FACTORIZATIONS OF THE GROUPS Ω7(q)

Authors

  • Elenka Gentcheva
  • Tsanko Gentchev

Keywords:

factorizations of groups, Finite simple groups, groups of Lie type

Abstract

The following result is proved:

Let G=Ω7(q) and q is odd. Suppose that G=AB, where A,B are proper non-Abelian simple subgroups of G. Then one of the following holds:

(1) q=3 and AL4(3) or G2(3),BSp6(2) or A9;

(2) q1 (mod 4) and AG2(q),BL4(q);

(3) q1 (mod 4) and AG2(q),BU4(q);

(4) q=32n+1>3 and A 2G2(q),BL4(q);

(5) q=32n+1 and AU3(q),BL4(q);

(6) q=32n and AL3(q),BU4(q);

(7) AG2(q),BPSp4(q).

Downloads

Published

1998-12-12

How to Cite

Gentcheva, E., & Gentchev, T. (1998). FACTORIZATIONS OF THE GROUPS Ω7(q). Ann. Sofia Univ. Fac. Math. And Inf., 90, 125–132. Retrieved from https://annual.uni-sofia.bg/index.php/fmi/article/view/290