial activity
when validating new ideas.

2.1.2. Process knowledge

Capturing the knowledge that a given software process generates is a challenge
for every team leader. Different methods that support this knowledge-gathering
activity are identified by separating the Software Development Lifecycle (SDLC).
There are various solutions, some focusing on how data is being handled, others –
on monitoring changes and product engineering.

In the early stages of the product, the main goal is to clarify requirements and
come up with a solution based on previous experiences. The portfolio-driven devel-
opment model is an advanced model of APLE (Agile Product Line Engineering) and
demands a more agile and rapid approach using “a collection of projects, programs,
and the other operations for achieving the business goals” [25]. Based on that, col-
lection managers can provide more accurate estimations, especially when working
with fixed resources.

During the implementation phase, the focus is on the value provided and how
the development process is executed – Waterfall, Iterative, V-Shaped, or Spiral.
There are many models with different priorities. However, when it comes to con-
tinuous improvement, there is a need for a transition model like LACE (Lean-Agile
Centre of Excellence) [8], which could remove impediments in large-scale projects.

Later during the quality assessment phase, non-functional requirements like se-
curity, maintainability, transparency, and endurance are considered. The result is



Ann. Sofia Univ., Fac. Math. and Inf., 111, 2024, 35–53 41

a set of maturity models and concepts that target the SDLC, like the Capability
Maturity Model, which aims to “evaluate and assess security engineering practices”,
Cybersecurity Capability Maturity Model, which is designed to help organisations
“to improve their cybersecurity programs”, and Software Assurance Maturity Model,
which is an open framework for practice evaluation [37] which targets self-adaptive
systems and their business goals. Other concepts focus on user feedback and how
it is introduced to the requirements evolution [29], how the agile process’s efficiency
is measured [44], what metrication should be applied in order to increase the trans-
parency in customer-relationships-based platforms [40], microservice applications [7],
business intelligence systems [13] and industrial software products [45], how cyber-
security vulnerabilities could be identified via different communication models [26],
and even how QA could be evaluated statistically via algorithms like Majority voting,
ZenCrowd and Näıve Bayes [17].

2.2. Organisational knowledge in SE

One of the fundamental research projects is a state-of-the-art report which iden-
tifies the need of investigating the connection between how knowledge is managed
and how software processes are coordinated [46]:

Needs regarding behavioural KM:

• The need for domain knowledge;

• The need for knowledge capture and share;

• The need for knowledge about local policies;

• The need for knowledge about who knows what;

Needs regarding technocratic KM:

• The need for knowledge about new technologies;

• The need for knowledge about distance collaboration;

• The need for knowledge about new challenges and opportunities;

Having that in mind, different kinds of research could be further categorised into
two significant types of knowledge management. Similar classifications are discussed
through the years by adding more and more details regarding relationships and
possible outcomes.

2.2.1. Technocratic knowledge

Major studies point out the need for a more technocratic approach toward KM.
This includes cognitive analysis, a closer look at communication within a virtual
reality, event modelling, and data clustering based on common features [38]. This
is essential in project management since codification and documentation are vital



42 Dilyan Georgiev / Exploring software engineering knowledge domains

activities when monitoring [4]. Knowledge modelling focused on applying the con-
ceptual and computational models when extracting functions or processing clustered
data – perceived complexity and managed risks contribute to using knowledge ar-
tifacts. So, several aspects of knowledge management can be classified within this
technocratic approach.

First, starting on a more global level, knowledge management systems should
be focused on software products like audit tools, HR management tools, and col-
laboration software. For example, audit tools help the organisation with crucial
activities via assets mapping, landscape mapping, flowcharts, competitive analysis,
diagnostics, critical function analysis, and benefit assessment [20]. The whole au-
dit modelling is fundamental if the company wants to improve its culture, establish
an effective working environment, and use its knowledge beneficially. From a tech-
nological perspective, the KMS could be centralized and decentralized and apply
techniques like knowledge discovery using surveys and audits, introducing knowl-
edge inventorying and mapping, broadcasting knowledge, competitive analysis, and
diagnostics [21].

Second, going further into info structures and data analysis, the main drivers
are the knowledge itself, characterised by a specific domain, a business process with
a given goal, and a context contributing to the process to be executed [22]. The sys-
tem’s design should be considered according to the scope, developing methodology,
human resources, additional assets, KM practices, and infrastructure elements [23].
Another critical issue that should be discussed is the monitoring process which should
provide abstract, meta-oriented views reflecting the organisational structure [55].

2.2.2. Behavioural knowledge

Regarding the behavioural approach, two main directions should be analysed,
one wrapped around team modelling and finding patterns within larger-scale projects.
The other is based on the Agile framework and how it could transform more promi-
nent companies into strongly connected knowledge communities.

Team patterns. Team patterns usually try to identify specific behaviour types
within a team that could be mapped with improved activities during work. Some
of the papers observed are focused on teamwork in educational institutions where
students are grouped and work in similar environments. Thus, the researchers could
identify different approaches in work by prioritizing the main drivers in software
development. For example, some of the process patterns include engineering-driven
development, where the main drivers are planning and design, code-driven develop-
ment, where coming up with prototypes is more efficient, and ad-hoc development,
where the priority is dynamic and could go towards engineering, coding or verifica-
tion and validation [19].

Research shows that human factors are under deep analysis, and according to
literature overviews, the main clusters describe how they are introduced effectively
in the SE process and how they improve it via education and motivation [32]. A
similar analysis applied on a large scale identifies the need to audit existing methods
and practices so teams can be more prepared and adaptable to any context. For



Ann. Sofia Univ., Fac. Math. and Inf., 111, 2024, 35–53 43

example, Global Software Development focuses on more abstract principles defining
software development as a “human-centric and socio-technical activity” and taking
cultural context into account when managing larger projects [33].

Agile on a larger scale. Since agile was successfully integrated into smaller
companies, managing to build compact and effective teams that could quickly deliver
value according to clients’ expectations, bigger enterprises try to adapt this simple
framework on a larger scale. Methods like Large Scale Scrum (LeSS), which could
be applied to up to “10 Scrum teams (of seven people)”, and LeSS Huge, which
could be applied to a “few thousand people working on one product” [48, 52] are
influential, especially when companies do not pay attention at early stages and grow
up rapidly. Scaled Agile Framework (SAFe) and Disciplined Agile Delivery (DAD),
on the other hand, define four levels: Team level, Program level, Portfolio level, and
Value stream level [41]. Some measurements identified via surveys are lead cycle and
release time, the value provided, the number of defects found, velocity, automation,
and predictability [30]. Others focus on maturity modelling, where levelling criteria
are strongly related to the agile process’s performance [49].

However, the main driver of the agile transformation is the agile coach himself –
his responsibilities include “building teams by providing realistic support during im-
plementation of agile processes, leading the team towards self-organisation” and “cre-
ating guidelines, setting goals and roadmaps” [53]. Lastly, agile transformation must
be evaluated via success factors like shared product vision, shared responsibilities,
shared knowledge, feedback, and ownership, and failure factors like lack of middle
management support, barriers to the production environment, excessive control by
the higher management, and lack of understanding from the stakeholders [51].

3. Model representation

Considering the different paradigms and aspects described in the previous sec-
tion, four groups can be formed depending on the context (Table 1), and key concepts
that include these knowledge domains can be identified.

The first group combines everything related to the product – studies are focused
on different approaches in the development setup that correspond to the context,

Table 1. Knowledge domain groups

Domain Organisation
Product Process Behavioural Technocratic
Design Change Team Knowledge

Architecture Improvement Agile Systems
Engineering Model Approach Projects

Systems Metrics Development Model
Software Quality attributes Methodologies Practices

Data Analysis Scrum Management



44 Dilyan Georgiev / Exploring software engineering knowledge domains

from architecture-leading technologies like the Internet of things and Artificial Intel-
ligence, through domain-based concepts like Automobile industries and eLearning,
to fundamental processes of software engineering like Requirements elicitation and
Design patterns. This forms a wide field of discoveries about the domain that could
be patterned.

The second group is formed from the idea of Software Process Improvement.
These studies centre the process as a systematically arranged set of activities, each
contributing to the product’s development. This sets up requirements regarding
quality and introduces metrics that help validate and verify the software. Deploy-
ment and Maintenance are also very critical phases of every project – approaches like
DevOps and Meta-Modelling seriously impact how people can manage the product
after its release.

The third group is concentrated on human resources. The need to manage
intellectual capital triggers another narrative in scientific discoveries, which includes
experiments on all types of projects and their teams. These experiments investigated
how teams are formed in agile development, how technologies can be introduced
and later improved to reflect a team’s productivity, and how methodologies like
Lean and Scrum tackle significant problems like low motivation, knowledge loss, and
impediment documentation.

The last group is more abstract than the others – its goal is to categorize and
systematize any knowledge related to the other three domains and use it strategically
toward a successful closure. This includes Business patterns, Knowledge audits, and
Information systems that support the organisation.

The model is represented in Figure 2, reviewing how different types of knowledge
correspond to each other and formalise communications on higher and lower scales.
It identifies knowledge domains and how they could be introduced according to the

Figure 2. Knowledge types



Ann. Sofia Univ., Fac. Math. and Inf., 111, 2024, 35–53 45

perspectives described above, but also identifies the main aspects that drive the
communication flow both horizontally and vertically through the organisation:

• Technologies represent all technological knowledge used for the solutions
company provides to the market. Technologies depend on the set of prob-
lems developers want to tackle, the difficulty that should be reached to deliver
a Minimum viable product (MVP), and the trends that influence the environ-
ment. The model compares the tech perspective to the organisation’s mission
and goals, as well as previous solutions developed;

• Methodologies represent all procedures the company applies regarding how
business processes should be executed, how knowledge is transferred from
one process to another, and how problems are handled to mitigate casualties.
Methodologies depend on the overall dynamics, the organisational structure,
what efficiency metrics have been established and how the product is being
represented as components that need to be delivered. If the deployment plan
requires bigger accuracy and quality is a primary driver of development, the
sprints are more extended with fewer deficiencies found afterward. However,
if the goal is value-oriented, shorter sprints with more frequent feedback are
expected;

• Culture represents how the organisation introduces the working environment,
and what values support its progress. This depends on the company’s mission
and vision and the socio-economic factors that influence the market. If it is an
international company, the culture is more globally considered since it should
apply to as many people as possible. But if the company is a local enterprise
that works with people within a given country, the culture should be oriented
according to the local mentality;

• Human resources represent all employees’ experience and abilities as assets
that should be monitored and used to fulfil company’s goals. They depend on
the technology stack defined, the culture the organisation establishes, and the
environment considered internally and externally.

4. Discussion

Several trends can be analysed, further developed, and enriched. First, KM
has a variety of applications on different levels, both from managerial and functional
perspectives. These aspects are cross-examined by describing the four different types
of knowledge, which shows the approaches and trends discussed in the previous
sections and how they support the KM process (Figure 3).

Technocratic knowledge a given company relies on supports the process knowl-
edge by setting up procedures everybody should know, and quality standards teams
should strictly comply with. By introducing a knowledge modelling structure that
correlates to the organisational one, different methodologies applied on a larger scale,
like Agile, could confirm a well-described, balanced, and customised set of workflows,



46 Dilyan Georgiev / Exploring software engineering knowledge domains

Figure 3. Knowledge types relations

metrics, and instructions managers can use when starting a new project. This sets
the foundation that could guarantee a good start for every development process.

Technocratic knowledge could also support product knowledge by suggesting
technological solutions based on previous experiences and saving new experiences,
using them to improve the company’s reputation according to the dynamic ICT
environment. This is critical for industries whose progress counts on R&D and
concurrency between different enterprises.

On the other hand, behavioural knowledge focuses on how these solutions men-
tioned above correspond to the organisational culture and the company’s vision. In
terms of product knowledge, this results in development designs and teams that split
functionalities according to a given semantics and tackle technological problems by
setting up a CI process that supports the client’s expectations. In process knowledge,
however, the essential part stands for quality assessment and how methodologies
guarantee the proper execution of the development itself.

By further discussing how this categorisation could be expanded via local and
global perspectives, problems are meant to be handled from top-down and bottom-
up approaches. As Table 2 shows, knowledge is used locally for specific projects
and on a global scale by adding new experiences or improving overall performance.
This KM concept is relatively simple yet effective since there is a clear division be-
tween the management and the development that could be handled by a customised
communication strategy, for which bigger experience is needed.



Ann. Sofia Univ., Fac. Math. and Inf., 111, 2024, 35–53 47

Table 2. Knowledge representation

Technocratic knowledge Behavioural knowledge
Global scale Local scale Global scale Local scale

Product
knowledge

Global
scale

Experience
and

portfolio
knowledge

Organisational
culture

Local
scale

Technological
solutions

Development
designs

Process
knowledge

Global
scale

Quality
standards

Quality
performance

Local
scale

Organisational
procedures

Methodologies

5. Conclusion and future work

In conclusion of this overview, Knowledge management has a meaningful role
in data flows not only on an organisational level but also on a project level. It can
be argued, especially in small and medium-sized companies, that the organisational
structure aims to evolve towards the communication channels – a process described
by Conway’s law. This corresponds to the vital process that started in the 90s
with the first methodologies, developed further in the 2000s, and formalized fully
nowadays.

Requirements should be more descriptive and considered when making software
structure decisions. When starting a project, most of the problems are related to how
teams describe the domain, how the context is perceived, and how communications
are established. If the scope is clear and well-defined, future problems could be
predicted not only about the development process but also about human resources.
This is a problem KM supports by introducing different types of solutions related to
the technological perspective on the one hand – KMS, automation, and knowledge
migration, and to the cultural perspective on the other – patterns, procedures, and
learning by sharing methods.

It is critical to highlight the role of the business itself – more and more compa-
nies delegate resources to investigate their data flows and how knowledge has been
spread among team members. This could be used for updating the organisation’s
culture, mission, and goals. In addition, big companies generate statistical data that
could be used for academic research, resulting in theories and taxonomies described
in the public literature.

In the future, these relations will be observed not only on the theoretical level
but also in practice. Knowledge contributes critical value to a company’s success
and will be further observed as enabling factor of shared learning and growth.



48 Dilyan Georgiev / Exploring software engineering knowledge domains

Appendix
Id Citation Keywords
P1 Ragab and Arisha [43] knowledge measurement, knowledge management
P2 Bjørnson and Dingsøyr [6] software engineering, knowledge management, learning

software organization, software process improvement, sys-
tematic review

P3 Centobelli et al. [9] entrepreneurship, factors affecting KM, KMSs, knowledge
management, performance, start-up firms, scalability

P4 Céspedes et al. [10] systematic literature review, DevOps, product quality,
ISO/IEC 25000

P5 M. Asrar-ul-Haq et al. [3] knowledge management, knowledge sharing, antecedents,
trends

P6 Iskandar et al. [27] knowledge management system, KMS, current issues, sys-
tematic literature review, big data issue in KMS

P7 Kiv et al. [30] agile manifesto, agile methods, agile methods adoption,
partial agile adoption, systematic literature review

P8 Marinho et al. [32] global software development, global teams, culture, sys-
tematic literature review

P9 Mora et al. [33] agile paradigm tenets, agile ITSM methods, agile software
engineering methods, FitSM, IT4IT, representative litera-
ture analysis

P10 Ouriques et al. [38] knowledge management, agile software development,
knowledge processes

P11 Saad and Zainudin [47] computational thinking, project-based learning, PBL-CT,
teaching and learning strategies

P12 Serenko and Bontis [50] knowledge management, process management, intellectual
capital

P13 Stray et al. [53] agile coaching, skills, tasks, systematic literature review,
agile transformation, software development practices

P14 Theobald et al. [54] agile leadership, agile management, agile organization, mo-
tivation, systematic literature review

P15 Venkitachalam and Busch [58] tacit knowledge, implicit knowledge, knowledge manage-
ment, research

P16 Wang and Noe [59] knowledge sharing, knowledge exchange, knowledge man-
agement

References

[1] F. Ahmed and L. F. Capretz, The software product line architecture: An empirical
investigation of key process activities, Inf. Softw. Technol. 50(11) (2008) 1098–1113,
https://doi.org/10.1016/j.infsof.2007.10.013.

[2] T. Aho, O. Sievi-Korte, T. Kilamo, S. Yaman and T. Mikkonen, Demystifying data
science projects: A look on the people and process of data science today, in: Product-
Focused Software Process Improvement (PROFES 2020), ed. by M. Morisio et al.,
LNCS 12562, Springer, Cham, 2020, 153–167, https://doi.org/10.1007/978-3-
030-64148-1_10.

[3] M. Asrar-ul-Haq, S. Anwar and T. Nisar, A systematic review of knowledge man-
agement and knowledge sharing: Trends, issues, and challenges, Cogent Business &
Management 3(1) https://doi.org/10.1080/23311975.2015.1127744.

[4] V. C. Ayarza and S. Bayona-Oré, Cluster monitoring and integration in technology
company, in: Trends and Applications in Software Engineering (CIMPS 2019), ed.
by J. Mejia et al., Adv. Intell. Syst. Comput. 1071, Springer, Cham, 2020, 253–265,
https://doi.org/10.1007/978-3-030-33547-2_19.

https://doi.org/10.1016/j.infsof.2007.10.013
https://doi.org/10.1007/978-3-030-64148-1_10
https://doi.org/10.1007/978-3-030-64148-1_10
https://doi.org/10.1080/23311975.2015.1127744
https://doi.org/10.1007/978-3-030-33547-2_19


Ann. Sofia Univ., Fac. Math. and Inf., 111, 2024, 35–53 49

[5] A. Bagnato et al., Showcasing Modelio and pure:variants Integration in REVaMP2

Project, in: Product-Focused Software Process Improvement (PROFES 2019), ed. by
X. Franch et al., LNCS 11915, Springer, Cham, 2019, 590–595, https://doi.org/
10.1007/978-3-030-35333-9_43,

[6] F. O. Bjørnson and T. Dingsøyr, Knowledge management in software engineering:
A systematic review of studied concepts, findings and research methods used, Inf.
Softw. Technol. 50(11) (2008) 1055–1068.

[7] J. Bogner, S. Schlinger, S. Wagner, and A. Zimmermann, A Modular Approach to
Calculate Service-Based Maintainability Metrics from Runtime Data of Microser-
vices, in: Product-Focused Software Process Improvement (PROFES 2019), ed. by
X. Franch et al., LNCS 11915, Springer, Cham, 2019, 489–496, https://doi.org/
10.1007/978-3-030-35333-9_34.

[8] J. Bowring and M. Paasivaara, Keeping the Momentum: Driving Continuous Im-
provement after the Large-Scale Agile Transformation, in: Product-Focused Soft-
ware Process Improvement (PROFES 2021), ed. by L. Ardito et al., LNCS 13126,
Springer, Cham, 2021, 66–82, https://doi.org/10.1007/978-3-030-91452-3_5.

[9] P. Centobelli, R. Cerchione and E. Esposito, Knowledge management in startups:
Systematic literature review and future research agenda, Sustainability 9(3) (2017)
361, https://doi.org/10.3390/su9030361.

[10] D. Céspedes, P. Angeleri, K. Melendez and A. Dávila, Software product quality in
DevOps contexts: A systematic literature review, in: Trends and Applications in
Software Engineering (CIMPS 2019), ed. by J. Mejia et al., Advances in Intelligent
Systems and Computing 1071, Springer, Cham, 2019, 51–64.

[11] M. El Hamlaoui, S. Bennani, S. Ebersold, M. Nassar, and B. Coulette, AHM: Han-
dling heterogeneous models matching and consistency via MDE, in: Evaluation of
Novel Approaches to Software Engineering (ENASE 2018), ed. by E. Damiani et al.,
Communications in Computer and Information Science 1023, Springer, Cham, 2018,
288–313, https://doi.org/10.1007/978-3-030-22559-9_13.

[12] F. Falcini and G. Lami, Embracing software process improvement in automotive
through PISA model, in: Product-Focused Software Process Improvement (PROFES
2019), ed. by X. Franch et al., LNCS 11915 Springer, Cham, 2019, 73–88, https:
//doi.org/10.1007/978-3-030-35333-9_5.

[13] I. Figalist, C. Elsner, J. Bosch and H. Olsson, An end-to-end framework for pro-
ductive use of machine learning in software analytics and business intelligence
solutions, in: Product-Focused Software Process Improvement (PROFES 2020),
ed. by M. Morisio et al., LNCS 12562, Springer, Cham, 2020, 217–233, https:
//doi.org/10.1007/978-3-030-64148-1_14.

[14] J. Fischbach, J., Frattini, D. Mendez, M. Unterkalmsteiner, H. Femmer and A. Vo-
gelsang, How do practitioners interpret conditionals in requirements?, in: Product-
Focused Software Process Improvement (PROFES 2021), ed. by L. Ardito et al.,
LNCS 13126, Springer, Cham, 2021, 85–102, https://doi.org/10.1007/978-3-
030-91452-3_6.

[15] D. Fontdevila, M. Genero, A. Oliveros and N. Paez, Evaluating the utility of
the usability model for software development process and practice, in: Product-
Focused Software Process Improvement (PROFES 2019), ed. by X. Franch et al.,
LNCS 11915, Springer, Cham, 2019, 741–757, https://doi.org/10.1007/978-3-
030-35333-9_57.

[16] X. Franch, L. Lopez, S. Mart́ınez-Fernández, M. Oriol, P. Rodŕıguez and A. Tren-
dowicz, Quality-aware rapid software development project: The Q-rapids project,

https://doi.org/10.1007/978-3-030-35333-9_43
https://doi.org/10.1007/978-3-030-35333-9_43
https://doi.org/10.1007/978-3-030-35333-9_34
https://doi.org/10.1007/978-3-030-35333-9_34
https://doi.org/10.1007/978-3-030-91452-3_5
https://doi.org/10.3390/su9030361
https://doi.org/10.1007/978-3-030-22559-9_13
https://doi.org/10.1007/978-3-030-35333-9_5
https://doi.org/10.1007/978-3-030-35333-9_5
https://doi.org/10.1007/978-3-030-64148-1_14
https://doi.org/10.1007/978-3-030-64148-1_14
https://doi.org/10.1007/978-3-030-91452-3_6
https://doi.org/10.1007/978-3-030-91452-3_6
https://doi.org/10.1007/978-3-030-35333-9_57
https://doi.org/10.1007/978-3-030-35333-9_57


50 Dilyan Georgiev / Exploring software engineering knowledge domains

in: Software Technology: Methods and Tools (TOOLS 2019), ed. by M. Mazzara et
al., LNCS 11771, Springer, Cham, 2019, 378–392, https://doi.org/10.1007/978-
3-030-29852-4_32.

[17] T. Fredriksson, D. I. Mattos, J. Bosch and H. H. Olsson, Data labeling: An empir-
ical investigation into industrial challenges and mitigation strategies, in: Product-
Focused Software Process Improvement (PROFES 2020), ed. by M. Morisio et al.,
LNCS 12562, Springer, Cham, 2020, 202–216, https://doi.org/10.1007/978-3-
030-64148-1_13.

[18] G. A. Garćıa-Mireles and M. E. Morales-Trujillo, Gamification in software engineer-
ing: A tertiary study, in: Trends and Applications in Software Engineering (CIMPS
2019), ed. by J. Mejia et al., Adv. Intell. Syst. Comput. 1071, Springer, Cham, 2020,
116–128, https://doi.org/10.1007/978-3-030-33547-2_10.

[19] E. Germain and P. N. Robillard, Towards software process patterns: An empirical
analysis of the behaviour of student teams, Inf. Softw. Technol. 50(11) (2008) 1088–
1097, https://doi.org/10.1016/j.infsof.2007.10.018.

[20] E. Gourova, A. Antonova and Y. Goleminova, Knowledge audit concepts, processes
and practice, WSEAS Trans. Bus. Econ. 6 (2009) 605–619.

[21] E. Gourova and M. Dragomirova, Design of knowledge management info-structures,
in: EuroPLoP’15: Proc. 20th Eur. Conf. on Pattern Languages of Programs, Art.
No 15 (2015) 9 pp.

[22] E. Gourova and Y. Todorova, Knowledge audit data gathering and analysis, in: Eu-
roPLoP’10, Art. No 14 (2010) 7 pp.

[23] E. Gourova and K. Toteva, Design of knowledge management systems. VikingPLoP
2014, Art. No 3 (2014) 15 pp.

[24] D. Guamán, J. Pérez, J. Garbajosa and G. Rodŕıguez, A systematic-oriented pro-
cess for tool selection: The case of green and technical debt tools in architec-
ture reconstruction, in: Product-Focused Software Process Improvement (PROFES
2020), ed. by M. Morisio et al., LNCS 12562, Springer, Cham, 2020, 237–253,
https://doi.org/10.1007/978-3-030-64148-1_15.

[25] K. Hayashi and M. Aoyama, A portfolio-driven development model and its man-
agement method of agile product line engineering applied to automotive software
development, in: Product-Focused Software Process Improvement (PROFES 2020),
ed. by M. Morisio et al., LNCS 12562, Springer, Cham, 2020, 88–105, https:
//doi.org/10.1007/978-3-030-64148-1_6.

[26] M. Hell and M. Höst, Communicating Cybersecurity Vulnerability Information: A
Producer-Acquirer Case Study, in: Product-Focused Software Process Improvement
(PROFES 2021), ed. by L. Ardito et al., LNCS 13126, Springer, Cham, 2021, 215–
230, https://doi.org/10.1007/978-3-030-91452-3_15.

[27] S. M. Huang, Y. T. Chu, S. H. Li and D. C. Yen, Enhancing conflict detecting mech-
anism for Web Services composition: A business process flow model transformation
approach, Inf. Softw. Technol. 50(11) (2008) 1069–1087, https://doi.org/10.1016/
j.infsof.2007.10.014.

[28] K. Iskandar, M. Jambak, R. Kosala and H. Prabowo, Current Issue on Knowledge
Management System for future research: A systematic literature review, Procedia
Comput. Sci. 116(C) (2017) 68–80, https://doi.org/10.1016/j.procs.2017.10.
011.

[29] J. O. Johanssen, A. Kleebaum, B. Bruegge and B. Paech, Feature Crumbs: Adapt-
ing usage monitoring to continuous software engineering, in: Product-Focused Soft-
ware Process Improvement (PROFES 2018), ed. by M. Kuhrmann et al., LNCS

https://doi.org/10.1007/978-3-030-29852-4_32
https://doi.org/10.1007/978-3-030-29852-4_32
https://doi.org/10.1007/978-3-030-64148-1_13
https://doi.org/10.1007/978-3-030-64148-1_13
https://doi.org/10.1007/978-3-030-33547-2_10
https://doi.org/10.1016/j.infsof.2007.10.018
https://doi.org/10.1007/978-3-030-64148-1_15
https://doi.org/10.1007/978-3-030-64148-1_6
https://doi.org/10.1007/978-3-030-64148-1_6
https://doi.org/10.1007/978-3-030-91452-3_15
https://doi.org/10.1016/j.infsof.2007.10.014
https://doi.org/10.1016/j.infsof.2007.10.014
https://doi.org/10.1016/j.procs.2017.10.011
https://doi.org/10.1016/j.procs.2017.10.011


Ann. Sofia Univ., Fac. Math. and Inf., 111, 2024, 35–53 51

11271, Springer, Cham, 2018, 263–271, https://doi.org/10.1007/978-3-030-
03673-7_19.

[30] P. Kettunen, M. Laanti, F. Fagerholm and T. Mikkonen, Agile in the era of digital-
ization: A finnish survey study, in: Product-Focused Software Process Improvement
(PROFES 2019), ed. by X. Franch et al. LNCS 11915, Springer, Cham, 2019, 383–
398, https://doi.org/10.1007/978-3-030-35333-9_28.

[31] S. Kiv, S. Heng, M. Kolp and Y. Wautelet, Agile manifesto and practices selection for
tailoring software development: A systematic literature review, in: Product-Focused
Software Process Improvement (PROFES 2018), ed. by M. Kuhrmann et al., LNCS
11271, Springer, Cham, 2018, 12–30, https://doi.org/10.1007/978-3-030-03673-
7_2.

[32] L. Machuca-Villegas and G. P. Gasca-Hurtado, Towards a social and human factor
classification related to productivity in software development teams, in: Trends and
Applications in Software Engineering (CIMPS 2019), ed. by J. Mejia et al., Adv. In-
tell. Syst. Comput. 1071, Springer, Cham, 2020, 36–50, https://doi.org/10.1007/
978-3-030-33547-2_4.

[33] M. Marinho, A. Luna and S. Beecham, Global software development: Practices for
cultural differences, in: Product-Focused Software Process Improvement (PROFES
2018), ed. by M. Kuhrmann et al., LNCS 11271, Springer, Cham, 2018, 299–317,
https://doi.org/10.1007/978-3-030-03673-7_22.

[34] M. Mora, F. Wang, J. M. Gómez and O. Dı́az, A comparative review on the ag-
ile tenets in the IT service management and the software engineering domains, in:
Trends and Applications in Software Engineering (CIMPS 2019), ed. by J. Mejia
et al., Adv. Intell. Syst. Comput. 1071, Springer, Cham, 2019, 102–115, https:
//doi.org/10.1007/978-3-030-33547-2_9.

[35] J. Münch, S. Trieflinger and D. Lang, What’s hot in product roadmapping? Key
practices and success factors, in: Product-Focused Software Process Improvement
(PROFES 2019), ed. by X. Franch et al. LNCS 11915, Springer, Cham, 2019, 401–
416, https://doi.org/10.1007/978-3-030-35333-9_29.

[36] E. Nazaruka and J. Osis, The formal reference model for software requirements,
in: Evaluation of Novel Approaches to Software Engineering (ENASE 2018),
ed. by E. Damiani et al., Communications in Computer and Information Sci-
ence 1023, Springer, Cham, 2019, 352–372, https://doi.org/10.1007/978-3-030-
22559-9_16.

[37] P. Nikbakht, M. Höst, and M. Hell, HAVOSS: A maturity model for handling vul-
nerabilities in third party OSS components, in: Product-Focused Software Process
Improvement (PROFES 2018), ed. by M. Kuhrmann et al., LNCS 11271, Springer,
Cham, 2018, 81–97, https://doi.org/10.1007/978-3-030-03673-7_6.

[38] S. Osorio, A. P. P. Negrón, and A. E. Valdez, From a conceptual to a computational
model of cognitive emotional process for engineering students, in: Trends and Ap-
plications in Software Engineering (CIMPS 2019), ed. by J. Mejia et al., Adv. Intell.
Syst. Comput. 1071, Springer, Cham, 2020, 173–186, https://doi.org/10.1007/
978-3-030-33547-2_14

[39] R. Ouriques, K. Wnuk, T. Gorschek and R. Berntsson, Knowledge management
strategies and processes in agile software development: A systematic literature re-
view, Int. J. Softw. Eng. Knowl. Eng. 29(03) (2019) 345–380, https://doi.org/10.
1142/S0218194019500153.

[40] C. R. Prause and A. Hönle, Emperor’s new clothes: Transparency through met-
rication in customer-supplier relationships, in: Product-Focused Software Process

https://doi.org/10.1007/978-3-030-03673-7_19
https://doi.org/10.1007/978-3-030-03673-7_19
https://doi.org/10.1007/978-3-030-35333-9_28
https://doi.org/10.1007/978-3-030-03673-7_2
https://doi.org/10.1007/978-3-030-03673-7_2
https://doi.org/10.1007/978-3-030-33547-2_4
https://doi.org/10.1007/978-3-030-33547-2_4
https://doi.org/10.1007/978-3-030-03673-7_22
https://doi.org/10.1007/978-3-030-33547-2_9
https://doi.org/10.1007/978-3-030-33547-2_9
https://doi.org/10.1007/978-3-030-35333-9_29
https://doi.org/10.1007/978-3-030-22559-9_16
https://doi.org/10.1007/978-3-030-22559-9_16
https://doi.org/10.1007/978-3-030-03673-7_6
https://doi.org/10.1007/978-3-030-33547-2_14
https://doi.org/10.1007/978-3-030-33547-2_14
https://doi.org/10.1142/S0218194019500153
https://doi.org/10.1142/S0218194019500153


52 Dilyan Georgiev / Exploring software engineering knowledge domains

Improvement (PROFES 2018), ed. by M. Kuhrmann et al., LNCS 11271, Springer,
Cham, 2018, 288–296, https://doi.org/10.1007/978-3-030-03673-7_21.

[41] A. Putta, M. Paasivaara and C. Lassenius, Benefits and challenges of adopting the
Scaled Agile Framework (SAFe): Preliminary results from a multivocal literature
review, in: Product-Focused Software Process Improvement (PROFES 2018), ed. by
M. Kuhrmann et al., LNCS 11271, Springer, Cham, 2018, 334–351, https://doi.
org/10.1007/978-3-030-03673-7_24.

[42] C. Quesada-López, A. Mart́ınez, M. Jenkins, L. C. Salas and J. C. Gómez, Automated
functional size measurement: A multiple case study in the industry, in: Product-
Focused Software Process Improvement (PROFES 2019), ed. by X. Franch et al.,
LNCS 11915, Springer, Cham, 2019, 263–279, https://doi.org/10.1007/978-3-
030-35333-9_19.

[43] M. A. F. Ragab and A. Arisha, Knowledge management and measurement: a critical
review, J. Knowl. Manag. 17(6) (2013) 873–901, https://doi.org/10.1108/JKM-
12-2012-0381.

[44] P. Ram et al., An empirical investigation into industrial use of software metrics
programs, in: Product-Focused Software Process Improvement (PROFES 2020), ed.
by M. Morisio et al., LNCS 12562, Springer, Cham, 2020, 419–433, https://doi.
org/10.1007/978-3-030-64148-1_26.

[45] P. Ram, P. Rodriguez and M. Oivo, Software process measurement and related
challenges in agile software development: A multiple case study, in: Product-
Focused Software Process Improvement (PROFES 2018), ed. by M. Kuhrmann et
al., LNCS 11271, Springer, Cham, 2018, 272–287, https://doi.org/10.1007/978-
3-030-03673-7_20.

[46] I. Rus, M. Lindvall and S. S. Sinha, Knowledge management in software engineering.
A DACS state-of-the-art report, IEEE Software 19(3) (2002) 26–38, https://doi.
org/10.1109/MS.2002.1003450.

[47] A. Saad and S. Zainudin, A review of Project-Based Learning (PBL) and Computa-
tional Thinking (CT) in teaching and learning, Learning and Motivation 78 (2022)
101802.

[48] A. Salameh and J. Bass, Influential factors of aligning Spotify squads in mission-
critical and offshore projects – A longitudinal embedded case study, in: Product-
Focused Software Process Improvement (PROFES 2018), ed. by M. Kuhrmann et
al., LNCS 11271, Springer, Cham, 2018, 199–215, https://doi.org/10.1007/978-
3-030-03673-7_15.

[49] A. Schmitt, S. Theobald and P. Diebold, Comparison of agile maturity models, in:
Product-Focused Software Process Improvement (PROFES 2019), ed. by X. Franch
et al., LNCS 11915, Springer, Cham, 2019, 661–671, https://doi.org/10.1007/
978-3-030-35333-9_52.

[50] A. Serenko and N. Bontis, Meta-review of knowledge management and intellectual
capital literature: Citation impact and research productivity rankings, Knowl. Pro-
cess Manag. 11(3) (2004) 185–198.

[51] I. Signoretti et al., Success and failure factors for adopting a combined approach: A
case study of two software development teams, in: Product-Focused Software Process
Improvement (PROFES 2020), ed. by M. Morisio et al., LNCS 12562, Springer,
Cham, 2020, 125–141, https://doi.org/10.1007/978-3-030-64148-1_8.

[52] J. P. Steghöfer, E. Knauss, J. Horkoff and R. Wohlrab, Challenges of scaled agile
for safety-critical systems, in: Product-Focused Software Process Improvement

https://doi.org/10.1007/978-3-030-03673-7_21
https://doi.org/10.1007/978-3-030-03673-7_24
https://doi.org/10.1007/978-3-030-03673-7_24
https://doi.org/10.1007/978-3-030-35333-9_19
https://doi.org/10.1007/978-3-030-35333-9_19
https://doi.org/10.1108/JKM-12-2012-0381
https://doi.org/10.1108/JKM-12-2012-0381
https://doi.org/10.1007/978-3-030-64148-1_26
https://doi.org/10.1007/978-3-030-64148-1_26
https://doi.org/10.1007/978-3-030-03673-7_20
https://doi.org/10.1007/978-3-030-03673-7_20
https://doi.org/10.1109/MS.2002.1003450
https://doi.org/10.1109/MS.2002.1003450
https://doi.org/10.1007/978-3-030-03673-7_15
https://doi.org/10.1007/978-3-030-03673-7_15
https://doi.org/10.1007/978-3-030-35333-9_52
https://doi.org/10.1007/978-3-030-35333-9_52
https://doi.org/10.1007/978-3-030-64148-1_8


Ann. Sofia Univ., Fac. Math. and Inf., 111, 2024, 35–53 53

(PROFES 2019), ed. by X. Franch et al., LNCS 11915, Springer, Cham, 2019, 350–
366, https://doi.org/10.1007/978-3-030-35333-9_26.

[53] V. Stray, B. Memon and L. Paruch, A systematic literature review on agile coaching
and the role of the agile coach, in: Product-Focused Software Process Improvement
(PROFES 2020), ed. by M. Morisio et al., LNCS 12562, Springer, Cham, 2020, 3–19,
https://doi.org/10.1007/978-3-030-64148-1_1.

[54] S. Theobald, N. Prenner, A. Krieg and K. Schneider, Agile leadership and agile
management on organisational level – A systematic literature review, in: Product-
Focused Software Process Improvement (PROFES 2020), ed. by M. Morisio et al.,
LNCS 12562, Springer, Cham, 2020, 20–36, https://doi.org/10.1007/978-3-030-
64148-1_2.

[55] V. Torres, M. Gil and V. Pelechano, Software knowledge representation to understand
software systems, in: Product-Focused Software Process Improvement (PROFES
2019), ed. by X. Franch et al., LNCS, vol, 11915, Springer, Cham, 2019, 137–144
https://doi.org/10.1007/978-3-030-35333-9_10.

[56] S. Trieflinger, J. Münch, S. Wagner, D. Lang and B. Roling, A transformation
model for excelling in product roadmapping in dynamic and uncertain market en-
vironments, in: Product-Focused Software Process Improvement (PROFES 2021),
ed. by L. Ardito et al., LNCS 13126, Springer, Cham, 2021, 136–151, https:
//doi.org/10.1007/978-3-030-91452-3_9.

[57] M. Usman, M. Felderer, M. Unterkalmsteiner, E. Klotins, D. Mendez and E. Alégroth,
Compliance requirements in large-scale software development: An industrial case
study, in: Product-Focused Software Process Improvement (PROFES 2020), ed. by
M. Morisio et al., LNCS 12562, Springer, Cham, 2020, 385–401, https://doi.org/
10.1007/978-3-030-64148-1_24.

[58] K. Venkitachalam and P. Busch, Tacit knowledge: review and possible research di-
rections, J. Knowl. Manag. 16(2) (2012) 356–371.

[59] Sh. Wang and R. A. Noe, Knowledge sharing: A review and directions for future
research, Hum. Resour. Manag. Rev. 20 (2010) 115–131.

[60] M. Winterer, C. Salomon, G. Buchgeher, M. Zehethofer and A. Derntl, Establishing
a user-centered design process for human-machine interfaces: Threats to success, in:
Product-Focused Software Process Improvement (PROFES 2019), ed. by X. Franch
et al., LNCS 11915, Springer, Cham, 2019, 89–102, https://doi.org/10.1007/978-
3-030-35333-9_6.

Received on December 20, 2023
Accepted on March 8, 2024

Dilyan Georgiev

Faculty of Mathematics and Informatics
Sofia University “St. Kliment Ohridski”
5, James Bourchier Blvd.
1164 Sofia
BULGARIA
E-mail: diljang@fmi.uni-sofia.bg

https://doi.org/10.1007/978-3-030-35333-9_26
https://doi.org/10.1007/978-3-030-64148-1_1
https://doi.org/10.1007/978-3-030-64148-1_2
https://doi.org/10.1007/978-3-030-64148-1_2
https://doi.org/10.1007/978-3-030-35333-9_10
https://doi.org/10.1007/978-3-030-91452-3_9
https://doi.org/10.1007/978-3-030-91452-3_9
https://doi.org/10.1007/978-3-030-64148-1_24
https://doi.org/10.1007/978-3-030-64148-1_24
https://doi.org/10.1007/978-3-030-35333-9_6
https://doi.org/10.1007/978-3-030-35333-9_6

	Introduction
	Theoretical background foundations
	Domain Knowledge in SE
	Product knowledge
	Process knowledge

	Organisational knowledge in SE
	Technocratic knowledge
	Behavioural knowledge


	Model representation
	Discussion
	Conclusion and future work

