No zeros of the partial theta function in the unit disk
DOI:
https://doi.org/10.60063/gsu.fmi.111.129-137Keywords:
Jacobi theta function, Jacobi triple product, partial theta functionAbstract
We prove that for $q\in (-1,0)\cup (0,1)$, the partial theta function $\theta (q,x):=\sum _{j=0}^{\infty}q^{j(j+1)/2}x^j$ has no zeros in the closed unit disk.
Downloads
Published
2024-12-04
How to Cite
Kostov, V. (2024). No zeros of the partial theta function in the unit disk. Ann. Sofia Univ. Fac. Math. And Inf., 111, 129–137. https://doi.org/10.60063/gsu.fmi.111.129-137
Issue
Section
Articles