Complete systems of Bessel and inversed Bessel polynomials in spaces of holomorphic functions

Authors

  • Jordanka Paneva-Konovska

Keywords:

Bessel polynomials, complete systems, holomorphic functions

Abstract

Let $B_{n}(z),n = 0,1,...,$ be the Bessel polynomials generated by \[(1 - 4zw)^{-1/2}exp\bigg\{ \frac{1 - (1 - 4zw)^{1/2}}{2z}\bigg\}=\sum\limits_{n=0}^{\infty}B_{n}(z)w^{n}\textrm{, } |4zw| < 1\] and the functions $\tilde{B}_{n}(z)$ be defined by the relations \[\tilde{B}_{n}(z)=4^{-n}z^{n}B_{n}(1/z)exp(-z/2).\] Let $K = \{k_{n}\}_{n=0}^{\infty}$ be an increasing sequence of non-negative integers. Sufficient conditions for the completeness of the systems $\{B_{k_{n}}(z)\}_{n=0}^{\infty}$ and $\{\tilde{B}_{k_{n}}(z)\}_{n=0}^{\infty}$ in spaces of holomorphic functions are given in terms of the density of the sequence $K$.

Downloads

Published

1997-12-12

How to Cite

Complete systems of Bessel and inversed Bessel polynomials in spaces of holomorphic functions. (1997). Annual of Sofia University St. Kliment Ohridski. Faculty of Mathematics and Informatics, 89, 79-88. https://annual.uni-sofia.bg/index.php/fmi/article/view/357