No zeros of the partial theta function in the unit disk
DOI:
https://doi.org/10.60063/gsu.fmi.111.129-137Keywords:
Jacobi theta function, Jacobi triple product, partial theta functionAbstract
We prove that for $q\in (-1,0)\cup (0,1)$, the partial theta function $\theta (q,x):=\sum _{j=0}^{\infty}q^{j(j+1)/2}x^j$ has no zeros in the closed unit disk.
Downloads
Published
2024-12-04
Issue
Section
Articles
How to Cite
No zeros of the partial theta function in the unit disk. (2024). Annual of Sofia University St. Kliment Ohridski. Faculty of Mathematics and Informatics, 111, 129-137. https://doi.org/10.60063/gsu.fmi.111.129-137