ON THE VERTEX FOLKMAN NUMBERS $F_v(\underbrace{2,...,2}_R;R-1)$ and $F_v(\underbrace{2,...,2}_R;R-2)$

Authors

  • Nedyalko Nenov

Keywords:

Folkman graphs, Folkman numbers

Abstract

For a graph $G$ the symbol $G\overset{v}{\rightarrow}(a_1,...,a_r)$ means that in every $r$-coloring of the vertices of $G$ for some $i\in\{1,2,...,r\}$ there exists a monochromatic $a_i$-clique of color $i$. The vertex Folkman numbers \[F_v(\underbrace{a_1,...,a_r}_r;q) =\min\{|V(G)|:G\overset{v}{\rightarrow}(a_1,...,a_r)\text{ and }K_q\nsubseteq G\}\] are considered. We prove that \[F_v(\underbrace{2,...,2}_r;r-1) = r + 7, r \geq 6\text{ and } F_v(\underbrace{2,...,2}_r;r-2) = r + 9, r \geq 8.\]

Downloads

Published

2013-12-12

How to Cite

Nenov, N. (2013). ON THE VERTEX FOLKMAN NUMBERS $F_v(\underbrace{2,.,2}_R;R-1)$ and $F_v(\underbrace{2,.,2}_R;R-2)$. Ann. Sofia Univ. Fac. Math. And Inf., 101, 5–17. Retrieved from https://annual.uni-sofia.bg/index.php/fmi/article/view/226