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CEJEMJIECET I'OJAVMHU OT POXKIEHNETO HA
TOOOP 'EOPI'MEB 'EHYEB (1932 — 1998)

EMIJI XOPO30B

A short review of the scientific interest, main results and the broad educational activity
of the Bulgarian mathematician Professor Todor Gentchev (1932 ~ 1998) is given. His
most notable results concern the theory of partial differential equations and the theory
of holomorphic and entire functions. The deep and fruitful influence of Professor Todor
Gentchev on the development of the Bulgarian mathematics is also underlined.

Ha 18 depyapu 2002 r. ce Hapbpmmxa 70 TOOUHN OT POXKIAEHUETO HA BUIHHA
6barapckn MmareMatuk npod. amu Tonop I I'enves.

Ipod. T. enues e poxen npe3 1932 r. B ¢. Yasgap, Codmuiicko. 3apbpmun
e Codwuiickus ynusepcuTeT npe3 1955 r. u cbiuaTa rOZMHA CTaBa ACHCTEHT BbB
Paxyntera no maremaTuka. [Ipe3 1965 r. crasa jouent, a npe3 1978 r. — npodecop.
o kpas na xusora cu npod. T. Tenue npomsikasa ga paborn 8 Coduiickus
yHUBEDCUTET.

C HeroBOTO UMe ce CBBbP3BA Cbh3JABAHETO HA ObJrapCKaTa IIKOIA 10 YACTHH
AncepeHIMANHE YPAaBHEHHs, KAKTO U MHOXECTBO 6JIeCTAINd DE3yJNTaTd B APYTH
Hay4HN 06J1aCTH, Cpel KOUTO 0CODEHO H3IIHKBAT TPYIOBETE MY TI0 KOMILIEKCEH aHa-
U3,

IIbpeure Hayynn uscaensanns #a nupod. T. Fenyes, KaKTO ¥ HA MHOTO APYTH
MaTeMaTHI OT HErOBOTO NOKOJIEHME, CA HANPAaBEHM 110 OJarOTBOPHOTO BJIMSIHHE
Ha npod. A. Taramsmuxu. [locrenenno npod. T. Tenves Hammpa CBOsI TeMaTHKa
B obmacTTa Ha YacTHuTe mudepeHuUnANHN ypaBHeHud. Tol € eJuH OT hPBUTE B
cBeTa pa3pabOTHIIN M NIPHIOKHIN METO/A HA eMOTHIHATA U 1apaboInYHaTa PEry-
JIApH3alusa KbM IPAHUYHY 33,4344 38 YacTHU JudepeHuyanain ypasuennsa. Mneara
Ha METO/a € Ja Ce anpOKCMMHUPA Pa3riIeXJaHOTO YPAaBHEHHE C MOAXOAAINA PEAULA
OT enmunTHYHK (U1K 1apaboanyHy) YPABHEHHA U ChINECTBYBAHETO HA PEIICHHE WIIH
Ha IPyrd CBOHCTBA Ja Ce NOMy4H upe3 rpannyen npexon. OCcHOBHATA TPYAHOCT, KO-
ATO TOH IPEONOJIABA, € Ja HaMePH NOOXOJSAIIA AIPOKCUMHUPAIlA PEIULa, 38 KOSTO



CHOTBETHATE MPAHMYHU 33244 Ca JOCTATHYHO A0DDH M I103BOJABAT Ja Ce NOJy'1aT
1IOIXO/ISIM ANPHOPHH OEHKH. 3a Ta3y 1esl KoedHIMeHTHTe Ha U3XOJAHOTO ypas-
HEHWE Ce NMPOABLIXKABAT B MO-IIKPOKa 06J1acT, 3a Ja Ce eIMMUHUPA BJIHMSHUETO HA
JOI'bIHATEIHUTE TPAHUYHY YCIOBHA B allPOKCUMHPAIIUTE yPABHEHMA.

Pa6orure na npod. T. [enden B Tasy 061aCT Ca BUCOKO OLEHEHH U MHOTOKPATHO
IMTHpaHH OT Hali-BMAHM CBETOBHM creupmamuctd - 7K. JL JInonc, O. Oulefinuk,
E. Paaxesuy u ap. C Tax Tofi M3Bexa GbIrapckara MaTeMaTika B 00acTTa HA
qacTHUTE ANEepeHINaTHy yPABHEHUS Ha MEXKIYHAPOIHO HUBO.

TpyroBeTe My B TOBa HAIPABJEHUE €A OCHOBA HA KAHAMIATCKATA My JIACEPTA- -
nusi, 3amuTeHa npe3 1969 r.

Cren sawuTara Ha aucepraumsra cu npod. T. TenueB ce HACOYBA K'bM JPYTH
06JIACTH Ha H3C/IeqBaHe, [JIABHO CBbP3aHH ¢ KOMILIeKcHUs aHamm3. Ejquo kinacime-
CKO HATIPABJIEHHE, KbM KOETO Ce HACOUBA, € H3C/IE/IBAHETO Ha EKCTPEMAIIHK CBOHCTB
na neiu bysxnun. B pabora, nybnukysana 8 Jloknann Ha AkazeMusiTa Ha HAYKUTE
na CCCP mpe3 1975 r., npod. T. lenden 0606maba KIacH4eCKOTO HEPABEHCTBO HA
C. BepHmaiii, KOeTo JaBa OLEHKA HA MAKCUMyMa Ha IPOM3BOJHATA HA LIPOU3BO-
JleH TPHIOHOMETDUYEH IOJIMHOM 4Ype3 MAKCUMyMa Ha CaMHfA IOJHUHOM. IIpod. T.
Tenyen 10Ka3Ba AHAJNOTMYEH DE3Yy/ITAT 33 lieH (PYHKLUHH OT eKCIIOHEHIIHAEH THIL.
HepasencTpara, nosty4eHu oT Hero, o6061aBaT 1 Apyru KJIACHIECKH PE3yJITaTH -
na Epnpom-Jlake, Cerso, Boac, Typan u Paxman n ap. 3aciyxkasa 1a ce orbeste-
JKH, de OT Te3u Pe3yJITATH CJleJBa W TOYEH aHAJIOr Ha TeopeMara Ha Tlayc—Jloxa
33 TDHTOHOMETDHYHY IMOJMHOMH — EIMH PE3yJITaT, KOHTO OCTaBa He3abensd3aH OT
KJIACHLIATE, MAKAP Y€ UMa KJACHUECKO 3Bydene. KoMeHTHpaiiku TO3U PE3YNITAT, A.
I'ymman (Rocky Mountain J. Math., 27, No 1, 1992) or6essi3Ba OCTPOYMHETO HA
aBTOpa. Jlpyr pe3yJsTaT, OTHACHII Ce JI0 HEPABEHCTBA 32 NMOJHHOMUTE Ha Yebuies,
naBa Bp3MoxkHOCT Ha npod. T. [envep Aa moiy4u MpoCTO JOKA3ATENICTBO HA KJa-
CHYECKOTO HepaBeHCTBO Ha A. MapkoB, 32 KOETO CbINECTBYBAT CEPUA Das/MiHU
n0KazaTencTsa or Kiacuiu karo A. Mapkos, M. Puc, [le na Bane Ilycen u ap.
Pesyntarure OT TO3M LUKbBJ C3 BHCOKO OLEHEHH W OT HAIIATa HayIHA OBIIHOCT —
npe3 1977 r. npod. T. Tenues nonyyapa Harpasara , Akas. H.O6pemkos“ 3a cBOuTE
U3C/IEBAHNS BhPXY eI (MYHKIUN OT eKCIOHEHIMAJIeH THI .

EzHO Ipyro HanpaBJeHHE, KOETO e CBbP3aHO CbC CIIOMEHATHTE Beye Hay'IHU
obsacTh, e Teopemu or uaeitrua kpbr Ha Ilemn-Bunep. B Tasu obmacr Toit nmosy-
JaBa peIylia HOBM DE3YJ/ITATH 33 MHTErDAJHH MPEACTABSHHS, KATO C TOBA YCHJBA
KACHYEeCKH TEOPEMH H OIPOCTABa CHLIECTBYBAIM JOKA3aTeNcTsa. EauH or Hait-
HHTEPECHHUTE Pe3yJITATH B TOBA HAIIPABJIEHHE € TIOJIy YaBaHETO HAa MHTErPaJIHU IIPeJt-
cTaBsiHEsA 33 (QYHKIMHTE OT IIPOCTPAHCTBATA Ha Beprman B Tpb60BUAHHA 06JIACTH.
Te3u pe3ynTaTH yCTaHOBABAT M30MOP(U3BLM MeXXAy GeprmaHoBUTEe IMPOCTPAHCTBA
H CPaBHUTEJIHO TIPOCTO YCTPOEHHTE IIPOCTPAHCTBA OT peaiHu (yHKUMH, KOUTO Ca
yaobuu 3a pabora. To3n n3oMopdU3bM Urpae BaXkKHA PO B IPECMATAHETO HA HA-
Kou 6uxonoMopdHE HHBADUAHTH. 3a Ja NOAYepTadT ToBa obcroarenctso, Ckpap-
JKUHCKH ¥ HErOBHMTE YUEHHMIM CHCTEMHO CH CJIy’KaT C NOHATHETO , Tpancdopmaiys
ua [enues“. B Tosu kpbr sbnpocu npod. T. Tenuen cucTeMHO M3IIOI3BA TEXHHUKA
OT TEOPHUATA Ha Pa3NpeeSeHUsTa, KOATO My [O3BOJIABA 3HAYHTENHO Ja ONPOCTH
KJIACHYECKUTE Pe3ysITaTH, BKJ. u Te3u Ha Bunep-Ilemu.



Hapen ¢ nayunara cu pa6orta npod. T. lerues nocsemasa MHOTO OT CHANTE CH
Ha Mpeno/iaBaTesickara paboTa 1 Bb3MUMTAHKETO HA BUCOKOKBATMMDUIMPAHT KapH,
ocobeno B obracTTa Ha gudepeHnManauTe ypasHenns. IIpakTHUeCKH Toi e Cb3Ia-
Te/l Ha CHBPEMEHHHUs KypC 10 dacThu audepeHuuasnu ypasaenust 8 Coduitckus
YHUBEPCHTET, & OTTaM U B usiia Boharapus. 3aeaHo ¢ oCHOBHHSA Kype TOH NOAroTBs
3a 'bPBU I'bT U Cepus OT crrenuanny Kypcose. IIpod. T. Tendes ¢ apTop Ba HsKOMKO
yuebunka. Ocobeno BneYaTiaBall e HeroBUsT y4ebHUK 1o yacThHu gudepeHiyan-
HY ypaBHEHHU, TIPeTbPIIsJ YeTHPH H3JaHNA M CIYKEIl NoBede OT 25 roAuHu KaTo
OCHOBHO y4eOHO IOMArajio 3a CTYJAEHTH M IIPeIOJABATEIIH.

Mmnoro or Hac ca usnuTanu 61arorBOpHOTO Bauanue Ha npod. T. Tenvues. Toit
€ BB3NUTAJI HAKOIKO IOKOJEHHS MATEMATHIM, KATO UM € NPEJAJ CBOH BKYC K'bM
AbnOOKHM K Baxkuu npobemu. IIpu TOBa Tol NEHeNe M MPONATAHAMpPALIE HE CAMO
06J1aCTHTE, B KOMTO M3BbPIIBALIE CBOUTE HAYIHH U3CIEIBAHNA, HO 1 TAKHUBa, KOUTO
Ca MaJiKO MM NOBEYe OTAANEICHH OT TaAX. MHOT0 OT yueHuITe My Ca Ce MOCBETHUIIH
Ha axageMH41HOTO nonpuiue u paborsar B CY, BAH unu B uyx6uHa.

Hpodecop T. Tenuen uu HamycHa npesxaespeMenso npe3 1998 r. Tosa, koeto
HH OCTaBH HE CaMO B HAyKaTa U IIPENOJIABAHETO, HO U BbB BUCOKUTE KPUTEPUHM HA
OILIEHABAHETO UM, IPOIBJKABA 13 KUBEE B HAC.

Honyuena na 29.03.2002

Emun Xoposos
PakynTer no MaTeMaTHKAa U HHGPOPMATHKA
Cocpuiicku yrusepcurer ,Cp. Knument Oxpugcku “

1164 Codus, n.x. 64, BBJITAPUSA
E-mail: horozov@fmi.uni-sofia.bg
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[TPOI'PAMA

Ha HayuHaTa cechs, mocBereHa Ha 70 rOAMHHM OT POXKJIEHUETO
Ha npod. Tozop I'. Tenuen (1932-1998), Codust, 16 mapr 2002

Enunruydsa perysisipusanust U CyOe I uITHIHOCT
wa.x0p. Ilemsp Ilonuearos

Enno kpaTko moxasarenctso 3a anrebpuyHa 3aTBOPEHOCT Ha NOIETO OT H3UHC
JIMMUTE KOMILIEKCHH YUCJIA
npop. Jumumsp Cropoes

3agava sa IIpoTep, CHHIYISPHOCTH U DELLIEHUS
npog. Hedo Tonusanos i

XapMOHUYHH MOYTH-KOMILIEKCHH CTPYKTYDH BBbDXY TYHCTOPDHH IIPOCTPAHCTB
cm.n.c. Hoxan Hasudoe u cm.m.c. I cm. Onez Mywxapos

VpaBHeHne Ha HEM30TPONHATA [U(Y3UA U TPHIIOXKEHHE B TEOPHA Ha obpaza
. |
cm.n.c. Huxonall Kymes

ITouuska

KopeHu Ha NOJAMHOMHTE OT LIECTA, CTENeH
doy. Anzea XKuexoe

JsymepHu DyKCcOBH cucremu U CBOMCTBO Ha Yebumes
em.n.c. Haua Uaues

Anrebpa na Baitn u 6ucnekrpanHu oneparopu
npog. Emua Xoposzos

3a Hy/IHTE HA DEHICHUATA, HA HEJIMHEHHU XunepOONUYHM ypaBHEHUS C IOCTO-
AHHU KOe(DULUEHTH
ac. Bopruya Ilemposa u doy. Jumumsp Muwes
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A SEMANTICS OF LOGIC PROGRAMS WITH PARAMETERS

VESSELA BALEVA

A generalized version of the declarative semantics of Horn clause programs on abstract
structures with parameters is presented. The parameters are subsets of the domain of
the structure. They are treated as effectively enurnerable sets. The main feature of the
semantics is that it does not admit searching in the domain of the structure. The ob-
tained programming language is closed under recursion and has the greatest expressive
power among the languages satisfying certain natural model-theoretic properties. It is
shown that the obtained notion of computability is transitive.

Keywords: semantics, logic programming, parameters, abstract structures
2000 MSC: 03D75, 68Q05, 68Q55

1. INTRODUCTION

In this paper we present a semantics of logic programming on abstract struc-
tures with parameters. It is typical for this semantics that it does not admit search-
ing in the domain of the structure. A semantics with searching in the domain of
the structure is studied in [4].

In structural programming every subroutine of the relevant language may be
joined as a function to the structure and the class of the computable functions
in the extended structure will remain unchanged. One may suppose that logic
programming has the same properties. Consider a structure 2 and a subset A of
the domain of /. It seems suitable to define a semantics of a logic program P,
using A as a parameter, as the usual semantics of P on the extended structure
(A, A"), where A’ is the semicharacteristic predicate of the set A. Unfortunately,
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this approach is not satisfactory, because the obtained notion of computability
is not transitive, unless the equality relation is an underlined predicate of . It
turns out that in order to obtain an appropriate semantics, parameters should be
interpreted as “oracles”, enumerating their elements, rather than predicates.

This idea is formalized in the paper by introducing first order structures with
parameters, which are treated as effectively enumerable subsets of the domain of
the structure. A semantics of logic programs on such structures is introduced
and studied. The programming language obtained in this way has some interesting
properties. First of all, it has greater expressive power compared to all programming
languages that have certain natural properties. This fact helps us to show the
transitivity of the obtained notion of computability and also to prove that the
programming language is closed under recursion.

For the sake of simplicity, we consider only structures with unary functions,
predicates and parameters. All definitions and results can be easily generalized for
functions, predicates and parameters of arbitrary finite arity.

2. PRELIMINARIES

Let A = (B;61,...,0,;%0,...,%k; 41,...,Am) be a partial structure, where
the domain of the structure B is a denumerable set, 8y, ..., 0, are partial functions
of one argument on B, %o, ..., &) are partial predicates of one argument on B, Yo =
\s.true, the parameters A,,..., A, are subsets of B, and n,k,m > 0. Moreover,
we assume that the predicates ¥i,..., Y, obtain only the value “true” whenever
they are defined. The last assumption is made for the following reasons. First, it
is not restrictive for our considerations (if £ obtains the value "false”, it can be
represented by two predicates £t (t) « Z(¢) and X~ (t) & -X(t)). And second,
logic programs cannot use the nega’clve part of the predicates of the structure
because of their syntax.

Let B = (N;p1,...,¢n00,..,0k:€1,...,&m) be a partial structure over the
set N of the natural numbers. A subset W of N is called recursively enumerable
(r. e) in B if W = T(p1,...,¥n;00,---,0%;&1,...,&n) for some enumeration
operator I' (see [1]).

An enumeration of the structure 2 is any ordered pair (a,®B), where
B =(N;Q1,.-,Pn;00,---,0k;€1,...,&n) is a partial structure, og = As.true, the
predicates oy, ...,0 obtain only the value “true” whenever they are defined, and
«a is a partial surjective mapping from N onto B, such that the following conditions
hold:

(i) The domain of a (Dom(a)) is closed with respect to the partial operations

yerer Pri

(i) a(pi(z)) ~ 0;(a(z)) for all z of Dom(a), 1 <i < n;

(iii) o;(z) © Z;(a(z)) for all z of Dom(a), 1 < j < ks

(iv) a(&s) = {a(y) :y €&t =45, 1< s <my

(v) & € Dom(a), 1 <s<m.
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We shall suppose that an effective monotonic coding of finite sequences and
sets of natural numbers is fixed. If ag, ..., am is a sequence of natural numbers, by
(ao,...,am) we shall denote the code of the sequence ay,...,am, and by E, - the
finite set with code v. We write £(z) to denote that z € £.

Let (q); = pz[p?/q & —(pi**/q)], where p; is the i-th prime number.

Let (o, B) be an enumeration of 2. We shall call the set '

D(®B) = {@,z,y):1<i<n&yp(z)~y}
U {(,z):n+1<j<n+k &oj_n(z) =~ true}
U {(5,2) it E+1<s<ntktmboni(a)

a code of the structure B. It is clear that for every W C N, W isr. e. in B if W
isr. e. in D('B).

Let A C B. The set A is called weak-admissible in the enumeration {(a,B) iff
for some r. e. in B subset W of N the following conditions hold:

(i) W C Dom(a);

(i) a(W) = A.

A subset A of B is called V-weak-admissible in 2 iff it is weak-admissible in
each enumeration (a,B) of 2.

The equivalence between the V-weak-admissible sets and the sets definable by
logic programs will be considered. The V-weak- admissible sets have an explicit
characterization, which simplifies the considerations.

We shall use the following notation. The letters t,p will denote elements of
B; z,y,z,u,v will be elements of N. We shall identify the predicates with partial
mappings which takes values 0 (for “true”) and 1 (for “false”).

Formulas of the form F'&...&F*, where each F* is an universal closure of
Horn clause, i. e. F? is a formula of the form VXj .. NX (V=1L V.. v -IL,),
where n > 0 and II,II,..., I, are atomic predicates, are called logic programs.
We shall use the usual notation of the Horn clauses:

II: —Hl,...,Hn.

Let £=(fi,-.., fa;Tos-.., Tk, T'; S1,. .., Sm) be the first-order language cor-
responding to the structure 2, where fi,..., f, are functional symbols, Ty, ..., T}
are symbols for predicates, Ty represents the total predicate %y = As.0, T" repre-
sents the nowhere defined predicate, and Si,...,S,, are symbols for parameters.

Let {Z1,Z5,...} be a denumerable set of variables and {X;,X7,...} be a
special set of variables for the elements of parameter S;, 1 < s < m. We shall use
the capital letters X, Y, Z to denote the variables.

If 7 is a term of the language £, then we shall write 7(Z) to denote that all of

the variables in 7 are among Z = (Z1,...,2,). If 7(Z) is a term and ¥ = ti,. . 1
are arbitrary elements of B, then by 7¢((Z/t) we shall denote the value, if it exists,
of the term 7 in the structure % over the elements ¢y, ..., ¢,.

Termal predicates in the language £ are defined by the following inductive
clauses:
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(i) Tj(r), 0 < j < k, and T'(7), where 7 is a term, are termal predicates;

(ii) Ss(X?), where 1 < s <m and i is an arbitrary natural number, is a termal
predicate;

(iit) if IT' and I1? are termal predicates, then M!&I12 is a termal predicate.

Let TI(Z) be a termal predicate and #1,.. ., be arbitrary elements of B. The
value Tlgy(Z/%) is defined as follows: _ _

(i) if I1 = T(r), 0 < j <k, then Ty (Z/t) ~ 2 (ry(Z/1);

(i) if L = T"(r), then Ty (Z/?) is undefined;

(iii) if I1 = S,(X7), 1 < s <m, then (Ss(Xi/t))g =0 1€ As;

(iv) if IT = [I* &2, where IT? and II* are termal predicates, then

Ha(i/f), if ngl(f/f) ~ 0,
undefined, otherwise.

Ny (Z/t) ~ {

We shall call the expression 3X; ...3X,II an existential termal predicate, where
Il is a termal predicate and Xi,..., X, are all special variables of II. If ¥ =
3X; ...3X,II is an existential termal predicate with free variables Z1, ..., Z,, then
the value of ¥ is defined as follows:

Sq(Z/) ~ 06 er...3e(er, ... ep € BET(Z/L,X/2) = 0).

We shall call the expression 3X;...3X,(I D 7) a conditional term, where II is
a termal predicate, 7 is a term and X3,..., X, are all of the special variables in
Il and 7. The value of the conditional term Q = 3X;...3X,(Il D 7) with free
variables among Z1,..., Z, is defined as follows:

Qm(?/z) 3t & de ...Sep(el,.. ep € B& H(Z/{,X—/§) ~0&
(Z [, X [T) ~ t).

We shall assume that an effective coding of the language £ is fixed.

Let A be a subset of B. The set A is said to be weak-computable in the structure
2 iff for some r. e. set V of codes of conditional terms {Q"}vev with free variables
Zy,...,Z, and for some fixed elements t1,...,% of B the following equivalence is
true:

peAe eV &Qy(Z/t)3p)

3. V-WEAK-ADMISSIBILITY

In this section we shall give an explicit characterization of V-weak-admissible
sets. The constructions and proves in this section will be used for the logic programs
in the next section. The main tool in the proofs will be the set theoretic forcing.
It is sufficient to use only special enumerations for our purposes.
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The enumeration (a,®B) is said to be special iff the following conditions are
true:

(i) if pi(z) ~y, theny = (i, j,z), where 1 <i < n and j is an arbitrary natural
number;

(ii) if z € &, then z = (n+s5,5), where1 < s <m and j is an arbitrary natural
number.

In the sequel all enumerations will be special, unless something else is assumed.

We shall call

A= (al;Hl;go'l,...,cp'n;a'l,...,a’k;f’l,...,f’m)

a finite part, where:

(i) Hi and oy are respectively a finite set of natural numbers and a finite
mapping from N in B and H; N Dom(a;) = §;

(ii) @'y, .., ¢, are partial functions from H; U Dom(a;) in H; U Dom(ay);

(iii) if @j(x) ~ y, then y = (3,5,z), where 1 < i < n and j is an arbitrary
natural number;

(iv) Dom{a) is closed with respect to ¢'y,...,¢';

(v) if z € Dom(a;) and @j(z) ~ y, then 6;(a; (z)) ~ ai(y), 1 <i < n;

(vi) 0'1,...,0" are partial predicates on H; and obtain only the value “true”
whenever they are defined,;

(vil) € C Dom(ay), 1< s < m;

(viil) if z € &, then z = (n + s,j), where 1 < s < m and J is an arbitrary
natural number;

(ix) oy (&) C A5, 1 < s <m.

We shall denote finite parts by A and . We shall introduce relations "C?
between finite parts and between a finite part and an enumeration and consider
some of their properties.

Let A&; = (o His@hy, 00500, .0, 0% 6, ..., € ), i = 1,2, be finite
parts. We say that A; C A, (4; is included in A, or Ay extends A,) ifE

()H1CH2,011<042»<P@ <@l 1<i<no) <ol 1<j<kelCe
1<s<m

(il )1fcpl(:c) ~y and y € Dom(a), then ¢}(z) ~y, 1 <i < n;

(i) if £2(z) and = € Dom(a; ), then E(z),1<s<m.

Let A be a finite part and («, B) be an enumeration. We say that A C (o, B)
iff:

(i) HyNDom(a) =0 and o; < o

(if) ¢} < i, 1 <i <y 0; <05, 1<j<k € CE&,1<s<my

(ili) if p;(z) ~y and y € Dom(al) then ¢i(z) ~y, 1 <i < n;

(iv) if £(y) and y € Dom(a;), then €. (y), 1 < s < m.

From the definitions of the relations ”"C” we get immediately:

1. A CA;

2. if AI - Az and Ag - A3, then A1 - A3;

3. if A; € Ay and Ay C (a,*B), then A; C (a, B);
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4. if Ay C (o, B) and A, C (@, B), then there exists a finite part A such that
A C (a,‘B), Al - A and AQ C A.

The structure B models Fy(y) (we write B = Fe(y)) iff y € T.(D(B)), where
I, is the e-th enumeration operator.

By We% we denote the set I'.(D(B)), i. e.

ye W2 & 3u((v,y) € W, & E, C D(B)).

We say that the enumeration (o, B) models Fe(y) (o, B) = F.(y)) iff B =
F.(y).

We define the relation “forces” (J-) by the following clauses:

1. A}~u, where u € N, if one of the following conditions is true:

() u = (i,z,2), 1 <i<n,and g;(z) ~ z;

(i) u = {n+j,7), 1 <j <k, and (z € H; and o}(z) = true) or (z € Dom(a;)
and X;(aq(z)) ~ true);

(iil) u = (n+ k+s,2), 1 <5 <m, and &(z);

2. AFE = {u1,...,ur} if Af-u;, 1<i <y

3. AF-Fu(y) if 30((v,y) € W, & AFE,).

The following properties of forcing are easily obtained:

1. if A|-F.(y) and A C 4, then é§|-Fe(y);

2. if A|-F.(y) and A C {a,B), then (a,B) |= Fe(y);

3. if {(o,'B) = Fu(y), then there exists a finite part A C (@,B) such that
A“—Fe (y)

Most of the proofs in this paper use stepwise constructions. On each step we
construct a finite part of a certain enumeration. The finite parts constructed on
later steps keep the forcing properties of the former steps. In this way we ensure the
modelling property of the constructed enumerations, which is a weak admissibility
indicator.

The following proposition gives a characterization of V-weak-admissible sets by
means of finite parts and the relation “|-".

Proposition 3.1. Let D be a V-weak-admissible set. Then there exist a finite
part A and a natural number e such that the following conditions hold:

(i) V&6 2 AVY(3|-Fe(y) = y & Hs);

(ii) t € D & 36 D Ady(as(y) ~t & d|-Fe(y)).

Proof. Assume that a finite part A and a natural number e, satisfying the
properties (i) and (ii), do not exist. We shall construct a special enumeration
(o, B) for which D is not weak-admissible. The construction will be made by
steps. On the g-th step we shall construct a finite part A, that extends A;—;. On
the steps ¢ for which (g)o = 4n,4n + 1,4n + 2 we shall ensure some properties of
the enumerations, while on steps for which (¢)o = 4n + 3 and (¢g); = e we shall
ensure non-admissibility of D with respect to I'.. We assume that an arbitrary
enumeration of B is fixed.
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1. Let (g)o = 4n. Let z be the first natural number which is not in Dom(a,—1)U
Hy1, and let ¢ be the first element of B which is not in Range(a,_;) (if such ¢
does not exist, then let ¢ be an arbitrary element of B). We define:

~ t and a,4(z) =~ ay-1(2) for all other z;
Hy=H, ;9! =o', 1<i<n;
I=of L 1<j<k =& 1<s<m

2. Let (q)o = 4n + 1 and (¢);1 = (i,z), where € Dom(a,—_1), ¢! '(z) is
undefined and 6;((ag-1(z)) = t. Let y = (i, j,z) and y & Dom(ag-1) UH,-1 (such
y exists, because j is an arbitrary natural number). We define:

©¥(z) ~ y and ¢¥(2) ~ ¢! 1 (2) for all other z;
aq(y) ~ t and ay{2) ~ ay_,(z) for all other z;
Hy=Hpy; gf=of!, 1<i<n, 1#5§

— g1 . oo
o]=0l", 1<j<k &=¢7! 1<s<m

3. Let (g)o = 4n +2 and (¢); = (s,2'), where z' € Dom(a,-1), 1 < s < m;
ag-1(z') ~t,t € A, and t € ag_1(&). Let = = (s + n, j), where j is an arbitrary
natural number such that z € Dom(ag-1) U H,—;. We define:

aq(z) ~ t and ag(2) ~ ay-1(2) for all other z;
Hy=Hp; ¢l=9!™, 1<i<n ol=0l"", 1<j<k

g=gu{zand =€ 1<r<m, r#£m.

4. Let (g)o = 4n + 3 and (¢); = e. We shall construct A, such that if
(@,B) D A,, then for We% and D one of the following conditions is false:

(2) WP € Dom(a);

(b) a(WB) = D.

From the assumptions it follows that for A,_; and e at least one of the condi-
tions (i) or (ii) is violated:

A) Let (i) be false, i. e. 30 D AJy(6]-F.(y) & y € Hs). Let A, = § and

{a,B) O A,. Due to property 2 of the relation “|-", it follows that (a,B) |=
F(y)iewyce WE%. But y € Hy, hence y ¢ Dom(a). We have obtained that
W;B ¢ Dom(a).

B) Let (ii) be false. Then there exists some ¢ such that one of the following is
true:

teDandVdD A, 1Vylas(y) ~t =8 J-F.(y)); (3.1)
t ¢ D and 36 D Ay_13y(as(y) ~t & §|-Fe(y)).

If (1) is true, then A, = A,_;. Suppose that for some {a,B) D A, the conditions
(a) and (b) are true. Then there exists y € WSB such that a(y) =~ ¢, hence
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(a,B) = F.(y). Due to property 3 of the “|-” relation and property 4 of the “C”
relation, there exists a finite part & such that as(y) ~ t, §|—Fe(y) and 6§ D A,
This contradiction proves that, for all (a,B) 2 A,, at least one of (a) and (b) is
violated.

Let (2) be true and let A, = § and (a,B) D A,. Then a(y) ~ ¢t and due to
property 2 of the “|-" relation, (o, B) = F.(y),i.e.y € We%, therefore a(W:B) Z
D.

Now we define (o, B) in the following way:

a—an, H = UHq,cpz U‘pz’ 1<i <
U§q15s5m; a—Uo‘I, 1<j <k

Ej(a(a:)), if z € Dom(a),
7i(@) = {a;(z), if z € H.

It is easy to see that all constructions are correct. We have obtained an enumer-
ation {@, B) for which D is not weak-admissible. The last proves the proposition.[]

Let var = {Y,,Y1, ...} be the set of all non-special variables and val be a bijec-
tion of N onto var. Let A be a fixed finite part such that Dom(a;) = {w1,...,w,}
and oy {w;) =t;, 1 < <.

Proposition 3.2. There exists an effective way to define, for every finite set
E of natural numbers and for every natural y, a conditional term A\(W) with free
variables W = (Wy,...,W,), where W; = wval(w;), 1 < i < r, such that the
following conditions hold:
(i) ifte /\Ql(W/t) then 36 D A(as(y) ~ t & 0| E);
(ii) if t ¢ )\m(W/t) then at least one of the following conditions is true:
(a) 36 2 A(G|-E & y € Hy);
(b) V6 2 AGH-E = as(y) # t).

Proof. The set E is said to be consistent iff the following conditions hold:
.fu€E, thenu={(i,r,2),l1<i<noru={(,z),n+1<i<n+k+m.
.If (i,z,2) € E and (i,z,21) € E, then z = z;.

If (i,z,2) € E and z € Dom(ay), then ¢j(z) ~ 2.
. If (i,z,2) € E and ¢'(2) is defined, then ¢(z) ~ 2.
I (i,2) € E,n+k+1<n+k+mand z € Dom(a;), then &___,(2).
If (i,z,2) € E, 1 <i<n,then z = (i, 5,2).
G, 2)eE n+k+1<i<n+k+m,then z=(i-k,j).
Immedlately from the definitions it follows that:

N O U W N

Lemma 3.1. If there exists a finite part 6 DO A such that §|—F, then E is
consistent.
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If E is not consistent, let A = T'(W;) D W;. Now let E be consistent and let
E, = E\({{i,z,2)|z € Dom(a) & 1 <i < n}
U{(i,2)|z2 € Dom(on) &n+k+1<i<n+k+m}).
It is easy to show that:
Lemma 3.2. If § D A, then the following equivalence is true:
S-E & é|-E;.

Let

P={z|(t,z) e By &n+k+1<i<n+k+m}

K={z|(i,z,2) € E1 &1 <i<n}U{z|(j,2) € E1 &
n+l1<j<n+ktU{w,...,w,}UP.

We define the relation “~” (follows) between natural numbers as follows:
21 - 20 iff (¢,21,22) € By and 1 <4 < n.

Here are some simple properties of this relation:

1. If 21 = z and 29 — z, then z; = 25.

2. If z; — z, then there exists only one number ¢ such that (i,2;,z) € E;
<7:7 j’ 21>)-

3. If 2; — z, then z; < z (the coding is monotonic).

Note that if z € P, then z has no predecessor, because z = (s,j), where

n+1<s<n+m,i e zcannot be a value of a function.

We define sets Ky, K1, ... as follows:

Ko = {wy,...,w.}UP,
Kipi={z3zze K&z —2)}, [=0,1,...

It is easy to show by induction that if m; < mg, then Ky, N Ky, = 0. Then

there exists p such that Kp1 = 0. Let K* = {JI_; K;. It is clear that K* is a finite

set.

For every z € K* we define 7% in the following way:
1. If z € Ky, then:

(a) if z € {wy,...,w,}, then 7% = val(2);

(b) if z = (s,j) € P, then 7% = X"

2. fz€ Kj41, z = z and z € Kj, then 7% = f;(7%).
Let E* C E4 be such that

veE* E (u=(i,z,2)&1<i<n)
Viu=(j,z1)&n+1<j<n+k+m))& 2z € K".
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Let 7 = {X:™"|z = (s,j) € P} and let m = {X{",... X" }.

For every u € E* we define L as follows:

(a) if u = (i,21,22) and 1 < i < n, then L* = To(T%2);

(b) if u=(n+j,2) and 1 <j <k, then L* = T;(t%));
(c)ifu=(n+k+s,2) and 1 < s <m, then L' = 5,(X7).

Now let & = &uep-L* and IT = 3X7' ... 3X,7 &uep- LY.

The next two lemmas follow immediately from the above constructions.

Lemma 3.3. Let 6§ O A and §|-E;. Then P C Dom(as).

Lemma 3.4. Let§ 2 A, §|-E; and as(p;) ~ e;, 1 <1 < p. Then the following
conditions are true:

(i) K* C Dom{as); L

(i) Vz € K*(as5(2) =~ Tél(W/Z,X/é));

(iii) Lou(W/t, X [€) ~ 0. (X stands for XX

Lemma 3.5. Let HiNK* = 0 andey,... e, € B be such that Sog (W /1, X [€) =
0. Then there ezists a finite part § O A with the following properties:

(i) cas(pi) ~ei, 1 <i< g

(ii) Dom{as) = K* and Hs = H1 U (K/K™);

(iii) if z € K*, then as(z) ~ Tﬁl(VV/f, X /e);

(iv) 6-E1.

Proof. For z € K* we define a5 as follows:

1. If = € Ky, then: L

(a) if z = w;, then as(z) > t; ~ Tﬁ(W/f,X/é) (1% = wy);

(b) if z = p;, then 0s(2) ~e; = T&(W/Z,Y/E) (% = X i)

2. If z € K41, then a5(z) ~ T&(W/E,Y/E).

The other components of § we define as follows:

Hs; = H; U(K/K*);

d .
(pg(zl) ~ Za g (2,21)2:2) €k VSD:Z(ZI) =2 for
1<i < nand z € Hs UDom(as);

£(2) =4 (s+n+k,z) € EVE(2) for 1 < s <mand 2 € Dom(as);
ag(z) ~ true Y (n+j,2) € By Voj(z) = true for
1<j<kandz€ H;s.
It is easy to show that the finite part J defined above satisfies (i)-(iv). O
Now we can continue the proof of Proposition 3.2. Let

\= T’(Wl):)Wl, ifye¢ K~ orK*ﬂngé@,
1>y, otherwise.
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Let Ag (W /) 3 t. Due to Lemma 3.5, there exists § D A such that as(y) ~
TV(z/e, W [t) ~ t and |- E;, and hence §|-E.

Let Ay(W /t) # t and E be consistent. There exist three possibilities:

1. K*N Hy # 0. Suppose that § 2 A and §|-E. Then due to Lemma 3.3 and
Lemma 3.4, K* C Dom(as). This contradicts the fact that Dom(as) N Hy = 0,
hence for all § D A it is true that § J~F, i. e. (ii)(a) is satisfied.

2. K*NH; =@ andy € K*. Suppose that § O A and §|—E. Hence §|-E; and,
due to Lemma 3.4, P C Dom(as), as(y) ~ 7v(W/t,X /e) and To(W/t, X [e) ~
0, where e; = as(pi), 1 < i < p. If as(y) ~ ¢, then A(W/¥) ~ t. Thisis a
contradiction, hence a;(y) # ¢ and (ii)(b) holds.

3. K*NH, =0andy & K*:

(a) If (W /f) ~ 0, then there exist e1,...,e, € B such that g (W /7, X/¢)
~ 0. Due to Lemma 3.5 and the properties of the relation “|-”, there exists § D A
such that 6}—F and y € H;. Then (ii)(a) is true.

(b) Let II(W /%) #£ 0. Let § D A and suppose that é}-E. Due to Lemma 3.3,
there exist e1,...,e, € B such that Sg(W/t,X/e) ~ 0. It follows from this
contradiction that (ii)(b) is true.

Let )\Q‘(W/E) # t and let E be not a consistent set. Then for alléd D A, § }-F
and (ii)(b) is true. That proves Proposition 3.2. [

Theorem 3.1. If D is a V-weak-admissible set, then D is weak-computable.

Proof. Let D be V-weak-admissible. Due to Proposition 3.1, there exist a finite
part A and a natural number e such that:

(i) V8 2 AVy(Sl-F.(y) = y & Hy);

(i) t € D & 36 2 Ady(as(y) =~ t & §|-Fe(y)).

Let t € D. It follows from (ii) that there exists a natural number v such that
(v,y) € W, and §|-E,. Consider the conditional term A*¥ for E, and y from
Proposition 3.2. Suppose that )\a’y(Wﬁ) F t. There exist two possibilities:

1. There exists 6' D A such that §'|-E, and y € Hs. Hence &'|-F,(y) and
y € Hy, which contradicts (i).

2. For all ¢' D A(§'|-E, = as(y) # t). This case is also impossible, because
d DA, §-E, and as(y) ~ t.

So we have that ¢ € /\&y(W/Z).

Now let t € A&y(—W—/Z). Then 36 D A(as(y) ~ t & §|-E,) and, due to (ii),
teD.

Finally, we obtain that

te Do 3w,y € We(A&y(W/’T_) 3t),

which proves the theorem. [
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4. LP-DEFINABILITY

Now we are ready to introduce our semantics of the logic programs. Let £ =
(fi,-- - fsToy -« Tk S1,. .., Sm) be a first-order language corresponding to the
partial structure 2. Let C = {c1,...,¢r} be a set of constants. For every t € B
we introduce new constants & as names for ¢, 1 < s < m. We define the sets
K, ={kflt € A}, 1 <s<m,and K = J,.; K;. Let £g = LUC UK and let
2" be the enrichment of U to the extended language £x. Let Tk be the set of all
ground terms of Cx. The set

8 (@A) = {T;(r)|0 <j < k & T € Ty & T;(rgy+) ~ 0}

is called a diagram without parameters of the structure 2. For all parameters we
also introduce a diagram

O(As) = {Ss(k]) ki € K5}, 1<s<m.
Now we define a diagram of the whole structure 2l
A% (RA) = C(A) UB(A1) U...Ud(Ap).

A subset D of B is called definable by logic programs (LP-definable) in the
structure 2 iff there exist an ordered pair (P, H) (P is a logic program and H is
a new predicate symbol) and a set of constants C' = {c;,...,c,} such that the
following equivalence is true:

teDe (€T &OC(A)UPF H(r) & 1y 1)

(the sign “I” means derivability in the sense of the first-order predicate calculus). .

Notice that in the definition of () the underlined predicates and the pa-
rameters are not treated in equal manner. For example, suppose that 8;(z) = t.
Suppose that ¥;(t) ~ 0 and ¢t € A,. Then both T;(k§) and T;(f;(k$) are elements of
A (). On the other hand, S,(k§) € 8% (2), but Sy(f; (k%)) ¢ HS(A). The picture
changes if the equality relation is among the underlined predicates. In such case,
we have f;(k$) = kf € 8(2) and hence 9% (2) - Sy (fi(k2)).

Now we shall consider the relation between the LP-definable and V-weak-
admissible sets. For this purpose, we shall translate the constructions from Propo-
sition 3.2 into logic programs. We shall introduce some auxiliary terms.

A natural number e and a finite part A are called compatible iff

Vo O AVy(Sl-Fe(y) = y & Hs).

A subset D of B is said to be sufficient for the finite part A and the natural
number e iff the following equivalence is true:

te Do 36D Adylasly) = t & §-F.(y)).
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A family of sets P is called sufficient iff, for every compatible finite part A and
natural number e, there exists D € B such that D is sufficient for A and e.

Note that if D and D; are sufficient for A and e, then D = D,. It follows from
Proposition 3.1 that if D is V-weak-admissible, then it belongs to every sufficient
family.

Let fix a finite part A. For every natural number e compatible with A we shall
construct a logic program (P', F) such that the set defined by (P’, F) is sufficient
for A and e.

Let 0 and nil be new constant symbols, let fo be a new unary functional
symbol, and h be a new binary functional symbol.

For every natural n by n we note the term f§*(0). Let N denote the set
{njn € N}.

The following proposition is a reformulation of a well-known result.

Proposition 4.3. For every r.e. subset W of N* and for every k-ary predicate
symbol Q, there ezists a logic program P with the following properties:

() if (z1,...,zk) € W, then P+ Q(zy,...,2);

(ii) there ezists a Herbrand interpretation I of P, which is a model of P and

I(Q)(al,...,ak):0¢>
awl“‘azk((wlr"y‘rk)EW&al :Ql& &ak :—:Qk)

Such interpretations of P we call standard.

We define lists in the following inductive way:

(i) nil is a list;

(ii) if a is a list and B is a term, then g(a, §) is a list.

Let A = (a1; Hi;¢' 1y @' 01,0013 € 450 € )y Dom(og) = {wy,. .,
wr}; a3(w;) >~ ¢, 1 < i <, and let ¢1,...,¢, be new constant symbols which
are interpreted in A as ty,...,t,. Let R = {c1,...,¢r,0,ndl, fo,..., fn,h} and

(8, X7, ... be special variables. Let ¥ be the set of all terms constructed by means
of R and the special variables. We shall denote the elements of T by a,b,c,... Let
var(a) be the set of the variables of a. We consider Herbrand interpretations of T.
For a consistent set E, we shall use the sets P, K, E;, K* and E*, constructed in
the proof of Proposition 3.2.

We consider substitutions of the form {X3!/u1,..., Xp?/u,}, where pi, ...,
tqg € T If p; = pi and p; = (s; +n,j), 1 < i < g, the substitution is called
a correspondence and the list [[X!|p ],..., [Xp: |Bq]] is called a representation of
the correspondence. For a substitution x and a € ¥, by ax we denote the term,
provided by applying & over a. If [ is a representation of a correspondence, [« is
called a pseudocorrespondence.

If { and f are correspondences, then we shall write [ <; f to denote that [ = f
or | = append(l,[X,m]) for some special variable X and a natural m. We use the
sign “<” to denote the reflexive and transitive closure of “<”.
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Consider the sets:

Neq = {(z,y)lz,y € N&z #y},
] &z

Cod2 = {(z,i,y)lz,i,y € N &z = (i,y)},
Cod3 = {(z,i,y,2)lz,5,y,2€ N&z = (i,y,2)},
Dalpha = {wy,...,w,},
NDalpha = N/Dalpha,
NCod2 = N/L, where L = {z|z = (i,2) & i,2 € N},

NCod3 = N/L', where L' = {z|z = (i,j,2) & 1<i<n& j,z € N}.

All of them are recursively enumerable. Let the logic programs Pp.q, Peod2,
Peoas, Piatpha, Prdalphas Prcod2; Preods represent the above sets with predicate
symbols neq, cod2, cod3, dalpha, ndalpha, ncod2 and ncod3 and suppose that they
have no common predicate symbols.

We shall identify the finite set of atoms with their conjunction if the set is not
empty, and with true if it is empty.

We shall consider several programs, needed in the construction of P’. When
a program uses already defined predicates, we shall suppose that the texts of the
corresponding programs are appended to the text of this program. For example,
we shall suppose that in the next program Py the programs Ppeq, Peod2; Peogs and
Prdaipha are included.

F
el (Y, [Y{R]):-cod3(Y,i, Z, X),ndalpha(X). 1 <i<n
e1(Y,[Y|R]):-cod2(Y,j,X). n+1<j<n+k
e1(Y,[Y|R])i-cod2(Y, s, X),ndalpha(X). n+ k+1<s<n+k+m
e1(X,[Y|R]):-neq(X,Y),e1(X, R).

The next proposition is a verification of the program F;. The method used is
developed in [3].

Proposition 4.4. Ifz € N and E = {uy,...,w} is a consistent set, then
PyFelz, [uy,...,y)) iff ¢ € Ey.

Proof. The “if” part is proved by induction on I. To prove the “only if” part,
we shall define a special Herbrand interpretation of Py. Let take a special Herbrand
interpretation I of the predicates that occur in Ppeq, Prog2;, Peods and Pryaiphe. We
define the predicate I(e;) as follows:

(a) I(e1) = 0if a ¢ N or 7 is not a list representing a consistent set;

(b) I(e1) ~0if a =z € N and 7 is a list representing a consistent set F such
that x € E;.
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A straightforward proof shows that I is a model for Py. This fact together
with the definition of I(e;) proves the proposition. 0

The following programs are verified in a similar way.

Py
p(z, 2)-cod2(Y, s, X),e; (Y, 2).

Proposition 4.5. Ifz € N and E = {uy,...,u,} is a consistent set, then

P Fp(z, [ug,...,u,]) iff z € P.

Py
([ LD+
o (X, [HIT])neod2(H), pr (X, T).
p1(X,[H|T))-cod2(H, j, Z),p1 (X, T). n+1< j<n+k
p1(X, [H|T))~cod2(H, s, Z}, dalpha{Z), ;1 (X, T).
n+k+1<s<n+k+m
m([H|Y),[H|T)):-cod2(H, s, X ), ndalpha(X), ;1 (Y, T).
n+k+1<s<n+k+m.

Proposition 4.6. If e is a list representing a consistent set E, then

Py pi(f,e) iff f represents the set P.

Py
en([],[ )=
e (X, [H|T)):-cod3(H,i, Z,Y),dalpha(Y),e11 (X, T). 1 <i<n
en (X, [H|T)):-cod2(H, s, Z), dalpha(Z),e11 (X, T).
n+k+1<s<n+k+m
ex1 ([H|X], [H|T]):-cod3(H, i, Z,Y), ndalpha(Y),e11(X,T). 1<i<n
en([H|X],[H|T)):-cod2(H,j, Z),e11 (X, T). n+1<j<n+k
en1([H|X], [H|T]):-cod2(H, s, Z),ndalpha(z), e11(X, T).
n+k+1<s<n+k+m.
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Proposition 4.7. If e is a list representing a consistent set F, then

P & e11(a,e) iff a represents the set E;.

Py
nel([], X ):-.
nel([X1|Y], X):-neg(X1, X), nel(Y, X).

Proposition 4.8. If a is a list of elements of N and b is an element of N,
then

Py - nel(a,b) iff b is not an element of a.

Py
k(w;,,Z)-. 1<i<r
k(X,Z)-p(X, 7).
k(X, Z):-cod3(X, i, J, Z1), cod3(Y, i, Z1, X), e1(Y, Z), k(Z1, Z).
1<i<n.

Proposition 4.9. If z € N and e is a list representing a consistent set E,
then

Pk k(z,e) iffz € K.

P
k(X, Z):-ncod3(X), p1 (Y, Z), nel(Y, X), ndalpha(X).
k(X, Z):-cod3(X, i, J, Y),cod3(R,i,Y,X),e11(X1, Z),nel(X1, R),
pl(Y1,Z),nel(Y1, X),ndalpha(X). 1<i<n
k(X, Z):-cod3(X, i, J, Y),p1 (Y1, Z),nel(Y1, X),ndalpha(X),
cod3(R,1,Y,X),e1(R, Z),k(Y,2Z). 1<i<n.

Proposition 4.10. If z € N and e is a list representing a consistent set E,
then

Ps - k(z,e) iff z ¢ K*
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P

tau(w;, i, X, X, E)-. 1 <i<r

tau(X,Y, [ [V, X)), E):-p(X, E}.

tau(X,Y,[[Y1,X1]|21],([Y1, X1]|Z2], E):-p(X, E), p1 (X1, E),
neq(X, X1),
tau(X,Y,Z1,Z2,E).

tau(X, f(V), S,Q, E)-cod3(X, 4, J, X1), k(X 1, E), cod3(R, 3, X 1, X),

e1(R,E),tau(X1,V,5,Q,FE). 1 <i<n.

Proposition 4.11. Let the list e represent the consistent set E, z € N, x €
K*, and c is a pseudocorrespondence. Let b and d be elements of . Then:

P; | tau(z, b, c,d, e) iff there exist a substitution k, a term 7 of T and corre-
spondences | and f such that Tk = b, lk =¢, fx =d and

1 <4 f,var(r) Uvar(l) = var(f) and 7f = °(W /¢, X /D),

where 7% is the term constructed for x in the proof of Proposition 3.2,¢ = (c1,...,¢;)
andﬁ = (pla v 7pq)'

If [y and I, are lists, we shall write l; <7 Iy to denote that I; = ly or there
exists a term a of T such that ls = [a,!;]. By “<*” we denote the transitive closure
Of “<I?7 .

Let £c = (c1y-.¢r5 f1yeo oy FrnToy -3 T3 S1,- ., Sm) be a first-order lan-
guage, where special variables are also available. Atoms in £ are atoms in which
may occur Ty,...,T, and S;,...,Sn. Let £5 be an enrichment of £c with the
constants 0, nil and the functional symbols fo and h.

P

vi([), E, Z)--.

pi([X|Y), E, Z):-cod3(X,i, X1,Y1), k(Y 1, E),pi(Y,B,Z). 1<i<n

pi([X|Y), E, Z):-cod3(X, i, X2, X1), k(X1,E), tau(X1,Y1, Z, Z1, E),
To(Y1),pi(Y,E, Z1). 1 <i<n

pi([X|Y], E, Z):-cod2(X, j, X1),k(X1,E), tau(X1,Y1, Z, Z1,E),
T j(Y1),pi(Y,E, Z1). n+1<j<n+k

pi((X|Y], E, Z)-cod2(X, j, X1), k(X 1, E), pi(Y, E, Z).
n+l1<j<n+k

pi([X|Y), E, Z)-cod2(X, s, X1),p(X 1, E),tau(X1,Y1, Z, Z1, E),
Senk(Y1),pi(Y,E,Z1). n+k+1<s<n+k+m
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pi([X|Y), E, Z)-cod2(X, s, X1),dalpha(X1),pi(Y, E, Z1).
n+k+1<s<n+k+m.

Proposition 4.12. Let e and e; be lists such that e; <* e, let e represent
a consistent set E and let b be a pseudocorrespondence. Then for every finite
set G of atoms in the language £ holds Py + G = pi(e1,e,b) iff there exist a
substitution k, a finite set G® of atoms in £ and correspondences | and f such
that G = Gk, b = Ik, | < f, e; represents the set E' and G°f D il(W/E, X/p),
where £1 = Jycp-nm{Lu} and P = {p1,...,pq} is the set corresponding to E
constructed in Proposition 3.2.

Proof. The “if” part is similar to the previous propositions. To prove the
“only if” part, we define a class £ of Herbrand interpretations of Ps. A Herbrand
interpretation I of Py belongs to £ if the following conditions are satisfied:

(i) I is standard for the already defined predicates.

(ii) If e;, e and b belong to T, then:

(a) I(pi)(e1,e,b) ~ 0 if e; or e are not lists or e; £* e or e does not represent
a consistent set or b is not a pseudocorrespondence;

(b) I(pi)(e1,e,b) ~ 0 if e; and e are lists; e; <* e; e represents a consistent
set; b is a pseudocorrespondence; there exists a finite set G = {81, ..., 81} of atoms
such that I(8;) =~ -+ ~ I(By) ~ 0 and there exist a finite set G° of atoms in
£¢, a substitution k and correspondences [ and f such that b = Ik, | < f and
G°f 2 5,(W /e, X/p).

It is easy to show that every interpretation in R is a model of Pg.

Let G = {f1,..., B} be a finite set of atoms in £, e; and e be lists, e; <* e,
let e represent a consistent set E, b be a pseudocorrespondence and Fg + G =
pi(ey,e,b). Consider I € R such that I(8;) ~ 0 iff 8y € G. I is a model of &,
hence I(pi)(e1,e,b) ~ 0. The latter together with the definition of I proves the
proposition. [

Proposition 4.13. For every natural e compatible with the finite part A, there
exists a logic program (P', F) such that the set definable by means of (P',F) and
the constants cy,...,c, is sufficient for A and e.

Proof. Consider the set
Wy = {(v,y) € W,|E, is consistent, y € K* and K* N H; = §}.

It is clear that W) isar. e. set. Let Q) be a new unary predicate symbol and Py be a
logic program that represents W, by means of ). Let list be a new binary predicate
symbol and Py be a logic program that has no common predicate symbols with
the other programs and satisfies the following conditions:

(i) if u is a code of the finite set {vy,...,vu}, then Py - list(u,[vy,...,1,]);
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(ii) there exists a Herbrand interpretation I of Pjg such that if u € N and
Ey = {v1,...,u}, then I(list)(u,b) ~0iff b = [vy,...,v,].
Consider the following logic program:

Pl
F(Y):-Q(2),c0d2(Z,U, X), list(U,U1), tau(X, Y, [], F, U1),
pi(UL, U1, F).

As in the previous propositions, it may be proved that for every finite set G of
atoms in £ and for every term 7, P’ - G = H(7) iff there exist a substitution
k, an ordered pair (v,y) € Wy, a finite set G® of atoms in £, a term 7° in £
and a correspondence ! such that G = G%k, 7 = 7%, G°l D £(W /¢, X/p) and
701 = 7Y(W /e, X /P), where € = (c1,..-,¢), B = (P1,--.,Pq), Ey is the finite set
with code v, P = {p1,...,p,} and E* are its corresponding sets constructed in
Proposition 3.2, £ = UuE g+ Ly and 7Y is the term corresponding to y.

Let the subset D of B be LP-definable by (P', F) and ¢, ..., c,. We shall prove
that D is sufficient. Let 36 D AJy(as(y) ~ t & &|-Fe(y)). It follows from |- F, (y)
that there exists (v,y) € W; such that é|-E,. Let K* be the set corresponding to
E,, constructed in the proof of Proposition 3.2. It is easy to prove that (v,y) € W;.

From ¢ D A and §|-F, it follows that K* C Dom(as), i.e. thereexist l1,...,l,
such that Yg((W /¢, X /I) ~ 0. Let k; be the name of [; with respect to the parameter
with number s; (there exists such a name, because p; = (s; +n,j) € &,). Let
L=(X35.p,), - [(Xpd,p )l ° = (W /c) and G° = £(W /). Then for the empty
substitution &, P G° = F(r°) holds. From Zg(W/¢,X/k) ~ 0 it follows that
G°(X k) C 0°(), where k = (ky,...,k;). From the Theorem of constants and
the Deduction theorem it follows that P U 8% () - F(r), where 7 = 7°(X/k). In
addition, Ty ~ 78 (W/c X/k) ~ (W/t X /1) ~ as(y) ~ t. We obtained that
teD.

Now let t € D. From the Theorem of constants and the Reduction theorem it
follows that there exists a finite set G of atoms in £¢ such that P+ G = H(r).
Let X;,..., Xy be the set of variables occurring in the formula G = H(r).
Then there exist d,...,dy € B such that Gy(Xi/di,..., Xy /dy) ~ 0 and
TQ[(Xl/dl,...,XqI/dql) ~T

From the characterization of P, there exist (v, y) € W1, a substitution «, a finite
set G° of atoms in I; and a correspondence f such that G = G%«, 1 = 7%, GOf D
(W /e, X/p) and 0f = rv(W/e, Y/;b‘) Let X3,..., X! be the variables occur-
rlng in G° and 7°, f = {X1/ly,..., X’ 7/l;} and & = {X Yl ij/ﬂj}- Let

$(X1/di,..., Xy /dy) =~ 1; and let the first g variablesin f and k be X31,..., X9,
T en:

Pl

GQ((Xl/dl,...,er/dql) ZGO (Xgl/ll,...,X:jj/lj) ~0
TQ[(Xl/dl,...,Xq//dq ) = TQ[(Xsl/lla---,XZj/lj) ~t

33



Hence o (W /2, X/1) ~ 0 and 7 (W /¢, X /I) = t, where X =(X3,..., Xp0).
It follows from (v,y) € Wi that Hy N K* = @, y € K* and E, is consistent.
This, together with Lemma 3.5, implies §|—F.(y) and as(y) =~ t, which proves the
proposition. [0

From the previous considerations follows:
Theorem 4.2. If D is V-weak-admissible, then D is LP-definable.

It is interesting to note that LP-definability implies V-weak-admissibility, i.
e. the classes of LP-definable and V-weak-admissible sets coincide. The interested
reader is referred to [4], where the proof of this fact is given in the case where the
searching in the domain of the structure is allowed.

5. PROGRAMMING LANGUAGES

In this section we shall consider the computational power and shall prove
the transitivity of the new semantics. Consider the first order language £ =
(1, ser; f1,-o s s Tos -, Th; S, ..., Sm). Let R be the class of all structures
corresponding to £ such that

Qleﬁc)ﬁl:(B;tl,...,tr;ﬁl,...,Hn;ZO,...,Ek;Al,...,Am)

and X; be true whenever be defined, 1 < j < n, Xy = As.true and A, are subsets
of B.

A programming language on £ (see [4]) is an ordered triple L = (D, p, G}, where
D is a denumerable set of objects — the syntactic descriptions of the programs of
L, p - the arity function - is a mapping of ® into N \ {0}, and & - the semantics
of the programs in L — is a mapping of © x & such that if d € D and 2% € ],
then &(d, ) is equal to the object computable by means of the program d on the
structure 2. This object is typically a partial function or a set. Here we shall
suppose that &(d,2) is a subset of |A]?(® (by |2| we denote the universe of the
structure 2).

There are at least two natural conditions that should satisfy each programming
language L on £, cf. [4].

First of all, it should be effective in some sense. A language L is called effective
if for all p € D there exists an enumeration operator I' such that, for all B € & for
which |%B] = N, it holds ['(D'(B)) = &(p,B), where D'(B) = D(B)U {(n+ k +
m+i,t):1<i<r}.

The second condition is related to the implementation independence of L.

Let &A; = (Bi;til,...,tir;ﬁil,...,Oin;Eio,...,Eik;Ail,...,Aim) €R,i=1,2.
A surjective mapping & of B; onto By is called a strong homomorphism iff the
following conditions are true:

() k() =3, 1<i<rn

(ii) 02 (x(s)) ~ k(6}(s)) for each s € B, 1 <i < m;

34



(ili) Z2(x(s)) = T}(s) for each s € B, 1< j < k;

(iv) s(A4l)y = A% 1 <s<m.

The language L is called invariant if for all structures 2, B € K, such that there
exists a strong homomorphism & from |2 onto |B], and for all p € D, k(G(p,A)) =
S(p,'B).

We introduce an extra third condition, which is related to the fact that search-
ing of the domain of the structure is not allowed in our semantics. This condition
means that the programs use no external information about the structure, in other
words, they ask only questions concerning the parameters during the execution.
That is why the structures of the next definition have the same parameters.

Let 2A;,%> € K We shall call that 2; is a substructure of 23 (we denote

Qllgmz)lf
(i) By C By;
()tl_t2 1<z<r,
(iii) A 21<s<m

(iv) Gl(t) ~ 02(t) forallte By, 1<i<m;

(v )El(t)~22()forallt€B1,1§]§k.

We say that the language L has a substructure property if for all A, %, € &,
such that Ay C Ql2, 6(]), 52[1) = 6([), QIQ)

Consider two programming languages L = (D, p, &) and L' = (D', o', &'). Let
D be the set of the ordered pairs (P, H), where P is a logic program and H is an
unary predicate symbol. Let D' be the set of the ordered pairs (F, H), where F is
an arbitrary first order formula. Let p and p’ be the constant 1. Let K, £x, Tx
and 0°(A) for A € R be the same as in the previous section. Let P and P’ be
defined as follows:

t € PUP,H),A) & 3Ir(r € Tx & O(A)UPF H(r) & myp» = 1),
teP(FH), N ATt & 80(2[) UFFH(T) & T = t).

Let &' coincide with ', and & —~ with .

It is easy to prove that the languages L and L' are effective, invariant and have
the substructure property.

Now we shall prove that the language L is maximal among the effective, invari-
ant languages with substructure property, i. e. every set, computable by a language
with these properties, is also computable by L.

We say that the language L; = (D4, p1,S1) is translatable into the language
Ly = (D2, p2, 62) (see [4]) (we denote Ly <g L) iff

Vp1 € D13p2 € D2((p1(p1) = pa(p2)) & VA € R(S1(p1, %) = G2(p2, U))).

Theorem 5.3. Let L1 = (D1,p1,6:) be an arbitrary programming language
on R, which is effective, invariant and has substructure property. Then L, < gL

35



Proof. Let p; € ©,. Consider an arbitrary structure % € & Let (a,B)
be its enumeration and let A = (B;jt1,...,t;01,...,6n; 30, ... Zk; A1, ..., Am),
B = (N;T1,. ., Tr;P1y-- - Pn; 00,20k 615. ., €m) and ofz;) > 8, 1 < i <.
Then B € &, and if ¢} and o} are the restrictions of ¢; and g; on Dom(a),
respectively, then a is a strong homomorphism from B = (N;z(,...,Z.;¢51,.. .,
©Li0%0,. .., 0k €1,...,&m) onto A and B* C B (Dom(a) is closed with respect
to @1,...,%n). Due to the properties of L1, we obtain S;(p1, %) = a(S1(py,B"))
= a(B;1(m,B)) = alp, (D'%)) and T, (DIB) C Dom{a), i. e. for every 2 € R and
for every enumeration (a,B) of 2 it is true that

G1(p1, %) = (T, (D'(B))), (5.1)
Iy, (D'(B) C Dom(a). (5.2)
Let us fix natural numbers wy,...,w,. Let e; be the number of 'y, and let

W = {{z,v)|'Iz((z,v") € W, and v be the code of the set E,,
obtained from E, by removing elements
of the form (n +k +m +4,w;),1 <i<7)}.

This set is r.e. Let e be its Godel code and let us fix an arbitrary 2 € &.
Consider a finite part A of A such that H; =& = ... =¢&, =0, ¢ = ... =
oh =00, =...=0, =0, and a1(w;) ~ (ci)gq- Let § O A and §|-Fe(y).
Then there exists (v,y) € W, such that §|-E,. For all (a,B) D 4§ it is true
that T'p, (D'(B)) = I(D(B)) and (a,B) |= F.(y) (there exists at least one such
enumeration). Then y € T, (D'(B)) © y € I'.(D(B)) and from (5.2) it follows
that y € Dom(a), i.e. y ¢ Hs. We obtained that for every % € £, the finite part A,
constructed above, and e are compatible. Consider the definition of the consistent
set E, for the fixed A. It can be seen that the consistency of E, depends only on
wh, ..., wy,. The same is true for K* and P. Then the set

W = {{(z,v)|{z,v) € W, and E, is consistent
&K.NH =0&ye€K,}

depends only on wy,...,w,. Consider the program (P', F) from Proposition 4.13.
It is true that V2 € (§((P', F), ) = Dgy), where Dy is sufficient in 2 for e and
A, i. e. the condition t € Dy < 36 2 Ady(as(y) =t & &|-Fe(y)) is true.

We shall prove that Dy = &;(p1,2) for every 2 € & Let s € &i(p1,¥)
and let fix an enumeration {a,B) of 2 such that B = (N;wi,...,Wr;01,...,¢n;
00y, 0k; €1, .-, &m) and (a,B) O A. Then there exists y such that {a,B) =
F.(y) and a(y) ~ s. Hence there exists § O A and §|-F.(y) and as(y) ~ s. It
follows that s € Dy.

Now let t € Dy, then 36 D Ay(as(y) ~ t & S|-Fe(y)). Let fix an arbitrary
enumeration (@, B = (N;wi,...,Wr;P1,--,Pn;00,--,0k; &1, -+, &m)) of A such
that (o, B) D 4, then I'p, (D'(B)) = I'.(D(B)) and due to (5.2) and the fact that
SI-Fe(y), (a,B) = F.(y) and a(y) ~ t, it follows that t € &, (p;, ).
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Finally, we obtain that Dy = &;(p1,%). O

From the theorem it follows that L’ < & L. This means that the Horn clause
programs are at least as strong as any other language using arbitrary first order
formulas as programs. For m = 0 we obtain the same result for logic programs
without parameters.

Let (P, Ho) € D and for every 2 € & we denote Wy = &((Fo, Ho), 2).

Proposition 5.14. For every program (P, H) there ezists a program (Q, R)
such that for every 2 € &, P((P, H), (A, Wy()) = 6((Q, R),2), where (A, Wyy) is
a structure obtained from 2 by adding the parameter Wy .

Proof. Let L* = (D", p*,&") be a new programming language, where D* = D;
p* = pand 6™ ((P, H),A) = P((P, H), (A, Wg)). We shall show that L* is effective,
invariant and has the substructure property.

Effectiveness follows from the effectiveness of L and the fact that enumeration
operators are closed with respect to composition.

Let x be a strong homomorphism from 2 into B. Then x(Wy) = Wiy and
from the invariance of L it follows that

&(BUP, H), (, WEZ[))) = PP, H), (%aW%))v

i. e. L* is invariant.
Let % C B. L has the substructure property, hence Wy = Wyg and

m((PvH)a (Q[aWQ[)) = "B((P’ H)’(%’W%))a

i. e. L* has the substructure property.
Now applying Teorem 5.3 to L*, we obtain the proposition. O

6. HORN CLAUSE OPERATORS

Let % € R and let (P,H) be a Horn clause program, where H is an unary
predicate. We define a mapping I'p i from the subsets of [2| onto the subsets of
%] by

FP»H(W) = m((P’ H)v (ma W))

It follows from the definition of 3 that the operator I'p i is compact, i. e.
se€Tpu(W) < ID(D CW & D is finite & s € ' p y(D)).

Applying the Knaster—Tarski theorem, we obtain that I'p g has a least fixed
point Wo = Uz I'5 1 (9). We denote this fixed point by

pW.B(P, H), (A, W)).

Now we shall show that the least fixed point of each Horn clause operator is
computable by means of Horn clause programs. In fact, we even have
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Theorem 6.4. For each Horn clause program (P, H) there exists a Horn clause
program (P*, H*) such that for all A € &

pWP(P, H), (&, W) = PP, H"),A).

Proof. Let L, be the programming language (9,, p;, 5;1) on K, where D; = D,
p1 = p and &,((P,H),A) = pW.B{P, H), (A, W)). To prove the theorem, it is
sufficient to show that L, <g L.

We shall prove that L; is effective, invariant and has the substructure property.
Indeed, the effectiveness of L follows from the uniform version of the First recursion
theorem for enumeration operators. To prove the invariance of Ly, suppose that
(P,H) € D1, let A,B € & and & be a strong homomorphism form 2% to 8. Let us
define the sequences of sets Wé‘l and W% in the following way:

W5 = P, H), (4,Wg)) and WgH = (P, H), (B, W)

Now using the invariance of L, we obtain by induction on n that n(Wﬁ) = Wg,
n=0,1,... Hence,

KWW PP, H), (%, W))) = uW.B(P, H), (B, W)).

By this the invariance of L; is proved.
Now let U C B. Using the above sequences and the substructure property of
L, we obtain by induction on n that W3 = W(%, n =0,1,... Hence,

HW‘p(U)’ H)a (2[’ W)) = /I'Wf‘p((P» H)7 (B> W))

We obtained that L, is invariant, effective and has the substructure property.
Applying Theorem 5.3 to L1, we prove that L; <g L. O
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1. INTRODUCTION

In this paper we deal with search-computability, defined by Moschovakis in
[2], though for the proofs of most of the propositions we have used the Skordev’s
definition of search-computability, in [3] Skordev has proved both are equivalent.

The idea of considering two-sort structures was presented by I. N. Soskov dur-
ing the cycle of lectures at the Seminar on Computability Theory at Sofia Univer-
sity, 1998. The abstract structure degrees were defined also by him during the same
seminar, as well as their regular enumerations.

The first sort of the mentioned two-sort abstract structures is an arbitrary
denumerable set and the other one is the set of natural numbers. The presence of
the equality among the basic predicates of the structure is required.

In these terms we present an analogue of some notions from the theory of the
enumeration degrees, namely the set genericity and the related results, applying the
techniques used by Copestake in [1]. We generalize the characterization obtained
in [6], stating that a set of natural numbers is generic relatively a set B if and only
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if it is the preimage of some set A, using a B-generic B-regular enumeration such
that both A and its complement are e-reducible to B.

Here we introduce the notion of genericity for abstract predicates. Using the
enumerations of two-sort abstract structures (in the way they are used in [4]), we
obtain a characterization of this type of abstract genericity, which claims that a
predicate A of natural numbers is generic relatively the two-sort abstract structure
B with one predicate if and only if there exist a predicate ¥ on the first sort,
which is search computable in B, and a B-generic regular enumeration f, such
that A = fy'(%).

This paper is a part of the author's Master’s Thesis, supervised by I. Soskov.

2. PRELIMINARIES

We use some standard definitions and notations: <, denotes the enumera-
tion reducibility between sets and ¥, denotes the e-th enumeration operator, i.e.
¥.(B) = {z |3 ((z,v) € We& D, C B)}, where W, is the recursively enurer-
able set with Gddel code e, B is a set of natural numbers and D, is the finite
set with code v. Recall the join operation for sets of naturals: A @ B is the set
{2z|z € A}U{2z+1|z € B}, used to induce the least upper bound of the e-degrees
of A and B.

Given a countable set N and 0* € N, N* denotes the Moschovakis’ extension
of N, i.e. the smallest extension of NU{0*} closed under the operation ordered pair
(-,) (we will use the same notation for effective coding of pairs of natural numbers);
w denotes the set of the natural numbers and w* C N* is the set of elements
0*,...,(n+1)*,..., such that (n + 1)* = (0*,n*) € w*. By F we denote the set of
one-argument partial functions ¢ : N* —o— N*. We write ¢ € SC(y1,...,p,) to
say that ¢ is search computable in the set of functions {¢1,...,9n} C F (see [3]).

From now on, we consider the abstract partial two-sort structures:

Ql:(‘]v’w;:Na#N;Ela""zk);

with two fixed basic predicates in N?: =y (equality) and #y (inequality), and
partial predicates ¥; C N® x w® such that a;,b; > 0, but not both being zero.
This kind of structures will be denoted by A(%1,..., Zg).

The notation Yy <gc U says that X is search computable in the set of Ql S
predicates, 1nclud1ng the equality and mequahty, ie. Z‘g € SC(E%‘, . i%, =N, 7& N)
{(we also write So € SC(2)), where $ : N* —o— N* is the semi-characteristic func-
tion of the predicate.

Soskov has defined 2 @& B to be the two-sort structure with predicates =,
#n, 55 ... S0 BP ., E5P % <sc B if and only if Vi <icky): BF <sc B,
and 2 =gc % if and only lf A <gc B and B <gc A.

Definition 2.1 (Soskov). The abstract structure degrees are the equivalence
classes induced by the relation =s¢ between structures. We denote them by a, b, c...
and for every a and b in D, aU b = D, (A D B) for some A € a and B € b.
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We write D for the set of all abstract structure degrees with the partial ordering
induced by <gc . Thus the structure (D, <sc,U, D) is an upper semi-lattice with
a least element the empty structure O = (N;w; =pn, #n).

At the Seminar on Computability Theory in 1998, I. Soskov introduced the
following definition of search computability and proved its equivalence with the
standard ones (see [2] and [3]):

A<scBifVa(B <a= A< a),

where a = (f, R) is an enumeration structure and % < o if and only if f~1(2A) <. R.
Here we shall use it for a single predicate ¥ C N% x w’ in the following particular
form:

2 <sc A (f3'(2) <. fR1 (), for every N-enumeration fn), (2.1)

where fy : w — N is a total and surjective function that we shall call N-enumeration,
fﬁl(z) = {(l‘l)' s Tay Y1, - '3yb> €w ' (fN(zl)y . ‘7fN(-ra)ay1a' . 'ayb) S E}a and
for the structure 2 = (N,w; =n,#n~;21,...,2%) the preimage fg,l(Ql) is defined
in such a way that it is e-equivalent to

N (E08, ..., 0f5 (Z) © fy' (=n) © fR (#n)

3. ENUMERATIONS

Many of the definitions and the proofs from [4] concerning the enumeration
approach and the normal form theorem are applicable in our case. We recall them
in order to use them later in Section 4 and for the characterization in Section 5.

Definition 3.1. 1) N-string 7y is a finite function 7y : [0,...,n — 1] = N,
with domain an initial segment of w with length lh(ry) = n.

We shall call the strings used in [6] w-strings, i.e. an w-string is a finite sequence
of naturals meant to be an initial segment of w.

2) v Con iff Va(z < lh(tn) = Tn(z) = on(T)).

3) Code of the N-string 7y is defined to be "rx7 = (n*,7n(0),...,7n(n —1)).

Definition 3.2 ([4]). For a structure 2(Z,,...,Z) with £; C N% x wb,
an N-string 7y and a formula F,(z) with e,z € w, define the forcing relation
Tn by Fe(z) as follows:

(1) 7o Ik Fe(2) iff Fu({v,2) € W, & 7, by Dy);

(2) 7w hy Dy E VU € Dy(u = (6, (T1, -y Tagy Y1y -+, Ui )) &
1<i<k&z...2q € Dom(ry) &(rn(21) .. TN (Za,)s Yty -+ 5 Up:) € T3V u =

2(z,y)) & z,y € Dom(rn) & n(z) = ™n(y) & u = (0,2(z,y) + Y & z,y €
Dom(ry) & Tn(z) #8 ™ (y)).
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Definition 3.3 ([4]). For an N-enumeration fy : w — N and a structure
A(T1,...,5) with predicates ; C N% x w’, define

Fn Ea Fo(2) if and only if 2z € U (f' ().

Definition 3.4 ([4]). We say that the predicate £ C N x w® has a normal
form in the structure 2A(Xi,...,Zx) if there exist e € w, an N-string éy and
Z1,...,2q & Dom(dn) such that for all 81,...,8, € N and for all y3,...,yp € w,
(815, 8a,Y1,-- -, Yp) € & iff Ity D n such that Vicica (7w (zi) = 85) & 7n IFa
Fo({x1, .-y TayYis- -y Ub))-

The next theorem is a corollary from the Normal Form Theorem in [4] for the
case of two-sort structures.

Theorem 3.1 (Normal Form Theorem). Let 2(X1,..., %) be a structure
with predicates £; < N% x w’. Then every predicate £ C N® x w®, where £ is
search computable in A, has a normal form in Y.

4. GENERIC PREDICATES

Definition 4.1. 1) Let £ C N° x w® be a predicate. We define the character-
istic function of ¥ to be the function x5 : N* —— N*, defined as follows:

0%, ifs=(s1,...,8a,2},...,2}) & (51,...,8a,%1,...,Tp) € X,
x=(8) =< 1%, ifs=(s1,...,8q,2},...,2}) & (s1,...,8a4,%1,...,Tp) € %,
1, otherwise.

2) Let F, 5, where a + b > 1, be the set of all partial functions ¢ € F such
that Dom(yp) C {(sl,...,sa,z‘l‘,...,z;) | ($15.+58a,%1,...,Zs) € N® xw"} and
Range(y) C w*.

3) Define (a, b)-string to be a finite function a € F, 3 with Range(a) C {0*,1*}.
We may define the code of the (a,b)-string o (denote "a) to be (k*, (s1,a(s1)),

.oy {sk,a(sk))) € N* if Dom(a) = {s1,...,8%}; and "@" = 0* for the empty
function.

Remark. Since an (a,b)-string may have more than one (but only finitely
many) different codes, by a € S* C N we mean that there exists a code of a, which
belongs to the set S*; respectively, & ¢ S* means there is no code of a that belongs
to the set. We say that S* is a set of codes of (a, b)-strings when each element is a
code of some (a, b)-string, it is not necessary for S* to contain all the codes of an
(a, b)-string.

4) Semi-characteristic function of the set S* C N we call the function Cs- :
N* —o— N*, defined as follows:
0*, ifseS~,
1, otherwise.

Cs-(s) = {
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For a given set §* C N* and structure B(X1, ..., ), we write S* € SC(®B) when
Cs+ € SC(EN, #nyS1,. ., 1),

5) For every a and b, which are not both zero, and every function ¢ € F,,
we define the graph-predicate of ¢ to be the predicate £, C N x wb*! such
that for all s1,...,8, € N and zy,...,25,y € w, (81,...,8,%1,-..,T5,y) € Ly
iff p((s1,...,8q,2F,...,25)) = y*.

Definition 4.2. Given a structure B(Z;,...,X), we say that the predicate
¥ C N® x wb is B-generic if for every set S* C N* of codes of (a, b)-strings such
that S* € SC(B), the following holds:

Ja Cxs(ae S*VVB D a(B & 5%)).

Note. If we consider a structure B(B) with one predicate of naturals and a
predicate ¥ C w, then ¥ is B-generic in the sense of Definition 4.2 if and only if
the set X is B-generic set of natural numbers in the classical sense. The proof uses
the definition of SC via enumerations (2.1).

Proposition 4.1. For every structure B = B(X,,..., L) and a,b € w, such
that a + b > 1, there exists a B-generic predicate ¥ C N® x w®.

Proof. For brevity, in this proof and from now on T will denote a finite sequence
of elements (an appropriate number of them).

We can find such ¥ by building its characteristic function as a union of (a, b)-
strings, that we build at stages, such that at even stages we satisfy the requirements
Dom(xs) to be a domain of a predicate’s characteristic function and at odd stages
- the genericity.

Let us have some enumeration Sj,...,S;,... of the domains of the partial
functions from SC(B), i.e. S} = Dom(y) for ¢ € SC(B).

Stage 0. Define ag = @.

Stage 2n+1. We have defined a4 for ¢ = 2n. Let (5,7*) € N* be such that
(5,T) is the least according to some order in N® x w® element for which (3,7*)
¢ Dom(a). Define ag41 to extend o, with one new argument, i.e. such that
ag+1({51,.-,8a,2%,...,25)) = 0%,

Stage 2n+2. We have defined o, for ¢ = 2n + 1.

Case 1. If there exists in S}, an (a,b)-string J3, extending a4, define a4 to
be the first such g.

Case 2. Otherwise, define ag41 = ay.

o0

Finally, we can define x5 = U ag, that is the characteristic function of some
g=0
‘B-generic predicate. O

Proposition 4.2. Let B be an abstract structure and ¥ C N° x w® be a
B-generic predicate. Tﬁen the following holds:
P1) The predicate ¥ C N°® x w® is B-generic.
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P2) There is no infinite predicate C C N®x w® such that C <s¢ B and C C X.
P3) ¥ is infinite.
P4) T £s¢ B.

Proof. Each of (P3) and (P4) follows directly from the previous properties.
To prove (P1), we may assume it is false. Therefore there is a set of codes of
(a, b)-strings, namely P* € SC(B), such that:

(8) Va C xg (a € P* & 38 2 a(f € P*)).

There is a recursive function translating (codes of) {a,b)-strings into their
reverse, e.g. the reverse of a being the (a,b)-string @, such that Vs € Dom{a),
a(z) = 0% iff @(x) = 1*. Thus the set S* = {a | @ € P*} € SC('B) and therefore
there exists an a C xx (and therefore @ C x3) such that the next (1) or (2) holds:

(1) a € S*. Then @ € P* and @ C xs7, which is a contradiction with (a).

(2) VB 2 o (B € S*). But from (a) for @ follows there exists an (a, b)-string
B € P* extending @. Since 8 = S, we have that 8 € §* and 8 D «, which is a
contradiction.

In both cases we have found a contradiction, therefore X is B-generic.

To prove (P2), we may assume there exists such C C N® x w® and define
aset S* ={a| 3s1,...,% €N, y1,...,u5 € w ((S1,..+,8a,¥1,...,U) € C &
al(sty-- .84, Y7y, y;)) = 1%)}, that will lead to contradiction. [

Definition 4.3. Let us define the structure A(L},..., %) to be total iff TF
<sc¢ «Ufor 1 < i < n. The generalization of the quasi-minimal and the minimal-like
structure (see [1]) will have the following form:

1. A is quasi-minimal over B if the following two conditions hold:

o B <gc 2 and A £sc B;

e For every total structure €, if € <g¢ A, then € <gc B.

2. A is minimal-like over B if the following two conditions hold:
o B <gc Aand A Lsc B;

o For every function v € Fy 3, if p € SC(2), there exists a function ¢ € F,
such that ¢ C ¢ and ¢ € SC(B).

For the (a,b)-string a we define a predicate a™ to be the set

{(s1-- 180,21, ., @) [ @((s1,. .., 80,27, ..., 25)) = 0*}.

If o is a predicate and B(Z;,. .., Xx) is a structure, we denote by Lo @B the
two-sort structure with predicates ¥o,%q,...,Xk.

Proposition 4.3. For given B(Z1,...,%;) and B-generic predicate Xy, the
structure ¥o & B is minimal-like over 'B.
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Proof. Since g is B-generic, %o £sc B and therefore B $sc Lo @ B. Let
(a;,b;) be the arity of the predicate ¥; C N% x wb.

For ¢ € F,4, such that ¢ € SC(Z, ® B), we define its graph-predicate X,
for which )’j‘p € SC(Xo @ B), i.e. X, <sc Zo ® B, and from the Normal Form
Theorem 3.1 it follows that ¥, has a normal form in Xy @ B, i.e. there are e € w,
an N-string dy and 21,...,2, € Dom(én) such that for all s;,...,s, € N and
Tiy.o s Tp, Y € W, (81,-.+,80,%1,.. ., Tp,Y) € Ly iff Jry D n, where (7n(z;) = s;
& TN trspems Fe((21,...24,21,. .., 2, y)). If we denote by P, the set of codes
of all (a,b)-strings and by Py the set of all codes of N-strings, we may define the
set S* to be the set of all By € Py, for which there exist 8; € P, p, for Vi<ics,
such that 87 C X;, and there exist 7%, 7% € Pn, both extending 65 and such that
21,--+»2a € Dom(7y) N Dom(r}), and there exist natural numbers z1,...,z5 €
w, Y1 # Y2 € w, such that 75 “_Ql(ﬁgf,ﬂf,...,ﬁj) F.({z1,...,24,%1,-..,Tb,Ye)) for each
¢ € {1,2}, where Q((ﬂb*,ﬂf, yeees ,ﬂ,j) denotes the structure with finite predicates
B € N x wb. Therefore S* € B and there is an (ao, bo)-string o C xs, such
that a € S* or V8 D a (B &€ S*).

In the first case, since a C xx,, then o™ C ¥y, and from 75§ ]}_ﬂ(a“",ﬂf,m,ﬂ:)

Fo({(z1,- .1 Za; @1, .., Ty, Ye)) follows that 75 Fsoem Fe({21, -+ ) 20, Z1,- -+ Ty Ye))s
and using the normal form of X, we obtain a contradiction. So, it remains the sec-
ond case V3 2 a8 ¢ S*) and now we can define a predicate X, as follows:
Ty = {(31,...,sa,z1,...,mb,y) I (Hﬂo € Pao,bo,...,ﬂﬁk € Pu, bes dry € PN)
such that (ﬁg Dak VISiSk ﬂj CY, &7~ 2Don & Vlgjga TN(Z]') = 5 &
™ H—Ql(BJ,ﬁf,...,B;L) F.({z1,...,2a,%1,...,Zp,¥)), which is the graph-predicate of
some function 1) and it is search computable in B, therefore 1y € SC(B).

Using the above definition and the normal form of ¥, it is not difficult to verify
that X, C Xy, from which follows that ¢ C 1, and this proves our proposition. 0

Given a structure €(X1,...,5;) and a predicate ¥ C N® x w®, if ¥ <s¢ € and
¥ <sc €, then its characteristic function ys € SC(€). This fact can be used to
prove the following:

Proposition 4.4. Given a structure B(%1,...,Xx) and a B-generic predicate
¥, the structure ¥ @& B with predicates ¥, %1, ..., X is quasi-minimal over B.

The above is true for a single predicate, but not in the general case with
multiple B-generic predicates. For example, for any total structure (X, ¥) with
B-generic predicates ¥ and & C N® x w?, the structure A& B is not quasi-minimal
over ‘B.

5. GENERIC REGULAR ENUMERATIONS

The regular enumerations are introduced by I. Soskov in [5] and here we shall
use their modification for two-sort structures. An enumeration for two-sort struc-
tures is the pair f = (fn, f,), where fy : w = N and f, : w — w are total
surjective functions.
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Gr(fn) = {(s,z) | fn(z) = s} € N x w is the graph of fn.

Gr(fu) = {(,4) | fu(@) = y} Cw is the graph of ..

The enumerations f = (fn, f.,) define a unique structure 2A(Gr(fn),Gr(f.)),
denoted by 21;.

Since every two-sort structure (with finite number of predicates) is equivalent,
in terms of search computability, to a structure with one predicate, in this section
we consider only structures with one predicate.

Definition 5.1. Given a structure B(Z®) with one predicate @ # £% C
N¢ x wb we say that the enumeration f = (fn, fu) is B-regular if the function f,
is an fr'(2%)-regular enumeration of w in the sense of [5] and [6], i.e. f, is a total
surjective mapping of w onto w such that f,(2w) = fy'(Z®).

Definition 5.2. 1) A pair of strings 7 = (Tn,7.,) is the pair of an N-string
TN : w ——= N and an w-string 7, : w —o— w (see Definition 3.1). The pair
@ = (DN, D) is referred as the empty pair of strings.

2) Given a structure B(Z®) with predicate @ # XF C N°® x w®, we say that
the pair of strings 7 = (7, 7.,) is B-regular if 7,(2w) C 75 (E®), where R ED)
= {(xly"wxa’yly"';yb) € Dmn(TN)a X wb | & (TN("L'I)""aTN(za)ayla“-’yb) €
¥®} and 7, (2w)={y| 3z (7. (2z)=y)}.

3) The N*-code of T = (7n,7,,) is denoted by "7™ and defined to be the pair
of codes "7 = (Trn 7,77, ™), where TTa ™ = (n*,(1*,7n (1)), ..., (n*, TN (n)))
and "7, = (m*, (1%, (7, (1)*), ..., (m*, (7w (m))*)), n = lh(7n) and m = lh(7,);
define "o = 0* and "9, ™ = 0*.

4) We say that 7 extends o, write ¢ C 7, if both oy C 7§ and o, C 7,,. For
an enumeration f = (fn, fo) and a pair of strings 7 = (7n,7,) we say that 7 C f
when both 7v C fyv and 7, C f,.

Remark. Given a structure B(Z®), let Regy denote the set of codes of all
B-regular pairs of strings. Thus 7 € Regs & 7,(2w) C 7';,1(293), and therefore
Regp € SC('B).

Definition 5.3. Given a structure B(X?) with predicate @ # 5% C N9 x wt,
we say that f = (fn,fo) is a B-generic regular enumeration if it is B-regular
enumeration and for every set S* C N* of codes of B(Z%)-regular pairs of strings,
for which S* € SC('B), there exists a pair of strings 7 C f such that 7 € S* or
Yo 27 (0 &S*).

Proposition 5.1. For every structure B(2%) with one predicate @ # P C
N® x Wb, there exists a B-generic regular enumeration f = (fn, fu)-

Proof. Let Sj,...,Sk,... be a sequence of all the sets S* € SC(B) and
80,---,8n,... be all the elements of N. We can build a ‘B-generic regular enu-
meration in the standard way starting from the empty pair of strings and building
an increasing sequence of B-regular pair of strings such that at even stages we
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will monitor the n-th set S and take care to satisfy the requirements for gene-
ricity. At odd stages we will satisfy 72(2w) C (72)"}(X®) and in the same time
fat C fu(2w), as follows:

Suppose at Stage 2n+1 we have defined 7, = (5,72) for ¢ = 2n. We may
define 7']"\,+ to extend 7, so that for z = lh(ry), 74t (z) = s,. For the set
(r4T1)~1(2®) we have two possibilities: if it is empty, define 73! = 79; otherwise,
(i) "1(Z®) # @. In this case we consider the set A, (T(I+l) 1(Z“B) \ 72(2w)
and define 74! to extend 72 such that in the first odd number z; ¢ Dom(rd)
define Tg“(ml) = n, and in the first even number zo & Dom(r4) define 74+ (xo)
to be the first y € Ay if A, # @, or the first y € (57 "1(Z®B) if 4, = @.

In this way we obtain the desired enumeration. [J

To prove the following proposition and the lemma, it may be convenient to
define two notations for a (0, 1)-string a and an N-string 7 :

cmp(a, 7n) if and only if Vz € w (z* € Dom(a) < x € Dom(1y)),

o ~x 7y if and only if Vz* € Dom(a) (a(z*) = 0* & 7n(z) € £).

Proposition 5.2. For a structure B(%%) with one predicate @ # %% C
N® xw® and a B-generic reqular enumeration f = (fn, f.) the following properties
hold:

(4) For every predicate ¥ C N, if @ # ¥ <gc B and @ # T <g¢ B, then
fRH(E) is a B-generic predicate.

(5) For every predicate ¥ C N, if @ # £ <s¢ B and & # ¥ <sc ‘B, the
structure A(fx' (Z), £B) is quasi-minimal over B.

Proof. These properties follow easily from the definitions and the properties of
the enumerations. For example, for the proof of (4) we may assume that f5!(Z) is
not a ‘B-generic predicate. Then there exists a set of (0,1)-strings S that fails the
genericity, and consider the set of B-regular pairs of strings:

P* = {1 € Regy | 3a € S(cmp(a,n) & a ~5 7n)}.

Since for each 7 there is a unique a such that emp(a,7ny) and a ~x 7, and for
each « there is such 7x, we can obtain a contradiction with the genericity of f. 0

Lemma 5.1. Given a structure B(X%) with @ # £ C N x w’, a pair
of strings &, a B-generic predicate A C w and a predicate ¥ C N, such that
@ #£% <scB and @ # ¥ <gs¢ B, for which the following two conditions hold:

(1) 8 is B-regular;

(2)Vz < lh(0n) (x € A& on(z) € X)),
if S* C N* is a set of codes of B-regular pairs of strings and S <gc B, then there
exists a pair of strings o with the following properties:
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(a)
(b) o is B-regular;
(c)Vz < lh{on) (z € A & on(z) € X) (this is the property (2) for o);

a)o D6

b

c
(doeSvVr(rD2o=T1¢S5).

Proof. The proof is very similar to the one of the corresponding lemma in the
classical case (Lemma 2.4. in [6]). O

Proposition 5.3. Given a structure B(X?) with @ # %2, a B-generic pred-
icate A C w, and a predicate ¥ C N, such that @ # ¥ <gs¢ B and @ # ¥ <s5¢ B,
there exists a B-generic reqular enumeration f such that A = f;,l(E).

Proof. We can build f by the standard construction of increasing sequence of
pairs of strings o, (starting from the empty pair of strings) with the properties (1)
and (2) from the above lemma. Moreover, we want them to satisfy four additional
properties:

(3) InVe > n (Ih(oxT) > 1h(03¢) and lh(a2¢+!) > Lh(028));

(4) Vs € N Je (s € Range(ox™")) and Vy € w Je (y € Range(o2¢+1));

(5) Vp Yz € (o},)"H(Z®) Je (z € o2et1(2w));

(6) Ve (if Se C Regm, then (02¢42 € Se V VT D 0242 (7 € Se))), where S, is
the e-th search computable in 9B set in some given enumeration of all the sets from
SC(B), and Regs is the set of the B-regular pair of strings.

oo

These requirements guarantee that f = U oq will be a B-generic regular enu-
meration and 4 = f5(2). 9=0

Stage 2e+1. Suppose o, is defined for ¢ = 2e. Define o}{}"l to extend o¥;
with new elements and to have the property (2) defined in the previous lemma. If
(0%)"1(X®) is empty, we define 04! = ¢¥, otherwise define o™ to extend o
with the first two elements z¢ € 2w \ Dom(c?) and z1 € (2w + 1) \ Dom(o7) for
which:

e g9 1(zy) = the first y such that y ¢ Range(o%);

o 0%t (zg) = the first y such that y € (¢2)"}(Z®) \ 09 (2w) if not empty, or
the first y € (09)~1(Z®) otherwise.

Stage 2e+2. Suppose o, is defined for ¢ = 2e + 1. Let G be the set of all pairs
of strings having the properties (1) and (2) from the previous lemma. We have two
possibilities:

Case1.30 Doy (1 €G & (0 € Se VVT Do (T € Se))). Define 41 to be the
first such o.

Case 2. Otherwise, define o441 = 0.

Now it can be verified that this construction meets the requirements (3) - (6),
defined earlier in the current proof. For example, to verify (6), we can use the
previous lemma to show that Case 2 never happens if S, is a set of B-regular pair
of strings. [
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Theorem 5.1. Let a structure B(EP) with one predicate @ # ¥ C N x wb
be given. Then for any predicate A C w, A is B-generic if and only if there exists
a predicate & C N such that @ # ¥ <sc B and @ # % <s¢ B, and there exists a
B-generic regular enumeration f such that A = ' (T).

Proof. (<) The Proposition 5.2(4).

(=) Consider the predicate ¥ = {s} for which it is clear that @ # ¥ <gc B
and @ # X <gc 'B. From the previous proposition it follows that there exists a
B-generic regular enumeration f such that A = f5'(Z). O
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SPHERICAL 2-DISTANCE SETS
WHICH ARE SPHERICAL 3-DESIGNS
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We classify spherical codes which admit exactly two different nonzero distances between
their points and are spherical 3-designs. We prove that such codes have the maximal
possible cardinality provided the dimension and the minimum distance are fixed.
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1. INTRODUCTION

Let S™! be the n-dimensional unit sphere with the usual Euclidean metric and
inner product. A spherical code C is a finite nonempty subset S*~!. Some char-
acterizations of spherical codes are given by the dimension n, their cardinality |C|,
the maximal inner product s{(C) = max{(z,y) : z,y € C,z # y} (or, equivalently,
the minimum distance d(C) = min{d(z,y) : z,y € C,z # y} = /2(1 — s(C))). By
(n, M, s) we denote any code C C S"~! with |C| = M and s(C) = s.

Denote by £ = £(C) the number of distinct inner products of different points
of C. Then C is called an ¢-distance spherical set. If A(C) is the set of all distinct
inner products, then |[A(C)| = £(C).
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A spherical 7-design is a spherical code C C S"~! such that

1
&) /s SR =1 3 St

zeC

{(1(z) is the Lebesgue measure) holds for all polynomials f(z) = f(z1,z2,...,2x)
of degree at most 7 (i.e. the average of f over the set is equal to the average of
f over 8™71). The number 7 is called strength of C. The spherical designs were
intraduced in 1977 by Delsarte-Goethals-Seidel [13] in analogy with the classical
combinatorial designs.

Examples, constructions and classification results for spherical ¢-distance sets
can be found in [12, 13, 16, 6, 4]. However, a few {-distance sets of large (with
respect to n and £) cardinality are known.

Many investigations of combinatorial objects start with an assumption of cer-
tain regularity. Since almost all known maximal £-distance sets are spherical designs
of suitable strength, we have decided to investigate further this connection.

We consider spherical 2-distance sets which are simultaneously spherical 3-
designs. We prove that such codes have maximal possible cardinality for fixed
dimension and the maximal inner product. This implies that the codes achieve the
so-called Levenshtein bound which gives strong restrictions.

2. SOME PRELIMINARIES
Let C C S™! be a spherical code and z € C. Then the system {A4;(z) : —1 <

t < 1} of integers
A(z) =y € C: (z,y) =t}

is called distance distribution of C with respect to z. We take only the nonzero
entries in the distance distribution.
A spherical code is called distance regular if its distance distributions do not
depend on z. In this case we omit the point z in the notation.
Delsarte-Goethals-Seidel [13] give the following connection between the £-dis-
tance sets and the spherical 7-designs.

Theorem 2.1.Let C C 8™ ! be an {-distance spherical set and a spherical
T-design. Then:

a) (the absolute bound) T < 2¢ and |C| < (™71 + ("F7%). If one of these
bounds is attained, then so does the another.

b)r > £ — 1 implies that C is distance regular.

c) (Delsarte-Goethals-Seidel bound)

(n+:—1>+<n:ez2>, if =2
IC| > N - (2.1)
2 "':12>, if T=2%~1.
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Let Mp(£) = max{|C|: C C 8" ! is an {-distance set} be the maximal possi-
ble cardinality of a spherical £-distance set. Then the absolute bound and an easy
lower bound state that

(n+§~1>SMn(€)§<n+ﬁ_1>+(anI2>- (2.2)

Despite this gives the asymptotic behaviour of M, (£), a few examples are known
to attain the upper bound. Moreover, a few £-distance sets are known to be close
to this bound.

The following definition for spherical designs is crucial for our approach. If
¢ € S™! is a spherical 7-design, then for every point y € C and for every real
polynomial f(t) of degree at most 7 the equality

> iz ) = flCl - (1) (2.3)
zeC\{y}
holds, where

1
- _ 2\(n-9)/2 __Tl-1)
Jo=cn [1 f(t)(l t ) dt, cn= 2n-—2(r( n;l))2

(fo is the first coefficient in the expansion f(t) = Zf:o fiPi(")(t) in terms of the
Gegenbauer polynomials [1, Chapter 22]). In fact, for calculations of fo we use the
following formula:

asz 3a4
_ L 2.4
fo ao+n+n(n+2), (2.4)
where f(t) = ag + art + agt2 +--- = Y5 £, P (1),

We also need the notion of maximal spherical codes. If the dimension n and
the maximal inner product s are fixed, a classical problem in geometry and coding
theory asks for finding exact values or bounds on

A(n,s) = max{|C|: C c S"1,s(C) < s}.

A spherical (n, A(n, s), 5)-code is called maximal.

As usually in the coding theory, lower bounds on A(n, s) are given by construc-
tions (cf. [11] and references therein) and the best upper bounds are obtained by
linear programming (cf. [14, 15, 11, 7]). We are especially interested in some of
Levenstein’s bounds.

The Levenshtein’s bounds have somewhat complicated description. However,
we need here only a particular case

An,s) < PN+ DsH2] ¢ g ynF3=l 2.5)
1 - ns? n+2

Clearly, a code which attains (2.5), i.e. an (n,L3(n,s),s)-code, is maximal.
Our main result shows that every spherical 2-distance set which is a spherical 3-
design is nothing but such a maximal spherical code.
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3. THE MAIN RESULT

Let C ¢ S™ 1 be a 2-distance set and a spherical 3-design. It follows from
(2.2) for £ = 2 and the Delsarte-Goethals-Seidel bound for 7 = 3 that

If the upper bound is attained, then C is already 4-design. Since all feasible parame-
ter sets of 4-designs are determined [5, 8], we assume that |C| < n(n+3)/2—1. Then
we consider the whole range despite the feasible codes with fewer than n(n + 1)/2
points would not be maximal 2-distance sets.

It is worth to note that the known constructions of spherical 3-designs (see [2,
3]) do not provide examples of 2-distance sets we are searching for.

Theorem 3.1. A spherical code C C S™7! is a 2-distance spherical set and a
spherical 3-design if and only if C attains the Levenshtein’s bound (2.5).

Proof. »<=" This direction is known. The necessary conditions for attaining
the bound (2.5) show that C' is a 2-distance set and a 3-design.
”=5” Let the spherical code C C S™~! be a 2-distance set and a 3-design. Then

n(n + 3)

< <
2n<|C| £ 5

and we set |C| = 2n + k, where 0 < k < n(n — 1)/2, k is integer.

It follows from Theorem 2.1b) that C' is distance regular. Let A(C) = {t1,t2},
A;, (z) = P and A4, (z) = Q (the last two numbers do not depend on z). We
assume that ¢; < to.

The equality (2.3) gives

Pf(t1) + Qf(t2) = @n+ k) fo - f(1) (3.1)

for every real polynomial f(t) of degree at most 3.

We first prove a Lloyd-type theorem by proving that t; and t; are roots of a
quadratic equation with integer coefficients.

Using first degree polynomials f(t) = t—t; and f(t) = t—t; in (3.1), we obtain

m+k—1)t,+1 and Q= Cn+k—-1)t; +1

P=(
to — 11 t1 — to

b

respectively.
By the second degree polynomial f(¢) = (¢ — t1)(¢ — t3) we obtain from (3.1)
that
n(ty +t2) +n+k

tita =
" n(l-2n-k)
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Using these three relations in
Pt} +Qty = -1
(which is obtained from (3.1) by using f(t) = t*), we derive

L
nin+k—1)

n

_nm d t1ts = —
n+k—1 an 172

b1+t = —

Therefore ¢t; and t5 are the roots of the quadratic equation
nin+k—-0t2+nn-Dt—k=0.

In particular, we also see that t; < 0 < t5 and |t1]| > t,.

As a short second step, we observe that t; and ¢5 are in fact rational numbers.
Indeed, setting f(t) =t in (3.1), we obtain Pt; + Qt3 = —1, which is equivalent to
P(t1 +t2) + (@ — P}ty = —1. Since P, {; + ¢ and @) ~ P are rationals, this implies
that ¢, is rational as well. Analogously, we see that ¢, is rational.

In the third step we already prove that C is an (n, L3(n, s), s)-code for s = t,.
Indeed, s(C) = t; and the equality

n(1 = ta)[(n + Dty + 2

Ls(n,t2) = 1—ni2
2

is an identity (note that it is an identity for s = ¢; as well), which completes the
proof. {J

Theorem 3.1 shows that an examination of spherical 2-distance sets which are
spherical 3-designs can be done via results on (n, L3(n, s), s)-codes. The latter codes
were studied by Boyvalenkov-Langjev in [10] and further by Boyvalenkov-Danev in
(9]. In [9] all feasible parameters of (n, L3(n, s), s)-codes in dimensions n < 1600
were found together with eleven infinite series.
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A GENERALIZATION OF A RESULT OF DIRAC

NEDYALKO NENOV

Let G be a graph, x(G) = r and ci(G) < r. Dirac has proved in {2] that for such
graph |V(G)| > r + 2 and V(G| =r+2onlyif G=K,_;+ Cs. The main result in
the current article generalizes the proposition mentioned above (Theorem 2.1). Asa
consequence of Theorem 2.1, some results for Folkman graphs are obtained {Theorems
7.1-7.4, 8.1).

Keywords: chromatic number, Folkman graph, a-critical graph
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1. NOTATIONS

We consider only finite, non-oriented graphs, without loops and multiple edges.
The vertex set and the edge set of a graph G will be denoted by V(G) and E(Q),
respectively. We call a p-clique of G a set of D vertices, each two of which are
adjacent. The biggest natural number P, such that the graph G contains a p-clique,
is denoted by cl(G) (the clique number of G).

It X CV(G), then:

G[X] is the subgraph of G induced by X;
G — X is the subgraph of G induced by V(G) \ X;
I'g(X) is the set of vertices in G, adjacent to at least one vertex of X.
In this paper we shall use also the following notations:
a(G) — the independence number of G,
X(G) — the chromatic number of G,
7(G) — the maximum number of independent edges in G
(the matching number of G);
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G — the complement of G;
K,, — the complete graph of n vertices;
C,, — the simple cycle of n vertices.

By G—e, e € E(G), we denote the supergraph of G such that V(G —e) = V(G),
E(G —€) = E(G)\ {e} and G + ¢, e € E(G), is the supergraph of G for which
V(G +¢€) = V(QG), E(G +e) = E(G) U {e}.

Let G; and G3 be graphs without common vertices. We denote by G1 + G2
the graph G for which V(G) = V(G1) UV(G:) and E(G) = E(G,) U E(G2) U F',
where E' = {[v1,vs], v1 € V(G1), v2 € V(G2)}.

2. THE MAIN RESULT
Definition 2.1. The partition V(G) = V{ U...UV, is p-saturated if the union
of each p of the sets Vi, ¢ = 1,...,r, contains a p-clique of G.

Definition 2.2. The partition V(G) = V1 U... UV, is r-chromatic if the sets
Vi, i =1,...,r, are independent.

Definition 2.3. A graph G is p-saturated if each x(G)-chromatic partition of
V(G) is p-saturated.

It is clear that if x(G) > 2, then G is 2-saturated. Dirac has proved in [2] the
following proposition:

Let x(G) =r and cl(G) < r. Then |V(G)| > r+2 and if |V(G)| =1+ 2, then
G =K, 3+Cs.

The main result in this paper is the following generalization of the above men-
tioned proposition:

Theorem 2.1. Let x(G) =7, cl(G) < r and G is p-saturated, but is not (p+1)-
saturated. Then |V(G)|>r+pand |V(G)|=r+p only if G = Kr_p_1 + Capt1.

We need the next propositions.

Proposition 2.1. For any graph G
X(G) +7(G) < |[V(G)|.

_ Proof. Let |V(G)| = n, n(G) = s, and {1,391}, ..., {s,ys} be a matching of
G. lf vy, ..., vyh_o, are the other vertices of G, then

{z1,11} V... U{zs, g U{nn } U ... U {vp-2s}

is an (n — s)-chromatic partition of G. Hence, x(G) <n ~s. 0
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Proposition 2.2. Let x(G) =r, G be a p-saturated, 2 < p < r, and V(G) =
ViU... UV, be an r-chromatic partition of G. Then for any k, p < k < r, the
graph G[V1 U ... U V] is p-saturated.

Proof. We put G[V; U...U V] = G'. It is clear that x(G") = k. Assume the
opposite and let VY U...U V] be a k-chromatic partition of V(G’) which is not
p-saturated. Then the r-chromatic partition V/ U.. .UV} UVit1U...UV, of V(G)
is also not p-saturated, which is a contradiction. []

3. EXAMPLES OF p-SATURATED GRAPHS

Lemma 8.1. Let V' C V(Capi1), V| = m < 2p+1 and G = Copps[V'].
m
Then cl{G) > [?]

Proof. 1t follows from m < 2p + 1 that x(G) < 2. Let V(G) = Vi UV,
where V; and V; are independent sets of G. Then a(G) > max{|V4|, |[V2|}. Hence

o(G) > [%] e (@) > [g] 0

Proposition 3.1. For anyp > 3 the graph Capt1 18 p-saturated, but the graph
Caps1 — € is not p-saturated for any e € E(Capy1).

Proof. 1t is clear that x(Copy1) = p+ 1. Let Vi U... U Vp+1 be (p + 1)-
chromatic partition of V' (Capt1) and let V' = V(G) \ V;. We put G' = Capia[V'].
From a(Capi1) = 2 it follows that 2p — 1 < |V'| < 2p. By Lemma 3.1, c(G') > p.
Hence Cypy1 is p-saturated.

Lete € E(62p+1) and G = —C’—2p+1—e. Assume that V(Copy1) = {v1,...,v2p41}
and E(Capy1) = {[vi,vixa], i = 1,...,2p, [v1,v2p4+1]}. We may assume that e =
[v1,v2541], 1 <s <p—1. N

Case 1. s = 1. In this case cl(G) = p — 1 and hence G is not p-saturated.

Case 2. 2 < s <p—1. In this case a(G) = 2. Hence x(G) = p+ 1. It is clear
that

{Ul} U {'U2,'U3} U...U {ng,U2p+1}

is a (p + 1)-chromatic partition of V(é). Obviously, 6[U1,...,1}25+1] = Cosy1.
Hence {vy,...,v2,41} contains no (s+1)-clique of G. Thus {v1,...,v9,-1} contains
no p-clique and G is not p-saturated. O

Proposition 3.2. Let 2<p<r and G = K,_p_1 + Capy1. Then the graph
G is p-saturated, but for any e € E(G) the graph G — e is not p-saturated or
X(G—e) <r.

Proof. If r = p+ 1, Proposition 3.2 follows from Proposition 3.1. Let r > p+2.
Obviously, x(G) =r. We put V(K,—p—1) = {21,. ., 2r—p-1}. Let ViU...UV,y; be
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a (p+1)-chromatic partition of V/(Caps1). Then {z1}U...U{zr—p-1}UNV1U.. .UVpyy
is an r-chromatic partition of V(G). It is clear that each r-chromatic partition of
V(G) has this form. Let V be the union of p subsets of this r-chromatic partition,
V= V(Kr—p-1) NV, V" = V(Cop+1) NV and |V’'| = q. Then V' is a g-clique.
Since Cypy1 is p-saturated (Proposition 3.1), V" contains a (p — ¢)-clique. Hence
V contains a p-clique. This proves that G is p-saturated.

Consider the graph G = G — e, e € E(G).

Case 1. e & E(Cgp+1) In this case obviously x(G) <

Case 2. e € E(C’zp+1) By Proposition 3.1, the graph Cap+1 — € is not p-
saturated. Hence G = Kp_r—1 + (Capy1 — €) is also not p-saturated. O

4. o-CRITICAL GRAPHS

Definition 4.1. A graph G is said to be a-critical if a(G — €) > a{G) for all
e € E(G).
For the a-critical graphs the following facts are known:

Theorem A ([4], see also [1, Th. 8, p. 290]). In an a-critical graph G without
isolated vertices, each independent set A satisfies |Tq(A)| > |A].

Theorem B ({5, p. 58, exercise 25]). Let G be a connected a-critical graph
with [V(G)| = 2a(G) + 1. Then G is the simple cycle with 2a(G) + 1 vertices.

5. THE LEMMAS

Lemma 5.1. Let G be a graph and cl(G —v) = cl(G) for all v € V(G). If
the graph H is such that V(H) = V(G), <I(H) = c|(G) and E(H) 2 E(G), then
cl(H —v) = cl(H) for all v e V(H).

Proof. We have
cl(H —v) < cl(H) = cl(G) = cl(G —v) < cl(H —v).
Hence cl(H) = cl(H —v) for all v € V(H). O

Lemma 5.2. Let G be a graph such that cl(G — v) = cl(G) for all v € V(G).
Then: .
(a) IT5(@)] 2 |Q| for each clique Q of G;
(b) m(G) > c(G);
(©) V(G =2 x(G) + cl(G).

Proof Let the graph H be such that V(H) = V(G), cl(H) = cl(G), E(H) D
E(G) and cl(H +e) > cl(H) foralle € E(H). From Lemma 5.1, cl(H) = cl(H —v)
for all v € V(G). Hence H is a graph without isolated vertices. It follows from
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cI(H +¢€) > cl(H) for all e € E(H) that a(H - €) > o(H) for all e € E(H). So, H
is an a-critical graph without isolated vertices. By Theorem A, |T(Q)| > |Q| for
each independent set @ of H, i.e. for each clique @ of H. Since I'z(Q) €Ty (Q)
Tz @)1 > Q.

Let @ be a clique of G such that |Q| = cl(G). From (a) and Hall’s theorem
it follows that 7(G) > cl(G). This inequality together with Proposition 2.1 imply
(¢). O

Remark. The proposition (a) of Lemma 5.2 is essentially the same as exercise
8, p- 302 in [1]. Another proof of (b) is obtained in [17].

Lemma 5.3. Let G be a graph such that x(G) = p+ 1, cl(G) = p and let G
be p-saturated. Then:

(a) (G —v) = cl(G), Vv € V(G);

(b) m(G) > p.

Proof. Let V1 U...UV,11 be a (p+ 1)-chromatic partition of V(G). Since this
partition is p-saturated, cl(G — Vi) = p, i = 1,...,p + 1. From these equalities it
follows that cl(G — v) = cl(G) = p for all v € V(G). Lemma 5.2(b) implies the
inequality 7(G) > p. O

Lemma 5.4. Let G be a graph such that |[V(G)| = 2p+ 1, x(G) = p+ 1,
cl(G) = p, and let G be p-saturated. Then the graph G is connected.

Proof. According to Lemma 5.3(b), 7(G) > p. Let V(G) = {v1,...,v2p11}
and let {v1,v2}, ..., {vap_1,v2p} be a matching of G. Then

{’U1,’U2} u...u {vzp_l,’llzp} U {’U2p+1}

is a (p + 1)-chromatic partition of G. The connected component of G, which
contains vzp41, will be denoted by M. By Lemma 5.3(a), G has no isolated vertices.
Hence |M| > 2. Obviously, if one of the vertices var_1, vor belongs to M, then
{vak—1,v2} C M. Hence we may assume that

M:{UI)UZ,"-,U2S—-1’v231v2p+1}) ISSSP

Suppose that G is not connected. Then s < p. Since G is p-saturated, M contains
an (s + 1)-clique @ of G. It is clear that I'5(Q) C M. Thus, |I5(Q)] < s. Since
(G —v) = cl(G) for all v € V(GQ) (see Lemma 5.3(a)), this contradicts Lemma

r

5.2(a) and proves Lemma 5.4. 0

Lemma 5.5. Let G be a graph such that x(G) = p+ 1, cl(G) = p, and let G
be also p-saturated. Then |V(G)| > 2p+1 and |V(G)| = 2p+1 only if G = Capy:.

Proof. 1t follows from Lemma 5.3(a) that

(G =v) = c(G), WweV(G). (5.1)
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By Lemma 5.2(c), |V(G)| > 2p + 1. Let [V(G)| = 2p+ 1. Consider the graph H
such that V(H) = V(G), cl(H) = cl(H), E(H) 2 E(G) and cl(H +¢) > cl(H) for
all e € E(H). According to (5.1), Lemma 5.1 and Lemma 5.2(c), x(H) < p+ 1.
Since x(H) > x(G) = p+ 1, we have x(H) = p + 1. Obviously, each (p + 1)-
chromatic partition of H is also a (p+ 1)-chromatic partition of G. Hence H is also
p-saturated. By Lemma 5.4, H is connected. It follows from cl(H +e) > cl(H),
Ve € E(H), that o(H—e) > a(H) Ve € E(H). So, H is an a-critical and connected
graph. According to Theorem B, H = Capy1. Thus G is a subgraph of Capt1- By
Proposition 3.1, G = Cazpt1. O

6. A PROOF OF THEOREM 2.1

Let V;U...UV, be an r-chromatic partition of G such that V' = V1 U... UV
contains no (p+1)-clique of G. Let G' = G[V'] and V" = V(G)\V'. By Proposition
2.2, the graph G' is p-saturated. Hence cl(G') = p. Obviously, x(G') = p+ 1.
According to Lemma 5.5, |[V'| > 2p+ 1. Since |[V"| > r —p — 1, we have [V(G)| >
r+p. Let [V(G)| =r+p. Then [V(G')] =2p+1and [V'|=r-p—-1 By
Lemma 5.5, G' = 02p+1 Thus G is a subgraph of K, —p_; + Czp+1 It follows from
Proposition 3.2 that G = K,_p-1 + Cz,,+1

7. ON THE VERTEX FOLKMAN GRAPHS

Definition 7.1. Let G be a graph and let a3, ..., a,, 7 > 2, be positive
integers. The r-partition V1 U...UV; of V(G) is said to be (ay, .. ) -free if for all
i€ {1,...,r} the set V; contains no a;-clique of G. The symbol G = (ag,...,ar)
means that every r-partition of V(G) is not (as,...,ar)-free.

Let m = Y_;_,(a; — 1) + 1. Consider an r-partition V(Kp-1) = V1 U
V,, where |V;| = a; — 1. Obviously, this r-partition is (a1,...,a,)-free. Hence
Km-1 = (a1,...,a.). It is clear that K, — (ay,...,a,). Thus, from cl(G) > m
it follows that G — (ay,...,a,). Clearly, G —> (ai,...,a,) implies cI(G) >
max{ay,...,a,}. Folkman proves in (3] that for every as, ..., a, there exists a
graph G - (a4,...,a,) with cI(G) = max{ay,...,a,}. The graph G, such that
G % (ai1,...,a,), is called a vertex (a,...,ar)-Folkman graph.

It is clear that

Proposition 7.1. For any permutation ¢ of the symmetric group S, we have

G —v) (al, R ,ar) — G —1-) (a¢(1), N ,aw(r)).
For the positive integers a;, ..., a,, 7 > 2, we put

m = Z a;—1)+1 and p=max{a,...,ar}. (7.1)
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Theorem 7.1. Let positive integers a1, ..., ar, v > 2, m and p satisfy
(7.1) and G -5 (a1,...,a,). Then x(G) > m and if x(G) = m, the graph G is
p-saturated.

Proof. Suppose x(G) < m—~1and V(G) = Vi U...UV,_1 is an (m — 1)-
chromatic partition of G. Let V(Kpn—1) = {z1,...,2m—1} and let Wi U...UW, be
an r-partition of V(K,,_;) such that |W;| = a; — 1. Consider the map V(G) -2
V(Kpn_1), where v -2 z; for all v € V;. We put V! = o t(Wi), k =1,...,r.
Since V{ is an union of a; — 1 independent sets of G, V| contains no ag-clique,
k=1,...,r. So, V/U...UV/is an (a1,...,a,)-free partition of G, which is a
contradiction.

Let x(G) = m. Suppose that G is not p-saturated and let V; U ... U V,,
be an m-chromatic partition of G such that V! = 3 U... U Vp contains no p-
clique of G. By Proposition 7.1, we may assume that a; < a; < -+ < a, = p.
We put G' = G —V'. Obviously, x(G') = m-p=m —a, = Z::_ll(ai - 1).
From these equalities it follows that G’ has an (a1,...,a,1)-free (r — 1)-partition
WiU...UW,_;. But then W, U...UW,_;UV'is an (ay,...,a,)-free r-partition
of G, which is a contradiction. This ends the proof of Theorem 7.1. O

Theorem 7.2. Let ay, ..., ar, v > 2, be positive integers and let m and p
satisfy (7.1). Let the graph G be such that G -5 (ay,...,ar) and (@) < m. Then
7(G) = p.

Proof. We prove the inequality #(G) > p by induction on m. It follows from
G -2 (ai,...,a,) that cl(G) > p. Since c(G) < m, m > p+ 1. By this inequality,
the minimal admissible value of m is p + 1.

1. Let m = p + 1. According to Proposition 7.1, we may assume that a; <
a3 < <a,=p Fromm =p+1itfollowsthatay = - - =a,_y =1, a,_1 =2
and cl(G) = p. Hence G - (ay, ..., a,) implies G —= (2,p). From G —%» (2,p) it
follows cl(G —v) > p for all v € V(G). So, cl(G — v) = cl(G) = p for all v € V(G).
According to Lemma 5.2(b), 7(G) > p.

2. Let m > p+ 2. If (G = v) = cl(G), Vv € V(G), from Lemma 5.2(b)
it follows that m(G) > cl(G). Hence n(G) > p. Suppose cl(G — vo) < cl(G)
for some vg € V(G). Since cl(G) < m, cl(G — vp) < m — 1. We may assume
that a; < -++ < a, = p. It follows from m > p + 2 that a,_; > 2. Obviously,
G - (ai,...,a;) implies G — vy — (a1,...,ar—2,ar—1 — 1,a,). Applying the
inductive hypothesis for G — vy, we conclude that 7(G — vg) > p.

Hence, n(G) > p. O

Theorem 7.3 ([7]). Let ai, ..., ar, v > 2, be positive integers and m and p
satisfy (7.1). If G = (ai,...,a,) and cl(G) < m, then [V(G)| > m + p.

Another proof of Theorem 7.3. According to Theorem 7.1, x(G) > m, and
accordingly to Theorem 7.2, m(G) > p. It follows from Proposition 2.1 that
V(G >2m+p. O
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Theorem 7.4 ([8]). Letay, ..., a., r > 2, be positive integers, and let m
and p satisfy (7.1). If G - (a1,...,a,), (G) < m and [V(G)| = m + p, then
G = Km—p—l + C2p+1-

Another proof of Theorem 7.4. 1t follows from Proposition 2.1 and Theorem
7.2 that |V(G)| > x(G) + p. Since |V(G)| = m + p, we conclude that x(G) < m.
By Theorem 7.1, x(G) = m and G is p-saturated. It follows from Theorem 2.1 and
[V(G)| = m + p that G is not (p + 1)-saturated and G = Kp_p—1 + Copi1.

It is proved in [6] that Kp—p_1 + Capr1 — (a1,...,a,).

8. EDGE FOLKMAN GRAPHS

Definition 8.1. Let a4, ..., a,, a; > 2, r > 2, be integers. Let G be a graph

and let
E(G)=EU...UE,

be an r-colouring of E(G). This r-colouring is said to be (ay,...,a,)-free if for all
i € {1,...,r} the graph G contains no monochromatic a;-clique of colour i. The
symbol G - (a1, .. .,a,) means that every r-colouring of E(G) is not (a1, ..., ar)-
free.

Obviously, if cI(G) > R(ai,...,a,), where R(ai,...,a,) is the Ramsey
number, then G —— (a1,...,a,). It is clear that G -5 (a1,...,a;) implies
cl(G) > max{a;,...,ar}. The existence of a graph G =5 (ay,...,a,) with
c(G) = max{ay,...,a,} was proved in the case r = 2 by Folkman in (3] and
for arbitrary r by Nesetril and Rodl in [16].

Theorem 8.1. Let ay, ..., ar, a; > 2, v > 2, be integers and let G -
(a1,...,ar). Then

(a) x(G) > R, where R = R(ay,...,a,);

(b) suppose that x(G) = R, cl(G) < R and there ezists an r-colouring

E(Kg) = E1U...UE, (8.1)

with the unique monochromatic a;-cligue P of colour i and without monochro-
matic aj-cligue of colour j, j # 1. Then G is a;-saturated and if Kp_o,—1 +
Coait1 = (a1,...,a,), then [V(G)| > R + a;.

Proof. The proof of the inequality (a) is due to Lin in [5]. To prove the
proposition (b) of Theorem 8.1, suppose to the contrary that V; U...U Vg is an
R-chromatic partition of V(G) such that V; U ... UV, contains no a;-clique. Let
V(KR) ={z,...,zr} and P = {z, ..., 2,,}. Consider the map V(G) -2 V(K&g),
where v %5 2;, Vo € V. Let E} U...U E/ be the r-colouring of E(G), where
[u,v] € E! <> [p(u),p(v)] € E; of (8.1). From G - (a,...,a,) it follows that
in this r-colouring there exists a monochromatic ax-clique @ of colour k. Obviously,
¢(Q) is a monochromatic ax-clique of colour k in (8.1). By the properties of the
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r-colouring (8.1) it follows that § = k and (@) = P = {z,...,2,.}. Hence
QCViu...U Ve, This contradicts the assumption that V; U... U Va, contains no
a;~clique and proves that G is a;-saturated.

According to Theorem 2.1, V(G)] > X(G) + a; = R + a;. Since Kp_g,1 +
Coaip1 = (a,...,a,), G # Kp_pn,1 +62ai+1. From Theorem 2.1, V(@)| >
R + a;. The proof of Theorem 8.1 is completed. O

Theorem 8.1 generalizes the results from [12].

Consider the graphs G such that G -%» (3,4) and cl(G) < 9. We put
N(3,4;9) = min{|V(G)| : G - (3,4) and (G) < 9}).

Vs
v6 U4
v7 v3 (7 us
U8 v2
U1
vg U1 U2
Fig. 1. The graph F Fig. 2. The graph F

Fig. 3. The graph F,

Corollary 8.1 ([10]). N(3,4; 9) = 14.

Proof. 1t is proved in [11] and [15] that Ky + Cs5 + C5 %> (3,4). Hence
N(3,4;9) < 14. We prove the inequality N(3,4;9) > 14. Since R(3,4) =9, from
Theorem 8.1 follows x(G) > 9.
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Case 1. x(G) > 10. Since cl(G) < 8, Theorem 1 in {13] implies |V (G)| > 14.
Case 2. x(G) =9. By F, Fi and F; we denote the graphs which are given in

Fig. 1, Fig. 2 and Fig. 3, respectively. In Fig. 1 is given the unique 9-vertex graph
F with o(F) = 2 and containing an unique 4-clique ({v1,vs, vs,v7]), [14]. Hence
the 2-colouring E(Kg) = E; U E,, where E; = E(F), contains an unique 4-clique
of 2nd colour and contains no 3-cliques of 1st colour. Let

11112222 2
112222112
A=(@)=|y 9 9 5 1111 2
22 111122 2

Consider the 2-colouring E(Ky + Cy) = E) U Ey, where E(K,) N E, = E(Fy),

E(Co)NEy; = E(F,) and [u;,v;] € By <= ay; = 2. This 2-colouring is (3, 4)-free,
[10]. By Theorem 8.1, |V(G)| > 14.

10.

11.

12.

13.

14.
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1. NOTATIONS

We consider only finite, non-oriented graphs, without loops and multiple edges.
The vertex set and the edge set of a graph G will be denoted by V{(G) and E(G),
respectively. We call a p-clique of G a set of p vertices, each two of which are
adjacent. The biggest natural number p such that the graph G contains a p-clique
is denoted by cl(G) (the clique number of G).

If W C V(G), then: G[W] is the subgraph of G induced by W and G — W is
the subgraph of G induced by V(G) \ W. We shall use also the following notations:

G — the complement of the graph G;

a(G) — the independence number of G;

Ng(v), v € V(G) — the set of all vertices of G adjacent to v;
K, — the complete graph of n vertices;

Cp — the simple cycle of n vertices;

X(G) — the chromatic number of G.

Let G and G5 be two graphs without common vertices. We denote by Gy + G
the graph G for which V(@) = V(G1) UV(G2) and E(G) = E(G1) U E(G2) UE',
where E' = {[z,y], z € V(G1), y € V(G2)}.
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The Ramsey number R(p, q) is the smallest natural n such that for an arbitrary
n-vertex graph G either a(G) > p or cl(G) > ¢. We need the equality R(3,3) =6,

(3l
2. VERTEX FOLKMAN NUMBERS AND THE MAIN RESULT

Definition 2.1. Let G be a graph, a1, ..., a, be positive integers and let
VG)=ViU...uV,, VinV;=0,i#],

be an r-coloring of the vertices of G. This coloring is said to be (ai,...,ar)-free
if for all ¢ € {1,...,7} the graph G does not contain a monochromatic a;-clique of
color i. The symbol G — (ay,...,a,) means that every r-coloring of V(G) is not
(ai,...,ar)-free.
The graph G such that G = (a1, . .., a,) is called a vertex Folkman graph. We
put
F(ay,...,arq) = min{|V(G)|: G - (a1,...,a,) and cl(G) < g}.

It is clear that from G — (aq,...,a,) it follows that cl(G) > max{ai,...,ar}.
Folkman, [2], proves that there exists a graph G such that G — (a1, ... ,a,) and

c(G) = max{ay,...,a,}. Therefore, if ¢ > max{ai,...,ar}, then the numbers
F(ai,...,a;q) exist. Those numbers are called vertex Folkman numbers.
Let ay, ..., a, be positive integers. We put
T
m:Z(ai—1)+1 and p=max{a;,...,ar}. (1)
i=1

Obviously, K;n — (ay,...,ar) and Km_1 # (a1,...,a,). Hence, if ¢ 2 m +1,
then F(ai,...,ar;q) = m. The numbers F(ay,...,a,;m) exist only if m > p+ 1.
For those numbers the following is known:

Theorem A ([4]). Let a1, ..., ar be positive integers and let m and p satisfy
(1), where m > p+ 1. Then F(ay,...,a;;m) = m+p. If G — (ar,...,ap),
(@) < m and [V(G)| =m +p, then G = Km—p-1 + Cops1.

Remark. The proof of Theorem A, given in [4], is based on {4, Lemma 1, p.
251]. But the proof of this lemma is not correct, because the sentence ”If we delete
both endpoints of any its edges adjacent to {z,y}, then a(G) decreases again.” is
not true (see p.252).

A correct proof of Theorem A is given in [13] (see also p.66, Theorem 7.4 in
this volume).

The numbers F(ay,...,ar;m — 1) exist only if m > p + 2. For those numbers
the following is known:

Theorem B ([13]). Let a1, ..., a, be positive integers. Let m and p satisfy
(1), where m > p+ 2. Then F(ay,...,ar;m—1)>m+p+2.
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Theorem C ([14]). Letay, ..., a, be positive integers and let m and p satisfy
(1). Letm >p+2, G = (ay,...,a,) and cl(G) < m — 1. Then:

(@) V(@) 2m+p+a(G) -1,

() if V(G)=m+p+a(G) -1, then [V(G)| >m + 3p.

It is clear that for each permutation ¢ of the symmetric group S,

G- (al,...,ar) = G- (aw(l),...,a‘p(r)).

Note that if a; = 1, then F(ay,...,a,;9) = F(ay,...,ar;q). Therefore, we can
assume that 2 < a; <--- < q,.
The next theorem implies that, in the special situation a; = -+ = a, = 2,

r > 5, the inequality from Theorem B is exact.

Theorem D.

11, r=3orr=4;

F(2,...,2;r):{r+5, r>s.

It is clear that G — (2,...,2) < x(G)>r+1.
N e’

r
Mycielski in [5] presents an 11-vertex graph G such that G — (2,2,2) and
(G) = 2, proving that F(2,2,2;3) < 11. Chv4tal, [1], proves that Mycielski
graph is the smallest such graph and hence F(2,2,2;3) = 11. The inequality
F(2,2,2,2;4) > 11 is proved in [8] and inequality F'(2,2,2,2;4) < 11 is proved in
[7] and [12] (see also [9]). The equality F(2,...,2;7) =r+5,r > 5, is proved in [7],

[12] and later in [4]. Only few other numbers of the type F(ay,...,ar;m — 1) are
known, namely: F(3,3;4) = 14 (the inequality F'(3,3;4) < 14 is proved in [6] and
the opposite inequality F(3,3;4) > 14 is verified by means of computers in [18]);
F(3,4;5) = 13, [10]; F(2,2,4;5) = 13, [11}; F(4,4;6) = 14, [15}; F(2,2,2,4;6) =
F(2,3,4;6) = 14, [16].

In this paper we will calculate another two numbers of this type.

Theorem 2.1. F(2,2,2,3;5) = F(2,3,3;5) = 12.
3. THE LEMMAS

We consider the graph P, whose complementary graph P is given in Fig. 1.
For this graph we put

A:{al,...,ag}, B:{bl,bg,b3,b4}.
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Fig. 1. Graph P

Lemma 3.1 (Main Lemma). P — (2,3,3).

To prove the main Lemma, we make use of the next lemmas.

Lemma 3.2. Let W C V(P) and P[W] = Cs.

() If WNB= {b,}, then W = {bl,al,ag,a7,a3}.
(b) If WnB= {bz}, then W = {bz,al,az,ag,a4}.
() If WNB= {b3}, then W = {b3,03,04,a5,a5}.
(d) If WnB= {bs}, then W = {b4,a5,a6,a7,a8}.

Proof. Tt is sufficient to prove the proposition (a).

Let WNB = {b;}. From by,bs ¢ W and P[W)] = Cs it follows that az,a7 € W.
From a7 € W it follows that as € W or ag € W. From ay € W it follows that
a; € W or az € W. Since in {al,ag,ae,ag} only a; and ag are adjacent in P, we
have W = {bl,al,az,a—;,ag}. [l

Lemma 3.3. Let W C V(P), P[W] = Cs and |W N B| = 2. Then the two
vertices of W N B are adjacent in P.

Proof. Assume the contrary and let for example W = {b1,b3}. From P[W] =
Cs it follows that there exists u € W such that u € N5(b1) N Np(bs). Since
Ng(b) N Np(bs) = {b2, b4}, this contradicts equality W = {by,b3}. O

Lemma 3.4. Let W C V(P) and P[W] = Cs.

(a) IfWﬂB = {bl,bg}, then W = {bl,bz,al,a7,a3} orW = {bl,bg,ag,a3,a4}.
(b) If WNB = {by, b3}, then W = {bz,b3,a1,02,a3} or W = {ba, b3,a4,05, 06}
(¢) fWNB = {b3,ba}, then W = {bs,bs,as,a4,a5} or W = {b3,bs,a6,0a7,08}-
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(d) IfWﬂB = {bl,b4}, then W = {bl,b4,a5,a6,a7} orW = {bl,b4,a1,a2,a8}.

Proof. It is sufficient to prove the proposition (a).

Let WN B = {by,bs}. From by € W and by ¢ W it follows that ap € W or
a7 € W. Let aa € W. Since Play, az, by, bs] = Cy, we have a; ¢ W. Hence, a3 € W.
Therefore, from P[W] = Cj it follows that W = {b;,ba,a2,0a3,a4}. Let a7 € W.
From P[W] = Cs it follows that ag € W or ag € W. Since Np(ag) N Ng(by) = {bs}
and b3 ¢ W, we have ag € W. From Np(ag) N Np(b2) = {a1} it follows that
W = {bl, bz,al,a7,a3}. O

Lemma 3.5. Let W C V(P) and P[W] = Cs.
(a) If WN B = {b1, b2, b3}, then

W = {by,bs,b3,a9,a3} or W = {by,ba,b3,a6,ar}.
(b) If WN B = {ba, b3, by}, then

W = {bz,bg,b4,a4,a5} or W= {b2,b3,b4,a1,a3}.
(C) If WnNB= {bl,bg,b4}, then

W = {by,b3,by,a6,a7} or W = {b1,bs,bs,a2,a3}.
(d) f Wn B = {by,ba,bs}, then

W = {by,bs,bs,a1,a8} or W = {by,bs,bs,04,as}.

Proof. Tt is sufficient to prove the proposition (a). Let W N B = {by, b, b3}.
From b; € W and P[W] = Cs it follows that a; € W or a; € W. Let az € W.
Since Ny(ag) N Np(bs) = {as}, we have W = {by, ba,b3,0a2,a3}. If a7 € W, then
from NF(CV() N Np(bg) = {as} it follows that W = {bl,bz,bg,aﬁ,aq}. ]

4. A PROOF OF THE MAIN LEMMA

Assume that P -+ (2,3,3) and let V; UV U V3 be a (2,3, 3)-free 3-coloring of
V(P). From a(P) = 2 it follows that

if < 2. (2)

Since V;, ¢ = 2,3, contains no 3-clique, from a(P) = 2 and R(3,3) = 6 it follows
that
Vil <5, 1=2,3. (3)

The equality |V(P)] = 12 together with (2) and (3) imply that |Vi| = 2,
Vol = |[Vs] = 5. We put G; = P[V;], i = 2,3. Since o(G;) = cl(G;) = 2, from
Vil = 5, i = 2,3, it follows that G2 = G3 = Cs. Obviously, P[4] = Cs. Hence
VinB #0,i=2,3. Assume that [V, N B| < [V3N B|. From |B| = 4 it follows that
1<NBl<2

Case 1. |V, N B| = 1. Without a loss of generality we can assume that
5N B = {b}. According to Lemma 3.2(a), V> = {b1,a1, az,a7,as}.

Subcase 1a. V3N B| = 1. Suppose that V3N B = {by} or VaN B = {bs}. Then,
according to Lemma 3.2, Vo N V3 # 0, which is a contradiction. Let Vs N B = {bs3}.
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Then Vi = {bs,as,as,as,a¢} (see Lemma 3.2(c)). Hence Vi = {by,bs}. This
contradicts the assumption that V] is independent in P.

Subcase 1b. |V3 N B| = 2. According to Lemma 3.3, VaN B = {by,b3} or
VsNB = {b3, bs}. Without a loss of generality we can assume that VsNB = {b2,bs}.
From Vo N V3 = @ and Lemma 3.4(b) it follows that V3 = {bs, b3, a4, as, as}. Hence
Vi = {as3,bs}. This contradicts the assumption that V; is independent in P.

Subcase 1c. |[V3NB| = 3. It is clear that V3N B = {b2,b3,b4}. From VNV =0
and Lemma 3.5(b) it follows that Vz = {ba, b3, b4, as, as}. Hence Vi = {a3,a¢}. This
contradicts the assumption that V; is an independent set in P.

Case 2. |Va N B| = 2. 1t is clear that |V3 N B| = 2. According to Lemma 3.3,
we can assume that VoM B = {by,b2} and V3N B = {b3, by }. Because of the Lemma .
3.4(a) we have the following two subcases:

Subcase 2a. Vo = {b1,bs,a2,a3,a4}. From Lemma 3.4(c) and VaNVz = @ it
follows that Vs = {b3,b4,a6,a7,as}. Hence Vi = {a1,as}. This contradicts the
assumption that V| is independent in P.

Subcase 2b. Vo = {b1,bs,a1,a7,as}. From Lemma 3.4(c) and Vo NV5 = B it
follows that V3 = {bs, b4, a3,a4,as}. Hence Vo = {as,as}. This contradicts the
assumption that V} is independent in P.

5. A PROOF OF THEOREM 2.1

It is obvious that from G = (2, 3,3) it follows that G — (2,2,2,3). Therefore
F(2,2,2,3;5) < F(2,3,3;5).

From the above inequality it becomes clear that it is sufficient to prove that
F(2,3,3;5) <12 and F(2,2,2,3;5) > 12.

1. Proof of the inequality F(2,3,3;5) < 12. According to the main Lemma,
P — (2,3,3). Since cl(P) = 4 and |V (P)| = 12, we have F(2,3,3;5) < 12.
(

2. Proof of the inequality F(2,2,2,3;5) > 12. According to Theorem B,
F(2,2,2,3;5) > 11. Assume that F(2,2,2,3;5) = 11 and let G be a graph such
that |V(G)] = 11, cl(G) < 5 and G — (2,2,2,3). From Theorem C(a) it follows
that a(G) < 3. According to Theorem C(b), a(G) # 3. Hence

a(G) =2. (4)

Assume that there exist u,v € V(G) such that Ng(u) 2 Ng(v). It is clear
that {u,v} ¢ E(G). From F(2,2,2,3;5) > 11 it follows that G — v + (2,2,2,3).
Consider an arbitrary (2,2, 2, 3)-free 4-coloring of G — v. If we color the vertex v
with the same color as the vertex u, we will obtain (2,2, 2, 3)-free 4-coloring of G,
which is a contradiction. Therefore:

Ng(v) € Ng(u) for all w,v € V(G). (5)
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If [INg(v)] = |V(G)| = 1 for some v € V(G), then (G —v) < 4 and
G —v — (2,2,2,2). This contradicts Theorem D. Hence, INa(v)] # [V(G)] -1,
Vv € V(G). This, together with (5) imply that

INa()| < [V(G)| -3 for all v € V(G). (6)

From F'(2,2,4;5) = 13, [11], it follows that G -+ (2,2,4). Let V;UV,UV; be (2,2,4)-
free 3-coloring of V(G). It follows from (4) that |V;| < 2, [Va] < 2. According to
(6) and (4), we may assume that |V;| = |V4| = 2. We put G; = G[V;]. It is clear
that from G — (2,2,2,3) it follows that G; — (2,3). According to Theorem A,
Gy = C7 (Fig. 2). Let V) = {a,b}, Vo = {c,d} and G, = Gla,b,c,d]. From (4) it
follows that E(G2) contains two independent edges. Without a loss of generality
we can assume that [a,c], [b,d] € E(G). 1t is sufficient to consider the next two

cases.
Us

ve /\ U4

v7 V3

U1 v2

Fig. 2. Graph C-

Case 1. E(G2) = {[a,q], [b,d]}. From cl{(G) < 5 it follows that one of the
vertices a, ¢ is not adjacent to some of the vertices v, ..., v (see Fig. 2). Without
a loss of generality we may assume that v; and a are not adjacent. Consider the
4-coloring

{va,v5} U {ve,v7} U{e,d} U {v1,v2,v3,0a,b}.
Since G - (2,2,2,3), we have that {v1,vs,v3,a,b} contains a 3-clique. Hence
v,v3 € Ng(b). Similarly, v;,v56 € Ng(b). So, v1,v3,v6 € Ng(b). Similarly,
v1,v3,V6 € Ng(d). Hence {v1,vs,v6,b,d} is a 5-clique, which is a contradiction.

Case 2. E(G2) 2 {[a,c], [b,d], [a,d]}. As in case 1, we may assume that a
and v; are not adjacent. Then from (4) it follows that vs,v7 € Ng(a). From (4)
it follows also that a is adjacent to some of the vertices v4, vs. Without a loss of
generality we may assume that v4 and a are adjacent. So,

V2,04, U7 ENG<G’) (7)
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From (7) and cl(G) < 5 it follows that d is not adjacent to any of the vertices vy,
vy, v7. Hence, it is sufficient to consider the next three subcases.
Subcase 2a. The vertex d is not adjacent to vs. Consider the 4-coloring

{vs,v6} U {v1,v7} U {a,b} U {v2,v3,v4,c,d} (8)

of V(G). From G — (2,2,2,3) it follows that {v2,vs,vs,¢,d} contains a 3-clique.
Hence, vo,vs € Ng(c). Similarly, vs,u7 € Nglc). From (7) it follows that
{va,v4,v7,a,c} is a 5-clique, which contradicts cl(G) < 5.

Subcase 2b. The vertex d is not adjacent to vyq. Consider the 4-coloring (8).
As in the subcase 2a it follows that va,v4 € Ng(c). Similarly, from the 4-coloring

{’UI»U7} U {'UZ;US} U {aab} u {U4,’U5,’U6,C, d}
it follows that vg,v6 € Ng{c). So,
V2, V4, Vs € NG(C)' (9)

According to (7), (9) and cl{G) < 5, the vertex c is not adjacent to v;. Consider
the 4-coloring

{vs,va} U {vs,v6} U {a,b} U {v1,vs,v7,¢,d}.
Since G — (2,2,2,3), then {v;,ve,v7,¢,d} contains a 3-clique. Hence, va,v7 €
Ng{(d). Similarly, from G — (2,2,2,3) and the 4-coloring

{v1,v2} U {vs, v4} U {a, b} U {vs,vs,v7, ¢, d}
it follows that vs,v7 € Ng(d). Then
Vg2, Vs, V7 € Ng(d) (10)

From (7}, (9) and cl(G) < 5 it follows that a and vg are not adjacent. From (7),
(10) and cl(G) < 5 it follows that a and v; are not adjacent. So, the vertex a is
not adjacent to vs and vg, which contradicts (4).

Subcase 2c. The vertex d is not adjacent to v7. This subcase is analogous with
subcase 2b.

6. THE EXTREMAL GRAPHS

By G —e, e € E(G), we denote the subgraph of G such that V(G ~e) = V(G)
and E(G ~€) = E(G) \ {e}.

Consider the graph P from Fig. 1. For this graph we set: Py = P, P =
P—lay,a6), P, = P—{a1,as), P3 = P, —[a,as), P4 = Py—|a4,a7], Ps = P1—{as, az),
P6 = P2 — [a4,ag], P7 = Pg —_ [ag,a7], Pg = P3 — [a4,a7], Pg = P7 et [ag,aﬁ],
Pyo = Pg —[a3,ag}, P11, = Py ~ a4, as).

We need the next theorem.
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Theorem E, [17). Let the graph G be such that V(G)| = 12, cl(@G) = 4 and
a(G) = 2. Then G is isomorphic to one of the graphs P;, i = 0,...,11.

Definition 6.1. We say that the graph G is extremal if V(G)] =12, cl(G) < 5,
G —(2,3,3)or G —(2,2,2,3).

According to Theorem C(a), if G is extremal, then a(G) < 4. From Theorem
C(b) it follows that a(G) # 4. Hence a(G) = 2 or a(G) = 3. In this section we
describe all critical graphs G with a(G) = 2.

Theorem 6.1. Let G be extremal graph such that G — (2,3,3) and o(G) = 2.
Then G is isomorphic to the graph P.

Proof. According to Theorem E, the graph G is isomorphic to one of the graphs
P;y1=0,...,11. The 3-coloring

{ar,ag} U {b2,01,04,a5,a6} U {61, 53,04, a3, a3}
of Py is (2,3, 3)-free and the 3-coloring
{a1,a5} U {b1,83,a2,03,a4} U {63, 4, a6, az, a3}
of Py is (2,3, 3)-free. Hence G is not a, subgraph of P, and P,. Thus G = P.

Theorem 6.2. P; — (2,2,2, 3),i=0,...,11. If an extremal graph G 1is such
that G -+ (2,2,2,3) and a(G) = 2, then G is isomorphic to one of the graphs P,
1=0,...,11.

Proof. Let ViUVoUV3 UV, be a 4-coloring of V(P;) and V;, i = 1,2,3, be
independent. From a(P;) = 2 it follows that Vil <2,i=1,2,3. Hence Va| > 6.
From a(F;) = 2 and R(3,3) = 6 it follows that Va4 contains a 3-clique. Thus P;
does not have a (2, 2,2, 3)-free 4-coloring and hence P; — (2,2,2,3). According to
Theorem E, the graph G is isomorphic to one of the graphs P;, i =0,...,11.

7. THE VERTEX FOLKMAN NUMBERS F(2,...,2, p; )
AND THE RAMSEY NUMBERS R(3, q)

Theorem 7.1. Let p > 2, r and q be positive integers such that
R(3,p) + 2r < R(3,q). : (11)

Then F(2,...,2,p;q) < R(3,p) + 2r.
——

Proof. Let G be a graph such that (V(G) = R(3,p) + 2r, cl(G) < q and
a(G) = 2. (12)
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According to (11), the graph G exists. Let V3 U... U V,q; be an (r + 1)-coloring
of V(G). Suppose that Vi, i = 1,...,r, are independent. From (12) it follows
that |Vi| < 2,4 =1,...,r. Hence |V;41| > R(3,p). According to the definition of
R(3,p) and (12), V41 contains a p-clique. Thus G does not have a (2,...,2,p)-free

r

coloring and hence G = (2,...,2,p). From cl(G) < ¢ and |V(G)| = R(3,p) + 2r it
—’

T

follows that F(2,...,2,p;q) < R(3,p) +2r. O
e e’

Consider the table of the known Ramsey numbers R(3,p), [19):

p |3|als |67 |8]o] 10 |
R@3,p) | 6|9 | 14|18 23] 28| 36 | 40-43 |

From this table and Theorem 7.1 it follows:
F(2,2,4;5) < 13 (in [11] it is proved F(2,2,4;5) = 13

)
F(2,2,6;7) < 22 (in [11] it is proved F(2,2,6;7) < 26);
F(2,2,7;8) < 27 (in [11} it is proved F(2,2,7;8) < 30);
F(2,2,8;9) < 32 (in [11] it is proved F(2,2,8;9) < 34);

F(2,2,9;10) <40 if R(3,10) # 40 (in [11] it is proved F'(2,2,9;10) < 38);
F(2,2,2,3;5) < 12 (according to Theorem 2.1, F(2,2,2,3;5) = 12);
F(2,2,2,5;7) <20 (in [11] it is proved F(2,2,2,5;7) < 23).

8. ON THE NUMBERS F(2,...,2,p;p+7r — 1)
——r

We put F(Q:"'azap;p""r— 1) = Fr(2ap)
N’

T
The proof of Theorem 5 from [13] establishes the following statement:

Theorem F. Let G — (2,...,2,p). Then K, + G = (2,...,2,p) for any r.
—— N —r’
8 r+s8

From Theorem 2.1, Theorem F and Theorem B it follows that
r+8<F.(2,3)<r+9, r>3

The exact value of F2(2,3) = F(2,2,3;4) is unknown.
From Theorem B, Theorem F and the inequalities F>(2,6) < 22, F»(2,7) < 27,
F>(2,8) <32 and F(2,2,2,5;7) <20 it follows that

r+14<F.(2,6) <r+20, r>2;
r+16< F.(2,7)<r+25 r>2
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r+18 < F.(2,8) <r+30, r>2
r+12< F.(2,5) <r+17, r>3.
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IN MATRIX ALGEBRAS WITH INVOLUTION !

TSETSKA GRIGOROVA RASHKOVA

In a previous paper the author made a conjecture on the minimal degree 4n of the
polynomials, which are identities for the matrix algebra of order 2n with symplectic
involution considered as polynomials both in symmetric and skew-symmetric due to
the involution variables.

In the present paper we establish that the conjecture is not true at least for the case of
the matrix algebra of fourth order by giving an example of such an identity of degree
seven, which is a Bergman type identity.

For the matrix algebra of sixth order with symplectic involution we describe the class of
all Bergman type identities both in symmetric and skew-symmetric variables of minimal
degree (which appeared to be 14). For arbitrary polynomials being identities of the
considered type the question of their minimal degree is still open.

Keywords: Bergman type polynomials, symplectic involution, *-identities in symmet-
ric or skew-symmetric variables

2000 MSC: 16R50, 16R10

Let K be a field of characteristics zero with elements a, 8, etc. We call Bergman
type polynomials the following class of homogeneous polynomials introduced by
Formanek [2] and Bergman (1] for investigating matrix identities by means of com-
mutative algebra.

To a homogeneous polynomial in commuting variables

glt, o tngr) = D ot L 0 € Kty ., taga] (1)

lPartially supported by the Bulgarian Foundation for Scientific Research under Grant
MM1106/2001.
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we relate a polynomial v(g) from the free associative algebra K (z,y1,...,¥n),

U(g) = v(g)(z, Y1y - 7yn) = Z apxpl Y1 .-- P yn-'L'pﬂ_"1 . (2)
Any homogeneous and multilinear in 41, ..., yn polynomial f(z,yi,... ,Yn) CAN

be written as
f(xﬁyl""5yn) = Z v(gi)(m3yi1)"'7y‘in)’ (3)

i=(i1,0in) €Sym(n)

where g; € K[t1,...,tn41)-
We consider Bergman type polynomials on subalgebras of the matrix algebra
Mo (K, x) with symplectic involution defined by
(3)-(% %)
C D -t A
where A, B,C, D are (n x n)-matrices and t is the usual transpose.

Details on polynomial and *-polynomial identities one may find in (6, 4].

For an algebra R with involution * we have (R,*) = Rt ® R™, where Rt =
{reR|r* =r}and R~ = {r € R|r* = —r}. Let K(X) be the free associative
algebra. We call f(z1,...,Tm) € K(X) a x-polynomial identity for the algebra
(R, *) both in symmetric and skew-symmetric variables if frt, ... rk) =0 for all
rf,...,rt € Rt and f(r{,...,r,)=0forallr ,...,r;, € R™.

One of the reasons to study this kind of identities is the following. The algebra
R~ is a Lie algebra with respect to the new multiplication [r{ , 7y ] =r{ry =71y,
r;,r5 € R™, and the identities in skew-symmetric variables for (&,*) are weak
polynomial identities for the pair (R, R™), i.e. the identities of the related repre-
sentation of R™. Similarly, RT is a Jordan algebra with respect to the multiplication
riord =¢frf +rfrf, rf,rf € R*, and the identities in symmetric variables are
weak polynomial identities for the pair (R, RT). In this way, the identities both
in symmetric and skew-symmetric variables are the weak identities which hold for
both pairs (R, R~) and (R, R").

In [5] we have discussed the minimal degree of such identities and have made
the following conjecture:

Conjecture [5, Conjecture 3.1]. The minimal degree of a *-identity both in
symmetric and skew-symmetric variables in Mo, (K, *) for n > 2 is equal to 4n.

In the present paper we show that this conjecture is not true (at least for n = 2).
Considering the matrix algebra M, (K, %), we give an example of a Bergman type
polynomial, which is a *-identity both in symmetric and skew-symmetric variables
of degree 7.

For the matrix algebra of sixth order with symplectic involution we describe
the class of all Bergman type identities both in symmetric and skew-symmetric
variables of degree 14, which is their minimal degree.

These considerations are consequences of the following main theorem:
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Theorem 1. Any Bergman type identity in skew-symmetric variables for the
algebra Man (K, *) with symplectic involution is a *-identity in symmetric variables
as well.

For proving the theorem we need some preliminary results.

Proposition 1. [4, Theorem 1] Let a polynomial f(z,y1,...,yn) of type (3)
be a x-identity in skew-symmetric variables for Mo, (K, *). Then the polynomial

II (t5 — 1)t — tne1)
1<p<g<n+1
(p,a) # (L,n+1)

divides the polynomials g; from (1) for all i = (i1,...,%n).

Lemma 1. Any generic symmetric matriz (with respect to the symplectic in-
volution) is diagonalizable.

Proof. Tt is a well-known fact {6, Theorem 2.5.10] that a (2n x 2n)-matrix z,
symmetric with respect to the symplectic involution, satisfies an equation p(z) = 0
of degree n and its characteristic polynomial is p?(z). Thus any generic symmetric
matrix has at most n different characteristic values. A generic symmetric matrix a
of order 2n has the following presentation in the form (4): A is a generic (n x n)-
matrix, D is its transpose, and B and C are generic skew-symmetric (n x n)-
matrices. If it has less than n different characteristic values, then the same will
hold for any generic symmetric matrix and also for

n
z= Z pilesi + entinti) (5)

i=1

where p; are algebraically independent variables. This is a contradiction, because
x has n different characteristic values. Thus any generic symmetric matrix is diag-
onalizable and we may consider z in the form {5).

Lemma 2. For any polynomial g(t1,...,tnt1) of type (1) divisible by the
product Hiq(ti — tj), the associated polynomial f(z,y1,...,yn) of type (3) van-
ishes on Man (K, *) for z being symmetric due to the involution and for arbitrary
Y15+ Yn S MZn(Kv*)

Proof. According to Lemma 1, the matrix « can be replaced by = 37 | pi(es+
en+in+i). LThe linearity of f in yj,...,yn allows to consider the variables y;,i =

1,...,n, as matrix units from M, (K, *) with nonzero product, namely g; = e,,p, .,
for p; = 1,...,2n. Thus we get

f(:zay.—la e ay_'n) = U(g)(:fvyla e ayn) = g(ﬁpl’ e 7ﬁpn’ﬁpn+1)6p1pn+l’
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where p, = p, f p < n, and pp = pp_n if n+1 < p < 2n. Since pp, €
{p1,...,pn}, ¢ = 1,...,n + 1, we have p,, = pp; for some i # j. This means
that g(Ppy, -« - s Ppn»Ppasi) = 0 as t; — t; divides the polynomial g(t1, ..., tn+1).

Proof of Theorem 1. Let f be a Bergman type identity in skew-symmetric
variables. According to Proposition 1, the considered polynomial in commuting
variables is divisible by the product HK]. (t; —t;),1<i< j<n+1 Lemma 2
gives that f is a Bergman type identity in symmetric variables as well.

It is known [3, pp. 318-319] that [[z?,z2]?, z1] = 0 is a *-identity of minimal
degree in skew-symmetric variables for My (K, ).

The following proposition illustrates Theorem 1.

Proposition 2. The linearization in zo of the polynomial [[23,22]% z1] is
Bergman type x-identity for M4(K, *) both in symmetric and skew-symmetric vari-
ables.

Proof. The proposition follows immediately from Theorem 1, because [[z?, z,]?,

z1] is an identity in skew-symmetric variables for M4(K, #) and its linearization in
zy is of Bergman type. We shall give an alternative proof and shall show that it is
a consequence of an identity of special form.
First, for a Bergman type identity in symmetric variables of degree n we de-
scribe the general form of its consequence in symmetric variables of degree n + 1.
Let

fl@y,y2) = vlga,2) @ v1,y2) + v(g@n) (T y2, ¥1)
v(g1)(x,y1,Y2) + v(g2)(Z, Y2, ¥1) (6)
= filz,y1,92) + f2(2,92,91)

be a Bergman type *-identity in symmetric variables. We consider its consequence
(in symmetric variables)

A = of(yi =2y +yiz) + Bf(y2 = zy2 + y27) + v(zf + f2)
= off(y1 = 2p1) + f(y1 = y17)]

+  Blf(y2 = zy2) + f(y2 = y22)] + ¥(zf + f2)

= azfi+afe(yy =zy1) + afilyy = yiz) + afrz

+ BAy =wnz) + Brfa+ Bhiz+ By = zy1)

+ yzfr+yxfe +vfiz+vfor = Az, y1,y2) + A2(7, 92, 1)

The commutative polynomials corresponding to the parts Ay (z,y;,y2) and
Ay(z,y2,y1) are respectively

911 = 9,2 = [(a + )ty + (a+ Bta + (B + 7)ts]g1, (7)
921 = g2,1) = [(B + Mt1 + (o + Btz + (a + 7)t3]ge.
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1. Fora=1,8=~=0(7) gives

g11 = 9’1 (t1 + t2)g1,
921 = g3 = (t2 + t3)ga.

2. Fora=vy=0, =1 we get

g11 = 911( = (ta + t3)01,
g21 = g = (t1 + t2)92.

The linearization in y of the pointed in [5, Part 3] identity {[z,y]? 2] = 0 in
symmetric variables is a Bergman type identity of type (3) for which (following (6))

91,2) = 9(2,1) = 9o = (t1 — t2)(t1 — t3)(t2 — t3). (8)

The linearization in y of the identity [[z?,y]?,z] = 0 (in skew-symmetric vari-
ables) is a Bergman type identity of type (3). In this case (7) gives

9a2 =9en=9 = & -1)(t1—ts)(t3—13) 9
= (t1+t2)(t2 + t3)g0.

We want to show that the linearization of [[z2,y]?, ] = 0, which corresponds
to (9), is a consequence in symmetric variables of the linearization of [[z,y]?,z] = 0,
corresponding to (8).

Applying the first case 1 to the identity in symmetric variables

f(z,y1,92) = v(go)(z,y1,92) + v(go) (=, ¥2, 1),

we obtain the identity f (z,y1,y2) for Wthh g1 = (t1 +t2)go and g = (t2 + t3)go.
, Now we apply the second step to f (z, y1,y2) and get f (z, yl,yg) for which
g = (t2 + ta)(t1 +12)go and g, = (1 + t2)(t2 + ta)go. Thus f"(z,31,50) is a
consequence of f(z,y1,y2) in symmetric variables and holds for My(K, *) since
g, =g, =gis asin (9).
We point that the identity in skew-symmetric variables of degree 7 [3, Theorem
5] is not a -identity in symmetric variables. Hence the Bergman type of the
considered polynomials is essential.

Theorem 2. All Bergman type polynomials f of degree 7, which are x-identities
both in symmetric and skew-symmetric variables, are of the form kfy, k € K, for
fo(l‘,zyl,yzz) = fi+ f2 = v(9)(@,y1,92) +v(g)(z,y2,51), where g = (87 — t3)(t1 —
t3)(t; — t3).

Proof. According to Theorem 1, Proposition 1 and the notations in Theorem
2, we write f as f = af) + 8f2 for a,8 € K. As f(y1 +> y2) = 0 is an identity
too, we get afo + ff1 = 0. It means that (a —8)fi + (B —a)fo=0. fa—-8#£0,
then fi — f» = 0 is an identity for M4(K, x). The identity given before Proposition
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2 leads to the identity f1 + fo = 0. Thus fi = 0 and f, = 0 are identities in skew-
symmetric variables. Calculating f;(p1(e11 — e33)+ pa(eaz —€44), €12 — €43, €14 +€23)
fori=1,2, we get

fi = 2002 —p3)’e1s #0,
fa = =2p1(p? — p3)’e1s #0,

a contradiction. Thus o — 8 =0 and f = kfo.
Now we continue the investigations in Mg (K, *).
For n = 3 the commutative polynomial in Proposition 1 is denoted by go, and

v(90) (2, Yiy » Yins Yis) ~ DY folT,Yir Yins Yis)-
Proposition 3. [4, Theorem 3] The polynomial

P((L‘, Y1,Y2, y3) = fO(xa Yiy s Yias yis) + fO(zv Yizyr Yias yi1)
for all (iy,i2,13) is a x-identity of degree 14 in skew-symmetric variables for Mg (K, *).

Using the notations

fl = U(!]O)(-'U,yl,yz,ys) 2 = ’U( 0)(1',1/1,3/3,192),

f3 =v(go)(z,y2,91,u3), fa = v(g0)(, ¥3, Y2, Y1),

fs = v(go)(,y2,y3,1) and fe = v(go)(Z,y3, Y1, Y2),
we get that

a(fi + fa) + B(fa+ f5) +¥(fs + fo) =0, @, 8,7 € K, (10)

is a *-identity in skew-symmetric variables.
We describe the class of all Bergman type identities of degree 14 in skew-
symmetric variables for Mg(K, *).

Theorem 3. All Bergman type *-identities of degree 14 in skew-symmetric
variables for Mg(K, *) have the form (10).

Progf. According to Proposition 1, any identity of the considered type has the
form Y0, aifi. As ai(fi + fa) = 0, aa(fa + f5) = 0 and as(fs + fs) = 0 are
identities in skew-symmetric variables, we get the identity

= (g — 1) fa + (a5 — a2) f5s + (a6 — a3) f6 = 0.

Considering f(y1 < y2) = 0, f(y2 ¢ y3) = 0 and f(ys ¢ y1) = 0, we get the
following system:

(ag —on)fs + (05 — a2) f5 + (ag — a3)fo = 0,
(as — 1) fe + (a5 — az) fo + (s — a3) fa = 0,
(o4 — 1) fs + (a5 — a2) fa + (a6 — a3) f3 =0,
(s — 1) f1 + (05 — ) f3 + (o —a3) f2 =0
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Using the notations a = (a4 —ay), b = (a5 —a2) and ¢ = (ag — a3) and Propo-
sition 3, the matrix A of the considered homogeneous system for the unknowns fj,
fs and fg has the form

a b ¢

c -b a
b a -c
—-a —c¢ =b

Elementary transformations on the matrix and Mathematica calculations prove
that special polynomials are not *-identities in skew-symmetric variables and they
lead to the only trivial solution for a,b,c. Thus a; = a4, as = a5 and a3 = ag,
and we get (10).

The main Theorem 1 applied for Mg(K, *) gives

Proposition 4. All Bergman type x-identities of degree 14 both in symmetric
and skew-symmetric variables for M¢(K, x) have the form (10).

Acknowledgments. The author is grateful to V. Drensky for his essential
comments on the text improving the final version of the paper.
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A GENERALIZATION OF REDFIELD’S MASTER THEOREM *

VALENTIN VANKOV ILIEV

Generalizations of Redfield’s master theorem and the superposition theorem are proved
by using decomposition of the tensor product of several induced monomial representa-
tions of the symmetric group S, into transitive constituents. As direct consequences,
several corollaries concerning superpositions of graphs are obtained.
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INTRODUCTION

In the present paper we prove a generalization of Redfield’s master theorem as
a direct consequence of the decomposition of the tensor product of several induced
monomial representations of the symmetric group into its transitive summands.
The underlying permutation representations give rise to the original Redfield’s
group-reduced distributions, or, equivalently, to Read’s equivalence relation of “T-
similarity” and superpositions. The most important examples of superpositions
are the superpositions of several graphs I';,...,T';, each on the same number of
vertices. A superposition of I'y,...,T'x is a graph that is obtained by superposing
I';, on the same set of vertices and by keeping their edges apart. The superposition
theorem counts the number of superpositions of the graphs I';, in terms of their

1Research partially supported by the Bulgarian Foundation of Scientific Research under Grant
MM-1106/2001.
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automorphism groups W,, < S4. The corresponding generalization enables us to
count those superpositions whose automorphism groups have certain properties in
case one of the automorphism groups W,,, m = 1,...,k, has an one-dimensjonal
character of special type.

The paper is stratified as follows. In Section 1 we note that the tensor product
of several induced monomial representations of the symmetric group Sy is a mono-
mial one. Then we discuss the corresponding permutation representation of S, and,
in particular, show that there is a canonical bijection between the Sy-orbit space
thus obtained and the set of Read’s equivalence classes from [4, Sec. 3]. Section 2
contains two equivalent statements that generalize Redfield’s master theorem and
a generalization of the superposition theorem. In Section 3 we find the number of
all superpositions with certain properties of several graphs.

1. TENSOR PRODUCT OF INDUCED MONOMIAL
REPRESENTATIONS OF Sy

Throughout the paper we assume that K is an algebraically closed field of
characteristic zero and that all group characters are K-valued.

Let R? be the Abelian group consisting of all generalized characters of the sym-
metric group Sg, and let A? be the Abelian group of homogeneous degree d symmet-
ric functions with integer coefficients in a countable set of variables o, x1, za, . ..
If u, v € RY, we denote by (u,v) their (integer-valued) scalar product. According
to [3, Ch. I, Sec. 4], we can define an integer-valued scalar product ( , ) on the
group A%, such that the characteristic map ch: R% — A9 (see [3, Ch. I, Sec. 7)) is
an isometric isomorphism of Abelian groups.

Let W < Sy be a permutation group and x: W - K be an one-dimensional
character. We set

1 cil{o o
Z(X;pla"'apd)zm ZX(U)pll( )Pzd( )a
geW

where p, = 372, xf are the power sums, and c,(c) is the number of cycles of
length s in the cyclic decomposition of the permutation ¢. The symmetric function
Z(x) = Z(X;p1,--.,pa) is said to be generalized cyclic index of the group W. For
¢ € Sy, we denote by g(¢) the corresponding partition (1¢1(6), ... d¢¢(©)) of the
natural number d.

The tensor product of two finite-dimensional K-linear representations of Sy
with characters u and v has character wv. If f = ch(u) and g = ch(v), where u
and v are generalized characters of S;, one defines internal product f * g of two
symmetric functions f,g € A? by f * g = ch(uv). With respect to the internal
product, the Abelian group A? becomes a commutative and associative ring such
that the complete symmetric function kg = ch(1s,) is an identity element (see [3,

Ch. I, Sec. 7]).
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Let W be a subgroup of the symmetric group Sq and let x: W — K be an one-
dimensional character of W. The field K has a natural structure of left KW -module
given by gc = x(0)c, where ¢ € W, ¢ € K. We denote by K, the corresponding
one-dimensional K-linear representation of W. Let I be a left transversal of W in
S4. The induced monomial representation [ nd{?"} {(x) = KSq®xwK, has a natural
basis (e;)icr, € =1 ® 1, as a K-linear space. Since for any ¢ € Sg and ¢ € I there
exist unique j € I and ¢ € W such that (i = jo, we obtain a group homomorphism
5:Sq — S(I) defined by the formula

(s(Q)@) " i e W.

Moreover, the permutation group s(Sq) is transitive on the set I. We have (e; =
(t®1)=(¢i)®1=(jo)®1=3j® (c1). Therefore the action of S; on Indﬁj’(x)
is given by
Cei = Bi(C)es(c) (i)

where 8;(¢) = x(o) = x((s(¢) (1))~ ¢i).

For the rest of the paper we introduce the following notation:

(Wm)E,_; is a finite family of subgroups of the symmetric group Sy;

(Xm)ﬁ:u Xm: Wm = K, is a family of one-dimensional characters;

I, (es)iel,., Sm:Sa = S(In) and (,Bgm))iejm, are the above ingredients for

the induced monomial representation Indy} (xm), where m =1,...,k.
The rule
C(ilﬁ crey Zk) = (51 (C)(Zl)v sy Sk(()(ik)), (11)
where (i3,...,1%) € [} X --- X I and { € Sy, defines an action of the group S; on

theset I =1 x -+ x I.

We denote by W° the group W with the opposite group structure. The Carte-
sian product of groups Sg x W¢ x --- x W¢ acts on the set Sq x - - X Sy by virtue
of the rules

(¢ wy,. ., wellag,. .. ak) = (Carwi, ..., (arws) (1.2)

and
¢ wiy ... wr)-(a1,-..,08) = (wi'lalg”“l,...,wk_lakC'l). (1.3)

The next obvious lemma follows from the definitions of the actions of the corre-
sponding groups and paves the way for some combinatorial applications.

Lemma 1.1. The following four statements hold:

(i) two k-tuples (i1,...,%) and (j1,...,Jk) are in the same Sy-orbit in I if and
only if there exist ( € Sy and wy, € Wy such that jm = (imqwm form =1,...,k;

(ii) the stabilizer of the k-tuple (i1,...,ix) € I in the symmetric group Sy is
the intersection i1W1i1_1 n... ﬂikai,:l;

(ili) the inclusion Iy X -+« X I C Sg X +-- x 8 induces a bijection between the
orbit space Sg\I and the orbit space Sy x Wi x --- x W\Sq x - -- X Sq with respect
to the action (1.2);
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(iv) the inversion
SgX X838y x-x8, (a,...,ap) — (ai‘l,...,a,zl),
is an isomorphism of the actions {1.2) and (1.3) of the group Sq x WP x ... x wy.

Remark 1. (i) The set of the orbits of the action (1.2) coincides with the
factor-set of Sy x - -+ x Sy with respect to the equivalence relation “T-similarity”,
defined in [4, Sec. 3]. Therefore, according to Lemma 1.1, (iii), there is a bijec-
tion between the orbit space Sg\I and the set of all distinct superpositions of k
graphs with d vertices each (multiple edges and loops allowed), see [4, Sec. 4].
Moreover, the stabilizer i, W17 N...Niy Wi, ' is the automorphism group of the
superposition (i1,...,%).

(ii) The orbits of the action (1.3) are Redfield’s group-reduced distributions,
determined in [5, p. 434]. Lemma 1.1, (iii), (iv), yields that there is a bijection
between the orbit space Sy\I and the set of all distinct group-reduced distributions.

Proposition 1.1. The tensor product
Indgé (x1) ®k - ®x Indyd (xx) (1.4)

is a monomial K -linear representation of Sy with basis (e; = €;, ® - ®e;, )ics, the
action of Sq being given by the rule

Ces = Bi(Qes¢) i)
where 8;(¢) = B0(0) ... B (©).

Proof. 1t is clear that the family (e;)ier is a basis for the K-linear space (1.4).

We have Ce; = Ceiy ® -+ ® Ceiy = B1)(0) - B (Oesy (i) ® -+ ® eagyi) =
Bi(Q)es(c)(iy- In particular, (1.4) is a monomial representation of Sy. [

Due to [1, Lemma 1], the characteristic of the tensor product (1.4) is the
internal product Z(x;) * - - * Z(xx). We set

C(Wy,...,Wi) =
{(o1y-..,0k) EW1 X - x Wy | c5(01) =+ =cs(ok), s=1,...,d}.

Obviously, ((1),...,(1)) € C(Wy,...,Wy).

For any o = (01,...,0%) € C(W1,..., W) we define ¢5(0) = ¢5(01) = -+ =
¢s(op) for s = 1,...,d. Moreover, we set z, = Hle s (Deg (o).

The next proposition links the present definition of internal product to Read’s
one from [4, Subsec. 3.3].

Proposition 1.2. It holds
Z(xa) *--- % Z(xx)

1 —_—
= WI_-Tw_l Z Z{,c xi(o1) . ..Xk(gk)pnlh(a) ”'plcid(ﬂ).
1. [Wg c€C(Wy,...,Wy)
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Proof. The proof is an immediate consequence of [3, Ch. I, Sec. 7, (7.12)]. O

2. REDFIELD’S ANSATZ

In this section we generalize the Redfield’s master theorem and the superposi-
tion theorem.

Theorem 2.1. It holds
Ind$e (x1) ®k -+ ®k Indyd (xi)

~ Sa
—_ ®(""1"""‘”‘)ET(W‘""’Wk)lndwlWlwl‘ln‘..nukawk_‘(w(““"“""’“))’

where T (Wy,...,Wy) is a system of distinct representatives of the Sg-orbits in
the Cartesian product I = I X --- X I, with respect to the action (1.1) of S4, and
Y(wr,....wx) 18 the one-dimensional character of the group wiWiwrtn. . .NwpWiw !,
which is the restriction of the expression

Bu(€) = xa((51(O)(wr)) T ¢wr) . xw (31(¢) (wi)) ™ Cur)

from Proposition 1.1.

Proof. Due to Proposition 1.1, the tensor product (1.4) is a monomial repre-
sentation of Sy, so it gives an induced monomial representation on each Sg-orbit in
the set I and (1.4) is the direct sum of these transitive constituents. Now, Lemma
1.1, (ii), finishes the proof. O

Transferring this result by virtue of the characteristic map ch on the Abelian
group A4, we obtain a direct generalization of the Redfield’s master theorem.

Theorem 2.2. It holds

Z(Xl)**Z(Xk) = Z Z(¢(W1,~~-,’-'k))'

(w1seewi ) ET(Wh,..., W)

Following R. C. Read, if A is a polynomial in several variables py,...,pq, we
denote by N(A) the sum of its coefficients.

Theorem 2.3. The number of the elements w € T (Wy,...,Wy) such that
Y(wr,...w) = 1 on the stabilizer w1W1w1—1 n... ﬂkakwk’l 18

N(Z () * - % Z(xx))-

Proof. Applying the operation N on the two sides of the equality from Theorem
2.2, we obtain

N(Z(x1) * -+ * Z(xx)) = > N(Z@ur,..on))-
(wiy..ywr ) ET(Wh,...,Wi)
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Given a group G < S, and an one-dimensional character ¥:G — K, we have
N(Z(¥)) = (¥, 1¢)a, where (, ) is the standard scalar product of functions on the
group G (see [3, Ch. I, Sec. 7]). Since (¢, 1g)¢ = 0 when v # 1g, and (¢,15)g =1
when 3 = 1g, the proof is done. [

Remark 2. When x., = lw,, for m = 1,...,k, Theorem 2.2 (respectively,
Theorem 2.3) turns into the Redfield’s master theorem (respectively, turns into the
superposition theorem).

3. GRAPHICAL COROLLARIES

Here is how the above machinery applies to the graph theory. Combining The-
orem 2.3 and Remark 1, we establish Theorem 3.1 and several graphical corollaries
of it. In accordance with Remark 1, these statements can also be formulated in the
language of Redfield’s ranges and the associated range-groups, see [5, p. 434].

Let I';,...,Tx be graphs with d vertices (loops and multiple edges allowed)
and let Wy < Sg,..., W) < S4 be their automorphism groups, respectively. Let
Xm: Wm — K be an one-dimensional character of Wp,, m = 1,..., k. Suppose that
x2 = lwy, ..., Xk = lw,, and set W = Wi, x = x1.

Theorem 3.1. Let G be a set of subgroups of the symmetric group Sq, which
is closed with respect to conjugations. Let H < W be the kernel of the character
x. Let us assume that the set of all subgroups of W, which belong to G, coincides
with the set of all subgroups of H. Then the number of those superpositions of the
graphs T'1,... T, whose automorphism groups belong to G, is N(Z(x) * Z(lw,) *
Sk Z(lw,).

Proof. For any subgroup H' < W we have H' € G if and only if x| = 1g/.
The automorphism group A, = wiWiwy 'n...n kakw;l of any superposi-
tion w = (wy,-..,wk) is a subgroup of w;Ww;'. Obviously, the subgroups of
wiWw;? from G are exactly the subgroups of the kernel wiHwy 1 of the one-
dimensional character x(w;'¢w;) of the group wiWw;!. On the other hand,
the one-dimensional character v,,(¢) of A, from Theorem 2.2 is the restriction
of x(wy*¢w;). Thus, A, € G if and only if ¢, (¢) is identically 1 on A,. Therefore
Theorem 2.3 implies the result. O

Given a cyclic group of order b and a divisor a of b, let o(*) be an one-
dimensional character of this cyclic group, whose kernel has order a. If G is the set
of all cyclic subgroups of S; of order that divides a, Theorem 3.1 yields

Corollary 3.1. If the group W = W1 is cyclic of order b and if a is a divi-
sor of b, then the number of all superpositions of I'1,..., 'y, which have a cyclic
automorphism group of order dividing a, is

N(Z(e'9) * Z(1w,) * - * Z(1w,)).
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In the particular case a = 1, we obtain

Corollary 3.2. If the permutation group W = W, is cyclic, then the number
of all superpositions of I'1,..., Tk, having a trivial automorphism group, is

where o: W — K is an injective one-dimensional character of W .

Now, let G be the set of all subgroups of Sy, consisting of even permutations.
Then Theorem 3.1 implies

Corollary 3.3. The number of all superpositions of I'1,...,Tx, whose auto-
morphism group consist of even permutations, is

where e: Wy — K is the restriction of the alternating character of Sy on W;.

Let r be a natural number. We suppose that:

(a) W = W has a normal solvable subgroup R of order r such that the factor-
group W/R is cyclic of order relatively prime to r.

Then the group W itself is solvable. According to the generalized Sylow the-
orems (cf [2, Ch. 9, Theorem 9.3.1]), R is the only subgroup of W of order r.
Moreover, any subgroup of W of order that divides r is contained in R.

Denote by n an one-dimensional character of W with kernel R. If G is the set
of all subgroups of Sy of order dividing r, we obtain

Corollary 3.4. If the group W = W, satisfies condition (a), then
N(Z(m)« Z(1w,) * - * Z(1w,))

is the number of all superpositions of I'1,..., Tk, whose automorphism groups are
of order dividing r.

Now, we formulate an important version of Corollary 3.4. Let ¢ be a prime
number. Suppose that:

(b) the group W = W) has a normal g-subgroup R such that the factor-group
W/R is cyclic of order relatively prime to gq.

In accordance with Sylow theorems (see {2, Ch. 4, Theorems 4.2.1 - 4.2.3)), R
is the only Sylow g-subgroup of W. Moreover, any g-subgroup of W is contained
in R.

Denote by ¢ an one-dimensional character of W with kernel R. If G is the set
of all g-subgroups of S;, then we get

Corollary 3.5. If the group W = W, satisfies condition (b), then
N(Z() « Z(1wy) * - x Z(1w,))
is the number of all superpositions of I'y,..., [y, whose automorphism group is a

q-group.
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Remark 3. Examples of abstract groups W = W, which satisfy the hypothesis
(a) (respectively, the hypothesis (b)) can be obtained by constructing a semi-direct
product of a solvable group R of order r (respectively, a g-group R) with a cyclic
group C of order relatively prime to r (respectively, relatively prime to ¢q). The
Schur-Zassenhaus’ theorem (see {6, Ch. IV, Sec. 8, IV.7.c]) asserts that there are
no other examples. In the symmetric group Sy, it is enough to choose R < §,; and
C < S; with the above-mentioned properties so that RC' = CR, RN C = {(1)}
and R is a normal subgroup of the group W; = RC.

Acknowledgments. The author would like to thank prof. R. Robinson who
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p. 449, where Redfield has counted the superpositions by automorphism group
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1. INTRODUCTION

Let T denote the class of totally monotonic functions

w=y(z)= /0 2 du(t) = Z anz”, z ¢ [1,+00], (1.1)
n=1

1—2t

where p(t) is a probability measure on [0, 1] and

1
an=/ t"ldu@t), n=1,2,..., a; =1 (1.2)
0
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In [1] it it noted that the largest common region of convergence of all Taylor
series at the point w = 0 of the inverse functions z = ¥(w) of the functions (1.1) is
the disk |w| < 1/2. Let

= 1
z=yw) =Y bw", |w|< 5 =1, (1.3)

n=1

be such series, where in [1] the coefficients b,, are determined explicitly by the
coefficients a, in (1.2). In [1] we found the minimum and the maximum of the
coefficients by, b3 and by and conjectured that the extrema of all coefliciens b,
n=2,3,4,...,in (1.3) are attained only for the rational functions of the form

(1-c¢)z

p(z) =cz + €T, 0<c<1, (1.4)

for suitable values of ¢, and, in addition,
bom > ~1, m=1,2,..., (1.5)

and
b2m+1 S 1, m = 1, 2, ey (16)

where the equalities in (1.5) and (1.6) hold only for the function
Y(w) = —— = i(—l)”'IW", (1.7)
I+w  —~

inverse of the function (1.4) for ¢ = 0, respectively.
Now we verify these conjectures for the fifth coefficient b5 in (1.3) as well.

2. SHARP ESTIMATES FOR bs

In [1, p. 41, Theorem 4] we have proved that the minimum (the maximum)
of the coefficients b,, n > 2, in (1.3} in the class T is attained only either in the
subclass of functions (1.4) or in the subclass of functions

P
Ccrz
= 2.1
o) =) 12 eT, (2.1)
k=1
where
1<p<m, n=2m, m=12, ..., (2.2)
1<p<m+1, n=2m+1, m=1,2,...,
P
0<ti << <ty <1, 0<e <1, D =1, (2.4)
k=1
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and ty, ta, ..., ¢, are among the numbers 0 and 1 and the roots in the interval
0 <t <1 of the equation

db, s—2

Zaas(—lt =0, n>3 (2.5)

The function

6bn
t) = P(t), > 3, 2.6
Zaas , QW=P@, n> (26)
has equal values at any two adjacent points of the sequence t1, t, ..., t, for p > 2,
ie.
Q1) =Q2) = =Q(t,), p>2 (2.7)
The equations (2.7) are necessary conditions for the extrema of b, with respect
tocy, 2, ..., ¢p. In fact, b, depends on as, a3, ..., a,, which by (2.1) are equal to
P

aS=chtZ“1, 2<s<n, n>3, p>2 (2.8)

From (2.8) and the last equation in (2.4) we have

g‘c‘: -, 1<k<p, p>2, tpy =t. (2.9)

Having in mind (2.9) and (2.6), we obtain the formula

o Z S 3 = Qb - Qliksn), (2.10)
n >3, 1 <k<p, p>2, Qtpn) =Q(t).
Since 9b,/dcr = 0 at the extrema of by, formula (2.10) yields (2.7).
Theorem 2.1. The coefficient bs in (1.3) satisfies the sharp inequalities
—0.1317545... = 14c® — 35¢® +30c? — 10c+ 1< b5 < 1, (2.11)
where
c=10.294997..., 0.294997 < ¢ < 0.294998, (2.12)

is the smallest positive root of the equation

56¢> — 105¢% + 60c — 10 = 0, (2.13)
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and the equalities hold only for the following extremal functions: on the left-hand
side of (2.11) — for the inverse function of the function (1.4) for ¢ determined by
(2.11)-(2.13), and on the right-hand side of (2.11) — for the function (1.7).

Proof. In terms of the coefficients as, a3, a4, a5 in (1.2), the coefficient b in
(1.3) has the following explicit form (see Theorem 3 and its proof in [1]):
bs = —as + 6agzas + 3a2 — 21a3as + 14a3. (2.14)

According to our general theorem, expressed by means of (2.1)-(2.7) applied to
n = 5 and (2.14), the only possible extremal functions for b5 are the functions of
the form (1.4), and

cp(z):1 o eT, 0<t<1, (2.15)
1

<p(z)=cz+(1_) €T, 0<e<l, 0O0<t<l, (2.16)

=2 + 02 cp geec1, 0<i<l (2.17)

v T 1tz 1—-2 ’ ’ ’ )

(2) = — 1292 7 g<e<l, O<tic<t<1 (2.18)

Lo T 1—-t1z 1—ty2 R ’
CoZ C3z

= —— T 2.1
v(2) clz+1—tz+1—ze ) (2.19)

0<ei,2,3<1, at+ete=1 0<t<1
(in general ¢ is different for each function), with the corresponding equations
P(t) = 6a4 — 42aza3 + 56a3 + (6az — 21a3)2t + 18ast® — 4t =0 (2.20)
in t and functions
Q(t) = (6aq ~ 42asa; + 5643) t + (6as — 21a3) t* + 6ast® — t* (2.21)

with Q'(t) = P(t). For the latter and for the corresponding functions (1.4), (2.16)—
(2.19) we have the equations

Q(0) = Q(l) (2.22)
P(t) =0, Q(0)=Q(1), (2.23)
P@t)=0, Q) =Q(1), (2.24)
P(tl) P(ty) =0, Q(t1) = Q(t2), (2.29)
P(t) = Q(O) =Q(t), Q) =0(@1), Q@)=Q). (2.26)

(i) First, we examine the function (1.4). From it we find the Taylor coefficients

ag=1-¢, a3=1-¢, a4=1-¢, az=1-c (2.27)
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From (2.27) and (2.14) we obtain that

bs = 14c* — 35¢% + 30¢ — 10c + 1 (2.28)
=14(c-1) (c— %) (c— 7—_*_1%/———2—1) (c— ’_7;121/_2—_1_) =bs{c), 0<c<.
It follows from (2.28) that the derivative equation
bi(c) = 56¢® — 105¢* +60c~ 10 =0 (2.29)
has three real roots
¢ =0.204997..., 0.294997 < ¢' < 0.294998, (2.30)
' =0652..., 0.652<c’ <0.653,
¢ =0.9270..., 0.9270 < " < 0.9271
for which
min bs(c') = —0.1317545 .. ., (2.31)

max bs(c") = 0.062235... .,
min bs(¢"') = —0.03281 ...

In addition,
bs(0) =1, bs(1) =0. (2.32)

The derivative equation (2.29) follows from formula (2.10) and equation (2.22)
as well. In fact, we have

bi(c) = Q(0) — Q(1) = 56¢® — 105¢ + 60c — 10 = 0 (2.33)

by (210) forn =5,k=1,p=2,¢; =c,t; =0, t2 = 1, and (2.21) for the values
(2.27) and (2.22).

(ii) Second, we examine the function (2.15). Converting (2.15) or by means of
the coefficients of (2.15) and (2.14), we obtain

bs=t, 0<t<1, minbs=0, maxbs=1. (2.34)

(iii} Third, we examine the function (2.16). From (2.16) we find the coefficients

aa=(1-0)t, az=(1—-c)t?, ag=(1-0t, as=(1-c)t (2.35)
From (2.20), (2.21) and (2.23) we obtain

% [P(t) - %Q(ﬂ] = 2a3 - 7aj + dast — * = 0. (236)
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1t follows from (2.35)—(2.36) that

7(1-¢)? -6(1-¢c)+1=0. (2.37)
From (2.37) and (2.35) we find
+ 2 +4/2 3++v2 3++2
a.f = 3——\{:t, agt = 3 ftQ, aff = \/—ts, a5i = ———\/—t4, (2.38)
7 7 7 7
respectively. Now (2.38) and (2.14) yield
~13+16v2
+ 44
=t —————, 0<it<l1 .
by =t 3153 ; <t<], (2.39)
respectively. Equations (2.39) lead to the corresponding boundaries
infbF =0, supbf =0.0280682..., 0<t<1, (2.40)
inf by = —0.10387..., supby =0, 0<t<L (2.41)

(iv) Fourth, we examine the function (2.17). From (2.17) we find the coeflicients
a=clt—1)+1,a3=c(t®—1)+1ag=c(®—1)+1, a5 = c(tt* — 1) +1. (2.42)
From (2.20), (2.21) and (2.24) we obtain

t—1
= 6az — 21a2 + 6ax(2t +1) - 3t> —2t — 1 =0.

1 1
{ro - l00 -0 (243

It follows from (2.42)-(2.43) that
21(1 — t)2c® — 6(1 — 1) (5 — 3t)c + (3t + 2t + 16) = 0. (2.44)
The discriminant of the equation (2.44) in c is
3(1 —t)[2t(3t — 52) —37] <0, O0<t<1 (2.45)

From (2.45) we conclude that the equation (2.44) has no real roots for ¢, and hence,
the function (2.17) is not extremal for bs.
(v) Fifth, we examine the function (2.18). From it we find the coefficients

ay = ¢ty — t) + by, as = c(t2 —t3) +13, (2.46)
as =c(t® —3) +13, a5 =c(ti —13) + 13

On the other hand, from (2.20), (2.21) and (2.25) we obtain

}(-tll_—t; {P(tl) + P(t2) - . [@(t1) — Q(tz)]} =3ay — t1 —t2 =0,
(2.47)
i+t
a =2
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Further, from (2.21) and (2.25) we get

T ﬂ[l)(m) = P(t2)] = 6aa — 21a5 + 9ay(t + t2) — 213 + t45 + £2) = 0.
(2.48)

It follows from (2.47) and (2.48) that

260 + 11ty + 23
asz = T ’

(2.49)

Finally, from (2.20), the first equation in (2.25), (2.47) and (2.49) we obtain

2(ty + ) (TH2 — 4t(to + 742
0y = 2R 181 itz £ 76) (2.50)

Now, identifying the both expressions of ay in (2.46) and (2.47), we find

ty — 2ty
c= — 22 2.51
3(t — t2) (2:51)

Having in mind (2.51), the identification of the corresponding expressions of as and
Gz in (2.46), (2.49) and (2.50) leads to the system of equations

B —dtyty + 85 =0, 13t7 — 46t 12 + 132 = 0. (2.52)
Setting 15 = kt; in (2.52), we obtain the equations
B —dk+1=0, 13k —46k+13=0. (2.53)

But equations (2.53) have no common root, whence it follows that the function
(2.18) is not extremal for bs.
(vi) Sixth, we examine the function (2.19). From (2.19) we find the coefficients

2 3 R
az =yt +c3, az =cyt” 4¢3, ag =t oy, as = eott + c3. (2.54)

Omn the other hand, from (2.21) and (2.26) we have Q(0) = 0.

Ut
Ut
o

%Q(t) = Gay — 42aza; + 5643 + (Gay — 21a3)t + 6aqt? — #° = 0, (2.

i,

— [Q(t) = Q(1)] = 6ay — 42a3a3 + 56a3 + (6as — 21a2)(t + 1) (2.56)

et |

A Ba (P +t+ 1)~ (L4 1)+ 1) =0,
Q(1) = (6as ~ 42aza3 + 56a3) + (6as — 21a3) + 6ay — 1 = 0. (2.57)

Subtracting (2.57) from (2.56), we obtain

(6as — 21a3)f + 6as(t* + 1) = £* — > — ¢ = 0. (2.58)
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If we add (2.58) to (2.56) and subtracting this sum from (2.20), then we find
2t +1

= — .59
as 6 (2.59)
It follows from (2.58)-(2.59) that
1662 + 4t + 7
a3 =~y (2.60)
From (2.57) and (2.60) we find
413 + 48t + 42t + 91
g, = At H A8 +Ast 4 I (2.61)

1296

Now the identification of the corresponding expressions of a; and ag in (2.54) and
(2.59)—(2.60) leads to the values

1682 — 20t — 5 8t? + 8t —7
- LY =TT 2.62
2= Tmia-n 0 ®T Ti2i-1) (262)
From (2.54) and (2.62) we find
16t% — 412 —t+ 7
= 2.63
o 7 (2.63)
and
1664 — 483 — 92 —t + 7
= : 2.64
as 79 ( )
The identification of (2.61) and (2.63) yields the equation
64t> — 120t — 60t + 35 = 0. (2.65)

The equation (2.65) has three real roots lying in the intervals (—o0,0), (0,1) and
(1,+00), respectively, where the root in the interval (0,1) is

t' =0.3668..., 0.3668 < t' < 0.3669. (2.66)
The value (2.14) for (2.59)—(2.60) and (2.63)—(2.64) is

b = 128¢* — 320¢° — 240> + 280t — 91
5T 5184 ‘

From (2.66)-(2.67) we obtain
bs(t') = —0.0065704 . .. (2.68)

Now comparison of (2.30)-(2.32), (2.34), (2.40)-(2.41) and (2.68) leads to
(2.11)-(2.13), which completes the proof of Theorem 2.1.

For the next coefficients bg, by, ... we can proceed in the same way. In accor-
dance with our conjecture, for the functions (1.4) we can expect that the functions
(2.1)-(2.4) different from the functions (1.4) are not extremal for b,, n > 6.

= bs(t). (2.67)
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3. AN EXPLICIT FORM OF THE COEFFICIENTS
OF THE INVERSE FUNCTIONS OF THE FUNCTIONS (1.4)

The function (1.4) can be rewritten in the form

chc(z):zz—(i—:—?)-zz+(1—c)ZznéT, |z} <1, 0<e<1 (3.1)

The branch of the two-valued inverse function of (3.1) determined by the values
2z =0 for w = 0 is the function

z:wc(w):1+w—\/1—226(2c—1)w+w2 (3.2)

2w
I+w+/1-2(2c-)w+ w?

with +/1 = 1, analytic and univalent in the w-plane cut along the two two-times-
describable rays

. . 1-
wchc(1+zy)=2c—l+z<cy+—y—c>, -0 <y < +o0,

connecting the branch points

1—
w2 = @e(z1,2) = 2¢— 13 2i\/c(1 - ¢), z2=1 :ti—c(z——f—),

through the point at infinity, which correspond to the equations

a‘Pc(zl,2)
Oz

According to our earlier results for the univalence of the class T of functions
(1.1), their derivatives ¢’(z) vanish on the straight line Rez = 1 only for the
functions (1.4) with 0 < ¢ < 1 (see [2, pp. 417-418, Theorem 1; Eq. (4) contains a
misprint where an inequality sign is reversed], [3, p. 120, Theorem 1], [4] and (5]).
Hence the image of the half-plane Rez < 1 by each function (1.1) of the class T
except the functions (1.4) for 0 < ¢ < 1 has exterior points.

=0.

Theorem 3.1. The inverse function (3.2) has the Taylor ezpansion
o0
z=9c(w) =Y ba(w”, bi(e) =1, |w|<1, (3.3)

where

77,11/ n—1+v
Y =1,2,... .
Z 1/+1 (u)(n—l—u)c’ nELS (3.4)
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Proof. By the first representation in (3.2) we obtain

[‘ a4
2= ale(w) = l(1 +w) [ 1—4/1— ~vﬂ%~ . (3.5)
e 2¢’ (1+w)? '

it follows for sufficiently small values of |w| that

M‘-_Alcw 1 /2w —2 o
_ e :22 :_ v v 1 v 3
! \/; (14 w)? 1/<V—1>c wh(1+w) (3.6)

v=1
oo . oC
1/2v—2 v+n—1

=92 - v —~1n—y o

IETGIRYED NS TR (N

- (-1 (20 =2\ (v+n—1
=92 n AN A sl

;w ?—; v v—1 n-—v ¢

Now (3.5)—(3.6) lead to (3.3)—(3.4), which completes the proof of Theorem 3.1.
In particular, for ¢ = 1 and ¢ = 1/2, the coefficients of (3.2) are b,(1) = 0,

n > 2, and
1\ (1) (20 -2 1
ban <§> = aa (n B 1>, bany <§> =0, n>1,

respectively, which compared with (3.4) yield the corresponding identities.
Formula (2.10) forn > 3, k=1,p=2,¢; = ¢, t; =0, t» = 1 is reduced to the
formula

bn(e) = Q(0) ~ Q(1),

where b, (¢), @(0) = 0 and Q(1) are determined by (3.4) and (2.6), respectively (for
n = 5 this formula is noted in (2.33)).

Let
My, = n;[in b, M, = max b, n=2,3,..., (3.7)
where b,, n > 2, are those in (1.3).
If the conjecture for the function (1.4) is true, then
My = 01?(121 balc), M, = (}12;&;{1 bnle), n=23,..., (5.8)
where b,(c), n > 2, are those in (3.4).
For n =2, 3, 4, 5 it follows from (3.4) that
bo(c) = —~1+¢, by(e) =1 —3c+ 262, (3.9)

bi(e) = ~1 4 6¢ — 10¢* + 5¢°,
bs(c) = 1 — 10¢ + 30¢* — 35¢° + 14¢*.
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By formulas (3.7)-(3.8) applied to the polynomials (3.9) we obtain the explicit
values of my, and M, for n = 2, 3, 4, 5 as follows:

my = —1(c=20), My (c=1); {3.10)
1 3"
ma = _g <(3 = ‘I) . My=1 (C = 0)7 (311)
my = —1 (c = 0), (3.12)
5 10—-+v1
ay = B0 s (c _ 0= VI0 g ysssasie. )
135 \ 15
ms = —0.1317545. .. (¢=0.294997..), M;=1 (¢=0); (3.13)

where m, and M, for n = 2, 3, 4, 5 are realized only by the functions (1.4)
(or (3.1)-(3.2)) for the values of ¢ indicated in the parentheses and (2.12)-(2.13),
respectively.

The equations (3.10)-(3.12) for n = 2, 3, 4 and the equations (3.13) forn =5
are proved in [1} and Theorem 2.1 above, respectively.

Forn =6, 7, ... the values of mg, ms, ..., Mg, My, ... can be obtained by
the conjectural formulas (3.8) applied to the polynomials (3.4) forn =6,7,...
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THE MAXWELL ELECTROMAGNETIC FIELD
AND THE ELASTIC CONTINUUM
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We attribute the action at a distance in electromagnetic phenomena to the effect of the
internal stresses in an absolute continuous medium called metacontinuum. We show
that Maxwell equations are straightforward corollaries from the governing equations of
an incompressible elastic medium with the shear waves corresponding to the electro-
magnetic waves. The main advantage of the new description is that it enables one to
incorporate the nonlinearity, whose manifestations turn out to be the presence of the
so-called Lorentz force, and a Galilean invariance of the model. Another generaliza-
tion of the model consists in acknowledging a high-grade elasticity which introduces
dispersion into the governing system. A self-similar solution is found for the plane
dispersive shear waves and shown to result in red-shift even when the source of light
is not moving. In order to detect the existence of an absolute continuum, a revision
of the classical Michelson-Morley experiment is proposed in which the effect is of first
order and is not canceled by the FitzGerald-Lorentz contraction.

Keywords: Maxwell equations, scalar and vector potentials, incompressible elastic
continuum, dispersive effects in electromagnetic field, Doppler effect
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INTRODUCTION

Electromagnetic phenomenon is an epitome of an action at a distance. The
latter is hard to imagine without some kind of a material carrier and the nineteen
centuries tradition has been always connected with some mechanical construct. In
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Cauchy’s and Hamilton’s vision it was a lattice whose continuum approximation
yieided the clastic-body model. In Maxwell’s imagination the medium had inter-
nal degrees of freedom and the action at a distance was mediated by infinitesimal
“gears” transmitting the momentum from point to potut. McCullagh and Sommer-
feld quantified this idea as elastic body with special rotational elasticity (see [1-1]
for an exhaustive review of these theories). After Lord Kelvin came up with the
model of fluid aether and its vortex theory of matter, the coinage “acther” assumed
almost exclusively fluid meaning. Paying tribute to the tradition, all of the models
for the presumably absolute continuous media underlying the physical world were
called “aether”, although some of them (the different elastic models, for instance)
were quite different from an “aetherial fluid” (where the coinage comes fromj.

In the 19th century, the question of entrainment of the aether (aether-drift)
was perceived as pivotal and the nil result of Michelson and Morley experiment
[10, 11} was understood as a blow to the whole cdifice of aether theories. However,
the notion of a material carrier of the long-distance interactions could not be dis-
missed altogether and the conceptual vacuum was filled by the concept of “physical
vacuum” or the “field” which possessed all the properties of the disgraced aether,
e.g., action at a distance, but it was deliberately exempted from the obligation (o
be checked for aether-drift effect. It was then advertised as a thing in itself not
connected to any “primitive mechanistism”.

In our point of view, the field (physical vacuum, aether) can only be understood
from the point of view of an absolute material continuum in which the internal
stresses are the transmitter of the long-range interactions. In order to distinguish
it from the mechanical continuous media (bodies, liquids, gases, etc.), we call the
continuum-mechanics model of the unified field metacontinuum in the sense that it
is beyond (meta) the observable phenomena and is their progenitor.

A valid candidate for the luminiferous field is the elastic medium, because, as
shown from Cauchy himself (see [14]), it gives a good quantitative prediction for the
shear-wave phenomena (light). Building upon our previous work i1, 2], we show
here that the Maxwell equations follow from the linearized governing equations
of the metacontinuum provided that the electric and magnetic fields are properiy
understood as manifestation of the meta internal stresses. The main difference
from the Cauchy’s volatile elastic acther (zero dilational elastic modulus) is that
we consider the opposite limiting case: an elastic continuum with inhinitely laree
dilational modulus (virtually incompressible elastic mediumni).

The model proposed here should not be confused with McCullagh’s model or
pseudo-elastic continuum with restoring couples, which tried to explain the unusuai
form of Maxwell equations apparently not fitting into the picture of continuum
mechanics {see {14, 7] for reference and further developments).

Our model naturally incorporates the Galilean invariance, while the Maxweli
equations are not Galilean invariant and there is no feasible way to make them
such.
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In the end, we address the problems connected with experimental identification
of the presence of an absolute continuum and propose a certain revisiting of the
Michelson and Morley experiment.

1. CAUCHY VERSUS MAXWELL

We begin with the linearized equations of the elastic continuum. For small ve-
locities the Lagrangian and Eulerian descriptions coincide and for the displacements
u of a Hookean elastic medium one gets the linear vector wave equation

v 0u
pogr Eho g =11 u+(A+nV(V-u) (L1)

= -V xVxu+A+29)V(V-u),

where u,v are the displacement and velocity vectors, respectively; 1, A are the
Lamé elasticity coeflicients and pg is the density of metacontinuum in material
(Lagrangian) coordinates. In this paper we concern ourselves with a continuous
medium of constant elastic coefficients 1, A and constant density ug.

Equations (1.1) govern both the shear and the compression/dilation motions.
The former are controlled by the shear Lamé coefficient ), while the latter — by the
dilational (second) Lamé coefficient A, and more specifically, by the sum (A + 27).
The phase speeds of propagation of the respective small disturbances are

1 1
2 2
Cc = <——-n ) , Cs = (277 /\) ,
Ho Ho (1.2)

§=—1_
cz 7 M+

Here c,c; are the speeds of shear and compression waves, respectively. In what
follows, we call them speed of light and speed of sound, respectively. To reduce
the number of governing parameters, one needs to make an assumption about the
second Lamé coefficient or, which is the same, about the speed of sound, c;. There
are two options: to consider a so-called “volatile” continuum with ¢, = 0 or an
incompressible continuum with ¢; — co. The latter is a continuum whose speed of
sound is much greater than the speed of light, i.e., § < 1.

Here we examine the limiting case of a virtually incompressible continuum
when A > n (§ < 1). In this case (1.1) can be recast as follows:

_20%u
dle W+Vx\7xu =V(V - u), (1.3)

and the displacement u can be developed into asymptotic power series with respect
to 4:
w=1uy+0u +--- (1.4)
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Introducing (1.4) into (1.3) and combining the terms with like powers, for the first
two terms we obtain

V(Vug) = 0, (1.5)
-2 32“0
— +VxVxu = V(Vul) (16)
ot?
From (1.5) one can deduce
V -ug = const, or V-vy=0, (1.7)

which is also a linear approximation to the incompressibility condition for a con-
tinuum. In the general model of nonlinear elasticity with finite deformations, the
incompressibility condition is imposed on the Jacobian of transformation from ma-
terial to geometrical variables, but in the first-order approximation in ¢ the equation
{(1.7) holds true.

Henceforth we omit the index ‘0’ for the variable w without fear of confusion.
We denote formally

e r2Vou, AL v, (1.8)

and recast the linearized Cauchy balance (1.6) in dimensional form as follows:
0A
Mo = —Ve+V-T, (1.9)

where 7 is the deviator stress tensor for which the following relation is obtained
from the constitutive relation (the Hooke law) for elastic body, namely:

T =71Vu+ Vul) - 29(V - u)I, (1.10)

where I stands for the unit tensor. For the divergence of = one has

V.r=-1nVx(Vxu) g, (1.11)

where E stands for the vector to which the action of the purely shear part of
internal stresses is actually reduced. It has the meaning of a point-wise distributed
body force and we shall call it “electric force.” In terms of E, Eq. (1.9) recasts to

0A
E = —jg—m — 1
Mo Ve, (1.12)

which involves A and ¢. In the same vein we define a “magnetic induction”, B,
and “magnetic field”, H, as follows:

B=uVxA=pH, HYVxA (1.13)

The system of equations (1.12), (1.13) is nothing else but the equations of elec-
trodynamics in terms of A and ¢, which play respectively the role of the well-known
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vector and scalar potentials of the electromagnetic field. In the framework of the
present approach, however, these potentials are not certain non-physical quantities
introduced merely for convenience. Rather they appear to be the most natural
variables: velocity and pressure of elastic luminiferous continuum. Note that the
density, po, of the elastic metacontinuum appears as the magnetic permittivity of
the Maxwell field.

Now one can derive the original Maxwell equations. Taking the operation curl
of (1.12) and acknowledging (1.13), one cbtains

oB
VxE_~E, (1.14)
which is nothing else but the first of Maxwell equations (the Faraday law). Respec-
tively, from egs.(1.11), (1.13) and (1.8) one obtains
%%?ZVX(VX%%)EVXH. (1.13)

The last equation is precisely the “second Maxwell equation” provided that
the shear elastic modulus of metacontinuum is interpreted as the inverse of electric
permittivity n = e;'. This equation has been postulated by Maxwell [9] as an
improvement over the Ampere law incorporating the so-called displacement cur-
rent OF /0t in the Biot-Savart form. For the case of a void space, however, when
no charges or currents are present, the second Maxwell equation lives a life of its
own and the Ampere law plays merely heuristic role in its derivation. It is broadly
accepted now that the second Maxwell equation is verified by a number of exper-
iments. Here we have shown that it is also a corollary of the elastic constitutive
relation for the metacontinuum and is responsible for the propagation of the shear
stresses (action at a distance) in metacontinuum.

Thus the two main (time dependent) equations of the Maxwell form have al-
ready been derived. The condition div H = 0 (third Maxwell equation) follows
directly from the very definition of magnetic field. Similarly, taking the diver-
gence of both sides of (1.11), one immediately obtains the fourth Maxwell equa-
tion divE = 0. Thus we have shown that the Maxwell equations follow from
the linearized governing equations of the Hookean elastic medium whose dilational
modulus is much larger than the shear one.

Thus the first objective of the present work has been achieved. We have shown
that the linearized equations of elastic continuum admit what can be called Mazwell
form. In the framework of such a paradigm, each point of the elastic continuum
experiences a body force E to which the action of the internal elastic stresses is
reduced. We call it “electric force.”
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2. NONLINEARITY, GALILEAN INVARIANCE AND LORENTZ FORCE

Let us note that the governing equations of the metacontinuum are Galilean
invariant, while the linearized version (1.1) (and hence, the Maxwell form) has lost
this important property. The lack of Galilean invariance of Maxwell equations is
their strangest property.

A far reaching consequence of the previous section is that it gives a clue of
how to seek for a Galilean invariance of the equations of the luminiferous field (the
metacontinuum). In the classical continua the Galilean invariance is connected to
the convective (advective) nonlinearity of the governing equations. The question
of what kind of effects are to be expected due to the presence of the advective
nonlinear terms stands. In other words, which interactions in the metacontinuum
are perceived as additional forces if the observer is limited by the concept of linear
Maxwell field.

Looking for confirmation of the possible nonlinearity of the model, one stumbles
into a very strange (from Maxwell’s point of view) entity called “Lorentz force”.
Consider the governing equations of an elastic continuum in the so-called Lamb
form (see, e.g., [12]):

Mo <@ + lV[v]2 —v X rotv) + Vo =-FE, (2.1)
ot 2
where we have already substituted the notations for the above defined scalar po-
tential and electric field.

This form allows one to assess the forces acting at a given material point of the
metacontinuum due to the convective accelerations of the latter. The gradient part
of the convective acceleration can not be observed independently from the pressure
gradient ¢ in the metacontinuum. In fact, one can measure only the quantity
Y1 =p+ %02. Thus the only observable effect of the nonlinearity is connected with
the last term of the acceleration. By virtue of our definition of magnetic induction
{(1.13), the term under consideration adopts the form

Fy = pgv x B. (2.2)

Equation (2.2) expresses the force acting in each material point of the meta-
continuum. This force is a part of the inertial force in the metacontinuum. In order
to find its relation to the Lorentz force, one has to insert a test charge propagating
through the continuum, to integrate (2.2) over the support of the charge and to get
something proportional to the Lorentz force experienced by a moving charge. The
exact coefficient of proportionality can be checked only after the notion of charge
is incorporated into the model (see, [2]). Yet the expression (2.2) has an important
bearing, because it involves the same quantities as the Lorentz force. It points
out the direction in which the governing equations (1.1) of the electromagnetic
dynamics can be generalized so that to become Galilean invariant.
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3. DISPERSION AND “RED SHIFT”

The paradigm based on incompressible metacontinuum has already been in-
strument in restoring the Galilean invariance in the electromagnetic phenomena.
However, the significance of the new concept is important in much wider field. It
opens a more natural way of treating the mechanical properties of the unified field.

Let us consider now the (1+1)D-motions (plane waves). This is a good ap-
proximation for the spherical waves far from the emitting source. The governing
equations for nonlinear elastic waves reduce to

2 2 4
oW _ <1+@) Qﬁ‘—’~na—w, (3.1)
ot? Oz ) Oz? ozt
where w = uy(z,t) is one of the transversal components of the vector of elastic
displacements u and c is the phase speed of the shear waves (speed of light). Re-
spectively, & is the dispersion coeflicient. It is completely natural to have some
higher grade elasticity in the metacontinuum, which results in the fourth-order
terms.
Consider now the evolution of the wave profile w(z, t) in the frame moving with
velocity ¢ in the positive z-direction and introduce new independent coordinates
and sought function:

t = it’ Ty =1 —ct, w(t,x) = wl(tlyzl)-

The different derivatives are expressed as follows:

ow Ow; Ow 10w Ow

5_8.11’ 79—t—:§6t1 cazl’
62w 1 621.U1 62w1 26211}1
a7 =7 ag —C +c 5
Bt 4 02 04,0z, 9z

(3.2)

If we consider only motions for which the evolution in the moving frame is
very slow, then we can disregard the local time derivatives with respect to the local
spatial derivatives in the sense that

8mw1 \ 8211)1
’

62101 l
oz ot}

'<< 541071

—_— Lc
’ atlax;n 1 1

Upon introducing (3.2) into eq. (3.1) and neglecting the terms according to the
above scheme, we arrive at the following approximate equation:

BSCCATTR I oy 7% R (3.3)
dr,10t, - 0z1 | 2 \ Oy 6.’[3‘11 ’ ’
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Since the exact spatial position of the source is immaterial, one can chose it in
a manner so that after one integration with respect to x; the integration constant
to be set equal to zero. Thus eq.(3.3) recasts

(9'&)1 C (6’[1}1)2 K 83101 (34)

N ) Ory c o3
The dimension for « is LT 2, where L is a length scale, T is a time scale. In-

. . -1 1 .
verting these relations, we get T = c?s~2 and L = kzc~*. Then one can introduce
dimensionless variables according to the scheme

and to render (3.4) to the following dimensionless equation:

(3.5)

o _ _1(%0)" o'
8t~ 2\ 8% 833"

In what follows, we omit the “hats” without fear of confusion. The above equation
admits a self-similar solution of the following type:

- T
w=t"Fn), 9= (3.6)

To demonstrate this, we find the expression for the different terms:

ow o , ow —bea
E:t YYF(n) — anF ()], &‘:t PTOF (n),
6311) —b~-3a 1t

W:t b SF/(ﬂ),

and introduce them in (3.5) to obtain

£ IR ) - anF ()] = — 5t (F ) + £ )

A self-similar solution is possible only if
~1—b=-2—2a, —~1-—b=—b-3a,

ie. ]
a=b=-. (3.7

This kind of solution has been found in [3] for the Boussinesq equation. The
numerical simulation [3] has confirmed the self-similar behavior of the solution: the
support increases with t1/3, while the amplitude of the pulse decreases proportion-

ally to 3,
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What are the implications of the existence of a self-similar solution? The
second of equations (3.6) yields that the characteristic spatial scale of the solution
increases with ¢3. This means that for harmonic waves the wave length will increase
accordingly. Since we consider a moving frame, then the dimensionless time t is
measured by the distance r = ct travelled by the solution from the source. Then in
our model the Hubble coefficient of proportionality between the relative red shift
and the distance from the source will not be constant, but will decrease as r—2/3.
1t is well-known that as the observations push to the far limits of the Universe, the
Hubble constant decreases. And the controversy is still raging about the value of
the Hubble “constant”.

The data for the Hubble constant from a single investigation is not enough to
identify the coefficient x. It will take a more sophisticated approach compiling all
the available data for all different distances. This warrants a special investigation,
which goes beyond the framework of the present paper. What we can claim here
is that far from the source one can not distinguish between the red-shifting due
to the presence of dispersion and the one that results from a Doppler effect (if
present). This means that when a dispersion is present, then the “red shift” can
be alternatively explained without the help of “Big-Bang” hypothesis.

4. ABSOLUTE MEDIUM AND THE FIRST-ORDER DOPPLER EFFECT

The foremost implication of the above described relationship between the
Maxwell equations and the equations of elastic continuum is that there is a place
for absolute continuum. It is clear that one cannot propose anything so radical
without proposing an experimental scheme to detect the absolute continuum or at
least to comment on the known ones. We do not mean some more radical revision
like [13], where new hypothesis about the isotropy of the speed of light has been
tested. Rather we propose revisiting the classical Michelson experiment.

To use interferometry for the verification of Doppler effect has been proposed
by Maxwell [8]. Tt was widely believed that discovering a Doppler effect would prove
the existence of an absolute medium at rest. Way before the actual experiment was
performed by Michelson, Maxwell pointed out that any interferometry experiment,
involving splitting and reflecting the same ray, inevitably renders the sought effect
of second order with respect to the small parameter d = vec™! (v, stands for
the velocity of Earth with respect to the quiescent medium). In the worst case
d =~ 1074, which corresponds to the orbital velocity of Earth. If the whole solar
system is moving faster through the void, then d could be larger and the effect
would be more appreciable.

It was Michelson [10] who implemented such a precise experiment. And after a
nil effect was observed, a prolonged discussion began about the accuracy of Michel-
son’s experimental obscrvations. The set-up was later on refined by Michelson and
Morley [11] (MM, for brevity) and the absence of the expected type of interference
was confirmed more decisively.
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In our opinion, the nil effect of MM experiment cannot disprove the existence
of absolute medium, because the only conclusion that can be drown strictly from
the nil effect is not that the absolute medium does not exist, but rather that in the
medium where the light is being propagated there occurs an apparent contraction
of the spatial scales in the direction of motion of the source (FitzGerald-Lorenz
contraction) proportional to the factor

which exactly compensates for the expected second-order effect.

All this means that the real proof of the existence or non-existence of the meta-
continuum can be furnished only through measuring the first-order effect. We de-
liberately exclude from consideration any kind of non-optical experiment and leave
beyond our scope the optical experiments in dense matter (water filled columns,
etc). A situation in which the first-order effect is not canceled can be created if {wo
different sources of light are employed with sufficiently well synchronized frequen-
cies. Lasers with the required level of stabilization of the frequency are available
nowadays, but it goes beyond the frame of the present work to deal with the specific
problems of the hardware. It suffices only to mention that if the two sources are
synchronized up to 107, the accuracy would be of order of 1% compared to the
magnitude of the sought effect which is at least of order of 10~*.

interference zone

g U |

laser I [F— mirror I (semi-transparent)
mirror 11 ] laser II

Fig. 1. Principal scheme of the interferometry experiment

In Fig. 1 the scheme of a possible first-order experiment is presented. Consider
two “identical” (synchronized within 10~%) sources of monochromatic light, which
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move together in the same direction with the same velocity. The first of them emits
a plane wave propagating in the direction of motion and the second one — in the
opposite direction.

By means of one mirror and one semi-transparent mirror, the two plane waves
are made co-linear. The role of the mirrors is to change the direction of propagation
of each wave without destroying its plane nature. The beam of the second laser is
reflected by the mirror Il changing its direction on 90° and making it to pass through
a semi-transparent mirror whose reflecting surface serves to change the direction
of the beam of the first laser on 90°. Beyond the semi-transparent mirror the
two beams are parallel and can produce an easily detectable interference pattern.
A snapshot of the region of interference would reveal strips of different intensity,
gradually transforming into each other, so that the modulation frequency can be
estimated.

It is interesting to note that Jaseda et al. [5, 6] already have used two lasers in
an interferometry experiment in order to verify quantitatively the FG-L contraction,
but in their experiments the lasers beams are parallel, while in the proposed here
experiment they are anti-parallel since now it is not the contraction that needs
verification, but the very existence of the first-order of Doppler effect.

Following [4], we outline here the derivation of the Doppler effect. The plane
harmonic waves propagating in a presumably quiescent medium are given by the
following formula:

F:i:(zat) = ei(krz:ert)y k:i: =, Kt=—, (41)

where wy are the frequencies. The upper sign in the notations refers to the wave
propagating in the positive direction, while the lower sign — to the wave propagat-
ing in the negative direction. These waves have to satisfy the boundary condition
on the moving boundaries (the sources):

Fy(£uet,t) = et (4.2)

where v, is the velocity of the moving frame relatively to the metacontinuum. If
the sources were at rest, then they would have produced waves with wave number
ko = wo/c and wave length ko = k;'. The boundary condition (4.2) yields the
following relation for the parameters of the propagating wave:

-1 —
wizwo(lrpv—e) , ki:u—)—o(lq:v—e) 1, K,:Q:=K,0<1:FE). (4.3)
c c ¢ c
After the reflection, the two waves are propagating as plane waves in the pos-
itive direction of z-axis (vertical in Fig. 1: Fy(z,t) = eX*£2=w+t))  Then in the
interference region one has a wave which is the superposition of two of them for a
given moment of time (say, ¢ = 0):

Re |Fy(z,t) + F_(z,t)| = 2cos (E—;—k:z) cos (E%I—C—:z) (4.4)
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which is a modulated wave with a wave number of the carrier (ki + k_) =
ko + O(d?) and 1(ky — k_) = dko + O(d®) for the modulation. Respectively,
the expressions for wave lengths valid to the second order are kg and k,, = kgd™*.
For d = 10~ and red-light lasers, the length of the wave is ko =~ 6.3 - 1075 cm,
and then for the length of modulation wave one has &,, = 0.63 cm and the strips
produced must be easily detectable on an optical table of standard dimensions.

5. CONCLUDING REMARKS

In the present paper we have shown how the Maxwell equations can be derived
from the linearized equations of an incompressible elastic continuum. Thus for the
electromagnetic phenomena, we have arrived at the notion of underlying continuous
medium, which we call metacontinuum. The approach of the present work admits
feasible generalization to include inertial effects in the metacontinuum. This may
explain the so-called Lorentz force as an effect of the advective nonlinearity of the
governing equations. Moreover, incorporating the advective part of the time deriva-
tive makes the proposed model Galilean invariant, i.e. a Galilean Electrodynamics
is developed.

The new concept provides a sound foundation for incorporating additional
information about the electromagnetic phenomena, opening the way for pertinent
generalizations. As a featuring example of such a generalization, the incorporation
of dispersion (high-grade elasticity) in the governing equations is considered. A
self-similar solution is found for the latter case in which the dispersion acts as to
increase the spatial scale (wave-length) of the solution with the cubic root of the
distance from the source of wave.

In the end, we describe the changes which are to be made in Michelson-Morley
experiment in order to be able to detect a first-order Doppler effect in an abso-
lute medium. We show that the first-order Doppler effect is not affected by the
FitzGerald-Lorentz contraction.
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1. PRELIMINARIES

In this paper we consider the Gray-Hervella classes of almost Hermitian (AH)
structures [11]. As it is well-known [1, 11}, a 2n-dimensional manifold M?" with a
Riemannian metric g = (-,-) and an almost complex structure J is called almost
Hermitian if the following condition holds:

(JX,JY) = (X,Y), VX,Y € R(M?™),

where R(M?") is the module of smooth vector fields on M?". All considered mani-
folds, tensor fields and similar objects are assumed to be of the class C°. We recall
that the fundamental form of an almost Hermitian manifold is determined by

F(X,Y)=(X,JY), X,Y €R(M™).

The specification of an almost Hermitian structure on a manifold is equivalent to
the setting of a G-structure, where G is the unitary group U(n) [1]. Its elements
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are the frames adapted to the structure (A-frames). They look as follows:

(paela- S Eny BTy e 75;{)a
where p € M?", g, are the eigenvectors corresponding to the eigenvalue i = /-1,
and e are the elgenvectors corresponding to the eigenvalue —i. Herea =1,... n;

a=a + n. Therefore, the matrix of the almost complex structure in an A- frame at
the point p looks as follows:

, (1.1)

where I, is the identity matrix; k,7 = 1,...,2n. By direct computing, it is easy
to obtain that in A-frame the matrices of the Riemannian metric g and of the
fundamental form F look as follows, respectively:

(1.2)

2. CARTAN-KIRICHENKO STRUCTURAL EQUATIONS
OF AN AH-STRUCTURE

The form of the Levi-Civita connection V is determined by the forms system {w;‘}
on the space of the complex frames stratification over an almost Hermitian mani-
fold. Similarly, the deplacement form w is determined by the forms system {w*}.
The Cartan structural equations of the stratification space over almost Hermitian
manifold look as follows:

1)dwk=w’9/\wj;
2.1
2) dw? = wf /\w+ R W™ AWt 21
7 [} jml ’

where {R%,_,} are the components of the Riemannian curvature tensor (or of the
Riemann-Christoffel tensor {13]). Here and further k, j,m,l =1,...,2n.
As J and g are the tensors of (1,1)- and (2,0)-type, respectively, and as Vg = 0,
then the components of these tensors must satisfy the following system of differential
equations:
1) dJJ’-c + Jlkw; - J]l-wlk = Jj’f,wl; 22)
2) dgr; + gljwfc + gklw; =0,
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where {JJ’“,} are the components of VJ. Taking into account (1.1) and (1.2), we
can rewrite (2.2); as follows:

@ ’a\ Z :1\ a ?l\
1) wd = -§J?k ;2w = —§Jb,kw’°; 3) k=0 4L =0 (23)

Similarly, from (2.2), we obtain:
Dwd+wd =0 2)wp+wlk=0; 3)wf+wh=0. (2.4)

Here and further a,b,¢,d = 1,...,n; @ = a + n. Substituting (2.3) and (2.4) in
Cartan structural equations (2.1), we get

o~

dwazw{,’/\wb-i-wf/\wb:w,’f/\w ——J“w At + J[Aaw Awb;
(2.5)

-~ o~ ~ -~ -~ o~ o~

a_ , .a b a b __  a b _7’_ a ,.C b___7’_ 2 ¢ b
dw® = wj Aw FWIAW = wi AW +2Jb,€w ANw 2J[b1c]w Aw’.

We denote wy, = gkjwj. In particular, w, = w® = w®. Taking into account this fact
as well as (2.4), we can rewrite (2.5) as follows:

dw® = wi A Wb+ B Awp + By A we; (
2.6)
dwe = — wd Awy + Bapwe A w® + Bopew® A WS,

where

ab ___ia, c_~2. abc__a —-_Z;.E
B =~3J%; Bu=:Ji B ol Bae= -5l (27)

The functions {B%.}, {Ba°}, {B*}, {Bus.} serve as components of complex
tensors of an almost Hermitian manifold (M?", J, g) [2], because, considering the
differential continuations of (2.7), it is not difficult to see that

dBabc+Bab Bdb Badcw — Babc kwk,

dBas’ — Ba,,dw; + Bay*w? + Bogwi = Bap© yw*;

dBabc Bdbc a Badc b Babd [ Babc kwk,
k

dBabe + Bapewl + Badew) + Bapaw? = Bape g

Definition 2.1 ([4]). The tensors with the components {B®®.} and {B,;°} are
called virtual Kirichenko tensors of first and second order, respectively.

Definition 2.2 ([4]). The tensors with the components {B*°} and {B,.} are
called structural Kirichenko tensors of first and second order, respectively.

Definition 2.3. The equations (2.6) are called Cartan-Kirichenko structural equa-
tions of an almost Hermitian structure on the manifold M?2™.
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We remark that according to (2.4)

a | -
J/b\,k + JE,Ic = 0.

So, we have
B*.+ B, =0.

Similarly,
Boy© + Bye© = 0.
Thus, we have proved

Proposition 2.1. The virtual Kirichenko tensors of an almost Hermitian manifold
are skew-symmetric relative to the first pair of indices.

From (2.7) we obtain the following result:

Proposition 2.2. The structural Kirichenko tensors of an almost Hermitian man-
ifold are skew-symmetric relative to the second pair of indices.

Owing to the reality of VJ, from the given definitions we have
Proposition 2.3. B, = B,;°, B®° = B,..

3. THE MAIN RESULT

Let O = R® be the Cayley algebra. As it is well-known [10], two non-isomorphic
three-fold vector cross products are defined on it by means of the relations

P(X,Y,2)=-X(YZ)+ (X, Y)VZ+ (Y, 2)X — (Z,X)Y,

Py(X,Y,2) = ~(XY)Z +(X,Y)Z + (Y, Z)X — (Z,X)Y,

where X,Y,Z € O, (-,-) is the scalar product in O, and X — X is the conjugation
operator. Moreover, any other three-fold vector cross product in the octave algebra
is isomorphic to one of the two above-mentioned.

If M8 C O is a six-dimensional oriented submanifold, then the induced almost
Hermitian structure {Ju, g = (-,-)} is determined by the relation

JQ(X)—_‘PO:(X)elyeZ); a:1721

where {e;, ez} is an arbitrary orthonormal basis of the normal space of M*® at a
point p, X € T,(M®) [10]. The point p € M® is called general [12] if

eo & Tp(M°®) ¢ L(eo)™,

where ep is the unit of Cayley algebra and L(ep)* is its orthogonal supplement.
A submanifold M® C O, consisting only of general points, is called a general-type
submanifold [12, 13].

Naturally, we can consider the following question:
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Which of the sizteen Gray-Hervella classes of almost Hermitian structures can be
represented on siz-dimensional submanifolds of Cayley algebra?

A partial answer is known just for a six-dimensional special M% C O, or the so-
called Calabi submanifolds [13]. We recall that an almost Hermitian submanifold
M® C O is called special [13] if

eo & Tp(M®) C L(eg)*.

Such six-dimensional almost Hermitian submanifolds of the octave algebra were
studied by A. Gray [8 — 10], E. Calabi [6], K. Yano and T. Sumitomo [17].

We answer this question in the case of general-type M% C O, i.e. we shall prove
the following

Main Theorem. Just the eight Gray-Hervella classes of almost Hermitian struc-
tures can be represented on siz-dimensional general-type submanifolds of Cayley
algebra, namely:

K, AK, NK, SH, QK, W, & W3, Wy & W3, SK.
Proof. Let us use the characterization of Gray-Hervella classes of AH-structures in

terms of Kirichenko tensors [2], as listed in Table 1.

Table 1

Characterization of Gray-Hervella classes of AH-structures
in terms of Kirichenko tensors (2]

Class Condition
K Babe _ 0, B, =0
NK =W, Babe — _Bbac7 Babc =0
AK =W, B@¥) =, B, =9
SH =W, B¢ =0, B%,=0
W Babe — 0, B, = a[“di’]
QK =W, oW, B°t, =0
H=W;®W, Bt =0
VG =W, W, Bobe — _Bbac’ Babc — a[a(;gl
Wi ®Ws Bobc _Bbac’ Babb =0
Wa @ W, B@¥) =g B, =0
W @ W, B@b) =g B, = qglgl]
SK =W, W, oW, B, =0
Gl=W,oW:a W, Beote — _pgac
G2=WrdWs 8 W, Babe) =
Wi o W2 oW, B*. = al*5}
w no condition
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Now, we write out the Cartan-Kirichenko structural equations for six-dimensional
general-type almost Hermitian submanifolds of Cayley algebra [13]:

1 1
dw® = wp A wb + Esah[thc]wb A we + —=®R Dy w® A wp:

V2

1 1
dw, = — wz Awy + '—6ah[thc]wb Awe + —Sathhcwc AWl

V2 V2

abe — g98¢ £qpe = €123 are the components of Kronecker tensor of third order

(3.1)

Here e

[16]:
Dej = FT5; +iTJ, D?quchj—ing; 652)

3.2

c __ N h _ D he — N
Dy*=D,>, D*.=D;, , D" =Dp,

where {T,fj}, @ = 7,8, are components of the configuration tensor (using Gray’s
terminology [8] or of the Euler curvature tensor [7]). Now, we assume that the
indices a, b, ¢, d, h range from 1 to 3; the indices k, j range from 1 to 6, and we set
a=a+3.

Comparing (2.6) and (3.1), we get the following relations for virtual Kirichenko
tensors of an almost Hermitian M® C O [5]:

1 1
Babc = —Eathhc, Babc = ———é‘athhc.

V2 V2
From (3.2) it follows that the tensor Dy is symmetric relative to the indices h
and b; €%%" is skew-symmetric relative to these indices. Hence, €%*"Dy;, = 0, and
therefore 1
Babb = ——-Eathhb =0.
V2
So, for an arbitrary almost Hermitian structure induced by means of a three fold
vector cross product on six-dimensional submanifolds of Cayley algebra, the follow-

ing identity is fulfilled:
Babb =0.

Consequently, as it is clear from the given table, all these almost Hermitian struc-
tures must be semi-Kéhlerian (SK). The class of SK-structures containes only
eight classes of AH-structures, namely:

K, NK, AK, SH, QK, W, e W3, Wo e W3, SK. [

We remark that this result is similar to A. Gray’s conclusion that a six-dimensional
special submanifold M® C O is semi-Kéhlerian [9, 11]. So, all six-dimesional almost
Hermitian submanifolds of Cayley algebra are semi-K#hlerian, i.e. they belong to
one of the eight above-mentioned Gray-Hervella classes of AH-manifolds.
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1. INTRODUCTION

The interpolation methods are a basic tool for approximation of functions.
While, in the univariate case, most of the interpolation problems admit a nice
treatment, often yielding a closed form expression for the interpolating function,
the study of the corresponding multivariate problems encounters serious difficulties.
For example, the interpolation by multivariate algebraic polynomials is not always
regular. One of the central directions of investigation in this field is the construction
of appropriate configurations of nodes for which the problem is regular. Similar
difficulties occur in interpolation by other multivariate classes and, in particular, by
splines. In this paper, we consider a standard problem of interpolation of bivariate
functions on a rectangular grid by a special class of splines, which we call (m,n)-
splines. Let us give the precise definition.

Suppose G := [a,b] x [c,d] is a given rectangular domain on the plane. Let us
b— d—
introduce a grid on G defined by the lines z; = a + i—M—E,yj =c+jJ <

1=
1,...,M, j =1,...,N. In this way we get a partition of G into a sum of small

1t
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rectangles O;; = [z;_1, ;) X [y;-1,y;). We say that a function s(z,y) is an (m, n)-
spline on G if
oMt
dx™Iyn
where ¢;; are constants.
In what follows, for the sake of definiteness, we assume that G is the unit
square, i.e., G = [0, 1]*. Let us denote by 0f; the closure of O;;.
We consider the following interpolation problem:
For a given sufficiently smooth function f and a set of M N distinct points
{ti;} in G, find an (m,n)-spline s(z,y) such that

(z,y) = cij for (z,y) € Oy,

S(tij)—":f(tij), i=1,....,.M, j=1,...,N, (1.1)
and satisfying the boundary conditions

_of

%(Ovy)—a_yl(oay)) iZOa"'vm_‘la ye[oal]a

Oyt

8s o f

90 =0 = i

We show that the interpolation problem (1.1) has a unique solution for any
choice of the nodes t;; = (&, m:;) such that

{zi-—1<£ij.<_zi7 l=1>’M}
y]—1<7hgfy], jzla'“’N

(x,0), j=0,...,n—1, =ze€l0,1].

The solution is given explicitly for some small (m,n). We study also the question
of approximation of the functions f by the corresponding interpolating spline s and
give an error estimate for (m,n) = (1,1), (1,2) and (2,2).

2. PRELIMINARIES

The notion of a blending function is frequently used in this paper. Let us recall
the definition (cf. [1]).
Functions from the space

o ak+lf
[0”1]2:{]“2 6.’1:/“—61/1 GC[O,llzv k=1,...,m, l=17""n}’

satisfying the conditions
okt f
dzkoyt 0,
are said to be blending functions of order (m,n).
We shall denote the space of all blending functions of order (m,n) by B[’g ’1']'2.
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The next representation (given in [2]) of any sufficiently smooth function f(z,y)
in terms of blending functions of order (m, n) will be used in the sequel. It is based
on the Taylor-type operators T,;™ and T, defined as the Taylor expansion of f(z,y)
at (0,y), (z,0), respectively, of order m, respectively n. In other words,

M = £(0 10 0 1 om1 0 el
zf-—f(,y)+ﬁ5;f( ,y)$+"'+(7'n_—1)!5ﬁf(yy)$ :
Lemma 2.1. For any function f € C’['Z;”{]',, the following representation holds:
fla,y) = T f(,y) + T f(zy) - T3 Ty f(2,y)
1 ! ' m-1 n—1 am+nf
+ = Din=1) /0 /0 (x-)7 (y—7)} 6tmaT"f(t,T) dtdr.

Proof. According to the Taylor’s formula with integral representation of the
reminder, we have

z-t) 7t om

t

Applying again Taylor’s formula to f(™9) (¢, y), this time with respect to y at y = 0,
we get

AP Ly - gt g
s 100 =Ty g + | BB S ) o,

m

0 .
Inserting the last expression of o f(t,y) in the first equality and taking into
account that, by the commutativity of the differentiation operator and TY,

S CE A L o .
[ e = 1w - 7o),

we obtain the wanted equality.

Let us mention that By(z,y) := T;"f(z,y) + T} f(z,y) — T,° T} f(z,y) is a
blending function of order (m,n). Moreover, the restriction of By and its partial
derivatives BU"" on the lines z = 0 and y = 0 coincide with the corresponding
values of f and its derivatives there fori =0,...,m—1,5=0,...,n— 1.

Therefore, in view of Lemma 2.1, any (m,n)-spline f can be represented as a
sum of an appropriate blending function By of order (m,n) and a convolution of
the kernel
(@-7 'y -}

(m-1! (n-1)

with a piecewise constant function c(¢, 1),

K(I7 y’ t’ T) =

c(t,7) :==¢i; for (t,7) € Oyj.
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Next we introduce a class of (m,n)-splines with a final support, the so-called B-
splines, which will be used as a basis in the space of (m,n)-splines. In order to do
this, we consider an infinite rectangular net in the plane:

{z; =i/M, y; = j/N, —o00 < i,j < o0, i,j — integers}.
As in the introduction, we denote
0 ={(z,9) s zim1 <z <2i9;-1 Ly <yj}

With any pair (i, ) of indices we associate the B-splines Bl(]m ™) of two variables of
order (m,n) defined by

B (@) = (- = 2)} [z, s Birmar ) = 92 oo Y] = B (@) B ().

For simplicity of the notations we shall often omit the upper indices m and n, when
it is possible. Let us denote by D;; the support of B;;(z,y). It is the Cartesian

product of the supports of the univariate B-splines B,(m) (z) and B](-") (y), namely,
Dij = (24, Titm+1) X (Y5> Yj+n+1)- Notice that in our notations the lower and left
most rectangle, included in Dyj, is Biq j11.

Lemma 2.2. For any finite set [ := (I1,1;) C Z x Z of indices, the B-splines
Bl(;"’")(a:, v), (3,7) € I, are linearly independent in RZ.

Proof. Assume the contrary. Then there exists a linear combination

gz,y) = Y a;Bi(a,y)

(ig)el

with at least one non-zero coefficient «;;, which vanishes identically on the plane
R2. We introduce the lexicografic order in I. Let (io,jo) be the first member of I.
If t;,;, belongs to the interior of O;;, C Dj,j,, we have By, j, (tiyj,) # 0 and hence
Qioj, = 0. Let (%, ) be the next member of I. Quite analogously, we get a;; = 0.
Hence a;; =0 for all (¢,5) € I. O

Lemma 2.3. The functions {B;; f_iglj]igl are linearly independent in [0, 1)2.

The proof is similar to that of Lemma 2.2 and we omit it here.
Let us consider the subspace of (m,n)-splines

S?n,nz{sesmn: 5’!}:(0,1/):0, i=0,...,m—1,

51
—aﬁ(z,O):o, j:O,...,n—l}.

Corollary 2.1. The B-splines {Bij}fio‘ljzgl form a basis of S, ,
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Proof. We have proved that {B;; f‘io‘lj}ia ! are linearly independent. It is
obvious that By; € S9, . (since Bij(z,y) = Bl(m) (x)Bﬁn)(y))' Besides, dimS), , =
M N=number of Bj;(z,y).

3. THE INTERPOLATION THEOREM

The regularity of the interpolation problem by univariate splines is completely
characterized by the interlacing condition of Schoenberg and Whitney (3], [4]. There
is not yet such a characterization result in the multivariate case. In the next theorem
we prove the regularity of the bivariate interpolation by (m, n)-splines for a quite
general class of node configurations.

Theorem 3.1. If

{ Ti <Eij$miy 1:1’1M }
y]—1<ntj.<_y11]=11:N ’

then the interpolation problem (1.1) has a unique solution.

Proof. There exists a unique blending function b(z,y) € B[0 12 such that

0% aft

—(0,y) = = i =0,...,m—1, € {0,1],
ay,( ?y) 6yi (an)a i=0, ,m ) [ ]
J

Q(z,O) af(a: 0, j=0,...,n—-1, =zel0,1].

oxd

Let us consider the values fi; = f(ti;) — b(t:;). We claim that there exists a unique
spline §9,, € SS., ns Which satisfies the interpolation conditions

Smn(tis) = fij.
Indeed, let us consider the corresponding homogeneous problem 3, . (t;;) =0, i =

1,....,.M, j=1,...,N.
Lemma 2.3 gives a representation of s3, , in the form

M-1N-1

= Z Z aijBij.

=0 j=0

Then 0 = s?n,n(tll ZV-O ZJ -0 a,,BU (tll) = agoBoo(tu) Since t;; € Oy C
DOO, we have Boo(tu) —7'5 0 and 0(00 = 0.

Further, 0 = 53, . (t12) = Y1057 Z o @ij Bij(t12) = agoBoo(tiz)+a01 Boi (tr2)
= 0 + a1 Boi(t12), hence ag; = 0. We contmue the process and finally get a diago-
nal matrix with B;_; j_;(t;;) sitting in the diagonal. These numbers are different
from zero since ¢;; € U;; C D;_; j_;. Hence the homogeneous problem has only the
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trivial zero solution. This means that the non-homogenous problem has a unique
solution. We assert that s(z,y) = s% ,(z,y) + b(z,y) is a solution of the original
interpolation problem. Indeed,

(m,n}
S(’”’")(z,y) (S?m,n)> (z,y) + b("‘v")(z,y)

Il

(m,n)
= (S?m,m) (z,y) +0=ci;
when (z,y) € O, i =1,...,M, j=1,...,N. Hence s(z,y) € Sm,n. Besides,
s(tij) = 8% o (tij) + blti;) = f(ts3) = b(ti;) + blt;) = f(tij)

fori = 1,...,M, j = 1,...,N. Obviously, s(x,y) satisfies also the matching
conditions along the segments [0,y], 0 < y < 1, and [z,0], 0 < 2 < 1, since
s‘()m,n) (x,y) was chosen to satisfy the zero conditions.

Let us suppose that there are two solutions of the interpolation problem:
si(z,y) and sa(z,y). I s(z,y) = si(z,y) — s1(z,y), then s satisfies the zero
boundary conditions (on the segments). Hence s € 59, » and from the condi-
tion s(t;;) =0, i=1,...,M,j=1,...,N, we get that s = 0. The uniqueness is
proved.

4. PARTICULAR CASES

4.1. AN ESTIMATE OF THE ERROR IN THE CASE
(m,n) = (1,1) AND t;; = (i/M, j/N)

We analyse further the interpolating spline in case of low orders m, n.
Consider the rectangular net of points

IE,‘Ii/M, Y5 :j/N, izl,...,M, j=1,...,N.
Let us denote

Azy = f(m,y)+f(070) —f(I,O) _f(o)y)a

Aij = flxi,y) + Flmic,yi-1) — F(@95-1) — f(@im1,95)
Al = f(:ri—17y) + f(O> yj—l) - f(xi—layj—l) - f(o, y)v
AZ = f(wayj—l)"l‘f(xi—lao) ——f(.’l?,O) _f(zi—l»yj-—l)v
Ay = f(z,y) + flwicy,y5-1) — f(&,y5-1) = f(Ti-1,9).

We shall approximate the function f(z,y) by interpolating (1,1)-splines, that
is, by functions of the form

s(fra,y) = £(@,0) + £(0,9) — £(0,0)+ /0 ’ /0 e, v) dudv,
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where
c(u,v) = {cij for (u,v) € Oy, i=1,..., M, j=1,...,N}

and the constants {cij}i]‘il JZI are chosen to satisfy the interpolating conditions

S(f,.’l:i,yj):f(l‘i,yj), ’izl,...,M, j:l,.‘.,N.

We shall derive an expression for the error of approximation in terms of modulus
of continuity w(f,&1,d;). Recall that

w(f,81,8) = sup sup |f(z+ hy,y+ ko) — f(z,y)l.
[h1| <81 |h2| <82

In order to estimate the error, we need the values of {ci;}, which we calculate
below using the above-mentioned interpolatory conditions. By the first interpola-
tory condition we have

T Y1
S(f,zl,yx)=f(w1,0)+f(0,y1)—f(0,0)+/0 /0 endudy = f(z1,y),

A
which is easily reduced to A;; = heyy, where h = . Hence ¢;; = % From

MN
the interpolatory conditions at the point (z,ys) we get

Ty 5 z1 Y2
) = ,0 0, - f(0,0 dud dudv.
F@n,u) = F(@1,0) + £(0,u2) - f( )+/0 /0 e du v+/0 / 12 du do

To find ¢;5, we use the above formula and the value of ¢11, just found. We obtain
A
clp = =22, Similarly, we get that ¢;; = ZY for j=1,...,N. We continue with

the calculations of ¢g; up to cyn and so on, till eprn. In this way , we get that
Ay .

—h’i, i=1,....,M,j=1,...,N.

Now we are prepared to estimate the error. Let us suppose that the point

(z,y) is in O;;. Consider the identity

Cij =

i

F(@,3) + £(0,0) = £(z,0) - £(0,9) - /O ) / " ofu,v) dudo

z ry
Agy — / / c(u,v) du dv.
o Jo

Let us denote, respectively:

- by hy - the area of the rectangle with vertices (z1,y), (0,y;-1), (z1,¥;-1)
and (0,y);

- by ha — the area of the rectangle with vertices (z,3;), (%i-1,0), (z,0) and
($i-1,y1);

- by hg — the area of the rectangle with vertices (z,y), (z:-1, ¥;-1), (z, Yi—1)
and (z;_1,y).

f(x,y) - S(f,.’l/',y)
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Then

T y i-1j-1
/ / c(u,v)dudv = hZZcH+h12cM+h226u+hgc,‘j
o Jo k=1 1=1
i—17—-1 . 2]—1 h3
= zAkz-FWZAkj*r—h—zAiH-ZAij-
k=1 I=1 k=1 =1
Hence
— h2 hs
f(l‘,y)—S(f,z,y) A1+A2+A3—'_ZAM ZA‘L[ Al]

= D i)+ 0,9) — S0 — SO + (1 -

_hs
h

[ ius-1) + 1,0 = Fla0) = Fozol+ (1= 52) Ao+ 25 = J2ay,

Using the properties of the modulus of continuity, we obtain the estimate

hy

lf(xay) - S(f,l',y)l S 2 [%wl,l (f’la %) (1 - T) w11 (fal,;{

+%2—w1,1 (f,—]}-j,l) + (1 - %) W11 (f,%,l) +2w1,1 (f,%,]—]\}-)] .

In this simple case we can give explicitely the Lagrangian basis for the inter-
polation problem
0%s
oz’ oyt
i=1,....M, j=1,...,N, s(0,y) =0, s(z,0) = 0}.

S?,1 ={ s: (z,9) = ¢ij, (z,y) € Oy,

More precisely , we construct functions 8p,(z,y) € S?; such that

Opq (%’%> =0pkbq , k=1,....M, I=1,...,N.

(Obviously, {6,,,,} - _1 are linearly independent and since their number is M. N,
they indeed form a basis of S7;.) We seek &,4(z,y) in the form

11
Opg(z,y) = /(; /(; (- )% (y — v)§e(t,v) dtdv,

where c(t,v) = ¢;; for (t,v) € 0y, i=1,...,M,j=1,...,N.
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We derive that

‘qu(-”?ay) =J MN I“p}\}—l

. 0, elsewhere.

The calculation of d,, is straightforward and we omit it here. Instead, we show
how to compute the basic functions in the more complicated case (m,n) = (1, 2).

Having computed 4,4, one can give explicitely the solution of the interpolation
problem as

M N
s(f,:z:,y) = f(oi y) + f((l), O) - f(ov O) + ZZf(tPQ)(SPQ(‘T: y)
p=1g¢=1
4.2. THE CASE (m,n) = (1,2) AND t;; = (i/M, j/N)

Here we construct the Lagrangian basic functions &pe(2,y) € S7,. By defini-
tion, they satisfy the conditions

k1
(SPQ(M’N): Pké‘qukzlv"wM’l=]‘""’N' (41)

We seek dp4(z,y) in the form
1 1
iz = [ [ @- 08w -vict v dav,
o Jo
where c(t,v) = ¢;j for (t,v) € 0y, i=1,...,M,j=1,...,N.

Our next purpose is to calculate the constants ¢;;. We will determine them

using the interpolatory conditions (4.1).

1 1
Assume first that p > 1, ¢ > 1. Using the condition 0 = d,4 (M’ N)’ we get

1 pl 1 0 1 1
0 = / / (———t) (———v) c(t,v) dtdv
o Jo \M + \V +
M 0 UN /1 1
611/0 (—M— - t) dt[) (]—V_ - U) dv = Cum,

It
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11
M’N

1/M 1 1/N l
A (H - t> t N— - ’U) d’UCll
/UM (i—t>0dt/2/N <——v> dvcyg + -+
0 M 1/N N 12
[ G e ()

A M (—1)/N N v VCyl-

For l = 2 we get 0 = 1.0+ 2.c12 and hence c13 = 0. Analogously, we find that
c13=0,...,cy=0forl=1,...,N. If p> 2, in the same manner we show that
ey =0forl=1,...,N. Moreover , for all k < p, we have cx; = 0 for l=1,...,N.
Quite analogously, we get the same for alll < gand k =1,...,M.Inthecasep =1
(or ¢ = 1) these null columns (rows) are missing.

Assumethatp=1,...,M, q=1,...,N.From the equality 1 = dpq (%,%)

p/M 0 q/N 1

p q 1 1
1=c/ — — dt/ = —v) dv=cCpg—5
Pd (p—1)/M (M ) (q_l)/N(N ) PI M ON2

ie., cpg = 2MN?. Letnow k > pand [ > ¢, (k- p)* + (1 — q)* # 0. Then

k 1
0 = dp <M’N)

= ZZ / (—-—t)odt/(jj:m (%—v)ldv

Jj= ql“l’

ie., ¢;1 = 0. Moreover, the condition dp, ( ) =0 gives

0

+

+

we get

oo @ 23 +1)
= ZZ S
j=q i=p
We get
-1 &
Crl = — 22011(21"2J+1 +Zcu . (4.2)
j=q i=p
If the upper index is less than the lower one in any of the sums, we interprete this
sum as equal to zero. Forl=¢, k=p+1,..., M, we have
k-1
Ckqg = — Z Cig- (43)
i=p
Fork=p, l=q+1,...,N,
-1
oot ==Y cps(20 = 2j +1). (4.4)
J=q

142



We put in (4.3) k = p+ 1 and get ¢py14 = —Ccpg = —2MN2 For k = p+ 2 :
Cpi2,q = ~(Cpg + Cpr1,g) =0, for k=p+3: cprag = —(cpg + Cpi1,g + Cprag) =0,
andsoon, ¢, =0fork=p+2,... M.

From (4.4) for I = ¢ + 1 we have that ¢y g41 = —3cpy = —6M N2 It can be
shown by induction that ¢y = (=1)'"%4cy, = (=1)'"98M N2 for l = ¢+ 2,...,N.
Indeed, from (4.4) for I = ¢ + 2,

Cparz = ~[5Cpg + 3(=3cpg)] = —(1)7+* ey,

Let us suppose that the assertion holds for every natural number from (g + 2) till
(I-1). Then we shall prove that it is true also for | = g+ 2n. The case | = g+2n+1
holds analogously. To this purpose, we use (4.4):

Cpl = Cpgtan = —[(4n + 1)cpg + (4n — 1)cp g41 + (40 — 3)cp g2 + - + 3cpi—1]
= —Cpg[-3.44+54—-T4+ -+ (4n—3)4+ (4n — 1).3+ (4n + 1)]
= depy = — (1) ey, = —(1)'"I8M N2,

By induction (on I) we shall show that ¢py = —cpy10, cu =0fork=p+2,..., M
and [ = g,...,N. The assertion holds for | = ¢. Let it hold for every natural
number from ¢ till (I — 1). Then, by (4.2),

-1
cr = | D (Cpj + cpyr,g)(2 — 25 + 1)
J=q

I-1 k-1 k-1
+Z Z cij(2l - 25 + 1) +Zczl Z—Zcu,
Jj=q i=p+2 i=p
i.e., we get a relation similar to (4.3). Putting in it k = p+ 1, we get ¢p+11 = —cpi.

The substitution & = p + 2 gives cp12; = 0 and so on , we get cay = 0. The
assertion is proved.

So we have calculated {c;;},2 ;2 for 8pq(, y).

Now we are ready to give the explicite form of dp4(z,y). Let (z,y) € Oy.
Having in mind that c(t,v) = ¢;; for (z,y) € O;; and ¢;; = 0 for some (3, ), we get

1—1k—1 i/M j/N
o T

e i=n (i-1)/M j—1)/N
-1 z i/N

+ chj/ (x—t)odt/ (y —v)' dv
j=q (k—1)/M (i-1)/N
k—1 i/M v

+ Z Cit (x —1)° dt/ (y—v)dv
= Ju-nm (1-1)/N
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+6H/x (z—t)odt/y (y - v)! du

k—1)/M (-1)/N
S
. ij + Yy SN
j=q i=p
{~1 .
1 k-1 25 -1
+ jZ:;Iij—ﬁ<x————M )<y— 5N )
k-1 2
1 -1 k—1\1 -1
+ ;‘76112M(y——]v—) + Ciy (m——ﬂ—)i(y-———N ) .

We will consider various cases for k and [ :
1. (z,y) € Opg, ie, k=p, I =¢

= p-1\1( g-1)"_ 2 p—1 g1\’
5pq(way)—cpq(m _AT)§<y N) =MN* |z i y-"x ) -

2. (-’It,y) € Dp,q+1> i.e., k= D, l = q +1:

_ p—1\ 1 2¢-1 p—1\1 q\?
N

1 291 py 1 2q—1
Ona(:9) = Con 37y (y_ aN )“”“*" (”"M)N( _‘éz—v_>

+Cp,q+1§-1M(y_%)2+cp+l,qﬂ (z_% %(y_%)z
q
N

= 3MN? (”;;1 z) (q—;\;—1~y> (y_

5. (z,y) € Ok, for k<p—1lorl<g-1: Let, for instance, k < p — 1. Then

-1
k—1) 1 25 -1
e = S5 - 57)
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since cyj =0 for j =gq,...,lL
6. (z,y) € Opy, for I > g +2:

1 25 -1 p—1\1 [-1\2
=S (+~252) 4 6~ 3o e 22) 415

-1 . 2
~ p—1 1/ %=1\ 1/ -1
- (x' M ) [ZCWN <y 2N J"\Y "N ) |
since cpq = 2MN?, cpgq1 = —6MN?, ¢ g1y = (—1)!8M N2, the second multiplier
A is equal to

2
2MN [y -1l 3 (y - M) +4B] +4MN?(-1)"-9 (y - l—_—l) ,

2N 2N N
where
_ 2(g+2)-1 2(¢+3)-1 I—g—1 2(-1) -1
By — v+ =yt )T - T )
ie.,

A=4MN[<%1~y)+QB}.

We will calculate B first for the case of even summands, i.e., when [—1— (g+2)+1 =
l —q—2iseven. Then (I - q) is even and

(@+2)+(@+3) ~ (@+4) +-— (-2 +(-1)] ="

T aN i
If (I — ¢) is odd, then

fl=l-q-2_  20=1)-1] [ l+gq
B*[ N YT TN }‘[y_ IN
and thus

bpq = (=1)'79%! (z - %) <y - %1) (1{,— - ) AMN?,

7. (z,y) € Dpgay, for L > g+ 2:

2N

-1 -1

- 2j -
Opg(z,y) = Zcpj MlN (y - 1) ZC”‘H’ ( %) (y - ]2N1>
Jj=q




1 1-1\? Py 1 [-1\°
oo \Y T N +c”“”($~ﬁ)§y~"z—v— ‘

Since ¢py1; = —cpj for j =1,..., N, then

bt = (222 =) {ZC,,JN (1-25) +enz(u- I—N—l)}

and as in item 6.,

Sualo) = (-0 (252 -2) (5= 152) (- ).

8. (z,y) € Oy, for k > p+2 and | > g: We represent 6y in the form

-1

1 2/ -1\ <= = 2j — 1
D (eni + 1) 377 (y" )+Z 2 c”MN( Y )

i=4q Jj=q i=p+2

= 1 -1\’ k-1\1{ 1-1\°
e ten+ 2 el gy (v ) reulz- g )alv-F

i=p+2

and conclude that dp,(z,y) = 0 in this case. Therefore, we arrive at the following
expressions for d,4(z,y):

MN? <x - 1—7%) (y - Q_]:[_1>2 for (z,y) € Opgy;
3MN? (:v — %) (q—;—l ——y) (y N 3—%) for (z,y) € Op 415
3MN? (1)_1\-5__1_ - :1:) (q—;—;——l— - > (y g + 5%) for (z,y) € Opy1,g41;

e (o-252) (-1 (54

for (z,y) € Op, N21>q+2;

i (525) (-1 (53

for (',L'ay) € Dp+1,qa N Z l Z Q+2,

0, elsewhere.
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This is also true for p = M and ¢ = N, but in these cases we consider only such
indices that are less than or equal to M or N, respectively.

Consider the operator I, [f], which puts in correspondence to a function f its
interpolating (m, n)-spline at a fixed set of nodes {t,,}. In the (1,2)-case we have
constructed the Lagrangian basis and thus the interpolating spline I7 »[f] can be
represented in the form

112 (93?! Zzéqu pq

p=1g=1

Thus, for the norm |1, || of this operator in the space C(G)° of continuous func-
tions bounded by 1 in the unit square G, we get

M N
| Tmn| = Sup HZ}:équ to)ll <3S 16pq ().
p=1 ¢g=1 p=1¢=1

Bounds of the norm ||Inn|l are useful for estimating the error of approximation.
That is why we give below such estimates in the case of the most frequently used
norms. For simplicity of notation, we will omit the indices mn of I,,,, and also we
will write ) instead of Z;];V; Zfl\’:l

For every spline s we have

Wf=1Ifllx = lf=s+Is=1If|lx <|If = sllx +leewax|lf—sliL.
S N =8llea@+|lLeax)-

In the case X = L; we get the following bounds:

2
10pgllL, = 3MN(N g+1) for1<p< M, 1<g<N,

N-g+1

||5Mq||L1=W for1<p< M,
I6onllo, = —— for1<p< M
pN L1—3MN or .._p 9
renll, =

MNILy = 6N

Therefore,

5 bl = (1-517) (14 5 - 32) ~ 5

p=1q=1

when M and N tend to infinity.
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Hence
N 1 1 1
— < - —_— 0
=11 <[5 (1-57) (14 5 - 32) +1) B2

where E3° is the best Loo-approximation of f by (1, 2)-splines.
In the case X = Ly we calculate ||0pq]lz,. For 1<p< M, 1 <qg< N we get

16 3
Mol = 32 (¥ -0+ 3).

Besides, for 1 < ¢ < N,

2 8 (n_,43

for1<p< M,

2 1
lpnllz, = and  |BuwlZ, = -
45M N 1I5MN

Then
Z”(s ”2 — (N+2)(2-1/M) Ngﬁ
P Lo 45 45 .

Using the inequality z; + -+ + 2, < y/n(x? +--- + x2), we find the estimate

D Nopalle. < A/ MNY 6,13, = V(M - 1/2)(N + 2)1\7\/4735

~ \/MN,/% (as M, N — ).

Hence

1lles <Y M0pallz, < V(M =1/2)(N + 2)N\/g ~ \/MN\/%,

17 = £l < (J(M TN &+ 1) By,
Let X = L. Using that ||6p,llz., =1 we get ||If]lL., < 3.1.1 = MN. Hence

Mllrwosr, < MN

and
1f ~ Il < (MN +1) EP.

148



We are going to use the estimate for 3 ||8,4]17, to get a better estimate for}| f —
IfllL,- Let xpq(z,y) be the characteristic function of the support of 8p,(z,y). Then

Mz, = |l Z SpaXpaf (tpg)llL, < Z 18pqXpa f (tpq)ll L,

S Wbpellalixpellze < (3 15al3) " (3 )

IN

Since 0 )
2 _ % _a-
ol = o7 (1- 257

forl1<p< M, 1<qg<N and

1 qg-—1
el = 57 (1- 5

we get
(St = (o= 57) 55
Then
_ (2~1/M) (N+1)(N+2)~ 2
Wlzeoes = s < Wl < 3v/10 30

when M and N tend to infinity. Hence

If = IfL, < (‘2 Ay A 1) £,

4.3. THE CASE (m,n) = (2,2) AND ¢;; = (i/M,j/N)

We seek dpq(z,y) of the form

1 1
5y 1) = /0 /0 (2 — ) (y —v)Le(t,v) de v,

where c(t,v) = ¢;; for (t,v) € Oy, i=1,...,M,j=1,...,N. The constants c;;
are determined by the interpolatory conditions

Opg(tij) = 0pidg;, i=1,...,M,j=1,...,N.
As in the previous section 4.2, we get

pg = AMPN?, cpi1,4 = —3¢pq, Ckg = (=1)FPdc,, for k>p+2.
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Moreover,
Chyg+1 = —3ckqg and ey = (—1)"%4cy, for k> p+ 2.

Using the above expressions for c;;, one can obtain that dp.(z,y) is equal to

MmeN? (o - P2 (et 2if(a: ) € Oy
M Y N 'Y g3

1 1 -1\?
3M2N? (gi— —1‘) (23— £+ “_“") (y— g‘ﬁ—) if (.’E,y) € Opy1,qs

-1\?/g+1 ,
3MAN? (z__p___M_) (gj—v———y) (Z/“%*‘é—) if (z,y) € Opg+15
+1 P 1 qg+1 q 1
M2N? P74t _ ST 127 - R R
9 (M w)(z K )(N y)(y AT
if (z,9) € Opt1,g+1;

e (-2 -5 (5

if(xay)EDpl) q+2SlSN7

_py-eripapene (BEL AN Y el A N U
(-1) 12MN(M z)(z M+3M ¥y~ N Y

if (z,y) € Opy11, ¢ +2 <1< N;

(—1)k-P+14072 N2 (% _ x) (z _ %“1) (y B %)2

if(x,y)e Dkq:p+2SkSM;

k-1 k +1 1
_1\k—p+1 2 ar2 _fk—1 L qri R
(-1) 12M*N (z i )(M x)( N y) (y N+3N)

if (z,y) € Og g1, P+ 2 <k < M;

oo (-2 (5-2) -5 (4

if(x,y)EDk,,,p+2§k§M, qg+2<I<N.
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Some technical calculations show that

M N
MN
S0 balles = e (M7 + M 1) (V2 4 N —1) ~ 2T

p=1 g=1

when M and N tend to infinity.

Besides,

M N

21 21
ZZ“ pq”L2= <M2+2M—-—> (N2+2N———).
1 =1 225MN 8 8
Hence
21 21

ZZIléml|L2_~ <M2+2M———) (N 2N-_>~_8_MN
p=1 g=1 8 8 15

It is easy to see that

M N
ZZ”‘SPGHLQO = MN.

p=1g¢=1

The same way as in Section 4.2, one can get

If=1flle, < [QMN (M*+M—-1) (N> +N-1) + 1] EP,

where E2° is the best Lo, approximation of f with (2, 2)-splines,

Wf=Ifllc, < [85\/<M2 2M—28—1> <N2+2N—281)+1J EY
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A GENERALIZATION OF THE VOIGT-REUSS BOUNDS
FOR A BINARY MEDIUM
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In the present note a certain generalization of the well-known Voigt-Reuss bounds
on the effective conductivity x* of a binary medium is proposed. For a fixed binary
constitution the scalar function f(c) that gives the undimensional effective conductivity
as a function of the ratio a of the constituents conductivities is considered. Certain
inequalities for the derivative f/(a) of this function, which include a, f(a) and the
volume fractions of the constituents, are derived. The inequalities are sharp if these
fractions are solely known. More precisely, they turn into equalities for the familiar
laminate media loaded along and across the layers. The Voigt and Reuss bounds on
k* follow from the proposed inequalities, but the latter are stronger than the former
bounds, since estimates are put here on the rate at which the effective conductivity
changes when the constituents properties are varied at a fixed binary constitution of the
medium. It is in this sense, namely, when it is claimed that our inequalities generalize
the Voigt-Reuss bounds.

Keywords: random two-phase media, variances, effective properties, bounds on the
effective conductivity

2000 MSC: 60G60, 60H15

1. INTRODUCTION

The aim of this note is to report some inequalities, concerning the rate of
variation of the effective properties of a two-phase medium when, at a fixed random
constitution, the properties of the constituents are varied. The heat conduction
context is chosen for the sake of simplicity. The random constitution is assumed
statistically homogeneous and isotropic.
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Let x; and ko be the conductivities of the constituents, x1,k2 > 0. The
random conductivity field x(x) of the medium takes then the values x; or Kz,
depending on whether x lies in the phase ‘1’ or ‘2’, respectively. If E denotes
the prescribed macroscopic temperature gradient imposed upon the medium, the
governing equations of the problem, at the absence of body sources, read

V.g(z) =0, qfz)=rxr(z)E(x), (1.1a)
where E(zx) = V8(x). Eq. (1.1a) is supplied with the condition
(Vé(z)) = E, (1.1b)

which plays the role of a “boundary” one. In (1.1a) g(zx) is the flux vector and
(z) is the random temperature field. Hereafter (-) denotes ensemble averaging.
Having solved somehow the random problem (1.1), one can evaluate all mul-
tipoint moments of the temperature field §(x) and the joint moments of (x) and
x(z) by means of the known moments of the conductivity field, see [1, 9]. In par-
ticular, among the joint moments, the simplest one-point moment of the flux g(x)
defines the well-known effective conductivity «* of the medium through the relation

Q = (q(z)) = (x(z)E(z)) = v E (1.2)

(assuming statistical homogeneity and isotropy).

Note that the definition (1.2} of the effective conductivity «* reflects the “ho-
mogenization” of the problem under study in the sense that from a macroscopic
point of view, when only the macroscopic values of the flux and temperature gra-
dient are of interest, the medium behaves as if it were homogeneous with a certain
macroscopic conductivity «*. This interpretation explains why x* and its coun-
terparts, say, the effective elastic moduli, have been extensively studied in the
literature on homogenization, see, e.g. [8, 14] et al., as well as the recent survey
[10]. A well-known fact is to be only recalled, namely that x* can be defined also

“energetically”:
K*E? = (k(z)|VO(z)|?) . (1.3)

Besides x*, other statistical characteristics of the fields E(z) and ¢(z) deserve
attention and, above all, the (undimensional) variances of these fields, defined as

follows: oo o
2 _ (E'(2) ) o2 (lg'(2)?) ' (1.4)

ag

e B2 0 e Q2
The primes denote in what follows the fluctuating parts of the respective random
fields, so that, in particular, E'(z)f = E(x) — E, and hence (E'(z)) = 0.

It is to be noted immediately that for any two-point medium the variances o2
and org are simply interconnected:

03 __fik2 o (K* = K51)(K* — K2) . (1.5)

K*2 € K*2
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This formula, derived in [11], is a straightforward consequence of the fact that the
medium under study is binary and hence the field x(z) takes the values x; or ko
solely.

The variances (1.4) provide us with useful information about the deviation of
the random fields under studies from their mean values. Also, they are connected
to the mean energy of the appropriate fields, accumulated within the phases. That
is why they have attracted some attention in the literature on heterogeneous media.

To the best of the authors’ knowledge, an investigation of the variances, in
addition to the effective properties in the scalar conductivity context, has been
initiated by Beran et al,, [2, 4, 3]. In particular, Beran [2] has obtained bounds on
the variances through the effective properties. The Beran estimates are quite crude
and this is inevitable since they are applicable to any statistically homogeneous
and isotropic medium. More restrictive bounds are derived in {11}, but only for
dispersions of spheres, correct to the order “square of concentration.”

Note that an application of such variances, concerned with the deviation from
the Hooke law in heterogeneous materials, can be found in the recent authors’ paper
[12].

The above mentioned results of Beran indicate that there may exist more inti-
mate connection between variances and effective properties. Indeed, as shown first
by Bergman [5], see also [7, 13], the variance is simply connected to the derivatives
of the effective conductivity * = &*(k1, k1), treated as a function of the material
properties x; and ks of the constituents in a binary medium, at a fixed random con-
stitution. This is an interesting and important result, but its practical application
is limited by the fact that very rarely rigorous analytical formulae for x*(k;, %)
are known for realistic random constitution. Rigorous bounds on x*(k;,k;) are
well-known, of course, but they obviously cannot supply any estimates for the
above-mentioned derivatives.

It turns out that the variances (1.4) can be simply represented by means of
k* and its derivatives 0x*/0k; and 8k* Ok, with respect to the constituents prop-
erties, having fixed the random constitution. The appropriate formulae are direct
consequences of the Bergman formula [5], which will be rederived in Section 2. In
turn, this formula will yield certain inequalities between the effective conductivi-
ties k™ and its derivatives dx*/0k; and Ox*/8ky (Section 3). These inequalities,
when transformed into dimensionless form, have as a consequence the Voigt and
Reuss bounds (Section 4). Both these bounds are, to say the least, well-known.
The important point, however, is that the inequalities derived here bound not only
the effective properties, but also the rate of their change when the constituents
properties are varied. The proposed inequalities are closely connected as well to
the convexity of the function f(a), discussed in Section 5. The latter easily follows
from the spectral representation of f(a), due again to Bergman [5]. A certain ap-
pealing geometrical interpretation of the Voigt bound is proposed as a consequence
of the convexity of the function f(a), namely, that this function should lie below
each of its tangents and, in particular, below its tangent, drawn at the point o = 1.
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2. THE BERGMAN FORMULA

For the sake of completeness, we shall provide here a derivation of the Bergman
formula. It is a bit more rigorous than the original one due to Bergman [5], since
ensemble (instead of volume) averaging will be utilized. In the papers [7, 13], where
the same formula has been rederived later on, volume averaging is used, similarly
to the original Bergman reasoning.

The starting point is the energy definition (1.3) of the effective conductivity
x*. Let us change the conductivity field of the medium, «(z), by the infinitesimal
quantity

d(z) = x1(z)dk1 + x2(T)dk2, (2.1)

where xi1(z) and xo(x) are the characteristic functions of the regions, occupied by
the constituents ‘1’ and ‘2’ respectively. Then, at fixed E = V8(x), the field 6(x)
will change by §6(x) and the effective conductivity — by dx*. According to (1.3),
we have

(K* + 6k*) E? = {(s(z) + 0k(z)) |VO(z) + V6(z)|*)

2.2
= (k@IVO@P) + (e V@) + 2An@) V() Vi),

having neglected terms of order (§x)2. The first term in the right-hand side of (3.2)
equals k* E2, see (1.3), and the underlined term there vanishes, since

V - (k(x)60(x)Vi(x)) = (66(x)V - (k(x)VO(x)))
+ (r(x) Vl(x) - Vb(x)) = 0,

having taken (1.la) into account. The reason 1is that the field
k(x)08(x)VA(x) is statistically homogeneous and therefore its mean value is con-
stant.

Hence

§k*E? = (5n(m)lv0(m)lz)
= 6r1 (x1(2)|V8(z)|?) + Ok2 <X2($)|V9(m)|2> .
The latter implies

g:z: = "Elz' <X¢($)|V0(:c)]2), i=1,2, (2.3)

which is exactly the Bergman formula [5]. It obviously means that the mean value
of the temperature gradient square within the constituent ‘¢’ is proportional to the
derivative 9x* /0k;, 1 = 1,2.
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3. THE INEQUALITIES FOR THE DERIVATIVES 9x*/0k;

Note first that
7= (B@F) = 7 (a@IB@)
ok*

+ El_z (x2(2)| E(@)*) = Z% " ona

and hence
! 2
o2 = O _ L8 - 28 (B@) + 5] |
3.1

ok*  OKk*
|E(z 1)—1_ B -1

1
=z (
Formula (3.1) provides us with the interconnection between the variance of the
temperature gradient and the partial derivatives of the effective conductivity con-
sidered, at a fixed two-phase geometry, as a function of the constituents conductiv-
ities.
To recast (3.1) into dimensionless form, recall the obvious fact that x* =
k*{K1,k2) is a homogeneous function of first order, i.e.

£*(AK1, Akg) = Ak* (K1, K2), VA> 0.

This fact allows us to apply the Euler formula

ok* + ok* .
K2 =K,
3 61"-‘,2

ie.
oK™ _ K* Ko OK*
0Kk K1 K1 Ok
Let us now fix the conductivity k; of the first of the constituents and introduce

the dimensionless variables

(3.2)

(3.3)

Here f(a), for the fixed two-phase geometry under discussion, depends on the
dimensionless ratio o solely. Using (3.2) and (3.3) into (3.1) gives

9 Ok*  OK*
oo =
¢ 3I€1 6&2

(3.4)
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ie.
o2 = fla)—1- f'(a){a—1). (3.5)
Hence any theory that predicts f(a), i.e. the effective conductivity as a function
of a automatically predicts the variance o2, since (3.4), as a consequence of the
Bergman formula (2.3), is an ezact relation.
The situation with the variance o7 of the heat flux is fully similar. In this case
we should combine (1.5) and (3.6). The final result reads
—1f'(a) - -1
o ala=DJ'e) - S (f@) =1 69

! [ (a)

It remains now to note that both variances o2 and ¢2 are nonnegative, as it
follows from their definitions (1.3). Together with (3.5) and (3.6), this obvious fact
yields the inequalities

FUF@=Y  piaya-1)< fla) - 1. (3.7)

[0

Formula (3.7) is our generalization of the Voigt-Reuss bounds for a two-phase
heterogeneous medium. The reason to call it generalization will become clear in
the next section, where two basic consequences of (3.7) will be derived, namely,
both the Voigt and Reuss bounds on the effective conductivity.

4. SOME CONSEQUENCES OF INEQUALITY (3.7)

Recall first the well-known perturbation expansion of the effective conductivity

<%=1—a2(<~:5>2+---, (4.1)

due to Brown [6]. Here (k) = cix1 + ok, [K] = K2 — &1 and ¢; is the volume
fraction of the constituent ‘', i = 1,2, so that ¢; + ¢z = 1. In (4.1) a2 = fcica,
but this fact will not be needed here, since it affects only the (a — 1)*-term in the
Taylor expansion (4.2) below.

In the dimensionless variables (3.3), Eq. (4.1) is recast as

K*
f(a):;—=1+02(a-—1)+0(|a—1|), lo - 1} < 1. (4.2)
1
Assume now that a > 1. Rewrite the right-hand side inequality in (3.7) in the
form

df(a) da
< )
fla)-1 - a-1
and integrate the latter from 1+ ¢ to a, € > 0. This gives
fla) -1 a—1
A -1m e

a>1,
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and hence

o
-1< 1 -1 -.
flo)~1< [f+e)-1] 2
Choosing now € — 1 4 0 in the latter inequality yields
fla) <1+ c(a-1), (4.3)

having taken into account (4.2) as well. Repeating the above reasoning for a <
1 produces the same result (4.3). Hence (4.3) holds for arbitrary values of the
constituents conductivities x; and k2. Using the definition (3.3) of a and f(a)
allows us to recast (4.3) as

kT <K, K =ik + ek, (4.4)

and this is the familiar Voigt estimate upon the effective conductivity of the medium.
The treatment of the left-hand side inequality in (3.7) is fully similar. In this
case, at a > 1, we have

da < df(a)
ala—1) =~ f(@)(fla)-1)"

(4.5
] )
An elementary integration of both sides of (4.5) over the interval (1 + ¢, @) gives

)
a-1 3 fla) ~1 fl+e)-1
1 -1 <l -1 ,
T T et fla ST
which simplifies as
eafa—1) _ flo) -1
a = flo) '
having again taken (4.2) into account. Hence
a
< f(a).

Oé—Cz(a— 1)

Recalling the definition (3.3}, the latter can be recast as

-1

C

KT < Iﬁ*, K= (_L + _CZ) (46)
K1 kK2

and this is just the familiar Reuss bound on the effective conductivity.

It is important to point out that the inequalities (3.7) are sharp, i.e. they
cannot be improved provided only the volume fractions ¢;, ¢y are known.

Indeed, if the temperature gradient is along the layers of a laminate medium,
the Voigt approximation (4.4) provides the exact value of the effective conductivity

and hence
fla) =1+ c(a—1).

The latter function turns the right-hand side of (3.7) into equality.
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Similarly, if the temperature gradient is across the layers of a laminate medium,
the Reuss value (4.6) represents exactly the effective conductivity . Then

o

Ha) =

T a-cfa-1)

and this function assures equality sign in the left-hand side of (3.7).

5. DISCUSSION

Let us point out first that, since f(1) = 1,
fla) = 1= f'(€)(a-1), (5.1)

where £ € (1,0) or £ € (a,1), depending on whether & > 1 or a < 1, respectively.
(This is the well-known Lagrange theorem from the elementary calculus.) Together
with the right-hand side of (3.7), Eq. (5.1) implies that for each a there exists an
“intermediate” £ € (1,a) or £ € (a,1), depending again on whethera > lora < 1,
such that

fl@) < F1(6), E<a (5.2)

From (5.2) it follows that f(1) < 0 and hence the function f(a) is convex in a
certain vicinity of @ = 1. (This is indeed so, because the coefficient a., proportional
to f"(1), in the Taylor expansion of f(«) about @ = 1 is negative, see the beginning
of Section 4.) We do not know, however, whether (5.2) suffices to claim that the
function f(a) is convex globally, i.e. f”{a) < 0 on the whole semiaxis a € (0, ).

However, the convexity of f(a) easily follows from the well-known spectral
(pole) representation!

f@) =1-F(s), F(s)=Y —2n,

—~ 5 — S

(5.3)

= B, >0,
s -2’ >0

due again to Bergman [5] (see also [9]). Indeed, a straightforward differentiation of
(5.3) shows that f"(a) <0, Ye € (0,00) (recall that B, > 0).

The convexity of f(a) means geometrically that the function lies below each
of its tangents, i.e.

f(a) S f’(ao) (a_a0)+f(a0)7 Vaaaﬂ € (03 OO) (54)

In particular, the Voigt bound can be interpreted geometrically as the obvious fact
that the function f(a) falls below its tangent, drawn at the point a = 1, see Fig. 1.

!The authors thank D. Bergman for this observation (in a private communication).
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fle) Voigt bound

(RS SR, W

Fig. 1

Obviously, the inequality (5.4) reduces to the right-hand side of (3.7) if ap = 1.
It is clear, however, that (5.4) is of little practical use, because f(ap) and f'(ap)
are unknown, in general, unless oy = 1.

Recall also that the convexity of f(a) can be alternatively defined by the
requirement that its graph in the interval (a1, a2 ) lies higher than the chord between
the points (a1, f(c1)) and (az, f(az)), see Fig. 1. In other words, the following
inequality holds:

fla1) = f(ap) ot a f(az) — azf(a)

Qap — Qg ) — Q2

< flo), (5.5)

Va € (ay,a3), a1, as € (0,00). Hence (5.5) provides a certain lower bound on the
effective conductivity provided we have somehow measured the values of the latter
for two given values a1, ay of the ratio of the constituents conductivities. Observe,
however, that (5.5) is a lower bound only in the interval a € (a1, az). Outside this
interval (5.5) becomes an upper bound on f(c).

6. CONCLUDING REMARKS

We have derived certain inequalities, cf. (3.7), for the rate of change f'(a) of the
dimensionless effective conductivity f(a) of a binary medium when the constituents
properties are varied at fixed random constitution. The inequalities are of first
order, in the sense that they include, besides f(a) and the dimensionless ratio a
of the constituents conductivities, only the volume fractions of the constituents.
They indicate that the above-mentioned rate of change f'(a) cannot be arbitrary
for a realistic binary constitution. It is rather “guided” by the value f(a) of the
effective conductivity at any given . Presumably, higher-order counterparts of the
inequalities (3.7) exist as well. They should provide tighter estimates for f'(a)
at the expense of including the appropriate higher-order statistical information for
the medium.

161



10.

11.

12.

13.

14.

REFERENCES

Beran, M. Statistical continuum theories. John Wiley, New York, 1968.

Beran, M. Bounds on field fluctuations in a random medium. J. Appl. Phys., 39,
1968, 5712-5714.

Beran, M. Field fluctuations in a two-phase random medium. J. Math. Phys., 21,
1980, 2583-2585.

Beran, M., J. J. McCoy. Mean field variation in random media. Q. Appl. Math., 28,
1970, 245-258.

Bergman, D. J. The dielectric constant of a composite material — a problem in
classical physics. Phys. Reports, 43C, 1978, 377-407.

Brown, W. F. Solid mixture permittivities. J. Chem. Phys., 23, 1955, 1514-1517.
Bobeth, M., G. Diener. Field fluctuations in multicomponent mixtures. J. Mech.
Phys. Solids, 34, 1986, 1-17.

Christensen, R. C. Mechanics of composite materials. John Wiley, New York, 1979.
Golden, K., G. Papanicolaou. Bounds for effective properties of heterogeneous media
by analytic continuation. Comm. Math. Phys., 90, 1983, 473-491.

Markov, K. Z. Elementary micromechanics of heterogeneous solids. In: Heterogeneous
Media, Micromechanics Modeling Methods and Simulation, eds. Markov K. Z., L.
Preziosi. Birkhauser Boston, 2000, 1-162.

Markov, K. Z., K. S. Ilieva. On the field fluctuations in a random dispersion. Annuaire
Univ. Sofia, Fac. Math. et Inf., 91 (1997), 1998, 203-214.

Markov, K. Z., K. S. Ilieva. Field fluctuations and the effective behaviour of micro-
inhomogeneous solids. Annuaire Univ. Sofia, Fac. Math. et Inf., 92 (1998), 2000,
135-144.

Matheron, G. Quelques inégalités pour la perméabilité effective d’un milieu poreux
hélérogetne. Cahiers de Géostatistique, Fasc. 3, 1993, 1-20.

Nemat-Nasser, S., M. Hori. Micromechanics: Overall properties of heterogeneous
solids. Elsevier, 1993.

Recetved December 10, 2001
Revised January 7, 2002

Faculty of Mathematics and Informatics
“K. Preslavski” University of Shumen
9700 Shumen

BULGARIA

E-mail: ilieva_k@abv.bg

162



Submission of manuscripts. The Annuaire is published once a year. No deadline
exists. Once received by the editors, the manuscript will be subjected to rapid, but
thorough review process. If accepted, it is immediately sheduled for the nearest
forthcoming issue. No page charge is made. The author(s) will be provided with a
total of 30 free of charge offprints of their paper.
The submission of a paper implies that it has not been published, or is not under
consideration for publication elsewhere. In case it is accepted, it implies as well that
the author(s) transfers the copyright to the Faculty of Mathematics and Informatics
at the “St. Kliment Ohridski” University of Sofia, including the right to adapt
the article for use in conjuction with computer systems and programs and also
reproduction or publication in machine-readable form and incorporation in retrieval
systems.
Instructions to Contributors. Preferences will be given to papers, not longer
than 15 to 20 pages, written preferably in English and typeset by means of a TEX
system. A simple specimen file, exposing in detail the instruction for preparing the
manuscripts, is available upon request from the electronic address of the Editorial
Board. Two copies of the manuscript should be submitted. Upon acceptance of the
paper, the authors will be asked to send by electronic mail or on a diskette the text
of the papers and the appropriate graphic files (in any format like *.tif, *.pcx,
* . bmp, etc.).
The manuscripts should be prepared for publication in accordance with the instruc-
tions, given below.
The manuscripts must be typed on one side of the paper in double spacing with
wide margins. On the first page the author should provide: a title, name(s) of the
author(s), a short abstract, a list of keywords and the appropriate 2000 Math-
ematical Subject Classification codes (primary and secondary, if necessary). The
affiliation(s), including the electronic address, is given at the end of the manuscripts.
Figures have to be inserted in the text near their first reference. If the author
cannot supply and/or incorporate the graphic files, drawings (in black ink and on
a good quality paper) should be enclosed separately. If photographs are to be used,
only black and white ones are acceptable.
Tables should be inserted in the text as close to the point of reference as possible.
Some space should be left above and below the table.
Footnotes, which should be kept to a minimum and should be brief, must be num-
bered consecutively.
References must be cited in the text in square brackets, like [3], or [5,7], or [11, p.
123], or [16, Ch. 2.12]. They have to be numbered either in the order they appear
in the text or alphabetically. Examples (please note order, style and punctuation):

For books: Obreshkoff, N. Higher algebra. Nauka i Izkustvo, 2nd edition, Sofia,
1963 (in Bulgarian).

For journal articles: Frisch, H. L. Statistics of random media. Trans. Soc.
Rheology, 9, 1965, 293-312.

For articles in edited volumes or proceedings: Friedman, H. Axiomatic re-
cursive function theory. In: Logic Colloguim 95, eds. R. Gandy and F. Yates, North-
Holland, 1971, 188-195.



