Factorizations of the groups of Lie type of Lie rank three over fields of 2 or 3 elements

Authors

  • Tsanko Gentchev
  • Kerope Tchakerian

Abstract

The following result is proved.

Let G be a group of Lie type of Lie rank three over a field of 2 or 3 elements. Suppose that G=AB, where A,B are proper non-Abelian simple subgroups of G. Then one of the following holds:

1) G=L4(2),AL3(2),BA6 or A7;

2)G=L4(3),AL3(3),BS4(3);

3) G=S6(2),AL4(2),BL2(8) or AU4(2),BL2(8) or U3(3);

4) G=U6(2),AU5(2),BS6(2),U4(3) or M22

5) G=U6(3),AU5(3),BS6(3);

6) G=O7(3),AL4(3),BU3(3),G2(3),S6(2) or A9 or AG2(3),BS4(3),S6(2)

Downloads

Published

1993-12-12

How to Cite

Gentchev, T., & Tchakerian, K. (1993). Factorizations of the groups of Lie type of Lie rank three over fields of 2 or 3 elements. Ann. Sofia Univ. Fac. Math. And Inf., 85, 83–88. Retrieved from https://annual.uni-sofia.bg/index.php/fmi/article/view/457