ON THE VERTEX FOLKMAN NUMBERS Fv(2,...,2R;R1) and Fv(2,...,2R;R2)

Authors

  • Nedyalko Nenov

Keywords:

Folkman graphs, Folkman numbers

Abstract

For a graph G the symbol Gv(a1,...,ar) means that in every r-coloring of the vertices of G for some i{1,2,...,r} there exists a monochromatic ai-clique of color i. The vertex Folkman numbers Fv(a1,...,arr;q)=min{|V(G)|:Gv(a1,...,ar) and KqG} are considered. We prove that Fv(2,...,2r;r1)=r+7,r6 and Fv(2,...,2r;r2)=r+9,r8.

Downloads

Published

2013-12-12

How to Cite

Nenov, N. (2013). ON THE VERTEX FOLKMAN NUMBERS Fv(2,.,2R;R1) and Fv(2,.,2R;R2). Ann. Sofia Univ. Fac. Math. And Inf., 101, 5–17. Retrieved from https://annual.uni-sofia.bg/index.php/fmi/article/view/226