
ГОДИШНИК

НА

СОФИЙСКИЯ УНИВЕРСИТЕТ
„СВ. КЛИМЕНТ ОХРИДСКИ“

ФАКУЛТЕТ
ПО МАТЕМАТИКА И ИНФОРМАТИКА

Том 101

2013

ANNUAL

OF

SOFIA UNIVERSITY

“ ST. KLIMENT OHRIDSKI”

FACULTY OF MATHEMATICS AND INFORMATICS

Volume 101

2013

СОФИЯ ∙ 2013 ∙ SOFIA

УНИВЕРСИТЕТСКО ИЗДАТЕЛСТВО „СВ. КЛИМЕНТ ОХРИДСКИ“

“ ST. KLIMENT OHRIDSKI” UNIVERSITY PRESS



Annual of Sofia University “ St. Kliment Ohridski”

Faculty of Mathematics and Informatics

Годишник на Софийския университет „ Св. Климент Охридски”

Факултет по математика и информатика

Managing Editors:
Geno Nikolov (Mathematics)

Krassen Stefanov (Informatics)

Editorial Board

P. Boytchev S. Dimitrov V. Dimitrov D. Ditcheva

E. Horozov S. Ilieva S. Ivanov A. Kasparian

M. Krastanov R. Levi Z. Markov T. Tinchev

Address for correspondence:

Faculty of Mathematics and Informatics

“ St. Kliment Ohridski” University of Sofia Fax xx(359 2) 8687 180

5, Blvd J. Bourchier, P.O. Box 48 Electronic mail:

BG-1164 Sofia, Bulgaria annuaire@fmi.uni-sofia.bg

Aims and Scope. The Annual is the oldest Bulgarian journal, founded in 1904,

devoted to pure and applied mathematics, mechanics and computer science. It is

reviewed by Zentralblatt für Mathematik, Mathematical Reviews and the Russian

Referativnii Jurnal. The Annual publishes significant and original research papers

of authors both from Bulgaria and abroad in some selected areas that comply

with the traditional scientific interests of the Faculty of Mathematics and Infor-

matics at the “St. Kliment Ohridski” University of Sofia, i.e., algebra, geometry

and topology, analysis, mathematical logic, theory of approximations, numerical

methods, computer sciences, classical, fluid and solid mechanics, and their funda-

mental applications.

c⃝ “ St. Kliment Ohridski” University of Sofia

Faculty of Mathematics and Informatics

2013

ISSN 0205–0808



CONTENTS

N. Nenov. On the vertex Folkman numbers 𝐹𝑣(2, . . . , 2
︸ ︷︷ ︸

𝑟

; 𝑟 − 1) and

𝐹𝑣(2, . . . , 2
︸ ︷︷ ︸

𝑟

; 𝑟 − 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

B. Kotzev, A. Kasparian. Normally generated subspaces of logarithmic

canonical sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

S. Gerdjikov. Asymptotically fastest sorting algorithm for almost sorted

arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A. V. Ditchev. Least enumerations of unary partial structures . . . . . . . . . . . 51

G. Michael. On infinite dimensional homogeneous space . . . . . . . . . . . . . . . . . . 71

A. V. Ditchev. Some properties of an algebra of all sets of naturals e-

reducible to a fixed set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B. R. Draganov. Upper estimates of the approximation rate of combinations

of iterates of the Bernstein operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

G. P. Nikolov. On Turán’s inequality for ultraspherical polynomials . . . . . . 105

D. Skordev. A simple characterization of the computability of real

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

K. S. Stefanov, N. N. Nikolova, S. Stamenov, T. Dimitrova, E. P.

Stefanova. WeSpot: inquiry–based science education approach and

technologies in action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

V. Mihova, G. Ganchev. Partial differential equations of time–like Wein-

garten surfaces in the three–dimensional Minkowski space . . . . . . . . . . . . 143

J. Ninova, V. Mihova. Composition of inverse problems with a given logical

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

I. N. Landjev, A. P. Rousseva. On the extendability of Griesmer arcs . . 183

A. Petkov. A Lichnerowicz–type result on a seven–dimensional quaternionic

contact manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

D. I. Aleksov. An approach for derivation of Markov–type inequalities in

𝐿2 norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215





ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ
”
СВ. КЛИМЕНТ ОХРИДСКИ“

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

Том 101

ANNUAL OF SOFIA UNIVERSITY
”
ST. KLIMENT OHRIDSKI“

FACULTY OF MATHEMATICS AND INFORMATICS

Volume 101

ON THE VERTEX FOLKMAN NUMBERS

𝐹𝑉 (2, . . . , 2
︸ ︷︷ ︸

𝑅

;𝑅− 1) AND 𝐹𝑉 (2, . . . , 2
︸ ︷︷ ︸

𝑅

;𝑅− 2)

NEDYALKO NENOV

For a graph 𝐺 the symbol 𝐺
𝑣
−→ (𝑎1, . . . , 𝑎𝑟) means that in every 𝑟-coloring of the

vertices of 𝐺, for some 𝑖 ∈ {1, 2, . . . , 𝑟} there exists a monochromatic 𝑎𝑖-clique of color
𝑖. The vertex Folkman numbers

𝐹𝑣(𝑎1, . . . , 𝑎𝑟 ; 𝑞) = min{∣𝑉 (𝐺)∣ : 𝐺
𝑣
−→ (𝑎1, . . . , 𝑎𝑟) and 𝐾𝑞 ⊈ 𝐺}

are considered. We prove that

𝐹𝑣(2, . . . , 2
︸ ︷︷ ︸

𝑟

; 𝑟 − 1) = 𝑟 + 7 , 𝑟 ≥ 6 and 𝐹𝑣(2, . . . , 2
︸ ︷︷ ︸

𝑟

; 𝑟 − 2) = 𝑟 + 9 , 𝑟 ≥ 8 .

Keywords: Folkman graphs, Folkman numbers

2000 Math. Subject Classification: 05C55

1. INTRODUCTION

We consider only finite, non-oriented graphs without loops and multiple edges.
We call a 𝑝-clique of the graph 𝐺 a set of 𝑝 vertices, each two of which are adjacent.
The largest positive integer 𝑝 such that the graph 𝐺 contains a 𝑝-clique is denoted
by cl(𝐺). In this paper we shall also use the following notation:

∙ 𝑉 (𝐺) is the vertex set of the graph 𝐺;

∙ 𝐸(𝐺) is the edge set of the graph 𝐺;
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∙ 𝐺 is the complement of 𝐺;

∙ 𝐺[𝑉 ], 𝑉 ⊆ 𝑉 (𝐺) is the subgraph of 𝐺 induced by 𝑉 ;

∙ 𝐺− 𝑉 , 𝑉 ⊆ 𝑉 (𝐺) is the subgraph of 𝐺 induced by 𝑉 (𝐺) ∖ 𝑉 ;

∙ 𝛼(𝐺) is the vertex independence number of 𝐺;

∙ 𝜒(𝐺) is the chromatic number of 𝐺;

∙ 𝑓(𝐺) = 𝜒(𝐺) − cl(𝐺);

∙ 𝐾𝑛 is the complete graph on 𝑛 vertices;

∙ 𝐶𝑛 is the simple cycle on 𝑛 vertices.

Let 𝐺1 and 𝐺2 be two graphs without common vertices. We denote by 𝐺1+𝐺2

the graph 𝐺 for which 𝑉 (𝐺) = 𝑉 (𝐺1) ∪ 𝑉 (𝐺2) and 𝐸(𝐺) = 𝐸(𝐺1) ∪ 𝐸(𝐺2) ∪ 𝐸
′,

where 𝐸′ = {[𝑥, 𝑦] : 𝑥 ∈ 𝑉 (𝐺1), 𝑦 ∈ 𝑉 (𝐺2)}.

The Ramsey number 𝑅(𝑝, 𝑞) is the smallest natural 𝑛 such that for every 𝑛-
vertex graph 𝐺 either cl(𝐺) ≥ 𝑝 or 𝛼(𝐺) ≥ 𝑞. An exposition of the results on the
Ramsey numbers is given in [25]. In Table 1.1 we list the known Ramsey numbers
𝑅(𝑝, 3) (see [25]).

𝑝 3 4 5 6 7 8 9 10
𝑅(𝑝, 3) 6 9 14 18 23 28 36 40–43

Table 1.1: The known Ramsey numbers

Definition. Let 𝑎1, . . . , 𝑎𝑟 be positive integers. We say that the 𝑟-coloring

𝑉 (𝐺) = 𝑉1 ∪ ⋅ ⋅ ⋅ ∪ 𝑉𝑟 , 𝑉𝑖 ∩ 𝑉𝑗 = ∅, 𝑖 ∕= 𝑗

of the vertices of the graph 𝐺 is (𝑎1, . . . , 𝑎𝑟)-free, if 𝑉𝑖 does not contain an 𝑎𝑖-
clique for each 𝑖 ∈ {1, . . . , 𝑟}. The symbol 𝐺

𝑣

−→ (𝑎1, . . . , 𝑎𝑟) means that there is no
(𝑎1, . . . , 𝑎𝑟)-free coloring of the vertices of 𝐺.

Let 𝑎1, . . . , 𝑎𝑟 and 𝑞 be natural numbers. Define

𝐻𝑣(𝑎1, . . . , 𝑎𝑟; 𝑞) = {𝐺 : 𝐺
𝑣

−→ (𝑎1, . . . , 𝑎𝑟) and cl(𝐺) < 𝑞},

𝐹𝑣(𝑎1, . . . , 𝑎𝑟; 𝑞) = min{∣𝑉 (𝐺)∣ : 𝐺 ∈ 𝐻𝑣(𝑎1, . . . , 𝑎𝑟; 𝑞)}.

The graph𝐺 ∈ 𝐻𝑣(𝑎1, . . . , 𝑎𝑟; 𝑞) is said to be an extremal graph in𝐻𝑣(𝑎1, . . . , 𝑎𝑟; 𝑞),
if ∣𝑉 (𝐺)∣ = 𝐹𝑣(𝑎1, . . . , 𝑎𝑟; 𝑞).

It is clear that 𝐺
𝑣

−→ (𝑎1, . . . , 𝑎𝑟) implies cl(𝐺) ≥ max{𝑎1, . . . , 𝑎𝑟}. Folk-
man [3] proved that there exists a graph 𝐺 such that 𝐺

𝑣

−→ (𝑎1, . . . , 𝑎𝑟) and
cl(𝐺) = max{𝑎1, . . . , 𝑎𝑟}. Therefore

𝐹𝑣(𝑎1, . . . , 𝑎𝑟; 𝑞) exists ⇐⇒ 𝑞 > max{𝑎1, . . . , 𝑎𝑟}. (1.1)
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The numbers 𝐹𝑣(𝑎1, . . . , 𝑎𝑟; 𝑞) are called vertex Folkman numbers.

If 𝑎1, . . . , 𝑎𝑟 are positive integers, 𝑟 ≥ 2 and 𝑎𝑖 = 1 then it is easily seen that

𝐺
𝑣

−→ (𝑎1, . . . , 𝑎𝑖, . . . , 𝑎𝑟) ⇐⇒ 𝐺
𝑣

−→ (𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1, 𝑎𝑟).

Thus it suffices to consider only such numbers 𝐹𝑣(𝑎1, . . . , 𝑎𝑟; 𝑞) for which 𝑎𝑖 ≥ 2,
𝑖 = 1, . . . , 𝑟. In this paper we consider the vertex Folkman numbers 𝐹𝑣(2, . . . , 2; 𝑞).
Set

(2, . . . , 2
︸ ︷︷ ︸

𝑟

) = (2𝑟) and 𝐹𝑣(2, . . . , 2
︸ ︷︷ ︸

𝑟

; 𝑞) = 𝐹𝑣(2𝑟; 𝑞).

By (1.1),
𝐹𝑣(2𝑟; 𝑞) exists ⇐⇒ 𝑞 ≥ 3. (1.2)

It is clear that
𝐺

𝑣

−→ (2𝑟) ⇐⇒ 𝜒(𝐺) ≥ 𝑟 + 1. (1.3)

Since 𝐾𝑟+1

𝑣

−→ (2𝑟) and 𝐾𝑟 ∕

𝑣

−→ (2𝑟), we have

𝐹𝑣(2𝑟; 𝑞) = 𝑟 + 1 if 𝑞 ≥ 𝑟 + 2.

In [2] Dirac proved the following result.

Theorem 1.1. ([2]) Let 𝐺 be a graph such that 𝜒(𝐺) ≥ 𝑟 + 1 and cl(𝐺) ≤ 𝑟.
Then

(a) ∣𝑉 (𝐺)∣ ≥ 𝑟 + 3;

(b) If ∣𝑉 (𝐺)∣ = 𝑟 + 3, then 𝐺 = 𝐾𝑟−3 + 𝐶5.

According to (1.3), Theorem 1.1 admits the following equivalent form:

Theorem 1.2. Let 𝑟 ≥ 2 be a positive integer. Then

(a) 𝐹𝑣(2𝑟; 𝑟 + 1) = 𝑟 + 3;

(b) 𝐾𝑟−2 + 𝐶5 is the only extremal graph in 𝐻𝑣(2𝑟; 𝑟 + 1).

In [14] L̷uczak, Ruciński and Urbański defined for arbitrary positive integers
𝑎1, . . . , 𝑎𝑟 the numbers

𝑚 =

𝑟
∑

𝑖=1

(𝑎𝑖 − 1) + 1 and 𝑝 = max{𝑎1, . . . , 𝑎𝑟}. (1.4)

They proved the following extension of Theorem 1.2.

Theorem 1.3. ([14]) Let 𝑎1, . . . , 𝑎𝑟 be positive integers and 𝑚 and 𝑝 be defined
by (1.4). Let 𝑚 ≥ 𝑝+ 1. Then
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(a) 𝐹𝑣(𝑎1, . . . , 𝑎𝑟;𝑚) = 𝑚+ 𝑝;

(b) 𝐾𝑚−𝑝−1 + 𝐶2𝑝+1 is the only extremal graph in 𝐻𝑣(𝑎1, . . . , 𝑎𝑟;𝑚).

For another extension of Theorem 1.1 see [21].

From (1.1) it follows that the numbers 𝐹𝑣(𝑎1, . . . , 𝑎𝑟;𝑚− 1) exist if and only
if 𝑚 ≥ 𝑝 + 2. The exact values of all numbers 𝐹𝑣(𝑎1, . . . , 𝑎𝑟;𝑚 − 1) for which
𝑝 = max{𝑎1, . . . , 𝑎𝑟} ≤ 4 are known. A detailed exposition of these results was given
in [13] and [23]. We do not know any exact values of 𝐹𝑣(𝑎1, . . . , 𝑎𝑟;𝑚−1) in the case
when max{𝑎1, . . . , 𝑎𝑟} ≥ 5. Here we shall note only the values 𝐹𝑣(𝑎1, . . . , 𝑎𝑟;𝑚−1)
when 𝑎1 = 𝑎2 = ⋅ ⋅ ⋅ = 𝑎𝑟 = 2, i.e. of the numbers 𝐹𝑣(2𝑟; 𝑟). From (1.2) these
numbers exist if and only if 𝑟 ≥ 3. If 𝑟 = 3 and 𝑟 = 4 we have that

𝐹𝑣(23; 3) = 11; (1.5)

𝐹𝑣(24; 4) = 11. (1.6)

The inequality 𝐹𝑣(23; 3) ≤ 11 was proved in [15] and the opposite inequality
𝐹𝑣(23; 3) ≥ 11 was proved in [1]. The equality (1.6) was proved in [18] (see also
[19]). If 𝑟 ≥ 5 we have the following result.

Theorem 1.4. ([17], see also 24]) Let 𝑟 ≥ 5. Then:

(a) 𝐹𝑣(2𝑟; 𝑟) = 𝑟 + 5;

(b) 𝐾𝑟−5 + 𝐶5 + 𝐶5 is the only extremal graph in 𝐻𝑣(2𝑟; 𝑟).

Theorem 1.4(a) was proved also in [8] and [14].

According to (1.2), the number 𝐹𝑣(2𝑟; 𝑟− 1) exists if and only if 𝑟 ≥ 4. In [17]
we proved that

𝐹𝑣(2𝑟; 𝑟 − 1) = 𝑟 + 7 if 𝑟 ≥ 8. (1.7)

In this paper we improve (1.7) by proving the following result:

Theorem 1.5. Let 𝑟 ≥ 4 be an integer. Then:

(a) 𝐹𝑣(2𝑟; 𝑟 − 1) ≥ 𝑟 + 7;

(b) 𝐹𝑣(2𝑟; 𝑟 − 1) = 𝑟 + 7 , if 𝑟 ≥ 6;

(c) 𝐹𝑣(25; 4) ≤ 16.

In [9] Jensen and Royle showed that

𝐹𝑣(24; 3) = 22. (1.8)

8 Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 5–17.



We see from Theorem 1.5 and (1.8) that 𝐹𝑣(25; 4) is the only unknown number
of the kind 𝐹 (2𝑟; 𝑟 − 1)1.

From (1.2) it follows that the Folkman number 𝐹 (2𝑟; 𝑟 − 2) exists if and only
if 𝑟 ≥ 5. In [16] we proved that 𝐹𝑣(2𝑟; 𝑟 − 2) = 𝑟 + 9 if 𝑟 ≥ 11. In this paper we
improve this result as follows:

Theorem 1.6. Let 𝑟 ≥ 5 be an integer. Then:

(a) 𝐹𝑣(2𝑟; 𝑟 − 2) ≥ 𝑟 + 9;

(b) 𝐹𝑣(2𝑟; 𝑟 − 2) = 𝑟 + 9 , if 𝑟 ≥ 8.

The numbers 𝐹𝑣(2𝑟; 𝑟 − 2), 5 ≤ 𝑟 ≤ 7, are unknown.

2. AUXILIARY RESULTS

Let 𝐺 be an arbitrary graph. Define

𝑓(𝐺) = 𝜒(𝐺)− cl(𝐺).

Lemma 2.1. Let 𝐺 be a graph such that 𝑓(𝐺) ≤ 2. Then

∣𝑉 (𝐺)∣ ≥ 𝜒(𝐺) + 2𝑓(𝐺).

Proof. Since 𝜒(𝐺) ≥ cl(𝐺), we have 𝑓(𝐺) ≥ 0. For 𝑓(𝐺) = 0 the inequality is
trivial. Let 𝑓(𝐺) = 1 and 𝜒(𝐺) = 𝑟 + 1. Then cl(𝐺) = 𝑟. Note that 𝑟 ≥ 2 because
of 𝜒(𝐺) ∕= cl(𝐺). By (1.3) we have 𝐺 ∈ 𝐻𝑣(2𝑟; 𝑟 + 1). Thus, from Theorem 1.2(a)
it follows that ∣𝑉 (𝐺)∣ ≥ 𝑟 + 3 = 2𝑓(𝐺) + 𝜒(𝐺). Let 𝑓(𝐺) = 2 and 𝜒(𝐺) = 𝑟 + 1.
Then cl(𝐺) = 𝑟 − 1. Since 𝜒(𝐺) ∕= cl(𝐺), cl(𝐺) = 𝑟 − 1 ≥ 2, i.e. 𝑟 ≥ 3. From
Theorem 1.4(a), (1.5) and (1.6) we obtain that ∣𝑉 (𝐺)∣ ≥ 𝑟 + 5 = 𝜒(𝐺) + 2𝑓(𝐺).
This completes the proof of Lemma 2.1.

Let 𝐺 = 𝐺1 +𝐺2. Obviously,

𝜒(𝐺) = 𝜒(𝐺1) + 𝜒(𝐺2); (2.1)

cl(𝐺) = cl(𝐺1) + cl(𝐺2). (2.2)

Hence,
𝑓(𝐺) = 𝑓(𝐺1) + 𝑓(𝐺2). (2.3)

1Meanwhile, it has been proved that 𝐹𝑣(25; 4) = 16, see J. Lathrop, S. Radziszowski, Com-
puting the Folkman Number 𝐹𝑣(2, 2, 2, 2, 2; 4), Journal of Combinatorial Mathematics and Com-
binatorial Computing, 78 (2011), 213–222.
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A graph 𝐺 is said to be vertex-critical chromatic if 𝜒(𝐺 − 𝑣) < 𝜒(𝐺) for all
𝑣 ∈ 𝑉 (𝐺). We shall use the following result in the proof of Theorem 1.6.

Theorem 2.1. ([4], see also [5]) Let 𝐺 be a vertex-critical chromatic graph
and 𝜒(𝐺) ≥ 2. If ∣𝑉 (𝐺)∣ < 2𝜒(𝐺) − 1, then 𝐺 = 𝐺1 + 𝐺2, where 𝑉 (𝐺𝑖) ∕= ∅,
𝑖 = 1, 2.

Remark. In the original statement of Theorem 2.1 the graph 𝐺 is supposed to
be edge-critical chromatic (and not vertex-critical chromatic). Since each vertex-
critical chromatic graph 𝐺 contains an edge-critical chromatic subgraph 𝐻 such
that 𝜒(𝐺) = 𝜒(𝐻) and 𝑉 (𝐺) = 𝑉 (𝐻), the above statement is equivalent to the
original one. It is also more convenient for the proof of Theorem 1.6.

Let 𝐺 be a graph and 𝐴 ⊆ 𝑉 (𝐺) be an independent set of vertices of the graph
𝐺. It is easy to see that

𝐺
𝑣

−→ (2𝑟), 𝑟 ≥ 2 ⇒ 𝐺−𝐴
𝑣

−→ (2𝑟−1). (2.4)

Lemma 2.2. Let 𝐺 ∈ 𝐻𝑣(2𝑟; 𝑞), 𝑞 ≥ 3 and ∣𝑉 (𝐺)∣ = 𝐹𝑣(2𝑟; 𝑞). Then

(a) 𝐺 is a vertex-critical (𝑟 + 1)-chromatic graph;

(b) If 𝑞 < 𝑟 + 3, then cl(𝐺) = 𝑞 − 1.

Proof. By (1.3), 𝜒(𝐺) ≥ 𝑟 + 1. Assume that (a) is false. Then there would
exist 𝑣 ∈ 𝑉 (𝐺) such that 𝜒(𝐺− 𝑣) ≥ 𝑟 + 1. According to (1.3), 𝐺− 𝑣 ∈ 𝐻𝑣(2𝑟; 𝑞).
This contradicts the equality ∣𝑉 (𝐺)∣ = 𝐹𝑣(2𝑟; 𝑞).

Assume that (b) is false, i.e. cl(𝐺) ≤ 𝑞− 2. Then from 𝑞 < 𝑟+3 it follows that
cl(𝐺) < 𝑟 + 1. Since 𝜒(𝐺) ≥ 𝑟 + 1 there are 𝑎, 𝑏 ∈ 𝑉 (𝐺) such that [𝑎, 𝑏] /∈ 𝐸(𝐺).
Consider the subgraph 𝐺1 = 𝐺 − {𝑎, 𝑏}. We have 𝑟 ≥ 2, because 𝜒(𝐺) ∕= cl(𝐺).
Thus, from (2.4) and cl(𝐺) ≤ 𝑞− 2 it follows that 𝐺1 ∈ 𝐻𝑣(2𝑟−1; 𝑞− 1). Obviously,
𝐺1 ∈ 𝐻𝑣(2𝑟−1; 𝑞 − 1) leads to 𝐾1 + 𝐺1 ∈ 𝐻𝑣(2𝑟; 𝑞). This contradicts the equality
∣𝑉 (𝐺)∣ = 𝐹𝑣(2𝑟; 𝑞), because ∣𝑉 (𝐾1 +𝐺1)∣ = ∣𝑉 (𝐺)∣ − 1. Lemma 2.2 is proved.

Lemma 2.3. Let 𝐺 ∈ 𝐻𝑣(2𝑟; 𝑞), 𝑟 ≥ 2. Then

∣𝑉 (𝐺)∣ ≥ 𝐹𝑣(2𝑟−1; 𝑞) + 𝛼(𝐺).

Proof. Let 𝐴 ⊆ 𝑉 (𝐺) be an independent set such that ∣𝐴∣ = 𝛼(𝐺). Consider
the subgraph 𝐺1 = 𝐺−𝐴. According to (2.4), 𝐺1 ∈ 𝐻𝑣(2𝑟−1; 𝑞). Hence ∣𝑉 (𝐺1)∣ ≥
𝐹𝑣(2𝑟−1; 𝑞). Since ∣𝑉 (𝐺)∣ = ∣𝑉 (𝐺1)∣+ 𝛼(𝐺), Lemma 2.3 is proved.

We shall use also the following three results:

𝐹𝑣(2, 2, 𝑝; 𝑝+ 1) ≥ 2𝑝+ 4, see [20] ; (2.5)

𝐹𝑣(2, 2, 4; 5) = 13, see [22]. (2.6)
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Theorem 2.2. ([12]) Let 𝐺 be a graph, cl(𝐺) ≤ 𝑝 and ∣𝑉 (𝐺)∣ ≥ 𝑝+ 2, 𝑝 ≥ 2.
Let 𝐺 also possess the following two properties:

(i) 𝐺 ∕
𝑣

−→ (2, 2, 𝑝);

(ii) If 𝑉 (𝐺) = 𝑉1 ∪ 𝑉2 ∪ 𝑉3 is a (2, 2, 𝑝)-free 3-coloring, then ∣𝑉1∣+ ∣𝑉2∣ ≤ 3.

Then 𝐺 = 𝐾1 +𝐺1.

3. AN UPPER BOUND FOR THE NUMBERS 𝐹𝑣(2𝑟; 𝑞)

Consider the graph 𝑃 whose complementary graph 𝑃 is depicted in Figure
1. This graph is a well-known construction of Greenwood and Gleason [6], which

Figure 1: Graph 𝑃

shows that 𝑅(5, 3) ≥ 14, since ∣𝑉 (𝑃 )∣ = 13 and

𝛼(𝑃 ) = 2; (3.1)

cl(𝑃 ) = 4 (see [6]). (3.2)

From ∣𝑉 (𝑃 )∣ = 13 and (3.1) it follows that 𝜒(𝑃 ) ≥ 7. Since {𝑣1} ∪ {𝑣2, 𝑣3} ∪ ⋅ ⋅ ⋅ ∪

{𝑣12, 𝑣13} is a 7-chromatic partition of 𝑉 (𝑃 ), we have

𝜒(𝑃 ) = 7. (3.3)

Let 𝑟 and 𝑠 be non-negative integers and 𝑟 ≥ 3𝑠+ 6. Define

𝑃 = 𝐾𝑟−3𝑠−6 + 𝑃 + 𝐶5 + ⋅ ⋅ ⋅+ 𝐶5
︸ ︷︷ ︸

𝑠

.
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From (2.1), (2.2), (3.2) and (3.3) we obtain that 𝜒(𝑃 ) = 𝑟+1 and cl(𝑃 ) = 𝑟−𝑠−2.
By (1.3), it follows that 𝑃 ∈ 𝐻𝑣(2𝑟; 𝑟 − 𝑠− 1) and thus

𝐹𝑣(2𝑟; 𝑟 − 𝑠− 1) ≤ ∣𝑉 (𝑃 )∣.

Since ∣𝑉 (𝑃 )∣ = 𝑟 + 2𝑠+ 7, we proved the following

Theorem 3.1. Let 𝑟 and 𝑠 be non-negative integers and 𝑟 ≥ 3𝑠+ 6. Then

𝐹𝑣(2𝑟; 𝑟 − 𝑠− 1) ≤ 𝑟 + 2𝑠+ 7.

Remark. Since 𝑟 ≥ 3𝑠+ 6 we have 𝑟 − 𝑠 − 1 > 2. Thus, according to (1.2),
the numbers 𝐹𝑣(2𝑟; 𝑟 − 𝑠− 1) exist.

4. PROOF OF THEOREM 1.5

Proof of Theorem 1.5(a) Let 𝐺 ∈ 𝐻𝑣(2𝑟; 𝑟 − 1). We need to show that
∣𝑉 (𝐺)∣ ≥ 𝑟 + 7. From Lemma 2.3 we have

∣𝑉 (𝐺)∣ ≥ 𝐹𝑣(2𝑟−1; 𝑟 − 1) + 𝛼(𝐺).

By (1.5), (1.6) and Theorem 1.4(a) we deduce 𝐹𝑣(2𝑟−1; 𝑟 − 1) ≥ 𝑟 + 4. Hence

∣𝑉 (𝐺)∣ ≥ 𝑟 + 4 + 𝛼(𝐺). (4.1)

We prove the inequality ∣𝑉 (𝐺)∣ ≥ 𝑟 + 7 by induction with respect to 𝑟. From
Table 1.1 we see that

𝑅(𝑟 − 1, 3) < 𝑟 + 6 if 𝑟 = 4 or 𝑟 = 5. (4.2)

Obviously, from 𝐺 ∈ 𝐻𝑣(2𝑟; 𝑟 − 1) it follows that 𝜒(𝐺) ∕= cl(𝐺). Thus, 𝛼(𝐺) ≥ 2.
From (4.1) we obtain ∣𝑉 (𝐺)∣ ≥ 𝑟 + 6. From this inequality and (4.2) we see that
∣𝑉 (𝐺)∣ > 𝑅(𝑟−1, 3) if 𝑟 = 4 or 𝑟 = 5. Since cl(𝐺) < 𝑟−1, it follows that 𝛼(𝐺) ≥ 3.
Now from (4.1) we obtain that ∣𝑉 (𝐺)∣ ≥ 𝑟 + 7 if 𝑟 = 4 or 𝑟 = 5.

Let 𝑟 ≥ 6. We shall consider separately two cases:

Case 1. 𝐺 ∕
𝑣

−→ (2, 2, 𝑟 − 2). From Theorem 2.2 we see that only following two
subcases are possible:

Subcase 1a. 𝐺 = 𝐾1 + 𝐺1. From 𝐺 ∈ 𝐻𝑣(2𝑟, 𝑟 − 1) it follows that 𝐺1 ∈

𝐻𝑣(2𝑟−1; 𝑟−2). By the induction hypothesis, ∣𝑉 (𝐺1)∣ ≥ 𝑟+6. Therefore, ∣𝑉 (𝐺)∣ ≥
𝑟 + 7.

Subcase 1b. There is a (2, 2, 𝑟 − 2)-free 3-coloring 𝑉 (𝐺) = 𝑉1 ∪ 𝑉2 ∪ 𝑉3 such
that ∣𝑉1∣ + ∣𝑉2∣ ≥ 4. Let us consider the subgraph �̃� = 𝐺[𝑉3]. By assumption
�̃� does not contain an (𝑟 − 2)-clique, i.e. cl(�̃�) < 𝑟 − 2. Since 𝑉1 and 𝑉2 are
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independent sets and 𝐺
𝑣

−→ (2𝑟), it follows from (2.4) that �̃�
𝑣

−→ (2𝑟−2). Thus,
�̃� ∈ 𝐻𝑣(2𝑟−2; 𝑟−2). By (1.6) and Theorem 1.4(a), ∣𝑉 (�̃�)∣ ≥ 𝑟+3. As ∣𝑉1∣+∣𝑉2∣ ≥ 4,
we have ∣𝑉 (𝐺)∣ ≥ 𝑟 + 7.

Case 2. 𝐺
𝑣

−→ (2, 2, 𝑟 − 2). Since cl(𝐺) < 𝑟 − 1, 𝐺 ∈ 𝐻𝑣(2, 2, 𝑟 − 2; 𝑟 − 1).
From (2.5) it follows that ∣𝑉 (𝐺)∣ ≥ 2(𝑟 − 2) + 4 = 2𝑟. Hence, if 2𝑟 ≥ 𝑟 + 7, i.e.
𝑟 ≥ 7, then ∣𝑉 (𝐺)∣ ≥ 𝑟 + 7. Let 𝑟 = 6. Then 𝐺 ∈ 𝐻𝑣(2, 2, 4; 5). By (2.6) we
conclude that ∣𝑉 (𝐺)∣ ≥ 13.

Proof of Theorem 1.5(b) Let 𝑟 ≥ 6. According to Theorem 1.5(a) we have
𝐹𝑣(2𝑟; 𝑟− 1) ≥ 𝑟+7. From Theorem 3.1 (𝑠 = 0) we obtain the opposite inequality
𝐹𝑣(2𝑟; 𝑟 − 1) ≤ 𝑟 + 7.

Proof of Theorem 1.5(c) There is a 16-vertex graph 𝐺 such that 𝛼(𝐺) = 3
and cl(𝐺) = 3, because 𝑅(4, 4) = 18 (see [6]). From ∣𝑉 (𝐺)∣ = 16 and 𝛼(𝐺) = 3
obviously it follows that 𝜒(𝐺) ≥ 6. By (1.3), 𝐺

𝑣

−→ (25). So, 𝐺 ∈ 𝐻𝑣(25; 4). Hence
𝐹𝑣(25; 4) ≤ ∣𝑉 (𝐺)∣ = 16.

Theorem 1.5 is proved.

Corollary 4.1 Let 𝐺 be a graph such that 𝑓(𝐺) ≤ 3. Then

∣𝑉 (𝐺)∣ ≥ 𝜒(𝐺) + 2𝑓(𝐺).

Proof. If 𝑓(𝐺) ≤ 2, then Corollary 4.1 follows from Lemma 2.1. Let 𝑓(𝐺) = 3
and 𝜒(𝐺) = 𝑟+1, then cl(𝐺) = 𝑟−2. Since 𝜒(𝐺) ∕= cl(𝐺), it follows that cl(𝐺) ≥ 2.
Thus, 𝑟 ≥ 4. By (1.3) we get 𝐺 ∈ 𝐻𝑣(2𝑟; 𝑟 − 1). From Theorem 1.5(a) we obtain
∣𝑉 (𝐺)∣ ≥ 𝑟 + 7 = 𝜒(𝐺) + 2𝑓(𝐺).

Remark. In 𝐻𝑣(2𝑟; 𝑟−1), 𝑟 ≥ 8, there are more than one extremal graph. For
instance, in 𝐻𝑣(28; 7) besides 𝐾2 + 𝑃 (see Theorem 3.1), the graph 𝐶5 + 𝐶5 + 𝐶5

is extremal, too.

5. PROOF OF THEOREM 1.6

Proof of Theorem 1.6(a) Let 𝐺 ∈ 𝐻𝑣(2𝑟; 𝑟 − 2). We need to show that
∣𝑉 (𝐺)∣ ≥ 𝑟 + 9. From Lemma 2.3 we have

∣𝑉 (𝐺)∣ ≥ 𝐹𝑣(2𝑟−1; 𝑟 − 2) + 𝛼(𝐺).

By Theorem 1.5(a), 𝐹𝑣(2𝑟−1; 𝑟 − 2) ≥ 𝑟 + 6. Thus,

∣𝑉 (𝐺)∣ ≥ 𝑟 + 6 + 𝛼(𝐺). (5.1)
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We prove the inequality ∣𝑉 (𝐺)∣ ≥ 𝑟 + 9 by induction with respect to 𝑟. From
Table 1.1 we see that

𝑅(𝑟 − 2, 3) < 𝑟 + 8, 5 ≤ 𝑟 ≤ 7. (5.2)

Obviously, from 𝐺 ∈ 𝐻𝑣(2𝑟; 𝑟 − 2) it follows that 𝜒(𝐺) ∕= cl(𝐺). Thus, 𝛼(𝐺) ≥ 2.
From (5.1) we obtain ∣𝑉 (𝐺)∣ ≥ 𝑟 + 8. This, together with (5.2), implies ∣𝑉 (𝐺)∣ >
𝑅(𝑟 − 2, 3) if 5 ≤ 𝑟 ≤ 7. Since cl(𝐺) < 𝑟 − 2, 𝛼(𝐺) ≥ 3. By the inequality (5.1),
∣𝑉 (𝐺)∣ ≥ 𝑟 + 9, 5 ≤ 𝑟 ≤ 7.

Let 𝑟 ≥ 8. Obviously, it suffices to consider only the situation when

∣𝑉 (𝐺)∣ = 𝐹𝑣(2𝑟; 𝑟 − 2). (5.3)

By (5.3) and Lemma 2.2 we have that

𝐺 is a vertex-critical (𝑟 + 1)-chromatic graph; (5.4)

and
cl(𝐺) = 𝑟 − 3. (5.5)

From (5.4) and (5.5) it follows that

𝑓(𝐺) = 4. (5.6)

We shall consider separately two cases.

Case 1. ∣𝑉 (𝐺)∣ < 2𝑟 + 1. By (5.4) and Theorem 2.1 we obtain that

𝐺 = 𝐺1 +𝐺2. (5.7)

From (5.7), (2.1) and (5.4) obviously it follows that

𝐺𝑖, 𝑖 = 1, 2 is a vertex-critical chromatic graph. (5.8)

Let 𝑓(𝐺1) = 0. Then, according to (5.8) 𝐺1 is a complete graph. Thus, it follows
from (5.7) that 𝐺 = 𝐾1 +𝐺′. It is clear that

𝐺 ∈ 𝐻𝑣(2𝑟; 𝑟 − 2)⇒ 𝐺′
∈ 𝐻𝑣(2𝑟−1; 𝑟 − 3).

By the induction hypothesis, ∣𝑉 (𝐺′)∣ ≥ 𝑟+8. Hence, ∣𝑉 (𝐺)∣ ≥ 𝑟+9. Let 𝑓(𝐺𝑖) ∕= 0,
𝑖 = 1, 2. We see from (5.7), (2.3) and (5.6) that 𝑓(𝐺𝑖) ≤ 3, 𝑖 = 1, 2. By Corollary 4.1
we conclude that

∣𝑉 (𝐺𝑖)∣ ≥ 𝜒(𝐺𝑖) + 2𝑓(𝐺𝑖), 𝑖 = 1, 2.

Summing these inequalities and using (2.1) and (2.3) we obtain

∣𝑉 (𝐺)∣ ≥ 𝜒(𝐺) + 2𝑓(𝐺). (5.9)

According to (5.4), 𝜒(𝐺) = 𝑟 + 1. Finally, from (5.9) and (5.6) it follows that
∣𝑉 (𝐺)∣ ≥ 𝑟 + 9.
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Case 2. ∣𝑉 (𝐺)∣ ≥ 2𝑟+1. Since 𝑟 ≥ 8, then 2𝑟+1 ≥ 𝑟+9. Hence ∣𝑉 (𝐺)∣ ≥ 𝑟+9.

Proof of Theorem 1.6(b) By Theorem 1.6(a), 𝐹𝑣(2𝑟; 𝑟−2) ≥ 𝑟+9. Therefore,
we need to prove the opposite inequality 𝐹𝑣(2𝑟; 𝑟−2) ≤ 𝑟+9 if 𝑟 ≥ 8. If 𝑟 ≥ 9, this
inequality follows from Theorem 3.1 (𝑠 = 1). Let 𝑟 = 8. By 𝑅(6, 3) = 18 [11] (see
also [7]), there is a graph 𝑄 such that ∣𝑉 (𝑄)∣ = 17, 𝛼(𝑄) = 2 and cl(𝑄) = 5. From
∣𝑉 (𝑄)∣ = 17 and 𝛼(𝑄) = 2 obviously it follows that 𝜒(𝑄) ≥ 9. Thus, by (1.3),
𝑄

𝑣

−→ (28). Hence 𝑄 ∈ 𝐻𝑣(28; 6) and 𝐹𝑣(28; 6) ≤ ∣𝑉 (𝑄)∣ = 17. Theorem 1.6 is
proved.

Corollary 5.1. Let 𝐺 be a graph such that 𝑓(𝐺) ≤ 4. Then

∣𝑉 (𝐺)∣ ≥ 𝜒(𝐺) + 2𝑓(𝐺).

Proof. If 𝑓(𝐺) ≤ 3, then Corollary 5.1 follows from Corollary 4.1. Let 𝑓(𝐺) = 4
and 𝜒(𝐺) = 𝑟+1, then cl(𝐺) = 𝑟− 3. Since 𝜒(𝐺) ∕= cl(𝐺), we have cl(𝐺) ≥ 2, and
consequently, 𝑟 ≥ 5. By (1.3), 𝐺 ∈ 𝐻𝑣(2𝑟; 𝑟 − 2). Using Theorem 1.6(a), we get
∣𝑉 (𝐺)∣ ≥ 𝑟 + 9 = 𝜒(𝐺) + 2𝑓(𝐺).

Let 𝑟 ≥ 3𝑠+ 8. Define

�̃� = 𝐾𝑟−3𝑠−8 +𝑄+ 𝐶5 + ⋅ ⋅ ⋅+ 𝐶5
︸ ︷︷ ︸

𝑠

,

where graph 𝑄 is given in the proof of Theorem 1.6(b). Since cl(𝑄) = 5 and
𝜒(𝑄) ≥ 9, we have by (2.1) and (2.2) that cl(�̃�) = 𝑟 − 𝑠 − 3 and 𝜒(�̃�) ≥ 𝑟 + 1.
According to (1.3), �̃� ∈ 𝐻𝑣(2𝑟; 𝑟 − 𝑠− 2). Thus, 𝐹𝑣(2𝑟; 𝑟 − 𝑠− 2) ≤ ∣𝑉 (�̃�)∣. Since
∣𝑉 (�̃�)∣ = 𝑟 + 2𝑠+ 9, we obtain the following

Theorem 5.1. Let 𝑟 and 𝑠 be non-negative integers and 𝑟 ≥ 3𝑠+ 8. Then

𝐹𝑣(2𝑟; 𝑟 − 𝑠− 2) ≤ 𝑟 + 2𝑠+ 9.
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NORMALLY GENERATED SUBSPACES OF LOGARITHMIC

CANONICAL SECTIONS

BORIS KOTZEV, AZNIV KASPARIAN

The logarithmic-canonical bundle Ω2

𝐴′
(𝑇 ′) of a smooth toroidal compactification 𝐴′ =

(𝔹/Γ)′ of a ball quotient 𝔹/Γ is known to be sufficiently ample over the Baily-Borel

compactification 𝐴 = ˆ𝔹/Γ. The present work develops criteria for a subspace 𝑉 ⊆

𝐻0(𝐴′,Ω2

𝐴′
(𝑇 ′)) to be normally generated over 𝐴, i.e., to determine a regular immer-

sive projective morphism of 𝐴 with normal image. These are applied to a specific
example 𝐴′

1
= (𝔹/Γ1)

′ over the Gauss numbers. The first section organizes some pre-
liminaries. The second one provides two sufficient conditions for the normal generation
of a subspace 𝑉 ⊆ 𝐻0(𝐴′,Ω2

𝐴′
(𝑇 ′)).

Keywords: Modular forms, holomorphic sections of line bundles, abelian functions,
sufficiently ample and normally generated line bundles.

2000 Math. Subject Classification: Primary 11F23, Secondary 14G35

1. PRELIMINARIES

Throughout, let 𝔹 = {𝑧 = (𝑧1, 𝑧2) ∈ ℂ2
∣ ∣𝑧1∣

2 + ∣𝑧2∣
2 < 1} = 𝑆𝑈2,1/𝑆(𝑈2×𝑈1)

be the complex two dimensional ball and Γ ⊂ 𝑆𝑈2,1 be a lattice, acting freely on 𝔹.
The compact 𝔹/Γ are of general type. The non-compact 𝔹/Γ admit smooth toroidal
compactification (𝔹/Γ)′ by a disjoint union 𝑇 ′ = ∪

ℎ

𝑖=1
𝑇 ′

𝑖
of smooth irreducible

elliptic curves 𝑇 ′

𝑖
. From now on, we concentrate on 𝐴′ = (𝔹/Γ)′ with abelian

minimal model 𝐴. In such a case, the lattice Γ, the ball quotient 𝔹/Γ and its
compactifications are said to be co-abelian.
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The contraction 𝜉 : 𝐴′
→ 𝐴 of the rational (−1)-curves on 𝐴′ restricts to

a biregular morphism 𝜉 : 𝑇 ′

𝑖
→ 𝜉(𝑇 ′

𝑖
) = 𝑇𝑖, as far as an abelian surface 𝐴 does

not support rational curves. In such a way, 𝜉 produces the multi-elliptic divisor

𝑇 = 𝜉(𝑇 ′) =
ℎ∑

𝑖=1

𝑇𝑖 ⊂ 𝐴, i.e., a divisor with smooth elliptic irreducible components

𝑇𝑖. According to Kobayashi hyperbolicity of 𝔹/Γ, any irreducible component of the
exceptional divisor of 𝜉 intersects 𝑇 ′ in at least two points. Therefore 𝜉 : 𝐴′

→ 𝐴 is
the blow-up of 𝐴 at the singular locus 𝑇 sing =

∑

1≤𝑖<𝑗≤ℎ

𝑇𝑖 ∩ 𝑇𝑗 of 𝑇 . Holzapfel has

shown in [5] that the blow-up 𝐴′ of an abelian surface 𝐴 at the singular locus 𝑇 sing =
∑

1≤𝑖<𝑗≤ℎ

𝑇𝑖∩𝑇𝑗 of a multi-elliptic divisor 𝑇 =
ℎ∑

𝑖=1

𝑇𝑖 is the toroidal compactification

𝐴′ = (𝔹/Γ)′ of a smooth ball quotient 𝔹/Γ if and only if 𝐴 = 𝐸×𝐸 is the Cartesian
square of an elliptic curve 𝐸 and

ℎ
∑

𝑖=1

card(𝑇𝑖 ∩ 𝑇
sing) = 4card(𝑇 sing). (1.1)

In order to describe the smooth irreducible elliptic curves 𝑇𝑖 on 𝐴 and their in-
tersections, let us note that the inclusions 𝑇𝑖 ⊂ 𝐴 = 𝐸 × 𝐸 are morphisms of
abelian varieties. Consequently, they lift to affine linear maps of the corresponding
universal covers and

𝑇𝑖 = {(𝑢+ 𝜋1(𝐸), 𝑣 + 𝜋1(𝐸)) ∣ 𝑎𝑖𝑢+ 𝑏𝑖𝑣 + 𝑐𝑖 ∈ 𝜋1(𝐸)}

for some 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 ∈ ℂ. The fundamental group

𝜋1(𝑇𝑖) = {𝑡 ∈ ℂ ∣ 𝑏𝑖𝑡+ 𝜋1(𝐸) = −𝑎𝑖𝑡+ 𝜋1(𝐸) = 𝜋1(𝐸)} = 𝑎−1

𝑖
𝜋1(𝐸) ∩ 𝑏−1

𝑖
𝜋1(𝐸).

If Γ is an arithmetic lattice then the elliptic curve 𝐸 has complex multiplication
by an imaginary quadratic number field 𝐾 = ℚ(

√

−𝑑), 𝑑 ∈ ℕ. As a result, Γ is
commensurable with the full Picard modular group 𝑆𝑈2,1(𝒪−𝑑) over the integers
ring 𝒪−𝑑 of ℚ(

√

−𝑑). Such Γ are called Picard modular groups. Moreover, all
𝑇𝑖 are defined over 𝐾. For simplicity, we assume that 𝜋1(𝐸) = 𝒪−𝑑, in order
to have maximal endomorphism ring 𝐸𝑛𝑑(𝐸) = 𝒪−𝑑. Since 𝐾 = ℚ(

√

−𝑑) is
the fraction field of 𝒪−𝑑, one can choose 𝑎𝑖, 𝑏𝑖 ∈ 𝒪−𝑑. Thus, 𝜋1(𝑇𝑖) ⊇ 𝒪−𝑑,
𝑎𝑖𝜋1(𝐸) + 𝑏𝑖𝜋1(𝐸) ⊆ 𝒪−𝑑 and 𝑇𝑖 has minimal fundamental group 𝜋1(𝑇𝑖) = 𝒪−𝑑

exactly when 𝑎𝑖𝜋1(𝐸) + 𝑏𝑖𝜋1(𝐸) = 𝜋1(𝐸) = 𝒪−𝑑. In particular, if 𝐾 is of class
number 1, then all the smooth elliptic curves 𝑇𝑖 ⊂ 𝐴 = ℂ2/ (𝒪−𝑑 ×𝒪−𝑑), defined
over 𝐾 = ℚ(

√

−𝑑), have minimal fundamental groups 𝜋1(𝑇𝑖) = 𝒪−𝑑. From now
on, we do not restrict the class number of 𝐾 = ℚ(

√

−𝑑), but confine only to smooth
irreducible elliptic curves 𝑇𝑖 with minimal fundamental groups 𝜋1(𝑇𝑖) = 𝜋1(𝐸) =
𝒪−𝑑. If 𝑏𝑖 ∕= 0, then

𝑇
(1)

𝑖
= {(𝑏𝑖𝑡+ 𝜋1(𝐸),−𝑎𝑖𝑡− 𝑏−1

𝑖
𝑐𝑖 + 𝜋1(𝐸)) ∣ 𝑡 ∈ ℂ} ⊆ 𝑇𝑖.
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Moreover, the complete pre-image of 𝑇
(1)

𝑖
in the universal cover 𝐴 = ℂ2 of 𝐴 is

𝜋1(𝑇𝑖)-invariant family of complex lines. Therefore, 𝑇
(1)

𝑖
is an elliptic curve and

coincides with 𝑇𝑖.

The notations from the next lemma will be used throughout:

Lemma 1. Let 𝑇𝑠 = {(𝑢 + 𝒪−𝑑, 𝑣 + 𝒪−𝑑) ∣ 𝑎𝑠𝑢 + 𝑏𝑠𝑣 + 𝑐𝑠 ∈ 𝒪𝑑} and 𝐷𝑠 =
{(𝑢+𝒪−𝑑, 𝑣+𝒪−𝑑) ∣ 𝑎𝑠𝑢+𝑏𝑠𝑣+𝑐𝑠+𝜇𝑠 ∈ 𝒪−𝑑} for 1 ≤ 𝑠 ≤ 3 be elliptic curves with
minimal fundamental groups 𝜋1(𝑇𝑠) = 𝜋1(𝐷𝑠) = 𝒪−𝑑 on 𝐴 = (ℂ/𝒪−𝑑)× (ℂ/𝒪−𝑑)
and

Δ𝑖𝑗 := det

(

𝑎𝑖 𝑎𝑗
𝑏𝑖 𝑏𝑗

)

, Δ := det

⎛

⎝

𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3

⎞

⎠ .

Then for any even permutation {𝑖, 𝑗, 𝑙} of {1, 2, 3} there hold the following:

(i) the intersection number is 𝑇𝑖.𝑇𝑗 = 𝑁
ℚ(

√

−𝑑)

ℚ (Δ𝑖𝑗), where 𝑁
ℚ(

√

−𝑑)

ℚ :ℚ(
√

−𝑑)→
ℚ stands for the norm;

(ii) 𝑇𝑖 ∩ 𝑇𝑗 ⊂ 𝐷𝑙 if and only if 𝜇𝑙 ∈ 𝒪−𝑑 − Δ−1

𝑖𝑗
Δ and both Δ−1

𝑖𝑗
Δ𝑗𝑙 and

Δ−1

𝑖𝑗
Δ𝑙𝑖 belong to 𝐸𝑛𝑑(𝐸) = 𝒪−𝑑;

(iii) 𝑇1 ∩ 𝑇2 ∩ 𝑇3 = ∅ if and only if Δ ∕∈ Δ12𝒪−𝑑 +Δ23𝒪−𝑑 +Δ31𝒪−𝑑.

Proof. (i) If 𝑇𝑖∩𝑇𝑗 = ∅, then the liftings of 𝑇𝑖, 𝑇𝑗 to the universal cover 𝐴 = ℂ2

of 𝐴 are discrete families of mutually parallel lines. In such a case, we say briefly
that 𝑇𝑖 and 𝑇𝑗 are parallel. That allows to choose 𝑎𝑗 = 𝑎𝑖, 𝑏𝑗 = 𝑏𝑖 and to calculate

𝑁
ℚ(

√

−𝑑)

ℚ (Δ𝑖𝑗) = 𝑁
ℚ(

√

−𝑑)

ℚ (0) = 0 = 𝑇𝑖.𝑇𝑗 . When 𝑇𝑖 ∩ 𝑇𝑗 ∕= ∅, one can move the
origin 𝑜𝐴 = (𝑜𝐸 , 𝑜𝐸) ∈ 𝐴 in 𝑇𝑖 ∩ 𝑇𝑗 and represent

𝑇𝑖 = {(𝑏𝑖𝑡+𝒪−𝑑,−𝑎𝑖𝑡+𝒪−𝑑) ∣ 𝑡 ∈ ℂ}, 𝑇𝑗 = {(𝑢+𝒪−𝑑, 𝑣+𝒪−𝑑) ∣ 𝑎𝑗𝑢+𝑏𝑗𝑣 ∈ 𝒪−𝑑}.

Then the intersection is

𝑇𝑖 ∩ 𝑇𝑗 = {(𝑏𝑖𝑡+𝒪−𝑑,−𝑎𝑖𝑡+𝒪−𝑑) ∣Δ𝑖𝑗𝑡 ∈ 𝒪−𝑑 ⊂ ℂ} ≃

(Δ−1

𝑖𝑗
𝒪−𝑑)/(𝑏

−1

𝑖
𝒪−𝑑 ∩ 𝑎

−1

𝑖
𝒪−𝑑) =

(

Δ−1

𝑖𝑗
𝒪−𝑑

)

/𝒪−𝑑 ≃ 𝒪−𝑑/Δ𝑖𝑗𝒪−𝑑.

For an arbitrary lattice Λ ⊂ ℂ, let us denote by ℱ(Λ) a Λ-fundamental domain on
ℂ. As far as ℱ(Δ𝑖𝑗𝒪−𝑑) is the 𝒪−𝑑/Δ𝑖𝑗𝒪−𝑑-orbit of ℱ(𝒪−𝑑), the index equals

[𝒪−𝑑 : Δ𝑖𝑗𝒪−𝑑] =
volℱ(Δ𝑖𝑗𝒪−𝑑)

volℱ(𝒪−𝑑)
=

volℱ(∣Δ𝑖𝑗 ∣𝒪−𝑑)

volℱ(𝒪−𝑑)
= ∣Δ𝑖𝑗 ∣

2 = 𝑁
ℚ(

√

−𝑑)

ℚ (Δ𝑖𝑗).

(ii) The intersection 𝑇𝑖 ∩ 𝑇𝑗 consists of the 𝜋1(𝐴)-equivalence classes of the
solutions (𝑢, 𝑣) ∈ ℂ2 of

∣
∣
∣
∣

𝑎𝑖𝑢+ 𝑏𝑖𝑣 = 𝜆1 − 𝑐𝑖
𝑎𝑗𝑢+ 𝑏𝑗𝑣 = 𝜆2 − 𝑐𝑗
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for arbitrary 𝜆1, 𝜆2 ∈ 𝜋1(𝐸) = 𝒪−𝑑. A point

(Δ−1

𝑖𝑗
(𝑏𝑖𝑐𝑗 − 𝑏𝑗𝑐𝑖) + Δ−1

𝑖𝑗
(𝑏𝑗𝜆1 − 𝑏𝑖𝜆2), Δ

−1

𝑖𝑗
(𝑎𝑗𝑐𝑖 − 𝑎𝑖𝑐𝑗) + Δ−1

𝑖𝑗
(𝑎𝑖𝜆2 − 𝑎𝑗𝜆1))

belongs to the lifting of 𝐷𝑙 if and only if

−Δ−1

𝑖𝑗
Δ𝑗𝑙𝜆1 −Δ−1

𝑖𝑗
Δ𝑙𝑖𝜆2 +Δ−1

𝑖𝑗
(𝑐𝑖Δ𝑗𝑙 + 𝑐𝑗Δ𝑙𝑖) + 𝑐𝑙 + 𝜇𝑙

= −Δ−1

𝑖𝑗
Δ𝑗𝑙𝜆1 −Δ−1

𝑖𝑗
Δ𝑙𝑖𝜆2 +Δ−1

𝑖𝑗
Δ+ 𝜇𝑙 ∈ 𝜋1(𝐸) = 𝒪−𝑑

for ∀𝜆1, 𝜆2 ∈ 𝜋1(𝐸). That, in turn, is equivalent to Δ−1

𝑖𝑗
Δ+𝜇𝑙 ∈ 𝜋1(𝐸) = 𝒪−𝑑 and

Δ−1

𝑖𝑗
Δ𝑗𝑙,Δ

−1

𝑖𝑗
Δ𝑙𝑖 ∈ 𝐸𝑛𝑑(𝐸) = 𝒪−𝑑.

(iii) For arbitrary 𝜆1, 𝜆2, 𝜆3 ∈ 𝜋1(𝐸) = 𝒪−𝑑, the linear system

∣
∣
∣
∣
∣
∣

𝑎1𝑢+ 𝑏1𝑣 = 𝜆1 − 𝑐1
𝑎2𝑢+ 𝑏2𝑣 = 𝜆2 − 𝑐2
𝑎3𝑢+ 𝑏3𝑣 = 𝜆3 − 𝑐3

has no solutions exactly when

det

⎛

⎝

𝑎1 𝑏1 𝜆1 − 𝑐1
𝑎2 𝑏2 𝜆2 − 𝑐2
𝑎3 𝑏3 𝜆3 − 𝑐3

⎞

⎠ = Δ23𝜆1 +Δ31𝜆2 +Δ12𝜆3 −Δ ∕= 0.

Lemma 1 is proved. □

The non-arithmetic lattices Γ ⊂ 𝑆𝑈2,1 correspond to abelian surfaces 𝐴 =
𝐸 × 𝐸, whose elliptic factors 𝐸 have minimal endomorphism rings 𝐸𝑛𝑑(𝐸) = ℤ.
Then the liftings of the elliptic curves 𝑇𝑖 ⊂ 𝐴 with 𝜋1(𝑇𝑖) = 𝜋1(𝐸) to the universal
cover 𝐴 = ℂ2 of 𝐴 are given by 𝑎𝑖𝑢+ 𝑏𝑖𝑣 + 𝑐𝑖 ∈ 𝜋1(𝐸) with 𝑎𝑖, 𝑏𝑖 ∈ ℤ. As a result,

the intersection numbers 𝑇𝑖.𝑇𝑗 = 𝑁
ℚ(

√

−𝑑)

ℚ (Δ𝑖𝑗) are comparatively large and there

are very few chances for construction of a multi-elliptic divisor 𝑇 =
ℎ∑

𝑖=1

⊂ 𝐴, subject

to (1.1). This is a sort of a motivation for restricting our attention to the arithmetic
case.

The smooth irreducible elliptic curves 𝑇 ′

𝑖
⊂ 𝐴′ contract to the Γ-orbits 𝜅𝑖 =

Γ(𝑝) ∈ ∂Γ𝔹/Γ of the Γ-rational boundary points 𝑝 ∈ ∂Γ𝔹. These 𝜅𝑖 are called

cusps. The resulting Baily-Borel compactification 𝐴 = ˆ𝔹/Γ = (𝔹/Γ) ∪ (∂Γ𝔹/Γ) is
a normal projective surface.

Definition 2. Let Γ be a Picard modular group, 𝛾 ∈ Γ and 𝐽𝑎𝑐(𝛾) = ∂(𝛾1,𝛾2)

∂(𝑧1,𝑧2)

be the Jacobian matrix of 𝛾 = (𝛾1, 𝛾2) : 𝔹 → 𝔹 ⊂ ℂ2. The global holomorphic
functions 𝛿 : 𝔹→ ℂ with transformation law

𝛾∗(𝛿)(𝑧) = 𝛿𝛾(𝑧) = [det 𝐽𝑎𝑐(𝛾)]
−𝑛

𝛿(𝑧) for ∀𝛾 ∈ Γ, ∀𝑧 ∈ 𝔹
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are called Γ-modular forms of weight 𝑛.

The Γ-modular forms of weight 𝑛 constitute a ℂ-linear space, which is denoted
by [Γ, 𝑛].

Definition 3. A Γ-modular form 𝛿 ∈ [Γ, 𝑛] is cuspidal if 𝛿(𝜅𝑖) = 0 at all the
cusps 𝜅𝑖 ∈ ∂Γ𝔹/Γ.

The cuspidal Γ-modular forms of weight 𝑛 form the subspace [Γ, 𝑛]cusp of [Γ, 𝑛].

For any natural number 𝑛 there is a ℂ-linear embedding

𝑗𝑛 : 𝐻0(𝔹,𝒪𝔹) −→ 𝐻0

(

𝔹,
(

Ω2

𝔹

)⊗𝑛

)

𝑗𝑛(𝛿)(𝑧) = 𝛿(𝑧)(𝑑𝑧1 ∧ 𝑑𝑧2)
⊗𝑛

of the global holomorphic functions on the ball in the global holomorphic sections

of the 𝑛-th pluri-canonical bundle
(

Ω2

𝔹

)
⊗𝑛

. It restricts to an isomorphism

𝑗𝑛 : [Γ, 𝑛] −→ 𝐻0

(

𝔹,
(

Ω2

𝔹

)⊗𝑛

)Γ

of the Γ-modular forms of weight 𝑛 with the Γ-invariant holomorphic sections of
(

Ω2

𝔹

)
⊗𝑛

. Note that the subspace 𝐻0

(

𝔹,
(

Ω2

𝔹

)
⊗𝑛

)Γ

of 𝐻0

(

𝔹/Γ,
(

Ω2

𝔹/Γ

)
⊗𝑛

)

acts

on 𝐴 = ˆ𝔹/Γ, extending over the cusps ∂Γ𝔹/Γ of codimension 2 in 𝐴.

The tensor product Ω2

𝐴
′(𝑇 ′) = Ω2

𝐴
′ ⊗ℂ 𝒪𝐴

′(𝑇 ′) is called logarithmic canonical
bundle of𝐴′, while Ω2

𝐴
′(𝑇 ′)⊗𝑛 are referred to as logarithmic pluri-canonical bundles.

Hemperly has observed in [3] that

𝑗𝑛[Γ, 𝑛] = 𝐻0

(

𝔹,
(

Ω2

𝔹

)⊗𝑛

)Γ

= 𝐻0
(

𝐴′,Ω2

𝐴
′(𝑇 ′)⊗𝑛

)

as long as the holomorphic sections from these spaces have one and the same coordi-
nate transformation law. A classical result of Baily-Borel establishes that Ω2

𝐴
′(𝑇 ′)

is sufficiently ample on 𝐴. The present article provides sufficient conditions for the
ampleness of Ω2

𝐴
′(𝑇 ′) on 𝐴.

Note that the canonical bundle

𝐾𝐴
′ = 𝜉∗𝐾𝐴 +𝒪𝐴

′(𝐿) = 𝜉∗𝒪𝐴 +𝒪𝐴
′(𝐿) = 𝒪𝐴

′(𝐿)

is associated with the exceptional divisor 𝐿 = 𝜉−1(𝑇 sing) of 𝜉 : 𝐴′
→ 𝐴. If 𝑠

is a global meromorphic section of Ω2

𝐴
′ and 𝑡 is a global meromorphic section of

𝒪𝐴
′(𝑇 ′), then the tensoring

(𝑠⊗ℂ 𝑡)
⊗(−𝑛)

: 𝐻0
(

𝐴′,Ω2

𝐴
′(𝑇 ′)⊗𝑛

)

−→ ℒ𝐴
′(𝑛(𝐿+ 𝑇 ′))

is a ℂ-linear isomorphism with

ℒ𝐴
′(𝑛(𝐿+ 𝑇 ′)) = {𝑓 ∈𝔐𝔢𝔯(𝐴′) ∣ (𝑓) + 𝑛(𝐿 + 𝑇 ′) ≥ 0}.
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The isomorphism 𝜉∗ : 𝔐𝔢𝔯(𝐴) → 𝔐𝔢𝔯(𝐴′) of the meromorphic function fields in-
duces a linear isomorphism

(𝜉∗)
−1

: ℒ𝐴
′(𝑛(𝐿 + 𝑇 ′)) −→ ℒ𝐴(𝑛𝑇, 𝑛𝑇

sing),

where 𝑚𝑝 : Div(𝐴)→ ℤ stands for the multiplicity at a point 𝑝 ∈ 𝐴 and

ℒ𝐴(𝑛𝑇, 𝑛𝑇
sing) = {𝑓 ∈𝔐𝔢𝔯(𝐴) ∣ (𝑓) + 𝑛𝑇 ≥ 0, 𝑚𝑝(𝑓) + 𝑛 ≥ 0 for ∀𝑝 ∈ 𝑇 sing

}.

The linear isomorphisms

𝜏𝑛 := (𝜉∗)−1(𝑠⊗ℂ 𝑡)
⊗(−𝑛) : 𝑗𝑛[Γ, 𝑛] −→ ℒ𝐴(𝑛𝑇, 𝑛𝑇

sing)

are called transfers of modular forms of weight 𝑛 to abelian functions.

For any 𝛿 ∈ [Γ, 1], note that 𝛿(𝜅𝑖) ∕= 0 if and only if 𝑇𝑖 ⊂ (𝜏1𝑗1(𝛿))∞. Observe
also that 𝜏1𝑗1[Γ, 1]cusp = {𝑓 ∈ ℒ𝐴(𝑇, 𝑇

sing) ∣ (𝑓)∞ = ∅} = ℂ and fix the cuspidal
form 𝜂𝑜 = (𝜏1𝑗1)

−1(1) of weight 1.

Towards the construction of abelian functions 𝑓 ∈ ℒ𝐴(𝑇, 𝑇
sing), let us recall

from [7] that any elliptic function 𝑔 : 𝐸 → ℙ1 can be represented as

𝑔(𝑧) = 𝐶𝑜

𝑘
∏

𝑖=1

𝜎(𝑧 − 𝛼𝑖)

𝜎(𝑧 − 𝛽𝑖)
, (1.2)

where

𝜎(𝑧) = 𝑧
∏

𝜆∈𝜋1(𝐸)∖{0}

(

1−
𝑧

𝜆

) 𝑧

𝜆
+

1

2
( 𝑧

𝜆 )
2

is the Weierstrass 𝜎-function, 𝛼𝑖, 𝛽𝑖, 𝐶𝑜 ∈ ℂ and
𝑘∑

𝑖=1

𝛼𝑖 ≡

𝑘∑

𝑖=1

𝛽𝑖(mod 𝜋1(𝐸)). The

points of 𝐸 = ℂ/𝜋1(𝐸) are of the form 𝑎 = 𝑎 + 𝜋1(𝐸) for some 𝑎 ∈ ℂ. The
elliptic function (1.2) takes all the values from ℙ1 with one and a same multiplicity
𝑘. Moreover, if 𝑔−1(𝑥) = {𝑝𝑖(𝑥) ∈ 𝐸 ∣ 1 ≤ 𝑖 ≤ 𝑘} for some 𝑥 ∈ ℂ ⊂ ℙ1, then
𝑘∑

𝑖=1

𝑝𝑖(𝑥) =
𝑘∑

𝑖=1

𝛽𝑖. Observe that 𝜎 : ℂ→ ℂ is a non-periodic entire function, but its

divisor (𝜎)ℂ = 𝜋1(𝐸) on ℂ is 𝜋1(𝐸)-invariant. That enables to define the divisor
(𝜎)𝐸 = 𝑜𝐸 of 𝜎 on 𝐸. In global holomorphic coordinates (𝑢, 𝑣) ∈ ℂ2, the divisor

(𝜎(𝑎𝑖𝑢+ 𝑏𝑖𝑣 + 𝑐𝑖))ℂ2 = {(𝑢, 𝑣) ∈ ℂ2
∣ 𝑎𝑖𝑢+ 𝑏𝑖𝑣 + 𝑐𝑖 ∈ 𝜋1(𝐸) = 𝒪−𝑑}

is the complete pre-image of 𝑇𝑖 in the universal cover 𝐴 = ℂ2 of 𝐴. That allows to
define the divisor

(𝜎(𝑎𝑖𝑢+ 𝑏𝑖𝑣 + 𝑐𝑖)) = (𝜎(𝑎𝑖𝑢+ 𝑏𝑖𝑣 + 𝑐𝑖))𝐴 = 𝑇𝑖.
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Let 𝑓 ∈ ℒ𝐴(𝑇 ) be an abelian function with pole divisor (𝑓)∞ =
𝑘∑

𝑖=1

𝑇𝑖, after

an eventual permutation of the irreducible components of 𝑇 . Then

𝑓∞ :=

𝑘
∏

𝑖=1

𝜎(𝑎𝑖𝑢+ 𝑏𝑖𝑣 + 𝑐𝑖) and 𝑓0 := 𝑓𝑓∞ (1.3)

are (non-periodic) entire functions on ℂ2. Let 𝜁 = 𝜎
′

𝜎
be Weierstrass’ 𝜁-function,

𝜂 : 𝜋1(𝐸) → ℂ be the ℤ-linear homomorphism, satisfying 𝜁(𝑧 + 𝜆) = 𝜁(𝑧) + 𝜂(𝜆)
for all 𝑧 ∈ ℂ, 𝜆 ∈ 𝜋1(𝐸) and

𝜀(𝜆) =

{

1 for 𝜆 ∈ 2𝜋1(𝐸),
−1 for 𝜆 ∈ 𝜋1(𝐸) ∖ 2𝜋1(𝐸).

Recall from [6] the 𝜋1(𝐸)-transformation law

𝜎(𝑧 + 𝜆)

𝜎(𝑧)
= 𝜀(𝜆)𝑒𝜂(𝜆)(𝑧+

𝜆

2
) for ∀𝜆 ∈ 𝜋1(𝐸), ∀𝑧 ∈ ℂ.

Under the assumption (1.3), the 𝜋1(𝐴)-periodicity of 𝑓 is equivalent to

𝑓0(𝑢+ 𝜆, 𝑣)

𝑓0(𝑢, 𝑣)
=
𝑓∞(𝑢+ 𝜆, 𝑣)

𝑓∞(𝑢, 𝑣)
=

𝑘
∏

𝑖=1

𝜀(𝑎𝑖𝜆)𝑒
𝜂(𝑎𝑖𝜆)

(
𝑎𝑖𝑢+𝑏𝑖𝑣+𝑐𝑖+

𝑎𝑖𝜆

2

)

and

𝑓0(𝑢, 𝑣 + 𝜆)

𝑓0(𝑢, 𝑣)
=
𝑓∞(𝑢, 𝑣 + 𝜆)

𝑓∞(𝑢, 𝑣)
=

𝑘
∏

𝑖=1

𝜀(𝑏𝑖𝜆)𝑒
𝜂(𝑏𝑖𝜆)

(
𝑎𝑖𝑢+𝑏𝑖𝑣+𝑐𝑖+

𝑏𝑖𝜆

2

)

for ∀𝜆 ∈ 𝜋1(𝐸) = 𝒪−𝑑, ∀(𝑢, 𝑣) ∈ ℂ2. We choose

𝑓0(𝑢, 𝑣) =
𝑘
∏

𝑖=1

𝜎(𝑎𝑖𝑢+ 𝑏𝑖𝑣 + 𝑐𝑖 + 𝜇𝑖)

and reduce the 𝜋1(𝐴)-periodicity of 𝑓 to

1=
𝑓(𝑢+𝜆, 𝑣)

𝑓(𝑢, 𝑣)
=𝑒

𝑘∑
𝑖=1

𝜂(𝑎𝑖𝜆)𝜇𝑖

, 1=
𝑓(𝑢, 𝑣+𝜆)

𝑓(𝑢, 𝑣)
=𝑒

𝑘∑
𝑖=1

𝜂(𝑏𝑖𝜆)𝜇𝑖

∀𝜆 ∈ 𝒪−𝑑, ∀(𝑢, 𝑣) ∈ ℂ2.

Let us mention that Holzapfel has studied 𝑓 ∈ ℒ𝐴(𝑇 ) of the above form with at
most three non-parallel irreducible components of (𝑓)∞, intersecting pairwise in
single points. The next lemma provides a sufficient (but not necessary) condition
for 𝜋1(𝐴)-periodicity of a 𝜎-quotient, whose pole divisor has an arbitrary number
of irreducible components with arbitrary intersection numbers.
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Lemma 4. If

𝑘
∑

𝑖=1

𝑎𝑖𝜇𝑖 =

𝑘
∑

𝑖=1

𝑎𝑖𝜇𝑖 =

𝑘
∑

𝑖=1

𝑏𝑖𝜇𝑖 =

𝑘
∑

𝑖=1

𝑏𝑖𝜇𝑖 = 0 , (1.4)

then the 𝜎-quotient

𝑓(𝑢, 𝑣) =

𝑘
∏

𝑖=1

𝜎(𝑎𝑖𝑢+ 𝑏𝑖𝑣 + 𝑐𝑖 + 𝜇𝑖)

𝜎(𝑎𝑖𝑢+ 𝑏𝑖𝑣 + 𝑐𝑖)
(1.5)

is 𝒪−𝑑 ×𝒪−𝑑 -periodic.

Proof. Let us recall from [1] that the integers ring of an imaginary quadratic
number field ℚ(

√

−𝑑) is of the form 𝒪−𝑑 = ℤ+ 2𝜔ℤ for

2𝜔 =

{ √

−𝑑 for −𝑑 ∕≡ 1(mod 4),
−1+

√

−𝑑

2
for −𝑑 ≡ 1(mod 4).

Any 𝜈 ∈ 𝒪−𝑑 has unique representation 𝜈 = 𝑥+ 2𝜔𝑦 with

𝑥 =
2𝜔𝜈 − 2𝜔𝜈

2𝜔 − 2𝜔
∈ ℤ, 𝑦 =

𝜈 − 𝜈

2𝜔 − 2𝜔
∈ ℤ.

Legendre’s equality
𝜂(2𝜔)− 2𝜔𝜂(1) = 2𝜋

√

−1,

(cf.[6]) implies that

𝜂(𝜈) = 𝜈𝜂(1) +
𝜈 − 𝜈

2𝜔 − 2𝜔
2𝜋
√

−1 for ∀𝜈 ∈ 𝒪−𝑑.

As a result,

𝑘
∑

𝑖=1

𝜂(𝑎𝑖𝜆)𝜇𝑖 =

(
𝑘
∑

𝑖=1

𝑎𝑖𝜇𝑖

)

𝜆𝜂(1) +

(
𝑘
∑

𝑖=1

𝑎𝑖𝜇𝑖

)

2𝜋
√

−1𝜆

2𝜔 − 2𝜔
−

(
𝑘
∑

𝑖=1

𝑎𝑖𝜇𝑖

)

𝜆2𝜋
√

−1

2𝜔 − 2𝜔
.

Lemma 4 is proved □

Mutually parallel smooth elliptic curves 𝑇1, . . . , 𝑇𝑘 admit liftings

𝑇𝑖 = {(𝑢+𝒪−𝑑, 𝑣 +𝒪−𝑑) ∣ 𝑎1𝑢+ 𝑏1𝑣 + 𝑐𝑖 ∈ 𝒪−𝑑}.

For arbitrary 𝜇𝑗 ∈ ℂ with
𝑘∑

𝑖=1

𝜇𝑖 = 0, the 𝜎-quotient

𝑓(𝑢, 𝑣) =

𝑘
∏

𝑖=1

𝜎(𝑎1𝑢+ 𝑏1𝑣 + 𝑐𝑖 + 𝜇𝑖)

𝜎(𝑎1𝑢+ 𝑏1𝑣 + 𝑐𝑖)
(1.6)
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belongs to ℒ𝐴(𝑇, 𝑇
sing) and has smooth pole divisor (𝑓)∞ =

𝑘∑

𝑖=1

𝑇𝑖. Following [4],

we say that (1.6) is a 𝑘-fold parallel 𝜎-quotient. A 𝜎-quotient (1.5) has smooth
pole divisor if and only if it is 𝑘-fold parallel.

Definition 5. A special 𝜎-quotient of order 𝑘 is a function of the form (1.5),
which is subject to (1.4), has singular pole divisor (𝑓)∞ and 𝜇𝑖 ∕∈ 𝒪−𝑑 for all
1 ≤ 𝑖 ≤ 𝑘.

Lemma 6. If 𝑓 ∈ ℒ𝐴(𝑇, 𝑇
sing) is a special 𝜎-quotient of order 𝑘 ≥ 2, then at

any point 𝑝 ∈ (𝑓)sing

∞
the multiplicity 𝑚𝑝(𝑓)∞ satisfies

2 ≤ 𝑚𝑝(𝑓)∞ ≤

[

𝑘 + 1

2

]

,

where
[
𝑘+1

2

]

is the greatest natural number, non-exceeding 𝑘+1

2
.

In particular, ℒ𝐴(𝑇, 𝑇
isng) does not contain a special 𝜎-quotient of order 2.

Proof. The smoothness of the irreducible components 𝑇1, . . . , 𝑇𝑘 of (𝑓)∞ results
in (𝑓)sing

∞
⊂

∑

1≤𝑖<𝑗≤𝑘

(𝑇𝑖 ∩ 𝑇𝑗) and implies that 𝑚𝑝(𝑓)∞ ≥ 2 for all 𝑝 ∈ (𝑓)sing

∞
.

Suppose that 𝑚𝑝(𝑓)∞ = 𝑚 for some 2 ≤ 𝑚 ≤ 𝑘. After an eventual permutation of
𝑇1, . . . , 𝑇𝑘, one can assume that 𝑝 ∈ 𝑇1 ∩ . . . ∩ 𝑇𝑚 and 𝑝 ∕∈ 𝑇𝑚+1 + . . .+ 𝑇𝑘. Then

𝑚𝑝(𝑓) + 1 = 𝑚𝑝(𝑓)0 −𝑚𝑝(𝑓)∞ + 1 = 𝑚𝑝(𝑓)0 −𝑚+ 1 ≥ 0

requires the existence of 𝐷𝑚+1, . . . , 𝐷2𝑚−1 ⊂ (𝑓)0 =
𝑘∑

𝑖=1

𝐷𝑖 with 𝑝 ∈ 𝐷𝑚+1 ∩ . . . ∩

𝐷2𝑚−1, after a further permutation of 𝐷𝑚+1, . . . , 𝐷𝑘. Now 2𝑚 − 1 ≤ 𝑘 implies
that 𝑚𝑝(𝑓)∞ = 𝑚 ≤

[
𝑘+1

2

]

.

In particular, for 𝑘 = 2 the inequality 2≤𝑚𝑝(𝑓)∞≤
[

3

2

]

cannot be satisfied. □

Proposition 7. If

𝑓(𝑢, 𝑣) =

3
∏

𝑖=1

𝜎(𝑎𝑖𝑢+ 𝑏𝑖𝑣 + 𝑐𝑖 + 𝜇𝑖)

𝜎(𝑎𝑖𝑢+ 𝑏𝑖𝑣 + 𝑐𝑖)
(1.7)

is a special 𝜎-quotient from ℒ𝐴(𝑇, 𝑇
sing), then 𝑇1∩𝑇2∩𝑇3 = ∅ and the intersection

numbers 𝑇1.𝑇2 = 𝑇2.𝑇3 = 𝑇3.𝑇1 ∈ ℕ are equal.

Proof. By Lemma 6 there follows 𝑚𝑝(𝑓)∞ = 2 for ∀𝑝 ∈ (𝑓)sing

∞
. In particular,

(𝑓)∞ = 𝑇1 + 𝑇2 + 𝑇3 has no triple point and 𝑇1 ∩ 𝑇2 ∩ 𝑇3 = ∅. Further, for
any 𝑝 ∈ 𝑇𝑖 ∩ 𝑇𝑗 the condition 𝑚𝑝(𝑓) + 1 ≥ 0 requires that 𝑝 ∈ 𝐷𝑙, therefore
𝜇𝑙 ∈ 𝒪−𝑑 − Δ−1

𝑖𝑗
Δ and Δ−1

𝑖𝑗
Δ𝑗𝑙,Δ

−1

𝑖𝑗
Δ𝑙𝑖 ∈ 𝒪−𝑑, according to Lemma 1 (ii). A

cyclic change of the even permutation {𝑖, 𝑗, 𝑙} by {𝑗, 𝑙, 𝑖} and {𝑙, 𝑖, 𝑗} results in
Δ−1

𝑗𝑙
Δ𝑙𝑖,Δ

−1

𝑗𝑙
Δ𝑖𝑗 ∈ 𝒪−𝑑 and, respectively, Δ−1

𝑙𝑖
Δ𝑖𝑗 ,Δ

−1

𝑙𝑖
Δ𝑗𝑙 ∈ 𝒪−𝑑. Consequently,

Δ−1

𝑖𝑗
Δ𝑗𝑙,Δ

−1

𝑖𝑗
Δ𝑙𝑖 ∈ 𝒪

∗

−𝑑
, whereas 𝑁

ℚ(
√

−𝑑)

ℚ (Δ𝑖𝑗) = 𝑁
ℚ(

√

−𝑑)

ℚ (Δ𝑗𝑙) = 𝑁
ℚ(

√

−𝑑)

ℚ (Δ𝑙𝑖).
Now, by Lemma 1 (i) it follows that 𝑇𝑖.𝑇𝑗 = 𝑇𝑗 .𝑇𝑙 = 𝑇𝑙.𝑇𝑖. □

Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 19–41. 27



Definition 8. The divisor 𝑇1 + 𝑇2 + 𝑇3 with three smooth elliptic irreducible
components is called a triangle if 𝑇1 ∩ 𝑇2 ∩ 𝑇3 = ∅ and 𝑇1.𝑇2 = 𝑇2.𝑇3 = 𝑇3.𝑇1 = 1.

Examples of special 𝜎-quotients with triangular pole divisors are constructed
by Holzapfel in [4]. We show that any triangular divisor can be realized as a pole
divisor of a special 𝜎-quotient 𝑓 ∈ ℒ𝐴(𝑇, 𝑇

sing) and provide a general formula for
such 𝑓 .

Proposition 9. Let 𝑇𝑖 = {(𝑢 + 𝒪−𝑑, 𝑣 + 𝒪−𝑑) ∣ 𝑎
′

𝑖
𝑢 + 𝑏′

𝑖
𝑣 + 𝑐′

𝑖
∈ 𝒪−𝑑} with

1 ≤ 𝑖 ≤ 3 be the smooth irreducible elliptic components of a triangle 𝑇1 + 𝑇2 + 𝑇3

and 𝑎𝑖 = Δ′

𝑗𝑙
𝑎′
𝑖
, 𝑏𝑖 = Δ′

𝑗𝑙
𝑏′
𝑖
, 𝑐𝑖 = Δ′

𝑗𝑙
𝑐′
𝑖
. Then 𝑎1 + 𝑎2 + 𝑎3 = 0, 𝑏1 + 𝑏2 + 𝑏3 = 0,

Δ−1

12
Δ ∕∈ 𝒪−𝑑 and for any 𝜈 ∈ 𝒪−𝑑 the function

𝑓(𝑢, 𝑣) =

3
∏

𝑖=1

𝜎(𝑎𝑖𝑢+ 𝑏𝑖𝑣 + 𝑐𝑖 −Δ−1

12
Δ+ 𝜈)

𝜎(𝑎𝑖𝑢+ 𝑏𝑖𝑣 + 𝑐𝑖)
(1.8)

is a special 𝜎-quotient from ℒ𝐴(𝑇, 𝑇
sing) with pole divisor (𝑓)∞ = 𝑇1 + 𝑇2 + 𝑇3.

Proof. Let 𝑣′
𝑖
=

(

𝑎′
𝑖

𝑏′
𝑖

)

for 1 ≤ 𝑖 ≤ 3. Expanding along the third row, one

obtains

0 =

∣
∣
∣
∣
∣
∣

𝑎′
1

𝑎′
2

𝑎′
3

𝑏′
1

𝑏′
2

𝑏′
3

𝑎′
1

𝑎′
2

𝑎′
3

∣
∣
∣
∣
∣
∣

= Δ′

23
𝑎′

1
+Δ′

31
𝑎′

2
+Δ′

12
𝑎′

3
= 0,

0 =

∣
∣
∣
∣
∣
∣

𝑎′
1

𝑎′
2

𝑎′
3

𝑏′
1

𝑏′
2

𝑏′
3

𝑏′
1

𝑏′
2

𝑏′
3

∣
∣
∣
∣
∣
∣

= Δ′

23
𝑏′
1
+Δ′

31
𝑏′
2
+Δ′

12
𝑏′
3
= 0,

and concludes that

𝑣1 + 𝑣2 + 𝑣3 = Δ′

23
𝑣′

1
+Δ′

31
𝑣′

2
+Δ′

12
𝑣′

3
= 02×1, Δ12 = Δ23 = Δ31. (1.9)

Now, according to Lemma 1 (iii), 𝑇1 ∩ 𝑇2 ∩ 𝑇3 = ∅ is equivalent to Δ ∕∈ Δ12𝒪−𝑑.
Then the condition 𝑚𝑝(𝑓)0 ≥ 𝑚𝑝(𝑓)∞ − 1 for ∀𝑝 ∈ (𝑓)sing

∞
reduces to 𝑇𝑖 ∩ 𝑇𝑗 ⊂ 𝐷𝑙

for any even permutation {𝑖, 𝑗, 𝑙} of {1, 2, 3}. Making use of Lemma 1 (ii), one can
choose 𝜇1 = 𝜇2 = 𝜇3 = 𝜈 −Δ−1

12
Δ ∕∈ 𝒪−𝑑. Then (1.9) implies (1.4) from Lemma 4

and reveals that (1.8) is a special 𝜎-quotient from ℒ𝐴(𝑇, 𝑇
sing). □

Definition 10. The special 𝜎-quotients (1.8) from ℒ𝐴(𝑇, 𝑇
sing) with triangular

pole divisors (𝑓)∞ = 𝑇1 + 𝑇2 + 𝑇3 are called triangular.

For elliptic curves 𝑇𝑖 = {(𝑢+𝒪−𝑑, 𝑣 +𝒪−𝑑) ∣ 𝑎𝑖𝑢+ 𝑏𝑖𝑣 + 𝑐𝑖 ∈ 𝒪−𝑑}, 1 ≤ 𝑖 ≤ 2
with minimal fundamental groups 𝜋1(𝑇𝑖) = 𝜋1(𝐸) = 𝒪−𝑑 and intersection number
𝑇1.𝑇2 = 1, Lemma 1 (i) implies that

𝑀 =

(

𝑎2 𝑏2
𝑎1 𝑏1

)

∈ 𝐺𝐿2(𝒪−𝑑).

28 Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 19–41.



As a result, there arises an automorphism

𝜑 : 𝐴 −→ 𝐴,

𝜑(𝑢 +𝒪−𝑑, 𝑣 +𝒪−𝑑) =

[

𝑀

(

𝑢

𝑣

)

+

(

𝑐2
𝑐1

)]
𝑡

with 𝜑(𝑇1) = 𝐸 × 𝑜𝐸 , 𝜑(𝑇2) = 𝑜𝐸 × 𝐸. Making use of 𝜎(𝛼𝑧) = 𝛼𝜎(𝑧) for ∀𝛼 ∈
𝒪

∗

−𝑑
, ∀𝑧 ∈ ℂ, one observes that any triangular 𝜎-quotient can be reduced by an

automorphism of 𝐴 to the form

𝑓012(𝑢, 𝑣) =
𝜎(𝑢 + 𝑎−1

0
𝑐0)𝜎(𝑣 + 𝑏−1

0
𝑐0)𝜎(𝑎0𝑢+ 𝑏0𝑣)

𝜎(𝑢)𝜎(𝑣)𝜎(𝑎0𝑢+ 𝑏0𝑣 + 𝑐0)
(1.10)

with 𝑎0, 𝑏0 ∈ 𝒪
∗

−𝑑
, 𝑐0 ∕∈ 𝒪−𝑑.

We are going to describe the complete divisor of a triangular 𝜎-quotient.

Definition 11. The divisor 𝐷 =
2∑

𝑖=0

𝐷𝑖−

2∑

𝑖=0

𝑇𝑖 with smooth elliptic irreducible

components 𝐷𝑖, 𝑇𝑗 is called a tetrahedron (cf. Figure 1) if:

T
0

T
1 T2

D

D

D2

0

1

Figure 1: Tetrahedron

(i)
2∑

𝑖=0

𝑇𝑖 is a triangle;

(ii) 𝐷𝑖 are parallel to 𝑇𝑖 for all 0 ≤ 𝑖 ≤ 2;

(iii) 𝐷0∩𝐷1∩𝐷2 = 𝐷0∩𝐷1 = 𝐷1∩𝐷2 = 𝐷2∩𝐷0 = {𝑝0} for some point 𝑝0 ∈ 𝐴;
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(iv)

(
2∑

𝑖=0

𝐷𝑖

)

∩

(
2∑

𝑖=0

𝑇𝑖

)

=

(
2∑

𝑖=0

𝑇𝑖

)sing

⊂

(
2∑

𝑖=0

𝐷𝑖

)smooth

.

Definition 12. An inscribed (ordered) pair of triangles (cf. Figure 2) is a

divisor 𝐷 =
2∑

𝑖=0

𝐷𝑖 −

2∑

𝑖=0

𝑇𝑖, such that:

(i)
2∑

𝑖=0

𝐷𝑖 and
2∑

𝑖=0

𝑇𝑖 are triangles;

(ii) 𝐷𝑖 are parallel to 𝑇𝑖 for all 0 ≤ 𝑖 ≤ 2;

(iii)

(
2∑

𝑖=0

𝐷𝑖

)

∩

(
2∑

𝑖=0

𝑇𝑖

)

=

(
2∑

𝑖=0

𝑇𝑖

)sing

⊂

(
2∑

𝑖=0

𝐷𝑖

)smooth

.

‘

D0

T
0

T
1

T2

D

D
2

1

Figure 2: Inscribed (ordered) pair of triangles

An explicit calculation of the singular points of the complete divisor yields the
following

Corollary 13. Let (1.10) with 𝑎0, 𝑏0 ∈ 𝒪

∗

−𝑑
, 𝑐0 ∕∈ 𝒪−𝑑 be a triangular 𝜎-

quotient with complete divisor (𝑓012) =
2∑

𝑖=0

𝐷𝑖 −

2∑

𝑖=0

𝑇𝑖. Then:

(i) 𝑐0 +𝒪−𝑑 ∈ 𝐸2−tor is a 2-torsion point if and only if (𝑓012) is a tetrahedron;

(ii) 𝑐0 +𝒪−𝑑 ∕∈ 𝐸2−𝑡𝑜𝑟 exactly when (𝑓012) is an inscribed pair of triangles.

In either case, the multiplicity 𝑚𝑝(𝑓012) = −1 at all 𝑝 ∈ (𝑓012)∞ ∩ 𝑇 sing.
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In [4] Holzapfel introduces the idea for detecting the linear independence of
co-abelian modular forms by the poles of the corresponding transfers to abelian
functions. Instead of his strongly descending divisor condition, we use a natural
complete decreasing flag on [Γ, 1]. That enables to supply a criterion for some
modular forms to constitute a basis of [Γ, 1] and to show that [Γ, 1] has always a
basis of the considered form.

Observe that the subspaces

𝑉𝑖 = 𝑗1[Γ, 1]𝑖 := {𝜔 ∈ 𝑗1[Γ, 1] ∣𝜔(𝜅1) = . . . = 𝜔(𝜅𝑖−1) = 0}

of 𝑉1 = 𝑗1[Γ, 1] form a non-increasing flag

𝑗1[Γ, 1] = 𝑉1 ⊇ 𝑉2 ⊇ . . . ⊇ 𝑉𝑚−1 ⊇ 𝑉𝑚 ⊇ . . . ⊇ 𝑉ℎ ⊇ 𝑉ℎ+1 = 𝑗1[Γ, 1]cusp.

For any 𝜔, 𝜔′
∈ 𝑉𝑖 one has 𝜔

′(𝜅𝑖)𝜔−𝜔(𝜅𝑖)𝜔
′
∈ 𝑉𝑖+1, so that 0 ≤ dimℂ (𝑉𝑖/𝑉𝑖+1) ≤ 1

for all 1 ≤ 𝑖 ≤ ℎ. We prove that there is a permutation of the cusps 𝜅1, . . . , 𝜅ℎ, so
that 𝑉𝑖/𝑉𝑖+1 ≃ ℂ for 1 ≤ 𝑖 ≤ 𝑚 and 𝑉𝑚+1 = 𝑉𝑚+2 = . . . = 𝑉ℎ+1 = 𝑗1[Γ, 1]cusp ≃ ℂ.
If so, then dimℂ[Γ, 1] = 𝑚+ 1.

Proposition 14. If the pole divisors of 𝑓𝑖 ∈ ℒ𝐴(𝑇, 𝑇
sing) are subject to

𝑇𝑖 ⊂ (𝑓𝑖)∞ ⊆ 𝑇𝑖 + 𝑇𝑖+1 + . . .+ 𝑇ℎ for all 1 ≤ 𝑖 ≤ 𝑚,

then 𝜔𝑖 = 𝜏−1

1
(𝑓𝑖) ∈ 𝑗1[Γ, 1] with 1 ≤ 𝑖 ≤ 𝑚 form a basis of a complement of

𝑉𝑚+1 = 𝑗1[Γ, 1]𝑚+1.

In particular, if 𝑉𝑚+1 = 𝑉ℎ+1 = 𝑗1[Γ, 1]cusp, then 𝑗1(𝜂𝑜), 𝜔1, . . . , 𝜔𝑚 is a ℂ-
basis of 𝑗1[Γ, 1].

Proof. It suffices to show that for arbitrary 𝑏1, . . . , 𝑏𝑚 ∈ ℂ the linear system

𝑚
∑

𝑖=1

𝜔𝑖(𝜅𝑗)𝑡𝑖 = 𝑏𝑗 , 1 ≤ 𝑗 ≤ 𝑚 (1.11)

has a unique solution (𝑡1, . . . , 𝑡𝑚). On one hand, that implies the linear inde-
pendence of 𝜔1, . . . , 𝜔𝑚 over ℂ. On the other hand, for any 𝜔 ∈ 𝑗1[Γ, 1] there is

uniquely determined
𝑚∑

𝑖=1

𝑐𝑖𝜔𝑖 with 𝜔0 = 𝜔−
𝑚∑

𝑖=1

𝑐𝑖𝜔𝑖 ∈ 𝑗1[Γ, 1]𝑚+1 = 𝑉𝑚+1. In other

words, 𝑗1[Γ, 1] = Spanℂ(𝜔1, . . . , 𝜔𝑚) ⊕ 𝑉𝑚+1, so that 𝜔1, . . . , 𝜔𝑚 is a basis of the
complement Spanℂ(𝜔1, . . . , 𝜔𝑚) of 𝑉𝑚+1.

Towards the existence of a unique solution of (1.11), note that the requirement
𝑇𝑖 ⊂ (𝜏1(𝜔𝑖))∞ ⊆ 𝑇𝑖 + 𝑇𝑖+1 + . . . + 𝑇ℎ is equivalent to 𝜔𝑖(𝜅𝑖) ∕= 0 and 𝜔𝑖(𝜅1) =
𝜔𝑖(𝜅2) = . . . = 𝜔𝑖(𝜅𝑖−1) = 0. Thus, (1.11) is of the form

⎛

⎜
⎜
⎜
⎜
⎝

𝜔1(𝜅1) . . . 0 . . . 0

𝜔1(𝜅𝑖) . . . 𝜔𝑖(𝜅𝑖) . . . 0

𝜔1(𝜅𝑚) . . . 𝜔𝑖(𝜅𝑚) . . . 𝜔𝑚(𝜅𝑚)

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑡1
...
𝑡𝑖
...
𝑡𝑚

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑏1
...
𝑏𝑖
...
𝑏𝑚

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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with non-degenerate, lower-triangular coefficient matrix and has unique solution
for all 𝑏1, . . . , 𝑏𝑚 ∈ ℂ.

In the case of 𝑉𝑚+1 = 𝑉ℎ+1 = 𝑗1[Γ, 1]cusp, note that 𝑗1[Γ, 1]cusp = ℂ𝑗1(𝜂𝑜) with
𝜏1𝑗1(𝜂𝑜) = 1 ∈ ℒ𝐴(𝑇, 𝑇

sing), so that 𝑗1(𝜂𝑜), 𝜔1, . . . , 𝜔𝑚 is a ℂ-basis of 𝑗1[Γ, 1]. □

The next proposition establishes that 𝑗1[Γ, 1] has always a ℂ-basis of the con-
sidered form.

Proposition 15. Let Γ⊂ 𝑆𝑈2,1 be a freely acting, co-abelian Picard modular
group and dimℂ[Γ, 1]=𝑚+1. Then there is a permutation {𝜅1,. . . ,𝜅𝑚, 𝜅𝑚+1,. . . ,𝜅ℎ}

of the Γ-cusps, such that

𝑉1/𝑉2 ≃ 𝑉2/𝑉3 ≃ ⋅ ⋅ ⋅ ≃ 𝑉𝑚/𝑉𝑚+1 ≃ ℂ, 𝑉𝑚+1 = 𝑉𝑚+2 = ⋅ ⋅ ⋅ = 𝑉ℎ+1 = 𝑗1[Γ, 1]cusp.

Any 𝜔𝑖 ∈ 𝑉𝑖 ∖ 𝑉𝑖+1 transfers to 𝜏1(𝜔𝑖) ∈ ℒ𝐴(𝑇, 𝑇
sing) with

𝑇𝑖 ⊂ (𝜏1(𝜔𝑖))∞ ⊆ 𝑇𝑖 + 𝑇𝑖+1 + ⋅ ⋅ ⋅+ 𝑇ℎ for 1 ≤ 𝑖 ≤ 𝑚

and 𝑗1(𝜂𝑜), 𝜔1, . . . , 𝜔𝑚 is a ℂ-basis of 𝑉1 = 𝑗1[Γ, 1].

In particular, if 𝑇ℎ−1.𝑇ℎ = 1 then 𝑉ℎ−1 = 𝑗1[Γ, 1]cusp and dim[Γ, 1] ≤ ℎ− 1.

Proof. If 𝑉1 = 𝑉ℎ+1, then there is nothing to be proved. From now on, we
assume that dim𝑉1/𝑉ℎ+1 = 𝑚 ∈ ℕ. By induction on 1 ≤ 𝑖 ≤ 𝑚, we establish the
existence of 𝜔𝑗 ∈ 𝑉𝑗 ∖ 𝑉𝑗+1 for all 1 ≤ 𝑗 ≤ 𝑖. First of all, for any 𝜔1 ∈ 𝑉1 ∖ 𝑉ℎ+1

there exists a cusp 𝜅1 with 𝜔1(𝜅1) ∕= 0. Then for an arbitrary permutation of
the remaining cusps, one has 𝜔1 ∈ 𝑉1 ∖ 𝑉2. If we have chosen 𝜔𝑗 ∈ 𝑉𝑗 ∖ 𝑉𝑗+1 for
1 ≤ 𝑗 ≤ 𝑖 − 1 and 𝑉𝑖 ⊉ 𝑉ℎ+1, then for an arbitrary 𝜔𝑖 ∈ 𝑉𝑖 ∖ 𝑉ℎ+1 there exists
a permutation of {𝜅𝑖, 𝜅𝑖+1, . . . , 𝜅ℎ}, such that 𝜔𝑖(𝜅𝑖) ∕= 0. Clearly, 𝜔𝑖 ∈ 𝑉𝑖 ∖ 𝑉𝑖+1

and we have obtained a basis 𝑗1(𝜂𝑜), 𝜔1, . . . , 𝜔𝑚 of 𝑉1 = 𝑗1[Γ, 1]. The conditions
𝜔𝑖 ∈ 𝑉𝑖 ∖ 𝑉𝑖+1 amount to 𝑇𝑖 ⊂ (𝜏1(𝜔𝑖))∞ and 𝑇𝑗 ⫅̸ (𝜏1(𝜔𝑖))∞ for all 1 ≤ 𝑗 ≤ 𝑖− 1.

If 𝑇ℎ−1.𝑇ℎ = 1, then up to an automorphism of 𝐴, one can assume that 𝑇ℎ−1 =
𝐸 × 𝑜𝐸 and 𝑇ℎ = 𝑜𝐸 × 𝐸. We claim that ℒ𝐴((𝐸 × 𝑜𝐸) + (𝑜𝐸 × 𝐸)) = ℂ, so
that dimℂ[Γ, 1] = 𝑚 + 1 ≤ ℎ − 1. Indeed, for an arbitrary 𝑄 ∈ 𝐸 ∖ 𝑜𝐸 the
restriction 𝑓 ∣𝐸×𝑄 is an elliptic function of order 1. Therefore 𝑓 ∣𝐸×𝑄 ≡ 𝐶(𝑄) ∈ ℂ
is a constant. Similarly, 𝑓 ∣𝑃×𝐸 ≡ 𝐶′(𝑃 ) ∈ ℂ for any 𝑃 ∈ 𝐸 ∖ 𝑜𝐸 . As a result,
𝐶′(𝑃 ) = 𝑓(𝑃,𝑄) = 𝐶(𝑄) for all 𝑄 ∈ 𝐸 and 𝑓 ∣𝐴 is constant. □

Proposition 16. (Holzapfel [5]) Let us fix the half-periods 𝜔1 = 1

2
, 𝜔2 = 𝑖

2
,

𝜔3 = 𝜔1 + 𝜔2 of the lattice 𝜋1(𝐸) = 𝒪−1 = ℤ + 𝑖ℤ, the 2-torsion points 𝑄0 :=
0(modℤ+ 𝑖ℤ) ∈ 𝐸, 𝑄𝑗 := 𝜔𝑗(modℤ+ 𝑖ℤ) ∈ 𝐸 for 1 ≤ 𝑗 ≤ 3 and 𝑄𝑖𝑗 := (𝑄𝑖, 𝑄𝑗) ∈
𝐴. Consider the elliptic curves

𝑇𝑘 = {(𝑢+ 𝜋1(𝐸), 𝑣 + 𝜋1(𝐸)) ∣𝑢 − 𝑖𝑘𝑣 ∈ 𝜋1(𝐸)} for 1 ≤ 𝑘 ≤ 4,

𝑇4+𝑘 = {(𝑢+ 𝜋1(𝐸), 𝑣 + 𝜋1(𝐸)) ∣𝑢 − 𝜔𝑘 ∈ 𝜋1(𝐸)} for 1 ≤ 𝑘 ≤ 2,
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𝑇6+𝑘 = {(𝑢+ 𝜋1(𝐸), 𝑣 + 𝜋1(𝐸)) ∣ 𝑣 − 𝜔𝑘 ∈ 𝜋1(𝐸)} for 1 ≤ 𝑘 ≤ 2.

Then the blow-up of 𝐴 at the singular points

𝑆1 = 𝑄00, 𝑆2 = 𝑄33, 𝑆3 = 𝑄11, 𝑆4 = 𝑄12, 𝑆5 = 𝑄21, 𝑆6 = 𝑄22

of 𝑇
(6,8)
√

−1
=

8∑

𝑘=1

𝑇𝑘 is the toroidal compactification (𝔹/Γ1)
′

of a ball quotient 𝔹/Γ1

by a freely acting Picard modular group Γ1 over the Gaussian integers ℤ[𝑖].

The self-intersection matrix 𝑀(6, 8) ∈ ℤ6×8 of 𝑇
(6,8)
√

−1
is defined to have entries

𝑀(6, 8)𝑖𝑗 = 1 for 𝑆𝑖 ∈ 𝑇𝑗 and 𝑀(6, 8)𝑖𝑗 = 0 for 𝑆𝑖 ∕∈ 𝑇𝑗. Straightforwardly,

𝑀(6, 8) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 1 0 1 1 0 1 0
1 0 1 0 1 0 0 1
1 0 1 0 0 1 1 0
0 1 0 1 0 1 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Q Q

Q

T

T

T

T

T

T

T

T

22

11 12

1

3

4

2

7

6

8

5

Q
11

Figure 3: The incidence relations of 𝑇
(6,8)
√

−1
and

2∑

𝑖=1

2∑

𝑗=1

𝑄𝑖𝑗 ⊂

(

𝑇
(6,8)
√

−1

)sing

.

According to 𝑄00, 𝑄33 ∈ 𝑇𝑘 or ∀1 ≤ 𝑘 ≤ 4, there are no triangles 𝑇𝑖 + 𝑇𝑗 +

𝑇𝑘 ⊂ 𝑇
(6,8)
√

−1
with 1 ≤ 𝑖 < 𝑗 ≤ 4, 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 8. Bearing in mind that
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(

𝑇
(6,8)
√

−1

)sing

∩

(
8∑

𝑘=5

𝑇𝑘

)

=
2∑

𝑖=1

2∑

𝑗=1

𝑄𝑖𝑗 , one makes use of Figure 3 and recognizes

the triangles 𝑇2𝑘−1 + 𝑇4+𝑚 + 𝑇6+𝑚, 𝑇2𝑘 + 𝑇4+𝑚 + 𝑇9−𝑚 with 1 ≤ 𝑘,𝑚 ≤ 2.
An immediate application of Proposition 9 with 𝜈 = 2𝜔𝑚 and, respectively, 𝜈 =
𝜔3 + 𝜔𝑚 + (−1)𝑘+1𝜔3−𝑚, yields the following

Corollary 17. The space ℒ𝐴

(

𝑇
(6,8)
√

−1
,

(

𝑇
(6,8)
√

−1

)sing
)

contains the binary parallel

𝑓56(𝑢, 𝑣) =
𝜎(𝑢 − 𝜔1 − 𝜇1)𝜎(𝑢 − 𝜔2 + 𝜇1)

𝜎(𝑢 − 𝜔1)𝜎(𝑢 − 𝜔2)
,

𝑓78(𝑢, 𝑣) =
𝜎(𝑣 − 𝜔1 − 𝜇2)𝜎(𝑣 − 𝜔2 + 𝜇2)

𝜎(𝑣 − 𝜔1)𝜎(𝑣 − 𝜔2)

and the triangular 𝜎-quotients

𝑓2𝑘−1,4+𝑚,6+𝑚(𝑢, 𝑣)

=
𝜎(𝑢 + (−1)𝑘𝑖𝑣 + 𝜔3)𝜎(−𝑢 + 𝜔𝑚 + 𝜔3)𝜎((−1)

𝑘+1𝑖𝑣 + (−1)𝑘𝑖𝜔𝑚 + 𝜔3)

𝜎(𝑢 + (−1)𝑘𝑖𝑣)𝜎(−𝑢+ 𝜔𝑚)𝜎((−1)𝑘+1𝑖𝑣 + (−1)𝑘𝑖𝜔𝑚)

𝑓2𝑘,4+𝑚,9−𝑚(𝑢, 𝑣)

=
𝜎(𝑢 + (−1)𝑘+1𝑣 + 𝜔3)𝜎(−𝑢 + 𝜔𝑚 + 𝜔3)𝜎((−1)

𝑘𝑣 + (−1)𝑘+1𝜔3−𝑚 + 𝜔3)

𝜎(𝑢 + (−1)𝑘+1𝑣)𝜎(−𝑢 + 𝜔𝑚)𝜎((−1)𝑘𝑣 + (−1)𝑘+1𝜔3−𝑚)

with arbitrary 1 ≤ 𝑘,𝑚 ≤ 2.

Proposition 14 provides the following

Corollary 18. If 𝑓𝑝𝑞 and 𝑓𝑖𝑗𝑘 are the binary parallel and triangular 𝜎-quotients

from the space ℒ𝐴

(

𝑇
(6,8)
√

−1
,

(

𝑇
(6,8)
√

−1

)sing
)

and 𝜔𝑝𝑞 = 𝜏−1

1
(𝑓𝑝𝑞), 𝜔𝑖𝑗𝑘 = 𝜏−1

1
(𝑓𝑖𝑗𝑘),

then
𝜔157, 𝜔258, 𝜔368, 𝜔467, 𝜔56, 𝜔78, 𝑗1(𝜂𝑜)

is a ℂ-basis of 𝑗1[Γ1, 1].

In particular, dimℂ[Γ, 1] = 7.

2. SUFFICIENT CONDITIONS FOR THE NORMAL GENERATION OF A
SPACE OF LOGARITHMIC CANONICAL SECTIONS

Definition 19. A holomorphic line bundle ℰ on an algebraic variety 𝑋 is suf-
ficiently ample if the holomorphic sections of a sufficiently large tensor power ℰ⊗𝑚

provide a projective embedding of 𝑋.
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Definition 20. A holomorphic line bundle ℰ over an algebraic variety 𝑋 is
globally generated if the global holomorphic sections of ℰ determine a regular pro-
jective morphism.

A subspace 𝑉 ⊆ 𝐻0(𝑋, ℰ) is globally generated if some (and therefore any)
basis of 𝑉 provides a regular projective morphism 𝑋 → ℙ(𝑉 ).

Definition 21. A holomorphic line bundle ℰ over an algebraic manifold 𝑋

is normally generated if ℰ is globally generated and 𝐻0(𝑋, ℰ) defines a projective
immersion of 𝑋 with normal image.

A subspace 𝑉 ⊆ 𝐻0(𝑋, ℰ) is normally generated if it is globally generated and
the morphism 𝑋 → ℙ(𝑉 ) is a projective immersion with normal image.

The normal generation of a sufficiently ample line bundle is a classical topic un-
der study. Various works provide normally generated and non-normally generated
line bundles over curves and abelian varieties. According to [2], if ℰ is a sufficiently
ample line bundle on an abelian variety of dimension 𝑛, then ℰ⊗(𝑛−1) is normally
generated. In particular, any sufficiently ample line bundle on an abelian surface
is normally generated.

Our aim is to provide sufficient conditions for the normal generation of a sub-
space 𝑉 ⊆ 𝐻0(𝐴′,Ω2

𝐴
′(𝑇 ′)) over the Baily-Borel compactification 𝐴. That cannot

be derived from the normal generation of a subspace𝑊 ⊆ 𝐻0(𝐴, ℰ) of holomorphic
sections of a line bundle ℰ → 𝐴. Namely, 𝜉∗𝑊 cannot be a normally generated
space of global holomorphic sections of 𝜉∗ℰ , as far as the morphism, associated with
𝜉∗𝑊 is not immersive on the exceptional divisor 𝐿 = 𝜉−1(𝑇 sing) of 𝜉 : 𝐴′

→ 𝐴.

Corollary 22. Let 𝑋 be an irreducible normal projective variety 𝑋 and 𝑓 : 𝑋 →

𝑌 be a finite, regular, generically injective morphism onto 𝑌 . Then 𝑓 : 𝑋 → 𝑌 is
a regular immersion with normal image 𝑌 .

Proof. If 𝑓 : 𝑋 → 𝑌 is a regular morphism of degree 𝑑 ∈ ℕ, then the generic
fiber of 𝑓 consists of 𝑑 points, while the exceptional ones are constituted by ≤ 𝑑

points. In particular, for 𝑑 = 1, any regular, generically injective morphism is
bijective onto its image. As a result, 𝑓 : 𝑋 → 𝑌 is a regular immersion with
normal image.

Our specific considerations will be based on the following immediate conse-
quence of Corollary 22

Corollary 23. Let 𝑋 be an irreducible normal projective variety, ℰ → 𝑋 be e
holomorphic line bundle over 𝑋 and 𝑉 ⊆ 𝐻0(𝑋, ℰ) be a space of global holomorphic
sections of ℰ. If 𝑓 : 𝑋 → ℙ(𝑉 ) is a finite, regular, generically injective morphism
then 𝑉 is normally generated.

Lemma 24. A subspace 𝑉 ⊆ 𝐻0(𝐴′,Ω2

𝐴
′(𝑇 ′)), containing the cuspidal form

𝑗1(𝜂𝑜), is globally generated over 𝐴 if and only if it satisfies simultaneously the
following two geometric conditions:
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(i) for any irreducible component 𝑇𝑖 of 𝑇 there is 𝜔𝑖 ∈ 𝑉 with (𝜏1(𝜔𝑖))∞ ⊃ 𝑇𝑖;

(ii) for any 𝑝 ∈ 𝑇 sing there exists 𝜔𝑝 ∈ 𝑉 with 𝑚𝑝(𝜏1(𝜔𝑝)) = −1.

Proof. The space 𝑉 is globally generated over 𝐴 exactly when for any point

𝑞 ∈ 𝐴 there is 𝑣𝑞 ∈ 𝑉 with 𝑣𝑞(𝑞) ∕= 0. If 𝑞 ∈
(

ˆ𝔹/Γ
)

∖

(

𝐿∪
ℎ∑

𝑖=1

𝜅𝑖

)

, then 𝑗1(𝜂𝑜)(𝑞) ∕= 0.

A modular form 𝜔𝑖 ∈ 𝑉 does not vanish on the cusp 𝜅𝑖 if and only if 𝑇𝑖 ⊂ (𝜏1(𝜔𝑖))∞.
A modular form 𝜔𝑝 ∈ 𝑉 takes non-zero values on the rational (−1)-curve 𝜉−1(𝑝)
exactly when the multiplicity 𝑚𝑝(𝜏1(𝜔𝑝)) = −1. □

From now on, we say briefly that a modular form 𝜔 ∈ 𝐻0(𝐴′,Ω2

𝐴
′(𝑇 ′)) is

binary parallel or triangular if its transfer 𝜏1(𝜔) ∈ ℒ𝐴(𝑇, 𝑇
sing) is binary parallel

or, respectively, triangular.

Proposition 25. Let us suppose that the subspace 𝑉 ⊆ 𝐻0(𝐴′,Ω2

𝐴
′(𝑇 ′)) con-

tains the cuspidal form 𝑗1(𝜂𝑜), two binary parallel forms 𝜔13, 𝜔24, a triangular 𝜔012

with 𝑇0 ∩ 𝑇3 ∩ 𝑇4 = ∅ and satisfies the following three conditions:

(i) for any 𝑖 ∕∈ {0, 1, . . . , 4} there exists 𝜔𝑖 ∈ 𝑉 with (𝜏1(𝜔𝑖))∞ ⊃ 𝑇𝑖;

(ii) for any 𝑝 ∈ 𝑇 sing
∖

( 4∑

𝑗=0

𝑇𝑗

)

there exists 𝜔𝑝 ∈ 𝑉 with 𝑚𝑝(𝜏1(𝜔𝑝)) = −1;

(iii) for any 1 ≤ 𝑖 < 𝑗 ≤ ℎ there is 𝜔𝑖𝑗 ∈ 𝑉 , such that (𝜏1(𝜔𝑖𝑗))∞ contains exactly
one of 𝑇𝑖 or 𝑇𝑗.

Then 𝑉 is normally generated.

Proof. In the presence of Corollary 23, it suffices to establish that the projec-
tive morphism 𝑓 : 𝐴 → ℙ(𝑉 ), associated with 𝑉 is regular, finite and generically
injective. Assumption (i) from the present proposition and (𝜏1(𝜔𝑖𝑗))∞ = 𝑇𝑖 + 𝑇𝑗 ,
(𝜏1(𝜔012))∞ = 𝑇0 + 𝑇1 + 𝑇2 imply assumption (i) from Lemma 24. Further, no-
one 𝑝 ∈ 𝑇 sing

∩ (𝑇1 + 𝑇3) belongs to (𝜏1(𝜔13))0 = 𝐷1 + 𝐷3, as far as 𝑇1, 𝑇3, 𝐷1

and 𝐷3 are mutually parallel and distinct. Therefore,𝑚𝑝(𝜏1(𝜔13)) = −1. Similarly,
𝑚𝑝(𝜏1(𝜔24)) = −1 for 𝑝 ∈ 𝑇 sing

∩(𝑇2+𝑇4). By Corollary 13, 𝑚𝑝(𝜏1(𝜔012)) = −1 for

all 𝑝 ∈ 𝑇 sing
∩

(
2∑

𝑖=0

𝑇𝑖

)

. Combining with assumption (ii) from the present proposi-

tion, one obtains (ii) from Lemma 24. That allows to conclude that 𝑓 : 𝐴→ ℙ(𝑉 )
is regular.

The assumption (iii) guarantees that 𝑓 : 𝐴 → 𝑓(𝐴) ⊂ ℙ(𝑉 ) is finite. First of
all, on 𝐴 ∖ [𝐿+ (∂Γ𝔹/Γ)] = (𝔹/Γ) ∖ 𝐿 = 𝐴 ∖ 𝑇 , the morphism

(

𝜔13

𝑗1(𝜂𝑜)
= 𝑓13 ∘ 𝜉 = 𝑓13,

𝜔24

𝑗1(𝜂𝑜)
= 𝑓24 ∘ 𝜉 = 𝑓24

)

: (𝔹/Γ) ∖ 𝐿 = 𝐴 ∖ 𝑇 −→ ℂ2
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is of degree 4. More precisely, if

𝑓13(𝑢, 𝑣) =
𝜎(𝑢 − 𝜇1)𝜎(𝑢 − 𝑐3 + 𝜇1)

𝜎(𝑢)𝜎(𝑢 − 𝑐3)
, 𝑓24(𝑢, 𝑣) =

𝜎(𝑣 − 𝜇2)𝜎(𝑣 − 𝑐4 + 𝜇2)

𝜎(𝑣)𝜎(𝑣 − 𝑐4)
, (2.1)

then for any 𝑥, 𝑦 ∈ ℙ1 the fiber is

(𝑓13, 𝑓24)
−1(𝑥, 𝑦) = {(𝑃𝑖(𝑥), 𝑄𝑗(𝑦)) ∣ 1 ≤ 𝑖, 𝑗 ≤ 2}

with
𝑃1(𝑥) + 𝑃2(𝑥) = 𝑐3, 𝑄1(𝑦) +𝑄2(𝑦) = 𝑐4.

The condition (iii) provides the injectiveness of 𝑓 : ∂Γ𝔹/Γ → 𝑓 (∂Γ𝔹/Γ), which
suffices for 𝑓 : 𝐿→ 𝑓(𝐿) to be discrete and, therefore, finite. Otherwise, 𝑓 contracts
some irreducible component 𝜉−1(𝑝), 𝑝 ∈ 𝑇 sing of 𝐿. If 𝑝 ∈ 𝑇𝑖 ∩ 𝑇𝑗 then 𝜅𝑖, 𝜅𝑗 ∈

𝜉−1(𝑝), whereas 𝑓(𝜅𝑖) = 𝑓(𝜅𝑗). Thus, 𝑓 : 𝐿 ∪ (∂Γ𝔹/Γ) → 𝑓 (𝐿 ∪ (∂Γ𝔹/Γ)) and,

therefore, 𝑓 : 𝐴→ 𝑓(𝐴) is a finite regular morphism.

The generic injectiveness of the projective morphism 𝑓 : 𝐴 → 𝑓(𝐴) follows
from the generic injectiveness of the affine morphism

𝐹 =

(

𝜔13

𝑗1(𝜂𝑜)
= 𝑓13,

𝜔24

𝑗1(𝜂𝑜)
= 𝑓24,

𝜔012

𝑗1(𝜂𝑜)
= 𝑓012

)

: (𝔹/Γ) ∖ 𝐿 = 𝐴 ∖ 𝑇 −→ ℂ3.

This, in turn, is equivalent to the generic injectiveness of the rational surjective
morphism

𝐹 = (𝑓13, 𝑓24, 𝑓012) : 𝐴 −→ ℙ1
× ℙ1

× ℙ1.

Let us consider also the rational surjection 𝐹1 = (𝑓13, 𝑓24) : 𝐴 → ℙ1
× ℙ1 and its

factorization

𝐴 ℙ1
× ℙ1

× ℙ1

ℙ1
× ℙ1

�

𝐹1

�𝐹

�
�

�
���

pr12

through 𝐹 and the projection pr12 : ℙ1
×ℙ1

×ℙ1
→ ℙ1

×ℙ1 onto the first two factors.
The irreducible components 𝑇1 and 𝑇2 of the triangle 𝑇0+𝑇1+𝑇2 have intersection
number 𝑇1.𝑇2 = 1. That allows to assume that 𝑇1 = 𝑜𝐸 × 𝐸, 𝑇2 = 𝐸 × 𝑜𝐸 and
(1.10).

Suppose that 𝐹 : 𝐴→ ℙ1
×ℙ1

×ℙ1 is not generically injective. By 𝐹1 = pr12∘𝐹

and deg𝐹1 = 4, the generic fiber of 𝐹 on 𝐹−1

1
(𝑥, 𝑦) consists of 2 or 4 points. In

either case, for any (𝑥, 𝑦) ∈ ℙ1
× ℙ1 there holds at least one of the following pairs

of relations:

Case (i): 𝑓012(𝑃1(𝑥), 𝑄2(𝑦)) = 𝑓012(𝑃2(𝑥), 𝑄1(𝑦)),

𝑓012(𝑃1(𝑥), 𝑄1(𝑦)) = 𝑓012(𝑃2(𝑥), 𝑄2(𝑦));
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Case (ii): 𝑓012(𝑃1(𝑥), 𝑄2(𝑦)) = 𝑓012(𝑃2(𝑥), 𝑄2(𝑦)),

𝑓012(𝑃1(𝑥), 𝑄1(𝑦)) = 𝑓012(𝑃2(𝑥), 𝑄1(𝑦));

Case (iii): 𝑓012(𝑃1(𝑥), 𝑄2(𝑦)) = 𝑓012(𝑃1(𝑥), 𝑄1(𝑦)),

𝑓012(𝑃2(𝑥), 𝑄2(𝑦)) = 𝑓012(𝑃2(𝑥), 𝑄1(𝑦)).

We claim that the relations from at least one case are satisfied identically on
ℙ1
×ℙ1. Otherwise, the locus of either case is a proper analytic subvariety of ℙ1

×ℙ1

and their union is also a proper analytic subvariety of ℙ1
× ℙ1. The contradiction

implies that for any (𝑥, 𝑦) ∈ ℙ1
×ℙ1 there holds identically at least one of the Cases

(i), (ii) or (iii). Note that (ii) and (iii) are equivalent under the transposition of the
factors of ℙ1

× ℙ1 and, respectively, of 𝐴 = 𝐸 × 𝐸.

Without loss of generality, one can suppose that 𝑃1(∞) = 𝑜𝐸 and 𝑃2(∞) = 𝑐3.
In Case (i), up to a relabeling of 𝑄1(𝑦), 𝑄2(𝑦), one has 𝑄1(∞) = 𝑜𝐸 , 𝑄2(∞) = 𝑐4.
Then

∞ = 𝑓012(𝑜𝐸 , 𝑜𝐸) = 𝑓012(𝑃1(∞), 𝑄1(∞)) = 𝑓012(𝑃2(∞), 𝑄2(∞)) = 𝑓012(𝑐3, 𝑐4).

However, 𝑐3 ∕= 𝑜𝐸 , 𝑐4 ∕= 𝑜𝐸 and 𝑇3 ∩ 𝑇4 = {(𝑐3, 𝑐4)} ⫅̸ 𝑇0 reveal that 𝑓012(𝑐3, 𝑐4) ∕=
∞, so that Case (i) does not hold identically on 𝐴. Similarly, in Case (ii), there
follows

∞ = 𝑓012(𝑜𝐸 , 𝑐4) = 𝑓012(𝑃1(∞), 𝑄2(∞)) = 𝑓012(𝑃2(∞), 𝑄2(∞)) = 𝑓012(𝑐3, 𝑐4).

The contradiction implies that 𝐹 : 𝐴→ ℙ1
× ℙ1

× ℙ1 is generically injective. □

Here is another sufficient condition for a subspace 𝑉 ⊆ 𝐻0(𝐴′,Ω2

𝐴
′(𝑇 ′)) to be

normally generated.

Proposition 26. Let 𝑉 be a subspace of 𝐻0(𝐴′,Ω2

𝐴
′(𝑇 ′)), containing the cus-

pidal form 𝑗1(𝜂𝑜), a binary parallel 𝜔13, triangular 𝜔012, 𝜔234 with 𝑇0 ∩𝑇1 ∩𝑇4 = ∅
and satisfying the following three conditions:

(i) for any 𝑖 ∕∈ {0, 1, . . .4} there exists 𝜔𝑖 ∈ 𝑉 with (𝜏1(𝜔𝑖))∞ ⊃ 𝑇𝑖;

(ii) for any 𝑝 ∈ 𝑇 sing
∖

(

4∑

𝑗=0

𝑇𝑗

)

there exists 𝜔𝑝 ∈ 𝑉 with 𝑚𝑝(𝜏1(𝜔𝑝)) = −1;

(iii) for any 1 ≤ 𝑖 < 𝑗 ≤ ℎ there is 𝜔𝑖𝑗 ∈ 𝑉 , such that (𝜏1(𝜔𝑖𝑗))∞ contains exactly
one of 𝑇𝑖 or 𝑇𝑗.

Then 𝑉 is normally generated.

Proof. As in Proposition 25, first we establish the regularity of the projective
morphism 𝑓 : 𝐴→ 𝑓(𝐴).
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Further, 𝑓 : 𝐴→ 𝑓(𝐴) is finite, as far as the fibers of its restriction on (𝔹/Γ) ∖
𝐿 = 𝐴 ∖ 𝑇 are contained in the fibers of

(

𝜔13

𝑗1(𝜂𝑜)
= 𝑓13,

𝜔012

𝑗1(𝜂𝑜)
= 𝑓012

)

: 𝐴 ∖ 𝑇 −→ ℂ2.

Let 𝑓012(𝑢, 𝑣) be of the form (1.10) and 𝑓13 be as in (2.1). Then for any 𝑥, 𝑦 ∈ ℙ1

the fiber
(𝑓13, 𝑓012)

−1(𝑥, 𝑦) = {(𝑃𝑖(𝑥), 𝑄𝑖𝑗(𝑥, 𝑦)) ∣ 1 ≤ 𝑖, 𝑗 ≤ 2}

with

𝑃1(𝑥) + 𝑃2(𝑥) = 𝑐3, 𝑄𝑖1(𝑥, 𝑦) +𝑄𝑖2(𝑥, 𝑦) = −𝑎0𝑏
−1

0
𝑃𝑖(𝑥)− 𝑏−1

0
𝑐0

consists of at most four points. The reason is that for any fixed 𝑃𝑖(𝑥) ∈ 𝐸 the
elliptic function 𝑓012(𝑃𝑖(𝑥), ) is of order 2. Thus, (𝑓13, 𝑓012) : 𝐴 ∖ 𝑇 → ℂ2 is finite.
The assumption (iii) implies that 𝑓 : 𝐿 ∪ (∂Γ𝔹/Γ) → 𝑓 (𝐿 ∪ (∂Γ𝔹/Γ)) is finite, so
that 𝑓 : 𝐴→ 𝑓(𝐴) is a finite regular morphism.

We derive the generic injectiveness of 𝑓 : 𝐴→ 𝑓(𝐴) from the generic injective-
ness of the affine morphism

𝐹 =

(

𝜔13

𝑗1(𝜂𝑜)
= 𝑓13,

𝜔012

𝑗1(𝜂𝑜)
= 𝑓012,

𝜔234

𝑗1(𝜂𝑜)
= 𝑓234

)

: (𝔹/Γ) ∖ 𝐿 = 𝐴 ∖ 𝑇 −→ ℂ3.

To this end, let us factor the rational surjection 𝐹1 = (𝑓13, 𝑓012) : 𝐴 → ℙ1
× ℙ1

through the rational surjection 𝐹 = (𝑓13, 𝑓012, 𝑓234) : 𝐴 → ℙ1
× ℙ1

× ℙ1 and the
projection pr12 : ℙ1

× ℙ1
× ℙ1

→ ℙ1
× ℙ1, along the commutative diagram

𝐴 ℙ1
× ℙ1

× ℙ1

ℙ1
× ℙ1

�

𝐹1

�𝐹

�
�

�
���

pr12
.

If 𝐹 is not generically injective, then at least one of the following three cases holds
identically on ℙ1

× ℙ1:

Case (i): 𝑓234(𝑃1(𝑥), 𝑄12(𝑥, 𝑦)) = 𝑓234(𝑃2(𝑥), 𝑄21(𝑥, 𝑦)),

𝑓234(𝑃1(𝑥), 𝑄11(𝑥, 𝑦)) = 𝑓234(𝑃2(𝑥), 𝑄22(𝑥, 𝑦));

Case (ii): 𝑓234(𝑃1(𝑥), 𝑄12(𝑥, 𝑦)) = 𝑓234(𝑃2(𝑥), 𝑄22(𝑥, 𝑦)),

𝑓234(𝑃1(𝑥), 𝑄11(𝑥, 𝑦)) = 𝑓234(𝑃2(𝑥), 𝑄21(𝑥, 𝑦));

Case (iii): 𝑓234(𝑃1(𝑥), 𝑄12(𝑥, 𝑦)) = 𝑓234(𝑃1(𝑥), 𝑄11(𝑥, 𝑦)),

𝑓234(𝑃2(𝑥), 𝑄22(𝑥, 𝑦)) = 𝑓234(𝑃2(𝑥), 𝑄21(𝑥, 𝑦)).

In either case, denote by 𝑃1(∞) = 𝑜𝐸 and 𝑃2(∞) = 𝑐3 the poles of the elliptic
function 𝑓13 and note that 𝑇1 = 𝑃1(∞) × 𝐸, 𝑇3 = 𝑃2(∞) × 𝐸. Further, let
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𝑄𝑖1(∞,∞) = 𝑜𝐸 , so that 𝑇2 = 𝐸 × 𝑄11(∞,∞) = 𝐸 × 𝑄21(∞,∞). Finally, let
𝑄𝑖2(∞,∞) = −𝑎0𝑏

−1

0
𝑃𝑖(∞)− 𝑏−1

0
𝑐0, in order to have

{𝑞10} = 𝑇1 ∩ 𝑇0 = {(𝑃1(∞), 𝑄12(∞,∞))},

{𝑞30} = 𝑇3 ∩ 𝑇0 = {(𝑃2(∞), 𝑄22(∞,∞))}.

Denote also

{𝑞12} = 𝑇1 ∩ 𝑇2 = {(𝑃1(∞), 𝑄11(∞,∞))},

{𝑞32} = 𝑇3 ∩ 𝑇2 = {(𝑃2(∞), 𝑄21(∞,∞))}.

Bearing in mind that (𝑓234)∞ = 𝑇2 + 𝑇3 + 𝑇4, note that 𝑓234(𝑞𝑖𝑗) = ∞ whenever
{𝑖, 𝑗}∩{2, 3, 4} ∕= ∅. In the Case (i) one has 𝑓234(𝑞10) = 𝑓234(𝑞32) =∞. If 𝑞10 ∈ 𝑇2,
then 𝑞10 ∈ 𝑇0 ∩ 𝑇1 ∩ 𝑇2, contrary to the assumption that 𝑇0 + 𝑇1 + 𝑇2 is a triangle.
On the other hand, 𝑇3 ∩ 𝑇1 = ∅ guarantees that 𝑞10 ∕∈ 𝑇3. Therefore 𝑞10 ∈ 𝑇4 and
𝑞10 ∈ 𝑇0 ∩ 𝑇1 ∩ 𝑇4 = ∅. The contradiction rejects the Case (i). If the first relation
of Case (ii) is identical on ℙ1

× ℙ1, then 𝑓234(𝑞10) = 𝑓234(𝑞30) = ∞. As in the
Case (i), that leads to an absurd. Finally, 𝑓234(𝑞10) = 𝑓234(𝑞12) = ∞ contradicts
the hypotheses and establishes that 𝐹 = (𝑓13, 𝑓012, 𝑓234) : 𝐴 → ℙ1

× ℙ1
× ℙ1 is

generically injective. □

An immediate application of Proposition 26 to the example from Proposition 16
yields the following

Corollary 27. In the terms of Proposition 16, the subspace

𝑉1 = Spanℂ(𝑗1(𝜂𝑜), 𝜔56, 𝜔157, 𝜔267, 𝜔368, 𝜔458) ⊂ 𝐻0(𝐴′

1
,Ω2

𝐴
′

1

(𝑇 ′))

is normally generated, i.e., determines a regular projective immersion

𝑓 : 𝔹/Γ1 → ℙ(𝑉1) = ℙ5

with normal image.

If one applies Proposition 25 to the cuspidal form 𝑗1(𝜂𝑜), the binary parallel
𝜔56, 𝜔78 and triangular 𝜔157, then one needs to adjoin the triangular 𝜔2,4+𝑘,9−𝑘,
𝜔3,4+𝑙,6+𝑙, 𝜔4,4+𝑚,9−𝑚 for some 𝑘, 𝑙,𝑚 ∈ {1, 2}. The span of these modular forms is
7-dimensional and depletes the entire [Γ1, 1]. It is clear that the normal generation
of 𝑉1 implies the normal generation of 𝐻0(𝐴′

1
,Ω2

𝐴
′

1

(𝑇 ′)) = 𝑗1[Γ1, 1].
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ASYMPTOTICALLY FASTEST SORTING ALGORITHM

FOR ALMOST SORTED ARRAYS

STEFAN GERDJIKOV

The patience sorting algorithm was introduced by Mellows. If a given array has 𝑛

elements and can be considered as a shuffle of𝑚 already sorted arrays, then the patience
algorithm sorts the original array in 𝑂(𝑛 log𝑚) time. In the current paper we show
that this upper bound is worst-case optimal even if the minimum value of the parameter
𝑚 is known in advance.

Keywords: Patience sorting algorithm, worst-case optimality, increasing subsequences

2000 Math. Subject Classification: 68W40

1. INTRODUCTION

We consider the problem of sorting a sequence of 𝑛 distinct numbers. Although
this problem is well studied and optimal 𝑂(𝑛 log𝑛) worst-case and average-case
algorithms have been developed [7], there is no exact estimate of the complexity of
these algorithms with respect to the disorder in the sequence.

In the current paper we consider the patience sorting algorithm introduced
by Mellows, [8, 9, 1, 2]. Essentially, this approach of sorting real numbers first
splits the given array into a minimal number of increasingly sorted subarrays and
afterwards merges the resulting arrays. Using a result of Fredman, [5], it can be
easily shown that this algorithm runs in 𝑂(𝑛 log𝑚)-time for every sequence of size
𝑛 that contains no decreasing subsequence of size 𝑚 + 1. Note that 𝑚 is not
previously known to the algorithm. However, even if an upper bound for 𝑚 is
known in advance no better worst-case algorithm exists as we prove in Section 3.
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The rest of this paper is organized as follows. In Section 2 we outline the
patience sorting algorithm in details, prove its correctness and its time-complexity.
In Section 3 we argue that the algorithm is worst-case optimal and in Section 4 we
conclude.

2. PATIENCE ALGORITHM DESCRIPTION

In this section we assume that 𝑎1, . . . , 𝑎𝑛 is a sequence of distinct numbers
that is to be sorted in increasing order. To this end we describe an 𝑂(𝑛 log𝑚)-
time algorithm where 𝑚 is the size of the longest decreasing subsequence, i.e. 𝑚 is
maximal natural number with the property :

there are 𝑖(1) < 𝑖(2) < ⋅ ⋅ ⋅ < 𝑖(𝑚), such that 𝑎
𝑖(1) > 𝑎

𝑖(2) > ⋅ ⋅ ⋅ > 𝑎
𝑖(𝑚).

The patience algorithm consists of two steps, [8, 9]:

1. Split 𝑎1, . . . 𝑎𝑛 into minimum number of increasing subsequences:

{𝑎1,1 < ⋅ ⋅ ⋅ < 𝑎1,𝑘1
}, . . . , {𝑎𝑀,1 < ⋅ ⋅ ⋅ < 𝑎𝑀,𝑘𝑀

}.

2. Merge the resulting subsequences into an increasing array:

𝑎
𝜋(1) < 𝑎

𝜋(2) < ⋅ ⋅ ⋅ < 𝑎
𝜋(𝑛).

Both these steps can be performed in time 𝑂(𝑛 log𝑀) and using Dilworth’s
Theorem [4, 6] it is not difficult to see that 𝑀 = 𝑚, which implies the result.

In the sequel we first prove that 𝑀 = 𝑚 and then we briefly explain how to
efficiently perform each of the two steps of the algorithm.

Given a sequence 𝑎1, . . . , 𝑎𝑛, we introduce a partial ordering ≺ on the set
{1, 2 . . . , 𝑛} in the following way:

𝑖 ≺ 𝑗 ⇐⇒ 𝑖 < 𝑗 and 𝑎𝑖 < 𝑎𝑗 .

With this notation it is obvious that the following are equivalent:

∙ 𝑖(1) ≺ 𝑖(2) ⋅ ⋅ ⋅ ≺ 𝑖(𝑘) ;

∙ (𝑎
𝑖(1), 𝑎𝑖(2), . . . , 𝑎𝑖(𝑘)) is an increasing subsequence of {𝑎𝑗}

𝑛

𝑗=1
.

Thus each chain in ({1, . . . 𝑛},≺) corresponds to an increasing subsequence in
𝑎1, . . . 𝑎𝑛 and vice versa.

On the other hand, there is a similar relationship between the antichains in
({1, . . . , 𝑛},≺) and the decreasing subsequences of 𝑎1, . . . 𝑎𝑛. Specifically, we con-
sider an antichain {𝑖(1), . . . 𝑖(𝑘)}, i.e. 𝑖(𝑗), 𝑖(𝑙) are incomparable with respect
to ≺. We can assume that 𝑖(1) < 𝑖(2) < ⋅ ⋅ ⋅ < 𝑖(𝑘). Now consider a pair
𝑖(𝑗) < 𝑖(𝑙): since 𝑖(𝑗) ∕≺ 𝑖(𝑙), we deduce that 𝑎

𝑖(𝑗) ∕< 𝑎
𝑖(𝑙). Furthermore, 𝑖(𝑗) ∕= 𝑖(𝑙)
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and the members of the sequence 𝑎 are all distinct numbers, which implies that
𝑎
𝑖(𝑗) > 𝑎

𝑖(𝑙). Thus we have established that for every antichain {𝑖(1), . . . 𝑖(𝑘)} such
that 𝑖(1) < 𝑖(2) < ⋅ ⋅ ⋅ < 𝑖(𝑘),

𝑎
𝑖(1) > 𝑎

𝑖(2) > ⋅ ⋅ ⋅ > 𝑎
𝑖(𝑘) is a decreasing subsequence of {𝑎𝑗}

𝑛

𝑗=1
.

Conversely, if 𝑎
𝑖(1) > 𝑎

𝑖(2) > ⋅ ⋅ ⋅ > 𝑎
𝑖(𝑘) is a decreasing subsequence, then

𝑖(𝑗) < 𝑖(𝑙) implies 𝑎
𝑖(𝑗) > 𝑎

𝑖(𝑙), i.e. 𝑖(𝑗) and 𝑖(𝑙) are incomparable with respect to
≺ and consequently determine an antichain.

Now the Dilworth’s Theorem [4, 6] implies the following lemma:

Lemma 1. Let 𝑚 be the maximal length of a decreasing subsequence of
𝑎1, . . . , 𝑎𝑛 and let𝑀 be the minimal number of increasing subsequences of 𝑎1, . . . , 𝑎𝑛
in which 𝑎1, . . . , 𝑎𝑛 can be partitioned. Then 𝑀 = 𝑚.

Proof. By the discussion above, 𝑚 is the size of a maximal antichain in
({1, 2, . . . , 𝑛},≺) and 𝑀 is the minimum covering of ({1, 2, . . . , 𝑛},≺) with ≺-
chains. Therefore, since ≺ is a partial ordering, Dilworth’s Theorem [4, 6] implies
𝑚 =𝑀 .

Next we briefly describe the first part of the algorithm – determining the least
number of increasing subsequences that cover 𝑎1, . . . , 𝑎𝑛. We basically follow the
ideas presented in [5, 3]. The algorithm processes the elements 𝑎𝑖 in increasing
order of 𝑖. At each step 𝑖 we keep a set of lists 𝐿1, . . . , 𝐿𝑚𝑖

, such that 𝐿1, . . . 𝐿𝑚𝑖

form a minimum ≺-chain covering of the set {1, 2, . . . , 𝑖} and additionally for each
𝑘 ∈ 𝐿𝑗+1 we keep a witness 𝑤(𝑘) ∈ 𝐿𝑗 such that

𝑤(𝑘) < 𝑘 and 𝑤(𝑘) ∕≺ 𝑘,

which is equivalent to 𝑤(𝑘) < 𝑘 and 𝑎
𝑤(𝑘) > 𝑎𝑘. Moreover, we maintain an array

of the last elements 𝑙[𝑠] ∈ 𝐿𝑠. Note that 𝑎
𝑙[𝑠+1] < 𝑎

𝑤(𝑙[𝑠+1]) ≤ 𝑎
𝑙(𝑠). The first

inequality follows by the definition of the witnesses and the second follows by the
fact that 𝑤(𝑙[𝑠+ 1]) ⪯ 𝑙[𝑠] according to the definition of 𝑙[𝑠].

Now we describe how to maintain these invariants from step 𝑖 to step 𝑖 + 1.

1. Find the least 𝑠, such that 𝑎
𝑙[𝑠] < 𝑎𝑖+1.

2. If such an 𝑠 does not exist, set 𝑠 = 𝑚𝑖 + 1, create a new list 𝐿𝑚𝑖+1 and set
𝑚𝑖+1 = 𝑚𝑖 + 1, otherwise set 𝑚𝑖+1 = 𝑚𝑖.

3. Insert 𝑖+ 1 into 𝐿𝑠 and set 𝑙[𝑠] = 𝑖+ 1.

4. If 𝑠 > 1 set 𝑤(𝑖 + 1) = 𝑙[𝑠− 1].

Note that 𝑖+1 > 𝑗 for each 𝑗 ∈ ∪𝑚𝑖

𝑘=1
𝐿𝑘. Therefore 𝑖+1 > 𝑙[𝑠], and since 𝑎

𝑙[𝑠] <

𝑎𝑖+1, we obtain that 𝑙[𝑠] ≺ 𝑖+1. However, 𝑙[𝑠] is the maximal element of the list 𝐿𝑠,
which implies that 𝐿𝑠 ∪ {𝑖+ 1} is again a chain with maximal element 𝑖+ 1. Next
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note that if 𝑠 > 1, the choice of 𝑠 implies that 𝑎
𝑙[𝑠−1] > 𝑎𝑖+1. Since 𝑖+1 > 𝑙[𝑠− 1],

we can safely define the witness of 𝑖+1 as 𝑤(𝑖+1) = 𝑙[𝑠−1], as it is done in step 4.
Finally, we argue that 𝐿𝑗 is again a minimum covering of {1, 2, . . . , 𝑖+ 1} with ≺-
chains. This is clear in the case 𝑚𝑖+1 = 𝑚𝑖, i.e. if 𝑠 ≤ 𝑚𝑖. Assume that 𝑠 = 𝑚𝑖+1,
then we can consider the sequence {𝑤𝑘(𝑖 + 1) ∣ 0 ≤ 𝑘 ≤ 𝑚𝑖}. Since 𝑖 + 1 ∈ 𝐿𝑚𝑖+1,
the definition of the witness implies that 𝑤𝑘(𝑖 + 1) ∈ 𝐿𝑚𝑖+1−𝑘. Moreover, we
have that 𝑤𝑘(𝑖 + 1) > 𝑤𝑘+1(𝑖 + 1) and 𝑎

𝑤
𝑘(𝑖+1) < 𝑎

𝑤
𝑘+1(𝑖+1). Therefore, the set

{𝑤𝑘(𝑖+1) ∣ 0 ≤ 𝑘 ≤ 𝑚𝑖} is an anti-chain of size 𝑚𝑖+1 in ({1, 2, . . . , 𝑖+1},≺). Now
by Dilworth’s Theorem [4, 6] each covering with chains of {1, . . . 𝑖+ 1} contains at
least 𝑚𝑖 + 1 elements, and therefore 𝑚𝑖+1 = 𝑚𝑖 + 1.

This shows that the above algorithm determines a minimum covering with
increasing subsequences. Next we prove the main result of this section:

Theorem 1. There is an 𝑂(𝑛 log𝑚)-time algorithm that sorts an arbitrary
sequence of distinct numbers 𝑎1, . . . , 𝑎𝑛 which contains no decreasing subsequence
of length more than 𝑚.

Proof. From the discussion above we know that the above algorithm pro-
vides a minimum covering with increasing subsequences. Now we consider its ef-
ficiency. Each of the steps 2, 3 and 4 can be performed in 𝑂(1) time and step 1
can be performed in 𝑂(log𝑚𝑖)-time by binary searching the array 𝑙[𝑠] (recall that
𝑎
𝑙[𝑠] > 𝑎

𝑙[𝑠+1]). Since 𝑚𝑖 ≤ 𝑚 and we have 𝑛 iterations in total, we obtain
𝑂(𝑛 log𝑚)-time algorithm to compute an optimal covering of 𝑎1, . . . 𝑎𝑛 with in-
creasing subsequences.

Now, since 𝐿1, . . . 𝐿𝑚 are sorted in increasing order, we can easily merge them
in 𝑂(𝑛 log𝑚)-time. One way to achieve this is to group the lists in pairs and merge
the lists in every single pair. Each such step needs 𝑂(𝑛) time and reduces the
number of lists twice. Thus in 𝑂(log𝑚) iterations we end up with a single sorted
list. Since we spend 𝑂(𝑛) time per iteration, the time bound follows.

Another possibility is to maintain a binary heap with up to 𝑚 elements, each
element corresponding to the least element of a list 𝐿𝑠 which is still not sorted. At
each step we extract the minimal element 𝑒 from the heap and add it to the sorted
output list (at the back). Next, if 𝑒 ∈ 𝐿𝑠, we insert in the heap the next element
of 𝐿𝑠. Clearly, we have 𝑂(𝑛) operations insert and extract minimal element from
a heap with 𝑂(𝑚) elements. Therefore, each such operation can be performed in
𝑂(log𝑚)-time and the total time complexity results in 𝑂(𝑛 log𝑚).

3. OPTIMALITY

In this section we show that each algorithm which sorts correctly in increasing
order a sequence of distinct numbers 𝑎1, . . . , 𝑎𝑛 needs to perform Θ(𝑛 log𝑚) com-
parisons where 𝑚 is the length of the longest decreasing subsequence of 𝑎1, . . . , 𝑎𝑛.
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This would imply that the algorithm we described in the preceding section is worst-
case optimal. The approach we use is similar to that in [5].

To this end we first show that there are 𝑒Θ(𝑛 log 𝑚) permutations 𝑎
𝜋(1), . . . , 𝑎𝜋(𝑛)

which contain no decreasing subsequence of length more than 𝑚.

Lemma 2. Let 𝑎1 < 𝑎2 < ⋅ ⋅ ⋅ < 𝑎𝑛 be distinct numbers and let Π(𝑚) be
the set of permutations 𝜋 ∈ 𝑆𝑛 such that 𝑎

𝜋(1), . . . , 𝑎𝜋(𝑛) contains no decreasing
subsequence of length greater than 𝑚. Then

∣Π(𝑚)∣ ≥
𝑚𝑛

𝑚!
.

Proof. We count the permutations 𝜋 ∈ 𝑆𝑛 with the property that there exist
integers 𝑚′ and 𝑘1, . . . 𝑘𝑚′ , 𝑘𝑚′+1 such that:

𝑚′
≤ 𝑚 and 1 = 𝑘1 < 𝑘2 < . . . 𝑘𝑚′ < 𝑘𝑚′+1 = 𝑛+ 1

∀𝑗(𝑎
𝜋(𝑘𝑗) < 𝑎

𝜋(𝑘𝑗+1) < ⋅ ⋅ ⋅ < 𝑎
𝜋(𝑘𝑗+1−1))

∀𝑖 ≤ 𝑚′(𝑎
𝜋(𝑘𝑖)

> 𝑎
𝜋(𝑘𝑖+1)).

In fact, {𝑘𝑗 , 𝑘𝑗 + 1, . . . , 𝑘𝑗+1 − 1}𝑚
′

𝑗=1
define 𝑚′ chains in ({1, 2, . . . 𝑛},≺) ,where

≺ is defined with respect to the sequence 𝑎
𝜋(1), . . . , 𝑎𝜋(𝑛). Consequently, by the

discussion in the previous section, there is no decreasing subsequence of length
more than 𝑚′ in 𝑎

𝜋(1), . . . , 𝑎𝜋(𝑛). On the other hand, the elements 𝑎
𝜋(𝑘𝑗) witness

for such a decreasing sequence. Therefore, each such permutation 𝜋 belongs to the
set Π(𝑚).

All such permutations 𝜋 can be generated in the following way:

∙ assign each element 𝑖 ∈ {1, 2, . . . , 𝑛} to exactly one of 𝑚 sets 𝐵𝑗 for 𝑗 ≤ 𝑚.

∙ discard all empty sets 𝐵𝑗 .

∙ sort each 𝐵𝑗 ∕= ∅ in increasing order. In this fashion for each set 𝐵𝑗 we obtain
an increasing sequence 𝑏𝑗 .

∙ arrange the sequences 𝑏𝑗 ’s in decreasing order of their first elements. In this
way we obtain the sequence 𝜋(1), . . . , 𝜋(𝑛).

Clearly, each permutation obtained in this way can be uniquely decomposed into
the increasing sequences 𝑏𝑗’s which witness that 𝜋 ∈ Π(𝑚). Next observe that
different families of sets {𝐵1, . . . , 𝐵𝑚} and {𝐵

′

1
, . . . 𝐵′

𝑚
} determine different permu-

tations 𝜋 and 𝜋′. Indeed, if it were the case that 𝜋 = 𝜋′, then these permutations
would determine the same sequence of increasing sequences 𝑏1 = 𝑏′

1
, 𝑏2 = 𝑏′

2
, . . . ,

𝑏𝑚′ = 𝑏′
𝑚

′ . Since each sequence 𝑏𝑗 uniquely determines the set 𝐵𝑗 , we conclude
that 𝐵𝑗 = 𝐵′

𝑗
and since {𝐵1, . . . , 𝐵𝑚} and {𝐵′

1
, . . . , 𝐵′

𝑚
} define a partition of

{1, 2, . . . , 𝑛}, we obtain that {𝐵1, . . . , 𝐵𝑚} = {𝐵
′

1
, . . . , 𝐵′

𝑚
}.
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Therefore, it suffices to bound from below the number of all different families
{𝐵1, . . . , 𝐵𝑚}. It is easy to count that the assignment in the first part of the
construction can be done in𝑚𝑛 different ways. Since each family {𝐵1, . . . , 𝐵𝑚} can
be generated by at most𝑚! permutations of the sets 𝐵𝑗 , we obtain that the number
of all different families {𝐵1, . . . , 𝐵𝑚} is at least

𝑚
𝑛

𝑚!
and therefore there are at least

𝑚
𝑛

𝑚!
permutations such that 𝑎

𝜋(1) . . . , 𝑎𝜋(𝑛) contains no decreasing subsequence of

length more than 𝑚. Therefore ∣Π(𝑚)∣ ≥ 𝑚
𝑛

𝑚!
.

Corollary 1. The number of permutations of a sequence 𝑎1, . . . , 𝑎𝑛 of distinct
numbers that contain no decreasing subsequence of length more than 𝑚 is 𝑒Ω(𝑛 log𝑚).

Proof. We consider first the case 𝑚 ≤

𝑛

2
. According to Lemma 2, the number

of permutations Π(𝑚) that contain no decreasing subsequence of length more than
𝑚 is

∣Π(𝑚)∣ ≥
𝑚𝑛

𝑚!
.

By Stirling’s formula, 𝑚! =
√

2𝜋𝑚𝑚𝑚 𝑒−𝑚+𝑜(1). Hence, 𝑚! = 𝑒𝑚(log𝑚+𝑂(1)).
Therefore,

∣Π(𝑚)∣ ≥
𝑚𝑛

𝑒𝑚(log𝑚+𝑂(1))
≥ 𝑒(𝑛−𝑚) log𝑚+𝑂(𝑚)

≥ 𝑒
𝑛

2
log𝑚+𝑂(𝑚) = 𝑒Θ(𝑛 log𝑚) ,

since 𝑚 ≤

𝑛

2
.

In the case 𝑚 > 𝑛

2
we have log 𝑛

2
≤ log𝑚 ≤ log 𝑛

2
+ 1. Now we use that

Π
(𝑛

2

)

⊆ Π(𝑚).

By the discussion above we obtain that
∣
∣
∣Π
(𝑛

2

)∣
∣
∣ = 𝑒Ω(𝑛 log

𝑛

2
) ,

and since Ω(𝑛 log 𝑛

2
) = Ω(𝑛 log𝑚) for 𝑛

2
≤ 𝑚 ≤ 𝑛 ,it is easy to see that

∣Π(𝑚)∣ ≥
∣
∣
∣Π
(𝑛

2

)∣
∣
∣ = 𝑒Ω(𝑛 log𝑚) ,

and the result follows in this case either.

Corollary 2. Each algorithm which correctly sorts in increasing order each
sequence 𝑎1, . . . , 𝑎𝑛 of distinct numbers which contains no decreasing subsequence
of length more than 𝑚, has worst-case time-complexity Ω(𝑛 log𝑚).

Proof. By Corollary 1, there are 𝑒Ω(𝑛 log𝑚) different permutations of 𝑎1, . . . , 𝑎𝑛
that the algorithm has to be capable to distinguish. Now, if the algorithm performs
𝑜(𝑛 log𝑚) comparisons on each such instance, we can assign each such permutation
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to a leaf of a binary decision tree of height 𝑜(𝑛 log𝑚). However, each such tree has
𝑒𝑜(𝑛 log𝑚) leaves and therefore two different permutations will be assigned to the
same leaf of the tree. Consequently, the algorithm will be unable to distinguish
between them.

As a corollary we obtain the following result:

Theorem 2. The 𝑂(𝑛 log𝑚)-time sorting algorithm described in Section 2 is
worst-case optimal.

Proof. By Theorem 1 we have the correctness and the 𝑂(𝑛 log𝑚) bound for
the algorithm. On the other hand, Corollary 2 implies that any other algorithm
that solves this problem is worst-case Ω(𝑛 log𝑚).

4. CONCLUSION

We have studied the problem of sorting a sequence of 𝑛 distinct numbers with
respect to the size 𝑚 of the longest decreasing subsequence that it contains. We
described an 𝑂(𝑛 log𝑚)-time algorithm that solves this problem without any as-
sumptions on 𝑚 and we showed that this time-complexity is worst-case optimal
even under the assumption that an upper bound for 𝑚 is known in advance.
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LEAST ENUMERATIONS OF UNARY PARTIAL STRUCTURES

ANGEL V. DITCHEV

In the present paper we consider structures with unary partial functions and partial
predicates, called unary structures. Unary structures does not contain equality and
inequality among the predicates of the structure. The main result obtained here is a
characterization of the unary structures which have least enumerations, called degrees
of the structures. As a corollary it is obtained a characterization of the unary structures
which admit effective enumerations. There are some interesting results concerning the
spectrum and the so-called quasi-degree of such structures.

Keywords: Enumeration, enumeration degree, enumeration operator, degree of a
structure, type of a sequence of elements of a structure, Turing degree, universal set
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1. INTRODUCTION

There are a lot of attempts to find a measure of the complexity of a given
structure. Richter [8] has defined a degree of a structure as the least 𝑇 -degree
(if it exists) of all bijective total enumerations of the structure. Then it has been
introduced a spectrum of a structure according to 𝑇 -degrees, using only bijective
total enumerations, too. There are a lot of investigations that show some sufficient
conditions for a structure to have a least enumeration [1] and [11], and another with
complicated structures without degree [8, 7, 2, 6]. They use the equality among the
predicates of the structure. Soskov [12, 11] has generalized the notion of spectrum
of a structure, using not only bijective enumeration, but all total ones. In that
definition enumeration degrees are considered. This gives a possibility to consider

Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 51–69. 51



not only totally defined structures, but partially defined, as well. Soskov [11] has
generalized a spectrum of a partial structure, defining a partial spectrum, using
partial enumerations.

Here we consider partial structures with unary functions and predicates, calling
them unary. Since the equality and the inequality are not unary, they are not
among the predicates of the structure. We consider such structures because they
are simple enough, and as we will see, they are rich enough. For unary structures
we find necessary and sufficient conditions for possessing least enumerations w.r.t.
to e-degrees. As a corollary we obtain similar conditions w.r.t. to T-degrees.

In Section 2 we introduce the main definitions and preliminary results. In
Section 3 we introduce a type and ∃-type of an element of a unary partial structure.
Roughly speaking, a type (∃-type) of such an element is the set of all codes of
open (existential) formulas, which are true on that element in that structure. A
characterization of all unary structures, which admits least enumerations in the
terms of a universal set of all types (∃-types) is given. We show that a unary
partial structure admits a least enumeration if and only if there exist sequence of
finite elements such that the ∃-type of that sequence is the least upper bound of
all ∃-types of the structure and there exists a computable sequence of enumeration
operators, such that the sequence of these enumeration operators applied to the
upper bound ”describes” all types of the elements of the structure. As a corollary
we characterize the structures which admit effective enumerations. In this section
we show that it is not possible to have a spectrum of a unary partial structure with
denumerably many minimal elements.

In Section 4 we prove that a partial spectrum of a unary partial structure is
upward closed for all partial enumerations. We show that for every set of 𝑟-degrees
there is a structure with a set of types which ”almost” coincides with the set of
𝑟-degrees, 𝑟 ∈ {𝑒, 𝑇 }. Here we show several interesting examples, some of them
concerning the so called quasi-degrees [11]. For example, we show that there are
structures which don’t have degrees, but they have quasi-degrees.

2. PRELIMINARIES

In this paper we use 𝜔 to denote the set of all natural numbers; 𝐷𝑜𝑚(𝑓),
𝑅𝑎𝑛(𝑓) and 𝐺𝑓 to denote respectively the domain, the range and the graph of the
function 𝑓 ; ⟨𝑓⟩ or ⟨𝐺𝑓 ⟩ to denote the set {⟨𝑥1, . . . , 𝑥𝑛, 𝑦⟩∣(𝑥1, . . . , 𝑥𝑛, 𝑦) ∈ 𝐺𝑓},
where ⟨., . . . , .⟩ is some fixed coding function for all finite sequences of natural
numbers.

We shall recall some definitions from [10, 3].
Let 𝔄 = ⟨𝐵; 𝜃1, . . . , 𝜃𝑛;𝑅1, . . . , 𝑅𝑘⟩ be a partial structure, where 𝐵 is an arbi-

trary denumerable set, 𝜃1, . . . , 𝜃𝑛 are partial unary functions in 𝐵 and 𝑅1, . . . , 𝑅𝑘

are unary partial predicates on 𝐵. We call such structures unary. We identify the
partial predicates with partial mapping taking values in {0, 1}, writing 0 for true
and 1 for false.
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Let 𝔅 = ⟨𝜔;𝜑1, . . . , 𝜑𝑛;𝜎1, . . . , 𝜎𝑘⟩ be a partial structure over the set 𝜔. By
⟨𝔅⟩ we denote the set ⟨𝜑1⟩ ⊕ ⋅ ⋅ ⋅ ⊕ ⟨𝜑𝑛⟩⊕ ⟨𝜎1⟩ ⊕ ⋅ ⋅ ⋅ ⊕ ⟨𝜎𝑘⟩. Let 𝑊 be a recursively
enumerable set. For any set 𝐵 let

𝑊 (𝐵) = {𝑥∣∃𝑣(⟨𝑣, 𝑥⟩ ∈ 𝑊 ∧ 𝐸𝑣 ⊆ 𝐵)}. In this case we say 𝑊 is an enu-
meration operator. A sequence of enumeration operators 𝑊𝑧0

,𝑊𝑧1
, . . . is said to

be computable if there exists a recursive function ℎ such that ℎ(𝑛) = 𝑧𝑛 for any
natural 𝑛.

Definition 1. Let 𝒜 be a family of subsets of 𝜔. A set 𝑈 ⊆ 𝜔2 is said to be
universal for the family 𝒜 if the following conditions hold:

a) For every fixed 𝑒 ∈ 𝜔, {𝑥1∣(𝑒, 𝑥1) ∈ 𝑈} ∈ 𝒜;
b) If 𝐴 ∈ 𝒜, then there exists 𝑒 such that 𝐴 = {𝑥1∣(𝑒, 𝑥1) ∈ 𝑈}.

Definition 2. Let ℱ be a family of unary partial functions. A binary partial
function 𝐹 is said to be universal for the family ℱ if the following conditions hold:

a) For every fixed 𝑒 ∈ 𝜔, 𝜆𝑥1.𝐹 (𝑒, 𝑥1) ∈ ℱ ;
b) If 𝑓 ∈ ℱ , then there exists 𝑒 such that 𝑓 = 𝜆𝑥1.𝐹 (𝑒, 𝑥1).

Definition 3. An enumeration of a structure 𝔄 is any ordered pair ⟨𝛼,𝔅⟩ where
𝔅 = ⟨𝜔;𝜑1, . . . , 𝜑𝑛;𝜎1, . . . , 𝜎𝑘⟩ is a partial unary structure on 𝜔 and 𝛼 is a partial
surjective mapping of 𝜔 onto 𝐵 such that the following conditions hold:

(i) 𝐷𝑜𝑚(𝛼) ≤𝑒 ⟨𝔅⟩;
(ii) 𝛼(𝜑𝑖(𝑥)) ∼= 𝜃𝑖(𝛼(𝑥)) for every 𝑥 ∈ 𝜔, 1 ≤ 𝑖 ≤ 𝑛;
(iii) 𝜎𝑗(𝑥) ∼= 𝑅𝑗(𝛼(𝑥)) for every 𝑥 ∈ 𝜔, 1 ≤ 𝑗 ≤ 𝑘.

An enumeration ⟨𝛼,𝔅⟩ is said to be total iff 𝐷𝑜𝑚(𝛼) = 𝜔.
An enumeration ⟨𝛼,𝔅⟩ is said to be effective iff all functions and predicates in

𝔅 are computable.
Degree spectrum [12, 11] of the structure 𝔄 is the family

DS(𝔄) = {𝑑𝑒(⟨𝔅⟩)∣⟨𝛼,𝔅⟩ is a total enumeration of 𝔄}

Partial degree spectrum [11] of a structure 𝔄 is the family

PDS(𝔄) = {𝑑𝑒(⟨𝔅⟩)∣⟨𝛼,𝔅⟩ is an enumeration of 𝔄}.

Let ⟨𝛼0,𝔅0⟩ be an enumeration of the structure 𝔄. We say that ⟨𝛼0,𝔅0⟩ is a
least enumeration of 𝔄 if and only if for every enumeration ⟨𝛼,𝔅⟩ of 𝔄, ⟨𝔅0⟩ ≤𝑒

⟨𝔅⟩.
Let ℒ be the first order language corresponding to the structure 𝔄, i.e. ℒ

consists of 𝑛 unary functional symbols f1, . . . , fn and 𝑘 unary predicate symbols
T1, . . . ,Tk. We add a new unary predicate symbol T0 which will represent the
unary total predicate 𝑅0, where 𝑅0(𝑠) = 0 for all 𝑠 ∈ 𝐵.

Let us fix some denumerable set 𝑋1, 𝑋2, . . . of variables. We shall use capital
letters 𝑋,𝑌, 𝑍 and the same letters by indexes to denote variables.

The definition of a term in the language ℒ is the usual: every variable is a
term; if 𝜏 is a term then fi(𝜏) is a term.
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If 𝜏 is a term in the language ℒ, then we write 𝜏(𝑌1, . . . , 𝑌𝑚) to denote that
all variables which occur in the term 𝜏 are among 𝑌1, . . . , 𝑌𝑚. If 𝑎1, . . . , 𝑎𝑚 are
elements of𝐵 and 𝜏(𝑌1, . . . , 𝑌𝑚) is a term, then by 𝜏𝔄(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚) we denote
the value of the term 𝜏 in 𝔄 over the elements 𝑎1, . . . , 𝑎𝑚, if it exists.

Termal predicate in the language ℒ is defined by the following inductive clauses:

If T ∈ {T0, . . . ,Tk} and 𝜏 is a term, then T(𝜏) and ¬T(𝜏) are termal predi-
cates.

If Π1 and Π2 are termal predicates, then (Π1&Π2) is a termal predicate.

Let Π(𝑌1, . . . , 𝑌𝑚) be a termal predicate whose variables are among 𝑌1, . . . , 𝑌𝑚
and let 𝑎1, . . . , 𝑎𝑚 be elements of 𝐵. The value Π𝔄(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚) of Π over
𝑎1, . . . , 𝑎𝑟 in 𝔄 is defined by the following inductive clauses:

If Π = T𝑗(𝜏), 0 ≤ 𝑗 ≤ 𝑘, then

Π𝔄(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚) ∼= 𝑅𝑗(𝜏𝔄(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚)) .

If Π = ¬Π1, where Π1 is a termal predicate, then

Π𝔄(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚) ∼= (Π1

𝔄(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚) ∼= 0 ⊃ 1, 0).

If Π = (Π1&Π2), where Π1 and Π2 are termal predicates, then

Π𝔄(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚)∼=(Π1

𝔄(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚)∼=0⊃Π2

𝔄(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚), 1).

Formulae of the kind ∃𝑌 ′

1
. . . ∃𝑌 ′

𝑙
(Π), where Π is a termal predicate are called

conditions. Every variable which occurs in Π and is different from 𝑌 ′

1
, . . . , 𝑌 ′

𝑙
is

called free in the condition ∃𝑌 ′

1
. . .∃𝑌 ′

𝑙
(Π).

Let 𝐶 = ∃𝑌 ′

1
. . . ∃𝑌 ′

𝑙
(Π) be a condition, all free variables in 𝐶 be among

𝑌1, . . . , 𝑌𝑚, and 𝑎1, . . . , 𝑎𝑚 be elements of 𝐵. The value 𝐶𝔄(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚)
is defined by the equivalence:

𝐶𝔄(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚)∼=0⇐⇒∃𝑡1 . . .∃𝑡𝑙(Π𝔄(𝑌
′

1/𝑡1, . . . , 𝑌
′

𝑙 /𝑡𝑙, 𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚)∼=0).

We assume that some effective codding of all terms, termal predicates and condi-
tions of the language ℒ is fixed. We shall use 𝜏𝑣 ,Π𝑣, 𝐶𝑣 to denote the corespondent
one with code 𝑣.

Let 𝐴 ⊆ 𝜔𝑟
× 𝐵𝑚. The set 𝐴 is said to be ∃-definable in the structure 𝔄

if and only if there exists a recursive function 𝛾 of 𝑟 + 1 variables such that for
all 𝑛, 𝑥1, . . . , 𝑥𝑟, 𝐶

𝛾(𝑛,𝑥1,...,𝑥𝑟) is a condition with free variables among 𝑍1, . . . , 𝑍𝑙,
𝑌1, . . . , 𝑌𝑚 and for some fixed elements 𝑡1, . . . , 𝑡𝑙 of 𝐵 the following equivalence is
true:

(𝑥1, . . . , 𝑥𝑟, 𝑎1, . . . , 𝑎𝑚) ∈ 𝐴 ⇐⇒

∃𝑛 ∈ 𝜔(𝐶
𝛾(𝑛,𝑥1,...,𝑥𝑟)

𝔄
(𝑍1/𝑡1, . . . , 𝑍𝑙/𝑡𝑙, 𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚) ∼= 0).
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Let 𝔄 = ⟨𝐵; 𝜃1, . . . , 𝜃𝑛;𝑅1, . . . , 𝑅𝑘⟩ be a partial structure. We shall give a
generalized version of the normal enumerations [10] and call them normal pseudo-
enumerations.

Define 𝑓∗

𝑖
(𝑝) = ⟨𝑖−1, 𝑝⟩, 𝑖 = 1, . . . , 𝑛 and set𝑁0 = 𝜔∖(𝑅𝑎𝑛(𝑓∗

1
)∪⋅ ⋅ ⋅∪𝑅𝑎𝑛(𝑓∗

𝑛
)).

It is obvious that 𝑁0 is a recursive set and let {p0,p1, . . . } = 𝑁0, where pi < pj if
𝑖 < 𝑗.

Let 𝑁1 ⊆ 𝑁0. For every partial surjective mapping 𝛼0 of 𝑁1 onto 𝐵 we define
partial mapping 𝛼 of 𝜔 onto 𝐵 by the following inductive clauses:

(i) If 𝑝 ∈ 𝑁1, then 𝛼(𝑝) ∼= 𝛼0(𝑝);

(ii) If 𝑝 = 𝑓∗

𝑖
(𝑞), 𝛼(𝑞) ∼= 𝑎 and 𝜃𝑖(𝑎) ∼= 𝑏, then 𝛼(𝑝) ∼= 𝑏.

Let 𝐷1, . . . , 𝐷𝑛 be partial predicates such that

𝐷𝑖(𝑥) ∼=

{

0, if 𝜃𝑖(𝛼(𝑥)) is defined,

undefined, otherwise;

and 𝑓1, . . . , 𝑓𝑛 be partial functions such that

𝑓𝑖(𝑥) ∼=

{

𝑓∗

𝑖
(𝑥), if 𝐷𝑖(𝑥) ∼= 0,

undefined, otherwise.

Let 𝜎1, . . . , 𝜎𝑘 be the partial predicates defined by the equalities 𝜎𝑗(𝑥)∼=𝑅𝑗(𝛼(𝑥)),
𝑗 = 1, . . . , 𝑘.

Let 𝔅 be the partial structure ⟨𝜔; 𝑓1, . . . , 𝑓𝑛;𝜎1, . . . , 𝜎𝑘⟩ and 𝔅∗ be the partial
structure ⟨𝜔; 𝑓∗

1
, . . . , 𝑓∗

𝑛
;𝜎1, . . . , 𝜎𝑘⟩.

Every pair ⟨𝛼,𝔅⟩ which is obtained by the method described above is called
normal pseudo-enumerations of the structure 𝔄. The mapping 𝛼0 again is called
basis of the enumeration ⟨𝛼,𝔅⟩. It is obvious that 𝛼0 completely determines the
normal pseudo-enumeration ⟨𝛼,𝔅⟩. Let us notice that in the general case a normal
pseudo-enumeration ⟨𝛼,𝔅⟩ is not an enumeration at all. Nevertheless, we shall see
that there are cases where they are enumerations and we shall use them.

In the case 𝑁1 = 𝑁0 normal pseudo-enumerations and normal enumerations
coincide.

Let ⟨𝛼,𝔅⟩ be a normal pseudo-enumeration. We shall reformulate all propo-
sitions for normal enumerations and shall formulate several new ones. The proofs
are analogous to those for normal enumerations in [10] and we shall give proofs
only of those which are different. Let us note that if 𝜃1, . . . , 𝜃𝑛 are total, then the
normal enumeration will be total.

Proposition 1. 𝐷𝑜𝑚(𝛼) ≤𝑒 𝑁1 ⊕𝐷1 ⊕ ⋅ ⋅ ⋅ ⊕𝐷𝑛.
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Proof. The result follows from

𝑥 ∈ 𝐷𝑜𝑚(𝛼) ⇐⇒ 𝑥 ∈ 𝑁1 ∨ ∃𝑥0∃𝑥1 . . .∃𝑥𝑙∃𝑖1 . . . ∃𝑖𝑙(1 ≤ 𝑖1, . . . , 𝑖𝑙 ≤ 𝑛

&𝑥0 ∈ 𝑁1&𝑥1 = ⟨𝑖1 − 1, 𝑥0⟩& . . .&𝑥𝑙 = ⟨𝑖𝑙 − 1, 𝑥𝑙−1⟩

&𝐷𝑖1
(𝑥0) ∼= 0& . . .&𝐷𝑖𝑙

(𝑥𝑙−1) ∼= 0&𝑥𝑙 = 𝑥).

□

Corollary 1. If 𝑁1 ≤𝑒 ⟨𝔅⟩, then 𝐷𝑜𝑚(𝛼) ≤𝑒 ⟨𝔅⟩.

Proposition 2. For every 1 ≤ 𝑖 ≤ 𝑛 and 𝑦 ∈ 𝐷𝑜𝑚(𝛼), 𝛼(𝑓𝑖(𝑦)) ∼= 𝜃𝑖(𝛼(𝑦)).

Corollary 2. Let 𝜏(𝑌 ) be a term, and 𝑦 ∈ 𝐷𝑜𝑚(𝛼). Then

𝛼(𝜏𝔅(𝑌/𝑦)) ∼= 𝜏𝔄(𝑌/𝛼(𝑦)).

Corollary 3. If 𝑁1 ≤𝑒 ⟨𝔅⟩, then the normal pseudo-enumeration ⟨𝛼,𝔅⟩ is an
enumeration of the structure 𝔄.

Proposition 3. There exists an effective way for every 𝑥 in 𝜔 to define 𝑦 ∈ 𝑁0

and a term 𝜏(𝑌 ) such that 𝑥 = 𝜏𝔅∗(𝑌/𝑦).

We call a term 𝜏(𝑋𝑖) standard for 𝑥 if 𝑥 = 𝜏𝔅∗(𝑋𝑖/pi) for some pi ∈ 𝑁 .

Proposition 4. There exists an effective way for every 𝑥 in 𝜔 to define an
element pi and a standard term 𝜏(𝑋𝑖) such that 𝑥 = 𝜏𝔅∗(𝑋𝑖/pi).

Proposition 5. Let 𝜏(𝑌 ) be a term, 𝑦 ∈ 𝜔, ⟨𝛼,𝔅⟩ be a normal pseudo-
enumeration and 𝜏𝔅∗(𝑌/𝑦) ∈ 𝐷𝑜𝑚(𝛼). Then 𝜏𝔅(𝑌/𝑦) ∼= 𝜏𝔅∗(𝑌/𝑦).

If ⟨𝛼,𝔅⟩ is a normal pseudo-enumeration, then we shall use the notation

𝑅𝛼 := ∪𝑘

𝑗=1
{⟨𝑗, 𝑥, 𝑧⟩∣𝜎𝑗(𝑥) = 𝑧} ∪ ∪𝑛

𝑗=1
{⟨𝑗 + 𝑘, 𝑥, 𝑧⟩∣𝐷𝑗(𝑥) = 𝑧}.

It is clear that for every 𝑊 ⊆ 𝜔, 𝑊 ≤𝑒 𝑅𝛼 if and only if 𝑊 ≤𝑒 ⟨𝔅⟩, i.e.
𝑅𝛼 ≡𝑒 ⟨𝔅⟩.

Proposition 6. There exists an effective way for every natural 𝑢 to define
elements 𝑦1, . . . , 𝑦𝑚 ∈ 𝑁0 and a termal predicate Π(𝑌1, . . . , 𝑌𝑚) such that for every
normal pseudo-enumeration ⟨𝛼,𝔅⟩:

𝑢 ∈ 𝑅𝛼 ⇐⇒ Π𝔄(𝑌1/𝛼(𝑦1), . . . , 𝑌𝑚/𝛼(𝑦𝑚)) ∼= 0.

Proposition 7. There exists an effective way for every code 𝑣 of a finite set 𝐸𝑣

to define elements 𝑦𝑣
1
, . . . , 𝑦𝑣

𝑚𝑣
∈ 𝑁0 and a termal predicate Π𝑣(𝑌1, . . . , 𝑌𝑚𝑣

) such
that for every normal pseudo-enumeration ⟨𝛼,𝔅⟩:

𝐸𝑣 ⊆ 𝑅𝛼 ⇐⇒ Π𝑣,𝔄(𝑌1/𝛼(𝑦
𝑣

1
), . . . , 𝑌𝑚𝑣

/𝛼(𝑦𝑣
𝑚𝑣

)) ∼= 0.
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Therefore, there exists a recursive function 𝛾 such that

𝐸𝑣 ⊆ 𝑅𝛼 ⇐⇒ Π
𝛾(𝑣)

𝔄
(𝑌1/𝛼(𝑦

𝑣

1
), . . . , 𝑌𝑚𝑣

/𝛼(𝑦𝑣
𝑚𝑣

)) ∼= 0.

We call a termal predicate Π𝛾(𝑣) standard for 𝑣 in the pseudo-enumeration ⟨𝛼,𝔅⟩,
if

𝐸𝑣 ⊆ 𝑅𝛼 ⇐⇒ Π
𝛾(𝑣)

𝔄
(𝑋𝑗1

/𝛼(pj1), . . . , 𝑋𝑗𝑚𝑣
/𝛼(pjmv

)) ∼= 0.

Proposition 8. There exists a recursive function 𝛾 such that for every code 𝑣
of the finite set 𝐸𝑣 to define elements pj1 , . . . ,pjmv

and a standard termal predicate

Π𝛾(𝑣)(𝑋𝑗1
, . . . , 𝑋𝑗𝑚𝑣

) such that for every normal pseudo-enumeration ⟨𝛼,𝔅⟩:

𝐸𝑣 ⊆ 𝑅𝛼 ⇐⇒ Π
𝛾(𝑣)

𝔄
(𝑋𝑗1

/𝛼(pj1), . . . , 𝑋𝑗𝑚𝑣
/𝛼(pjmv

)) ∼= 0.

Lemmas 1 and 2 and Proposition 9 below have analogous proofs, therefore we
shall give only the proof of Proposition 9.

Lemma 1. Let ⟨𝛼,𝔅⟩ be a normal pseudo-enumeration, 𝜏(𝑌 ) be a term and
𝜑(𝑦1) ∼= 𝜏𝔅(𝑌/𝑦1). Then ⟨𝐺𝜑⟩ ≤𝑒 𝑅𝛼.

Lemma 2. Let ⟨𝛼,𝔅⟩ be a normal pseudo-enumeration, 𝜏𝑣(𝑋𝑟) be a term
with code 𝑣 and 𝑟′ ∈ 𝜔. Set 𝜑(𝑣, ⟨𝑥1, . . . , 𝑥𝑟′⟩) ∼= 𝜏𝑣

𝔅
(𝑋𝑟/𝑥𝑟), if 𝑟 ≤ 𝑟′, and

𝜑(𝑣, ⟨𝑥1, . . . , 𝑥𝑟′⟩) ∼= 𝜏𝑣
𝔅
(𝑋𝑟/𝑥𝑟′), if 𝑟 > 𝑟′. Then ⟨𝐺𝜑⟩ ≤𝑒 𝑅𝛼.

Proposition 9. Let ⟨𝛼,𝔅⟩ be a normal pseudo-enumeration, Π𝑣(𝑋1, . . . , 𝑋𝑟)
be a termal predicate or a condition with a code 𝑣 and 𝑟′ ∈ 𝜔. Set

𝜋(𝑣, ⟨𝑥1, . . . , 𝑥𝑟′⟩) ∼=

{

Π𝑣

𝔅
(𝑋1/𝑥1, . . . , 𝑋𝑟/𝑥𝑟), if 𝑟 ≤ 𝑟′,

Π𝑣

𝔅
(𝑋1/𝑥1, . . . , 𝑋𝑟

′/𝑥𝑟′ , . . . , 𝑋𝑟/𝑥𝑟′), if 𝑟 > 𝑟′.

Then ⟨𝐺𝜋⟩ ≤𝑒 𝑅𝛼.

Proof. We shall consider only the case when 𝜋1 is obtained from 𝐶𝑣 by pro-
jection, i.e. 𝐶𝑣

⇐⇒ ∃𝑋𝑗Π
𝛾1(𝑣), where Π𝛾1(𝑣) is a termal predicate and 𝛾1 is a

recursive function. For the sake of simplicity let 𝑗 = 1. Let us assume that for the
corresponding function 𝜋 of Π𝛾1(𝑣) we have ⟨𝐺𝜋⟩ ≤𝑒 𝑅𝛼. Then

⟨𝑣, ⟨𝑥2, . . . , 𝑥𝑟′⟩, 𝑦⟩ ∈ ⟨𝐺𝜋1
⟩ ⇐⇒ ∃𝑥1(⟨𝛾1(𝑣), ⟨𝑥1, 𝑥2, . . . , 𝑥𝑟′⟩, 𝑦⟩ ∈ ⟨𝐺𝜋⟩)

⇐⇒∃𝑣1(⟨⟨𝛾1(𝑣), ⟨𝑥2, . . . , 𝑥𝑟′⟩, 𝑦⟩, 𝑣1⟩∈𝑊&𝐸𝑣1
⊆⟨𝐺𝜋⟩),

where

𝑊 ={⟨𝛾1(𝑣), ⟨𝑥2, . . . , 𝑥𝑟′⟩, 𝑦⟩, 𝑣1⟩∣𝐸𝑣1
={⟨𝛾1(𝑣), ⟨𝑥1, 𝑥2, . . . , 𝑥𝑟′⟩, 𝑦⟩} for some 𝑥1}.

Therefore, ⟨𝐺𝜋1
⟩ ≤𝑒 ⟨𝐺𝜋⟩ ≤𝑒 𝑅𝛼. □
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3. THE MAIN RESULT

In this section we shall give necessary and sufficient conditions for a given
unary partial structure to admit a least enumeration.

Let 𝔄 = ⟨𝐵; 𝜃1, . . . , 𝜃𝑛;𝑅1, . . . , 𝑅𝑘⟩ be a unary partial structure. Let Π𝑣 be a
termal predicate with variables among 𝑋1, . . . , 𝑋𝑚.

Type of a sequence 𝑏1, . . . , 𝑏𝑚 of elements of 𝐵 is called the set

{𝑣∣Π𝑣

𝔄(𝑋1/𝑏1, . . . , 𝑋𝑚/𝑏𝑚) ∼= 0}.

The type of the sequence 𝑏1, . . . , 𝑏𝑚 will be denoted by [𝑏1, . . . , 𝑏𝑚]𝔄. The type of
an element 𝑎 of 𝐵 is the type of the sequence 𝑎.

Let 𝐶𝑣 be a condition with free variables among 𝑋1, . . . , 𝑋𝑚. ∃-type of a
sequence 𝑏1, . . . , 𝑏𝑚 of elements of 𝐵 is called the set

{𝑣∣𝐶𝑣(𝑋1/𝑏1, . . . , 𝑋𝑚/𝑏𝑚) ∼= 0}.

The ∃-type of the sequence 𝑏1, . . . , 𝑏𝑚 is denoted by ∃[𝑏1, . . . , 𝑏𝑚]𝔄.

∃-type could be defined in any partial structure. In the case of unary structures
we can characterize the ∃-types by types of the elements of 𝐵 and a fixed set of
natural numbers. A condition is said to be simple if it does not contain free variables
and it is in the form ∃𝑋1Π, where Π is a termal predicate. Let 𝑉 𝔄

0
= {𝑣∣𝐶𝑣

𝔄
∼=

0 & 𝐶𝑣 is a simple condition }. It is easy to see that the following proposition is
true:

Proposition 10. Let 𝔄 be a unary partial structure. Then for any elements
𝑏1, . . . , 𝑏𝑚 of 𝐵, ∃[𝑏1, . . . , 𝑏𝑚]𝔄 ≡𝑒 [𝑏1]𝔄 ⊕ ⋅ ⋅ ⋅ ⊕ [𝑏𝑚]𝔄 ⊕ 𝑉 𝔄

0
.

Lemma 3. Let 𝔄 be a unary partial structure with degree a. If there exists an
universal set 𝑈 for the family of all types of elements of 𝐵, then there exists an
enumeration of 𝔄 which is normal pseudo-enumeration with e-degree a.

Proof. Let 𝑈 be a universal set for the family of all types of elements of 𝐵 with
𝑒-degree a. By 𝑈𝑥 we denote the set {𝑣∣(𝑥, 𝑣) ∈ 𝑈}. In fact, for all 𝑥, 𝑈𝑥 is a type of
some element. We can assume that for every type t of an element of 𝐵 there exist
infinitely many 𝑥 such that t = 𝑈𝑥. Let ⟨𝛼,𝔅⟩ be a normal pseudo-enumeration of
𝔄, defined by a basis 𝛼0 satisfying: 𝛼0(p𝑥) = 𝑎 ⇐⇒ [𝑎]𝔄 = 𝑈𝑥 and 𝑅𝑎𝑛(𝛼0) = 𝐵.

Then 𝐷𝑜𝑚(𝛼0) = {p𝑥∣∃𝑣((𝑥, 𝑣) ∈ 𝑈)} ≤𝑒 ⟨𝑈⟩ = {⟨𝑥, 𝑣⟩∣(𝑥, 𝑣) ∈ 𝑈}. Accord-
ing to Proposition 9, ⟨𝑈⟩ ≤𝑒 𝑅𝛼. Therefore, ⟨𝛼,𝔅⟩ is an enumeration. Further-
more, ⟨𝔅⟩ ≤𝑒 ⟨𝑈⟩ ≤𝑒 𝑅𝛼. Hence, 𝑑𝑒𝑔𝑒(𝑅𝛼) = a. □

Proposition 11. Let 𝔄 be a unary partial structure. There exists a universal
set 𝑈 for the family of all types of elements of 𝐵 with 𝑒-degree a iff there exists
a universal set 𝑈1 for the family of all ∃-types of sequences of elements of 𝐵 with
𝑒-degree a.
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Proof. Let us first assume that there exists a universal set 𝑈 for the family of all
types of elements of𝐵 with 𝑒-degree a. According to Lemma 3, there exists a normal
pseudo-enumeration ⟨𝛼,𝔅⟩, which is an enumeration of 𝔄 such that 𝑑𝑒𝑔𝑒(𝑅𝛼) = a.
Using Proposition 9, one can see in the enumeration ⟨𝛼,𝔅⟩ that the family of all
∃-types of sequences of elements in the structure𝔅 has a universal set with degree a
and it is universal set for the family of all ∃-types of sequences of 𝐵 in the structure
𝔄.

To prove the converse, let 𝑈1 be a universal for the set of all ∃-types of sequences
of elements of 𝐵 with 𝑒-degree a. Then the set 𝑈 = {(𝑥, 𝑣)∣(𝑥, 𝑣) ∈ 𝑈1&Π𝑣 is a
termal predicate with variable 𝑋1} is universal for the types [𝑎]𝔄 of all elements 𝑎
of 𝐵 and 𝑑𝑒𝑔𝑒(𝑈) ≤ a. To ensure that there exists a universal set with degree a,
let us define the set 𝑈 ′ as follows: 𝑈 ′ = 𝑈 ⊕ (𝐴 × 𝑈𝑥0

), where 𝑈𝑥0
is a fixed type

of an element of 𝐵 and 𝐴 is a set of naturals such that 𝑑𝑒𝑔𝑒(𝐴) = a. It is obvious
that 𝑑𝑒𝑔𝑒(𝑈

′) = a and 𝑈 ′ is a universal set for the set of all types of elements of
𝐵. □

Proposition 12. If ⟨𝛼,𝔅⟩ is an enumeration of the unary partial structure 𝔄

with 𝑒-degree a, then there exists a universal set 𝑈 for the family of all types of
elements of 𝐵 with 𝑒-degree a.

Proof. Let ⟨𝛼,𝔅⟩ be enumeration of the unary partial structure 𝔄 with 𝑒-degree
a and ⟨𝔅⟩ = ∪

𝑛

𝑗=1
{⟨𝑗, 𝑥, 𝑧⟩∣𝑓𝑗(𝑥) = 𝑧} ∪ ∪𝑘

𝑗=1
{⟨𝑛+ 𝑗, 𝑥, 𝑧⟩∣𝜎𝑗(𝑥) = 𝑧}. Define the

set 𝑈 as follows:

(𝑥, 𝑣) ∈ 𝑈 ⇐⇒ ∃𝑢(⟨⟨𝑥, 𝑣⟩, 𝑢⟩ ∈ 𝑊𝑎&𝐸𝑢 ⊆ ⟨𝔅⟩),

where the set 𝑊𝑎 is defined as follows:

𝑊𝑎={⟨⟨𝑥, 𝑣⟩, 𝑢⟩∣Π
𝑣=T𝑛𝑘−𝑛(f𝑛𝑘−1

(. . . f𝑛0
(𝑋1) . . .))&𝐸𝑢={⟨𝑛0, 𝑥, 𝑦0⟩, ⟨𝑛1, 𝑦0, 𝑦1⟩,

. . . , ⟨𝑛𝑘−1, 𝑦𝑘−1, 𝑦𝑘⟩, ⟨𝑛𝑘, 𝑦𝑘, 0⟩}}

for some 𝑛0, . . . , 𝑛𝑘, 𝑦0, . . . , 𝑦𝑘.
It is obvious that 𝑈 ≤𝑒 ⟨𝔅⟩ and it is easy to see that 𝑈 is a universal set for

the family of all types of all elements of the structure 𝔅. Therefore, it is a universal
set for the family of all types of all elements of 𝔄. As in the previous proposition,
we may assume that 𝑑𝑒𝑔𝑒(𝑈) = a. □

One can easily prove also the following corollaries.

Corollary 4. If ⟨𝛼,𝔅⟩ is an enumeration of the unary partial structure 𝔄

with 𝑒-degree a, then there exists an enumeration of 𝔄 which is normal pseudo-
enumeration with 𝑒-degree a.

Corollary 5. If the unary partial structure 𝔄 admits a least enumeration, then
it admits a least enumeration which is normal pseudo-enumeration.
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Corollary 6. Let ⟨𝛼,𝔅⟩ be an enumeration of the unary partial structure 𝔄.
Then 𝑑𝑒𝑔𝑒(⟨𝔅⟩) is an upper bound of the family of 𝑒-degrees of all types (∃-types)
of the elements of 𝐵.

Proof. Let 𝑑𝑒𝑔𝑒(𝑅𝛼) = a. Then, according to Proposition 12, there exists
a universal set 𝑈(𝑈1) for the family of all types (∃-types) of 𝔄 and 𝑑𝑒𝑔𝑒(𝑈1) =
𝑑𝑒𝑔𝑒(𝑈) = a. It is obvious that for all 𝑏1, . . . , 𝑏𝑚 ∈ 𝐵, 𝑑𝑒𝑔𝑒([𝑏𝑖]𝔄) ≤𝑒 a, 𝑖 = 1, . . . ,𝑚
and 𝑑𝑒𝑔𝑒(∃[𝑏1, . . . , 𝑏𝑚]𝔄) ≤𝑒 a. □

Theorem 1. Let ⟨𝛼0,𝔅0⟩ be an enumeration of an arbitrary partial structure
𝔄 and there do not exist elements 𝑏1, . . . , 𝑏𝑚 of 𝐵 such that ⟨𝔅0⟩ ≤𝑒 ∃[𝑏1, . . . , 𝑏𝑚]𝔄.
Then there is a normal enumeration ⟨𝛼,𝔅⟩ of 𝔄 such that ⟨𝔅0⟩ ∕≤𝑒 𝑅𝛼.

Proof. Let us first mention that this theorem is valid for arbitrary partial
structure and we will not use in the proof that it is unary. We shall define the
normal enumeration ⟨𝛼,𝔅⟩ constructing a basis 𝛼0 of 𝑁0 onto 𝐵. The construction
is step by step. At each step 𝑠 we define a partial mapping 𝛼𝑠 of 𝑁0 into 𝐵 such
that:

(i) 𝛼𝑠 ⊆ 𝛼𝑠+1;

(ii) 𝐷𝑜𝑚(𝛼𝑠) is a finite subset of 𝑁0.

At the end we take 𝛼0 = ∪∞

𝑠=0
𝛼𝑠.

With the even steps we ensure that 𝛼0 is totally defined and that 𝑅𝑎𝑛(𝛼0) = 𝐵,
and with the odd steps we ensure that ⟨𝔅0⟩ ∕≤𝑒 𝑅𝛼.

Let 𝑎0, 𝑎1,. . . be an arbitrary enumeration of the set B and let 𝑊 = ⟨𝔅0⟩ . We
remind that

𝑊 ≤𝑒 𝑅𝛼 ⇐⇒ ∃𝑒∀𝑥(𝑥 ∈ 𝑊 ←→ ∃𝑣(⟨𝑥, 𝑣⟩ ∈𝑊𝑒&𝐸𝑣 ⊆ 𝑅𝛼)) ⇐⇒

∃𝑒∀𝑥(𝑥 ∈ 𝑊 ←→ ∃𝑣(⟨𝑥, 𝑣⟩ ∈𝑊𝑒&Π
𝛾(𝑣)

𝔄
(𝑋𝑗1

/𝛼(pj1), . . . , 𝑋𝑗𝑚𝑣
/𝛼(pjmv

)) ∼= 0))

for some standard termal predicate Π𝛾(𝑣)(𝑋𝑗1
, . . . , 𝑋𝑗𝑚𝑣

), some recursive function
𝛾 and some pj1 , . . . ,pjmv

. Hence,

𝑊 ∕≤𝑒 𝑅𝛼 ⇐⇒

∀𝑒∃𝑥[(𝑥 ∈ 𝑊&∀𝑣(⟨𝑥, 𝑣⟩ ∈𝑊𝑒 → Π
𝛾(𝑣)

𝔄
(𝑋𝑗1

/𝛼(pj1), . . . , 𝑋𝑗𝑚𝑣
/𝛼(pjmv

)) ∕∼= 0))

∨(𝑥 ∕∈𝑊&∃𝑣(⟨𝑥, 𝑣⟩ ∈ 𝑊𝑒&Π
𝛾(𝑣)

𝔄
(𝑋𝑗1

/𝛼(pj1), . . . , 𝑋𝑗𝑚𝑣
/𝛼(pjmv

)) ∼= 0))].

In order that 𝑊 ∕≤𝑒 𝑅𝛼 we need to satisfy at least one of the two disjunctive
members. In case we are able to satisfy the second member, we do it and the
construction on that step will be completed. Otherwise we shall see that the first
member will be satisfied automatically.

Step s=-1. 𝐷𝑜𝑚(𝛼−1) = 𝑅𝑎𝑛(𝛼−1) = ∅.
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Step s=2e. Let 𝑥 be the least element of 𝑁0 such that 𝑥 ∕∈ 𝐷𝑜𝑚(𝛼𝑠−1) and
𝑎 be the first element in the sequence 𝑎0, 𝑎1,. . . , such that 𝑎 ∕∈ 𝑅𝑎𝑛(𝛼𝑠−1). Set
𝛼𝑠(𝑥) = 𝑎 and 𝛼𝑠(𝑦) = 𝛼𝑠−1(𝑦), for 𝑦 ∈ 𝐷𝑜𝑚(𝛼𝑠−1).

Step s=2e+1. Let 𝐷𝑜𝑚(𝛼𝑠−1) = {𝑥0, . . . , 𝑥𝑙} and 𝑐𝑖 = 𝛼𝑠−1(𝑥𝑖), 𝑖 = 0, . . . , 𝑙.
For every 𝑥 we consider all 𝑣 such that ⟨𝑥, 𝑣⟩ ∈𝑊𝑒.

There exists an effective way to find a standard termal predicate Π𝛾(𝑣)(𝑋𝑗1
,. . .,𝑋𝑗𝑚𝑣

)
such that

𝐸𝑣 ⊆ 𝑅𝛼 ⇐⇒ Π
𝛾(𝑣)

𝔄
(𝑋𝑗1

/𝛼(pj1), . . . , 𝑋𝑗𝑚𝑣
/𝛼(pjmv

)) ∼= 0.

For the sake of simplicity, let us assume that 𝑥0 = p0, . . . , 𝑥𝑙 = pl and the list
𝑋0, . . . , 𝑋𝑙, 𝑋𝑙+1, . . . , 𝑋𝑙+𝑚 coincides with the list 𝑋𝑗1

, . . . , 𝑋𝑗𝑚𝑣
.

Then 𝐸𝑣 ⊆ 𝑅𝛼 ⇐⇒

Π
𝛾(𝑣)

𝔄
(𝑋0/𝛼(p0), . . . , 𝑋𝑙/𝛼(pl), 𝑋𝑙+1/𝛼(pl+1), . . . , 𝑋𝑙+𝑚/𝛼(pl+m))) ∼= 0.

Let 𝐶𝑣1

𝔄
(𝑋0, . . . , 𝑋𝑙) be the condition ∃𝑋𝑙+1 . . .∃𝑋𝑙+𝑚(Π𝛾(𝑣)). We check whether

there exist natural numbers 𝑥 ∕∈ 𝑊 and 𝑣, such that ⟨𝑥, 𝑣⟩ ∈ 𝑊𝑒 and
𝐶

𝑣1

𝔄
(𝑋0/𝛼𝑠−1(p0), . . . , 𝑋𝑙/𝛼𝑠−1(pl)) ∼= 0. If this is the case, we choose the least

such 𝑣 and find 𝑏1, . . . , 𝑏𝑚 such that

Π
𝛾(𝑣)

𝔄
(𝑋0/𝛼𝑠−1(p0), . . . , 𝑋𝑙/𝛼𝑠−1(pl), 𝑋𝑙+1/𝑏1, . . . , 𝑋𝑙+𝑚/𝑏𝑚) ∼= 0.

Set 𝛼𝑠(pl+j) = 𝑏𝑗, 𝑗 = 1, . . . ,𝑚, 𝛼𝑠(𝑦) = 𝛼𝑠−1(𝑦), for 𝑦 ∈ 𝐷𝑜𝑚(𝛼𝑠−1). Otherwise,
we do nothing, i.e. set 𝛼𝑠 = 𝛼𝑠−1.

The construction is completed.

We continue proof of the theorem with a few auxiliary lemmas.

Lemma 4. Let 𝐶𝑣1(𝑋0, . . . , 𝑋𝑙) be the condition ∃𝑋𝑙+1 . . .∃𝑋𝑙+𝑚(Π𝛾(𝑣)) on
step 𝑠 = 2𝑒+1 and there are no natural numbers 𝑥 ∕∈𝑊 and 𝑣, such that ⟨𝑥, 𝑣⟩ ∈ 𝑊𝑒

and 𝐶𝑣1

𝔄
(𝑋0/𝛼𝑠−1(p0), . . . , 𝑋𝑙/𝛼𝑠−1(pl)) ∼= 0.

Then there exists 𝑥 ∈ 𝑊 such that for every 𝑣 satisfying ⟨𝑥, 𝑣⟩ ∈ 𝑊𝑒 the
conditional inequality

𝐶
𝑣1

𝔄
(𝑋0/𝛼𝑠−1(p0), . . . , 𝑋𝑙/𝛼𝑠−1(pl)) ∕∼= 0

holds.

Proof. Let us mention that

∀𝑥(∃𝑣(⟨𝑥, 𝑣⟩ ∈𝑊𝑒&𝐶
𝑣1

𝔄
(𝑋0/𝛼𝑠−1(p0), . . . , 𝑋𝑙/𝛼𝑠−1(pl)) ∼= 0) −→ 𝑥 ∈ 𝑊 ).

If we assume that

∀𝑥(𝑥 ∈ 𝑊 −→ ∃𝑣(⟨𝑥, 𝑣⟩ ∈ 𝑊𝑒&𝐶
𝑣1

𝔄
(𝑋0/𝛼𝑠−1(p0), . . . , 𝑋𝑙/𝛼𝑠−1(pl)) ∼= 0)),
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then we would obtain that

∀𝑥(𝑥 ∈𝑊 ←→ ∃𝑣(⟨𝑥, 𝑣⟩ ∈𝑊𝑒&𝐶
𝑣1

𝔄
(𝑋0/𝛼𝑠−1(p0), . . . , 𝑋𝑙/𝛼𝑠−1(pl)) ∼= 0)).

Having in mind that we have obtained 𝑣1 effectively from 𝑣, we conclude that
𝑊 ≤𝑒 ∃[𝛼𝑠−1(p0), . . . , 𝛼𝑠−1(pl)]𝔄 by index 𝑒, which contradicts the assumption of
the theorem. □

The following lemma and corollary are obvious.

Lemma 5. 𝛼0 is a totally defined on 𝑁0 surjective mapping.

Corollary 7. If all functions in the structure 𝔄 are total, then the normal
enumeration ⟨𝛼,𝔅⟩ is a totally defined surjective mapping.

Let us assume now that ⟨𝔅0⟩ = 𝑊 ≤𝑒 𝑅𝛼 by some index 𝑒. Then on step
𝑠 = 2𝑒+ 1 we have satisfied first or second disjunctive member of the right part of
the non-equivalence 𝑊 ∕≤𝑒 𝑅𝛼, which contradicts the assumption. Theorem 1 is
proved. □

The following corollary is obvious.

Corollary 8. Let 𝔄 be a unary partial structure. If 𝔄 admits a least enu-
meration ⟨𝛼0,𝔅0⟩, then there exist elements 𝑏1, . . . , 𝑏𝑚 of 𝐵 such that ⟨𝔅0⟩ ≤𝑒

∃[𝑏1, . . . , 𝑏𝑚]𝔄.

Theorem 2. Let 𝔄 be a unary partial structure. Then 𝔄 admits a least partial
enumeration ⟨𝛼0,𝔅0⟩ if and only if there exist elements 𝑏1, . . . , 𝑏𝑚 of 𝐵 such that
𝑑𝑒𝑔𝑒([𝑏1]𝔄⊕⋅ ⋅ ⋅⊕ [𝑏𝑚]𝔄⊕𝑉

𝔄
0
) is the least upper bound of the 𝑒-degrees of all ∃-types

of sequences of elements of 𝐵 and there exists a universal set 𝑈 of all types, such
that 𝑑𝑒𝑔𝑒(𝑈) = 𝑑𝑒𝑔𝑒([𝑏1]𝔄 ⊕ ⋅ ⋅ ⋅ ⊕ [𝑏𝑚]𝔄 ⊕ 𝑉 𝔄

0
).

Proof. Let us assume first that 𝔄 admits a least enumeration ⟨𝛼0,𝔅0⟩.
According to Corollary 8, there exist 𝑏1, . . . , 𝑏𝑚 in 𝐵 such that 𝑑𝑒𝑔𝑒(∃[𝑏1, . . . , 𝑏𝑚]𝔄)
is the least upper bound of the 𝑒-degrees of all ∃-types of sequences of elements of
𝐵. By Proposition 12, there exists a universal set 𝑈 of types, such that 𝑑𝑒𝑔𝑒(𝑈) =
𝑑𝑒𝑔𝑒(⟨𝔅0⟩) = 𝑑𝑒𝑔𝑒(∃[𝑏1, . . . , 𝑏𝑚]𝔄).

Conversely, assume that there exist elements 𝑏1, . . . , 𝑏𝑚 of 𝐵 such that
𝑑𝑒𝑔𝑒(∃[𝑏1, . . . , 𝑏𝑚]𝔄) is the least upper bound of the 𝑒-degrees of all ∃-types of
sequences of elements of 𝐵 and there exists a universal set 𝑈 of all types such that
𝑑𝑒𝑔𝑒(𝑈)=𝑑𝑒𝑔𝑒(∃[𝑏1, . . . , 𝑏𝑚]𝔄).

According to Lemma 3 there exists an enumeration ⟨𝛼0,𝔅0⟩ of 𝔄 such that
𝑑𝑒𝑔𝑒(⟨𝔅0⟩) = 𝑑𝑒𝑔𝑒(∃[𝑏1, . . . , 𝑏𝑚]𝔄) and ⟨𝛼0,𝔅0⟩ is the least enumeration of the
structure 𝔄. □

Let us assume that 𝔄 is a unary partial structure and there exist elements
𝑏1, . . . , 𝑏𝑚 of 𝐵 such that 𝑑𝑒𝑔𝑒(∃[𝑏1, . . . , 𝑏𝑚]𝔄) is the least upper bound of the
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𝑒-degrees of all ∃-types of sequences of elements of 𝐵 and there exists a univer-
sal set 𝑈 of all types, such that 𝑑𝑒𝑔𝑒(𝑈) = 𝑑𝑒𝑔𝑒(∃[𝑏1, . . . , 𝑏𝑚]𝔄) and let us fix
𝐴 = ∃[𝑏1, . . . , 𝑏𝑚]𝔄. Therefore, there exists an enumeration operator 𝑊𝑧 such that
𝑊𝑧(𝐴) = ⟨𝑈⟩, i.e. for all natural 𝑥, 𝑢 the following equivalence is true:

⟨𝑥, 𝑢⟩ ∈ ⟨𝑈⟩ ⇐⇒ ∃𝑣(⟨⟨𝑥, 𝑢⟩ 𝑣⟩ ∈𝑊𝑧&𝐸𝑣 ⊆ 𝐴).

Using the 𝑆𝑚

𝑛
-theorem, we can find for a fixed 𝑧 a recursive function ℎ such that

⟨𝑥, 𝑢⟩ ∈ ⟨𝑈⟩ ⇐⇒ ∃𝑣(⟨𝑢, 𝑣⟩ ∈𝑊
ℎ(𝑥)&𝐸𝑣 ⊆ 𝐴) ⇐⇒ 𝑢 ∈𝑊

ℎ(𝑥)(𝐴),

i.e. the sequence 𝑊
ℎ(0)(∃[𝑏1, . . . , 𝑏𝑚]𝔄),𝑊ℎ(1)(∃[𝑏1, . . . , 𝑏𝑚]𝔄), . . . is the sequence

of all types of the elements of 𝐵. The converse is trivial. Thus we obtained the
following

Corollary 9. Let 𝔄 be a unary partial structure. Then 𝔄 admits a least par-
tial enumeration ⟨𝛼0,𝔅0⟩ if and only if there exist elements 𝑏1, . . . , 𝑏𝑚 of 𝐵 and
computable sequence of enumeration operators 𝑊𝑧0

,𝑊𝑧1
, . . . such that the family

{𝑊𝑧𝑛
([𝑏1]𝔄 ⊕ ⋅ ⋅ ⋅ ⊕ [𝑏𝑚]𝔄 ⊕ 𝑉 𝔄

0
)}𝑛∈𝜔 is the family of all types of elements of 𝐵.

In order to formulate the corresponding corollaries for the case when the unary
structures are total, we call a type of some element 𝑎 the set [𝑎]𝔄 ⊕ (𝜔 ∖ [𝑎]𝔄), or
equivalently ([𝑎]𝔄×{0})∪ ((𝜔 ∖ [𝑎]𝔄)×{1}), which is the graph of the characteristic
function of the set [𝑎]𝔄. Let us remind that a set 𝐴 is total if and only if 𝐴 ≡𝑒

𝐴 ⊕ (𝜔 ∖ 𝐴) and that an 𝑒-degree is total if it contains a total set. The following
corollaries are obvious and we omit their proofs.

Corollary 10. Let 𝔄 be a unary total structure. Then 𝔄 admits a least to-
tal enumeration ⟨𝛼0,𝔅0⟩ if and only if there exist elements 𝑏1, . . . , 𝑏𝑚 of 𝐵 such
that 𝑑𝑒𝑔𝑒([𝑏1]𝔄 ⊕ ⋅ ⋅ ⋅ ⊕ [𝑏𝑚]𝔄 ⊕ 𝑉 𝔄

0
)) is a total 𝑒-degree which is the least upper

bound of 𝑒-degrees of all ∃-types of sequences of elements of 𝐵 and there ex-
ists universal function 𝐹 for the characteristic functions of all types, such that
𝑑𝑒𝑔𝑒(𝐹 ) = 𝑑𝑒𝑔𝑒([𝑏1]𝔄 ⊕ ⋅ ⋅ ⋅ ⊕ [𝑏𝑚]𝔄 ⊕ 𝑉 𝔄

0
).

Corollary 11. Let 𝔄 be a unary total structure. Then 𝔄 admits a least total
enumeration ⟨𝛼0,𝔅0⟩ if and only if there exist elements 𝑏1, . . . , 𝑏𝑚 of 𝐵 and com-
putable sequence of recursive operators 𝑊𝑧0

,𝑊𝑧1
, . . . such that 𝑑𝑒𝑔𝑒([𝑏1]𝔄 ⊕ ⋅ ⋅ ⋅ ⊕

[𝑏𝑚]𝔄 ⊕𝑉
𝔄

0
) = 𝑑𝑒𝑔𝑒(𝐴) for some total set 𝐴 and the function 𝜆𝑛𝜆𝑢.𝑊𝐴

𝑧𝑛
(𝑢) is uni-

versal function for the family of the characteristic functions of all types of elements
of 𝔄.

Corollary 12. Let 𝔄 be a unary partial structure. Then 𝔄 admits an effective
enumeration ⟨𝛼0,𝔅0⟩ if and only if all ∃-types of the elements of 𝐵 are computably
enumerable and there exists r.e. universal set 𝑈 of all types of elements of 𝔄.

The following corollaries are related to [4, 5].
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Corollary 13. Let 𝔄 be a unary total structure. Then 𝔄 admits an effective
total enumeration ⟨𝛼0,𝔅0⟩ if and only if all ∃-types of the elements of 𝐵 are com-
putably enumerable and there exists recursive universal function 𝐹 of all types of
elements of 𝔄.

Corollary 14. Let 𝔄 be a unary partial structure. Then 𝔄 admits an effective
enumeration ⟨𝛼0,𝔅0⟩ if and only if all ∃-types of the elements of 𝐵 are r.e. and
there is a computable sequence of enumeration operators 𝑊𝑧0

,𝑊𝑧1
, . . . such that

the family {𝑊𝑧𝑛
(𝜔)}𝑛∈𝜔 is the family of all types of elements of 𝐵.

Analogously to Theorem 1, one can prove the following

Theorem 3. Let for every 𝑖 = 1, . . . , 𝑙, ⟨𝛼𝑖,𝔅𝑖⟩ be an enumeration of an ar-
bitrary partial structure 𝔄, and for every 𝑖 = 1, . . . , 𝑙 there do not exist elements
𝑏1, . . . , 𝑏𝑚 of 𝐵 such that 𝑅𝛼𝑖

≤𝑒 ∃[𝑏1, . . . , 𝑏𝑚]𝔄. Then there is an enumeration
⟨𝛼,𝔅⟩ of 𝔄 such that for all 𝑖 = 1, . . . , 𝑙, 𝑅𝛼𝑖

∕≤𝑒 𝑅𝛼.

Theorem 4. Let for every 𝑖 ∈ 𝜔, ⟨𝛼𝑖,𝔅𝑖⟩ be an enumeration of an arbitrary
partial structure 𝔄, and for every 𝑖 ∈ 𝜔 there do not exist elements 𝑏1, . . . , 𝑏𝑚 of 𝐵
such that 𝑅𝛼𝑖

≤𝑒 ∃[𝑏1, . . . , 𝑏𝑚]𝔄. Then there is an enumeration ⟨𝛼,𝔅⟩ of 𝔄 such
that for all 𝑖 ∈ 𝜔, 𝑅𝛼𝑖

∕≤𝑒 𝑅𝛼.

Proof. We only sketch the proof: At even steps we will ensure the enumeration
⟨𝛼,𝔅⟩ to be total and surjective. At steps of the kind 2⟨𝑒, 𝑖⟩+ 1 we will ensure, as
in Theorem 1, that 𝑅𝛼𝑖

∕≤𝑒 𝑅𝛼 by index 𝑒. □

Corollary 15. There doesn’t exist a spectrum of a partial structure with denu-
merable minimal elements.

Proof. Obvious. □

4. SOME CONSEQUENCES

As in [12], we can prove that for a unary partial structure 𝔄 the partial degree
spectrum of 𝔄 is closed upward with respect to arbitrary 𝑒-degrees. As a special
case we shall obtain that the degree spectrum is closed upward with respect to the
total 𝑒-degrees, as well.

Proposition 13. Let ⟨𝛼,𝔅⟩ be an enumeration of the unary partial structure
𝔄 and 𝑑𝑒𝑔𝑒(𝑅𝛼) ≤𝑒 𝐴. Then there exists an enumeration ⟨𝛼0,𝔅0⟩ of 𝔄 such that
𝑑𝑒𝑔𝑒(⟨𝔅0⟩) = 𝑑𝑒𝑔𝑒(𝐴).

Proof. Let 𝑎 be an element of 𝐵 such that at least one function of 𝔄 is defined
on 𝐴. Define an enumeration ⟨𝛼0,𝔅0⟩ which is a normal pseudo-enumeration as
follows:

𝛼0

0
(pi) ∼=

⎧


⎨


⎩

𝑎, if 𝑖 is even & 𝑖

2
∈ 𝐴,

𝛼( 𝑖−1

2
), if 𝑖 is odd,

undefined, otherwise.
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It is easy to see that 𝑑𝑒𝑔𝑒(⟨𝔅0⟩) = 𝑑𝑒𝑔𝑒(𝑅𝛼 ⊕ (𝐴⊕ [𝑎]𝔄)) = 𝑑𝑒𝑔𝑒(𝐴). □

Analogously one can prove

Proposition 14. Let ⟨𝛼,𝔅⟩ be an enumeration of the unary partial structure
𝔄 such that 𝜃1, . . . , 𝜃𝑛 are total and 𝑑𝑒𝑔𝑒(𝑅𝛼) ≤𝑒 𝐴, where 𝐴 is a total set. Then
there exists a total enumeration ⟨𝛼0,𝔅0⟩ of 𝔄 such that 𝑑𝑒𝑔𝑒(⟨𝔅0⟩) = 𝑑𝑒𝑔𝑒(𝐴).

Proposition 15. Let a be an arbitrary 𝑒-degree. Then there exists a unary
partial structure 𝔄 = ⟨𝐵; 𝜃1;𝑅1, 𝑅2⟩ with total function 𝜃1, such that 𝔄 has a least
enumeration with 𝑒-degree a.

Proof. Let 𝐴 be an arbitrary set of natural numbers, such that 𝑑𝑒𝑔𝑒(𝐴) = a.
The idea of constructing such structure is the following. We take infinite disjoint
copies of natural numbers with successor functions on all of them. Then on one of
them we take copy of the set 𝐴 and on the remaining infinite copies we ensure the
codes of all existential formulas, which are true in the structure 𝔄 will be recursive
and all types of those elements in that copies will be finite, hence recursive. Take
𝐵 = {𝑎0, 𝑎1, . . . , 𝑏

0

0
, 𝑏0

1
, . . . , 𝑏1

0
, 𝑏1

1
, . . . }, where all 𝑎0, 𝑎1, . . . , 𝑏

0

0
, 𝑏0

1
, . . . , 𝑏1

0
, 𝑏1

1
, . . . are

different. Set 𝜃1(𝑎𝑛) = 𝑎𝑛+1, 𝜃1(𝑏
𝑖

𝑛
) = 𝑏𝑖

𝑛+1
for all natural 𝑖, 𝑛; set 𝑅1(𝑎0) =

𝑅1(𝑏
𝑖

0
) = 0 for all natural 𝑖 while 𝑅1(𝑎𝑛) and 𝑅1(𝑏

𝑖

𝑛
) are undefined for all natural

𝑖 and positive 𝑛. Further,

𝑅2(𝑎𝑛) ∼=

{

0, if 𝑛 ∈ 𝐴,

undefined, otherwise,

and Π𝑣

𝔄
(𝑋𝑗/𝑏

𝑣

0
) ∼= 0 for all 𝑣 ∈ 𝜔 such that the only predicate symbols and variables

which occur in Π𝑣 is a termal are T2 and 𝑋𝑗. Moreover, let 𝑅2 be defined on the
smallest finite subset of {𝑏𝑣

0
, 𝑏𝑣

1
, . . . } which guarantee that Π𝑣

𝔄
(𝑋1/𝑏

𝑣

0
) ∼= 0. Thus,

the types [𝑏𝑗
𝑖
]𝔄 will be finite sets and will ensure that the set of all ∃-types is

recursive. Indeed, a closed condition of the type ∃𝑋𝑗Π
𝑣 is true on the structure 𝔄

if and only if Π𝑣 = T1(𝑋𝑗)&Π𝑣
′

, where Π𝑣
′

is an arbitrary termal predicate with
predicate symbol T2 and variable 𝑋𝑗 .

Since 𝑑𝑒𝑔(𝔄) = a it is easy to see that for all positive 𝑛
[𝑎𝑛]𝔄 ≡𝑒 [𝑎0]𝔄 ≡𝑒 {𝑚∣𝑅1(𝑎0) = 0 & 𝑅2(𝜃

𝑚

1
(𝑎0)) = 0} ≡𝑒 𝐴. □

Proposition 16. Let a be an arbitrary 𝑇 -degree. Then there exists unary total
structure 𝔄 = ⟨𝐵; 𝜃1;𝑅1, 𝑅2⟩, such that 𝔄 has a least total enumeration with 𝑇 -
degree a.

Proof. Let 𝐴 be an arbitrary set of natural numbers, such that 𝑑𝑒𝑔𝑇 (𝐴) = a.
The idea is the same as in the previous proposition: we take 𝐵 and 𝜃1 to be the
same as in the previous proposition; take 𝑅𝑖(𝑎) = 0 whenever 𝑅𝑖(𝑎) = 0 in the
previous proposition and 𝑅𝑖(𝑎) = 1 whenever in the previous proposition 𝑅𝑖(𝑎) is
undefined, 𝑖 = 1, 2. □

Analogously one can prove the following
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Proposition 17. Let A be a denumerable set of 𝑒-(𝑇 -)degrees. Then there ex-
ists a unary partial(total) structure 𝔄 = ⟨𝐵; 𝜃1;𝑅1, 𝑅2⟩ with totally defined function
𝜃1, such that the set of the 𝑒-(𝑇 -)degrees of all types of 𝔄 coincides with the set
A ∪ {0}.

Proof. We consider only the case of 𝑇 -degrees. Let A = {𝑎𝑖}𝑖∈𝐼 for some
countable index set 𝐼 and 𝐴𝑖 be an arbitrary set of natural numbers, such that
𝑑𝑒𝑔𝑒(𝐴𝑖) = ai for any 𝑖 ∈ 𝐼. Take 𝔄𝑖 = ⟨𝐵𝑖; 𝜃

𝑖

1
;𝑅𝑖

1
, 𝑅𝑖

2
⟩ such that 𝑑𝑒𝑔𝑒(𝐴𝑖) = ai for

any 𝑖 ∈ 𝐼 and all types of elements of 𝐵𝑖 are finite or 𝑎𝑖. Assume that 𝐵𝑖 ∩𝐵𝑗 ∕= ∅
for all 𝑖, 𝑗 ∈ 𝐼, 𝑖 ∕= 𝑗 and let 𝐵 = ∪𝑖∈𝐼𝐵𝑖. Then 𝜃1(𝑎) = 𝜃𝑖

1
(𝑎) and 𝑅𝑗(𝑎) = 𝑅𝑖

𝑗
(𝑎)

if 𝑎 ∈ 𝐵𝑖, 𝑖 ∈ 𝐼 and 𝑗 = 1, 2. Then it is obvious that all type of 𝐵 form the set
A ∪ {0}. □

This proposition shows how to construct a various structures with or without
degree. At the same time it shows that we can construct structures which contain
different independent structures.

Proposition 18. Let us consider the family of all recursive sets. There exists
a unary total structure 𝔄0 = ⟨𝐵; 𝜃1;𝑅1, 𝑅2⟩, such that the family of all types of
elements of 𝐵 coincides with the family of copies of all recursive sets (or with the
characteristic functions of copies of all recursive sets).

Proof. Let 𝐴0, 𝐴1, . . . be a sequence of all recursive sets. As above, for any
recursive set 𝐴𝑖 we take an independent copy 𝐵𝑖 = {𝑎

𝑖

0
, 𝑎𝑖

1
, . . . } of the set of natural

numbers and a total function successor 𝜃𝑖
1
such that 𝜃𝑖

1
(𝑎𝑖

𝑛
) = 𝑎𝑖

𝑛+1
for all 𝑖, 𝑛 ∈ 𝜔.

Then we take 𝑅𝑖

1
(𝑎𝑖

0
) = 0 and 𝑅𝑖

1
(𝑎𝑖

𝑛
) = 1 for all positive 𝑛;

𝑅𝑖

2
(𝑎𝑖

𝑛
) ∼=

{

0, if 𝑛 ∈ 𝐴𝑖,

1, otherwise.

Here 𝑅𝑖

1
defines ”zeros” and 𝑅𝑖

2
defines a copy of the set 𝐴𝑖. Take the structure

𝔄𝑖 = ⟨𝐵𝑖; 𝜃
𝑖

1
;𝑅𝑖

1
, 𝑅𝑖

2
⟩ for all 𝑖 and assume that 𝐵𝑖 ∩ 𝐵𝑗 = ∅ for all 𝑖, 𝑗 ∈ 𝜔, 𝑖 ∕= 𝑗

and let 𝐵 = ∪𝑖∈𝜔𝐵𝑖. Then 𝜃1(𝑎) = 𝜃𝑖
1
(𝑎) and 𝑅𝑗(𝑎) = 𝑅𝑖

𝑗
(𝑎) if 𝑎 ∈ 𝐵𝑖, 𝑖 ∈ 𝜔

and 𝑗 = 1, 2. It is obvious that all types of elements of 𝐵 of the structure 𝔄0 =
⟨𝐵; 𝜃1;𝑅1, 𝑅2⟩ are recursive sets and are copies of all recursive sets. Moreover, the
set 𝑉 𝔄

0
is recursive. Therefore, the least upper bound of all degrees of ∃-types is

0. If we assume that the structure 𝔄 admits least enumeration, then we would
obtain that the family of all recursive set has a universal recursive set. This is a
contradiction, which shows that we cannot omit the condition with universal set
(function) in Theorem 3. □

Question 1. What is DS(𝔄0)?

The next definition belongs to Soskov [11]. Let𝑊 be a set of natural numbers.
It is said that 𝑑𝑒(𝑊 ) is a quasi-degree of the structure 𝔄 if for all sets 𝐴 ⊆ 𝜔𝑚 the
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following equivalence is true:

𝐴 is ∃−definable in 𝔄 ⇐⇒ 𝐴 ≤𝑒 𝑊.

Let us mention that this definition is not the original, but it is equivalent to the
original one.

Proposition 19. There exists a class of unary partial structures and sets of
natural numbers 𝑊 such that for all sets 𝐴 ⊆ 𝜔𝑚 the following equivalence is true:

𝐴 is ∃−definable in 𝔄 ⇐⇒ 𝐴 ≤𝑒 𝑊.

Proof. Let 𝔄 be a unary partial structure such that there exist elements
𝑏1, . . . , 𝑏𝑚 of 𝐵 such that 𝑑𝑒𝑔𝑒([𝑏1]𝔄 ⊕ ⋅ ⋅ ⋅ ⊕ [𝑏𝑚]𝔄) is the least upper bound of
𝑒-degrees of all types of elements of 𝐵 and 𝑊 = [𝑏1]𝔄 ⊕ ⋅ ⋅ ⋅ ⊕ [𝑏𝑚]𝔄. As in the
previous propositions, take enough copies of natural numbers such that all types of
the new elements to be finite and all (or recursive set of all) simple conditions to
be true on those new elements and denote the new structure by 𝔄

′. For the sake
of simplicity let assume that 𝔄′ = 𝔄. It is easy to see that 𝔄′ satisfies the required
condition. Indeed, let 𝐴 be ∃-definable in 𝔄, i.e. there exists recursive function 𝛾 of
𝑚+1 variables, having values in the set of all codes of conditions with free variables
among 𝑋1, . . . , 𝑋𝑙 such that for some elements 𝑏′

1
, . . . , 𝑏′

𝑙
the following equivalence

is true:

(𝑥1, . . . , 𝑥𝑚) ∈ 𝐴 ⇐⇒ ∃𝑛 ∈ 𝜔(𝐶𝛾(𝑛,𝑥1,...,𝑥𝑚)(𝑋1/𝑏
′

1
, . . . , 𝑋𝑙/𝑏

′

𝑙
) ∼= 0).

Let us represent the condition 𝐶𝛾(𝑛,𝑥1,...,𝑥𝑚)(𝑋1, . . . , 𝑋𝑙) = 𝐶𝛾(𝑛,𝑥)(𝑋1, . . . , 𝑋𝑙) in
the form Π𝛾1(𝑛,𝑥)(𝑋1)& . . .&Π𝛾𝑙(𝑛,𝑥)(𝑋𝑙)&𝐶

𝛾𝑙+1(𝑛,𝑥), where 𝐶𝛾𝑙+1(𝑛,𝑥) is a simple
condition and all 𝛾1, . . . , 𝛾𝑙+1 are recursive. Then, [𝑏′

𝑖
]𝔄 ≤𝑒 𝑊 and for some 𝑊𝑧𝑖

,
the following equivalence holds:

𝑧 ∈ [𝑏′
𝑖
]𝔄 ⇐⇒ ∃𝑣𝑖(⟨𝑧, 𝑣𝑖⟩ ∈ 𝑊𝑧𝑖

&𝐸𝑣𝑖
⊆𝑊 ), 𝑖 = 1, . . . ,𝑚.

Therefore,

𝑥 ∈ 𝐴 ⇐⇒ ∃𝑛(𝛾1(𝑛, 𝑥) ∈ [𝑏′
1
]𝔄& . . .&𝛾𝑙(𝑛, 𝑥) ∈ [𝑏′

𝑙
]𝔄&𝛾𝑙+1(𝑛, 𝑥) ∈ 𝑉

𝔄

0
)

⇐⇒ ∃𝑛(𝛾1(𝑛, 𝑥) ∈ [𝑏′
1
]𝔄& . . .&𝛾𝑙(𝑛, 𝑥) ∈ [𝑏′

𝑙
]𝔄) ⇐⇒

∃𝑛(∃𝑣1(⟨𝛾1(𝑛, 𝑥), 𝑣1⟩ ∈𝑊𝑧1
&𝐸𝑣1

⊆𝑊 )& . . .&∃𝑣𝑙(⟨𝛾𝑙(𝑛, 𝑥), 𝑣𝑙⟩ ∈𝑊𝑧𝑙
&𝐸𝑣𝑙

⊆𝑊 ))

⇐⇒ ∃𝑣(⟨⟨𝑥⟩, 𝑣⟩ ∈𝑊𝑧&𝐸𝑣 ⊆𝑊 ),

where ⟨⟨𝑥⟩, 𝑣⟩ ∈𝑊𝑧 ⇐⇒

∃𝑛(∃𝑣1(⟨𝛾1(𝑛, 𝑥), 𝑣1⟩ ∈𝑊𝑧1
)& . . .&∃𝑣𝑙(⟨𝛾𝑙(𝑛, 𝑥), 𝑣𝑙⟩ ∈𝑊𝑧1

&𝐸𝑣 = 𝐸𝑣1
∪ ⋅ ⋅ ⋅ ∪ 𝐸𝑣𝑙

).

The converse, i.e. if 𝐴 ≤𝑒 𝑊 , then 𝐴 is ∃-definable in 𝔄 is obvious. □
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Proposition 20. Let 𝐴 be an arbitrary set of natural numbers with 𝑑𝑒𝑔𝑇 (𝐴) =
a and let us consider the family of all recursive in 𝐴 sets. There exists a unary
total structure 𝔄a = ⟨𝐵; 𝜃1;𝑅1, 𝑅2⟩, such that the family of all types of elements
of 𝐵 coincides with the family of copies of all recursive in 𝐴 sets (or with the
characteristic functions of copies of all recursive in 𝐴 sets).

Proof. Let 𝐴0, 𝐴1, . . . be the sequence of all recursive in 𝐴 sets. As above,
for any recursive in 𝐴 set 𝐴𝑖 we take independent copy of set of natural numbers
𝐵𝑖 = {𝑎

𝑖

0
, 𝑎𝑖

1
, . . . } and a total function successor 𝜃𝑖

1
such that 𝜃𝑖

1
(𝑎𝑖

𝑛
) = 𝑎𝑖

𝑛+1
for all

𝑖, 𝑛 ∈ 𝜔. Then take 𝑅𝑖

1
(𝑎𝑖

0
) = 0 and 𝑅𝑖

1
(𝑎𝑖

𝑛
) = 1, for all positive 𝑛;

𝑅𝑖

2
(𝑎𝑖

𝑛
) ∼=

{

0, if 𝑛 ∈ 𝐴𝑖,

1, otherwise.

Here again 𝑅𝑖

1
defines zero and 𝑅𝑖

2
defines a copy of the set 𝐴𝑖. Take the structure

𝔄𝑖 = ⟨𝐵𝑖; 𝜃
𝑖

1
;𝑅𝑖

1
, 𝑅𝑖

2
⟩ for all 𝑖 and assume that 𝐵𝑖 ∩ 𝐵𝑗 = ∅ for all 𝑖, 𝑗 ∈ 𝜔, 𝑖 ∕= 𝑗

and let 𝐵 = ∪𝑖∈𝜔𝐵𝑖. Then 𝜃1(𝑎) = 𝜃𝑖
1
(𝑎) and 𝑅𝑗(𝑎) = 𝑅𝑖

𝑗
(𝑎) if 𝑎 ∈ 𝐵𝑖, 𝑖 ∈ 𝜔

and 𝑗 = 1, 2. Then it is obvious that all types of elements of 𝐵 of the structure
𝔄a = ⟨𝐵; 𝜃1;𝑅1, 𝑅2⟩ are recursive in 𝐴 sets and are copies of all recursive in 𝐴 sets.
Moreover, the set 𝑉 𝔄

0
is recursive. Therefore the least upper bound of all degrees of

∃-types is a. If we assume that the structure 𝔄 admits a least enumeration, then we
would obtain that the family of all recursive sets in 𝐴 has a universal recursive in
𝐴 set. This is a contradiction, which shows that this structure 𝔄a does not admit
a least enumeration. At the same time it satisfies the condition of the previous
proposition. Therefore, 𝔄a has quasi-degree a. □

Thus, we proved also the following

Corollary 16. There exists a unary total structures 𝔄a = ⟨𝐵; 𝜃1;𝑅1, 𝑅2⟩, such
that 𝔄a has a quasi-degree but does not have a least enumeration.
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In this paper we show that if 𝐺 is a locally compact group with 𝐻 closed and 𝐻 ≤ 𝐺

such that dim𝐺/𝐻 < ∞, then 𝐺/𝐻 contains a copy of 𝐼𝜔0(𝐺/𝐻), where 𝜔0(𝐺/𝐻) =
weight of a connected component of 𝐺/𝐻, except perhaps when ℵ0 ≤ 𝜔0(𝐺/𝐻) ≤ 2ℵ0

[13].

Keywords: Weight and local weight, homogeneous spaces of locally compact groups,
Tychonoff cube

2000 Math. Subject Classification: 22A05

1. INTRODUCTION

In this paper we investigate the existence of Tychonoff cubes of maximal weight
in homogeneous spaces of locally compact groups of infinite covering dimension. We
show that if 𝐺 is a locally compact group with 𝐻 closed≤ 𝐺 such that 𝐺/𝐻 =∞,
then 𝐺 contains a copy of 𝐼𝜔0(𝐺/𝐻), where 𝜔0(𝐺/𝐻) = weight of a connected
component of 𝐺/𝐻 except perhaps when ℵ0 ≤ 𝜔0(𝐺/𝐻) ≤ 2ℵ0 [13]. This result,
except for the last exceptional case, was observed before [9, 16]. The proof for the
locally compact case in [9, Theorem 4.2] is incorrect. The elegant proof in [16]
contains a gap, we fix that proof here.

Throughout this paper we fix the following notations. If 𝐺 is a locally compact
group, 𝐺/𝐺0 compact, then 𝐺 = lim

←

𝐺𝑗 , 𝐺𝑗 ’s finite dimensional Lie groups, 𝑗 ∈ 𝐽

[14, p. 175]. Let 𝑝𝑗 : 𝐺→ 𝐺𝑗 be the canonical map for all 𝑗 ∈ 𝐽 . We may assume
that ker 𝑝𝑗 is compact for all 𝑗 ∈ 𝐽 , hence 𝐺 = lim

←

𝐺/ker 𝑝𝑗 .

Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 71–79. 71



The rest of this paper is divided into two sections. In Section 2 we collect some
basic lemmas that are needed to establish our result. In Section 3 we prove our
main theorem, Theorem 3.1.

2. SOME BASIC LEMMAS

Lemma 2.1. (see [9, Lemma 2.1]) Let 𝑋 be a topological space such that
𝑋 = lim

←

{𝑋𝑖 : 𝑖 ∈ 𝐽}, where {𝑋𝑖 : 𝑖 ∈ 𝐽} is an inverse family of topological

spaces, 𝐼 cofimal ⊆ 𝐽 . Then 𝜔(𝑋) ≤ max{Card (𝐼), 𝜔(𝑋𝑖) : 𝑖 ∈ 𝐼}, where 𝜔(∗) =
weight of the topological space ∗.

Proof. Let 𝐵𝑖 be a basis of 𝑋𝑖, Card (𝐵𝑖) = 𝜔(𝑋𝑖) for all 𝑖 ∈ 𝐼. Then
{𝑝−1

𝑖
(𝐵𝑖) : 𝑖 ∈ 𝐼} is a basis of 𝑋 , where 𝑝𝑖 : 𝑋 → 𝑋𝑖 is the canonical map and

Card ({𝑝−1

𝑖
(𝐵𝑖) : 𝑖 ∈ 𝐼}) ≤

∑

𝑖∈𝐼

Card (𝐵𝑖) ≤ max{Card (𝐼), Card (𝐵𝑖) : 𝑖 ∈ 𝐼}

(see [1, E III.49, Corollary 3]).

Lemma 2.2. (generalizes [7, Theorem 8]) Let 𝐺 be a locally compact group,
𝐺/𝐺0 compact, 𝐻 closed, non-open ≤ 𝐺. Then:

(i) 𝜔(𝐺/𝐻) = 1.𝜔(𝐺/𝐻) (= local weight of 𝐺/𝐻);

(ii) 𝜔(𝐺/𝐻) = 𝜔(𝐺 ∩ {𝑔𝐻𝑔−1 : 𝑔 ∈ 𝐺};

(iii) (generalizes [9, Corollary 2.4 ii]) If 𝐺 is connected and 𝑌 compact totally
disconnected normal ≤ 𝐺, then 𝜔(𝐺/𝐻) = 𝜔(𝐺/𝐻𝑌 ).

Proof. Let 𝐾 = ∩{𝑔𝐻𝑔−1 : 𝑔 ∈ 𝐺}. Since 𝐺/𝐻 = (𝐺/𝐾)/(𝐻/𝐾) and
∩{𝑔(𝐻/𝐾)𝑔−1 : 𝑔 ∈ 𝐺/𝐾} = 1, and

𝐺/𝐻𝑌 = (𝐺/𝐾)/(𝐻𝑌/𝐾) = (𝐺/𝐾)/(𝐻/𝐾).(𝐾𝑌/𝐾) for 𝑌 compact normal ≤ 𝐺,

we may assume that
∩

{𝑔𝐻𝑔−1 : 𝑔 ∈ 𝐻} = 1. Let 𝑝 : 𝐺→ 𝐺/𝐻 be the canonical
map.

i. Choose {𝑝(𝑉𝑖) : 𝑖 ∈ 𝐼} a local basis at 𝐻 in 𝐺/𝐻 such that Card (𝐼) =
1.𝜔(𝐺/𝐻) ≥ ℵ0, since 𝐻 is non-open, and for each 𝑖 ∈ 𝐼, let ker 𝑝𝑖 ⊆ 𝑉𝑖. Then
∩

{ker𝑝𝑖 : 𝑖 ∈ 𝐼} ⊆ 𝐻 , hence
∩

{ker 𝑝𝑖 : 𝑖 ∈ 𝐼} = 1 and

𝐺/𝐻 = lim
←

{𝐺/𝐻.
∩

{ker 𝑝𝑖 : 𝑖 ∈ 𝐹 finite ⊆ 𝐼}.

Since 𝐺 is 𝜎-compact, we get 𝜔(𝐺/𝐻). ∩ {ker 𝑝𝑖 : 𝑖 ∈ 𝐹 finite ⊆ 𝐼}} ≤ ℵ0 and
𝜔(𝐺/𝐻) ≤ 1.𝜔(𝐺/𝐻), by Lemma 2.1. Hence we have an equality.
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ii. Case 1: 𝐻 is compact.

Choose {𝑈𝑗 : 𝑗 ∈ 𝐽} a basis of 𝐺/𝐻 such that Card (𝐽) = 𝜔(𝐺/𝐻) and let
{𝑧𝑠𝐻 : 𝑠 ∈ 𝑆} be dense ⊆ 𝐺/𝐻 such that Card (𝑆) ≤ 𝜔(𝐺/𝐻). For all 𝑧 ∈ 𝐺 let
𝜑𝑧 : 𝐺→ 𝐺/𝐻 be defined by 𝜑𝑧(𝑔) = 𝑔.𝑧.𝐻 for all 𝑔 ∈ 𝐺, then

∩

{𝜑−1

𝑧𝑠
(𝑈 𝑗) : 𝑧𝑠𝐻 ∈ 𝑈𝑗, 𝑗 ∈ 𝐽} = 𝑧𝑠𝐻𝑧

−1

𝑠

and
∩

{𝑧𝑠𝐻𝑧
−1

𝑠
: 𝑠 ∈ 𝑆} =

∩

{𝜑−1

𝑧𝑠
(𝑧𝑠𝐻) : 𝑠 ∈ 𝑆}

=
∩

{𝜑−1

𝑧
(𝑧𝐻) : 𝑧 ∈ 𝐺} [2,TGIII.12,Proposition12]

=
∩

{𝑧𝐻𝑧−1 : 𝑧 ∈ 𝐺} = 1.

It follows by the compactness of 𝐻 that the family of finite intersections of
{𝜑−1

𝑧𝑠
(𝑈 𝑗) : 𝑧𝑠𝐻 ∈ 𝑈𝑗 , 𝑗 ∈ 𝐽, 𝑠 ∈ 𝑆} is a local basis at 1 ∈ 𝐺, hence 𝜔(𝐺/𝐻) ≥

1.𝜔(𝐺) = 𝜔(𝐺), by part i., since 𝐺 is non-discrete, and we get the desired equality.

Case 2: General case.

Let ker 𝑞 be compact normal ≤ 𝐺, 𝐺/ker 𝑞 Lie group. Then

𝜔(𝐺/𝐻) = 1.𝜔(𝐺/𝐻) by part 𝑖

= 1.𝜔(𝐺/(𝐻 ∩ ker 𝑞)) by virtue of the fiber bundle

𝐺/(𝐻 ∩ ker 𝑞)→ 𝐺/𝐻

= 𝜔(𝐺/(𝐻 ∩ ker 𝑞)) by part i again

= 𝜔(𝐺) by case 1.

iii. We have 𝑌 ≤ 𝑍(𝐺), 𝑍(𝐺) ∩ 𝐻 = 1 and since 𝐻𝑌 ∼= 𝐻 × 𝑌 , we get
(∩{𝑔𝐻𝑌 𝑔−1 : 𝑔 ∈ 𝐺})0 ≤ 𝐻 , hence ∩{𝑔𝐻𝑌 𝑔−1 : 𝑔 ∈ 𝐺} is totally disconnected
and therefore ≤ 𝑍(𝐺). It follows that ∩{𝑔𝐻𝑌 𝑔−1 : 𝑔 ∈ 𝐺} = 𝑌 and

1 = ∩{𝑔𝐻𝑌 𝑔−1 : 𝑔 ∈ 𝐺}/𝑌 = ∩{𝜑(𝑔)𝐻𝑌/𝑌 𝜑(𝑔−1) : 𝑔 ∈ 𝐺},

where 𝜑 : 𝐺→ 𝐺/𝑌 is the canonical map.

Now 𝜔(𝐺/𝐻) = 𝜔(𝐺), since ∩{𝑔𝐻𝑔−1 : 𝑔 ∈ 𝐺} = 1 by part ii, and
𝜔(𝐺/𝐻𝑌 ) = 𝜔(𝐺/𝑌 ), since ∩{𝜑(𝑔)𝐻𝑌/𝑌 𝜑(𝑔−1) : 𝑔 ∈ 𝐺} = 1 by part ii again.
Hence we may assume that 𝐻 = 1.

Note that 𝜔(𝐺/𝑌 ) = ℵ0 ⇔ 𝜔(𝐺) = ℵ0, so we may assume that 𝜔(𝐺) > ℵ0.
Let 𝐶 be a maximal compact ≤ 𝐺, then

𝜔(𝐺) = 𝜔(𝐶) [12, Theorem 13], since 𝜔(𝐶) > ℵ0

= 𝜔(𝐶/𝑌 ) [8, Proposition 12.26]

= 𝜔(𝐺/𝑌 ) [12, Theorem 13].
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The proof of Lemma 2.2 is complete.

Lemma 2.3. ([17, Theorems 18, 19]) Let 𝐺 be a locally compact group, 𝐺/𝐺0

compact, 𝐻 closed ≤ 𝐺, 𝐺/𝐻 connected, dim𝐺/𝐻 < ∞. Let 𝑗 ∈ 𝐽 be such that
dim (𝐺/𝐻 ker 𝑝𝑗) = dim𝐺/𝐻, and assume that 𝜋1(𝐺/𝐻 ker 𝑝𝑗) is finitely generated.
Then 𝜔(𝐺/𝐻) ≤ ℵ0.

In particular, a connected locally compact finite dimensional group is of count-
able weight and a compact connected finite dimensional quotient of a locally com-
pact group is of countable weight.

Proof. We have dim𝐻 ker 𝑝𝑗/𝐻 = 0 and 𝐻 ker 𝑝𝑗/𝐻 ∼= ker 𝑝𝑗/𝐻 ∩ ker 𝑝𝑗
compact. It follows that {𝐾/𝐻 : 𝐻 ≤ 𝐾 closed ≤ 𝐻 ker 𝑝𝑗, ∣𝐻 ker𝑝𝑗 : 𝐾∣ <∞}
is a fundamental system of neighborhoods of 𝐻 in 𝐻 ker 𝑝𝑗 ∩𝐻 .

Note that the function {𝐾/𝐻 : 𝐻 ≤ 𝐾 closed ≤ 𝐻 ker 𝑝𝑗, ∣𝐻 ker 𝑝𝑗 : 𝐾∣ <
∞} → {𝜋1(𝐺/𝐻) ≤ 𝐾 ≤ 𝜋1(𝐺/𝐻 ker 𝑝𝑗) : ∣𝜋1(𝐺/𝐻 ker 𝑝𝑗) : 𝐾∣ < ∞} defined
by 𝐾/𝐻 → (𝑞𝐾)#(𝜋1(𝐺/𝐾)) is injective, where 𝑞𝐾 : 𝐺/𝐾 → 𝐺/𝐻 ker 𝑝𝑗 is the
canonical map: if 𝐻 ≤ 𝐾𝑖 closed≤ 𝐻ker 𝑝𝑗 , ∣𝐻 ker𝑝𝑗 : 𝐾𝑖∣ < ∞, 𝑖 = 1, 2, the
exact sequence

1→ 𝜋1(𝐺/𝐾1 ∩𝐾2)
(𝑞𝐾1∩𝐾2

)#

−−−−−−−→ 𝜋1(𝐺/𝐻 ker 𝑝𝑗)
∂

−→ 𝐻 ker 𝑝𝑗/𝐾1 ∩𝐾2 → 1

gives ∂−1(𝐾𝑖/𝐾1 ∩𝐾2) = (𝑞𝐾𝑖
)#(𝜋1(𝐺/𝐾𝑖). Since 𝜋1(𝐺/𝐻 ker 𝑝𝑗) is finitely gen-

erated, {𝐾 ≤ 𝜋1(𝐺/𝐻 ker 𝑝𝑗) : ∣𝜋1(𝐺/𝐻 ker 𝑝𝑗) : 𝐾∣ < ∞} is countable, hence
𝜔(𝐺/𝐻) = 1.𝜔(𝐺/𝐻 by Lemma 2.2 part i) assuming that 𝐻 is not open in 𝐺

≤ max{ℵ0, 1.𝜔(𝐻 ker 𝑝𝑗/𝐻)} ≤ ℵ0.
In particular, if 𝐺/𝐻 is compact, let 𝐺∗ be open ≤ 𝐺, 𝐺∗/𝐺0 compact ([2,

TGI.84] and [2, TGIII.36]). Note that 𝐺∗/𝐺∗
∩ 𝐻 ∼= 𝐺∗𝐻/𝐻 open⊆ 𝐺/𝐻 and

if {𝑎𝑖 : 𝑖 ∈ 𝐿} is a left transversal of 𝐺∗ in 𝐺, then 𝐺/𝐻 = ⊕

𝑖∈𝐿

𝑎𝑖𝐺
∗/𝐺∗

∩ 𝐻 ,

so that 𝐺/𝐻 = 𝐺∗/𝐺∗
∩ 𝐻 and we may assume that 𝐺/𝐺0 is compact. Since

𝐺/𝐻 ker 𝑝𝑗 is a compact manifold, we have 𝜋1(𝐺/𝐻 ker 𝑝𝑗) finitely generated, hence
𝜔(𝐺/𝐻) ≤ ℵ0.

Corollary 2.4. (Generalized Wilcox Theorem [11, Theorem 7]) Let 𝐺 be a
connected locally compact group such that for all 𝑥 ∈ 𝐺, < 𝜒> is metrizable. Then
𝐺 is metrizable if and only if 1.𝜔(𝐺) ≤ ℵ0.

Proof. Let ker 𝑝 be a compact normal ≤ 𝐺, 𝐺/ker 𝑝 Lie group. Then 𝐺/(ker 𝑝)0
is finite dimensional, hence it is metrizable by Lemma 2.3. Mostert theorem [15]
shows that we may assume that 𝐺 is compact.

Claim 1. ([11, Lemma 1]) (R/Z)𝜔1 =< 𝜒> for some 𝑥 ∈ (R/Z)𝜔1 , where 𝜔1

is the first uncountable ordinal.
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Proof of Claim 1. Let 1 ∈ 𝐻 be a Hamel basis ofR overQ, so thatR = ⊕

ℎ∈𝐻

Qℎ

and 𝐻 is uncountable. Hence there exists 1 ∕∈ {ℎ𝛼 : 𝛼 < 𝜔1} ⊆ 𝐻 . Now [3, TG
VII.7, Corollary 2] shows that 𝑥 = (ℎ𝛼 + Z) ∈ (R/Z)𝜔1 satisfies our claim.

Case 1: 𝐺 is abelian.

By [5, Lemma 5.2], there exists a continuous surjective homomorphism
a : 𝐺→ (R/Z)𝜔(𝐺) and Claim 1 shows that 𝜔(𝐺) ≤ ℵ0.

Case 2: General case.

If 𝜔((𝑍(𝐺))0) = 𝜔(𝐺), we are done by Case 1, so we may assume that
𝜔((𝑍(𝐺))0) < 𝜔(𝐺).

By [4, Theorem 4.2] we have 𝐺/𝑍(𝐺) =
∏

𝑖∈𝐼

𝐺𝑖, where 𝐺𝑖 is compact connected

Lie group for all 𝑖. Taking a maximal torus in 𝐺𝑖 for each 𝑖 ∈ 𝐼, we get that
there exists 𝐻 closed ≤ 𝐺 and a continuous surjective homomorphism a : 𝐻 →

(R/Z)Card (𝐼). Again, as in Case 1, Claim 1 shows that we must have Card (𝐼) ≤ ℵ0.
Now ℵ0 = 𝜔(𝐺/𝑍(𝐺)) = 𝜔(𝐺) [4, Corollary 4.3].

Remark. (generalizes [10]) Let 𝐺 be a locally compact group, 𝐻 closed ≤ 𝐺

such that Card (𝐺/𝐻) ≤ 2ℵ0 . Then 1.𝜔(𝐺/𝐻) ≤ ℵ0 provided the following cardinal
statement holds: ℵ > ℵ0 ⇒ 2ℵ > 2ℵ0 .

Proof of Remark. Let 𝐺∗ be open ≤ 𝐺, 𝐺∗/𝐺0 compact ([2, TGI.84] and [2,
TGIII.36]), then 𝐺∗/𝐺∗

∩ 𝐻 ∼= 𝐺∗𝐻/𝐻 open⊆ 𝐺/𝐻 and we may assume that
𝐺/𝐺0 is compact. If 1.𝜔(𝐺/𝐻) > ℵ0, then

2ℵ0
≥ Card (𝐺/𝐻)

≥ 2𝑙.𝜔(𝐺/𝐻) by Čech–Posṕı̌sil theorem [6, Theorem 3.12.11],

which would contradict our hypothesis.

3. MAIN THEOREM

Theorem 3.1. ([9, 16]) Let 𝐺 be a locally compact group, 𝐻 closed ≤ 𝐺. Then

𝐺/𝐻 ⊇
∼=

{

𝐼dim𝐺/𝐻 , if dim𝐺/𝐻 <∞,

𝐼𝜔0(𝐺/𝐻), if dim𝐺/𝐻 =∞,

where 𝜔0(𝐺/𝐻) = weight of a connected component of 𝐺/𝐻 except perhaps when
ℵ0 ≤ 𝜔0(𝐺/𝐻) ≤ 2ℵ0 and dim𝐺/𝐻) = ∞. (In this case we can only guarantee
that 𝐺/𝐻 contains a copy of 𝐼ℵ0).

Proof. If dim𝐺/𝐻 < ∞, let 𝐺∗ be open ≤ 𝐺, 𝐺∗/𝐺0 compact ([2, TGI.84]
and [2, TGIII.36]), then 𝐺∗/𝐺∗

∩𝐻 ∼= 𝐺∗𝐻/𝐻 open ⊆ 𝐺/𝐻 . Hence dim𝐺/𝐻 =
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dim𝐺∗𝐻/𝐻 and we may assume that 𝐺/𝐺0 is compact. There exists ker 𝑝 compact
normal ≤ 𝐺, 𝐺/ker 𝑝 Lie group and dim𝐺/𝐻 ker 𝑝 = dim𝐺/𝐻 . The fiber bundle
𝐺/𝐻 → 𝐺/𝐻 ker 𝑝 proves our assertion in this case.

If dim𝐺/𝐻 = ∞, then dim𝐺/(𝐺0𝐻)−) = 0 by [2, TGIII.36, Corollary 1],
hence dim((𝐺0𝐻)−/𝐻) = ∞ and since 𝜔0(𝐺/𝐻) = 𝜔((𝐺0𝐻)−/𝐻) ([2, TGIII.36,
Corollary 3]), we may assume that 𝐺/𝐻 is connected.

Let 𝐺∗ be open ≤ 𝐺, 𝐺∗/𝐺0 compact ([2, TGI.84] and [2, TGIII.36]). Note
that if {𝑎𝑗 : 𝑗 ∈ 𝐽} is a complete system of representatives of the double coset
decomposition {𝐺∗𝑥𝐻 : 𝑥 ∈ 𝐺} of 𝐺, then 𝐺/𝐻 = ⊕

𝑗∈𝐽

𝐺∗𝑎𝑗𝐻/𝐻 and

𝐺∗/𝐺∗
∩ 𝑎𝑗𝐻𝑎

−1

𝑗

∼= 𝐺∗𝑎𝑗𝐻/𝐻 open ⊆ 𝐺/𝐻,

so that 𝐺∗/𝐺∗
∩ 𝐻 ∼= 𝐺∗𝐻/𝐻 = 𝐺/𝐻 and we may further assume that 𝐺/𝐺0 is

compact.

Let 𝐾 = ∩{𝑔𝐻𝑔−1 : 𝑔 ∈ 𝐺}, then 𝐺/𝐻 = (𝐺/𝐾)/(𝐻/𝐾) and we may assume
in addition that ∩{𝑔𝐻𝑔−1 : 𝑔 ∈ 𝐺} = 1.

Let ker 𝑝 be a compact normal≤ 𝐺 such that𝐺/ ker 𝑝 be Lie group and suppose
that 𝜔(𝐻(ker 𝑝)0/𝐻) < 𝜔(𝐺/𝐻(ker 𝑝)0). Then

1.𝜔(𝐻(ker 𝑝)0/𝐻) < 1.𝜔(𝐺/𝐻(ker 𝑝)0)

by Lemma 2.2(i), and the fiber bundle 𝐺/𝐻 → 𝐺/𝐻(ker 𝑝)0 provided by Mostert
theorem [15] shows that 1.𝜔(𝐺/𝐻) = 1.𝜔(𝐺/𝐻(ker 𝑝)0), hence, by Lemma 2.2(i)
again, 𝜔(𝐺/𝐻) = 𝜔(𝐺/𝐻(ker 𝑝)0). The fibration 𝐺/(ker 𝑝)0 → 𝐺/𝐻(ker 𝑝)0 in-
duces a surjective map of the arc components (𝐺/(ker 𝑝)0)𝑎 → (𝐺/𝐻(ker 𝑝)0)𝑎,
and since (𝐺/(ker 𝑝)0)𝑎 is Souslin [7, Theorem 7.2], it follows from the fibration
𝐺→ 𝐺/𝐻(ker 𝑝)0 that (𝐺/𝐻(ker 𝑝)0)𝑎 is Souslin and dense in 𝐺/𝐻(ker𝑝)0, so the
later space is separable. Therefore

ℵ0 ≤ 𝜔(𝐻(ker 𝑝)0/𝐻) < 𝜔(𝐺/𝐻(ker 𝑝)0) = 𝜔(𝐺/𝐻) ≤ 2ℵ0

by [6, Theorem 1.5.7], and this is the exceptional case that should be avoided [13], so
we may assume that 𝜔(𝐺/𝐻(ker 𝑝)0) ≤ 𝜔(𝐻(ker 𝑝)0/𝐻). Then the same argument
as above shows that 𝜔(𝐺/𝐻) = 𝜔(𝐻(ker 𝑝)0/𝐻), and since (ker 𝑝)0/𝐻 ∩ (ker 𝑝)0 ∼=
𝐻(ker 𝑝)0/𝐻 , we may assume further that 𝐺 is compact connected.

Therefore we reduced our theorem just to the case of 𝐺 compact connected
group, 𝐻 closed ≤ 𝐺, dim𝐺/𝐻 =∞ and ∩{𝑔𝐻𝑔−1 : 𝑔 ∈ 𝐺} = 1.

Let 𝜃 be the minimum ordinal such that Card 𝜃 = 1.𝜔(𝐺) ([1, E III.87, Ex
10]). Let {𝑈𝛼 : 𝛼 ∈ 𝜃} be a fundamental system of open neighborhoods of 1 ∈ 𝐺
and for all 𝛼 ∈ 𝜃, let ker 𝑝𝑗𝛼 ⊆ 𝑈𝛼. Define a well ordered system of compact
normal subgroups of 𝐺 under inclusion, {𝑌𝛼 : 𝛼 ∈ 𝜃}, by: 𝑌0 = ker 𝑝𝑗0 , and for
0 < 𝛼 ∈ 𝜃, 𝑌𝛼 = ∩{ker 𝑝𝑗𝛽 : 𝛽 < 𝛼} such that 𝐺/𝑌0 is a non-trivial Lie group,
∩{𝑌𝛼 : 𝛼 ∈ 𝜃} = 1, 𝑌𝛼/𝑌𝛼+1 Lie group. Therefore, we have a well-ordered inverse
system {𝐺/𝐻𝑌𝛼 : 𝛼 ∈ 𝜃} and 𝐺/𝐻 = lim

←

𝐺/𝐻𝑌𝛼. We have:
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i. 𝐺/𝐻𝑌0 is a non-trivial Euclidean manifold and ℵ0 ≤ 𝜔(𝐺/𝐻𝑌𝛼), 𝛼 ∈ 𝜃;

ii. the canonical map 𝜑𝛼,𝛼+1 : 𝐺/𝐻𝑌𝛼+1 → 𝐺/𝐻𝑌𝛼 is a fiber bundle with a
compact Euclidean manifold as fiber, 𝛼 ∈ 𝜃;

iii. if 𝛼 ∈ 𝜃 has no predecessor, then 𝐺/𝐻𝑌𝛼 = lim
←

{𝐺/𝐻𝑌𝛽 : 𝛽 < 𝛼}.

Suppose that Card 𝜃 > ℵ0 and assume that there exists 𝛼 ∈ 𝜃 with 𝜔(𝐺/𝐻𝑌𝛼) =
𝜔(𝐺/𝐻). Let 𝛼0 = min{𝛼 ∈ 𝜃 : 𝜔(𝐺/𝐻𝑌𝛼) = 𝜔(𝐺/𝐻)}, then 𝛼0 has no predeces-
sor, since otherwise 𝛼0 = 𝛽 + 1 and

𝜔(𝐺/𝐻𝑌𝛽) = 1.𝜔(𝐺/𝐻𝑌𝛽) by Lemma 2.2(i)

= 1.𝜔(𝐺/𝐻𝑌𝛽+1) by condition ii. above

= 𝜔(𝐺/𝐻𝑌𝛽+1) by Lemma 2.2(i) again.

Furthermore, Card𝛼0 > ℵ0, since otherwise 𝜔(𝐺/𝐻𝑌𝛼) = ℵ0 for 𝛼 < 𝛼0 and hence
Card 𝜃 = 1.𝜔(𝐺) = 𝜔(𝐺) = 𝜔(𝐺/𝐻) = 𝜔(𝐺/𝐻𝑌𝛼) = ℵ0 by condition iii.

Applying the principle of transfinite induction ([1, E III.18, C59]) using con-
ditions ii. and iii. and Lemmas 2.1 and 2.2, we get 𝜔(𝐺/𝐻𝑌𝛼) ≤ max{ℵ0,Card𝛼}
for 𝛼 < 𝛼0. Hence

Card 𝜃 = 1.𝜔(𝐺) = 𝜔(𝐺) = 𝜔(𝐺/𝐻) = 𝜔(𝐺/𝐻𝑌𝛼) ≤ max{ℵ0, Card𝛼0} = Card𝛼0,

and 𝛼0 = 𝜃. Therefore ℵ0 ≤ 𝜔(𝐺/𝐻𝑌𝛼) < 𝜔(𝐺/𝐻) for all 𝛼 ∈ 𝜃, if Card 𝜃 > ℵ0.

Claim 2. There holds

{𝛼 ∈ 𝜃 : dim(𝐻𝑌𝛼/𝐻𝑌𝛼+1) > 0} cofinal ⊆ 𝜃 .

Proof. Assume the contrary, then there would exist 𝛾 ∈ 𝜃 such that for all 𝛾 ≤
𝛼 ∈ 𝜃, ∣𝐻𝑌𝛼/𝐻𝑌𝛼+1∣ <∞ and dim(𝐻𝑌𝛾/𝐻𝑌𝛽) = 0 for all 𝛾≤𝛽∈𝜃 (since otherwise
if 𝛾0 = min{𝛾 ≤ 𝛽 ∈ 𝜃 : dim(𝐻𝑌𝛾/𝐻𝑌𝛽) > 0}, then 𝛾0 would have no predeces-
sor and 𝐻𝑌𝛾/𝐻𝑌𝛾0

= lim
←

{𝐻𝑌𝛾/𝐻𝑌𝛽 : 𝛾 ≤ 𝛽 < 𝛾0}, hence dim(𝐻𝑌𝛾/𝐻𝑌𝛾0
) = 0,

which is absurd.

We have 𝐻𝑌𝛾/𝐻 = lim
←

{𝐻𝑌𝛾/𝐻𝑌𝛽 : 𝛾 ≤ 𝛽 ∈ 𝜃}. Hence dim𝐻𝑌𝛾/𝐻 = 0.

Since dim𝐺/𝐻 = ∞, we must have Card 𝜃 > ℵ0. We have (𝑌𝛾)0 ≤ 𝐻 . Hence
(𝑌𝛾)0 = 1 and 𝑌𝛾 is totally disconnected. Lemma 2.2(iii) shows that 𝜔(𝐺/𝐻) =
𝜔(𝐺/𝐻𝑌𝛾), which is absurd.

Claim 3. There holds

Ord(𝜃 (𝛼 ∈ 𝜃 : 𝛼 = 𝛽 + 1, ∣𝐻𝑌𝛽/𝐻𝑌𝛽+1∣ <∞}) = 𝜃 .
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Proof. Since Ord(𝜃 (𝛼 ∈ 𝜃 : 𝛼 = 𝛽 + 1, ∣𝐻𝑌𝛽/𝐻𝑌𝛽+1∣ < ∞}) ≤ 𝜃, it suffices
to show that Card (𝜃 (𝛼 ∈ 𝜃 : 𝛼 = 𝛽 + 1, ∣𝐻𝑌𝛽/𝐻𝑌𝛽+1∣ < ∞}) = Card 𝜃. If
Card 𝜃 = ℵ0, this is clear from Claim 2. If Card 𝜃 > ℵ0, then

Card 𝜃 ≥ Card(𝜃 (𝛼 ∈ 𝜃 : 𝛼 = 𝛽 + 1, ∣𝐻𝑌𝛽/𝐻𝑌𝛽+1∣ <∞}

≥ Card ({𝛼 ∈ 𝜃 : 𝛼 has no predecessor }) = Card 𝜃 ,

since 𝜃 =
∪

𝑛≥0

{𝛼+ 𝑛 ∈ 𝜃 : 𝛼 has no predecessor } (disjoint union).

By Claims 2 and 3 we may further assume that dim(𝐻𝑌𝛾/𝐻𝑌𝛾+1) > 0 for all
𝛾 ∈ 𝜃.

An application of the principle of transfinite induction ([1, E III.18, C 59])
shows that for all 𝛼 ∈ 𝜃, 𝐺/𝐻𝑌𝛼 ⊇ 𝐼𝛼 such that 𝛼 ≤ 𝛽 ∈ 𝜃, 𝜑𝛼,𝛽 ∣ : 𝐼𝛽 → 𝐼𝛼

is equivalent to the projection map onto the first factor by virtue of conditions ii
and iii. We get 𝐺/𝐻 = 𝐺/𝐻𝑌𝜃 ⊇ 𝐼𝜃 as desired since Card 𝜃 = 1.𝜔(𝐺) = 𝜔(𝐺) =
𝜔(𝐺/𝐻).
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SOME PROPERTIES OF AN ALGEBRA OF ALL SETS

OF NATURALS E-REDUCIBLE TO A FIXED SET

ANGEL V. DITCHEV

In this paper we consider the algebra 𝔑𝐴 = ⟨𝒫(𝜔)𝐴 ;𝑊0,𝑊1, . . . ;𝑁𝑜𝑛⟩, where 𝐴 is an
arbitrary fixed set of natural numbers, 𝒫(𝜔)𝐴 = {𝐵∣𝐵 ⊆ 𝜔&𝐵 ≤𝑒 𝐴}, 𝑊0,𝑊1, . . . is
the sequence of all computably enumerable sets, considered as e-operators, and 𝑁𝑜𝑛 is
the predicate detecting non-emptiness. It is shown that for any set of natural numbers
𝐴 the algebra 𝔑𝐴 has a least enumeration, admits equivalent representation with 3
operators and is finitely generated.

Keywords: Enumeration, enumeration degree, enumeration operator, degree of a
structure, least degree of a structure, algebra.
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1. INTRODUCTION

In attempts to classify the family of all sets of naturals with respect to effective
computability, different kinds of reducibilities have been introduced. In [8] Post first
introduced the so-called ”strong” reducibilities (m-,tt-,. . . ) and later on in [9] – the
Turing reducibility.

Every reducibility defines a pre-order. Thus in a natural way m-degrees, T-
degrees, etc. have been introduced. Enumeration reducibility was introduced in
1959 by Friedberg and Rogers [5]. In [7] embedding of the semi-lattice of Turing
degrees (T-degrees) into the semi-lattice of enumeration degrees (e-degrees) was
found.This fact showed that two semi-lattices are closely related and any result
or question about one of them triggered a question of validity for the other. In
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1966 Sacks [12] and in 1967 Rogers [11] stated the basic question about T-degrees,
namely whether there exist non-trivial automorphisms in the upper semi-lattice
of T-degrees. In case that such non-trivial automorphisms do not exist, we say
that the upper semi-lattice is rigid. The same question was stated for e-degrees,
m-degrees, etc. This question is important because it is connected with definability
in these semi-lattices. For m-degrees it was shown by Shore that there exist 22

ℵ0

automorphisms.
In 1977 Jockusch and Solovay [6] and in 1979 Richter [10] and Epstein [4] proved

that for Turing degrees every automorphism is the identity on the cone above 0(3).
In 1986 Slaman and Woodin [13] improved the above result by showing that every
automorphism is the identity on the cone above 0′′. Using the connections between
both T- and e-jumps, Soskov and Ganchev [15] proved that for e-degrees every
automorphism is the identity on the cone above 0(4).

Since the upper semi-lattice of all e-degrees (e-degrees ≤ a) is defined by
≤𝑒 𝐴, in this paper for any fixed set of natural numbers 𝐴 the algebra 𝔑𝐴 =
⟨𝒫(𝜔)𝐴;𝑊0,𝑊1, . . . ;𝑁𝑜𝑛⟩ is considered. Here 𝒫(𝜔)𝐴 = {𝐵∣𝐵 ⊆ 𝜔&𝐵 ≤𝑒 𝐴} and
𝑊0,𝑊1, . . . is the standard sequence of all computably enumerable (c.e.) sets, con-
sidered as e-operators and 𝑁𝑜𝑛 is the predicate for ”non-emptiness”. We would
like to mention that the empty set plays a special role and we distinguish it from
the other c.e. sets. We modify slightly the relation ≤𝑒 and show that the algebra
𝔑𝐴 has a least enumeration, admits equivalent representation with 3 operators ant
is finitely generated. We use unary partial structures without equality [3, 2].

In Section 2 we give all necessary definitions, notions and propositions con-
cerning normal and least enumerations of unary partial structures. Here we slightly
modify the definitions of e-reducibility and e-operators, concerning the empty set.
In Section 3 we prove our main result: The algebra𝔑𝐴 = ⟨𝒫(𝜔)𝐴;𝑊0,𝑊1, . . . ;𝑁𝑜𝑛⟩
admits a least enumeration. Then we prove that this algebra is recursively equiv-
alent to an algebra with only 3 operators, and that the latter algebra is finitely
generated. At the end we see that among all algebras with different enumeration
of all e-operators the standard one has a least enumeration.

2. PRELIMINARIES

In this paper we denote by 𝜔 the set of all natural numbers. By 𝐷𝑜𝑚(𝑓),
𝑅𝑎𝑛(𝑓) and 𝐺𝑓 we denote the domain, the range and the graph of a function 𝑓 ,
respectively; ⟨𝑓⟩ or ⟨𝐺𝑓 ⟩ stands for the set {⟨𝑥1, . . . , 𝑥𝑛, 𝑦⟩∣(𝑥1, . . . , 𝑥𝑛, 𝑦) ∈ 𝐺𝑓},
where ⟨., . . . , .⟩ is some fixed coding function for all finite sequences of natural
numbers. We shall use 𝑓(𝑥) ↓ to denote that 𝑥 ∈ 𝐷𝑜𝑚(𝑓); also we say that 𝑓(𝑥)
is conditionally equal to 𝑔(𝑥), or that the conditional equality 𝑓(𝑥) ∼= 𝑔(𝑥) is true
if and only if

(𝑓(𝑥) ↓ &𝑔(𝑥) ↓ &𝑓(𝑥) = 𝑔(𝑥)) ∨ (¬(𝑓(𝑥) ↓)&¬(𝑔(𝑥) ↓)).
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𝑊0, 𝑊1,. . . denotes the standard enumeration of all computably enumerable
(c.e.) sets; {𝐸𝑣}𝑣∈𝜔 is an effective coding of the family of all finite subsets of 𝜔.

If 𝑊 is c.e. set, then we write 𝑊[𝑛] = {𝑥∣⟨𝑛, 𝑥⟩ ∈𝑊}.
If 𝐴 is an arbitrary subset of 𝜔, then by 𝑊 (𝐴) we denote the set

𝑊 (𝐴) = {𝑥∣∃𝑣(⟨𝑥, 𝑣⟩ ∈𝑊&𝐸𝑣 ∕= ∅&𝐸𝑣 ⊆ 𝐴)}.

Notice that there is a slight deviation from the usual definition of the term
e-operator. It concerns ∅.

We shall say that 𝐴 is e-reducible to 𝐵 (𝐴 ≤𝑒 𝐵) if there exists a c.e. set
𝑊 such that 𝐴 = 𝑊 (𝐵); 𝐴 is e-equivalent to 𝐵 (𝐴 ≡𝑒 𝐵) if 𝐴 ≤𝑒 𝐵&𝐵 ≤𝑒 𝐴;
d𝑒(𝐴) = {𝐵∣𝐴 ≡𝑒 𝐵}. Thus we obtain 0𝑒 — the family of all non-empty c.e. sets
and -1𝑒 = {∅}.

For two arbitrary sets 𝐴 and 𝐵 of naturals, set

𝐴⊕𝐵 := {2𝑥∣𝑥 ∈ 𝐴} ∪ {2𝑥+ 1∣𝑥 ∈ 𝐵}.

If 𝐴0, 𝐴1,. . . is a sequence of sets of naturals, the notation ⊕𝑖∈𝜔𝐴𝑖 stands for the
set {⟨𝑖, 𝑥⟩∣𝑥 ∈ 𝐴𝑖}.

We recall some definitions from [14, 1].

Let 𝔄 = ⟨𝐵; 𝜃1, . . . , 𝜃𝑛;𝑅1, . . . , 𝑅𝑘⟩ be a partial structure, where 𝐵 is an arbi-
trary denumerable set, 𝜃1, . . . , 𝜃𝑛 are partial unary functions in 𝐵 and 𝑅1, . . . , 𝑅𝑘

are unary partial predicates on 𝐵. We allow any of the sequences 𝜃1, . . . , 𝜃𝑛 and
𝑅1, . . . , 𝑅𝑘 to be infinite, as well. We call such structures unary. We identify the
partial predicates with partial mapping taking values in {0, 1}, writing 0 for true
and 1 for false.

Let 𝔅 = ⟨𝜔;𝜑1, . . . , 𝜑𝑛;𝜎1, . . . , 𝜎𝑘⟩ be a partial structure over the set 𝜔. By
⟨𝔅⟩ we denote the set ⟨𝜑1⟩ ⊕ ⋅ ⋅ ⋅ ⊕ ⟨𝜑𝑛⟩ ⊕ ⟨𝜎1⟩ ⊕ ⋅ ⋅ ⋅ ⊕ ⟨𝜎𝑘⟩ (in the case the when
the set of functions or predicates is infinite we shall use the corresponding infinite
version of

⊕

).

Definition 1. An enumeration of a structure 𝔄 is any ordered pair ⟨𝛼,𝔅⟩,
where 𝔅 = ⟨𝜔;𝜑1, . . . , 𝜑𝑛;𝜎1, . . . , 𝜎𝑘⟩ is a partial unary structure on 𝜔 and 𝛼 is a
partial surjective mapping of 𝜔 onto 𝐵 such that the following conditions hold:

(i) 𝐷𝑜𝑚(𝛼) ≤𝑒 ⟨𝔅⟩;

(ii) 𝛼(𝜑𝑖(𝑥)) ∼= 𝜃𝑖(𝛼(𝑥)) for every 𝑥 ∈ 𝜔, 1 ≤ 𝑖 ≤ 𝑛;

(iii) 𝜎𝑗(𝑥) ∼= 𝑅𝑗(𝛼(𝑥)) for every 𝑥 ∈ 𝜔, 1 ≤ 𝑗 ≤ 𝑘.

An enumeration ⟨𝛼,𝔅⟩ is said to be total if 𝐷𝑜𝑚(𝛼) = 𝜔.

Let 𝐴 ⊆ 𝐵. The set 𝐴 is called admissible in the enumeration ⟨𝛼,𝔅⟩ if and
only if there exists a set 𝑊 of naturals such that 𝑊 ≤𝑒 ⟨𝔅⟩ and for every 𝑥 ∈ 𝜔,
𝑥 ∈𝑊 ⇐⇒ 𝛼(𝑥) ∈ 𝐴.
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A partial multiple-valued (p.m.v) function 𝜃 is called admissible in the enu-
meration ⟨𝛼,𝔅⟩ if there exists a set 𝑊 ⊆ 𝜔2 such that 𝑊 ≤𝑒 ⟨𝔅⟩ and for every
𝑥 ∈ 𝜔 and 𝑡 ∈ 𝐵, the following equivalence is true:

𝑡 ∈ 𝜃(𝛼(𝑥)) ⇐⇒ ∃𝑦((𝑥, 𝑦) ∈𝑊&𝛼(𝑦) = 𝑡).

The above definition can be reformulated as follows: A p.m.v function 𝜃 is
called admissible in the enumeration ⟨𝛼,𝔅⟩ if there exists a p.m.v function 𝜑 in 𝜔
such that ⟨𝐺𝜑⟩ ≤𝑒 ⟨𝔅⟩ and for every 𝑥 ∈ 𝜔, 𝛼(𝜑(𝑥)) = 𝜃(𝛼(𝑥)).

A set 𝐴 or p.m.v function 𝜃 is called ∀-admissible in 𝔄 if it is admissible in
every enumeration ⟨𝛼,𝔅⟩ of 𝔄.

Let ⟨𝛼0,𝔅0⟩ be an enumeration of the structure 𝔄. We say that ⟨𝛼0,𝔅0⟩ is a
least enumeration of 𝔄 if for every enumeration ⟨𝛼,𝔅⟩ of 𝔄, ⟨𝔅0⟩ ≤𝑒 ⟨𝔅⟩.

Let ℒ be the first order language corresponding to the structure 𝔄, i.e. ℒ
consists of 𝑛 unary functional symbols f1, . . . , fn and 𝑘 unary predicate symbols
T1, . . . ,Tk. We admit any of the sequences f1, . . . , fn andT1, . . . ,Tk to be infinite.
Let us fix some denumerable set 𝑋1, 𝑋2, . . . of variables. We use capital letters
𝑋,𝑌, 𝑍 and the same letters indexed to denote variables.

We use the standard definition of a term in the language ℒ: Every variable is
a term; if 𝜏 is a term, then fi(𝜏) is a term. If 𝜏 is a term in the language ℒ, then
we write 𝜏(𝑌1, . . . , 𝑌𝑘) to denote that all variables which occur in the term 𝜏 are
among 𝑌1, . . . , 𝑌𝑘.

Termal predicate in the language ℒ is defined by the following inductive clauses:

1) If T ∈ {T0, . . . ,Tk} and 𝜏 is a term, then T(𝜏) and ¬T(𝜏) are termal
predicates.

2) If Π1 and Π2 are termal predicates, then (Π1&Π2) is a termal predicate.

Suppose that 𝔅 is a structure, 𝑎1, . . . , 𝑎𝑘 are elements of 𝐵 and 𝜏(𝑌1, . . . , 𝑌𝑘)
is a term. By 𝜏𝔄(𝑌1/𝑎1, . . . , 𝑌𝑘/𝑎𝑘) we denote the value of the term 𝜏 in 𝔄 over the
elements 𝑎1, . . . , 𝑎𝑘, if it exists.

Let Π(𝑌1, . . . , 𝑌𝑚) be a termal predicate whose variables are among 𝑌1, . . . , 𝑌𝑚
and 𝑎1, . . . , 𝑎𝑚 be elements of 𝐵. The value Π𝔄(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚) of Π over
𝑎1, . . . , 𝑎𝑟 in 𝔄 is defined as follows:

If Π=T𝑗(𝜏), 0≤𝑗≤𝑘, then Π𝔄(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚)∼=𝑅𝑗(𝜏𝔄(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚)).

If Π = ¬Π1, where Π1 is a termal predicate, then

Π𝔄(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚) ∼=

⎧


⎨


⎩

1, if Π1

𝔄
(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚) ∼= 0,

0, if Π1

𝔄
(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚) ∼= 1,

undefined, otherwise.

If Π = (Π1&Π2), where Π1 and Π2 are termal predicates, then

Π𝔄(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚)∼=

⎧


⎨


⎩

Π2

𝔄
(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚), ifΠ1

𝔄
(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚) ∼= 0,

1, ifΠ1

𝔄
(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚) ∼= 1,

undefined, otherwise.
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Formulae of the kind ∃𝑌 ′

1
. . . ∃𝑌 ′

𝑙
(Π), where Π is a termal predicate, are called

conditions. Every variable which occurs in Π and is different from 𝑌 ′

1
, . . . , 𝑌 ′

𝑙
is

called free in the condition ∃𝑌 ′

1
. . .∃𝑌 ′

𝑙
(Π).

Let ∃𝑌 ′

1
. . . ∃𝑌 ′

𝑙
(Π) be a condition, let all free variables in 𝐶 be among 𝑌1, . . . , 𝑌𝑚,

and 𝑎1, . . . , 𝑎𝑚 be elements of 𝐵. The value 𝐶𝔄(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚) is defined by
the equivalence:

𝐶𝔄(𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚) ∼= 0 ⇐⇒

∃𝑡1 . . .∃𝑡𝑙(Π𝔄(𝑌
′

1
/𝑡1, . . . , 𝑌

′

𝑙
/𝑡𝑙, 𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚) ∼= 0).

We assume that some effective codding of all terms, termal predicates and
conditions of the language ℒ is fixed. We shall use superscripts to denote the
corresponding codes.

Let 𝐴 ⊆ 𝜔𝑟
× 𝐵𝑚. The set 𝐴 is said to be ∃-definable (or just definable) in

the structure 𝔄 if and only if there exists a recursive function 𝛾 of 𝑟 + 1 vari-
ables such that for all 𝑛, 𝑥1, . . . , 𝑥𝑟, 𝐶

𝛾(𝑛,𝑥1,...,𝑥𝑟) is a condition with free variables
among 𝑍1, . . . , 𝑍𝑙, 𝑌1, . . . , 𝑌𝑚 and for some fixed elements 𝑡1, . . . , 𝑡𝑙 of 𝐵 the follow-
ing equivalence is true:

(𝑥1, . . . , 𝑥𝑟, 𝑎1, . . . , 𝑎𝑚) ∈ 𝐴 ⇐⇒

∃𝑛 ∈ 𝜔(𝐶
𝛾(𝑛,𝑥1,...,𝑥𝑟)

𝔄
(𝑍1/𝑡1, . . . , 𝑍𝑙/𝑡𝑙, 𝑌1/𝑎1, . . . , 𝑌𝑚/𝑎𝑚) ∼= 0).

If Π is a termal predicate and 𝜏 is a term, then ∃𝑌 ′

1
. . . ∃𝑌 ′

𝑙
(Π ⊃ 𝜏) is called a

conditional expression.

Let 𝑄 = ∃𝑌 ′

1
. . . ∃𝑌 ′

𝑙
(Π ⊃ 𝜏) be a conditional expression with free variables

among 𝑋1, . . . , 𝑋𝑎, and 𝑠1, . . . , 𝑠𝑎 ∈ 𝐵. Then the value 𝑄𝔄(𝑋1/𝑠1, . . . , 𝑋𝑎/𝑠𝑎) of
𝑄 is the following subset of 𝐵:

{𝜏𝔄(𝑌
′

1/𝑝1, . . . , 𝑌
′

𝑙 /𝑝𝑙, 𝑋1/𝑠1, . . . , 𝑋𝑎/𝑠𝑎)∣Π𝔄(𝑌
′

1/𝑝1, . . . , 𝑌
′

𝑙 /𝑝𝑙, 𝑋1/𝑠1, . . . , 𝑋𝑎/𝑠𝑎) ∼= 0}.

Let 𝜃 be a p.m.v. function in 𝐵. Then the function 𝜃 is called definable
in 𝔄 if and only if for some c.e. set {𝑄𝑣

}𝑣∈𝑉 of conditional expressions with
free variables among 𝑋,𝑍1, . . . , 𝑍𝑟 and for some fixed elements 𝑡1, . . . , 𝑡𝑟 of 𝐵 the
following equivalence is true:

𝑡 ∈ 𝜃(𝑠) ⇐⇒ ∃𝑣(𝑣 ∈ 𝑉&𝑡 ∈ 𝑄𝑣

𝔄(𝑍1/𝑡1, . . . , 𝑍𝑟/𝑡𝑟, 𝑋/𝑠)).

In [14] Soskov has proved the following result.

Theorem 1. (Soskov [14]) Let 𝜃 be a unary p.m.v. function in B. Then 𝜃 is
∀-admissible in 𝔄 if and only if 𝜃 is definable in 𝔄.

Define 𝑓𝑖(𝑝) = ⟨𝑖− 1, 𝑝⟩, 𝑖 = 1, . . . , 𝑛 and 𝑁0 = 𝜔 ∖ (𝑅𝑎𝑛(𝑓1) ∪ ⋅ ⋅ ⋅ ∪𝑅𝑎𝑛(𝑓𝑛)).
It is obvious that 𝑁0 is an infinite recursive set and let {p0,p1, . . . } = 𝑁0, where
pi < pj if 𝑖 < 𝑗. In the case when the sequence 𝑓𝑖 is infinite (𝑖 ∈ 𝜔) we can ensure
𝑁0 to be infinite by taking for example 𝑓𝑖(𝑝) = ⟨𝑖 − 1, 𝑝, 0⟩.
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Next we recall the definition and some properties of normal enumerations [14]
for the case of total enumerations. For every surjective mapping 𝛼0 of 𝑁0 onto 𝐵
(called basis) we define a mapping 𝛼 of 𝜔 onto 𝐵 by the following inductive clauses:

(i) If 𝑝 ∈ 𝑁0, then 𝛼(𝑝) = 𝛼0(𝑝);

(ii) If 𝑝 = 𝑓𝑖(𝑞), then 𝛼(𝑞) = 𝑎 and 𝜃𝑖(𝑎) = 𝑏, then 𝛼(𝑝) = 𝑏.

Let 𝜎1, . . . , 𝜎𝑘 be the partial predicates, defined by 𝜎𝑗(𝑥) ∼= 𝑅𝑗(𝛼(𝑥)), 𝑗 =
1, . . . , 𝑘. Denote by 𝔅 the partial structure ⟨𝜔; 𝑓1, . . . , 𝑓𝑛;𝜎1, . . . , 𝜎𝑘⟩. It is well
known [1, 14] that 𝛼 is well defined and that the basis 𝛼0 completely determines
the normal enumeration ⟨𝛼,𝔅⟩.

Let ⟨𝛼,𝔅⟩ be a normal enumeration. We recall some obvious propositions for
normal enumerations. Their proofs are the same as in [14].

Proposition 1. For every 1 ≤ 𝑖 ≤ 𝑛 and 𝑦 ∈ 𝜔, 𝛼(𝑓𝑖(𝑦)) = 𝜃𝑖(𝛼(𝑦)).

Corollary 1. Let 𝜏(𝑌 ) be a term and 𝑦 ∈ 𝜔. Then

𝛼(𝜏𝔅(𝑌/𝑦)) = 𝜏𝔄(𝑌/𝛼(𝑦)).

Proposition 2. There exists an effective way for every 𝑥 of 𝜔 to find 𝑦 ∈ 𝑁0

and a term 𝜏(𝑌 ), such that 𝑥 = 𝜏𝔅(𝑌/𝑦).

If ⟨𝛼,𝔅⟩ is a normal enumeration, we denote the set ∪𝑘

𝑗=1
{⟨𝑗, 𝑥, 𝑧⟩∣𝜎𝑗(𝑥) = 𝑧}

by 𝑅𝛼. In the general case we have to add some additional members, but in our
situation the functions 𝑓𝑖 are totally defined and no additional terms are needed.
It is clear that for every 𝑊 ⊆ 𝜔, 𝑊 ≤𝑒 𝑅𝛼 if and only if 𝑊 ≤𝑒 ⟨𝔅⟩.

Proposition 3. There exists an effective way for every natural 𝑢 to find ele-
ments 𝑦1, . . . , 𝑦𝑚 ∈ 𝑁0 and a termal predicate Π(𝑌1, . . . , 𝑌𝑚) such that for every
normal enumeration ⟨𝛼,𝔅⟩,

𝑢 ∈ 𝑅𝛼 ⇐⇒ Π𝔄(𝑌1/𝛼(𝑦1), . . . , 𝑌𝑚/𝛼(𝑦𝑚)) ∼= 0.

Proposition 4. There exists an effective way for every code 𝑣 of a finite set
𝐸𝑣 to find elements 𝑦𝑣

1
, . . . , 𝑦𝑣

𝑚𝑣
∈ 𝑁0 and a termal predicate Π𝑣(𝑌1, . . . , 𝑌𝑚𝑣

) such
that for every normal enumeration ⟨𝛼,𝔅⟩,

𝐸𝑣 ⊆ 𝑅𝛼 ⇐⇒ Π𝑣

𝔄(𝑌1/𝛼(𝑦
𝑣

1
), . . . , 𝑌𝑚𝑣

/𝛼(𝑦𝑣
𝑚𝑣

)) ∼= 0.

To be precise, we have to mention that, for the sake of simplicity, in the above
proposition we have used just Π𝑣 instead of Π𝛾(𝑣) with some recursive function 𝛾.

Let 𝔄 = ⟨𝐵; 𝜃1, . . . , 𝜃𝑛;𝑅1, . . . , 𝑅𝑘⟩ be a unary partial structure. Type of the
sequence 𝑏1, . . . , 𝑏𝑚 of elements of 𝐵 is called the set

{𝑣∣Π𝑣

𝔄(𝑋1/𝑏1, . . . , 𝑋𝑚/𝑏𝑚)∼=0&Π𝑣 is a termal predicate with variables ∈{𝑋𝑖}

𝑚

𝑖=1
}.
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The type of the sequence 𝑏1, . . . , 𝑏𝑚 is denoted by [𝑏1, . . . , 𝑏𝑚]𝔄. The type of an
element 𝑎 of 𝐵 is the type of the sequence 𝑎.

A condition is called simple if it does not contain free variables and it is in the
form ∃𝑋1Π, where Π is a termal predicate. Let 𝑉 𝔄

0
= {𝑣∣𝐶𝑣

𝔄
∼= 0 & 𝐶𝑣 be a simple

condition}.

Definition 2. Let 𝒜 be a family of subsets of 𝜔. A set 𝑈 ⊆ 𝜔2 is said to be
universal for the family 𝒜, if the following conditions hold:

a) For every fixed 𝑒 ∈ 𝜔, {𝑥1∣(𝑒, 𝑥1) ∈ 𝑈} ∈ 𝒜;

b) If 𝐴 ∈ 𝒜, then there exists 𝑒 such that 𝐴 = {𝑥1∣(𝑒, 𝑥1) ∈ 𝑈}.

Theorem 2. ([3]) Let 𝔄 be a unary partial structure. Then 𝔄 admits a least
partial enumeration ⟨𝛼0,𝔅0⟩ if and only if there exist elements 𝑏1, . . . , 𝑏𝑚 of 𝐵 such
that 𝑑𝑒𝑔𝑒([𝑏1]𝔄⊕⋅ ⋅ ⋅⊕ [𝑏𝑚]𝔄⊕𝑉

𝔄
0
) is the least upper bound of 𝑒-degrees of all ∃-types

of sequences of elements of 𝐵 and there exists a universal set 𝑈 of all types, such
that 𝑑𝑒𝑔𝑒(𝑈) = 𝑑𝑒𝑔𝑒([𝑏1]𝔄 ⊕ ⋅ ⋅ ⋅ ⊕ [𝑏𝑚]𝔄 ⊕ 𝑉 𝔄

0
).

3. THE MAIN RESULT

We shall consider the standard structure 𝔑 = ⟨𝒫(𝜔);𝑊0,𝑊1, . . . ;𝑁𝑜𝑛⟩, where
𝒫(𝜔) is the family of all subsets of 𝜔, 𝑊0,𝑊1, . . . is a fixed sequence of all c.e.
sets considered as functions (e-operators) and 𝑁𝑜𝑛 is the family of all non-empty
sets of naturals. To be more precise, 𝑁𝑜𝑛 is a partial unary predicate defined as
follows: 𝑁𝑜𝑛(𝐴) = 0, if 𝐴 ∕= ∅ and 𝑁𝑜𝑛(∅) ↑.

First we shall consider the structure 𝔑𝐴 = ⟨𝒫(𝜔)𝐴;𝑊0,𝑊1, . . . ;𝑁𝑜𝑛⟩, where
𝒫(𝜔)𝐴 = {𝐵∣𝐵 ⊆ 𝜔&𝐵 ≤𝑒 𝐴}, which we call standard as well. Let us mention
that the functions 𝑊0,𝑊1, . . . are totally defined as e-operators and we do not use
the equality among the predicates. Let in addition W be the family of all c.e. sets
considered as e-operators.

Let ℒ∗ be the first order language ⟨f0, f1, . . . ;T⟩, containing a countable set
of unary functional symbols f0, f1, . . . and a unary predicate symbol T. We call
𝔄 a generalized structure if 𝔄 = ⟨𝐵;Θ;𝑅⟩, where 𝐵 is a denumerable set, Θ –
denumerable set of unary functions on 𝐵 and 𝑅 is a unary predicate on 𝐵. When
we consider structures with finite functions and finite predicates, the considerations
do not depend on the enumerations of the functions and the predicates. In the case
when we consider denumerable set of functions the situation is different.

Enumeration of a family Θ of functions is any sequence 𝜃0, 𝜃1, . . . such that
Θ = {𝜃0, 𝜃1, . . . }. We do not require all members of the sequence 𝜃0, 𝜃1, . . . to be
different.

Let us fix some enumeration 𝜃0

0
, 𝜃0

1
, . . . of the family Θ and consider the struc-

ture 𝔄0 = ⟨𝐵; 𝜃0

0
, 𝜃0

1
, . . . ;𝑅⟩.
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We say that ⟨𝛼0,𝔅0⟩ is a least enumeration of the generalized structure 𝔄

if for every enumeration 𝜃0, 𝜃1, . . . of Θ and every enumeration ⟨𝛼,𝔅⟩ of
𝔄 = ⟨𝐵; 𝜃0, 𝜃1, . . . ;𝑅⟩ the inequality ⟨𝔅0⟩ ≤𝑒 ⟨𝔅⟩ holds.

Let us consider the structure𝔑𝐴 = ⟨𝒫(𝜔)𝐴;𝑊0,𝑊1, . . . ;𝑁𝑜𝑛⟩ for the language
ℒ

∗ and define the m.v.f. Φ𝐴 : 𝒫(𝜔)𝐴 ∖ {∅} → 𝒫(𝜔)𝐴 ∖ {∅} as follows: Φ𝐴(𝐵) =
{𝐶∣𝐶 ≤𝑒 𝐵&𝐶 ∕= ∅} for nonempty 𝐵.

Proposition 5. The m.v.f. Φ𝐴 is definable in the structure 𝔑𝐴.

Proof. Let 𝑄𝑛 be the conditional expression T(𝑋)&T(fn(𝑋)) ⊃ fn(𝑋). Notice
that the sequence {𝑄𝑛

}𝑛∈𝜔 is c.e. and

𝐶 ∈ 𝑄𝑛

𝔑𝐴(𝑋/𝐵) ⇐⇒ 𝑁𝑜𝑛(𝐵)&𝑁𝑜𝑛(𝑊𝑛(𝐵))&𝐶 =𝑊𝑛(𝐵).

Then

𝐶 ∈ Φ𝐴(𝐵) ⇐⇒ 𝐶 ≤𝑒 𝐵&𝐶 ∕= ∅&𝐵 ∕= ∅ ⇐⇒

∃𝑛(𝑊𝑛(𝐵) = 𝐶&𝐶 ∕= ∅&𝐵 ∕= ∅) ⇐⇒ ∃𝑛(𝐶 ∈ 𝑄𝑛

𝔑𝐴(𝑋/𝐵)).

Proposition 5 is proved. □

Let 𝐿𝐴 = {⟨𝑛, 𝑥⟩∣𝑥 ∈ 𝑊𝑛(𝐴)}. The following lemma is well-known, its proof
is a simple application of the 𝑆𝑚

𝑛
-theorem.

Lemma 1. There exists a recursive function 𝛿 of two variables such that for all
naturals 𝑚,𝑛 and a set 𝐶 of naturals the following equality is true:

𝑊𝑚(𝑊𝑛(𝐶)) =𝑊
𝛿(𝑚,𝑛)(𝐶).

Let us fix a function 𝛿 in Lemma 1 and define the pair ⟨𝛼0,𝔅0⟩ as follows:
𝛼0(𝑛) = 𝑊𝑛(𝐴), 𝔅0 = ⟨𝜔;𝜑0

0
, 𝜑0

1
, . . . ;𝜎0

⟩, where 𝜑0

𝑖
(𝑥) = 𝛿(𝑖, 𝑥), 𝑖, 𝑥 ∈ 𝜔,

𝜎0(𝑥) ∼= 0 ⇐⇒ 𝑊𝑥(𝐴) ∕= ∅ and 𝜎0(𝑥) ↑ if 𝑊𝑥(𝐴) = ∅.

Lemma 2. The pair ⟨𝛼0,𝔅0⟩ is an enumeration of the structure 𝔑𝐴.

Proof. 𝑊𝑖(𝛼0(𝑥)) =𝑊𝑖(𝑊𝑥(𝐴)) =𝑊
𝛿(𝑖,𝑥)(𝐴) = 𝛼0(𝛿(𝑖, 𝑥)) = 𝛼0(𝜑

0

𝑖
(𝑥)).

𝑁𝑜𝑛(𝛼0(𝑥)) ∼= 0 ⇐⇒ 𝑊𝑥(𝐴) ∕= ∅ ⇐⇒ 𝜎0(𝑥) ∼= 0. □

Let 𝑊𝐴 = {𝑛∣∃𝑥(⟨𝑛, 𝑥⟩ ∈ 𝐿𝐴)} = {𝑛∣𝑊𝑛(𝐴) ∕= ∅} = {𝑛∣𝜎
0(𝑛) ∼= 0}.

Proposition 6. 𝑊𝐴 ≡𝑒 𝐴.

Proof. Let 𝑛0 be a fixed element of 𝜔 and define the set 𝐵 by the following
equivalence: ⟨⟨𝑛, 𝑥⟩,𝑚⟩ ∈ 𝐵 ⇐⇒ ⟨𝑛, 𝑥⟩ ∈ 𝐿𝐴&𝑚 = 𝑛0. Obviously, 𝐵 ≤𝑒 𝐿𝐴 ≡𝑒 𝐴.
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Therefore, using the 𝑆𝑚

𝑛
-theorem we obtain

⟨⟨𝑛, 𝑥⟩,𝑚⟩ ∈ 𝐵 ⇐⇒ ∃𝑣(⟨⟨⟨𝑛, 𝑥⟩,𝑚⟩, 𝑣⟩ ∈𝑊𝑎&∅ ∕= 𝐸𝑣 ⊆ 𝐴)

(for some fixed natural 𝑎)

⇐⇒ ∃𝑣(⟨⟨𝑚, 𝑣⟩, ⟨𝑛, 𝑥⟩⟩ ∈𝑊𝑏&∅ ∕= 𝐸𝑣 ⊆ 𝐴)

(for some fixed natural 𝑏)

⇐⇒ ∃𝑣(⟨𝑚, 𝑣⟩ ∈ 𝑊
𝛾(⟨𝑛,𝑥⟩)&∅ ∕= 𝐸𝑣 ⊆ 𝐴)

(for some fixed recursive function 𝛾)

⇐⇒ 𝑚 ∈𝑊
𝛾(⟨𝑛,𝑥⟩)(𝐴).

We will show that 𝐿𝐴 ≤𝑚 𝑊𝐴 by recursive function 𝛾.
Let us assume ⟨𝑛, 𝑥⟩ ∈ 𝐿𝐴. Then ⟨⟨𝑛, 𝑥⟩, 𝑛0⟩ ∈ 𝐵, thus 𝑛0 ∈ 𝑊𝛾(⟨𝑛,𝑥⟩)(𝐴), i.e.

𝑊
𝛾(⟨𝑛,𝑥⟩)(𝐴) ∕= ∅, hence 𝛾(⟨𝑛, 𝑥⟩) ∈ 𝑊𝐴.
Let us suppose that 𝛾(⟨𝑛, 𝑥⟩) ∈ 𝑊𝐴. Then ∃𝑚(𝑚 ∈ 𝑊

𝛾(⟨𝑛,𝑥⟩)(𝐴)), thus 𝑛0 ∈

𝑊
𝛾(⟨𝑛,𝑥⟩)(𝐴). Therefore ⟨⟨𝑛, 𝑥⟩, 𝑛0⟩ ∈ 𝐵 and ⟨𝑛, 𝑥⟩ ∈ 𝐿𝐴.
We proved the equivalence ⟨𝑛, 𝑥⟩ ∈ 𝐿𝐴 ⇐⇒ 𝛾(⟨𝑛, 𝑥⟩) ∈𝑊𝐴, i.e. 𝐿𝐴 ≤𝑚 𝑊𝐴.

Therefore, 𝐿𝐴 ≤𝑒 𝑊𝐴.

Conversely,

𝑛 ∈𝑊𝐴 ⇐⇒ ∃𝑥(⟨𝑛, 𝑥⟩ ∈ 𝐿𝐴) ⇐⇒ ∃𝑥(𝑥 ∈𝑊𝑛(𝐴))

⇐⇒ ∃𝑥∃𝑣(⟨𝑥, 𝑣⟩ ∈ 𝑊𝑛&∅ ∕= 𝐸𝑣 ⊆ 𝐴)

⇐⇒ ∃𝑣(∃𝑥(⟨𝑛, 𝑣⟩ ∈𝑊
𝛾1(𝑥))&∅ ∕= 𝐸𝑣 ⊆ 𝐴)

⇐⇒ ∃𝑣(⟨𝑛, 𝑣⟩ ∈𝑊𝑎)&∅ ∕= 𝐸𝑣 ⊆ 𝐴) ⇐⇒ 𝑛 ∈ 𝑊𝑎(𝐴)

for some fixed recursive function 𝛾1 and a fixed natural 𝑎. Hence, 𝑊𝐴 ≤𝑒 𝐴. □

Lemma 3. Let 𝜏𝑣 be the term with a code 𝑣. There exists a recursive function
𝛾0 such that for any term 𝜏𝑣(𝑋) in the language ℒ∗ with variable 𝑋 and code 𝑣 the
equality 𝜏𝑣

𝔑𝐴(𝑋/𝐴) =𝑊
𝛾0(𝑣)(𝐴) holds.

Proof. Decode 𝜏𝑣(𝑋) as a sequence of 𝑓𝑖1 , 𝑓𝑖2 , . . . , 𝑓𝑖𝑝 and variable 𝑋 . Then
consider the composition of the operators 𝑊𝑖1

,𝑊𝑖2
, . . . ,𝑊𝑖𝑝

over 𝐴 and use the
recursive function 𝛿. Thus there exists an effective way for any term 𝜏𝑣(𝑋) in the
language ℒ∗ with variable 𝑋 and code 𝑣 to find a natural number 𝑛 such that
𝜏𝑣
𝔑𝐴(𝑋/𝐴) =𝑊𝑛(𝐴). □

Lemma 4. [𝐴]𝔑𝐴 ≡𝑚 𝑊𝐴.

Proof. Recall that [𝐴]𝔑𝐴 = {𝑣∣𝜏𝑣
𝔑𝐴(𝑋/𝐴) ∕= ∅}. Let 𝛾0 be the recursive

function from the previous lemma, then 𝑣 ∈ [𝐴]𝔑𝐴 ⇐⇒ 𝜏𝑣
𝔑𝐴(𝑋/𝐴) ∕= ∅ ⇐⇒

𝑊
𝛾0(𝑣)(𝐴) ∕= ∅ ⇐⇒ 𝜎0(𝛾0(𝑣)) ∼= 0 ⇐⇒ 𝛾0(𝑣) ∈𝑊𝐴. Thus, [𝐴]𝔑𝐴 ≤𝑚 𝑊𝐴.
Conversely, 𝑛 ∈ 𝑊𝐴 ⇐⇒ 𝑊𝑛(𝐴) ∕= ∅ ⇐⇒ the term f𝑛(𝑋) with code 𝑣(𝑛)

satisfies (f𝑛(𝑋))
𝑣(𝑛)

𝔑𝐴 (𝑋/𝐴) ∕= ∅, i.e. 𝑊𝐴 ≤𝑚 [𝐴]𝔑𝐴 . □
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Theorem 3. The enumeration ⟨𝛼0,𝔅0⟩ is the least enumeration of the structure
𝔑

𝐴.

Proof. According to Theorem 2, having in mind 𝑊𝐴 = 𝑉 𝔑
𝐴

0
, we need to show

that all types of elements 𝐵 such that 𝐵 is a set of naturals and 𝐵 ≤𝑒 𝐴 satisfy
the condition [𝐵]𝔑𝐴 ≤𝑒 [𝐴]𝔑𝐴 and that there exists a universal set with e-degree
𝑑𝑒𝑔𝑒(𝐴) for all types [𝐵]𝔑𝐴 .

Let 𝐵 ≤𝑒 𝐴. Then there exists an e-operator 𝑊𝑛 such that 𝑊𝑛(𝐴) = 𝐵.
Therefore, 𝑣 ∈ [𝐵]𝔑𝐴 ⇐⇒ the code 𝑣1 of the term fn(𝜏

𝑣) belongs to [𝐴]𝔑𝐴 , thus
[𝐵]𝔑𝐴 ≤𝑚 [𝐴]𝔑𝐴 . Further, using the type [𝐴]𝔑𝐴 , we define the set 𝑈𝐴 by the
equivalence: (𝑛, 𝑣) ∈ 𝑈𝐴

⇐⇒ ∃𝑣1(𝜏
𝑣1 = fn(𝜏

𝑣)&𝑣1 ∈ [𝐴]𝔑𝐴). Actually, we could
define 𝑈𝐴 by the equivalence: (𝑛, 𝑣) ∈ 𝑈𝐴

⇐⇒ ⟨𝑛, 𝑣⟩ ∈ 𝐿𝐴, as well. It is obvious
that 𝑈𝐴 is universal for the family of all types of the structure 𝔑𝐴. □

Let us consider the structure 𝔇𝐴 = ⟨𝒫(𝜔)𝐴; Φ𝐴
⟩. The following definition is

natural, although it is not used because normally we do not consider structures
with p.m.v. functions.

Definition 3. Enumeration of the structure 𝔇𝐴 is called the pair ⟨𝛼,𝔅⟩, where
𝛼 : 𝜔 → 𝒫(𝜔)𝐴, 𝔅 = ⟨𝜔;𝜑⟩ and 𝜑 is a partial m.v.f. in 𝜔, such that for all natural
𝑛 the equality 𝛼(𝜑(𝑛)) = Φ𝐴(𝛼(𝑛)) holds (here, we mean equality between sets).

Proposition 7. There exists an enumeration ⟨𝛼0,𝔅
′
⟩ of the structure 𝔇𝐴 such

that ⟨𝔅′
⟩ ≡𝑒 𝐴.

Proof. Let us recall that 𝛼0(𝑛) = 𝑊𝑛(𝐴) and define the partial m.v.f. 𝜑0 as
follows: 𝑚 ∈ 𝜑0(𝑛) ⇐⇒ ∃𝑘(𝜎0(𝑚) ∼= 0&𝜎0(𝑛) ∼= 0&𝛿(𝑘, 𝑛) = 𝑚). It is clear that
⟨𝐺𝜑⟩ ≤𝑒 𝐴. Then

𝐶 ∈ 𝛼0(𝜑
0(𝑛)) ⇐⇒ ∃𝑚(𝑚 ∈ 𝜑(𝑛)&𝛼0(𝑚) = 𝐶) ⇐⇒

∃𝑚(∃𝑘(𝜎0(𝑚) ∼= 0&𝜎0(𝑛) ∼= 0&𝛿(𝑘, 𝑛) = 𝑚)&𝑊𝑚(𝐴) = 𝐶) ⇐⇒

∃𝑚∃𝑘(𝑊𝑚(𝐴) =𝑊𝑘(𝑊𝑛(𝐴))&𝐶 =𝑊𝑚(𝐴) ∕= ∅&𝑊𝑛(𝐴) ∕= ∅) ⇐⇒

∃𝑚(𝑊𝑚(𝐴) ≤𝑒 𝑊𝑛(𝐴)&𝐶 =𝑊𝑚(𝐴) ∕= ∅&𝑊𝑛(𝐴) ∕= ∅) ⇐⇒

∃𝑚(𝐶 =𝑊𝑚(𝐴) ∈ Φ𝐴(𝑊𝑛(𝐴)) ⇐⇒ 𝐶 ∈ Φ𝐴(𝛼0(𝑛)).

Therefore ⟨𝛼0,𝔅
′
⟩ is an enumeration of 𝔇𝐴.

Further, let us fix some 𝑎 such that 𝛼0(𝑎) = 𝐴. Then 𝑊𝑛(𝐴) =𝑊𝑛(𝑊𝑎(𝐴)) =
𝑊

𝛿(𝑛,𝑎)(𝐴) and hence

𝑊𝐴 = {𝑛∣𝑊𝑛(𝐴) ∕= ∅} ≡𝑒 {𝛿(𝑛, 𝑎)∣𝑊𝛿(𝑛,𝑎)(𝐴) ∕= ∅}

= {𝛿(𝑛, 𝑎)∣𝜎0(𝛿(𝑛, 𝑎)) ∼= 0} ≡𝑒 {𝛿(𝑛, 𝑎)∣𝛿(𝑛, 𝑎) ∈ 𝜑
0(𝑎)} ≤𝑒 ⟨𝐺𝜑⟩ ≡𝑒 ⟨𝔅

′
⟩ .

Proposition 7 is proved. □

Lemma 5. There exist c.e. sets 𝑉 [𝑛], 𝑛 ∈ 𝑁, 𝑉 ′, 𝑉 [𝑆] such that the effective
sequence of compositions {𝑉 [0](𝑉 [𝑆])𝑛𝑉 ′

}𝑛∈𝜔 is recursively isomorphic to the se-
quence {𝑊𝑛}𝑛∈𝜔.
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Proof. Let us notice first that 𝑉 [0](𝑉 [𝑆])𝑛𝑉 ′ means the following:

𝑉 [0](𝑉 [𝑆])0𝑉 ′ = 𝑉 [0]𝑉 ′; 𝑉 [0](𝑉 [𝑆])𝑛+1𝑉 ′ = ((𝑉 [0](𝑉 [𝑆])𝑛)𝑉 [𝑆])𝑉 ′.

Let us denote

𝑉 [𝑛]={⟨𝑥, 𝑣⟩∣𝑥 ∈ 𝜔&𝐸𝑣={⟨𝑛, 𝑥⟩}}, 𝑉
[𝑆]={⟨⟨𝑛, 𝑥⟩, 𝑣⟩∣𝑛, 𝑥 ∈ 𝜔&𝐸𝑣={⟨𝑛+1, 𝑥⟩}}.

Further, let 𝑉 = {⟨𝑛, 𝑥⟩∣𝑥 ∈𝑊𝑛} and 𝑉 ′ = {⟨⟨𝑘, 𝑥⟩, 𝑣⟩∣⟨𝑘, ⟨𝑥, 𝑣⟩⟩ ∈ 𝑉 }. Then

𝑥 ∈ 𝑉 [𝑛]𝑉 ′(𝑋) ⇐⇒ ∃𝑣1(⟨𝑥, 𝑣1⟩ ∈ 𝑉
[𝑛]&𝐸𝑣1

= {⟨𝑛, 𝑥⟩} ⊆ 𝑉 ′(𝑋))

⇐⇒ ∃𝑣1(⟨𝑥, 𝑣1⟩ ∈ 𝑉
[𝑛]&𝐸𝑣1

= {⟨𝑛, 𝑥⟩}&⟨𝑛, 𝑥⟩ ∈ 𝑉 ′(𝑋))

⇐⇒ ∃𝑣(⟨⟨𝑛, 𝑥⟩, 𝑣⟩ ∈ 𝑉 ′&∅ ∕= 𝐸𝑣 ⊆ 𝑋)

⇐⇒ ∃𝑣(⟨𝑥, 𝑣⟩ ∈ 𝑉[𝑛]&∅ ∕= 𝐸𝑣 ⊆ 𝑋) ⇐⇒ 𝑥 ∈ 𝑉[𝑛](𝑋) ,

𝑥 ∈ 𝑉 [𝑛]𝑉 [𝑆](𝑋) ⇐⇒ ∃𝑣1(⟨𝑥, 𝑣1⟩ ∈ 𝑉
[𝑛]&𝐸𝑣1

= {⟨𝑛, 𝑥⟩} ⊆ 𝑉 [𝑆](𝑋))

⇐⇒ ∃𝑣1(⟨𝑥, 𝑣1⟩ ∈ 𝑉
[𝑛]&𝐸𝑣1

= {⟨𝑛, 𝑥⟩}&⟨𝑛, 𝑥⟩ ∈ 𝑉 [𝑆](𝑋))

⇐⇒ ∃𝑣(⟨⟨𝑛, 𝑥⟩, 𝑣⟩ ∈ 𝑉 [𝑆]&𝐸𝑣 = {⟨𝑛+ 1, 𝑥⟩} ⊆ 𝑋)

⇐⇒ ∃𝑣(⟨𝑥, 𝑣⟩ ∈ 𝑉 [𝑛+1]&𝐸𝑣 = {⟨𝑛+ 1, 𝑥⟩} ⊆ 𝑋)

⇐⇒ 𝑥 ∈ 𝑉 [𝑛+1](𝑋).

We shall prove by induction the equivalence

𝑥 ∈ 𝑉 [0](𝑉 [𝑆])𝑛𝑉 ′(𝑋) ⇐⇒ 𝑥 ∈ 𝑉[𝑛](𝑋). (∗)

Indeed, 𝑥 ∈ 𝑉 [0](𝑉 [𝑆])0𝑉 ′(𝑋) ⇐⇒ 𝑥 ∈ 𝑉 [0]𝑉 ′(𝑋) ⇐⇒ 𝑥 ∈ 𝑉[0](𝑋). Let us
assume the equivalence (∗) is true. Then

𝑥 ∈ 𝑉 [0](𝑉 [𝑆])𝑛+1𝑉 ′(𝑋) ⇐⇒ 𝑥 ∈ 𝑉 [𝑛+1]𝑉 ′(𝑋) ⇐⇒ 𝑥 ∈ 𝑉[𝑛+1](𝑋). □

The next two corollaries are obvious.

Corollary 2. The structure 𝔑𝐴 = ⟨𝒫(𝜔)𝐴;𝑊0,𝑊1, . . . ;𝑁𝑜𝑛⟩ is equivalent to
the structure 𝔑′𝐴 = ⟨𝒫(𝜔)𝐴;𝑉 [0], 𝑉 [𝑆], 𝑉 ′

⟩, where 𝑉 [0], 𝑉 [𝑆], 𝑉 ′ is the c.e. sets from
the previous lemma.

Corollary 3. For any set 𝐴 of naturals the set 𝒫(𝜔)𝐴 is finitely generated in
the structure 𝔑′𝐴 = ⟨𝒫(𝜔)𝐴;𝑉 [0], 𝑉 [𝑆], 𝑉 ′

⟩ by the single element 𝐴.

Proposition 8. For any enumeration {𝑉0, 𝑉1, . . . } of the family W the struc-
ture 𝔐𝐴 = ⟨𝒫(𝜔)𝐴;𝑉0, 𝑉1, . . . ;𝑁𝑜𝑛⟩ admits a least enumeration ⟨𝛼,𝔅⟩ such that
𝐴 ≤𝑒 ⟨𝔅⟩.

Proof. Let 𝛼0 : 𝑁0 → 𝒫(𝜔)𝐴 be defined as follows: 𝛼0(pn) = 𝑉𝑛(𝐴). Take
𝛼0 as a basis of a normal enumeration ⟨𝛼,𝔅⟩, where 𝔅 = ⟨𝜔;𝜑0, 𝜑1, . . . ;𝜎⟩ and
𝜑𝑖(𝑥) is a computable function of both variables 𝑖, 𝑥. According to Proposition 2,
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there exists an effective way for any 𝑥 to find 𝑦 = pn ∈ 𝑁0 and a term 𝜏 such that
𝑥 = 𝜏𝔅(𝑌/𝑦); thus 𝛼(𝑥) = 𝜏𝔄(𝑌/𝛼(𝑦)) = 𝜏𝔄(𝑌/𝛼

0(pn)) = 𝜏𝔄(𝑌/𝑉𝑛(𝐴)) = 𝜏 ′
𝔄
(𝑌/𝐴),

where 𝜏 ′ = 𝜏(f𝑛(𝑌 )).
Let us denote 𝑉𝐴 = {𝑛∣𝜎(𝑛) ∼= 0}. Then, using the term 𝜏 ′ obtained above,

𝑥 ∈ 𝑉𝐴 ⇐⇒ 𝜎(𝑥) ∼= 0 ⇐⇒ 𝛼(𝑥) ∕= ∅ ⇐⇒ 𝜏 ′
𝔄
(𝑌/𝐴) ∕= ∅ ⇐⇒ 𝑣′ ∈ [𝐴]𝔐𝐴 for the

code 𝑣′ of the term 𝜏 ′. Thus, having in mind that we can find 𝑣′ effectively from
𝑥, we have proved that 𝑉𝐴 ≤𝑚 [𝐴]𝔐𝐴 .

Analogously, let 𝑣′ ∈ [𝐴]𝔐𝐴 , 𝜏𝑣
′

= 𝜏𝑣
′

(𝑌 ) and 𝑛 be a fixed natural, such that
𝛼0(p𝑛) = 𝑉𝑛(𝐴) = 𝐴, where 𝑦 = p𝑛 ∈ 𝑁0. Then 𝜏

𝑣
′

𝔄
(𝑌/𝐴) = 𝛼(𝜏𝑣

′

𝔅
(𝑌/𝑦)) ∕= ∅ and

let 𝑥 = 𝜏𝑣
′

𝔅
(𝑌/𝑦). Then 𝜎(𝑥) ∼= 0 and 𝑥 ∈ 𝑉𝐴. Therefore, [𝐴]𝔐𝐴 ≤𝑚 𝑉𝐴.

Hence, [𝐴]𝔐𝐴 ≡𝑚 𝑉𝐴 and ⟨𝔅⟩ ≡𝑒 [𝐴]𝔐𝐴 ≡𝑒 𝑉𝐴. □

Corollary 4. 𝑊𝐴 ≤𝑒 𝑉𝐴.

Proof. Let 𝑉𝑖0 = 𝑉 [0], 𝑉𝑖1 = 𝑉 [𝑆] and 𝑉𝑖2 = 𝑉 ′ and consider the sequence of
terms 𝜏𝑣(𝑛), where 𝜏𝑣(𝑛) = f𝑖0 ∘ f

𝑛

𝑖1
∘ f𝑖2(𝑋). Here, f𝑛

𝑖1
means 𝑛 times the term f𝑖1 .

Then it is easy to check that 𝑛 ∈ [𝐴]𝔑𝐴 ⇐⇒ 𝑣(𝑛) ∈ [𝐴]𝔐𝐴 . Thus we have proved
that [𝐴]𝔑𝐴 ≤𝑚 [𝐴]𝔐𝐴 , hence 𝑊𝐴 ≤𝑒 𝑉𝐴. □

Corollary 5. The enumeration ⟨𝛼0,𝔅0⟩ is the least for the generalized structure
𝔑𝐴 = ⟨𝒫(𝜔)𝐴;W;𝑁𝑜𝑛⟩.
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1. MAIN RESULTS

Probably the most investigated linear approximating operator is the Bernstein
polynomial, defined for 𝑓 ∈ 𝐶[0, 1] and 𝑥 ∈ [0, 1] by

𝐵𝑛𝑓(𝑥) =

𝑛
∑

𝑘=0

𝑓

(

𝑘

𝑛

)

𝑝𝑛,𝑘(𝑥), 𝑝𝑛,𝑘(𝑥) =

(

𝑛

𝑘

)

𝑥𝑘(1− 𝑥)𝑛−𝑘.

It is known (see [1, Chapter 10, § 7] and [5, Chapter 9]) that there exists 𝑛0 ∈ ℕ
such that for all 𝑓 ∈ 𝐶[0, 1] and 𝑛 ≥ 𝑛0 there holds

∥𝐵𝑛𝑓 − 𝑓∥ ≤ 𝑐 𝜔2

𝜑
(𝑓, 𝑛−1/2), (1.1)
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where ∥ ∘ ∥ stands for the uniform norm on the interval [0, 1], 𝑐 is an absolute
constant and 𝜔2

𝜑
(𝑓, 𝑡) is the Ditzian-Totik modulus of smoothness of second order

with step-weight 𝜑(𝑥) =
√

𝑥(1− 𝑥), defined by (see [5, Chapter 1])

𝜔2

𝜑
(𝑓, 𝑡) = sup

0<ℎ≤𝑡

∥Δ2

ℎ𝜑
𝑓∥

and

Δ2

ℎ𝜑(𝑥)
𝑓(𝑥) =

{

𝑓(𝑥+ ℎ𝜑(𝑥)) − 2𝑓(𝑥) + 𝑓(𝑥− ℎ𝜑(𝑥)), 𝑥± ℎ𝜑(𝑥) ∈ [0, 1],

0, otherwise.

For 𝑓 ∈ 𝐴𝐶1

𝑙𝑜𝑐
(0, 1) and 𝑛 ∈ ℕ we have

∥𝐵𝑛𝑓 − 𝑓∥ ≤
𝑐

𝑛
∥𝜑2𝑓 ′′

∥. (1.2)

Moreover, 𝐵𝑛𝑓 cannot tend to 𝑓 in 𝐶[0, 1] faster than 𝑛−1 unless 𝑓 is a linear
function, in which case we have 𝐵𝑛𝑓 = 𝑓 for all 𝑛 (see e.g. [1, Chapter 10, § 5]).

One way to modify the Bernstein operator in order to get larger approximation
rate is to form an appropriate linear combination of its iterates. Here we shall
consider the bounded linear operator ℬ𝑟,𝑛 : 𝐶[0, 1]→ 𝐶[0, 1], defined by

ℬ𝑟,𝑛 = 𝐼 − (𝐼 −𝐵𝑛)
𝑟,

where 𝐼 stands for the identity and 𝑟 ∈ ℕ. Our main objective is to establish the
following upper estimate of the error of ℬ𝑟,𝑛.

Theorem 1.1. For 𝑓 ∈ 𝐶2𝑟−2[0, 1] and 𝑟 ≥ 2, there holds

∥ℬ𝑟,𝑛𝑓 − 𝑓∥ ≤
𝑐

𝑛𝑟−1

(

𝜔2

𝜑
(𝜑2𝑟−2𝑓 (2𝑟−2), 𝑛−1/2) +

1

𝑛
∥𝑓 (2𝑟−2)

∥+
1

𝑛
∥𝑓 (2)

∥

)

.

The value of the constant 𝑐 is independent of 𝑓 and 𝑛.

The above implies a sufficient condition on the smoothness of the function,
which yields an approximation order of 𝑛−𝑟.

Corollary 1.2. Let 𝑓 ∈ 𝐶[0, 1] and 𝑛, 𝑟 ∈ ℕ as 𝑟 ≥ 2. Then:

(a) ∥ℬ𝑟,𝑛𝑓 − 𝑓∥ ≤
𝑐

𝑛𝑟−1/2

(

∥𝜑2𝑟−1𝑓 (2𝑟−1)
∥+ ∥𝑓 (2𝑟−2)

∥+ ∥𝑓 (2)
∥

)

,

𝑓 ∈ 𝐴𝐶2𝑟−2

𝑙𝑜𝑐
(0, 1);

(b) ∥ℬ𝑟,𝑛𝑓 − 𝑓∥ ≤
𝑐

𝑛𝑟

(

∥𝜑2𝑟𝑓 (2𝑟)
∥+ ∥𝑓 (2𝑟−2)

∥+ ∥𝑓 (2)
∥

)

, 𝑓 ∈ 𝐴𝐶2𝑟−1

𝑙𝑜𝑐
(0, 1).

The value of the constant 𝑐 is independent of 𝑓 and 𝑛.
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In order to extend the estimates above for every continuous functions we can
introduce the 𝐾-functional

𝐾𝑟(𝑓, 𝑡) = inf
𝑔∈𝐴𝐶

2𝑟−1

𝑙𝑜𝑐

{

∥𝑓 − 𝑔∥+ 𝑡
(

∥𝜑2𝑟𝑔(2𝑟)
∥+ ∥𝑔(2𝑟−2)

∥+ ∥𝑔(2)
∥

)
}

.

for 𝑓 ∈ 𝐶[0, 1], 𝑡 > 0 and 𝑟 ∈ ℕ with 𝑟 ≥ 2. Standard considerations imply the
following Jackson-type inequality from Corollary 1.2 (b).

Theorem 1.3. Let 𝑓 ∈ 𝐶[0, 1] and 𝑛, 𝑟 ∈ ℕ as 𝑟 ≥ 2. Then

∥ℬ𝑟,𝑛𝑓 − 𝑓∥ ≤ 𝑐𝐾𝑟(𝑓, 𝑛
−𝑟).

The value of the constant 𝑐 is independent of 𝑓 and 𝑛.

Let us note that

𝐾𝑟(𝑓, 𝑡
2𝑟) ≤ 𝑐

(

𝜔2𝑟(𝑓, 𝑡) + 𝑡2𝑟∥𝑓∥
)

, 𝑓 ∈ 𝐶[0, 1], 𝑡 > 0, (1.3)

where 𝜔ℓ(𝑓, 𝑡) is the classical fixed-step modulus of smoothness of order ℓ, defined
by

𝜔ℓ(𝑓, 𝑡) = sup
0<ℎ≤𝑡

∥Δℓ

ℎ
𝑓∥

and Δℓ

ℎ
is the ℓth symmetric finite difference

Δℓ

ℎ
𝑓(𝑥) =

⎧


⎨


⎩

ℓ
∑

𝑘=0

(−1)𝑘
(

ℓ

𝑘

)

𝑓

(

𝑥+

(

ℓ

2
− 𝑘

)

ℎ

)

, 𝑥±
ℓℎ

2
∈ [0, 1],

0, otherwise.

The inequality (1.3) follows from the embedding inequality

∥𝑓 (𝑚)
∥ ≤ 𝑐

(

∥𝑓∥+ ∥𝑓 (ℓ)
∥

)

, 𝑚 = 0, . . . , ℓ, (1.4)

and the well-known result of Johnen (see e.g. [1, Chapter 6, Theorem 2.4])

inf
𝑔∈𝐴𝐶

ℓ−1[0,1]

{

∥𝑓 − 𝑔∥+ 𝑡ℓ∥𝑔(ℓ)
∥

}

≤ 𝑐 𝜔ℓ(𝑓, 𝑡), 𝑓 ∈ 𝐶[0, 1].

All estimates with the Ditzian-Totik modulus are established for 𝑛 ≥ 𝑛0 with
some absolute constant 𝑛0. However, the assertions of Corollary 1.2 and Theo-
rem 1.3 are valid for all 𝑛 (see Remark 3.6 at the end).

We base our proof of Theorem 1.1 on upper estimates for simultaneous approx-
imation by Bernstein polynomials. They are established in the next section. This
approach lays stronger conditions on the function than necessary but provides us
with a simple proof. We verify Theorem 1.1 (and its corollary) in the third and
final section.
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2. SIMULTANEOUS APPROXIMATION BY BERNSTEIN POLYNOMIALS

There is a simple method for deriving upper estimates for combinations of
iterates of a linear operator by iterating the estimate for the operator (see [4,
Theorem 10.2 and Corollary 10.3]). However, it is not applicable in the case of the
Bernstein operator because it does not commute with the associated differential
operator 𝐷𝑔 = 𝜑2𝑔′′. Another difficulty of a technical character lies with the
fact that ℬ𝑟,𝑛 is not generally a positive operator. In order to get round the
latter, we shall establish upper estimates that are similar to (1.1) for simultaneous
approximation. This will allow us to get the result about ℬ𝑟,𝑛 still by a certain
iteration. This approach has a shortcoming. It misses the point that ℬ𝑟,𝑛 provides
better approximation near the ends of the interval [0, 1] (it interpolates 𝑓 at 0 and
1). The simultaneous approximation by 𝐵𝑛 does not possess this property.

Our first result concerns the unweighted simultaneous approximation by 𝐵𝑛.

Theorem 2.1. For 𝑓 ∈ 𝐶𝑠[0, 1] there holds

∥(𝐵𝑛𝑓 − 𝑓)(𝑠)
∥ ≤ 𝑐

(

𝜔2

𝜑
(𝑓 (𝑠), 𝑛−1/2) + 𝜔(𝑓 (𝑠), 𝑛−1) +

1

𝑛
∥𝑓 (𝑠)

∥

)

.

The value of the constant 𝑐 is independent of 𝑓 and 𝑛.

Proof. The assertion is trivial for 𝑛 < 𝑠. For 𝑛 ≥ 𝑠 it is known (see [14] or [1,
Chapter 10, (2.3)], [5, p. 125]) that

(𝐵𝑛𝑓)
(𝑠)(𝑥) =

𝑛!

(𝑛− 𝑠)!

𝑛−𝑠
∑

𝑘=0

−→

Δ𝑠

1/𝑛
𝑓

(

𝑘

𝑛

)

𝑝𝑛−𝑠,𝑘(𝑥), (2.1)

where
−→

Δ𝑠

ℎ
𝑓(𝑥) = Δ𝑠

ℎ
𝑓(𝑥+ 𝑠ℎ/2) are the forward differences of order 𝑠.

Now, for 𝑛 = 𝑠 the above formula immediately implies the assertion of the
theorem. Let 𝑛 > 𝑠. We set

�̃�𝑠,𝑛𝑓(𝑥) = 𝑛𝑠
−→

Δ𝑠

1/𝑛
𝑓

(

𝑛− 𝑠

𝑛
𝑥

)

, 𝑥 ∈ [0, 1].

Then by (2.1)

(𝐵𝑛𝑓)
(𝑠)(𝑥) =

𝑛!

𝑛𝑠(𝑛− 𝑠)!
𝐵𝑛−𝑠(�̃�𝑠,𝑛𝑓)(𝑥), 𝑥 ∈ [0, 1]. (2.2)

Hence ∥
∥
∥
∥

𝑛𝑠(𝑛− 𝑠)!

𝑛!
(𝐵𝑛𝑓)

(𝑠)
−𝐵𝑛−𝑠(𝑓

(𝑠))

∥
∥
∥
∥
≤ ∥�̃�𝑠,𝑛𝑓 − 𝑓 (𝑠)

∥.

Consequently,

∥(𝐵𝑛𝑓 − 𝑓)(𝑠)
∥ ≤

(

𝑛𝑠(𝑛− 𝑠)!

𝑛!
− 1

)

∥(𝐵𝑛𝑓)
(𝑠)
∥

+ ∥�̃�𝑠,𝑛𝑓 − 𝑓 (𝑠)
∥+ ∥𝐵𝑛−𝑠(𝑓

(𝑠))− 𝑓 (𝑠)
∥.

(2.3)
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We shall estimate the three quantities on the right above separately.
First, due to (2.2), we have
(

𝑛𝑠(𝑛− 𝑠)!

𝑛!
− 1

)

∥(𝐵𝑛𝑓)
(𝑠)
∥ =

(

1−
𝑛!

𝑛𝑠(𝑛− 𝑠)!

)

∥𝐵𝑛−𝑠(�̃�𝑠,𝑛𝑓)∥

≤

𝑐

𝑛
∥�̃�𝑠,𝑛𝑓∥ ≤

𝑐

𝑛
∥𝑓 (𝑠)

∥.

(2.4)

The finite forward difference of order 𝑠 of 𝐹 ∈ 𝐴𝐶𝑠−1[𝑎, 𝑏] can be represented
in the integral form

−→

Δ𝑠

ℎ
𝐹 (𝑥) = ℎ𝑠−1

∫
𝑠ℎ

0

𝑀𝑠(𝑢/ℎ)𝐹
(𝑠)(𝑥+ 𝑢) 𝑑𝑢, 𝑥 ∈ [𝑎, 𝑏− 𝑠ℎ], (2.5)

where 𝑀𝑠 is the 𝑠-fold convolution of the characteristic function of [0, 1] with itself
(see e.g. [1, p. 45]). Consequently,

�̃�𝑠,𝑛𝑓(𝑥) = 𝑛

∫
𝑠/𝑛

0

𝑀𝑠(𝑛𝑢)𝑓
(𝑠)

(

𝑛− 𝑠

𝑛
𝑥+ 𝑢

)

𝑑𝑢, 𝑥 ∈ [0, 1],

and

∣�̃�𝑠,𝑛𝑓(𝑥)− 𝑓 (𝑠)(𝑥)∣ ≤ 𝑛

∫
𝑠/𝑛

0

𝑀𝑠(𝑛𝑢)

∣
∣
∣
∣
𝑓 (𝑠)

(

𝑛− 𝑠

𝑛
𝑥+ 𝑢

)

− 𝑓 (𝑠)(𝑥)

∣
∣
∣
∣
𝑑𝑢

≤ 𝑐 𝜔(𝑓 (𝑠), 𝑛−1), 𝑥 ∈ [0, 1].

(2.6)

Above we have used that ∫
𝑠

0

𝑀𝑠(𝑢) 𝑑𝑢 = 1.

Finally, by (1.1) and [5, Theorem 4.1.2] we get that there exists 𝑛0 ∈ ℕ such
that for 𝑛 ≥ 𝑛0

∥𝐵𝑛−𝑠(𝑓
(𝑠))− 𝑓 (𝑠)

∥ ≤ 𝑐 𝜔2

𝜑
(𝑓 (𝑠), (𝑛− 𝑠)−1/2) ≤ 𝑐 𝜔2

𝜑
(𝑓 (𝑠), 𝑛−1/2). (2.7)

Now, (2.3), (2.4), (2.6) and (2.7) imply the assertion of the theorem.

Remark 2.2. Based on Ditzian [3], Jiang and Xie [11] (or see [12, (16)]) gave a
pointwise generalization of

∥
∥
∥
∥

𝑛𝑠(𝑛− 𝑠)!

𝑛!
(𝐵𝑛𝑓)

(𝑠)
− 𝑓 (𝑠)

∥
∥
∥
∥
≤ 𝑐

(

𝜔2

𝜑
(𝑓 (𝑠), 𝑛−1/2) + 𝜔(𝑓 (𝑠), 𝑛−1)

)

.

Theorem 2.1, the property of the moduli (see [5, Theorem 2.1.1] or [1, Chapter
6, Theorem 6.1])

𝜔2

𝜑
(𝑓, 𝑡) ≤ 𝑐 𝑡2∥𝜑2𝑓 ′′

∥, 𝑓 ∈ 𝐴𝐶1

𝑙𝑜𝑐
(0, 1),

and (1.4) imply the following estimate for the simultaneous approximation by the
Bernstein polynomials (cf. [7]).
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Corollary 2.3. For 𝑓 ∈ 𝐶𝑠+2[0, 1] and 𝑛 ∈ ℕ there holds

∥(𝐵𝑛𝑓 − 𝑓)(𝑠)
∥ ≤

𝑐

𝑛

(

∥𝑓 (𝑠+2)
∥+ ∥𝑓 (𝑠)

∥

)

.

The value of the constant 𝑐 is independent of 𝑓 and 𝑛.

Let us mention that Gonska, Heilmann and Raşa [9] established a quantitative
Voronovskaya-type theorem about simultaneous approximation by 𝐵𝑛. They also
gave an account of other similar results.

Inequalities like the one in Theorem 2.1 but in terms of the classical moduli of
smoothness were earlier established in [8] and [13].

A somewhat neater upper estimate holds in terms of the differential operator
𝜑2𝑠(𝑑/𝑑𝑥)2𝑠.

Theorem 2.4. For 𝑓 ∈ 𝐶2𝑠[0, 1] there holds

∥𝜑2𝑠(𝐵𝑛𝑓 − 𝑓)(2𝑠)
∥ ≤ 𝑐

(

𝜔2

𝜑
(𝜑2𝑠𝑓 (2𝑠), 𝑛−1/2) +

1

𝑛
∥𝑓 (2𝑠)

∥

)

.

The value of the constant 𝑐 is independent of 𝑓 and 𝑛.

Proof. The assertion is trivial for 𝑛 < 2𝑠. Let 𝑛 ≥ 2𝑠. Using (2.1) we get

𝜑2𝑠(𝑥)(𝐵𝑛𝑓)
(2𝑠)(𝑥) =

𝑛−𝑠
∑

𝑘=𝑠

Δ2𝑠

1/𝑛
𝑓

(

𝑘

𝑛

)

𝑘! (𝑛− 𝑘)!

(𝑘 − 𝑠)! (𝑛− 𝑘 − 𝑠)!
𝑝𝑛,𝑘(𝑥)

= 𝐵𝑛(𝐷𝑠,𝑛𝑓)(𝑥),

(2.8)

where we have set

𝐷𝑠,𝑛𝑓(𝑥𝑛,𝑘) = 𝜑𝑠,𝑛(𝑥𝑛,𝑘)𝑛
2𝑠Δ2𝑠

1/𝑛
𝑓(𝑥𝑛,𝑘), 𝑥𝑛,𝑘 =

𝑘

𝑛
, 𝑘 = 0, 1, . . . , 𝑛,

and

𝜑𝑠,𝑛(𝑥) =

𝑠−1
∏

𝑖=0

(

𝑥−
𝑖

𝑛

)(

1− 𝑥−
𝑖

𝑛

)

,

as 𝐷𝑠,𝑛𝑓(𝑥𝑛,𝑘) is defined to be 0 for 𝑘 = 0, . . . , 𝑠− 1, 𝑛− 𝑠+ 1, . . . , 𝑛.

Next, we get by means of (1.1) and (2.8) that for 𝑛 ≥ 𝑛0 with some 𝑛0 ∈ ℕ

∥𝜑2𝑠(𝐵𝑛𝑓 − 𝑓)(2𝑠)
∥

≤ ∥𝐵𝑛(𝜑
2𝑠𝑓 (2𝑠))− 𝜑2𝑠𝑓 (2𝑠)

∥+ ∥𝜑2𝑠(𝐵𝑛𝑓)
(2𝑠)

−𝐵𝑛(𝜑
2𝑠𝑓 (2𝑠))∥

≤ 𝑐

(

𝜔2

𝜑
(𝜑2𝑠𝑓 (2𝑠), 𝑛−1/2) + max

𝑘=0,...,𝑛

∣𝐷𝑠,𝑛𝑓(𝑥𝑛,𝑘)− 𝜑2𝑠(𝑥𝑛,𝑘)𝑓
(2𝑠)(𝑥𝑛,𝑘)∣

)

.
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For 𝑘 = 0 and 𝑘 = 𝑛, we have 𝐷𝑠,𝑛𝑓(𝑥𝑛,𝑘) = 𝜑2𝑠(𝑥𝑛,𝑘) = 0. For 𝑘 = 1, . . . , 𝑠 − 1,
𝑛− 𝑠+ 1, . . . , 𝑛− 1, 𝑠 ≥ 2, we directly get

∣𝐷𝑠,𝑛𝑓(𝑥𝑛,𝑘)− 𝜑2𝑠(𝑥𝑛,𝑘)𝑓
(2𝑠)(𝑥𝑛,𝑘)∣ = 𝜑2𝑠(𝑥𝑛,𝑘)∣𝑓

(2𝑠)(𝑥𝑛,𝑘)∣

≤

𝑐

𝑛𝑠
∥𝑓 (2𝑠)

∥.

Further, for 𝑘 = 𝑠, . . . , 𝑛− 𝑠 we use the representation (see (2.5))

Δ2𝑠

ℎ
𝑓(𝑥) = ℎ2𝑠−1

∫
𝑠ℎ

−𝑠ℎ

𝑀2𝑠(𝑢/ℎ+ 𝑠)𝑓 (2𝑠)(𝑥+ 𝑢) 𝑑𝑢

= ℎ2𝑠−1

∫
𝑠ℎ

0

𝑀2𝑠(𝑢/ℎ+ 𝑠)[𝑓 (2𝑠)(𝑥+ 𝑢) + 𝑓 (2𝑠)(𝑥− 𝑢)] 𝑑𝑢, 𝑥 ∈ [𝑠ℎ, 1− 𝑠ℎ],

to get for 𝑥 ∈ [𝑠/𝑛, 1− 𝑠/𝑛]

∣𝐷𝑠,𝑛𝑓(𝑥)− 𝜑2𝑠(𝑥)𝑓 (2𝑠)(𝑥)∣ ≤ 𝑛

∫
𝑠/𝑛

0

𝑀2𝑠(𝑛𝑢+ 𝑠)∣Δ2

𝑢
(𝜑2𝑠𝑓 (2𝑠))(𝑥)∣ 𝑑𝑢

+ 𝑛

∫
𝑠/𝑛

−𝑠/𝑛

𝑀2𝑠(𝑛𝑢+ 𝑠)∣𝜑𝑠,𝑛(𝑥) − 𝜑2𝑠(𝑥+ 𝑢)∣ ∣𝑓 (2𝑠)(𝑥+ 𝑢)∣ 𝑑𝑢

≤ 𝑐

(

𝜔2(𝜑2𝑠𝑓 (2𝑠), 𝑛−1) +
1

𝑛
∥𝑓 (2𝑠)

∥

)

.

Above we have also taken into account the trivial estimate

∣𝜑𝑠,𝑛(𝑥) − 𝜑2𝑠(𝑥+ 𝑢)∣ ≤ ∣𝜑𝑠,𝑛(𝑥)− 𝜑2𝑠(𝑥)∣ + ∣𝜑2𝑠(𝑥)− 𝜑2𝑠(𝑥+ 𝑢)∣

≤

𝑐

𝑛
+ 𝑐 ∣𝑢∣ ≤

𝑐

𝑛
, 𝑥 ∈ [0, 1], 𝑢 ∈

[

−

𝑠

𝑛
,
𝑠

𝑛

]

.

To complete the proof of the theorem, we apply [5, Theorem 3.1.1], which gives
that there exists 𝑡0 such that

𝜔2(𝐹, 𝑡2) ≤ 𝑐 𝜔2

𝜑
(𝐹, 𝑡), 0 < 𝑡 ≤ 𝑡0,

for every 𝐹 ∈ 𝐶[0, 1].

Just as in the unweighted case, but using the embedding inequality (see [6,
Lemma 1])

∥𝜒𝛼+𝑚𝑓 (𝑚)
∥ ≤ 𝑐

(

∥𝜒𝛼𝑓∥+ ∥𝜒𝛼+ℓ𝑓 (ℓ)
∥

)

, 𝑚 = 0, . . . , ℓ,

where 𝜒(𝑥) = 𝑥 and 𝛼 ∈ ℝ, we derive the following estimate.

Corollary 2.5. For 𝑓 ∈ 𝐶[0, 1] such that 𝑓 ∈ 𝐴𝐶2𝑠+1

𝑙𝑜𝑐
(0, 1) and 𝑛 ∈ ℕ there holds

∥𝜑2𝑠(𝐵𝑛𝑓 − 𝑓)(2𝑠)
∥ ≤

𝑐

𝑛

(

∥𝜑2𝑠+2𝑓 (2𝑠+2)
∥+ ∥𝑓 (2𝑠)

∥

)

.

The value of the constant 𝑐 is independent of 𝑓 and 𝑛.
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3. PROOF OF THEOREM 1.1

The estimates of the error of ℬ𝑟,𝑛 can now be quite straightforwardly estab-
lished by means of the results on simultaneous approximation of the previous sec-
tion.

Proof of Theorem 1.1. First, the estimate (1.2) implies

∥ℬ𝑟,𝑛𝑓 − 𝑓∥ = ∥(𝐵𝑛 − 𝐼)𝑟𝑓∥ ≤
𝑐

𝑛
∥𝜑2[(𝐵𝑛 − 𝐼)𝑟−1𝑓 ]′′∥.

For 𝑟 = 2 we estimate above the right side of this inequality by means of Theo-
rem 2.4 and get the assertion in this case. For 𝑟 ≥ 3 we apply instead Corollary
2.5 and arrive at

∥ℬ𝑟,𝑛𝑓 − 𝑓∥ ≤
𝑐

𝑛2

(

∥𝜑4[(𝐵𝑛 − 𝐼)𝑟−2𝑓 ](4)
∥+ ∥[(𝐵𝑛 − 𝐼)𝑟−2𝑓 ](2)

∥

)

.

Further, we estimate the first term on the right above by Corollary 2.5 and the
second by Corollary 2.3 and continue in this way, applying also (1.4), until we get

∥ℬ𝑟,𝑛𝑓 − 𝑓∥ ≤
𝑐

𝑛𝑟−1

(

∥𝜑2𝑟−2[(𝐵𝑛 − 𝐼)𝑓 ](2𝑟−2)
∥

+ ∥[(𝐵𝑛 − 𝐼)𝑓 ](2𝑟−4)
∥+ ∥[(𝐵𝑛 − 𝐼)𝑓 ](2)

∥

)

.

Now, the assertion of the theorem follows from Theorem 2.4, Corollary 2.3 and
(1.4).

Proof of Corollary 1.2. Assertion (a) follows from Theorem 1.1 and the prop-
erty (see [5, Theorems 2.1.1 and 4.1.3] or [1, Chapter 6, Theorem 6.1])

𝜔2

𝜑
(𝑓, 𝑡) ≤ 𝑐 𝑡 ∥𝜑𝑓 ′

∥, 𝑓 ∈ 𝐴𝐶𝑙𝑜𝑐(0, 1), 0 < 𝑡 ≤ 𝑡0.

Assertion (b) follows from Theorem 1.1 just as Corollary 2.5 follows from
Theorem 2.4.

Remark 3.6. Let us note that in all estimates with the Ditzian-Totik modulus we
had to assume that 𝑛 ≥ 𝑛0 with some absolute constant 𝑛0 since (1.1) was proved
under this restriction and some of the properties of the modulus we used are known
only for 𝑡 small enough. However, (1.2) as well as its analogue with 𝑛−1/2

∥𝜑𝑓 ′
∥ on

the right are valid for all 𝑛 ∈ ℕ and hence all the corollaries as well as Theorem 1.3
are valid for all 𝑛.

NOTE ADDED IN PROOF. After submission I learned of the papers of H.
Gonska and X.-l. Zhou [10], and of Ch. Ding and F. Cao [2], where results that
are similar to and somewhat stronger than Theorem 1.3 were established. The
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techniques used there are different. Also, I learned of a paper by Sevy [15] who
established upper estimates for the unweighted simultaneous approximation by such
combinations of iterates of an operator, following just the same idea like the one
used in the proof of Theorem 1.1. I am thankful to Prof. G. Tachev (University of
Architecture, Civil Engineering and Geodesy, Sofia) for helping me find out those
papers. In a subsequent publication I am going to show how the results proved in
the present paper can be improved to include those in the above-mentioned works
(in the univariate case).
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ON TURÁN’S INEQUALITY

FOR ULTRASPHERICAL POLYNOMIALS

GENO P. NIKOLOV

We present a short proof of the Turán inequality for the ultraspherical polynomials.
The proof makes use of the Hermite interpolation formula. A recent refinement of
Turán’s inequality for ultraspherical polynomials [8] is discussed and compared with
the known results.

Keywords: Turán-type inequalities, Hermite interpolation formula, ultraspherical
polynomials

2010 Math. Subject Classification: Primary 41A17, Secondary 33C45

1. INTRODUCTION

In the 40’s of the last century, while studying the zeros of Legendre polynomials
𝑃𝑛(𝑥), P. Turán discovered the inequality

𝑃 2

𝑛
(𝑥)− 𝑃𝑛−1(𝑥)𝑃𝑛+1(𝑥) ≥ 0, −1 ≤ 𝑥 ≤ 1, (1.1)

with equality only for 𝑥 = ±1. Since the left-hand side of (1.1) is representable in
determinant form,

Δ𝑛(𝑥) =

∣
∣
∣
∣

𝑃𝑛(𝑥) 𝑃𝑛+1(𝑥)
𝑃𝑛−1(𝑥) 𝑃𝑛(𝑥)

∣
∣
∣
∣

Δ𝑛(𝑥) is referred to as Turán’s determinant.
The result of Turán inspired considerable interest, and by now there is a vast

amount of publications on the so-called Turán type inequalities. G. Szegő [12]
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gave four different proof of (1.1). Soon after that, inequalities of similar nature
were obtained for other classes of functions including ultraspherical polynomials,
Laguerre and Hermite polynomials, Bessel functions, etc. Let us briefly recall a
general approach for derivation of Turán type inequalities

𝑢2

𝑛
(𝑥) − 𝑢𝑛−1(𝑥)𝑢𝑛+1(𝑥) ≥ 0, (1.2)

due to Skovgaard [9]. This approach is applicable to sequences of functions {𝑢𝑛(𝑥)},
which possess a generating function 𝐹 (𝑥; 𝑧) =: 𝐹 (𝑧),

∞
∑

𝑛=0

𝑢𝑛
𝑧𝑛

𝑛!
= 𝐹 (𝑧) ,

and, in addition, the generating function 𝐹 (𝑧) belongs to the Laguerre-Pólya class
of entire functions. The latter class consists of the uniform limits on compact sets in
the complex plane of algebraic polynomials having only real zeros. Every function
from the Laguerre-Pólya class is representable in the form

𝐹 (𝑧) = 𝐶𝑒−𝛼𝑧
2
+𝛽𝑧𝑧𝑟

∞
∏

𝑚=1

(1 − 𝑧/𝑧𝑚)𝑒𝑧/𝑧𝑚 , (1.3)

where 𝛼 ≥ 0, 𝐶, 𝛽 and 𝑧𝑚 are real numbers, and
∑

∞

𝑚=1
𝑧−2

𝑚
<∞.

The logarithmic differentiation of (1.3) yields

𝑑

𝑑𝑧

(𝐹 ′(𝑧)

𝐹 (𝑧)

)

= −2𝛼−
𝑟

𝑧2
−

∑

𝑚

1

(𝑧 − 𝑧𝑚)2
,

and obviously the right-hand side is negative for every real 𝑧. Hence,

𝑑

𝑑𝑧

(𝐹 ′(𝑧)

𝐹 (𝑧)

)

=
𝐹 (𝑧)𝐹 ′′(𝑧)− (𝐹 ′(𝑧))2

𝐹 (𝑧)2
≤ 0, 𝑧 ∈ ℝ ,

and therefore (𝐹 ′(𝑧))2−𝐹 (𝑧)𝐹 ′′(𝑧) ≥ 0 for every 𝑧 ∈ ℝ. Since the Lagguerre-Pólya
class is invariant with respect to differentiation, it follows that for every 𝑛 ∈ ℕ

(𝐹 (𝑛)(𝑧))2 − 𝐹 (𝑛−1)(𝑧)𝐹 (𝑛+1)(𝑧) ≥ 0, 𝑧 ∈ ℝ .

Now, by substituting 𝑧 = 0 one immediately arrives at (1.2). The range of 𝑥 ∈ ℝ
for which (1.2) is true is determined by the condition that 𝐹 (𝑧) = 𝐹 (𝑥; 𝑧) belongs
to the Lagguerre-Pólya class.

The approach described above is applicable to wide classes of orthogonal poly-
nomials and other special functions. The history of case of Jacobi polynomials

𝑃
(𝛼,𝛽)

𝑛 is especially interesting. In 1960 S. Karlin and G. Szegő [6] posed the prob-
lem for characterizing the range of parameters {𝛼, 𝛽}, for which the normalized

Jacobi polynomials 𝑅
(𝛼,𝛽)

𝑛 (𝑥) = 𝑃
(𝛼,𝛽)

𝑛 (𝑥)/𝑃
(𝛼,𝛽)

𝑛 (1) (so that 𝑅
(𝛼,𝛽)

𝑛 (1) = 1) satisfy
the Turán type inequality

(

𝑅(𝛼,𝛽)

𝑛
(𝑥)
)2
−𝑅

(𝛼,𝛽)

𝑛−1
(𝑥)𝑅

(𝛼,𝛽)

𝑛+1
(𝑥) ≥ 0, 𝑥 ∈ [−1, 1] . (1.4)
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Szegő [13] proved that (1.4) is true when 𝛽 ≥ ∣𝛼∣, 𝛼 > −1. In two subsequent
papers G. Gasper [3, 4] improves consecutively Szegő’s result, showing finally that
(1.4) holds true if and only if 𝛽 ≥ 𝛼 > −1, thus solving the problem of Karlin and
Szegő. The particular case 𝛼 = 𝛽 corresponds to the ultraspherical (or Gegenbauer)
polynomials, which is the topic of this note. We recall below some well-known

fact about ultraspherical polynomials. 𝑃
(𝜆)

𝑛 (𝑥) is the standard notation for the
𝑛-th ultraspherical polynomial, which is orthogonal in [−1, 1] with respect to the

weight function 𝑤𝜆(𝑥) = (1 − 𝑥2)𝜆−
1

2 . The standard normalization of 𝑃
(𝜆)

𝑛 is

𝑃
(𝜆)

𝑛 (1) =
(
𝑛+2𝜆−1

𝑛

)

, but for Turán’s type inequalities the appropriate normalization
is

𝑝(𝜆)

𝑛
(𝑥) := 𝑃 (𝜆)

𝑛
(𝑥)/𝑃 (𝜆)

𝑛
(1) . (1.5)

With this notation, Turán’s inequality for ultraspherical polynomials reads as

Theorem 1. ([9, 15, 16]) For every 𝜆 > −1/2,

Δ𝑛,𝜆(𝑥) :=
[

𝑝(𝜆)

𝑛
(𝑥)
]2
− 𝑝

(𝜆)

𝑛−1
(𝑥)𝑝

(𝜆)

𝑛+1
(𝑥) ≥ 0, 𝑥 ∈ [−1, 1], (1.6)

and the equality occurs only for 𝑥 = ±1.

For the sake of simplicity, if there is no danger of ambiguity, hereafter the

superscript (𝜆) will be omitted, and we shall write 𝑝𝑛(𝑥) instead of 𝑝
(𝜆)

𝑛 (𝑥).
We refer the reader to two important recent papers and the literature cited

therein. R. Szwarc [14] obtained rather general sufficient conditions for sequences of
orthogonal (with respect to a measure 𝜇 with a finite support, say, 𝑠𝑢𝑝𝑝 𝜇 = [−1, 1])
polynomials to satisfy Turán’s type inequality on the support of the measure. In [1],
C. Berg and R. Szwarc studied the behavior of the normalized Turán determinants
Δ̃𝑛(𝑥) := Δ𝑛(𝑥)/(1− 𝑥

2), in particular conditions ensuring monotonicity of Δ̃𝑛(𝑥)
are established. Both in [14] and [1] the conditions are expressed through the
sequences of the coefficients in the three-term recurrence relation satisfied by the
orthogonal polynomials.

In the next section we present a short proof of Theorem 1, based on the Hermite
interpolation formula. In Section 3 a recent refinement of Theorem 1 obtained in
[8] is presented and compared with the hitherto known results.

2. THEOREM 1 THROUGH HERMITE’S INTERPOLATION FORMULA

2.1. PRELIMINARIES

It is well-known that the classical orthogonal polynomials of Jacobi, Hermite
and Laguerre satisfy second order ordinary differential equations. In particular, the

𝑛-th ultraspherical polynomial 𝑃
(𝜆)

𝑛 satisfies the differential equation

(1 − 𝑥2)𝑦′′ − (2𝜆+ 1)𝑥𝑦′ + 𝑛(𝑛+ 2𝜆)𝑦 = 0 , 𝑦(𝑥) = 𝑃 (𝜆)

𝑛
(𝑥) . (2.1)
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Since the derivatives of the Jacobi, Hermite and Laguerre polynomials are
also orthogonal polynomials, they satisfy certain first order difference-differential
equations (DDEs). Here we shall need some DDEs satisfied by the ultraspherical

polynomials 𝑃
(𝜆)

𝑛 . For easy reference, they are collected in the following lemma.

Lemma 1. The ultraspherical polynomials satisfy the following identities:

(𝑛+ 1)𝑃
(𝜆)

𝑛+1
(𝑥) + (𝑛+ 2𝜆− 1)𝑃

(𝜆)

𝑛−1
(𝑥) = 2(𝑛+ 𝜆)𝑥𝑃 (𝜆)

𝑛
(𝑥) , (2.2)

𝑛𝑃 (𝜆)

𝑛
(𝑥) = 𝑥

𝑑

𝑑𝑥

{

𝑃 (𝜆)

𝑛
(𝑥)
}

−

𝑑

𝑑𝑥

{

𝑃
(𝜆)

𝑛−1
(𝑥)
}

, (2.3)

(𝑛+ 2𝜆)𝑃 (𝜆)

𝑛
(𝑥) =

𝑑

𝑑𝑥

{

𝑃
(𝜆)

𝑛+1
(𝑥)
}

− 𝑥
𝑑

𝑑𝑥

{

𝑃 (𝜆)

𝑛
(𝑥)
}

, (2.4)

(1− 𝑥2)
𝑑

𝑑𝑥

{

𝑃 (𝜆)

𝑛
(𝑥)
}

= −𝑛𝑥𝑃 (𝜆)

𝑛
(𝑥) + (𝑛+ 2𝜆− 1)𝑃

(𝜆)

𝑛−1
(𝑥) , (2.5)

(1− 𝑥2)
𝑑

𝑑𝑥

{

𝑃 (𝜆)

𝑛
(𝑥)
}

= (𝑛+ 2𝜆)𝑥𝑃 (𝜆)

𝑛
(𝑥) − (𝑛+ 1)𝑃

(𝜆)

𝑛+1
(𝑥) . (2.6)

See [11], Eqs. (4.7.17), (4.7.28) and (4.7.27).
As was mentioned in the preceding section, we shall work with the renormalized

ultraspherical polynomials 𝑝𝑚(𝑥), defined by 𝑝𝑚(𝑥) =
(
𝑚+2𝜆−1

𝑚

)−1

𝑃
(𝜆)

𝑚 (𝑥) (the
dependence of 𝑝𝑚 on 𝜆 is suppressed, as 𝜆 > −1/2 is fixed). On using Lemma 1, it
is easy to derive the analogous relations satisfied by {𝑝𝑚}.

Lemma 2. The polynomials {𝑝𝑚} = {𝑝
(𝜆)

𝑚 } defined by (1.5) satisfy the following
identities:

(𝑛+ 2𝜆)𝑝𝑛+1(𝑥) + 𝑛 𝑝𝑛−1(𝑥) = 2(𝑛+ 𝜆)𝑥 𝑝𝑛(𝑥) , (2.7)

𝑝′
𝑛−1

(𝑥) = (𝑛+ 2𝜆− 1)
[𝑥

𝑛
𝑝′
𝑛
(𝑥)− 𝑝𝑛(𝑥)

]

, (2.8)

𝑝′
𝑛+1

(𝑥) = (𝑛+ 1)
[

𝑝𝑛(𝑥) +
𝑥

𝑛+ 2𝜆
𝑝′
𝑛
(𝑥)
]

, (2.9)

𝑝𝑛−1(𝑥) =
1− 𝑥2

𝑛
𝑝′
𝑛
(𝑥) + 𝑥 𝑝𝑛(𝑥) , (2.10)

𝑝𝑛+1(𝑥) = 𝑥 𝑝𝑛(𝑥) −
1− 𝑥2

𝑛+ 2𝜆
𝑝′
𝑛
(𝑥) . (2.11)

Let {𝑥𝑘}
𝑛

𝑘=1
be the zeros of 𝑝𝑛(𝑥); they are all distinct and located in (−1, 1).

For any function 𝑓 defined in [−1, 1] and differentiable in (−1, 1), let 𝐻2𝑛+1(𝑓 ;𝑥)
be the Hermite interpolating polynomial satisfying the interpolatory conditions

𝐻2𝑛+1(𝑓 ;−1) = 𝑓(−1), 𝐻2𝑛+1(𝑓 ; 1) = 𝑓(1) ,

𝐻2𝑛+1(𝑓 ;𝑥𝑘) = 𝑓(𝑥𝑘), 𝐻 ′

2𝑛+1
(𝑓 ;𝑥𝑘) = 𝑓 ′(𝑥𝑘),

(𝑘 = 1, 2, . . . , 𝑛) .

(2.12)
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Lemma 3. If 𝑓 is a function defined in [−1, 1] and differentiable in (−1, 1),
which satisfies 𝑓(−1) = 𝑓(1) = 0, then

𝐻2𝑛+1(𝑓 ;𝑥) =
𝑛
∑

𝑘=1

[

Φ𝑘,0(𝑥)𝑓(𝑥𝑘) + Φ𝑘,1(𝑥)𝑓
′(𝑥𝑘)

]

, (2.13)

where, for 𝑘 = 1, 2, . . . , 𝑛,

Φ𝑘,0(𝑥) =
1− 𝑥2

1− 𝑥2

𝑘

ℓ2
𝑘
(𝑥)
[

1 + (1− 2𝜆)
𝑥𝑘(𝑥− 𝑥𝑘)

1− 𝑥2

𝑘

]

,

Φ𝑘,1(𝑥) =
1− 𝑥2

1− 𝑥2

𝑘

ℓ2
𝑘
(𝑥) (𝑥 − 𝑥𝑘) ,

and

ℓ𝑘(𝑥) :=
𝑝𝑛(𝑥)

(𝑥− 𝑥𝑘)𝑝′𝑛(𝑥𝑘)

is the 𝑘-th Lagrange basis polynomial for interpolation at the zeros of 𝑝𝑛.

Proof. All we need is to show that {Φ𝑘,0(𝑥)} and {Φ𝑘,1(𝑥)} are the Hermite
basis polynomials for interpolation at the nodes −1, 𝑥1, 𝑥1, 𝑥2, 𝑥2, . . . , 𝑥𝑛, 𝑥𝑛, 1.

Obviously, Φ𝑘,𝑗(±1) = 0 for 𝑗 = 0, 1, Φ𝑘,1(𝑥𝑖) = 0 and Φ𝑘,0(𝑥𝑖) = 𝛿𝑖,𝑘 for

𝑖, 𝑘 = 1, 2, . . . , 𝑛, where 𝛿𝑖,𝑘 =

{

1, 𝑖 = 𝑘

0, 𝑖 ∕= 𝑘
is the Kronecker symbol. It remains

to verify that Φ′

𝑘,𝑗
(𝑥𝑖) = 𝛿𝑖,𝑘 𝛿𝑗,1 for 𝑖, 𝑘 = 1, 2, . . . , 𝑛 and 𝑗 = 0, 1. The verification

is straightforward in the case 𝑖 = 𝑘, 𝑗 = 1, and the same applies to the case 𝑖 ∕= 𝑘,
𝑗 = 0, 1, since in that case 𝑑

𝑑𝑥

{

ℓ2
𝑘
(𝑥)
}

∣𝑥=𝑥𝑖

= 2ℓ𝑘(𝑥𝑖)ℓ
′

𝑘
(𝑥𝑖) = 0. Now we consider

the case 𝑖 = 𝑘, 𝑗 = 0. By the L’Hospital rule we have

𝑑

𝑑𝑥

{

ℓ2
𝑘
(𝑥)
}

∣𝑥=𝑥𝑘
= 2ℓ′

𝑘
(𝑥𝑘) = 2

𝑝′
𝑛
(𝑥)(𝑥 − 𝑥𝑘)− 𝑝𝑛(𝑥)

(𝑥− 𝑥𝑘)2𝑝′𝑛(𝑥𝑘)

∣
∣
∣
𝑥=𝑥𝑘

=
2

𝑝′
𝑛
(𝑥𝑘)

lim
𝑥→𝑥𝑘

𝑝′
𝑛
(𝑥) + 𝑝′′

𝑛
(𝑥)(𝑥 − 𝑥𝑘)− 𝑝′

𝑛
(𝑥)

2(𝑥− 𝑥𝑘)
=
𝑝′′
𝑛
(𝑥𝑘)

𝑝′
𝑛
(𝑥𝑘)

.

Taking into account that 𝑝𝑛(𝑥𝑘) = 0 and 𝑦 = 𝑝𝑛 satisfies (2.1), we find

𝑝′′
𝑛
(𝑥𝑘) =

(2𝜆+ 1)𝑥𝑘 𝑝
′

𝑛
(𝑥𝑘)

1− 𝑥2

𝑘

⇒

𝑑

𝑑𝑥

{

ℓ2
𝑘
(𝑥)
}∣
∣
𝑥=𝑥𝑘

=
(2𝜆+ 1)𝑥𝑘
1− 𝑥2

𝑘

.

Hence,

Φ′

𝑘,0
(𝑥𝑘) =

(

1− 𝑥2

1− 𝑥2

𝑘

[

1 + (1− 2𝜆)
𝑥𝑘(𝑥− 𝑥𝑘)

1− 𝑥2

𝑘

]
)

′
∣
∣
∣
∣
∣
𝑥=𝑥𝑘

ℓ2
𝑘
(𝑥𝑘)

+
1− 𝑥2

1− 𝑥2

𝑘

[

1 + (1− 2𝜆)
𝑥𝑘(𝑥 − 𝑥𝑘)

1− 𝑥2

𝑘

]
∣
∣
∣
∣
∣
𝑥=𝑥𝑘

𝑑

𝑑𝑥

{

ℓ2
𝑘
(𝑥)
}∣
∣
𝑥=𝑥𝑘

=

(

−2𝑥𝑘
1− 𝑥2

𝑘

+
(1 − 2𝜆)𝑥𝑘
1− 𝑥2

𝑘

)

⋅ 1 + 1 ⋅
(2𝜆+ 1)𝑥𝑘
1− 𝑥2

𝑘

= 0 .
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Lemma 3 is proved.

By the uniqueness of the Hermite interpolating polynomial we immediately
obtain

Corollary 1. Assume that 𝑃 (𝑥) is an algebraic polynomial of degree not ex-
ceeding 2𝑛+ 1, and 𝑃 (−1) = 𝑃 (1) = 0. Then

𝑃 (𝑥) =

𝑛
∑

𝑘=1

[

Φ𝑘,0(𝑥)𝑃 (𝑥𝑘) + Φ𝑘,1(𝑥)𝑃
′(𝑥𝑘)

]

.

2.2. PROOF OF THEOREM 1

We observe that Δ𝑛,𝜆(𝑥) =
[

𝑝𝑛(𝑥)
]2
−𝑝𝑛−1(𝑥)𝑝𝑛+1(𝑥) satisfies the assumptions

of Corollary 1. Indeed, Δ𝑛,𝜆(𝑥) is a polynomial of degree 2𝑛, and since 𝑝𝑚(1) = 1
and 𝑝𝑚(−1) = (−1)𝑚, it follows that Δ𝑛,𝜆(±1) = 0. By Corollary 1,

Δ𝑛,𝜆(𝑥) =

𝑛
∑

𝑘=1

[

Φ𝑘,0(𝑥)Δ𝑛,𝜆(𝑥𝑘) + Φ𝑘,1(𝑥)Δ
′

𝑛,𝜆
(𝑥𝑘)

]

. (2.14)

We apply Lemma 2 to represent 𝑝𝑛−1(𝑥𝑘), 𝑝𝑛+1(𝑥𝑘), 𝑝
′

𝑛−1
(𝑥𝑘) and 𝑝′

𝑛+1
(𝑥𝑘)

in terms of 𝑝′
𝑛
(𝑥𝑘). We obtain

𝑝𝑛−1(𝑥𝑘) =
1

𝑛
(1− 𝑥2

𝑘
)𝑝′

𝑛
(𝑥𝑘), 𝑝𝑛+1(𝑥𝑘) = −

1

𝑛+ 2𝜆
(1− 𝑥2

𝑘
)𝑝′

𝑛
(𝑥𝑘),

𝑝′
𝑛−1

(𝑥𝑘) =
𝑛+ 2𝜆− 1

𝑛
𝑥𝑘 𝑝

′

𝑛
(𝑥𝑘), 𝑝′

𝑛+1
(𝑥𝑘) =

𝑛+ 1

𝑛+ 2𝜆
𝑥𝑘 𝑝

′

𝑛
(𝑥𝑘) .

Next, we express Δ𝑛,𝜆(𝑥𝑘) and Δ′

𝑛,𝜆
(𝑥𝑘) in terms of 𝑝′

𝑛
(𝑥𝑘):

Δ𝑛,𝜆(𝑥𝑘) = −𝑝𝑛−1(𝑥𝑘)𝑝𝑛+1(𝑥𝑘) =
1

𝑛(𝑛+ 2𝜆)
(1− 𝑥2

𝑘
)
[

𝑝′
𝑛
(𝑥𝑘)

]2
,

Δ′

𝑛,𝜆
(𝑥𝑘) = −𝑝

′

𝑛−1
(𝑥𝑘)𝑝𝑛+1(𝑥𝑘)− 𝑝𝑛−1(𝑥𝑘)𝑝

′

𝑛+1
(𝑥𝑘)

=
2(𝜆− 1)

𝑛(𝑛+ 2𝜆)
𝑥𝑘(1− 𝑥2

𝑘
)
[

𝑝′
𝑛
(𝑥𝑘)

]2
.

Replacement of Δ𝑛,𝜆(𝑥𝑘) and Δ′

𝑛,𝜆
(𝑥𝑘) in (2.14) yields

Δ𝑛,𝜆(𝑥) =
1− 𝑥2

𝑛(𝑛+ 2𝜆)

𝑛
∑

𝑘=1

ℓ2
𝑘
(𝑥)(1 − 𝑥𝑘𝑥)

[

𝑝′
𝑛
(𝑥𝑘)

]2
.

This accomplishes the proof of Theorem 1, since 1− 𝑥𝑘𝑥 > 0 for 𝑥 ∈ [−1, 1].
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3. A REFINEMENT OF TURÁN’S INEQUALITY

The Turán determinant Δ𝑛,𝜆(𝑥) vanishes at ±1, and a fine result of Thiru-
venkatachar and Nanjundiah [15] (see also [16]) states that in (0,∞) the normalized
Turán determinant

𝜑𝑛,𝜆(𝑥) :=
Δ𝑛,𝜆(𝑥)

1− 𝑥2

is monotone increasing when 𝜆 > 0 and monotone decreasing when −1/2 < 𝜆 < 0.
In particular,

𝑐𝑛,𝜆 ≤ 𝜑𝑛,𝜆(𝑥) ≤ 𝐶𝑛,𝜆 , 𝑥 ∈ [−1, 1], (3.1)

with the sharp constants 0 < 𝑐𝑛,𝜆 < 𝐶𝑛,𝜆 given by

𝑐𝑛,𝜆 = 𝑝2

𝑛
(0)− 𝑝𝑛−1(0)𝑝𝑛+1(0), 𝐶𝑛,𝜆 =

1

2𝜆+ 1
, if 𝜆 > 0 ,

and with the interchanged formulae for 𝑐𝑛,𝜆 and 𝐶𝑛,𝜆 if −1/2 < 𝜆 < 0. That is to
say, 𝑐𝑛,𝜆 and 𝐶𝑛,𝜆 are the best possible bounds for 𝜑𝑛,𝜆(𝑥) in the ”uniform sense”,
i.e., for the whole interval [−1, 1]. However, for particular 𝑥’s improvements are
possible.

Recently, in a joint work with V. Pillwein [8] the author proved the following
result:

Theorem 2. Let 𝑝𝑚 = 𝑝
(𝜆)

𝑚 be the 𝑚-th ultraspherical polynomial normalized
by 𝑝𝑚(1) = 1, 𝑚 ∈ ℕ0. If 𝜆 ∈ (−1/2, 1/2], then for every 𝑛 ∈ ℕ

Δ̃𝑛,𝜆(𝑥) := ∣𝑥∣𝑝
2

𝑛
(𝑥)− 𝑝𝑛−1(𝑥)𝑝𝑛+1(𝑥) ≥ 0 ∀𝑥 ∈ [−1, 1]. (3.2)

The equality in (3.2) is attained only for 𝑥 = ±1 and, if 𝑛 is even, for 𝑥 = 0.
Moreover, if 𝜆 > 1/2, then (3.2) fails for every 𝑛 ∈ ℕ.

A computer proof of the special case 𝜆 = 1/2 of Theorem 2 was given earlier
by Gerhold and Kauers [5].

In view of Theorem 2, Δ𝑛,𝜆(𝑥) = Δ̃𝑛,𝜆(𝑥) + (1 − ∣𝑥∣) 𝑝2

𝑛
(𝑥) ≥ (1 − ∣𝑥∣) 𝑝2

𝑛
(𝑥)

for 𝜆 ∈ (−1/2, 1/2], hence

𝜑𝑛,𝜆(𝑥) ≥
𝑝2

𝑛
(𝑥)

1 + ∣𝑥∣
=: 𝑔𝑛,𝜆(𝑥) , 𝜆 ∈ (−1/2, 1/2]. (3.3)

A result of a similar nature, due to O. Szász [10], asserts that

𝜑𝑛,𝜆(𝑥) ≥
𝜆(1− 𝑝2

𝑛
(𝑥))

(𝑛+ 𝜆− 1)(𝑛+ 2𝜆)
=: ℎ𝑛,𝜆(𝑥)(1 − 𝑥2) , 𝜆 ∈ (0, 1) . (3.4)

In view of (3.1), (3.3) and (3.4), it is of interest to compare 𝜑𝑛,𝜆(𝑥) with its
lower bounds
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A SIMPLE CHARACTERIZATION OF THE COMPUTABILITY

OF REAL FUNCTIONS

DIMITER SKORDEV

The TTE-approach to computability of real functions uses infinitary names of the ar-
gument’s and the function’s values, computability being defined as the existence of
some algorithmic procedure transforming the names of any argument’s value into ones
of the corresponding value of the function. Two ways to avoid using such names are
considered in the present paper. At each of them, the corresponding characterization
of computability of real functions is through the existence of an appropriate recursively
enumerable set establishing some relation between rational approximations of the ar-
gument’s value and rational approximations of the corresponding value of the function.
The characterizations in question are derived from ones for computability of functions
in metric and in topological spaces.

Keywords: Approximation, computable, continuous, enumeration, enumeration
operator, real function, real number, recursive operator, recursively enumerable set,
TTE
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1. INTRODUCTION

The widely used TTE-approach to computability of real functions (cf. e.g. [6])
uses infinitary names of the argument’s and the function’s values, and computabil-
ity is defined as the existence of some algorithmic procedure transforming all such
names of any argument’s value into ones of the corresponding value of the func-
tion. The standard TTE-computability of real functions1 is a particular instance of

1I.e. the (𝜌𝑝, 𝜌)-computability in the sense of [6] of partial functions from ℝ𝑝 to ℝ, and, more
generally, the (𝜌𝑝, 𝜌𝑞)-computability of partial functions from ℝ𝑝 to ℝ𝑞.
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TTE-computability of functions in metric spaces, which, under some assumptions
satisfied in this particular case, was characterized in [4] without using infinitary
names. In the case in question, the corresponding characterization is through the
existence of an appropriate recursively enumerable set establishing some relation
between rational approximations of the argument’s value and rational approxima-
tions of the corresponding value of the function. In [5, Example 3.10], a simpler
similar characterization of the computability of real functions is given, and it is
obtained by using the fact that the standard TTE-computability of real functions
is a particular instance of TTE-computability of functions in topological spaces.2 A
somewhat more systematic consideration of these two characterizations is done in
the present paper by introducing the notions of a metric approximation net and a
topological approximation net for a real function. On the whole, the paper follows
the slides of the author’s talk at the 2013 Spring Scientific Conference of FMI3,
thus some details are omitted.

1.1. TWO CHARACTERIZATIONS OF THE COMPUTABILITY

OF A REAL NUMBER

The two above-mentioned characterizations of computability of a real function
can be regarded as analogs of the ones for the notion of computable real number
which are indicated below.

Theorem 1. For any real number 𝑦, the following three conditions are equiva-
lent:

A. The number 𝑦 is computable.

B. A recursively enumerable set 𝐸 of ℚ× ℕ exists such that:

1. ∀(𝑏, 𝑛) ∈ 𝐸

(

∣𝑏− 𝑦∣ <
1

𝑛+ 1

)

.

2. ∀𝑛 ∈ ℕ ∃𝑏
(

(𝑏, 𝑛) ∈ 𝐸
)

.

C. The set

{

(𝑏, 𝑛) ∈ ℚ× ℕ

∣
∣
∣
∣
∣𝑏 − 𝑦∣ <

1

𝑛+ 1

}

is recursively enumerable.

The proof of this theorem is straightforward.

Remark 1. Of course, condition C is equivalent to the existence of a recursively
enumerable subset 𝐸 of ℚ × ℕ such that

∣𝑏 − 𝑦∣ <
1

𝑛+ 1
⇔ (𝑏, 𝑛) ∈ 𝐸

for any 𝑏 ∈ ℚ and any 𝑛 ∈ ℕ.

2TTE-computability in the topological case is considered, for instance, in [6, Section 3.2] and
in [1,2,3,7].

3Held in Sofia on March 16, 2013.
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Remark 2. It can be non-constructively proved that Theorem 1 holds also with
“recursive” instead of “recursively enumerable”.

1.2. SOME NOTATIONS, ASSUMPTIONS AND DEFINITIONS

For 𝑧 = (𝑧1, . . . , 𝑧𝑁) ∈ ℝ𝑁 , where 𝑁 ∈ ℕ+, we set

∥𝑧∥ = max(∣𝑧1∣, . . . , ∣𝑧𝑁 ∣)

For 𝑡 ∈ ℕ, we set 𝑟𝑡 =
1

𝑡+ 1
.

Throughout the paper, it will be supposed that

𝑝, 𝑞 ∈ ℕ+, 𝑀 ⊆ ℝ𝑝, 𝑓 :𝑀 → ℝ𝑞.

Two definitions follow. The notion introduced in the first one is a particular in-
stance of a notion introduced in [4]. The second definition introduces a similar, but
simpler notion. Some similarity can be observed between the conditions of these
definitions and the conditions B and C in Theorem 1.

Definition 1. A metric approximation net (abbr. m.a.n.) for the function 𝑓 is
a subset 𝑆 of ℚ𝑝

× ℕ×ℚ𝑞
× ℕ such that the following conditions are satisfied for

any 𝑥 ∈𝑀 :

1. ∀(𝑎,𝑚, 𝑏, 𝑛)∈𝑆
(

∥𝑎−𝑥∥<𝑟𝑚 ⇒ ∥𝑏−𝑓(𝑥)∥<𝑟𝑛
)

.

2. ∀𝑛∈ℕ ∃𝑚∈ℕ ∀𝑎∈ℚ𝑝

(

∥𝑎−𝑥∥<𝑟𝑚 ⇒ ∃𝑏
(

(𝑎,𝑚, 𝑏, 𝑛)∈𝑆
))

.

Definition 2. A topological approximation net (abbr. t.a.n.) for the function 𝑓
is a subset 𝑆 of ℚ𝑝

× ℕ×ℚ𝑞
× ℕ such that

∥𝑏− 𝑓(𝑥)∥ < 𝑟𝑛 ⇔ ∃𝑎 ∃𝑚
(

(𝑎,𝑚, 𝑏, 𝑛) ∈ 𝑆& ∥𝑎− 𝑥∥ < 𝑟𝑚
)

(1.1)

for all 𝑥 ∈𝑀 , 𝑏 ∈ ℚ𝑝, 𝑛 ∈ ℕ.

The two notions are different. The function 𝑓 can be chosen so that a m.a.n.
for 𝑓 exists which is not a t.a.n. for it, and a t.a.n. for 𝑓 exists which is not a m.a.n.
for it.

Example 1. Let 𝑝 = 𝑞 = 1, 𝑀 = {0}, 𝑓(0) = 0, and let us set

𝑆1 = {(𝑎,𝑚, 0, 𝑛) ∣ 𝑎 ∈ ℚ, 𝑚, 𝑛 ∈ ℕ},

𝑆2 = {(0,𝑚, 𝑏, 𝑛) ∣ 𝑏 ∈ ℚ, 𝑚, 𝑛 ∈ ℕ, ∣𝑏∣ < 𝑟𝑛}.

Then 𝑆1 is a m.a.n. for the function 𝑓 without being a t.a.n. for it, and 𝑆2 is a
t.a.n. for the function 𝑓 without being a m.a.n. for it.
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Remark 3. Definitions 1, 2 imply immediately that, whenever 𝑆 is a t.a.n. for
the function 𝑓 , and some subset of 𝑆 is a m.a.n. for it, the set 𝑆 is also a m.a.n.
for 𝑓 .

Despite the difference between the notions of m.a.n. and t.a.n., some essential
properties of them are similar. The next theorem is a particular instance of a result
from [4].

Theorem 2. A m.a.n. for the function 𝑓 exists if and only if 𝑓 is continuous.
Then the following set is a m.a.n. for 𝑓 containing as subsets all such ones:

{

(𝑎,𝑚, 𝑏, 𝑛) ∈ ℚ𝑝

× ℕ×ℚ𝑞

× ℕ
∣
∣
∀𝑥 ∈𝑀

(

∥𝑎− 𝑥∥ < 𝑟𝑚 ⇒ ∥𝑏− 𝑓(𝑥)∥ < 𝑟𝑛
)}

.

It is easily seen that Theorem 2 remains true after replacing m.a.n. with t.a.n.
in its statement.

2. M.A.N., T.A.N. AND STANDARD TTE-COMPUTABILITY
OF REAL FUNCTIONS

From now on, let 𝛼 :ℕ→ℚ𝑝 be a computable enumeration of ℚ𝑝, and 𝛽 :ℕ→ℚ𝑞

be a computable enumeration of ℚ𝑞. In the terminology of [5], an 𝛼-name of an
element 𝑥 of ℝ𝑝 is any function 𝑢 : ℕ → ℕ such that ∥𝛼(𝑢(𝑚)) − 𝑥∥ < 𝑟𝑚 for
all 𝑚 ∈ ℕ, and similarly is defined what is a 𝛽-name of an element of ℝ𝑞. The
function 𝑓 is called (𝛼, 𝛽)-computable if a recursive operator exists which transforms
all 𝛼-names of any 𝑥 ∈𝑀 into 𝛽-names of 𝑓(𝑥).

Clearly, the (𝛼, 𝛽)-computability of 𝑓 does not depend of the choice of the
computable enumerations 𝛼 and 𝛽, and it is equivalent to the (𝜌𝑝, 𝜌𝑞)-computability
of 𝑓 .

The next theorem follows immediately from the main theorem in [4].

Theorem 3. The function 𝑓 is (𝜌𝑝, 𝜌𝑞)-computable if and only if a recursively
enumerable m.a.n. for 𝑓 exists.

In [5], another computability notion was considered besides (𝛼, 𝛽)-computabil-
ity. In the case considered here, it looks as follows. Suppose a computable bijective
mapping of ℕ2 of ℕ is chosen, and let ⟨𝑠, 𝑡⟩ denote the image of the pair (𝑠, 𝑡) under
this mapping. We consider the indexed base 𝒰 = {𝑈𝑖}𝑖∈ℕ of the space ℝ𝑝 and
the indexed base 𝒱 = {𝑉𝑗}𝑗∈ℕ of the space ℝ𝑞, which are defined by means of the
equalities

𝑈⟨𝑘,𝑚⟩ = {𝑥 ∈ ℝ𝑝

∣ ∥𝛼(𝑘)− 𝑥∥ < 𝑟𝑚 } ,

𝑉⟨𝑙,𝑛⟩ = {𝑦 ∈ ℝ𝑞

∣ ∥𝛽(𝑙)− 𝑦∥ < 𝑟𝑛 } .

The function 𝑓 is called (𝒰 ,𝒱)-computable if an enumeration operator exists which,
for any 𝑥 ∈𝑀 , transforms the set {𝑖 ∈ ℕ ∣𝑥 ∈ 𝑈𝑖} into the set {𝑗 ∈ ℕ ∣ 𝑓(𝑥) ∈ 𝑉𝑗}.
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As seen from [5], standard TTE-computability and (𝒰 ,𝒱)-computability of 𝑓 are
equivalent.

In the general case studied in [5], some topological spaces X and Y with
countable bases are considered instead of ℝ𝑝 and ℝ𝑞, and 𝒰 = {𝑈𝑖}𝑖∈ℕ, 𝒱 = {𝑉𝑗}𝑗∈ℕ

can be any indexed countable bases of these spaces. Under some assumptions, it
is shown that the (𝒰 ,𝒱)-computability of 𝑓 is equivalent to the existence of a
recursively enumerable subset 𝑅 of ℕ2 with the following property:

∀𝑥 ∈𝑀 ∀𝑗 ∈ ℕ
(

𝑓(𝑥) ∈ 𝑉𝑗 ⇔ ∃𝑖
(

(𝑖, 𝑗) ∈ 𝑅 & 𝑥 ∈ 𝑈𝑖

) )

(2.1)

(this is an improvement of a result from [3]).
The above-mentioned assumptions are satisfied in the case considered here

thanks to the recursive enumerability of the sets

{(𝑎1, 𝑎2, 𝑟) ∈ ℚ𝑝

×ℚ𝑝

×ℚ ∣ ∥𝑎1 − 𝑎2∥ < 𝑟},

{(𝑏1, 𝑏2, 𝑟) ∈ ℚ𝑞

×ℚ𝑞

×ℚ ∣ ∥𝑏1 − 𝑏2∥ < 𝑟}

(these sets are even recursive). In this case, the property (2.1) is obviously equiva-
lent to the following one:

∥𝛽(𝑙)− 𝑓(𝑥)∥ < 𝑟𝑛 ⇔ ∃𝑘,𝑚 ∈ ℕ
(

(⟨𝑘,𝑚⟩, ⟨𝑙, 𝑛⟩) ∈ 𝑅 & ∥𝛼(𝑘)− 𝑥∥ < 𝑟𝑚
)

(2.2)

for any 𝑥 ∈ 𝑀 and all 𝑙, 𝑛 ∈ ℕ. Making use of (2.2), one easily gets the following
result.

Theorem 4. The function 𝑓 is (𝜌𝑝, 𝜌𝑞)-computable if and only if a recursively
enumerable t.a.n. for 𝑓 exists.

Proof. Cf. Example 3.10 in [5].

2.1. SOME EXAMPLES OF RECURSIVELY ENUMERABLE T.A.N.’S

Example 2. Let 𝑝 = 𝑞 = 1, 𝑀 = ℝ ∖ {0}, 𝑓(𝑥) =
1

𝑥
for any 𝑥 ∈𝑀 , and let

𝑆 =

{

(𝑎,𝑚, 𝑏, 𝑛) ∈ ℚ× ℕ×ℚ× ℕ

∣
∣
∣
∣
𝑟𝑚 < ∣𝑎∣,

∣
∣
∣
∣
𝑏−

1

𝑎

∣
∣
∣
∣
+

𝑟𝑚

∣𝑎∣(∣𝑎∣ − 𝑟𝑚)
≤ 𝑟𝑛

}

.

We will show that 𝑆 is a recursively enumerable t.a.n. for 𝑓 . The recursive enu-
merability of this set is clear (it is even recursive). To prove that 𝑆 is a t.a.n.
for 𝑓 , we have to show that, whenever 𝑥 ∈ ℝ ∖ {0}, 𝑏 ∈ ℚ and 𝑛 ∈ ℕ, the inequality
∣
∣
∣
∣
𝑏−

1

𝑥

∣
∣
∣
∣
< 𝑟𝑛 holds if and only if

𝑟𝑚 < ∣𝑎∣,

∣
∣
∣
∣
𝑏−

1

𝑎

∣
∣
∣
∣
+

𝑟𝑚

∣𝑎∣(∣𝑎∣ − 𝑟𝑚)
≤ 𝑟𝑛, ∣𝑎− 𝑥∣ < 𝑟𝑚 (2.3)
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for some 𝑎 ∈ ℚ and some 𝑚 ∈ ℕ. Let 𝑥 ∈ ℝ ∖ {0}, 𝑏 ∈ ℚ, 𝑛 ∈ ℕ. If 𝑎 ∈ ℚ, 𝑚 ∈ ℕ
and the inequalities (2.3) hold, then ∣𝑥∣ > ∣𝑎∣−𝑟𝑚 and therefore

∣
∣
∣
∣
𝑏−

1

𝑥

∣
∣
∣
∣
≤

∣
∣
∣
∣
𝑏−

1

𝑎

∣
∣
∣
∣
+
∣𝑥− 𝑎∣

∣𝑎∣ ∣𝑥∣
<

∣
∣
∣
∣
𝑏−

1

𝑎

∣
∣
∣
∣
+

𝑟𝑚

∣𝑎∣(∣𝑎∣ − 𝑟𝑚)
≤ 𝑟𝑛.

Suppose now that

∣
∣
∣
∣
𝑏−

1

𝑥

∣
∣
∣
∣
< 𝑟𝑛. Then

𝑟𝑚 < ∣𝑥∣,

∣
∣
∣
∣
𝑏−

1

𝑥

∣
∣
∣
∣
+

𝑟𝑚

∣𝑥∣(∣𝑥∣ − 𝑟𝑚)
< 𝑟𝑛

for some 𝑚 ∈ ℕ. At such a choice of 𝑚, the inequalities (2.3) will be satisfied by
any rational number 𝑎, which is sufficiently close to 𝑥.

Remark 4. It can be shown that {(𝑎,𝑚, 𝑏, 𝑛) ∈ 𝑆 ∣ 𝑎𝑏 = 1} is a m.a.n. for 𝑓 .
Making use of Remark 3, we conclude that 𝑆 is also a m.a.n. for 𝑓 .

Example 3. Let 𝑝 = 𝑞 = 1, 𝑀 = ℝ, 𝑓(𝑥) = cos𝑥 for all 𝑥 ∈ 𝑀 . For any
𝑘 ∈ ℕ, let 𝑆𝑘 be the set of all (𝑎,𝑚, 𝑏, 𝑛) ∈ ℚ×ℕ×ℚ×ℕ satisfying the inequalities

𝑎2
≤ (2𝑘 + 1)(2𝑘 + 2), ∣𝑏− 𝜎𝑘(𝑎)∣+

𝑎2𝑘

2(2𝑘)!
+ 𝑟𝑚 ≤ 𝑟𝑛, (2.4)

where

𝜎𝑘(𝑎) = (−1)𝑘
𝑎2𝑘

2(2𝑘)!
+
∑

𝑖<𝑘

(−1)𝑖
𝑎2𝑖

(2𝑖)!
.

Let 𝑆 =
∪

∞

𝑘=0
𝑆𝑘. The set 𝑆 is recursively enumerable. We will show that it is

a t.a.n. for the function 𝑓 . Indeed, let 𝑥 ∈ 𝑀 , 𝑏 ∈ ℚ, 𝑛 ∈ ℕ. We will prove
that the equivalence (1.1) holds. Suppose first that (𝑎,𝑚, 𝑏, 𝑛) ∈ 𝑆 for some 𝑎

and 𝑚 such that ∣𝑎 − 𝑥∣ < 𝑟𝑚. Then there exists some 𝑘 ∈ ℕ which satisfies the
inequalities (2.4), and, using it, we get

∣𝑏− 𝑓(𝑥)∣ ≤ ∣𝑏− 𝜎𝑘(𝑎)∣+ ∣𝜎𝑘(𝑎)− cos 𝑎∣+ ∣ cos 𝑎− cos𝑥∣

< ∣𝑏− 𝜎𝑘(𝑎)∣+
𝑎2𝑘

2(2𝑘)!
+ 𝑟𝑚 ≤ 𝑟𝑛 .

Conversely, let ∣𝑏 − 𝑓(𝑥)∣ < 𝑟𝑛. Natural numbers 𝑘 and 𝑚 can be chosen which
satisfy the inequalities

𝑥2 < (2𝑘 + 1)(2𝑘 + 2), ∣𝑏 − 𝑓(𝑥)∣+
𝑥2𝑘

(2𝑘)!
+ 𝑟𝑚 < 𝑟𝑛,

and then

𝑎2 < (2𝑘 + 1)(2𝑘 + 2), ∣𝑏− 𝑓(𝑎)∣+
𝑎2𝑘

(2𝑘)!
+ 𝑟𝑚 < 𝑟𝑛, ∣𝑎− 𝑥∣ < 𝑟𝑚

120 Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 115–122.



for any rational number 𝑎 sufficiently close to 𝑥. At such a choice of 𝑘, 𝑚 and 𝑎,
the quadruple (𝑎,𝑚, 𝑏, 𝑛) will belong to 𝑆𝑘, and therefore also to 𝑆, because then

∣𝑏− 𝜎𝑘(𝑎)∣+
𝑎2𝑘

2(2𝑘)!
+ 𝑟𝑚 ≤ ∣𝑏− 𝑓(𝑎)∣+ ∣ cos𝑎− 𝜎𝑘(𝑎)∣+

𝑎2𝑘

2(2𝑘)!
+ 𝑟𝑚

≤ ∣𝑏− 𝑓(𝑎)∣+
𝑎2𝑘

(2𝑘)!
+ 𝑟𝑚 < 𝑟𝑛.

Remark 5. The same set 𝑆 is shown in [4] to be a m.a.n. for 𝑓 .

Example 4. Let 𝑝 = 𝑞 = 1, 𝑀 = ℝ ∖ ℤ, 𝑓(𝑥) = ⌊𝑥⌋ for any 𝑥 ∈ 𝑀 . Then the
recursive set

𝑆 =

{(

𝑘 +
1

2
, 1, 𝑏, 𝑛

)∣
∣
∣
∣
𝑘 ∈ ℤ & 𝑏 ∈ ℚ & 𝑛 ∈ ℕ & ∣𝑏− 𝑘∣ < 𝑟𝑛

}

is a t.a.s. for 𝑓 . Indeed, let 𝑥 ∈ 𝑀 , 𝑏 ∈ ℚ, 𝑛 ∈ ℕ. If (𝑎,𝑚, 𝑏, 𝑛) ∈ 𝑆 and

∣𝑎 − 𝑥∣ < 𝑟𝑚, then 𝑎 = 𝑘 +
1

2
, ∣𝑏 − 𝑘∣ < 𝑟𝑛 for some integer 𝑘, and 𝑟𝑚 =

1

2
, thus

∣
∣
∣
∣
𝑘 +

1

2
− 𝑥

∣
∣
∣
∣
<

1

2
, hence 𝑓(𝑥) = 𝑘 and therefore ∣𝑏 − 𝑓(𝑥)∣ < 𝑟𝑛. Conversely, if

∣𝑏− 𝑓(𝑥)∣ < 𝑟𝑛 then (𝑎,𝑚, 𝑏, 𝑛) ∈ 𝑆 and ∣𝑎− 𝑥∣ < 𝑟𝑚 for 𝑎 = 𝑓(𝑥) +
1

2
and 𝑚 = 1.

Remark 6. The set 𝑆 from Example 4 is not a m.a.n. for 𝑓 , since condition 2
of Definition 1 is violated.

Example 5. Let 𝑝, 𝑞,𝑀, 𝑓 be the same as in Example 4, but 𝑆 be the set of all
(𝑎,𝑚, 𝑏, 𝑛) ∈ ℚ× ℕ×ℚ× ℕ which satisfy the inequalities

𝑎+ 𝑟𝑚 ≤ ⌊𝑎− 𝑟𝑚⌋+ 1, ∣𝑏− ⌊𝑎− 𝑟𝑚⌋∣ < 𝑟𝑛. (2.5)

This set is recursive too. We will show that it is also a t.a.n. for 𝑓 . Let 𝑥 ∈𝑀 , 𝑏 ∈
ℚ, 𝑛 ∈ ℕ. If some 𝑎 ∈ ℚ and 𝑚 ∈ ℕ satisfy the inequalities (2.5) and the inequality
∣𝑎 − 𝑥∣ < 𝑟𝑚, then 𝑓(𝑥) = ⌊𝑎 − 𝑟𝑚⌋ and therefore ∣𝑏 − 𝑓(𝑥)∣ < 𝑟𝑛. Conversely, if
∣𝑏 − 𝑓(𝑥)∣ < 𝑟𝑛, then the inequalities (2.5) and the inequality ∣𝑎 − 𝑥∣ < 𝑟𝑚 can be
satisfied by choosing some 𝑚 ∈ ℕ with 𝑥 − 𝑟𝑚 > ⌊𝑥⌋ and 𝑥 + 𝑟𝑚 < ⌊𝑥⌋ + 1, and
then choosing the rational number 𝑎 sufficiently close to 𝑥.

Remark 7. The set 𝑆 from Example 5 is a m.a.n. for 𝑓 , since so is the set
{(𝑎,𝑚, 𝑏, 𝑛) ∈ 𝑆 ∣ 𝑏 = ⌊𝑎− 𝑟𝑚⌋}.
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Math, science and technology (MST) education in Europe is significantly based on
experiments and problem solving. The innovative project weSPOT aims at enhancing
MST education by emphasizing scientific inquiry, individualization of learning and the
role of social interaction. To achieve this goal, students are supported by a set of soft-
ware tools, helping them to plan, implement, comment and document their personal
scientific experiments. The students are encouraged to share and discuss their experi-
ence and to learn how to conduct scientific research. They share their achievements in
class as well as in their own social community (friends, family, scientists, etc.). This
paper describes in details the scientific approach which is the base for the pilot experi-
ments of the weSPOT methodology. It presents the first pilot of Inquiry-Based Science
Education (IBSE) conducted in the First Privite Mathematical School and analyses
applicability of the used software products.

Keywords: inquiry-based science education, technology-enhanced learning, weSPOT

2012 ACM Computing Classification: Education - collaborative learning, e-learn-
ing, mobile learning, collaborative and social computing - collaborative content cre-
ation, computer supported cooperative work, modeling and simulation - simulation
tools, visualization toolkits, web services - mashups, ubiquitous and mobile computing
systems and tools

1. INTRODUCTION

Modern conception of learning [1, 2] presents the aquiring of new knowledge
and skills as a result of social interactions (conversations, discussions) and a practi-
cal solution of problems and tasks, the student interacts with the objects of reality,
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formulate their statements and assumptions seeks to justify and prove or refute.
Unfortunately, the practice in most educational institutions do not comply with
the requirements of the theory. Students at secondary schools and universities are
mostly in a passive role in the classroom, and teachers are often in the role of men-
tors. Students are rarely motivated to take initiatives within their education and
to expand it outside the school environment, provoked by curiosity.

One approach to solve the problem with the gap between theory and practice
is the inquiry-based science education approach, in which students play the role of
explorers and scientists as they try to address issues set by themselves, while finding
answers to these questions is challenged by their own curiosity. This approach
leverages a meaningful context for students to learn concepts by linking them with
their personal experiences and insights. It leads to structured knowledge of the field
of education and more skills to carry out effective research. In this way, students
learn to explore, collaborate, be creative, use personal characteristics and identity,
and have an impact in different environments and at different levels (e.g. individual,
in the neighborhood, community, world).

Students can go through the process of inquiry-based learning at different levels
of autonomy and complexity, respectively, with varying degrees of support [3]. At
the lowest level, students are guided entirely by the teacher in defining the problem,
choosing an appropriate method for studying it and finding a solution. At the
highest level, called open inquiry, they drive the process of inquiry and analysis,
make their own reasoning and explain the meaning of phenomena performing their
activities individually or together, as well as sharing the knowledge representation
they reached. The project weSPOT [4] aims at supporting the implementation of
this approach through the design, development and testing of appropriate software
tools that will enable students to:

∙ Customize their environment for inquiry-based education;

∙ Build, share and carry out research individually and/or in collaboration with
their peers.

Thus, weSPOT aims to enable the connection of everyday life with training in
subjects related to natural sciences in schools through the use of information and
communication technologies (ICT).

From the perspective of European teachers, the weSPOT project will enable
both teachers and students to apply an inquiry learning approach based on experi-
ments, carried out in a real school environment. Such experiments can be supported
by computer simulations and 3D images and video that will allow students to un-
derstand better the subject of natural sciences. This will make possible to develop
new models of learning and teaching, which provoke students to research and create
new bridges for the use of research results in business.

This article describes how some personal and social aspects of the research
approach to learning can be accomplished through ICT support. It presents the
currently deployed software tools, as well as a scenario for using them in conducting
experiments along with its concrete implementation in a Bulgarian school and a
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brief analysis of the first results. In the Conclusion, further steps, which should be
taken to support the technological support of the research-based training approach
are drawn.

2. weSPOT INQUIRY–BASED SCIENCE EDUCATION

In the frame of the weSPOT project students are encouraged to go through the
whole process of research, although the level of complexity of their research tasks
can vary [5].

Visualization is the key to personal and social aspects of research training.
Images are used for a description of the research process workflow in the train-
ing, which helps users to visualize better their research projects. Students can
use images at different stages of their research to present their scientific reasoning,
and/or integrate by images their questions, hypotheses, concepts, arguments, and
data. As a strategy, the use of visualization aims to develop a knowledge map,
through which students can link and articulate clearly their conceptual and proce-
dural knowledge. Thus the visual language helps students to make a clear argument
in order to generate comprehensible and clear plan of their documents.

In addition, weSPOT indicates when students have acquired a certain level of
research expertise, so that their achievements are visible to others and can be used
in their personal profiles in social networks.

weSPOT does not recommend a universal solution for all, but it starts from
the pragmatic view that the optimal level of research actually is variable and it will
likely vary for different students. It should reflect the key factors in the learning
situation, including the content, context, the skills of the student, the teacher’s
knowledge and available materials. Students, compared to scientists, are beginners
in research. When their knowledge on a given topic is limited, the open inquiry
may not produce effective learning and may even hinder learning, adding internal
cognitive tension. weSPOT model provides teachers and students with support and
technological tools to grow step by step and reach competence, to progress and be
able to find the optimum level of inquiry, which to meet their needs.

3. RELATED WORK

In the project weSPOT we plan and started to implement at the new level
results from experience gained in other research projects. For example, the project
Innovative Didactics for Web-Based Learning, IDWBL [6] considered five types of
support for web-based learning: a web reference, web search, web research, e-mail
project and collaboration. Students are guided by a teacher to experiment new
methods and techniques. They share their inquires with teachers and each other,
and thus achieve the learning objectives of the traditional classroom work. During
the web-based learning projects teachers reported increased motivation for learning
and development of mental processes in students.
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The implementation of research-based education needs a practical methodol-
ogy, approaches and tools that provide support for the daily practice. These needs
are met by the methodology I*Teach [7] developed within the project Innovative
Teacher. It is based on active, student-centered learning methods. The teacher is
a partner in the process of realization of the didactic scenario, stimulating the de-
velopment of creative talents of students [8]. The methodology was integrated into
the projects TENCompetence [9] and ShareTEC [10] and in the training of teach-
ers in vocational schools. Integration in ICT textbooks and methodological guides
for teachers to use the research approach in training used in the project Fibonacci
(http://www.fibonacci-project.eu/). In 2009 the I*Teach project was awarded as
the most successful project of Leonardo da Vinci program.

Another relevant project is WebLabs - an European project aimed at develop-
ing a virtual learning environment (VLE) and a Weblabs learning model [11]. The
learning environment allows students, teachers and researchers located in different
geographical areas to be included in the overall process of research and education
in mathematics and/or science. Understanding of the studied sciences is achieved
through a partnership in the context of research. In addition, students accumulate
social experience through collaboration and sharing of results [6].

Based on the experience gained in these projects, the conditions for a successful
realization of the research-based approach in teaching students are formulated [12]:
change the attitude of the teacher and provide strong support to students (micro
level); support by the school management, providing necessary ICT infrastructure
and building teacher teams to share experiences and good practices (meso level);
the reformation of the curriculum, constantly offering training courses for teachers
and a rich repository of resources based on national ICT infrastructure (macro
level).

4. INFORMATION AND COMMUNICATION TECHNOLOGIES
SUPPORTING PERSONAL AND SOCIAL ASPECTS OF INQUIRY

There is an abundance of software tools and services that can be used for
the implementation of an ISBE approach. The main problem is to find out how
they can be integrated and used together as much as possible in a meaningful and
efficient way. weSPOT addresses this issue by providing a way to integrate data
collected from a variety of research tools and services. It enables the integration
of cognitive research tools and linking them to students’ profiles as well as to their
social and educational context. Individual and collaborative activities that engage
students with various research tools will update the history and goals of student
learning, and thus will enable them and their teachers to work in a unified learning
environment in which they can monitor progress.

Testing the research tools offered by weSPOT with students and teachers in
real-life scenarios in high school is essential for gathering requirements and feedback
from end-users. The pilot project ”Energy efficiency in buildings” was designed to
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implement the IBSE approach at guided level to help students identify the short-
comings of the building in which they are taught in terms of energy efficiency.
Students are expected to predict (and provide evidence) what is the expected en-
ergy problems in the future. Working in teams, they will generate ideas to improve
energy efficiency of future buildings. Teachers can help by asking questions such
as:

∙ What kind of new materials for new energy efficient building components, that
conserve energy, to be used?

∙ What environmentally friendly technologies will provide high quality microcli-
mate?

In this way, students will come to better ideas and will develop skills in the field of
education, but also will build new research skills and competences.

5. AIMS AND CONTENT OF THE PILOT EXPERIMENT

This pilot experiment is related to the Energy Efficiency in Buildings testbed.
It is in the frame of an integrated training on the subject Man and Nature and
Information Technology (IT) in 6th grade. It was led by three teachers (one teacher
in Man and Nature and two IT teachers) and included 60 students aged 12-13 years
from the First Private High School of Mathematics (PCHMG).

Domain competences, related to the subject Human and nature, which
students should be able to develop during the pilot experiment were:

∙ Identifying processes, related to releasing and absorbing heat;

∙ Understanding that the current flow energy source gives consumers and de-
scribes the effects of thermal appliances;

∙ Calculating the cost of electricity used by household electrical appliances and
finding ways to save it;

∙ Providing argumentation about the special role of man to protect and preserve
energy;

∙ Observation and self-observation (of the objects in the nature and in the lab);

∙ Extracting information from graphs, tables and charts, and with IT;

∙ Forming attitude to the energy consumption.

The pilot experiment aimed to build also inquiry skills such as:

∙ Selecting among given questions and posing new scientific questions with
guided support;

∙ Collecting certain data with guided support for what constitutes evidence;

∙ Formulating explanations from evidence with guided support;

∙ Linking areas and sources of scientific knowledge to clarify explanations;
∙ Communicating explanations based on scientific reasoning with guided sup-
port.
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The scientific question of the experiment was: What are the external factors
influencing energy consumption and how the man can act to preserve it?

Inquiry was organized as a completion between three 6 grade classes under
the subtopic: My classroom - the most energy efficient!

Each class plays as a single team which search how much energy its classroom
consumes and how it can save some energy without health risk. The main teams
are divided into subteams according generated hypothesis and indicators chosen to
measure. Each class collects and analyses data. At the end of the project each class
presents its observations and conclusions in front of the other classes, parents and
school managers. Each team shares ideas about increasing the energy efficiency of
the building and provide argumentation based on its research.

The winner is the class providing most reasonable ideas.
Start and end date of inquiry are not accidental dates. They are especially

selected: the start date, 17 November is the first day of the European Week for
Waste Reduction (November 17-24); the end date, 5 June - the World Environment
Day.

The environment for the inquiry is the classrooms of each of the three classes.
They are located on a different floor of the building - basement, first and the second
floor, and has different exposures. There are electric lights and air conditioners in
each room. In some rooms joinery is old, while in the other - replaced with new
one. Thermometers are placed on the wall of the rooms as well as on the outside
wall.

6. PHASES OF THE EXPERIMENT

As a workflow of the pilot experiment students used the Mulholland et al model
[13] with an inquiry cycle based on 8 phase octagonal (Fig 1). Realisation of each
of these phases are presented shortly below.

Figure 1: Inquiry Cycle [13]
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6.1. FIND MY TOPIC

During the first stage - finding the topic, the teacher in Human and nature
subject, introduced students to the problem of energy consumption (Fig. 2). She
presented data about the energy consumption of the school during the last year and
how much it costed. After introducing the main idea, she set common problems to
each of the three classes:

∙ What measures should the school board take to reduce the energy use?

∙ Is there a place for alternative energy sources in the classroom?

Figure 2: Introducing the topic

6.2. DECIDE MY QUESTION OR HYPOTHESIS

The next stage was to form a question or hypothesis. In this stage the brain-
storming process took place. The students discussed the questions (Fig. 3) and
found more specific questions they should answer in advance. In the process they
came up with the ideas for observations.

Some examples of their questions were:

∙ What are the energy consumers in the classroom?

∙ How much energy do they consume?

∙ Are there any dependencies between external climate characteristics (the tem-
perature, wind, is it sunny or not, exposure, etc.) and the energy consumption
and what they are?

∙ How long during the day the air-conditioner is working? At what degrees of
temperature?

∙ How the students keep the energy of the classroom - if they open the win-
dows, do they leave the door open during the breaks, do they keep the lights
unnecessary switched on, etc.
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Figure 3: Discussing the energy consumers and climate conditions

The students chose which are the most important questions and stated their hy-
pothesis based on the expected answers. After formulating the hypothesis, they
formed 5 teams in each class to explore each question/hypothesis in parallel.

6.3. PLAN MY METHOD

During the third phase, according to the chosen questions the students in each
team discussed what kind of information they need, how they can collect it, what
they need to collect it and what they should and can measure in order to prove
their hypotheses, formed in the previous phase.

Some examples:

∙ To measure the temperature inside and outside the school building three times
a day - early in the morning, in the middle of the school day and at lunch;

∙ To compare the temperature in the classroom and outside the building;

∙ To check at time of the measurement if the windows or doors are opened;

∙ To observe the external climate condition - is it sunny, windy, cloudy, etc.

∙ To check at what time the air conditioner is switched on and off;

∙ To calculate how much energy the air conditioner consumes per day;

∙ To do internet research about the particular model of the air conditioner and
how it should be used in order to be the most efficient in working;

∙ To check at what time the lights are switched on and off; To calculate how
much energy the lights consume per day;

∙ To check at what time during the day, the daylight in the classroom is enough
for working properly;

∙ To provide informal interview with parents about the energy preservation at
home.
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In this phase, the students composed a simple table (Fig. 4) for collecting the
necessary data. They developed it on paper and put it on the wall of each classroom,
so that in the next phase be able to fill in the data collected during the week. In
order to not miss data from previous weeks, the students composed an electronic
version of the table. It was made in the IT class. They used a spreadsheet to
compose the desired table. They composed it, made validation rules, inserted
a formula to calculate the dates automatically and put pictures for the weather
conditions. They merged cells where it was necessary and put column and row
headings. This was the first time where the IT and nature sciences were combined
in the project.

Figure 4: The model of an electronic table for collecting data

The main goal was to encourage students to work in a team, not only in
the class, but also to collaborate with other students from the other 6-th grades.
Another goal was to put the students in an active position. In the second phase
we reached this goal - they were very innovative, creative, defining many ideas and
questions. During the process of composing the table they also worked together,
shared opinions and knowledge. Some of our objectives were to develop their sense
of civil position, to teach them to state an opinion and to defend it.

6.4. COLLECT MY DATA

During the fourth phase - collecting data, each team collected the data it has
chosen to measure.
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Before starting the collecting period, the students put thermometers in each
classroom and outside the school. Fortunately the classrooms of the three classes
are on different floors of the building - on the ground one, on the first and on the
second. In each classroom they put a printed table on the wall for writing the
measured data 3 times a day (Fig. 5).

Figure 5: Measuring the temperature in the classroom (left) and outside the school (right)

Right after measuring the observed factors students entered the collected data
in the sheet. Once a week they entered the data from the wall sheets to the
electronic spreadsheet during the classes of Information Technologies (Fig. 6).

Figure 6: Entering the data in a digital form

6.5. ANALYSE MY DATA

At this stage new teams were formed - every class should be presented at the
final competition by one team. The new teams had to summarize the data from
the whole class and to prepare diagrams and charts helping to find dependencies
between observed external factors and energy consumption, human behavior and
energy consumption, building condition and energy consumption, etc. Preparing
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diagrams and charts was in the classes of Information Technologies. During these
lessons, the pupils learnt the basic chart types, what the main elements of a diagram
are and how to create a diagram with the information, using spreadsheets.

6.6. DECIDE MY CONCLUSIONS

In the sixth stage, students made conclusions about their initial hypothesis.
They discussed different scenarios. During the debate on the conclusions they
made, each party provided its arguments and every student voted for one of the
conclusions.

Based on these conclusions, the groups prepared a list of recommendations to
the school management.

Some of the recommendations were in the following directions:

∙ What time it is appropriate to switch on/off the lights according some found
factors;

∙ What time it is appropriate to switch on/off the air conditioner according
some found factors;

∙ Should the window frames or the doors be replaced;

∙ Is it possible to use some kind of alternative energy sources.

6.7. SHARE MY FINDINGS

The seventh phase - sharing my finding, had two sub-phases.
The first sharing was after working on this pilot experiment for 2 months - at

the end of January. Each of the teams in each class had to present the collected
information on their topic in front of the other teams in the class. The presenta-
tion was about factors and conditions, which they had investigated. The students
prepared the presentations. In order to be properly prepared for presenting their
work, during the lessons of Information Technologies some of the presentational
techniques were discussed.

The second sharing took place on the 5th of June - the World Environment
Day. On this day the sharing was delivered in the form of competition between the
three classes. In the competition not only students from the 6th grades took part,
but also students from the 9th grade. The ninth graders organized the whole event.
They were responsible for the preparation of the room, making the invitations for
the jury, accompanying the guests, taking photos, etc. Every team from the 6th
graders had a name and its own colour. Each team was suited in one of the
Bulgarian flag’s colours - white, green or red.

The competition was in 3 stages - an oral presentation, a practical workshop
and solving PISA problems in natural sciences.

During the first stage every team shared in 10 minutes its conclusions and
recommendations and provided evidence (data tables, diagrams, pictures, models)
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Figure 7: A team shares the whole class findings

in order to prove it (Fig. 7). They also made concrete proposals for better energy
consumption.

The second stage included a 12-minute practical workshop. Every team had
a plastic box, which symbolized its classroom, a ruler, a pen, markers, a glue, a
cardboard, an styrofoam, an aluminum foil and old newspapers. They had to isolate
the box. The isolation was tasted by putting ice and a thermometer in every box
(Fig. 8).

Figure 8: Experiments during the workshop

The last stage consisted of solving PISA problems. Every team had to solve
problems and the first one had the right to answer, after pressing a button. When
the team’s answer was fully correct the team gained some points. Otherwise, the
other two teams had the chance to answer in order to gain the points.

A jury formed by 3 university professors from Sofia University had to evaluate
the presentation, conclusions and argumentation of each class. In front of the
teachers, school managers and parents the jury decided which class was the winner.
The decision was based upon the provided argumentations and answers of the
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questions from the audience.
There are a lot of criteria for evaluation. In addition to logical conclusions,

based on the inquiry, there were also additional factors for rating the presentation,.
Some of these factors are the organization of the presentation, its structure, the
usage of graphics, the balance between text and graphics, spelling and grammatical
errors, the appropriate design and the usage of presenting techniques. The main
evaluation criteria for the practical task was the quality of the composed isolation
and its aesthetics view. In the third stage, the first team with a correct answer
to the problem gained the points. The winner was the team named Electra, that
received the most points.

6.8. REFLECT ON MY PROGRESS

The last stage - the eighth one was the reflection on the progress. After the
competition the classes participated in a group reflection with the three teachers.
The reflection questions were:

∙ Why the particular class is the winner?

∙ At what stages were they/we better? How did they/we achieve this?

In each team reflection was concentrated on questions like:

∙ How was the team work organized?

∙ Who had taken what responsibilities?

∙ How was the team communication performed?

∙ Were there ”lazy” teammates and how did the team provoke them to work?

∙ How did the team members support each other?

Each pupil was encouraged to think and share:

∙ What were his own challenges during the project?

∙ What new did he learn?

Finally, teachers summarised the conclusions and shared the recommendations
for improvement in the next inquiry.

7. INFORMATION AND COMMUNICATION TECHNOLOGIES NEEDED TO
SUPPORT IBSE IN THE EXPERIMENT

The use of the Mulholland et al model [13] in the experiment led us to the
idea to use the integrated environment nQuiry [13], which allows a description and
implementation of all phases of a chosen model. The web application nQuiry is
based on Drupal and is especially developed to support IBSE.

The application supports tools for: selecting a model of research learning sce-
nario (Fig. 9); describing of a scenario, associating user groups with it, data record-
ing, sharing and dissemination of results.
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Figure 9: Description of a research scenario for education in nQuiry

The experiment showed that although nQuiry provides a lot of utilities, it still
needs additional options to be able to ensure an effective and efficient implemen-
tation of the research approach. For example, it is focused primarily on individual
studies that can be monitored and controlled by the teacher. Although it has the
tools to organize group work, it does not offers enough opportunities for visualizing
and integration of the performance of the particular groups.

The pilot experiment showed that there is a need of additional tools in order
to fully meet the needs of educational research, especially to support collaboration
in a social environment.

Based on the observation during the pilot experiment, we think it will be perfect
to have an integrated technological environment and tools to support activities in
the different phases.

For the first phase, finding topic, it is good to have a shared place where
preliminary notes by the teacher can be shared with all the students in the inquiry.

For the phase of making hypothesis - to have tools and a shared place for
class brainstorming, tools for voting, place/option for subgroups (re)forming and
working together. The technology environment should allow the subgroup work to
be visible for other groups. In addition, tools should make possible for the subgroup
to be able to share (if it likes) collected data outside of the main group. The teacher
should be able to observe the brainstorming and to provide some directions if there
is a need.

During the phase of planing methods the technological infrastructure should
provide a common place for the whole class where each team can present its decision
- what it will measure, observe, research and how. In addition, through techno-
logical tools the teacher should be able to provide separate feedback to each team
as well as to the whole class. Moreover, the students should be able to have an
open (shared) working space, supported by technology, to discuss what tools and
resources are useful for the presented methods. They should have an opportunity
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(as well as the teacher) to recommend toolkits and resources for data collection and
analysis.

In the phase of collecting data tools should be available to the teacher in order
to be able to provide some pictograms, symbols, images or so, for the students to
use to mark their observations in a common way. In the concrete experiment, it
would be useful if the tool could provide them with graphical symbols for describing
the weather (sunny, cloudy, rainy, etc.). A possibility to upload pictures directly
from a mobile device and the system to mark the time of uploading is desirable.
Using different tools students should be able to create and use a common dataset
(for example an electronic spreadsheet) where each team to fill in its collected data.
In the given case - a common electronic table is useful to measure at the same time
on each date the internal and external temperature, the air conditioner settings,
the whether characteristics etc. Tools should support students to organize different
data sets according to the chosen method of research. The dataset should be visible
to the other teams in the main group/class. It should be also shareable outside of
the group.

During the phase of analysing data and phase of making conclusions the tools
should support discussions within and between the teams, sharing of and voting
on artefacts (photos, hypothesis, arguments), as well as feedback, including by the
teacher. It will be useful to have an integration with mobile device applications,
allowing to provide directly arguments or evidences for proposed conclusions, as
well as immediate comments, notes and feedback.

In all of the phases tools should support rearrangement of the teams, as well
as feedback or directions (if needed) from the teacher and other science experts.

These observations and recommendations were passed to the weSPOT devel-
opers in order to take them into account during the development of tools in the
frame of the project. Some of them inspired the developers to create simulations,
like the one shown in Fig. 10, which was developed by using the Elica software.

Figure 10: Classroom Energy Simulation (Summer) [14]

Looking on it the teacher of the Human and Nature subject reacted immedi-
ately ”Great! Next pilot will take shorter time, because the children could experi-
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ment with a simulation and it will not be necessary to collect data for approximately
six months. In addition, during the winter they could generate conclusions for the
summer!”

8. THE IMPACT OF THE PILOT ON THE weSPOT INQUIRY-BASED
LEARNING MODEL

Although the first weSPOT pilot was just finished, the process was closely
monitored and used for the development of a new inqiury-based learning (IBL)
model. The new model [15] (still not officially published) is simpler - it is based on
6 phases:

∙ Question/hypothesis

∙ Operationalisation (realisation of an idea with the aim to measure)

∙ Data collection

∙ Data analysis (processing)

∙ Interpretation/discussion

∙ Communication

Figure 11: weSPOT IBL model [15]

The model shares many of the phases that Mulholland et al. [13] described
(Fig. 11) [15], but it is more complex regarding the sub-phases providing a detailed
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description of things that teachers and students should consider when doing inquiry.
It is mostly oriented to the inquiry competences that are developed during the
process of education.

The weSPOT: Information and communication technologies fit young research-
ers’ learning needs video [16] illustrates how the new model fits the pilot experiment
phases. The pilot was very valuable for the weSPOT consortium also in identifying
the needed technological tools which can provide the most effective way to teach
according the IBL model. For example, a tool for real-time team forming and re-
forming, a tool for organization, implementation and summarization of brainstorm-
ing, shared data sheets, etc. and how these tools can improve the development of
specific inquiry skills.

9. CONCLUSION

In this paper we presented the weSPOT methodology for science education.
We showed how this methodology was applied in the First Private Mathematical
School in Sofia, Bulgaria. This pilot experiment proves that Inquiry-Based Science
Education (IBSE) is not only very interesting and innovative approach, but also
that it is bringing higher motivation and is giving excellent results, especially when
it is backed with the necessary software tools to support it.

This pilot also showed what improvements and further developments in these
software tools are needed, which will be addressed in the next version of the
weSPOT software framework. These new updated tools will be again applied and
tested in a new set of pilot experiments not only in the secondary education, but
also in the university courses as well.
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We study time-like surfaces in the three-dimensional Minkowski space with diagonal-
izable second fundamental form. On any time-like W-surface we introduce locally

natural principal parameters and prove that such a surface is determined uniquely (up
to motion) by a special invariant function, which satisfies a natural non-linear partial
differential equation. This result can be interpreted as a solution of the Lund-Regge
reduction problem for time-like W-surfaces with real principal curvatures in Minkowski
space. We apply this theory to the class of linear fractional time-like W-surfaces with
respect to their principal curvatures and obtain the natural partial differential equa-
tions describing them.

Keywords: Time-like W-surfaces in Minkowski space, natural parameters on time-like
W-surfaces in Minkowski space, natural PDE’s of time-like W-surfaces in Minkowski
space.
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1. INTRODUCTION

It has been known to Weingarten [21, 22], Eisenhart [4], Wu [23] that without
changing the principal lines on a Weingarten surface in Euclidean space, one can
find geometric coordinates in which the coefficients of the metric are expressed by
the principal curvatures (or principal radii of curvature).

The geometric parameters on Weingarten surfaces were used in [23] to find the
classes of Weingarten surfaces yielding “geometric” 𝔰𝔬(3)-scattering systems (real
or complex) for the partial differential equations, describing these surfaces.
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We have shown that the Weingarten surfaces in Euclidean space [5, 6] and
space-like surfaces in Minkowski space [7] admit geometrically determined princi-
pal parameters (natural principal parameters), which have the following property:
all invariant functions on W-surfaces can be expressed in terms of one function 𝜈,
which satisfies one natural partial differential equation. The Bonnet type funda-
mental theorem states that any solution to the natural partial differential equation
determines a W-surface uniquely up to motion. Thus the description of any class
of W-surfaces (determined by a given Weingarten relation) is equivalent to the
study of the solution space of their natural PDE. This solves the Lund-Regge re-
duction problem [13] for W-surfaces in Euclidean space and space-like W-surfaces
in Minkowski space.

The relationship between the solutions of certain types of partial differential
equations and the determination of various kinds of surfaces of constant curvature
has generated many results which have applications to the areas of both pure and
applied mathematics. This includes the determination of surfaces of either constant
mean curvature or Gaussian curvature. It has long been known that there is a
connection between surfaces of negative constant Gaussian curvature in Euclidean
ℝ3 and the sine-Gordon equation. The fundamental equations of surface theory
are found to yield a type of geometrically based Lax pair. For instance, given a
particular solution of the sinh-Laplace equation, this Lax pair can be integrated to
determine the three fundamental vector fields related to the surface. These are also
used to determine the coordinate vector field of the surface.

Further results are obtained based on the fundamental equations of surface
theory, and it is shown how specific solutions of this sinh-Laplace equation can be
used to obtain the coordinates of a surface in either Minkowski ℝ3

1
or Euclidean ℝ3

space [9, 10].
In [3] Bracken introduces some fundamental concepts and equations pertaining

to the theory of surfaces in three-space, and, in particular, studies a class of sinh-
Laplace equation which has the form Δ𝑢 = ± sinh𝑢.

In this paper we study time-like surfaces with real principal curvatures in the
three dimensional Minkowski space ℝ3

1
.

A time-like surfaceℳ with real principal curvatures 𝜈1 and 𝜈2 is a Weingarten
surface (W-surface) [21, 22] if there exists a function 𝜈 on ℳ and two functions
(Weingarten functions) 𝑓, 𝑔 of one variable, such that

𝜈1 = 𝑓(𝜈), 𝜈2 = 𝑔(𝜈).

A basic property of W-surfaces in Euclidean space is the following theorem of
Lie [12]:

The lines of curvature of any W-surface can be found in quadratures.

This remarkable property is also valid for space-like and time-like W-surfaces
in Minkowski space.

We use four invariant functions (two principal normal curvatures 𝜈1, 𝜈2 and
two principal geodesic curvatures 𝛾1, 𝛾2) and divide time-like W-surfaces into two
classes with respect to these invariants:

144 Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 143–165.



(1) the class of strongly regular time-like surfaces defined by

(𝜈1 − 𝜈2) 𝛾1 𝛾2 ∕= 0;

(2) the class of time-like surfaces defined by

𝛾1 = 0, (𝜈1 − 𝜈2) 𝛾2 ∕= 0.

The basic tool to investigate the relation between time-like surfaces and the
partial differential equations describing them, is Theorem 2.1. This theorem is a
reformulation of the fundamental Bonnet theorem for the class of strongly regular
time-like surfaces in terms of the four invariant functions. Further, we apply this
theorem to time-like W-surfaces.

In Section 3 we prove (Proposition 3.3) that any time-like W-surface admits
locally special principal parameters (natural principal parameters).

Theorem 3.6 is the basic theorem for time-like W-surfaces of type (1):

Any strongly regular time-like W-surface is determined uniquely up to motion
by the functions 𝑓 , 𝑔 and the function 𝜈, satisfying the natural PDE (3.3).

Theorem 3.7 is the baic theorem for time-like Weingarten surfaces of type (2):

Any time-like W-surface with 𝛾1 = 0 is determined uniquely up to motion by
the functions 𝑓, 𝑔 and the function 𝜈, satisfying the natural ODE (3.8).

In natural principal parameters the four basic invariant functions, which de-
termine time-like W-surfaces uniquely up to motions in ℝ3

1
, are expressed by a

single function, and the system of Gauss-Codazzi equations reduces to a single
partial differential equation (the Gauss equation). Thus, the number of the four
invariant functions, which determine time-like W-surfaces, reduces to one invariant
function, and the number of Gauss-Codazzi equations reduces to one natural PDE.
This result gives a solution to the Lund-Regge reduction problem [13] for the time-
like W-surfaces in ℝ3

1
. The Lund-Regge reduction problem has been analyzed and

discussed from several view points in the paper of Sym [18].
In Proposition 4.1 we prove that

The natural principal parameters of a given time-like W-surface ℳ are natural
principal parameters for all parallel time-like surfaces ℳ(𝑎), 𝑎 = const ∕= 0 of ℳ.

Theorem 4.2 states that (cf. [6, 7]):

The natural PDE of a given time-like W-surface ℳ is the natural PDE of any
parallel time-like surface ℳ(𝑎), 𝑎 = const ∕= 0, of ℳ.

In [14, 16] Milnor studies surface theory in Euclidean and Minkowski space,
considering harmonic maps and various relations between the Gauss curvature 𝐾,

the mean curvature 𝐻 and the curvature 𝐻 ′ =
𝜈1 − 𝜈2

2
. In [15, 6] it is proved that

any surface in ℝ3

1
, whose Gauss curvature 𝐾 and mean curvature 𝐻 satisfy the

linear relation

𝛿𝐾 = 𝛼𝐻 + 𝛾, 𝛼, 𝛾, 𝛿 − constants; 𝛼2 + 4𝛾𝛿 ∕= 0, (1.1)
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is parallel to a surface, satisfying one of the following conditions: 𝐻 = 0, 𝐾 = 1 or
𝐾 = −1.

There arises the following question: what are the natural PDE’s describing the
surfaces, whose curvatures satisfy the relation (1.1)?

Since any time-like surface ℳ, whose invariants 𝐾 and 𝐻 satisfy the linear
relation (1.1), is (locally) parallel to one of the following three types of basic sur-
faces: a surface with 𝐻 = 0; a surface with 𝐾 = 1; a surface with 𝐾 = −1, from
Theorem 4.2 it follows that

Up to similarity, the time-like surfaces, whose curvatures satisfy the linear
relation (1.1), are described by the natural PDE’s of the basic surfaces.

A. Ribaucour [17] has proved that a necessary condition for the curvature lines
of the first and second focal surfaces of ℳ to correspond to each other resp. to a
conjugate parametric lines on ℳ is 𝜌1 − 𝜌2 = const resp. 𝜌1 𝜌2 = const.

Von Lilienthal [19] (cf. [20, 1, 2, 4]) has proved in ℝ3 that a surface with a rela-

tion 𝜌1 − 𝜌2 =
1

𝑅
, 𝑅 = const ∕= 0, between its principal radii of curvature 𝜌1 =

1

𝜈1

and 𝜌2 =
1

𝜈2

has first and second focal surfaces ℳ̃ of constant Gauss curvature

−𝑅2 and vice versa. The involute surfacesℳ(𝑎), 𝑎 ∈ ℝ of ℳ̃ are parallel surfaces
of ℳ with the property 𝜌1 − 𝜌2 = const. This implies that the family ℳ(𝑎) are

integrable surfaces as a consequence of the integrability of ℳ̃. The curvatures of
the above surfaces ℳ satisfy the relation 𝐾 = 𝛽 𝐻 ′, 𝛽 = const ∕= 0.

In ℝ3

1
one can prove in a similar way the corresponding property: The first

focal surface of a time-like surface with 𝐾 = 𝛽 𝐻 ′, 𝛽 ∕= 0, is space-like of constant
Gauss curvature 𝛽2/4, and its second focal surface is time-like of constant Gauss
curvature −𝛽2/4.

Obviously the time-like surfaces with 𝐾 = 𝛽 𝐻 ′, 𝛽 = const ∕= 0, are not
included in the class characterized by (1.1).

These surfaces belong to the classes of time-like W-surfaces, defined by the
following more general linear relation

𝛿𝐾 = 𝛼𝐻 + 𝛽𝐻 ′ + 𝛾, 𝛼, 𝛽, 𝛾, 𝛿 − constants; 𝛼2
− 𝛽2 + 4𝛾𝛿 ∕= 0 (1.2)

between the Gauss curvature 𝐾, the mean curvature 𝐻 and the curvature 𝐻 ′. We
denote this class by 𝔎.

We show that the class 𝔎 is the class of linear fractional time-like W-surfaces
with respect to the principal curvatures (cf. [6, 7]). Furthermore, ifℳ is a time-like
surface in 𝔎, then its parallel surfaces ℳ(𝑎), 𝑎 = const, belong to 𝔎 too.

In the main Theorem 5.3 in this paper we determine ten basic relations with
respect to the constants in (1.2) and each of them generates a basic subclass of
surfaces of 𝔎. Any time-like surfaceℳ, whose invariants 𝐾, 𝐻 and 𝐻 ′ satisfy the
linear relation (1.2) is (locally) parallel to one of these basic surfaces.
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In [10] Hu has cleared up the relationship between the PDE’s

𝛼𝑢𝑢 − 𝛼𝑣𝑣 = ± sin𝛼 (sin−Gordon PDE),

𝛼𝑢𝑢 − 𝛼𝑣𝑣 = ± sinh𝛼 (sinh−Gordon PDE),

𝛼𝑢𝑢 + 𝛼𝑣𝑣 = ± sin𝛼 (sin−Laplace PDE),

𝛼𝑢𝑢 + 𝛼𝑣𝑣 = ± sinh𝛼 (sinh−Laplace PDE)

and the construction of various kinds of surfaces of constant curvature in ℝ3 or ℝ3

1
.

In [11] by using Darboux transformations, from a known solution to the sinh-
Laplace (resp. sin-Laplace) equation have been obtained explicitly new solutions
to the sin-Laplace (resp. sinh-Laplace) equation.

Time-like surfaces with positive Gauss curvature and imaginary principal cur-
vatures have been constructed in [8].

It is essential to note that the natural PDE’s of the time-like W-surfaces from
the class 𝔎 are expressed in the form 𝛿𝜆 = 𝑓(𝜆) , where 𝛿 is one of the operators
(cf. [6, 7]):

Δ𝜆 := 𝜆𝑥𝑥 + 𝜆𝑦𝑦, Δ̄𝜆 := 𝜆𝑥𝑥 − 𝜆𝑦𝑦;

Δ∗𝜆 := 𝜆𝑥𝑥 + (𝜆−1)𝑦𝑦, Δ̄∗𝜆 := 𝜆𝑥𝑥 − (𝜆−1)𝑦𝑦.

2. PRELIMINARIES

Let ℝ3

1
be the three dimensional Minkowski space with the standard flat met-

ric ⟨ , ⟩ of signature (2, 1). We assume that the following orthonormal coordinate
system 𝑂𝑒1𝑒2𝑒3 : 𝑒2

1
= 𝑒2

2
= −𝑒2

3
= 1, ⟨𝑒𝑖, 𝑒𝑗⟩ = 0, 𝑖 ∕= 𝑗 is fixed and gives the

orientation of the space.
Letℳ : 𝑧 = 𝑧(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝒟 be a time-like surface in the three dimensional

Minkowski space ℝ3

1
and ∇ be the flat Levi-Civita connection of the metric ⟨ , ⟩.

The unit normal vector field to ℳ is denoted by 𝑙 and 𝐸,𝐹,𝐺; 𝐿,𝑀,𝑁 stand for
the coefficients of the first and the second fundamental forms, respectively. Then
we have

𝐸 = 𝑧2

𝑢
< 0, 𝐹 = 𝑧𝑢 𝑧𝑣, 𝐺 = 𝑧2

𝑣
> 0, 𝐸𝐺− 𝐹 2 < 0, 𝑙2 = 1.

The coefficients of the second fundamental form are given as follows:

𝐿 = 𝑙 𝑧𝑢𝑢 = −𝑙𝑢 𝑧𝑢, 𝑀 = 𝑙 𝑧𝑢𝑣 = −𝑙𝑢 𝑧𝑣 = −𝑙𝑣 𝑧𝑢, 𝑁 = 𝑙 𝑧𝑣𝑣 = −𝑙𝑣 𝑧𝑣.

The linear Weingarten map 𝛾 is determined by the conditions

𝛾(𝑧𝑢) = 𝑙𝑢, 𝛾(𝑧𝑣) = 𝑙𝑣.
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Then the mean curvature 𝐻 and the Gauss curvature 𝐾 of ℳ are given in the
standard way

𝐻 = −
1

2
tr 𝛾, 𝐾 = det 𝛾.

While the Weingarten map of a space-like surface satisfies the inequality 𝐻2
−

𝐾 ≥ 0 and is always diagonalizable, the Weingarten map on a time-like surface can
satisfy the inequalities 𝐻2

−𝐾 ≥ 0 or 𝐻2
−𝐾 < 0.

Throughout this paper we deal with time-like surfaces satisfying the inequality
𝐻2

−𝐾 ≥ 0, i.e. time-like surfaces with real principal curvatures.
We suppose that the surfaces under consideration are free of points with 𝐻2

−

𝐾 = 0, i.e. satisfy the strong inequality

𝐻2
−𝐾 > 0 (2.1)

and denote by 𝐻 ′ the invariant curvature

𝐻 ′ =
√

𝐻2
−𝐾.

Under the above condition the theory of time-like surfaces can be developed in
a way similar to the theory of surfaces in Euclidean space or space-like surfaces in
Minkowski space.

Time-like surfaces satisfying the condition (2.1) can be locally parameterized
by principal parameters. Further we assume that the parametric net is principal,
i.e.

𝐹 (𝑢, 𝑣) =𝑀(𝑢, 𝑣) = 0, (𝑢, 𝑣) ∈ 𝒟.

Then the principal curvatures 𝜈1, 𝜈2 and the principal geodesic curvatures (geodesic
curvatures of the principal lines) 𝛾1, 𝛾2 are given by

𝜈1 =
𝐿

𝐸
, 𝜈2 =

𝑁

𝐺
; 𝛾1 =

𝐸𝑣

2𝐸
√

𝐺
, 𝛾2 =

−𝐺𝑢

2𝐺
√

−𝐸
, (2.2)

and 𝜈1, 𝜈2 satisfy the Rodrigues’ formulas:

𝑙𝑢 = −𝜈1 𝑧𝑢, 𝑙𝑣 = −𝜈2 𝑧𝑣.

We consider the tangential frame field {𝑋,𝑌 } determined by

𝑋 :=
𝑧𝑢
√

−𝐸
, 𝑌 :=

𝑧𝑣
√

𝐺

and suppose that the moving frame field 𝑋𝑌 𝑙 is positive oriented.
The following Frenet type formulas for the frame field 𝑋𝑌 𝑙 are valid

∣
∣
∣
∣
∣
∣
∣
∣

∇𝑋 𝑋 = 𝛾1 𝑌 −𝜈1𝑙,

∇𝑋𝑌 = 𝛾1𝑋,

∇𝑋 𝑙 =−𝜈1𝑋,

∣
∣
∣
∣
∣
∣
∣
∣

∇𝑌 𝑋 = −𝛾2 𝑌,

∇𝑌 𝑌 = −𝛾2𝑋 +𝜈2 𝑙,

∇𝑌 𝑙 = −𝜈2𝑌.

(2.3)
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The Codazzi equations have the form

𝛾1 =
−𝑌 (𝜈1)

𝜈1 − 𝜈2

=
−(𝜈1)𝑣

√

𝐺(𝜈1 − 𝜈2)
, 𝛾2 =

−𝑋(𝜈2)

𝜈1 − 𝜈2

=
−(𝜈2)𝑢

√

−𝐸 (𝜈1 − 𝜈2)
, (2.4)

and the Gauss equation can be written as follows:

𝑋(𝛾2) + 𝑌 (𝛾1) + 𝛾2

1
− 𝛾2

2
= −𝜈1𝜈2 = −𝐾,

or
(𝛾2)𝑢
√

−𝐸
+

(𝛾1)𝑣
√

𝐺
+ 𝛾2

1
− 𝛾2

2
= −𝜈1𝜈2 = −𝐾. (2.5)

A time-like surface ℳ : 𝑧 = 𝑧(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝒟 parameterized by principal
parameters is said to be strongly regular if (cf. [5, 6, 7])

(𝜈1(𝑢, 𝑣)− 𝜈2(𝑢, 𝑣))𝛾1(𝑢, 𝑣)𝛾2(𝑢, 𝑣) ∕= 0, (𝑢, 𝑣) ∈ 𝒟.

The Codazzi equations (2.4) imply that

𝛾1𝛾2 ∕= 0 ⇐⇒ (𝜈1)𝑣(𝜈2)𝑢 ∕= 0.

Because of (2.4) the formulas

√

−𝐸 =
−(𝜈2)𝑢

𝛾2(𝜈1 − 𝜈2)
> 0,

√

𝐺 =
−(𝜈1)𝑣

𝛾1(𝜈1 − 𝜈2)
> 0 (2.6)

are valid on strongly regular time-like surfaces.
Taking into account (2.6), for strongly regular time-like surfaces formulas (2.3)

become
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

𝑋𝑢 = −
𝛾1 (𝜈2)𝑢

𝛾2(𝜈1−𝜈2)
𝑌 +

𝜈1 (𝜈2)𝑢
𝛾2(𝜈1−𝜈2)

𝑙, 𝑌𝑢=−
𝛾1 (𝜈2)𝑢

𝛾2(𝜈1−𝜈2)
𝑋, 𝑙𝑢=

𝜈1 (𝜈2)𝑢
𝛾2(𝜈1−𝜈2)

𝑋;

𝑋𝑣 =
𝛾2 (𝜈1)𝑣

𝛾1(𝜈1−𝜈2)
𝑌, 𝑌𝑣 =

𝛾2 (𝜈1)𝑣
𝛾1(𝜈1−𝜈2)

𝑋 −
𝜈2 (𝜈1)𝑣

𝛾1(𝜈1−𝜈2)
𝑙, 𝑙𝑣 =

𝜈2 (𝜈1)𝑣
𝛾1(𝜈1 − 𝜈2)

𝑌.

(2.7)

Finding the compatibility conditions for the system (2.7), we reformulate the
fundamental Bonnet theorem for strongly regular time-like surfaces in terms of the
invariants of the surface.

Theorem 2.1. Let the four functions 𝜈1(𝑢, 𝑣), 𝜈2(𝑢, 𝑣), 𝛾1(𝑢, 𝑣), 𝛾2(𝑢, 𝑣) be
defined in a neighborhood 𝒟 of (𝑢0, 𝑣0) and satisfy the following conditions:

1) (𝜈1 − 𝜈2) 𝛾1 (𝜈1)𝑣 < 0, (𝜈1 − 𝜈2) 𝛾2 (𝜈2)𝑢 < 0,

2.1)

(

ln
(𝜈1)𝑣
𝛾1

)

𝑢

=
(𝜈1)𝑢
𝜈1 − 𝜈2

,

(

ln
(𝜈2)𝑢
𝛾2

)

𝑣

= −
(𝜈2)𝑣
𝜈1 − 𝜈2

,

2.2)
𝜈1 − 𝜈2

2

(

(𝛾2

2
)𝑢

(𝜈2)𝑢
+

(𝛾2

1
)𝑣

(𝜈1)𝑣

)

− (𝛾2

1
− 𝛾2

2
) = 𝜈1𝜈2.
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Let 𝑧0𝑋0𝑌0𝑙0 be an initial positive oriented orthonormal frame.

Then there exists a unique strongly regular time-like surface ℳ : 𝑧 = 𝑧(𝑢, 𝑣),
(𝑢, 𝑣) ∈ 𝒟0 ((𝑢0, 𝑣0) ∈ 𝒟0 ⊂ 𝒟) with prescribed invariants 𝜈1, 𝜈2, 𝛾1, 𝛾2 such that

𝑧(𝑢0, 𝑣0) = 𝑧0, 𝑋(𝑢0, 𝑣0) = 𝑋0, 𝑌 (𝑢0, 𝑣0) = 𝑌0, 𝑙(𝑢0, 𝑣0) = 𝑙0.

Formulas (2.3) imply explicit expressions for the curvature and the torsion of
any principal line on the time-like surface ℳ.

Let 𝑐1 : 𝑧 = 𝑧(𝑠), ℳ ∈ 𝐽 be a line from the family ℱ1 (𝑣 = const) parameter-
ized by a natural parameter and 𝜅1, 𝜏1 be its curvature and torsion, respectively.

Since 𝑐1 is an integral line of the unit time-like vector field 𝑋 , then

𝑧′ = 𝑋, 𝑧′′ = ∇𝑋𝑋 = 𝛾1 𝑌 − 𝜈1 𝑙,

𝑧′′′ = ∇𝑋∇𝑋𝑋 = −𝑋(𝜈1) 𝑙 +𝑋(𝛾1)𝑌 + (𝜈2

1
+ 𝛾2

1
)𝑋,

𝜅2

1
= 𝜈2

1
+ 𝛾2

1
.

We use the formula

𝜏 =
𝑧′𝑧′′𝑧′′′

𝑧′′2
.

Since 𝜈2

1
+ 𝛾2

1
> 0 along 𝑐1, we find

𝜏1 =
𝜈1𝑋(𝛾1)− 𝛾1𝑋(𝜈1)

𝜈2

1
+ 𝛾2

1

=
𝜈2

1

𝜅2

1

𝑋

(

𝛾1

𝜈1

)

.

Denoting sin 𝜃1 = 𝛾1

𝜅1

and cos 𝜃1 = 𝜈1

𝜅1

, we obtain

𝜏1 = 𝑋(𝜃1).

For the lines 𝑐2 of the family ℱ2 we obtain in a similar way the formulas

𝑧′ = 𝑌, 𝑧′′ = ∇𝑌 𝑌 = −𝛾2𝑋 + 𝜈2 𝑙,

𝑧′′′ = ∇𝑌∇𝑌 𝑌 = 𝑌 (𝜈2) 𝑙− 𝑌 (𝛾2)𝑋 + (𝛾2

2
− 𝜈2

2
)𝑌,

𝜅2

2
= 𝜀2 𝑧

′′2 = 𝜀2 (𝜈
2

2
− 𝛾2

2
), 𝜀2 = sign 𝑧′′2,

and in the case 𝑧′′2 ∕= 0,

𝜏2 = 𝜀2

𝛾2 𝑌 (𝜈2)− 𝜈2 𝑌 (𝛾2)

𝜅2

2

= −𝜀2

𝜈2

2

𝜅2

2

𝑌

(

𝛾2

𝜈2

)

.
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3. NATURAL PRINCIPAL PARAMETERS ON TIME-LIKE WEINGARTEN
SURFACES

In this section we consider diagonalizable time-like Weingarten surfaces. For
the sake of symmetry with respect to the principal curvatures 𝜈1 and 𝜈2 we use the
following characterization of time-like Weingarten surfaces:

A diagonalizable time-like surface ℳ : 𝑧 = 𝑧(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝒟 is Wein-
garten if there exist two real differentiable functions 𝑓(𝜈), 𝑔(𝜈), 𝑓(𝜈) − 𝑔(𝜈) ∕=
0, 𝑓 ′(𝜈)𝑔′(𝜈) ∕= 0, 𝜈 ∈ ℐ ⊆ ℝ such that the principal curvatures of ℳ at every
point are given by 𝜈1 = 𝑓(𝜈), 𝜈2 = 𝑔(𝜈), 𝜈 = 𝜈(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝒟.

The next statement gives a property of time-like Weingarten surfaces, which
allows us to introduce special principal parameters on such surfaces.

Lemma 3.1. Let ℳ : 𝑧 = 𝑧(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝒟 be a diagonalizable time-like
Weingarten surface parameterized with principal parameters. Then the function

𝜆 =
√

−𝐸 exp

(∫

𝑓 ′𝑑𝜈

𝑓 − 𝑔

)

does not depend on 𝑣, while the function

𝜇 =
√

𝐺 exp

(∫

𝑔′𝑑𝜈

𝑔 − 𝑓

)

does not depend on 𝑢.

Proof. Taking into account (2.4) and (2.2), we find

𝛾1 =
−𝑓 ′(𝜈)𝑌 (𝜈)

𝑓(𝜈)− 𝑔(𝜈)
= 𝑌 (ln

√

−𝐸), 𝛾2 =
−𝑔′(𝜈)𝑋(𝜈)

𝑓(𝜈)− 𝑔(𝜈)
= −𝑋(ln

√

𝐺),

which imply that

𝑌

(∫

𝑓 ′(𝜈) 𝑑𝜈

𝑓(𝜈)− 𝑔(𝜈))
+ ln

√

−𝐸

)

= 0, 𝑋

(∫

𝑔′(𝜈) 𝑑𝜈

𝑔(𝜈)− 𝑓(𝜈)
+ ln

√

𝐺

)

= 0.

The last equalities mean that 𝜆𝑣 = 0 and 𝜇𝑢 = 0.

We define special principal parameters on a time-like Weingarten surface as
follows:

Definition 3.2. Let ℳ : 𝑧 = 𝑧(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝒟 be a diagonalizable time-like
Weingarten surface parameterized with principal parameters. The parameters (𝑢, 𝑣)
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are said to be natural principal, if the functions 𝜆(𝑢) and 𝜇(𝑣) from Lemma 3.1
are constants.

Proposition 3.3. Any diagonalizable time-like Weingarten surface admits lo-
cally natural principal parameters.

Proof. Letℳ : 𝑧 = 𝑧(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝒟 be a time-like Weingarten surface in the
Minkowski space ℝ3

1
, parameterized with principal parameters. Then 𝜈1 = 𝑓(𝜈),

𝜈2 = 𝑔(𝜈), 𝜈 = 𝜈(𝑢, 𝑣) for some differentiable functions 𝑓 , 𝑔 and 𝜈 satisfying the
conditions (𝑓(𝜈)− 𝑔(𝜈)) 𝑓 ′(𝜈) 𝑔′(𝜈) ∕= 0, (𝑢, 𝑣) ∈ 𝒟.

Let 𝔞 = const ∕= 0, 𝔟 = const ∕= 0, (𝑢0, 𝑣0) ∈ 𝒟 and 𝜈0 = 𝜈(𝑢0, 𝑣0). We
change the parameters (𝑢, 𝑣) ∈ 𝒟 with (�̄�, 𝑣) ∈ �̄� by the formulas

�̄� = 𝔞

∫
𝑢

𝑢0

√

−𝐸 exp

(∫
𝜈

𝜈0

𝑓 ′𝑑𝜈

𝑓 − 𝑔

)

𝑑𝑢 + 𝑢0, �̄�0 = const,

𝑣 = 𝔟

∫
𝑣

𝑣0

√

𝐺 exp

(∫
𝜈

𝜈0

𝑔′𝑑𝜈

𝑔 − 𝑓

)

𝑑𝑣 + 𝑣0, 𝑣0 = const.

According to Lemma 3.1 it follows that (�̄�, 𝑣) are again principal parameters and

�̄� = −
1

𝔞2
exp

(

−2

∫
𝜈

𝜈0

𝑓 ′𝑑𝜈

𝑓 − 𝑔

)

, �̄� =
1

𝔟2
exp

(

−2

∫
𝜈

𝜈0

𝑔′𝑑𝜈

𝑔 − 𝑓

)

. (3.1)

Then for the functions from Lemma 3.1 we find

𝜆(�̄�) = ∣𝔞∣−1, 𝜇(𝑣) = ∣𝔟∣−1.

Furthermore 𝔞2 �̄�(𝑢0, 𝑣0) = −1, 𝔟
2 �̄�(𝑢0, 𝑣0) = 1.

We assume now that the considered time-like Weingarten surface ℳ : 𝑧 =
𝑧(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝒟 is parameterized with natural principal parameters (𝑢, 𝑣). It
follows from the above proposition that the coefficients 𝐸 and 𝐺 (consequently 𝐿
and 𝑁) are expressed by the invariants of the surface.

As an immediate consequence from Proposition 3.3 we get

Corollary 3.4. Let ℳ be a time-like Weingarten surface parameterized by
natural principal parameters (𝑢, 𝑣). Then any natural principal parameters (�̃�, 𝑣)
on ℳ are determined by (𝑢, 𝑣) up to an affine transformation of the type

�̃� = 𝑎11 𝑢+ 𝑏1, 𝑣 = 𝑎22 𝑣 + 𝑏2, 𝑎11𝑎22 ∕= 0,

or of the type
�̃� = 𝑎12 𝑣 + 𝑐1, 𝑣 = 𝑎21 𝑢+ 𝑐2, 𝑎12𝑎21 ∕= 0,
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where 𝑎𝑖𝑗 , 𝑏𝑖, 𝑐𝑖; 𝑖, 𝑗 = 1, 2 are constants.

Next we give a simple criterion principal parameters to be natural.

Proposition 3.5. Let a time-like Weingarten surfaceℳ : 𝑧 = 𝑧(𝑢, 𝑣), (𝑢, 𝑣) ∈
𝒟 be parameterized with principal parameters. Then (𝑢, 𝑣) are natural principal if
and only if

√

−𝐸𝐺(𝜈1 − 𝜈2) = const ∕= 0. (3.2)

Proof. The equality
√

−𝐸𝐺 (𝜈1 − 𝜈2) = 𝑐 𝜆𝜇, 𝑐 = const ∕= 0, and Lemma 3.1
imply the assertion.

3.1. STRONGLY REGULAR TIME-LIKE W-SURFACES.

We consider strongly regular time-like W-surfaces, i.e. time-like W-surfaces,
satisfying the condition

𝜈𝑢(𝑢, 𝑣)𝜈𝑣(𝑢, 𝑣) ∕= 0, (𝑢, 𝑣) ∈ 𝒟.

Our main theorem for such surfaces is

Theorem 3.6. Let 𝑓(𝜈), 𝑔(𝜈); 𝜈 ∈ ℐ, be two differentiable functions satisfying
𝑓(𝜈) − 𝑔(𝜈) ∕= 0, 𝑓 ′(𝜈) 𝑔′(𝜈) ∕= 0, and let 𝜈(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝒟 be a differentiable
function such that

𝜈𝑢 𝜈𝑣 ∕= 0, 𝜈(𝑢, 𝑣) ∈ ℐ.

Let (𝑢0, 𝑣0) ∈ 𝒟, 𝜈0 = 𝜈(𝑢0, 𝑣0) and 𝔞 ∕= 0, 𝔟 ∕= 0 be two constants. If

𝔞
2 exp

(

2

∫
𝜈

𝜈0

𝑓 ′𝑑𝜈

𝑓 − 𝑔

)[

𝑔′𝜈𝑢𝑢 +

(

𝑔′′ −
2𝑔′2

𝑔 − 𝑓

)

𝜈2

𝑢

]

+𝔟
2 exp

(

2

∫
𝜈

𝜈0

𝑔′𝑑𝜈

𝑔 − 𝑓

)[

𝑓 ′𝜈𝑣𝑣 +

(

𝑓 ′′
−

2𝑓 ′2

𝑓 − 𝑔

)

𝜈2

𝑣

]

= 𝑓𝑔(𝑓 − 𝑔),

(3.3)

then there exists a unique (up to a motion) strongly regular time-like Weingarten
surface ℳ : 𝑧 = 𝑧(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝒟0 ⊂ 𝒟 with invariants

𝜈1 = 𝑓(𝜈), 𝜈2 = 𝑔(𝜈),

𝛾1 = exp

(∫
𝜈

𝜈0

𝑔′𝑑𝜈

𝑔 − 𝑓

)

−𝔟𝑓 ′

𝑓 − 𝑔
𝜈𝑣, 𝛾2 = exp

(∫
𝜈

𝜈0

𝑓 ′𝑑𝜈

𝑓 − 𝑔

)

−𝔞𝑔′

𝑓 − 𝑔
𝜈𝑢.

(3.4)
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Furthermore, (𝑢, 𝑣) are natural principal parameters for ℳ.

Proof. Using Proposition 3.3, we obtain that the integrability conditions 2.1)
and 2.2) in Theorem 2.2 reduce to (3.3), which proves the assertion.

Introducing the functions

𝐼 :=

∫
𝜈

𝜈0

𝑓 ′(𝜈) 𝑑𝜈

𝑓(𝜈)− 𝑔(𝜈)
, 𝐽 :=

∫
𝜈

𝜈0

𝑔′(𝜈) 𝑑𝜈

𝑔(𝜈)− 𝑓(𝜈)
, (3.5)

we can write the PDE (3.3) in the form

𝔞
2 𝑒2𝐼

(

𝐽𝑢𝑢 + 𝐼𝑢 𝐽𝑢 − 𝐽2

𝑢

)

− 𝔟
2 𝑒2𝐽

(

𝐼𝑣𝑣 + 𝐼𝑣 𝐽𝑣 − 𝐼2

𝑣

)

= −𝑓 𝑔, (3.6)

and the principal geodetic curvatures (3.4) in the form

𝛾1 = −𝔟 𝑒𝐽 𝐼𝑣, 𝛾2 = 𝔞 𝑒𝐼 𝐽𝑢. (3.7)

Hence, with respect to natural principal parameters every strongly regular
time-like Weingarten surface possesses a natural PDE (3.3) (or equivalently (3.6)).

3.2. TIME-LIKE W-SURFACES WITH 𝛾1 = 0.

In this subsection we consider time-like W-surfaces in Minkowski space with
first principal geodesic curvature 𝛾1 = 0 and prove the fundamental theorem of
Bonnet type for this class.

Let ℳ : 𝑧 = 𝑧(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝒟 be a time-like W-surface, parameterized by
natural principal parameters. Then we can assume

𝔞
√

𝐸 = 𝑒𝐼 , 𝔟
√

𝐺 = 𝑒𝐽 ,

where 𝐼 and 𝐽 are the functions (3.5) and 𝔞, 𝔟 are some positive constants. We
note that under the condition 𝛾1 = 0 it follows that the function 𝜈 = 𝜈(𝑢) does not
depend on 𝑣.

Considering the system (2.3), we obtain that the compatibility conditions for
this system reduce to only one - the Gauss equation, which has the form:

𝑋(𝛾2)− 𝛾2

2
= −𝑓(𝜈) 𝑔(𝜈).

Thus we obtain the following Bonnet type theorem for time-like W-surfaces
satisfying the condition 𝛾1 = 0:

Theorem 3.7. Let 𝑓(𝜈), 𝑔(𝜈); 𝜈 ∈ ℐ, be two differentiable functions sat-
isfying 𝑓(𝜈) − 𝑔(𝜈) ∕= 0, 𝑓 ′(𝜈) 𝑔′(𝜈) ∕= 0 and let 𝜈(𝑢, 𝑣) = 𝜈(𝑢), (𝑢, 𝑣) ∈ 𝒟 be a
differentiable function such that

𝜈𝑢 ∕= 0, 𝜈(𝑢, 𝑣) ∈ ℐ.
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Let (𝑢0, 𝑣0) ∈ 𝒟, 𝜈0 = 𝜈(𝑢0, 𝑣0) and 𝔞 > 0 be a constant. If

𝔞
2 𝑒2𝐼 (𝐽𝑢𝑢 + 𝐼𝑢 𝐽𝑢 − 𝐽2

𝑢
) = −𝑓(𝜈) 𝑔(𝜈), (3.8)

then there exists a unique (up to a motion) time-like W-surface ℳ : 𝑧 = 𝑧(𝑢, 𝑣),
(𝑢, 𝑣) ∈ 𝒟0 ⊂ 𝒟 with invariants

𝜈1 = 𝑓(𝜈), 𝜈2 = 𝑔(𝜈),

𝛾1 = 0, 𝛾2 = 𝔞 𝑒𝐼 (𝐽)𝑢.
(3.9)

Furthermore, (𝑢, 𝑣) are natural principal parameters on ℳ.

Hence, with respect to natural principal parameters every time-like Weingarten
surface with 𝛾1 = 0 possesses a natural ODE (3.8).

4. PARALLEL TIME-LIKE SURFACES IN MINKOWSKI SPACE AND THEIR
NATURAL PDE’S

Let ℳ : 𝑧 = 𝑧(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝒟 be a time-like surface, parameterized by
principal parameters and 𝑙(𝑢, 𝑣), 𝑙2 = 1 be the unit normal vector field of ℳ. The
parallel surfaces of ℳ are given by

ℳ(𝑎) : 𝑧(𝑢, 𝑣) = 𝑧(𝑢, 𝑣) + 𝑎 𝑙(𝑢, 𝑣), 𝑎 = const ∕= 0, (𝑢, 𝑣) ∈ 𝒟. (4.1)

We call the family {ℳ(𝑎), 𝑎 = const ∕= 0} the parallel family of ℳ.
Taking into account (4.1), we find

𝑧𝑢 = (1− 𝑎 𝜈1) 𝑧𝑢, 𝑧𝑣 = (1− 𝑎 𝜈2) 𝑧𝑣. (4.2)

Excluding the points, where (1−𝑎 𝜈1)(1−𝑎 𝜈2) = 0, we obtain that the correspond-
ing unit normal vector fields 𝑙 toℳ(𝑎) and 𝑙 toℳ satisfy the equality 𝑙 = 𝜀 𝑙, where
𝜀 := sign (1−𝑎 𝜈1)(1−𝑎 𝜈2). In view of (4.2) it follows that �̄� < 0 and �̄� > 0. Hence,
the parallel surfaces ℳ(𝑎) of a time-like surface ℳ are also time-like surfaces.

The relations between the principal curvatures 𝜈1(𝑢, 𝑣), 𝜈2(𝑢, 𝑣) of ℳ and
𝜈1(𝑢, 𝑣), 𝜈2(𝑢, 𝑣) of its parallel time-like surface ℳ(𝑎) are

𝜈1 = 𝜀
𝜈1

1− 𝑎 𝜈1

, 𝜈2 = 𝜀
𝜈2

1− 𝑎 𝜈2

; 𝜈1 =
𝜀 𝜈1

1 + 𝑎 𝜀 𝜈1

, 𝜈2 =
𝜀 𝜈2

1 + 𝑎 𝜀 𝜈2

. (4.3)

Let𝐾 = 𝜈1 𝜈2, 𝐻 =
1

2
(𝜈2 + 𝜈2), 𝐻

′ =
1

2
(𝜈2 − 𝜈2) be the three invariants of the

time-like surfaceℳ. The equalities (4.3) imply the relations between the invariants
�̄�, �̄� and �̄� ′ of ℳ(𝑎) and the corresponding invariants of ℳ:

𝐾 =
�̄�

1 + 2𝑎 𝜀�̄� + 𝑎2�̄�
, 𝐻 =

𝜀 �̄� + 𝑎�̄�

1 + 2𝑎 𝜀�̄� + 𝑎2�̄�
, 𝐻 ′ =

𝜀 �̄� ′

1 + 2𝑎 𝜀 �̄� + 𝑎2�̄�
. (4.4)
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Now let ℳ : 𝑧 = 𝑧(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝒟 be a time-like Weingarten surface with
Weingarten functions 𝑓(𝜈) and 𝑔(𝜈). We suppose that (𝑢, 𝑣) are natural principal
parameters for ℳ. We show that (𝑢, 𝑣) are also natural principal parameters for
any parallel time-like surfaceℳ(𝑎).

Proposition 4.1. The natural principal parameters (𝑢, 𝑣) of a given time-
like W-surfaceℳ are natural principal parameters for all parallel time-like surfaces
ℳ(𝑎), 𝑎 = const ∕= 0 of ℳ.

Proof. Let (𝑢, 𝑣) ∈ 𝒟 be natural principal parameters forℳ, (𝑢0, 𝑣0) be a fixed
point in 𝒟 and 𝜈0 = 𝜈(𝑢0, 𝑣0). The coefficients 𝐸 and 𝐺 of the first fundamental
form of ℳ are given by (3.1). The corresponding coefficients �̄� and �̄� of ℳ(𝑎) in
view of (4.2) are

�̄� = (1− 𝑎 𝜈1)
2 𝐸, �̄� = (1− 𝑎 𝜈2)

2𝐺. (4.5)

Equalities (4.3) imply that ℳ(𝑎) is again a Weingarten surface with Weingarten
functions

𝜈1(𝑢, 𝑣) = 𝑓(𝜈) =
𝜀𝑓(𝜈)

1− 𝑎𝑓(𝜈)
, 𝜈2(𝑢, 𝑣) = 𝑔(𝜈) =

𝜀𝑔(𝜈)

1− 𝑎𝑔(𝜈)
. (4.6)

Using (4.6), we compute

𝑓 − 𝑔 =
𝜀(𝑓 − 𝑔)

(1− 𝑎 𝑓)(1− 𝑎 𝑔)
,

which shows that sign (𝑓 − 𝑔) = sign (𝑓 − 𝑔).
Further, we denote by 𝑓0 := 𝑓(𝜈0), 𝑔0 := 𝑔(𝜈0) and taking into account (3.2)

and (4.5), we compute

√

−�̄� �̄� (𝑓 − 𝑔) =
√

−𝐸𝐺 (𝑓 − 𝑔) = const ∕= 0,

which proves the assertion.

Using the above statement, we prove the following theorem.

Theorem 4.2. The natural PDE of a given time-like W-surface ℳ is the
natural PDE of any parallel time-like surface ℳ(𝑎), 𝑎 = const ∕= 0, of ℳ.

Proof. We have to express equation (3.3) in terms of the Weingarten functions
of the parallel time-like surface ℳ(𝑎).

Putting

�̄�0 = (1 − 𝑎 𝜈1(𝑢0, 𝑣0))
2 𝐸0 = −𝔞−2 (1− 𝑎 𝑓0)

2 =: −�̄�−2,

�̄�0 = (1 − 𝑎 𝜈2(𝑢0, 𝑣0))
2 𝐺0 = 𝔟

−2 (1− 𝑎 𝑔0)
2 =: �̄�−2,
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we obtain

�̄�
2 exp

(

2

∫
𝜈

𝜈0

𝑓 ′𝑑𝜈

𝑓 − 𝑔

)[

𝑔′𝜈𝑢𝑢 +

(

𝑔′′ −
2𝑔′2

𝑔 − 𝑓

)

𝜈2

𝑢

]

+ �̄�
2 exp

(

2

∫
𝜈

𝜈0

𝑔′𝑑𝜈

𝑔 − 𝑓

)[

𝑓 ′𝜈𝑣𝑣 +

(

𝑓 ′′
−

2𝑓 ′2

𝑓 − 𝑔

)

𝜈2

𝑣

]

− 𝑓 𝑔(𝑓 − 𝑔)

= 𝔞
2 exp

(

2

∫
𝜈

𝜈0

𝑓 ′𝑑𝜈

𝑓 − 𝑔

)[

𝑔′𝜈𝑢𝑢 +

(

𝑔′′ −
2𝑔′2

𝑔 − 𝑓

)

𝜈2

𝑢

]

+ 𝔟
2 exp

(

2

∫
𝜈

𝜈0

𝑔′𝑑𝜈

𝑔 − 𝑓

)[

𝑓 ′𝜈𝑣𝑣 +

(

𝑓 ′′
−

2𝑓 ′2

𝑓 − 𝑔

)

𝜈2

𝑣

]

− 𝑓 𝑔(𝑓 − 𝑔).

Hence, the natural PDE of ℳ(𝑎) in terms of the Weingarten functions 𝑓(𝜈), 𝑔(𝜈)
coinsides with the natural PDE of ℳ in terms of the Weingarten functions 𝑓(𝜈)
and 𝑔(𝜈).

5. TIME-LIKE SURFACES WHOSE CURVATURES SATISFY A LINEAR
RELATION

We now consider time-like W-surfaces, whose three invariants 𝐾, 𝐻 and 𝐻 ′

satisfy a linear relation:

𝛿𝐾 = 𝛼𝐻 + 𝛽 𝐻 ′ + 𝛾, 𝛼, 𝛽, 𝛾, 𝛿 − constants, 𝛼2
− 𝛽2 + 4𝛾𝛿 ∕= 0. (5.1)

A time-like W-surface with principal curvatures 𝜈1 and 𝜈2 is said to be linear
fractional if

𝜈1 =
𝐴𝜈2 +𝐵

𝐶𝜈2 +𝐷
, 𝐵𝐶 −𝐴𝐷 ∕= 0. (5.2)

We exclude the case 𝐴 = 𝐷, 𝐵 = 𝐶 = 0, which characterizes the points with
𝐻2

−𝐾 = 0, and show that the classes of surfaces with characterizing conditions
(5.1) and (5.2), respectively, coincide.

Lemma 5.1. Any surface whose invariants 𝐾 = 𝜈1 𝜈2, 𝐻 =
1

2
(𝜈1 + 𝜈2) and

𝐻 ′ =
1

2
(𝜈1 − 𝜈2) satisfy the linear relation (5.1) is a linear fractional time-like

Weingarten surface determined by (5.2), and vice versa.

The relations between the constants 𝛼, 𝛽, 𝛾, 𝛿 in (5.1) and 𝐴,𝐵,𝐶,𝐷 in (5.2)
are given by the equalities:

𝛼 = 𝐴−𝐷, 𝛽 = −(𝐴+𝐷), 𝛾 = 𝐵, 𝛿 = 𝐶. (5.3)

We denote by 𝔎 the class of all time-like surfaces with 𝐻2
− 𝐾 > 0, whose

curvatures satisfy (5.1) or equivalently (5.2).

Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 143–165. 157



The aim of our study is to classify all natural PDE’s of the surfaces from the
class 𝔎.

The parallelism between two surfaces given by (4.1) is an equivalence relation.
On the other hand, Theorem 4.2 shows that the surfaces from an equivalence class
have one and the same natural PDE. Hence, it is sufficient to find the natural PDE’s
of the equivalence classes. For any equivalence class, we use a special representative,
which we call a basic class. Thus the classification of the natural PDE’s of the
surfaces in the class 𝔎 reduces to the natural PDE’s of the basic classes.

In view of Theorem 4.2, we prove the following classification theorem.

Theorem 5.2. Up to similarity, the time-like surfaces in Minkowski space,
whose curvatures 𝐾, 𝐻 and 𝐻 ′ satisfy the linear relation

𝛿𝐾 = 𝛼𝐻 + 𝛽𝐻 ′ + 𝛾, 𝛼, 𝛽, 𝛾, 𝛿 − constants; 𝛼2
− 𝛽2 + 4𝛾𝛿 ∕= 0,

are described by the natural PDE’s of the following basic surfaces:

(1) 𝐻 = 0 : 𝜈 = 𝑒𝜆, Δ̄𝜆 = 𝑒𝜆;

(2) 𝐻 =
1

2
: 𝜈 =

1

2
(1− 𝑒𝜆), Δ̄𝜆 = sinh𝜆;

(3) 𝐻 ′ = 1 : Δ̄∗(𝑒𝜈) = 2 𝜈 (𝜈 + 2);

(4) 𝐻 = 𝛽 𝐻 ′ (𝛽2 > 1) : Δ̄∗(𝜈𝛽) = 2
𝛽 (𝛽 + 1)

(𝛽 − 1)2
𝜈;

(5) 𝐻 = 𝛽 𝐻 ′ (𝛽2 < 1) : Δ∗(𝜈𝛽) = 2
𝛽 (𝛽 + 1)

(𝛽 − 1)2
𝜈;

(6)

∣
∣
∣
∣
∣

𝐻 = 𝛽𝐻 ′+1

𝛽2 > 1
: 𝜈 =

(𝛽−1)𝜆+2

2
, Δ̄∗(𝜆𝛽)=

𝛽((𝛽−1)𝜆+2)((𝛽+1)𝜆+2)

2(𝛽−1)𝜆
;

(7)

∣
∣
∣
∣
∣

𝐻 = 𝛽 𝐻 ′+1

𝛽2 < 1
: 𝜈=

(𝛽−1)𝜆+2

2
, Δ∗(𝜆𝛽)=

𝛽((𝛽−1)𝜆+2)((𝛽+1)𝜆+2)

2(𝛽 − 1)𝜆
;

(8) 𝐾 = −1 : 𝜈 = tan𝜆, Δ𝜆 = − sin𝜆;

(9) 𝐾 = 2𝐻 ′ : 𝜈 =
𝜆− 4

𝜆− 2
, Δ̄∗(𝑒𝜆) = 2;
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(10)𝐾 = 𝛽 𝐻 ′+𝛾 (𝛽 ∕= 0, 𝛾 < 0) :

∣
∣
∣
∣
∣
∣
∣
∣

𝜈 = 𝜆+
𝛽

2
, ℐ =

1
√

−𝛾
arctan

𝜆
√

−𝛾
,

Δ̄∗(𝑒𝛽 ℐ) = −
𝛽 𝛾

2

𝜆 (𝛽 𝜆+ 2 𝛾)

𝜆2
− 𝛾

.

Proof. According to the constant 𝐶 in (5.2), the linear fractional time-like
W-surfaces are divided into two classes: linear fractional time-like W-surfaces, de-
termined by the condition 𝐶 = 0 and linear fractional time-like W-surfaces, deter-
mined by the condition 𝐶 ∕= 0.

I. Linear fractional time-like Weingarten surfaces with 𝐶 = 0.

This class is determined by the equality

𝛼𝐻 + 𝛽 𝐻 ′ + 𝛾 = 0, (𝛼, 𝛾) ∕= (0, 0), 𝛼2
− 𝛽2

∕= 0. (5.4)

For the invariants of the time-like parallel surfaceℳ(𝑎) ofℳ, because of (4.4),
we get the relation

𝜀 (𝛼+ 2 𝑎 𝛾) �̄� + 𝜀 𝛽 �̄� ′ + 𝛾 = −𝑎 (𝛼+ 𝑎 𝛾) �̄�. (5.5)

Let 𝜂 := sign (𝛼2
−𝛽2). Each time choosing appropriate values for the constants

𝔞, 𝔟 and 𝜈0 in (3.3), we consider the following subclasses and their natural PDE’s:

1) 𝛼 = 0, 𝛽 ∕= 0, 𝛾 ∕= 0. Assuming that 𝛾 = 1, the relation (5.4) becomes

𝛽 𝐻 ′ + 1 = 0.

The natural PDE for these W-surfaces is

(𝑒−𝛽 𝜈)𝑢𝑢 − (𝑒𝛽 𝜈)𝑣𝑣 =
2

𝛽
𝜈 (𝛽 𝜈 − 2). (5.6)

Up to similarities these time-like W-surfaces are generated by the basic class
𝐻 ′ = 1 with the natural PDE

(𝑒𝜈)𝑢𝑢 − (𝑒−𝜈)𝑣𝑣 = 2 𝜈 (𝜈 + 2), (5.6∗)

which is the case (3) in the statement of the theorem.

2) 𝛼 ∕= 0, 𝛾 = 0. Assuming that 𝛼 = 1, the relation (5.4) becomes

𝐻 + 𝛽 𝐻 ′ = 0.

2.1) 𝛽 ∕= 0, 𝜂 = −1 (𝛽2
−1 > 0). Choosing 𝔟2

𝛽−1

𝛽+1
𝜈
−(𝛽+1)

0
= 1, 𝔞2 𝜈

𝛽−1

0
= 1,

the natural PDE becomes

(

𝜈−𝛽

)

𝑢𝑢

−

(

𝜈𝛽
)

𝑣𝑣

= 2
𝛽(𝛽 − 1)

(𝛽 + 1)2
𝜈, (5.7)

which is the case (4) in the statement of the theorem.
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2.2) 𝛽 ∕= 0, 𝜂 = 1 (𝛽2
−1 < 0). Choosing 𝔟2

𝛽−1

𝛽+1
𝜈
−(𝛽+1)

0
= −1, 𝔞2 𝜈

𝛽−1

0
= 1,

the natural PDE becomes

(

𝜈−𝛽

)

𝑢𝑢

+
(

𝜈𝛽
)

𝑣𝑣

= 2
𝛽(𝛽 − 1)

(𝛽 + 1)2
𝜈, (5.8)

which is the case (5) in the statement of the theorem.

2.3) 𝛽 = 0. Putting 𝜈 = 𝑒𝜆, we get the natural PDE for time-like surfaces
with 𝐻 = 0:

𝜆𝑢𝑢 − 𝜆𝑣𝑣 = 𝑒𝜆, (5.9)

which is the case (1) in the statement of the theorem.

3) 𝛼 ∕= 0, 𝛽 = 0, 𝛾 ∕= 0. Assuming that 𝛼 = 1, the relation (5.4) becomes

𝐻 + 𝛾 = 0.

Putting ∣𝐻 ∣ 𝑒𝜆 := 𝐻 − 𝜈 = 𝐻 ′ > 0, we get the one-parameter system of
natural PDE’s for CMC time-like surfaces with 𝐻 = −𝛾:

𝜆𝑢𝑢 − 𝜆𝑣𝑣 = 2 ∣𝐻 ∣ sinh𝜆. (5.10)

Up to similarities these time-like W-surfaces are generated by the basic class
∣𝐻 ∣ = 1

2
with the natural PDE

𝜆𝑢𝑢 − 𝜆𝑣𝑣 = sinh𝜆, (5.10∗)

which is the case (2) in the statement of the theorem.

4) 𝛼 ∕= 0, 𝛽 ∕= 0, 𝛾 ∕= 0. Assuming that 𝛼 = 1 we have

𝐻 + 𝛽 𝐻 ′ + 𝛾 = 0, 𝛽2
− 1 ∕= 0.

Let 𝜆 := 2𝐻 ′ =
−2

𝛽 + 1
(𝜈 + 𝛾) > 0.

4.1) If 𝜂 = −1 (𝛽2
− 1 > 0) and choosing

𝔟
2 =

𝛽 + 1

𝛽 − 1

(

−2

𝛽 + 1
(𝜈0 + 𝛾)

)
𝛽+1

, 𝔞2 =

(

−2

𝛽 + 1
(𝜈0 + 𝛾)

)
−(𝛽−1)

,

the natural PDE becomes

(

𝜆−𝛽

)

𝑢𝑢

−

(

𝜆𝛽
)

𝑣𝑣

=
𝛽

2 (𝛽 + 1)

((𝛽 + 1)𝜆+ 2 𝛾)((𝛽 − 1)𝜆+ 2 𝛾)

𝜆
. (5.11)

Up to similarities these time-like W-surfaces are generated by the basic
class 𝐻 = 𝛽 𝐻 ′ + 1, 𝛽2 > 1 with the natural PDE

(

𝜆𝛽
)

𝑢𝑢

−

(

𝜆−𝛽

)

𝑣𝑣

=
𝛽

2 (𝛽 − 1)

((𝛽 + 1)𝜆+ 2)((𝛽 − 1)𝜆+ 2)

𝜆
, (5.11∗)

which is the case (6) in the statement of the theorem.

160 Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 143–165.



4.2) If 𝜂 = 1 (𝛽2
− 1 < 0) and choosing

𝔟
2 = −

𝛽 + 1

𝛽 − 1

(

−2

𝛽 + 1
(𝜈0 + 𝛾)

)
𝛽+1

, 𝔞2 =

(

−2

𝛽 + 1
(𝜈0 + 𝛾)

)
−(𝛽−1)

,

the natural PDE becomes

(

𝜆−𝛽

)

𝑢𝑢

+
(

𝜆𝛽
)

𝑣𝑣

=
𝛽

2 (𝛽 + 1)

((𝛽 + 1)𝜆+ 2 𝛾)((𝛽 − 1)𝜆+ 2 𝛾)

𝜆
. (5.12)

Up to similarities these time-like W-surfaces are generated by the basic
class 𝐻 = 𝛽 𝐻 ′ + 1, 𝛽2 < 1 with the natural PDE

(

𝜆𝛽
)

𝑢𝑢

+
(

𝜆−𝛽

)

𝑣𝑣

=
𝛽

2 (𝛽 − 1)

((𝛽 + 1)𝜆+ 2)((𝛽 − 1)𝜆+ 2)

𝜆
, (5.12∗)

which is the case (7) in the statement of the theorem.

II. Linear fractional time-like Weingarten surfaces with 𝐶 ∕= 0.

Let 𝐶 = 1. The equality (5.1) gets the form

𝐾 = 𝛼𝐻 + 𝛽 𝐻 ′ + 𝛾. (5.13)

The corresponding relation for the parallel surface ℳ(𝑎) is

𝜀(𝛼+ 2 𝑎 𝛾) �̄� + 𝜀 𝛽 �̄� ′ + 𝛾 = (1− 𝑎𝛼− 𝑎2 𝛾) �̄�. (5.14)

Each time choosing appropriate values for the constants 𝔞, 𝔟 and 𝜈0 in (3.3), we
consider the following subclasses and their natural PDE’s:

5) 𝛼 = 𝛾 = 0, 𝛽 ∕= 0. The relation (5.13) becomes

𝐾 = 𝛽𝐻 ′
⇐⇒ 𝜌1 − 𝜌2 = −

2

𝛽
,

where 𝜌1 =
1

𝜈1

, 𝜌2 =
1

𝜈2

are the principal radii of curvature of ℳ.

Putting 𝜆 := 4
𝜈 − 𝛽

2 𝜈 − 𝛽
, the natural PDE of these time-like surfaces gets the

form
(

𝑒𝜆
)

𝑢𝑢

−

(

𝑒−𝜆

)

𝑣𝑣

−

𝛽4

8
= 0. (5.15)

Up to similarities these time-like W-surfaces are generated by the basic class
𝐾 = 2𝐻 ′ with the natural PDE

(

𝑒𝜆
)

𝑢𝑢

−

(

𝑒−𝜆

)

𝑣𝑣

− 2 = 0, (5.15∗)

which is the case (9) in the statement of the theorem.
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6) (𝛼, 𝛾) ∕= (0, 0), 𝛼2 + 4𝛾 ≥ 0. The relation (5.14) implies that there exists
a time-like surface ℳ(𝑎), parallel to ℳ, which satisfies the relation (5.4).
Hence the natural PDE of ℳ is one of the PDE’s (5.6) - (5.12).

7) 𝛼2 + 4 𝛾 < 0. It follows that 𝛾 < 0. The relation (5.14) implies that there
exists a time-like surface ℳ(𝑎) parallel to ℳ, which satisfies the relation

𝐾 = 𝛽𝐻 ′ + 𝛾. (5.16)

7.1) 𝛽 = 0. The relation (5.16) becomes 𝐾 = 𝛾 < 0, i.e. ℳ is of constant

negative sectional curvature 𝛾. Putting 𝜆 := 2 arctan
𝜈

√

−𝛾
, we get the

natural PDE of this surface

𝜆𝑢𝑢 + 𝜆𝑣𝑣 = −𝐾2 sin𝜆. (5.17)

Up to similarities these time-like W-surfaces are generated by the basic
class 𝐾 = −1 with the natural PDE

𝜆𝑢𝑢 + 𝜆𝑣𝑣 = − sin𝜆, (5.17∗)

which is the case (8) in the statement of the theorem.

7.2) 𝛽 ∕= 0, 𝛾 < 0. Choosing 𝜈0 =
𝛽

2
, the natural PDE of ℳ becomes

(exp (𝛽 ℐ))𝑢𝑢 − (exp (−𝛽 ℐ))𝑣𝑣 = −
𝛽 𝛾

2

𝜆 (𝛽 𝜆+ 2 𝛾)

𝜆2
− 𝛾

, (5.18)

where

ℐ =
1

√

−𝛾
arctan

𝜆
√

−𝛾
, 𝜆 := 𝜈 −

𝛽

2
,

which is the case (10) in the statement of the theorem.

The proof of Theorem 5.2 is complete.

6. SUMMARY

Summarizing the results in [6, 7] and in the present paper, we obtain the
following parallel between the natural PDE’s describing linear fractional W-surfaces
in ℝ3, linear fractional space-like and time-like W-surfaces in ℝ3

1
, respectively.

(i) The natural PDE for a Weingarten surface in Euclidean space is of the type:

𝔞
2 exp

(

2

∫
𝜈

𝜈0

𝑓 ′𝑑𝜈

𝑓 − 𝑔

)[

𝑔′𝜈𝑢𝑢 +

(

𝑔′′ −
2𝑔′2

𝑔 − 𝑓

)

𝜈2

𝑢

]

− 𝔟
2 exp

(

2

∫
𝜈

𝜈0

𝑔′𝑑𝜈

𝑔 − 𝑓

)[

𝑓 ′𝜈𝑣𝑣 +

(

𝑓 ′′
−

2𝑓 ′2

𝑓 − 𝑔

)

𝜈2

𝑣

]

= −𝑓𝑔(𝑓 − 𝑔),
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or, equivalently,

𝔞
2 𝑒2𝐼 (𝐽𝑢𝑢 + 𝐼𝑢 𝐽𝑢 − 𝐽2

𝑢
) + 𝔟

2 𝑒2𝐽(𝐼𝑣𝑣 + 𝐼𝑣 𝐽𝑣 − 𝐼2

𝑣
) = 𝑓(𝜈) 𝑔(𝜈).

(ii) The natural PDE for a space-like Weingarten surface in Minkowski space is
of the type:

𝑎2 exp

(

2

∫
𝜈

𝜈0

𝑓 ′𝑑𝜈

𝑓 − 𝑔

)[

𝑔′𝜈𝑢𝑢 +

(

𝑔′′ −
2𝑔′2

𝑔 − 𝑓

)

𝜈2

𝑢

]

−𝑏2 exp

(

2

∫
𝜈

𝜈0

𝑔′𝑑𝜈

𝑔 − 𝑓

)[

𝑓 ′𝜈𝑣𝑣 +

(

𝑓 ′′
−

2𝑓 ′2

𝑓 − 𝑔

)

𝜈2

𝑣

]

= 𝑓𝑔(𝑓 − 𝑔),

or, equivalently,

𝔞
2 𝑒2𝐼 (𝐽𝑢𝑢 + 𝐼𝑢 𝐽𝑢 − 𝐽2

𝑢
) + 𝔟

2 𝑒2𝐽(𝐼𝑣𝑣 + 𝐼𝑣 𝐽𝑣 − 𝐼2

𝑣
) = −𝑓(𝜈) 𝑔(𝜈).

(iii) The natural PDE for a time-like Weingarten surface with real principal cur-
vatures in Minkowski space is of the type:

𝔞
2 exp

(

2

∫
𝜈

𝜈0

𝑓 ′𝑑𝜈

𝑓 − 𝑔

)[

𝑔′𝜈𝑢𝑢 +

(

𝑔′′ −
2𝑔′2

𝑔 − 𝑓

)

𝜈2

𝑢

]

+𝔟
2 exp

(

2

∫
𝜈

𝜈0

𝑔′𝑑𝜈

𝑔 − 𝑓

)[

𝑓 ′𝜈𝑣𝑣 +

(

𝑓 ′′
−

2𝑓 ′2

𝑓 − 𝑔

)

𝜈2

𝑣

]

= 𝑓𝑔(𝑓 − 𝑔),

or, equivalently,

𝔞
2 𝑒2𝐼

(

𝐽𝑢𝑢 + 𝐼𝑢 𝐽𝑢 − 𝐽2

𝑢

)

− 𝔟
2 𝑒2𝐽

(

𝐼𝑣𝑣 + 𝐼𝑣 𝐽𝑣 − 𝐼2

𝑣

)

= −𝑓(𝜈) 𝑔(𝜈).

Therefore for the corresponding basic linear fractional surfaces in ℝ3 and ℝ3

1

we obtain the correspondence between their natural PDE’s.
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COMPOSITION OF INVERSE PROBLEMS

WITH A GIVEN LOGICAL STURCTURE

JULIA NINOVA, VESSELKA MIHOVA

The paper presents a method for obtaining problems whose conclusions contain dis-
junctive propositions. These problems constitute a version of inverse problems with
a given logical structure. The logical models in the groups of problems studied have
been interpreted comprehensively. Equivalent problems have been given by keeping or
not keeping the condition of homogeneity in their conclusion.

Keywords: Inverse problems, composition of problems with given logical structures.

2000 Math. Subject Classification: Primary 51F20, Secondary 51M15

1. INTRODUCTION

In mathematical logic a propositional calculus (also called sentential calculus
or sentential logic) is a formal system in which formulas of a formal language may
be interpreted to represent propositions. A system of rules and logical statements
allows certain formulas to be derived. These derived formulas may be interpreted
to be true propositions. Usually in Truth-functional propositional logic, formulas
are interpreted as having either a truth value of true or a truth value of false.

Using the sentential logic in this paper we propose a composing technology
of new problems as an interpretation of specific logical models. Our aim is to
give suitable logical models for formulation of equivalent problems and generating
problems of a given problem.
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2. PRELIMINARIES

In logic, a set of symbols is commonly used to express logical representations.
Let us recall the basic symbols and logical representations we shall deal with.

Let 𝑝 and 𝑞 be two statements.

i) 𝑝 ∧ 𝑞 denotes logical conjunction (should be read as “𝑝 and 𝑞”). The
statement 𝑝 ∧ 𝑞 is true if 𝑝 and 𝑞 are both true; else it is false.

ii) 𝑝 ∨ 𝑞 denotes logical disjunction (should be read as “𝑝 or 𝑞”). The statement
𝑝 ∨ 𝑞 is true if 𝑝 or 𝑞 (or both) are true; if both are false, the statement is
false.

iii) 𝑝 ⊻ 𝑞 denotes exclusive disjunction (should be read as “either 𝑝 or 𝑞”). The
statement 𝑝 ⊻ 𝑞 is true when either 𝑝 or 𝑞, but not both, are true.

iv) ¬ 𝑝 denotes negation (should be read as “not 𝑝”). The statement ¬𝑝 is true
if and only if 𝑝 is false.

v) 𝑝 → 𝑞 denotes logical implication (should be read as “if 𝑝 then 𝑞”). The
statement 𝑝 → 𝑞 is true just in the case that either 𝑝 is false or 𝑞 is true, or
both. The statements 𝑝 and 𝑞 aren’t necessarily related comprehensively to
each other.

vi) 𝑝 ⇒ 𝑞 denotes material implication (should be read as “𝑝 implies 𝑞” or “𝑞
follows 𝑝”). The relation 𝑝 ⇒ 𝑞 means that if 𝑝 is true then 𝑞 is also true; if
𝑝 is false then nothing is said about 𝑞. The statements 𝑝 and 𝑞 are related
comprehensively to each other.

vii) 𝑝 ↔ 𝑞 denotes logical equivalence (should be read as “𝑝 if and only if 𝑞”).
The statement 𝑝 ↔ 𝑞 is true just in case either both 𝑝 and 𝑞 are false, or
both 𝑝 and 𝑞 are true. The statements 𝑝 and 𝑞 aren’t necessarily related
comprehensively to each other.

viii) 𝑝 ⇔ 𝑞 denotes material equivalence (should be read as “𝑞 is necessary and
sufficient for 𝑝”). The relation 𝑝 ⇔ 𝑞 means that 𝑝 ⇒ 𝑞 and 𝑞 ⇒ 𝑝 . The
statements 𝑝 and 𝑞 are related comprehensively to each other.

3. THEORETICAL BASIS OF THE PROPOSED METHOD FOR
GENERATING PROBLEMS

In this section we describe in detail the theoretical basis of the method for gen-
erating problems with a given logical structure. In what follows 𝑝1, 𝑝2; 𝑡, 𝑝, 𝑞, 𝑟
will stand for statements.
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In this paper we deal with a generalization of the formal logical rule [6]

(𝑝1 → 𝑟) ∧ (𝑝2 → 𝑟) ⇔ (𝑝1 ∨ 𝑝2 → 𝑟). (∗)

Semantic rules connected with the material implication correspond to the for-
mal derivation rules used in the proofs below. By semantic interpretations the
formal derivation rules are called consequence rules [1].

This correspondence allows us to formulate and comprehensively use the propo-
sition below.

Proposition 3.1. The following equivalence is true:

(𝑡 ∧ 𝑝→ 𝑟) ∧ (𝑡 ∧ 𝑞 → 𝑟) ⇔ 𝑡 ∧ (𝑝 ∨ 𝑞)→ 𝑟. (1)

Proof. Let statement 𝑝1 in (*) have structure 𝑡 ∧ 𝑝 and statement 𝑝2 in (*)
have structure 𝑡 ∧ 𝑞. Then

(𝑡 ∧ 𝑝→ 𝑟) ∧ (𝑡 ∧ 𝑞 → 𝑟) ⇔ (𝑡 ∧ 𝑝) ∨ (𝑡 ∧ 𝑞)→ 𝑟 ⇔ 𝑡 ∧ (𝑝 ∨ 𝑞)→ 𝑟,

i. e. the conjunction of the problems

𝑡 ∧ 𝑝→ 𝑟 (2)

and
𝑡 ∧ 𝑞 → 𝑟 (3)

is equivalent to the problem
𝑡 ∧ (𝑝 ∨ 𝑞)→ 𝑟. (4)

Any true proposition could have more than one inverse proposition. However,
not every inverse proposition is a true statement. The truth value of an inverse
proposition of a given true proposition depends essentially on its composition prin-
ciple.

According to [6], if a given proposition has the logical structure 𝑝1 ∧ 𝑝2 → 𝑟,
then each one of the following propositions could be considered to be its inverse:
𝑟 → 𝑝1 ∧ 𝑝2, 𝑝1 ∧ 𝑟 → 𝑝2 and 𝑟 ∧ 𝑝2 → 𝑝1.

The most interesting and important inverse propositions are those that are
true as well as independent from the other possible inverse propositions, i. e. the
strongest inverse propositions.

Equivalence (1) formally describes a method for composing new problems with
a given logical structure and for formulating their inverse problems.

According to Proposition 3.1 problems with logical structures (2) and (3) gen-
erate a problem with a logical structure (4).
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In this paper we consider only problems inverse to problems of type (4) with
structure

𝑡 ∧ 𝑟 → 𝑝 ∨ 𝑞. (5)

Problems with logical structures (2) and (3) are said to be generating problems
with structure (4) and their inverse problems with structure (5).

To change the logical structure in the conclusion of the inverse problem from
logical disjunction to exclusive disjunction we need a dichotomic decomposition of
the considered set of geometric objects with respect to any remarkable property
and its negation. Such a decomposition guarantees the homogeneity [4] of the
statements (based on one and the same equivalence relation) in the conclusion of
the problem.

Proposition 3.2. The following equivalence is true:

𝑡 ∧ 𝑟 → 𝑝 ∨ 𝑞 ⇔ 𝑡 ∧ 𝑟 → 𝑝 ⊻ (¬𝑝 ∧ 𝑞). (6)

Proposition 3.2 gives the equivalence between problems with a logical structure
(5) and problems with a logical structure

𝑡 ∧ 𝑟 → 𝑝 ⊻ (¬𝑝 ∧ 𝑞). (7)

Any problem with a logical structure (7) satisfies the condition of homogeneity
in the conclusion.

4. APPLICATION OF THE METHOD TO SPECIFIC GROUPS OF
PROBLEMS

We discuss four groups of problems to illustrate the described generating
method. In each of the groups we formulate suitable generating problems for the
corresponding equivalent and inverse problems.

The problems in each of the proposed groups are comprehensively related to
each other.

4.1. PROBLEMS OF GROUP I

The statements used for the formulation of the problems in this group are

𝑡:={The straight line 𝐴𝐷, 𝐷 ∈ 𝐵𝐶, is a median in △𝐴𝐵𝐶.}

𝑝:= {𝐴𝐶 = 𝐴𝐵}

𝑞:={∠𝐵𝐴𝐶 = 900
}

𝑟:={∠𝐷𝐴𝐶 + ∠𝐴𝐵𝐶 = 900
}
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First we formulate and solve the generating problems.

Problem 4.1. Let the straight line 𝐴𝐷, 𝐷 ∈ 𝐵𝐶, be a median in △𝐴𝐵𝐶.
Prove that if 𝐴𝐶 = 𝐴𝐵, then ∠𝐷𝐴𝐶 + ∠𝐴𝐵𝐶 = 900.

This problem has a logical structure 𝑡 ∧ 𝑝 → 𝑟. Its proof follows immediately
from Fig. 1.

Fig. 1.

Problem 4.2. Let the straight line 𝐴𝐷, 𝐷 ∈ 𝐵𝐶, be a median in △𝐴𝐵𝐶.
Prove that if ∠𝐵𝐴𝐶 = 900, then ∠𝐷𝐴𝐶 + ∠𝐴𝐵𝐶 = 900.

Problem 4.2 has a logical structure 𝑡 ∧ 𝑞 → 𝑟. The proof follows easily from
Fig. 2.

Fig. 2.

According to the logical structures of Problems 4.1 and 4.2 and in view of
Proposition 3.1, we construct the following inverse problem with logical structure
𝑡 ∧ 𝑟 → 𝑝 ∨ 𝑞 .

Problem 4.3. ([3, Problem 3]) Let the straight line 𝐴𝐷, 𝐷 ∈ 𝐵𝐶, be a
median in △𝐴𝐵𝐶. Prove that if ∠𝐷𝐴𝐶 + ∠𝐴𝐵𝐶 = 900, then 𝐴𝐶 = 𝐴𝐵 or
∠𝐵𝐴𝐶 = 900.

The next two problems are equivalent to Problem 4.3.

Problem 4.4. ([3, Problem 2]) Let the straight line 𝐴𝐷, 𝐷 ∈ 𝐵𝐶, be a
median in △𝐴𝐵𝐶. Prove that if ∠𝐷𝐴𝐶 + ∠𝐴𝐵𝐶 = 900 and ∠𝐵𝐴𝐶 ∕= 900, then
𝐴𝐶 = 𝐴𝐵.

Problem 4.5. ([3, Problem 1]) Let the straight line 𝐴𝐷, 𝐷 ∈ 𝐵𝐶, be a
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median in △𝐴𝐵𝐶. Prove that if ∠𝐷𝐴𝐶 + ∠𝐴𝐵𝐶 = 900 and 𝐴𝐶 ∕= 𝐴𝐵, then
∠𝐵𝐴𝐶 = 900.

Another version of Problem 4.5 is Problem 246, p. 211 in [10].
In view of Proposition 3.2, Problem 4.3 can be reformulated as follows by keep-

ing the condition of homogeneity in its conclusion (compare also with [3, Problem
4]; [9, p. 24, Problem 6]; [8, p. 22, Problem 1]; [11, p. 265, Problem 312]).

Problem 4.6. Let the straight line 𝐴𝐷, 𝐷 ∈ 𝐵𝐶, be a median in △𝐴𝐵𝐶.
Prove that if ∠𝐷𝐴𝐶+∠𝐴𝐵𝐶 = 900, then △𝐴𝐵𝐶 is either isosceles (𝐴𝐶 = 𝐴𝐵),
or not isosceles but right-angled (∠𝐵𝐴𝐶 = 900).

4.2. PROBLEMS OF GROUP II

The statements used for the formulation of the problems in this group are

𝑡:={In △𝐴𝐵𝐶 the straight line 𝐴𝐴1, 𝐴1 ∈ 𝐵𝐶, is the bisector of ∠𝐶𝐴𝐵, the
straight line 𝐵𝐵1, 𝐵1 ∈ 𝐴𝐶, is the bisector of ∠𝐶𝐵𝐴 and 𝐴𝐴1 ∩𝐵𝐵1 = 𝐽 .}

𝑝 := {𝐴𝐶 = 𝐵𝐶}

𝑞 := {∠𝐴𝐶𝐵 = 600
}

𝑟 := {𝐽𝐴1 = 𝐽𝐵1}

First we formulate and solve the generating problems.

Problem 4.7. Let in △𝐴𝐵𝐶 the straight line 𝐴𝐴1, 𝐴1 ∈ 𝐵𝐶, be the bisector
of ∠𝐶𝐴𝐵, the straight line 𝐵𝐵1, 𝐵1 ∈ 𝐴𝐶, be the bisector of ∠𝐶𝐵𝐴 and 𝐴𝐴1 ∩

𝐵𝐵1 = 𝐽 . Prove that if 𝐴𝐶 = 𝐵𝐶, then 𝐽𝐴1 = 𝐽𝐵1.

Problem 4.7 has a logical structure 𝑡 ∧ 𝑝 → 𝑟.

Fig. 3.

Proof. Since 𝐴𝐶 = 𝐵𝐶, then ∠𝐶𝐴𝐵 = ∠𝐶𝐵𝐴 and hence ∠𝐴1𝐴𝐵 = ∠𝐵1𝐵𝐴

(Fig. 3). From the Criteria for congruence of triangles we have △𝐴1𝐴𝐵 ∼= △𝐵1𝐵𝐴.
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As a consequence it follows that 𝐴𝐴1 = 𝐵𝐵1, △𝐴𝐽𝐵 is isosceles, 𝐴𝐽 = 𝐵𝐽 and
𝐽𝐴1 = 𝐽𝐵1.

Problem 4.8. Let in △𝐴𝐵𝐶 the straight line 𝐴𝐴1, 𝐴1 ∈ 𝐵𝐶, be the bisector
of ∠𝐶𝐴𝐵, the straight line 𝐵𝐵1, 𝐵1 ∈ 𝐴𝐶, be the bisector of ∠𝐶𝐵𝐴 and 𝐴𝐴1 ∩

𝐵𝐵1 = 𝐽 . Prove that if ∠𝐴𝐶𝐵 = 600, then 𝐽𝐴1 = 𝐽𝐵1.

This problem has a logical structure 𝑡 ∧ 𝑞 → 𝑟.

Fig. 4.

Proof. Let us denote ∠𝐵𝐴𝐴1 = ∠𝐶𝐴𝐴1 = 𝛼, ∠𝐴𝐵𝐵1 = ∠𝐶𝐵𝐵1 = 𝛽 (Fig.
4). Since 𝐽 is the intersection point of the bisectors 𝐴𝐴1 and 𝐵𝐵1 of △𝐴𝐵𝐶, then
𝐶𝐽 is the bisector of ∠𝐴𝐶𝐵 and ∠𝐽𝐶𝐴 = ∠𝐽𝐶𝐵 = 𝛾 = 300. Since 𝛼+𝛽+𝛾 = 900,
then 𝛼 + 𝛽 = 600, ∠𝐴𝐽𝐵 = 1200 and the quadrilateral 𝐶𝐴1𝐽𝐵1 can be inscribed
in a circle. Hence, 𝐽𝐴1 = 𝐽𝐵1 as chords corresponding to equal angles (arcs) in a
circle.

According to the logical structures of Problems 4.7 and 4.8 and in view of
Proposition 3.1 we construct the following inverse problem with logical structure
𝑡 ∧ 𝑟 → 𝑝 ∨ 𝑞 .

Problem 4.9. ([3, Problem 7]) Let in △𝐴𝐵𝐶 the straight line 𝐴𝐴1, 𝐴1 ∈

𝐵𝐶, be the bisector of ∠𝐶𝐴𝐵, the straight line 𝐵𝐵1, 𝐵1 ∈ 𝐴𝐶, be the bisector
of ∠𝐶𝐵𝐴 and 𝐴𝐴1 ∩ 𝐵𝐵1 = 𝐽 . Prove that if 𝐽𝐴1 = 𝐽𝐵1, then 𝐴𝐶 = 𝐵𝐶 or
∠𝐴𝐶𝐵 = 600.

The next two problems are equivalent to Problem 4.9.

Problem 4.10. ([3, Problem 5]) Let in △𝐴𝐵𝐶 the straight line 𝐴𝐴1, 𝐴1 ∈

𝐵𝐶, be the bisector of ∠𝐶𝐴𝐵, the straight line 𝐵𝐵1, 𝐵1 ∈ 𝐴𝐶, be the bisector
of ∠𝐶𝐵𝐴 and 𝐴𝐴1 ∩ 𝐵𝐵1 = 𝐽 . Prove that if 𝐽𝐴1 = 𝐽𝐵1 and 𝐴𝐶 ∕= 𝐵𝐶, then
∠𝐴𝐶𝐵 = 600.

Problem 4.11. ([3, Problem 6]) Let in △𝐴𝐵𝐶 the straight line 𝐴𝐴1, 𝐴1 ∈

𝐵𝐶, be the bisector of ∠𝐶𝐴𝐵, the straight line 𝐵𝐵1, 𝐵1 ∈ 𝐴𝐶, be the bisector of
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∠𝐶𝐵𝐴 and 𝐴𝐴1 ∩ 𝐵𝐵1 = 𝐽 . Prove that if 𝐽𝐴1 = 𝐽𝐵1 and ∠𝐴𝐶𝐵 ∕= 600, then
𝐴𝐶 = 𝐵𝐶.

In view of Proposition 3.2, Problem 4.9 can be reformulated by keeping the
condition of homogeneity in its conclusion.

Problem 4.12. ([3, Problem 8]) Let in △𝐴𝐵𝐶 the straight line 𝐴𝐴1, 𝐴1 ∈

𝐵𝐶, be the bisector of ∠𝐶𝐴𝐵, the straight line 𝐵𝐵1, 𝐵1 ∈ 𝐴𝐶, be the bisector of
∠𝐶𝐵𝐴 and 𝐴𝐴1 ∩ 𝐵𝐵1 = 𝐽 . Prove that if 𝐽𝐴1 = 𝐽𝐵1, then △𝐴𝐵𝐶 is either
isosceles (𝐶𝐴 = 𝐶𝐵) or not isosceles but ∠𝐴𝐶𝐵 = 600.

4.3. PROBLEMS OF GROUP III

The statements used for the formulation of the problems in this group are

𝑡 := {The straight line 𝐶𝐻, 𝐻 ∈ 𝐴𝐵, is the altitude and the straight line
𝐶𝑀, 𝑀 ∈ 𝐴𝐵, is the median of △𝐴𝐵𝐶.}

𝑝 := {𝐴𝐶 = 𝐵𝐶}

𝑞 := {∠𝐴𝐶𝐵 = 900
}

𝑟 := {∠𝐴𝐶𝑀 = ∠𝐵𝐶𝐻}

First we formulate and solve the generating problems.

Problem 4.13. Let the straight line 𝐶𝐻, 𝐻 ∈ 𝐴𝐵, be the altitude and the
straight line 𝐶𝑀, 𝑀 ∈ 𝐴𝐵, be the median of △𝐴𝐵𝐶. Prove that if 𝐴𝐶 = 𝐵𝐶,
then ∠𝐴𝐶𝑀 = ∠𝐵𝐶𝐻.

Problem 4.13 has a logical structure 𝑡 ∧ 𝑝 → 𝑟.

Proof. In any isosceles triangle the altitude and the median to its base are
congruent. Hence, 𝑀 ≡ 𝐻 and ∠𝐴𝐶𝑀 = ∠𝐵𝐶𝐻 .

Problem 4.14. Let the straight line 𝐶𝐻, 𝐻 ∈ 𝐴𝐵, be the altitude and the
straight line 𝐶𝑀, 𝑀 ∈ 𝐴𝐵, be the median of △𝐴𝐵𝐶. Prove that if ∠𝐴𝐶𝐵 = 900,
then ∠𝐴𝐶𝑀 = ∠𝐵𝐶𝐻 (and also ∠𝐴𝐶𝐻 = ∠𝐵𝐶𝑀).

This problem has a logical structure 𝑡 ∧ 𝑞 → 𝑟.

Proof. In the right-angled not isosceles △𝐴𝐵𝐶 the location of the collinear
points 𝐵, 𝐻 and 𝑀 is either 𝐻/𝐵𝑀 or𝑀/𝐵𝐻 . Let, for instance, 𝐻/𝐵𝑀 (Fig. 5).
Let ∠𝐶𝐴𝐵 = 𝛼 and ∠𝐶𝐵𝐴 = 𝛽. Then 𝛼 + 𝛽 = 900. Since 𝐴𝑀 = 𝑀𝐶 (= 𝑀𝐵),
then △𝐴𝑀𝐶 is isosceles and ∠𝐴𝐶𝑀 = 𝛼. In the right-angled △𝐵𝐻𝐶 we have
∠𝐵𝐶𝐻 = 900

− 𝛽 = 𝛼. Hence, ∠𝐴𝐶𝑀 = ∠𝐵𝐶𝐻 (and also ∠𝐴𝐶𝐻 = ∠𝐵𝐶𝑀).
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Fig. 5.

For a right-angled isosceles triangle see Problem 4.13.

According to the logical structures of problems 4.13 and 4.14 and in view of
Proposition 3.1 we construct the following inverse problem with logical structure
𝑡 ∧ 𝑟 → 𝑝 ∨ 𝑞 .

Problem 4.15. Let the straight line 𝐶𝐻, 𝐻 ∈ 𝐴𝐵, be the altitude and the
straight line 𝐶𝑀, 𝑀 ∈ 𝐴𝐵, be the median of △𝐴𝐵𝐶. Prove that if ∠𝐴𝐶𝑀 =
∠𝐵𝐶𝐻, then 𝐴𝐶 = 𝐵𝐶 (i. e. △𝐴𝐵𝐶 is isosceles) or ∠𝐴𝐶𝐵 = 900 (i. e.
△𝐴𝐵𝐶 is right-angled).

Proof. Let ∠𝐶𝐴𝐵 = 𝛼 and ∠𝐶𝐵𝐴 = 𝛽. In any triangle at least two of the
angles must be acute angles. Hence, in △𝐴𝐵𝐶 at least one of the angles 𝛼 and 𝛽
is acute. Let, for instance, 𝛽 < 900. If we assume that 𝛼 ≥ 900 then the location
of the collinear points 𝐴, 𝐻 and 𝑀 is either 𝐴/𝐻𝑀 , or 𝐴 ≡ 𝐻 (Fig. 6). Then for

Fig. 6.

the right-angled △𝐵𝐶𝐻 is valid ∠𝐴𝐶𝑀 < ∠𝐵𝐶𝐻 , which contradicts the given
condition ∠𝐴𝐶𝑀 = ∠𝐵𝐶𝐻 . Hence, 𝛼 < 900 and the points 𝐻 and 𝑀 lie between
the points 𝐴 and 𝐵.

There are two possibilities for the points 𝐻 and 𝑀 - they either coincide or
not.
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(𝑖) Let 𝐻 ≡ 𝑀 . In this case the median 𝐶𝑀 in △𝐴𝐵𝐶 coincides with the
altitude 𝐶𝐻 , i. e. △𝐴𝐵𝐶 is isosceles. If in addition ∠𝐴𝐶𝐵 = 900, then △𝐴𝐵𝐶

is isosceles right-angled.

(𝑖𝑖) Let 𝐻 ∕= 𝑀 and 𝐻/𝐵𝑀 (the considerations in the case 𝑀/𝐵𝐻 are anal-
ogous). In the considered case 𝛼 < 𝛽 (Fig. 7).

Fig. 7.

Let 𝐶𝐿, 𝐿 ∈ 𝐴𝐵, be the bisector of ∠𝐴𝐶𝐵. It follows that 𝐶𝐿 is also the
bisector of ∠𝑀𝐶𝐻 (see also [2, p. 184, problem 29]; [5, p. 41, problem 2.32]).

Let 𝑘 be the circumscribing circle of △𝐴𝐵𝐶 and 𝐶𝐿 ∩ 𝑘 = 𝐿1. The point 𝐿1

is the middle point of the arc 𝐴𝐿1𝐵. The points 𝐶 and 𝐿1 lie on alternate sides
of 𝐴𝐵. The perpendicular projection of 𝐿1 onto the chord 𝐴𝐵 is the middle point
𝑀 . Then the straight line 𝐿1𝑀 is the perpendicular bisector of 𝐴𝐵.

The straight line 𝐶𝐿1 cuts the parallel lines 𝐶𝐻 (𝐶𝐻 ⊥ 𝐴𝐵) and 𝐿1𝑀 (𝐿1𝑀 ⊥

𝐴𝐵) and hence the alternate angles ∠𝐻𝐶𝐿 and ∠𝑀𝐿1𝐿 are equal, i. e. △𝐶𝑀𝐿1

is isosceles. Thus the point 𝑀 also lies on the the perpendicular bisector of the
chord 𝐶𝐿1.

Since the perpendicular bisectors of any two non parallel chords of a circle cut
at its center, the point 𝑀 is the center of 𝑘, the chord 𝐴𝐵 is a diameter of 𝑘 and
∠𝐴𝐶𝐵 = 900.

Remark 4.16. Let 𝑃 =𝑀𝐿1∩𝑘. Then 𝑃𝐿1 is a diameter of 𝑘 and ∠𝑃𝐶𝐿1 =
900. It is easily seen that △𝑀𝑃𝐶 is isosceles and the point 𝑀 is the center of 𝑘.

We reformulate Problem 4.15 by keeping the condition of homogeneity of the
conclusion.

Problem 4.17. Let the straight line 𝐶𝐻, 𝐻 ∈ 𝐴𝐵, be the altitude and the
straight line 𝐶𝑀, 𝑀 ∈ 𝐴𝐵, be the median of △𝐴𝐵𝐶. Prove that if ∠𝐴𝐶𝑀 =
∠𝐵𝐶𝐻, then △𝐴𝐵𝐶 is either isosceles (𝐴𝐶 = 𝐵𝐶), or not isosceles but right-
angled (∠𝐴𝐶𝐵 = 900).
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4.4. PROBLEMS OF GROUP IV

The statements used for the formulation of the problems in this group are

𝑡 := {The middle points of the sides 𝐵𝐶, 𝐶𝐴 and 𝐴𝐵 of △𝐴𝐵𝐶 are 𝐹 , 𝐷,
and 𝐸 respectively.}

𝑝 := {𝐴𝐶 = 𝐵𝐶}

𝑞 := {∠𝐴𝐶𝐵 = 600
}

𝑟 := { The center 𝐺 of the circumscribing circle 𝑘 of △𝐹𝐷𝐸 lies on the
bisector of ∠𝐴𝐶𝐵}.

First we formulate and solve the generating problems.

Problem 4.18. Let the middle points of the sides 𝐵𝐶, 𝐶𝐴 and 𝐴𝐵 of △𝐴𝐵𝐶
be 𝐹 , 𝐷, and 𝐸 respectively. Prove that if 𝐴𝐶 = 𝐵𝐶, then the center 𝐺 of the
circumscribing circle 𝑘 of △𝐹𝐷𝐸 lies on the bisector of ∠𝐴𝐶𝐵.

This problem has a logical structure 𝑡 ∧ 𝑝 → 𝑟.

Proof. The median 𝐶𝐸 of the isosceles △𝐴𝐵𝐶 is the perpendicular bisector of
𝐴𝐵 and 𝐷𝐹 and the bisector of ∠𝐴𝐶𝐵. Hence, the center 𝐺 of the circumscribing
circle 𝑘 of △𝐹𝐷𝐸 lies on the bisector of ∠𝐴𝐶𝐵.

Problem 4.19. Let the middle points of the sides 𝐵𝐶, 𝐶𝐴 and 𝐴𝐵 of △𝐴𝐵𝐶
be 𝐹 , 𝐷, and 𝐸 respectively. Prove that if ∠𝐴𝐶𝐵 = 600, then the center 𝐺 of the
circumscribing circle 𝑘 of △𝐹𝐷𝐸 lies on the bisector of ∠𝐴𝐶𝐵.

Fig. 8.
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This problem has a logical structure 𝑡 ∧ 𝑞 → 𝑟.

Proof. The quadrilateral𝐸𝐹𝐶𝐷 (Fig. 8) is a parallelogramwith ∠𝐷𝐶𝐹 = 600.
Hence, △𝐸𝐹𝐷 ∼= △𝐶𝐷𝐹 and the circumscribing circles 𝑘 and 𝑘′ of △𝐸𝐹𝐷 and
△𝐶𝐷𝐹 respectively have equal radii. The centers 𝐺 and 𝐺′ of these circles lie on
the perpendicular bisector 𝑠 of 𝐷𝐹 .

Let 𝑃 = 𝑠 ∩ 𝑘, 𝑄 = 𝑠∩ 𝑘′. It is easy to be seen that the quadrilateral 𝐹𝑃𝐷𝑄
is a rhombus with ∠𝑃𝐷𝑄 = 600 and 𝑄𝐷 = 𝑄𝑃 = 𝑄𝐹 , i. e. the point 𝑄 coincides
with the center 𝐺 of 𝑘. Consequently, the point 𝑃 coincides with the center 𝐺′ of
𝑘′.

The point 𝑄 is also the middle point of the arc 𝐷𝑄𝐹 of 𝑘′ and then lies on the
bisector of ∠𝐷𝐶𝐹 ≡ ∠𝐴𝐶𝐵.

According to the logical structures of problems 4.18 and 4.19 and in view of
Proposition 3.1 we construct the following inverse problem with logical structure
𝑡 ∧ 𝑟 → 𝑝 ∨ 𝑞 (a formulation with a different logical structure is given in [7,
Problem 12]):

Problem 4.20. Let the middle points of the sides 𝐵𝐶, 𝐶𝐴 and 𝐴𝐵 of △𝐴𝐵𝐶
be 𝐹 , 𝐷, and 𝐸 respectively. Prove that if the center 𝐺 of the circumscribing circle
𝑘 of △𝐹𝐷𝐸 lies on the bisector of ∠𝐴𝐶𝐵, then 𝐴𝐶 = 𝐵𝐶 or ∠𝐴𝐶𝐵 = 600.

The next two problems are equivalent to Problem 4.20.

Problem 4.21. Let the middle points of the sides 𝐵𝐶, 𝐶𝐴 and 𝐴𝐵 of △𝐴𝐵𝐶
be 𝐹 , 𝐷, and 𝐸 respectively. Prove that if the center 𝐺 of the circumscribing circle
𝑘 of △𝐹𝐷𝐸 lies on the bisector of ∠𝐴𝐶𝐵 and 𝐵𝐶 ∕= 𝐴𝐶, then ∠𝐴𝐶𝐵 = 600.

Problem 4.22. Let the middle points of the sides 𝐵𝐶, 𝐶𝐴 and 𝐴𝐵 of △𝐴𝐵𝐶
be 𝐹 , 𝐷, and 𝐸 respectively. Prove that if the center 𝐺 of the circumscribing circle
𝑘 of △𝐹𝐷𝐸 lies on the bisector of ∠𝐴𝐶𝐵 and ∠𝐴𝐶𝐵 ∕= 600, then 𝐵𝐶 = 𝐴𝐶.

We reformulate Problem 4.20 by keeping the condition of homogeneity of the
conclusion.

Problem 4.23. Let the middle points of the sides 𝐵𝐶, 𝐶𝐴 and 𝐴𝐵 of △𝐴𝐵𝐶
be 𝐹 , 𝐷, and 𝐸 respectively. Prove that if the center 𝐺 of the circumscribing circle
𝑘 of △𝐹𝐷𝐸 lies on the bisector of ∠𝐴𝐶𝐵, then the △𝐴𝐵𝐶 is either isosceles
(𝐴𝐶 = 𝐵𝐶), or not isosceles but ∠𝐴𝐶𝐵 = 600.

Proof. Let 𝐺′ be the center of the circumscribing circle 𝑘′ of △𝐹𝐷𝐶 (Fig. 9).
In view of the Criteria for congruence of triangles we get that△𝐹𝐷𝐸 ∼= △𝐷𝐹𝐶. It
follows that the circumscribing circles 𝑘 and 𝑘′ of △𝐹𝐷𝐸 and △𝐷𝐹𝐶 respectively
have equal radii.

Let 𝑀 be the middle point of 𝐷𝐹 and 𝐿 = 𝐺𝑀 ∩ 𝑘′. The point 𝐺′ lies on the
perpendicular bisector 𝐺𝑀 of 𝐷𝐹 . Hence, the point 𝐿 is the middle point of the

arc 𝐷𝐿𝐹 of 𝑘′ and 𝐶𝐿 is the bisector of ∠𝐷𝐶𝐹 ≡ ∠𝐴𝐶𝐵.
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Fig. 9.

Since the center 𝐺 of 𝑘 lies on the bisector 𝐶𝐿 (according to the condition of
the Problem), then the straight lines 𝐶𝐿 and 𝐺𝑀 either cut at 𝐺 (have no other
common points), or coincide (all of their points are common).

(𝑖) Let 𝐶𝐿 ∩𝐺𝑀 = 𝐿 ≡ 𝐺.
In this case 𝐺′

∈ 𝑘 (Fig. 8) and △𝐺′𝐷𝐺 is equilateral, the central ∠𝐷𝐺′𝐹 of
𝑘′ has a measure 1200 and hence ∠𝐴𝐶𝐵 = 600.

Fig. 10.

(𝑖𝑖) Let 𝐶𝐿 ≡ 𝐺𝑀 (Fig. 10).
In this case the bisector 𝐶𝐿 of ∠𝐷𝐶𝐹 coincides with the perpendicular bisector

of 𝐷𝐹 . Then △𝐷𝐶𝐹 and also △𝐴𝐵𝐶 are isosceles, i. e. 𝐴𝐶 = 𝐵𝐶.
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5. SUMMARY

In this section we formulate a new problem whose proof emphasizes the im-
portance and significance of the described method for generating problems.

The similar conclusions of Problems 4.9 and 4.20 lead to

Problem 5.1. Let the middle points of the sides 𝐵𝐶, 𝐶𝐴 and 𝐴𝐵 of
△𝐴𝐵𝐶 be 𝐹 , 𝐷 and 𝐸 respectively. Let further the straight lines 𝐴𝐴1, 𝐴1 ∈

𝐵𝐶, and 𝐵𝐵1, 𝐵1 ∈ 𝐴𝐶, be the bisectors of ∠𝐶𝐴𝐵 and ∠𝐶𝐵𝐴, respectively,
and let 𝐴𝐴1 ∩𝐵𝐵1 = 𝐽 .

Prove that the center 𝐺 of the circumscribing circle 𝑘 of △𝐹𝐷𝐸 lies on the
bisector of ∠𝐴𝐶𝐵 if and only if 𝐽𝐴1 = 𝐽𝐵1.

Proof. (i) Let the center 𝐺 of the circumscribing circle 𝑘 of △𝐹𝐷𝐸 lie on the
bisector of ∠𝐴𝐶𝐵.

From Problem 4.20 it follows that 𝐴𝐶 = 𝐵𝐶 or ∠𝐴𝐶𝐵 = 600.

- If 𝐴𝐶 = 𝐵𝐶 then from Problem 4.7 it follows that 𝐽𝐴1 = 𝐽𝐵1.

- If ∠𝐴𝐶𝐵 = 600 then from Problem 4.8 it follows that 𝐽𝐴1 = 𝐽𝐵1.

(ii) Let 𝐽𝐴1 = 𝐽𝐵1. From Problem 4.9 it follows that either 𝐴𝐶 = 𝐵𝐶 or
∠𝐴𝐶𝐵 = 600.

- If 𝐴𝐶 = 𝐵𝐶 then from the generating Problem 4.18 it follows that the center
𝐺 of the circumscribing circle 𝑘 of △𝐹𝐷𝐸 lies on the bisector of ∠𝐴𝐶𝐵.

- If ∠𝐴𝐶𝐵 = 600 then from the generating Problem 4.19 it follows that the
center𝐺 of the circumscribing circle 𝑘 of△𝐹𝐷𝐸 lies on the bisector of∠𝐴𝐶𝐵.
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1. INTRODUCTION

The geometric nature of certain problems in coding theory has been long known. In this paper
we present a new result on the extendability of arcs in finite projective spaces which translates in
a natural way into a result about the extendability of linear codes.

It is a well-known fact that adding a parity check to a binary [𝑛, 𝑘, 𝑑]-code of odd minimum
distance 𝑑 increases the minimum distance of the codes, i.e. the resulting codes have parameters
[𝑛+ 1, 𝑘, 𝑑+ 1]. This result has been generalized by Hill and Lizak in [4,5]. They showed that if
all weights in an [𝑛, 𝑘, 𝑑]𝑞 code are congruent to 0 or 𝑑 (mod 𝑞), with (𝑑, 𝑞) = 1, then it can be
extended to an [𝑛+1, 𝑘, 𝑑+1]𝑞-code. This fact has a natural explanation in terms of blocking sets
containing a hyperplane. It was proved independently in [6] and [9] that the theorem of Hill and
Lizak can be obtained from the well-known Bose-Burton theorem for blocking sets in PG(𝑘−1, 𝑞).
This result was further generalized in [7] by using a result of Beutelspacher and Heim on the size
of the minimal non-trivial (i.e. not containing a hyperplane) blocking set in a finite projective
geometry.

In a series of papers, Maruta obtained further results [9,10,11,12,13] on the extendability of
linear codes. He introduced the notion of diversity of a linear code with spectrum (𝐴𝑖) as the pair
(Φ0,Φ1), where

Φ0 =
1

𝑞 − 1

∑

𝑞∣𝑖,𝑖∕=0

𝐴𝑖, Φ1 =
1

𝑞 − 1

∑

𝑖∕≡0,𝑑(𝑞)

𝐴𝑖.

Maruta proved that for various values of the diversity the investigated codes are indeed extendable.
In particular, he showed that a linear [𝑛, 𝑘, 𝑑]-code over 𝔽𝑞, with 𝑞 ≥ 5, 𝑑 ≡ −2 (mod 𝑞), having
all non-zero weights congruent to −2,−1, and 0 modulo 𝑞 is extendable.
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Dodunekov and Simonis proved in [3] that linear [𝑛, 𝑘, 𝑑]𝑞-codes of full length and (𝑛, 𝑛− 𝑑)-
arcs in PG(𝑘− 1, 𝑞) are in some sense equivalent objects. With each linear code one can associate
an arc (possibly in an non-unique way) so that semilinearly isomorphic codes give rise to equivalent
arcs and vice versa. Arcs associated with codes meeting the Griesmer bound are called Griesmer
arcs.

This paper deals with the question of the extendability of arcs associated with codes meeting
the Griesmer bound. The results translate in an obvious way for linear codes over finite fields. In
section 2, we give some basic definitions and introduce the important notion of 𝑡-quasidivisibility
modulo 𝑞. In section 3, we define a special arc �̃� in the dual geometry and relate the extendability
property for 𝒦 with the existence of a hyperplane in the support of �̃�. Section 4 contains the
main theorem stating that a 𝑡-quasidivisible Griesmer arc with divisor 𝑞, 𝑡 <

√

𝑞, which has an
additional numerical condition on the parameters, is 𝑡-times extendable.

2. BASIC DEFINITIONS

Let 𝒫 be the set of points of the projective geometry PG(𝑘−1, 𝑞). Every mapping 𝒦 : 𝒫 → ℕ0

from the pointset of the geometry to the non-negative integers is called a multiset in PG(𝑘− 1, 𝑞).
This mapping is extended additively to the subsets of 𝒫 : for every 𝒬 ⊆ 𝒫 , 𝒦(𝒬) =

∑

𝑃∈𝒬
𝒦(𝑃 ).

The integer 𝑛 := 𝒦(𝒫) is called the cardinality of 𝒦. For every set of points 𝒬 ⊂ 𝒫 we define its
characteristic (multi)set 𝜒𝒬 by

𝜒𝒬(𝑃 ) =

{

1 if 𝑃 ∈ 𝒬,
0 otherwise.

Multisets can be viewed as arcs or as blocking sets. A multiset 𝒦 in PG(𝑘 − 1, 𝑞) is called an
(𝑛,𝑤)-multiarc (or simply (𝑛,𝑤)-arc) if (1) 𝒦(𝒫) = 𝑛, (2) 𝒦(𝐻) ≤ 𝑤 for every hyperplane 𝐻 , and
(3) there exists a hyperplane 𝐻0 with 𝒦(𝐻0) = 𝑤. Similarly, a multiset 𝒦 in PG(𝑘− 1, 𝑞) is called
an (𝑛,𝑤)-blocking set with respect to the hyperplanes (or (𝑛,𝑤)-minihyper) if (1) 𝒦(𝒫) = 𝑛, (2)
𝒦(𝐻) ≥ 𝑤 for every hyperplane 𝐻 , and (3) there exists a hyperplane 𝐻0 with 𝒦(𝐻0) = 𝑤.

An (𝑛,𝑤)-arc 𝒦 in PG(𝑘 − 1, 𝑞) is called 𝑡-extendable, if there exists an (𝑛 + 𝑡, 𝑤)-arc 𝒦′ in
PG(𝑘 − 1, 𝑞) with 𝒦′(𝑃 ) ≥ 𝒦(𝑃 ) for every point 𝑃 ∈ 𝒫 . An arc is called simply extendable if
it is 1-extendable. Similarly, an (𝑛,𝑤)-blocking set 𝒦 in PG(𝑘 − 1, 𝑞) is called reducible, if there
exists an (𝑛− 1, 𝑤)-blocking set 𝒦′ in PG(𝑘 − 1, 𝑞) with 𝒦′(𝑃 ) ≤ 𝒦(𝑃 ) for every point 𝑃 ∈ 𝒫 . A
blocking set is called irreducible if it is not reducible.

Given a multiset 𝒦 in PG(𝑘 − 1, 𝑞), we denote by 𝑎𝑖 the number of hyperplanes 𝐻 with
𝒦(𝐻) = 𝑖. The sequence (𝑎𝑖) is called the spectrum of 𝒦. An (𝑛,𝑤)-arc 𝒦 with spectrum (𝑎𝑖) is
said to be divisible with divisor Δ > 1 if 𝑎𝑖 = 0 for all 𝑖 ∕≡ 𝑛 (mod Δ). The (𝑛,𝑤)-arc 𝒦 with
𝑤 ≡ 𝑛 + 𝑡 (mod 𝑞) is called 𝑡-quasidivisible with divisor Δ > 1 (or 𝑡-quasidivisible modulo Δ) if
𝑎𝑖 = 0 for all 𝑖 ∕≡ 𝑛, 𝑛+1, . . . , 𝑛+ 𝑡 (mod Δ), 1 ≤ 𝑡 ≤ 𝑞− 1. The result of Hill and Lizak says that
every 1-quasidivisible arc with divisor 𝑞 is extendable; Maruta’s theorem from [11] claims that for
𝑞 odd every 2-quasidivisible arc with divisor 𝑞 is extendable.

3. THE CONNECTION BETWEEN QUASIDIVISIBILITY AND EXTENDABILITY OF
GRIESMER ARCS

As already noted, there exists a one-to-one correspondence between the classes of isomorphic
[𝑛, 𝑘, 𝑑]𝑞-codes and the classes of projectively equivalent (𝑛, 𝑛− 𝑑)-arcs in PG(𝑘 − 1, 𝑞) [3]. With
every multiset 𝒦 we can associate many isomorphic linear codes. Fix arbitrarily one of these codes
and denote it by 𝐶𝒦. If 𝐶𝒦 is a Griesmer code then we call 𝒦 a Griesmer arc.
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Let 𝒦 be a 𝑡-quasidivisible (𝑛,𝑤)-arc with divisor 𝑞 in Σ = PG(𝑘 − 1, 𝑞), 𝑡 < 𝑞. Set 𝑑 =
𝑛−𝑤. This is a typical situation when one investigates the existence of Griesmer arcs with given
parameters.

Define a new multiset �̃� in the dual geometry Σ̃ by

�̃� :

{

ℋ → {0, 1, . . . , 𝑡}

𝐻 → �̃�(𝐻) ≡ 𝑛+ 𝑡−𝒦(𝐻) (mod 𝑞),
(3.1)

whereℋ is the set of all hyperplanes in Σ, i.e. the set of all ponts in Σ̃. In other words, hyperplanes
of multiplicity congruent to 𝑛+𝑎 (mod 𝑞) become (𝑡−𝑎)-points in the dual geometry. The following
result is straightforward.

Theorem 1. Let 𝒦 be an (𝑛,𝑤)-arc in Σ = PG(𝑘 − 1, 𝑞), which is 𝑡-quasidivisible modulo 𝑞
with 𝑡 < 𝑞. Let �̃� be defined by (3.1). If

�̃� =

𝑐
∑

𝑖=1

𝜒
�̃�𝑖

+ �̃�′

for some multiset 𝒦′ and 𝑐 not necessarily different hyperplanes �̃�1, . . . , �̃�𝑐, then 𝒦 is 𝑐-extendable.
In particular, if �̃� contains a hyperplane in its support, then 𝒦 is extendable.

Proof. Since maximal hyperplanes correspond to 0-points in the dual geometry, the condition
of the theorem is that there exist points in Σ of total multiplicity 𝑐 that are not incident with
maximal hyperplanes.

By Theorem 1, the extendability of 𝑡-quasidivisible arcs is linked with the structure of the
multiset �̃� defined in the dual geometry. It turns out that this multiset is highly divisible.

Theorem 2. Let 𝒦 be an (𝑛,𝑤)-arc in Σ = PG(𝑘 − 1, 𝑞) which is 𝑡-quasidivisible modulo 𝑞

with 𝑡 < 𝑞. For every subspace 𝑆 of Σ̃ with dim𝑆 ≥ 1,

�̃�(𝑆) ≡ 𝑡 (mod 𝑞).

Proof. Let 𝑆 be a line in the dual geometry Σ̃. It corresponds to a subspace 𝑆 of codimension
2 in Σ. Denote by 𝐻𝑖, 𝑖 = 0, . . . , 𝑞, the set of all hyperpalnes through 𝑆. We have

𝑛 =

𝑞
∑

𝑖=0

𝒦(𝐻𝑖)− 𝑞𝒦(𝑆).

Reducing both sides modulo 𝑞 and using the fact that 𝒦(𝐻𝑖) + �̃�(𝐻𝑖) ≡ 𝑛+ 𝑡 (mod 𝑞), one gets

(𝑞 + 1)(𝑛+ 𝑡)−

𝑞
∑

𝑖=0

�̃�(𝐻𝑖) ≡ 𝑛 (mod 𝑞),

whence

�̃�(𝑆) =

𝑞
∑

𝑖=0

�̃�(𝐻𝑖) ≡ 𝑡 (mod 𝑞).

For subspaces of larger dimension, we can use the fact that the multiplicity of each line in 𝑆
is 𝑡 modulo 𝑞. Then we sum the multiplicities of all lines through a fixed 0-point in 𝑆.

By the above theorem, the multiset �̃� has the following properties:

- the multiplicity of each point is at most 𝑡;
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- the multiplicity of each subspace of dimension 𝑟, 1 ≤ 𝑟 ≤ 𝑘 − 1, is at least 𝑡𝑣𝑟.

Here we use the conventional notation 𝑣𝑟 = (𝑞𝑟 − 1)/(𝑞 − 1). Let us note that in the general case
the cardinality of �̃� is not known.

For 𝑡 = 1, the arc 𝒦 is always extendable. In fact, this is another formulation of the theorem
by Hill and Lizak. A plane arc with the above properties for 𝑡 = 1 turns out to be projective.
Then every line is 1- or (𝑞+1)-line, the arc is either a line or the complete plane. More generally,
in higher dimensions such an arc is either a hyperplane or the complete space. The second case
does not occur since a maximal hyperplane maps to a 0-point. Therefore every 1-quasidivisible
arc 𝒦 is extendable by Theorem 1.

For 𝑡 = 2 and odd 𝑞 ≥ 5, the arcs �̃� were characterized by Maruta [11]. He proved that in
this case, the arc �̃� contains a hyperplane without 0-points, which implies that the arc 𝒦 is again
extendable.

The next theorem relates the extendability of 𝒦 with the spectrum of a maximal hyperplane
of Σ with respect to 𝒦.

Theorem 3. Let 𝒦 be a Griesmer 𝑡-quasidivisible modulo 𝑞 arc with parameters (𝑛,𝑤) in
PG(𝑘 − 1, 𝑞), where 𝑤 = 𝑛 − 𝑑. For a fixed hyperplane 𝐻0 of multiplicity 𝑤, denote by (𝑎𝑖) the
spectrum of the arc 𝒦∣𝐻0

, the restriction of 𝒦 to the hyperplane 𝐻0. Let 𝐴 be the largest integer
such that a (𝑡𝑣𝑘−1 + 𝐴, 𝑡𝑣𝑘−2)-minihyper contains a hyperplane in its support. If

𝑞𝑎
𝑤−⌈𝑑/𝑞⌉−1 + 2𝑞𝑎

𝑤−⌈𝑑/𝑞⌉−2 + . . .+ (𝑡− 2)𝑞𝑎
𝑤−⌈𝑑/𝑞⌉−𝑡+2(𝑡− 1)𝑞

∑

𝑢≤𝑤−⌈𝑑/𝑞⌉−𝑡+1

𝑎𝑢 ≤ 𝐴,

then 𝒦 is extendable.

Proof. By the fact that 𝒦 is a Griesmer arc, we have that

𝑛 =

𝑘−1
∑

𝑖=0

⌈

𝑑

𝑞𝑖
⌉, 𝑤 =

𝑘−1
∑

𝑖=1

⌈

𝑑

𝑞𝑖
⌉.

By straightforward counting, one gets that the maximal multiplicity of a subspace of codimension
2 contained in 𝐻0 is

𝑤′ = 𝑤 − ⌈
𝑑

𝑞
⌉ =

𝑘−1
∑

𝑖=2

⌈

𝑑

𝑞𝑖
⌉.

Let �̃� be the arc in Σ̃ defined earlier in this section. The point 𝑃 = 𝐻0 is a 0-point in Σ̃.
Denote by �̃�𝑖 all lines in Σ̃ through 𝑃 . They correspond to the hyperlines 𝛿𝑖 in 𝐻0, i.e. the
subspaces of codimension 2 that are contained in 𝐻0.

Consider a fixed line �̃� = 𝛿, where 𝒦(𝛿) = 𝑤′
−𝜆, 𝜆 ∈ {0, . . . , 𝑡−1}. Denote by 𝐻0, 𝐻1, . . . , 𝐻𝑞

all hyperplanes through 𝛿. Set

𝒦(𝐻𝑖) = 𝑤 − 𝛼𝑖𝑞 − 𝛽𝑖, 𝛽𝑖 ∈ {0, . . . , 𝑡}.

Since 𝒦(𝐻𝑖) + �̃�(𝐻𝑖) ≡ 𝑛+ 𝑡 ≡ 𝑤 (mod 𝑞), we get that �̃�(𝐻𝑖) = 𝛽𝑖. Now we have

𝑛 =

𝑞
∑

𝑖=0

𝒦(𝐻𝑖)− 𝑞(𝑤′
− 𝜆)

=

𝑞
∑

𝑖=0

(𝑤 − 𝛼𝑖𝑞 − 𝛽𝑖)− 𝑞(𝑤′
− 𝜆)

= 𝑤 − 𝑞

𝑞
∑

𝑖=0

𝛼𝑖 −

𝑞
∑

𝑖=0

𝛽𝑖 + 𝑞⌈
𝑑

𝑞
⌉+ 𝑞𝜆,
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whence
𝑞
∑

𝑖=0

𝛽𝑖 = 𝑞⌈
𝑑

𝑞
⌉+ 𝑞𝜆− 𝑑− 𝑞

𝑞
∑

𝑖=0

𝛼𝑖.

Since 𝑑 ≡ −𝑡 (mod 𝑞), we have 𝑞⌈𝑑
𝑞
⌉ − 𝑑 = 𝑡. This gives an upper bound on the multiplicity of �̃�

with respect to �̃�:

�̃�(�̃�) =
∑

𝑖

�̃�(𝐻𝑖) =

𝑞
∑

𝑖=0

𝛽𝑖 = 𝑡+ 𝑞𝜆− 𝑞

𝑞
∑

𝑖=0

𝛼𝑖 ≤ 𝑡+ 𝑞𝜆.

Now summing up the multiplicities of all lines �̃� through 𝑃 and taking into account that
�̃�(𝑃 ) = 0, one gets for the cardinality of �̃� the following estimate:

∣�̃�∣ =
∑

𝑖

�̃�(�̃�𝑖)

≤ 𝑎𝑤′𝑡+ 𝑎𝑤′−1(𝑡+ 𝑞) + . . .+ 𝑎
𝑤

′
−(𝑡−2)(𝑡+ (𝑡− 2)𝑞) +

∑

𝑢≤𝑤
′
−(𝑡−1)

𝑎𝑢(𝑡+ (𝑡− 1)𝑞)

=

⎛

⎝

∑

𝑢≤𝑤
′

𝑎𝑢

⎞

⎠ 𝑡+ 𝑎𝑤′−1𝑞 + . . .+ 𝑎
𝑤

′−(𝑡−2)(𝑡− 2)𝑞 +
∑

𝑢≤𝑤
′−(𝑡−1)

𝑎𝑢(𝑡− 1)𝑞

= 𝑣𝑘−1𝑡+ 𝑎𝑤′−1𝑞 + . . .+ 𝑎
𝑤

′−(𝑡−2)(𝑡− 2)𝑞 +
∑

𝑢≤𝑤
′−(𝑡−1)

𝑎𝑢(𝑡− 1)𝑞.

Here we use the fact that for lines �̃� = 𝛿 with 𝒦(𝛿) ≤ 𝑤′
− (𝑡− 1), one has �̃�(�̃�) ≤ 𝑡+ (𝑡− 1)𝑞. If

𝑎𝑤′−1𝑞 + . . .+ 𝑎
𝑤

′
−(𝑡−2)(𝑡− 2)𝑞 +

∑

𝑢≤𝑤
′
−(𝑡−1)

𝑎𝑢(𝑡− 1)𝑞 ≤ 𝐴

we have that ∣�̃�∣ ≤ 𝑡𝑣𝑘−1+𝐴. This implies that �̃� contains a hyperplane without 0-points. Hence,
by Theorem 1, 𝒦 is extendable.

The idea of Theorem 3 can be used to restrict the spectrum not only of the maximal hyper-
planes, but also of hyperplanes with a smaller multiplicity. Unfortunately, the value of 𝐴 is not
known in general. Partial results for the plane case were proved in [1] and [2].

4. A THEOREM ON THE EXTENDABILITY OF GRIESMER ARCS

In this section we prove our main extendability result for Griesmer arcs. Consider a Griesmer
𝑡-quasidivisible arc 𝒦, 𝑡 < 𝑞, with parameters (𝑛,𝑤) in PG(𝑘− 1, 𝑞). Set 𝑑 = 𝑛−𝑤 and let 𝐶𝒦 be
a linear code associated with 𝒦. The code 𝐶𝒦 has parameters [𝑛, 𝑘, 𝑑]𝑞. Write 𝑑 as

𝑑 = 𝑠𝑞𝑘−1
−

𝑘−2
∑

𝑖=0

𝜀𝑖𝑞
𝑖, 0 ≤ 𝜀𝑖 < 𝑞. (4.1)

Then we have ⌈𝑑/𝑞𝑗⌉ = 𝑠𝑞𝑘−𝑗−1
−

∑
𝑘−2

𝑖=𝑗
𝜀𝑖𝑞

𝑖, which implies

𝑛 = 𝑠𝑣𝑘 −

𝑘−2
∑

𝑖=0

𝜀𝑖𝑣𝑖+1. (4.2)
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Let us note that with this notation 𝑡 = 𝜀0, since 𝑛 + 𝜀0 ≡ 𝑤 (mod 𝑞). Denote by 𝑤𝑗 the
maximal multiplicity of a subspace 𝑆 of codimension 𝑗 of PG(𝑘 − 1, 𝑞): 𝑤𝑗 = maxcodim𝑆=𝑗 𝒦(𝑆),
𝑗 = 1, . . . , 𝑘 − 1. We have

𝑤𝑗 =
𝑘−1
∑

𝑖=𝑗

⌈

𝑑

𝑞𝑖
⌉ = 𝑠𝑣𝑘−𝑗 −

𝑘−2
∑

𝑖=𝑗

𝜀𝑖𝑣𝑖−𝑗+1. (4.3)

By convention, 𝑤0 = 𝑛.

In the next lemmas we establish some important properties of the arc �̃�.

Lemma 1. Let 𝒦 be a 𝑡-quasidivisible (𝑛, 𝑛− 𝑑)-Griesmer arc with 𝑑 given by (4.1). Let 𝑆 be
a subspace of codimension 2 contained in the hyperplane 𝐻0 with 𝒦(𝐻0) = 𝑤1 − 𝑎𝑞, where 𝑎 ≥ 0
is an integer.

(i) If 𝒦(𝑆) = 𝑤2 − 𝑎− 𝑏, 0 ≤ 𝑏 ≤ 𝑡− 2, then �̃�(𝑆) ≤ 𝑡+ 𝑏𝑞;

(ii) If 𝒦(𝑆) = 𝑤2 − 𝑎− 𝑏, 𝑏 ≥ 𝑡− 1, then �̃�(𝑆) ≤ 𝑡+ (𝑡− 1)𝑞.

Proof. (i) Denote by 𝐻𝑖 the hyperplanes through 𝑆 in Σ. Set 𝒦(𝐻𝑖) = 𝑤1 − 𝛼𝑖, 𝑖 = 1, . . . , 𝑞.
Note that �̃�(𝐻𝑖) ≡ 𝑛+ 𝑡 − 𝑤1 + 𝛼𝑖 ≡ 𝛼𝑖 (mod 𝑞), since 𝑛 + 𝑡 ≡ 𝑤1 (mod 𝑞). Thus �̃�(𝐻𝑖) ≤ 𝛼𝑖.
Furthermore, we have

𝑛 =

𝑞
∑

𝑖=0

𝒦(𝐻𝑖)− 𝑞𝒦(𝑆)

= (𝑞 + 1)𝑤1 −

𝑞
∑

𝑖=1

𝛼𝑖 − 𝑎𝑞 − 𝑞(𝑤2 − 𝑎− 𝑏)

= 𝑛+ 𝑡−

𝑞
∑

𝑖=1

𝛼𝑖 + 𝑏𝑞.

This implies that
∑

𝛼𝑖 = 𝑡+ 𝑏𝑞. On the other hand,

�̃�(𝑆) =

𝑞
∑

𝑖=0

�̃�(�̃�𝑖)

≤

𝑞
∑

𝑖=1

𝛼𝑖 (mod 𝑞)

= 𝑡+ 𝑏𝑞.

(ii) This follows by the facts that �̃�(𝑆) ≡ 𝑡 (mod 𝑞), each point is of multiplicity at most 𝑡 and

the line 𝑆 is incident with the 0-point �̃�0.

Lemma 2. Let 𝒦 and �̃� be as in Lemma 1. Let 𝑇 be a subspace of codimension 3 in PG(𝑘−1, 𝑞)
with 𝒦(𝑇 ) = 𝑤3. Then

�̃�(𝑇 ) ≤ 𝑡(𝑞 + 1) + 𝜀1𝑞.

Proof. Denote by 𝑆𝑖, 𝑖 = 0, . . . , 𝑞, the subspaces of codimension 2 through 𝑇 in a maximal
hyperplane 𝐻 . Set 𝒦(𝑆𝑖) = 𝑤2 − 𝛼𝑖. We have that

𝒦(𝐻) = 𝑤1 =

𝑞
∑

𝑖=0

𝒦(𝑆𝑖)− 𝑞𝒦(𝑇 )

= (𝑞 + 1)𝑤2 −

𝑞
∑

𝑖=0

𝛼𝑖 − 𝑞𝑤3

= (𝑞 + 1)(𝑠𝑣𝑘−2 − 𝜀𝑘−2𝑣𝑘−3 − . . .− 𝜀3𝑣2 − 𝜀2𝑣1)−

𝑞(𝑠𝑣𝑘−3 − 𝜀𝑘−2𝑣𝑘−4 − . . .− 𝜀3𝑣1)−

𝑞
∑

𝑖=0

𝛼𝑖.
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Since (𝑞 + 1)𝑣𝑗−1 − 𝑞𝑣𝑗−2 = 𝑣𝑗 , this simplifies to

𝑤1 = 𝑠𝑣𝑘−1 − 𝜀𝑘−2𝑣𝑘−2 − . . .− 𝜀3𝑣3 − (𝑞 + 1)𝜀2𝑣1 −

𝑞
∑

𝑖=0

𝛼𝑖

= 𝑠𝑣𝑘−1 − 𝜀𝑘−2𝑣𝑘−2 − . . .− 𝜀3𝑣3 − 𝜀2𝑣2 −

𝑞
∑

𝑖=0

𝛼𝑖

= 𝑤1 + 𝜀1𝑣1 −

𝑞
∑

𝑖=0

𝛼𝑖.

This implies that
∑

𝑞

𝑖=0
𝛼𝑖 = 𝜀1𝑣1 = 𝜀1 < 𝑞. By Lemma 1, �̃�(𝑆𝑖) ≤ 𝑡+ 𝛼𝑖𝑞, whence

�̃�(𝑇 ) =

𝑞
∑

𝑖=0

�̃�(𝑆𝑖)− 𝑞�̃�(�̃�)

=

𝑞
∑

𝑖=0

�̃�(𝑆𝑖)

≤

𝑞
∑

𝑖=0

(𝑡+ 𝛼𝑖𝑞)

= 𝑡(𝑞 + 1) + 𝑞

𝑞
∑

𝑖=0

𝛼𝑖

≤ 𝑡(𝑞 + 1) + 𝜀1𝑞.

Lemma 3. Let 𝒦 be 𝑡-quasidivisible Griesmer (𝑛,𝑤)-arc in PG(𝑘−1, 𝑞), 𝑞 ≥ 3 with 𝑑 = 𝑛−𝑤

given by (4.1). Let �̃� be defined by (3.1). Let further 𝜀0, 𝜀1 ≤

√

𝑞. For every maximal subspace 𝑇
of codimension 3 in PG(𝑘 − 1, 𝑞), i.e. a subspace with 𝒦(𝑇 ) = 𝑤3, there holds

�̃�(𝑇 ) = 𝑡(𝑞 + 1).

Proof. We have that 𝑇 is a plane in P̃G(𝑘 − 1, 𝑞). By Lemma 2, �̃�(𝑇 ) ≤ 𝜀0(𝑞 + 1) + 𝜀1𝑞. Set
�̃�(𝑇 ) = 𝜀0(𝑞 + 1) + 𝜀′

1
𝑞, where 0 ≤ 𝜀′

1
≤ 𝜀1.

Assume 𝜀′
1
> 0. Set ℱ̃ = �̃�∣

𝑇
, i.e. ℱ̃ is the restriction of �̃� to the plane 𝑇 in the dual

geometry. Define a dual plane arc ℱ to ℱ̃ by

ℱ(�̃�) = 𝑖 iff ℱ̃(𝐿) = 𝑡+ 𝑖𝑞.

Denote by (𝐴𝑖) the spectrum of ℱ̃ . We have

∑

𝐴𝑡+𝑖𝑞 = 𝑞2 + 𝑞 + 1,
∑

(𝑡+ 𝑖𝑞)𝐴𝑡+𝑖𝑞 = (𝜀(𝑞 + 1) + 𝜀′
1
𝑞)(𝑞 + 1)

for some 𝜀′
1
≤ 𝜀1. This implies

∑

𝑖
𝑖𝐴𝑡+𝑖𝑞 = 𝜀′

1
(𝑞 + 1) + 𝜀0.

Now let us denote by 𝐵𝑖 the number of lines 𝐿 with ℱ̃(𝐿) = 𝑡+ 𝑖𝑞 through a fixed point 𝑃 of
multiplicity 𝑐 ≥ 0. Then

∑

𝐵𝑡+𝑖𝑞 = 𝑞 + 1 ,
∑

(𝑡+ 𝑖𝑞)𝐵𝑡+𝑖𝑞 = (𝑞 + 1)𝜀0 + 𝜀′
1
𝑞 + 𝑐𝑞 ,
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which implies
∑

𝑖𝐵𝑡+𝑖𝑞 = 𝜀′
1
+ 𝑐. Hence ℱ is a (𝜀′

0
(𝑞 + 1) + 𝜀0, 𝜀

′)-blocking set.

From 𝜀0, 𝜀1 <
√

𝑞 and 𝑞 ≥ 3 we get that 𝜀0+𝜀
′

1
<
√

𝜀′
1
𝑞+1 and, consequently, 𝜀′(𝑞+1)+𝜀0 <

𝜀′𝑞 +
√

𝜀′𝑞 + 1. By a well-known result by Ball [1] and De Beule-Storme-Metsch [2], ℱ contains
a line. Going back to ℱ̃ , this implies that all lines 𝐿𝑖 in 𝑇 through 𝑃 have multiplicity at least
𝑡+ 𝑞 = 𝜀0 + 𝑞. Now we have

𝜀0(𝑞 + 1) + 𝜀1𝑞 ≥ �̃�(𝑇 ) =

𝑞
∑

𝑖=0

�̃�(𝐿𝑖)− 𝑞�̃�(𝑃 )

≥ (𝑞 + 1)(𝜀0 + 𝑞)− 𝑞�̃�(𝑃 )

≥ 𝜀0(𝑞 + 1) + 𝑞(𝑞 + 1)− 𝜀0𝑞.

This implies 𝑞+1 ≤ 𝜀0 + 𝜀1 < 2
√

𝑞, i.e. (
√

𝑞− 1)2 < 0, which is a contradiction. Therefore 𝜀′
1
= 0,

which proves the lemma.

Lemma 4. Let 𝒦 be 𝑡-quasidivisible Griesmer (𝑛,𝑤)-arc in PG(𝑘−1, 𝑞), 𝑞 ≥ 3 with 𝑑 = 𝑛−𝑤

given by (4.1). Let �̃� be defined by (3.1). Let 𝑈 be a subspace in PG(𝑘 − 1, 𝑞) with codim𝑈 = 𝑟,
1 ≤ 𝑟 ≤ 𝑘, which is of maximal multiplicity 𝑤𝑟 (if codim𝑈 = 𝑘, 𝑈 = ∅). If 𝜀0, 𝜀1, . . . , 𝜀𝑟−2 <

√

𝑞,
then

�̃�(𝑈) = 𝜀0𝑣𝑟−1.

Proof. Assume that the result is proved for all subspaces of codimension up to 𝑟 − 1. Note
that 𝑈 is an (𝑟 − 1)-dimensional subspace of P̃G(𝑘 − 1, 𝑞).

Let 𝑈 ⊂ 𝑆 be maximal subspaces of codimensions 𝑟 and 𝑟 − 2, respectively. Denote by 𝑇𝑖,
𝑖 = 0, . . . , 𝑞 , the subspaces through 𝑈 of codimension 𝑟−1 that are contained in 𝑆. Then at most
𝜀𝑟−2 of the subspaces 𝑇𝑖 are not of maximal multiplicity, i.e. at least 𝑞 + 1− 𝜀𝑟−2 of them are of
multiplicity 𝑤𝑟−1. Indeed, if the number of the maximal subspaces among the 𝑇𝑖’s is denoted by
𝛾, then we have 𝑤𝑟−2 ≤ (𝑞 + 1)𝑤𝑟−1 − 𝑞𝑤𝑟 − 𝛾, i.e.

𝛾 ≤ −𝑤𝑟−2 + (𝑞 + 1)𝑤𝑟−1 − 𝑞𝑤𝑟

= 𝜀𝑟−1𝑣2 + 𝜀𝑟−2𝑣1 − (𝑞 + 1)𝜀𝑟−1𝑣1

= 𝜀𝑟−2.

Since 𝑈 is a subspace of maximal multiplicity, there exists a maximal hyperplane 𝐻 containing
𝑈 . Hence 𝑈 contains a 0-point with respect to �̃�, say 𝑃 . In the case of codimension 𝑘, we can
take as 𝑃 any 0-point in P̃G(𝑘 − 1, 𝑞).

Consider a projection 𝜑 from 𝑃 onto some hyperplane 𝑉 in 𝑈 disjoint from 𝑃 . We have
𝑉 ∼= PG(𝑟 − 2, 𝑞). Define a new arc

ℱ =
1

𝑞
(�̃�𝜑

− 𝜀0).

For every point 𝑋 ∈ 𝑉 we have 0 ≤ ℱ(𝑋) ≤ 𝜀0 − 1. 𝜑(𝑈) is a subspace of dimension 𝑟 − 2,
𝜑(𝑇𝑖) are hyperplanes in 𝜑(𝑈 ) (dimension 𝑟 − 3), and 𝜑(𝑆) is a subspace of dimension 𝑟 − 4
contained in all 𝜑(𝑇𝑖) . By the induction hypothesis ℱ(𝜑(𝑇𝑖)) = 0 for 𝑇𝑖 of maximal multiplicity,
i.e. 𝒦(𝑇𝑖) = 𝑤𝑟−1. Without loss of generality 𝑇𝑖, 𝑖 = 𝜀𝑟−2, . . . , 𝑞, are maximal. So, the points
𝑋 ∈ 𝑉 with ℱ(𝑋) > 0 are contained in the subspaces 𝜑(𝑇𝑗) with 𝑗 ∈ {0, . . . , 𝜀𝑟−2 − 1}.

We can repeat the argument from the last two paragraphs to another subspace 𝑆′ of codimen-
sion 𝑟− 2 containing 𝑈 . We get that the points 𝑋 ∈ 𝑉 are contained in another 𝜀𝑟−2 subspaces of
𝜑(𝑈), say 𝜑(𝑇 ′

𝑗
) with 𝑗 ∈ {0, . . . , 𝜀𝑟−2−1}. So the non-zero points of ℱ are contained 𝜑(𝑇𝑖)∩𝜑(𝑇

′

𝑗
),

where 𝑖, 𝑗 ∈ {0, . . . , 𝜀𝑟−2 − 1}. Hence the number of points 𝑋 with ℱ(𝑋) > 0 does not exceed

𝜀2

𝑟−2
𝑣𝑟−3 ≤ 𝑞𝑣𝑟−3 = 𝑣𝑟−2 − 1.
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Let 𝑋 ∈ 𝑉 with ℱ = 𝑐 ≥ 0. Every point in 𝜑(𝑈) is incident with 𝑣𝑟−2 lines. Thus, there is a line
𝐿 ∈ 𝑉 through 𝑋 which contains apart from 𝑋 just 0-points. This line is the image of a plane
𝜋 which has 𝑞-lines of multiplicity 𝜀0 and one line of multiplicity 𝜀0 + 𝑐𝑞, where 𝑐 ≤ 𝜀0 − 1 (with
respect to �̃�). Thus, �̃�(𝜋) = 𝜀0(𝑞 + 1) + 𝑐𝑞 and, by Lemma 3, we should have 𝑐 = 0.

Thus, ℱ(𝑋) = 0 for all 𝑋 ∈ 𝑉 and all lines through 𝑃 in 𝑈 are 𝑡-lines. This proves the
lemma.

Now we can prove our main theorem.

Theorem 4. Let 𝒦 be a Griesmer (𝑛, 𝑛−𝑑)-arc which is 𝑡-quasidivisible modulo 𝑞 with 𝑑 given
by (4.1). Let 𝑡 = 𝜀0, . . . 𝜀𝑘−2 <

√

𝑞. Then 𝒦 is 𝑡-extendable.

Proof. By Lemma 4, �̃� is a (𝑡𝑣𝑘−1, 𝑡𝑣𝑘−2)-minihyper. By Corollary 3.5 from [8], every
(𝑥𝑣𝑘−1, 𝑥𝑣𝑘−2) minihyper in PG(𝑘− 1, 𝑞) with 𝑥 ≤ 𝑞−

𝑞

𝑝
is the sum of hyperplanes. Since 𝑡 <

√

𝑞 ,
the result follows.

We conclude with an example illustrating our approach to the extendability of incomplete
caps. Let 𝒦 be a (𝑞2 +1− 𝑡)-cap in PG(3, 𝑞) with 𝑡 <

√

𝑞. Assume the largest hyperplane (plane)
has multiplicity 𝑞 + 1. This is obviously always the case for odd 𝑞. The code 𝐶𝒦 associated with
𝒦 has parameters [𝑞2 + 1− 𝑡, 4, 𝑞2

− 𝑞 − 𝑡]𝑞 and 𝑑 = 𝑞2
− 𝑞 − 𝑡 = 𝑞3

− (𝑞 − 1)𝑞2
− 𝑞 − 𝑡, i.e. 𝑠 = 1,

𝜀2 = 𝑞 − 1, 𝜀1 = 1, 𝜀0 = 𝑡 <
√

𝑞. The admissible multiplicities of planes are 𝑞 + 1, . . . , 𝑞 + 1− 𝑡, 1
and 0. Since 𝜀2 ≥

√

𝑞, we cannot apply Theorem 4 directly. We can state only that if 𝐿 is a 2-line,

then �̃�(�̃�) = 𝑡. Nevertheless, we can prove the 𝑡-extendability of 𝒦.

At first, we prove that every point of 𝒦 is incident with an 1-plane. Consider a projection
from such 1-point 𝑃 onto a plane 𝜋 not incident with 𝑃 . The induced arc 𝒦𝜑 is a (𝑞2

− 𝑡, 𝑞)-arc
and its complement is a (𝑞+1− 𝑡, 1)-blocking set. Since 𝑡 <

√

𝑞, it contains a line 𝐿 and the plane

⟨𝐿, 𝑃 ⟩ is an 1-plane in PG(3, 𝑞). Now, by Lemma 1, �̃�(�̃�) = 𝑡.

Now consider an 1-line 𝐿0 and assume it is incident only with planes of multiplicity at least
𝑞+1− 𝑡. Consider one such plane 𝜋 with 𝒦(𝜋) = 𝑞− 𝑏, 𝑏 ≤ 𝑡− 1. Let 𝑃 be the 1-point on 𝐿0 and
denote the other 1-lines in 𝜋 by 𝐿1, . . . , 𝐿𝑏. One of them is on the 1-plane through 𝑃 . Consider
the plane 𝑃 in the dual geometry. Now 𝜋 is a 0-point and the 𝑞+1− 𝑏 of the lines through it are
𝑡-lines, while the remaining 𝑏 lines are 𝑡 or (𝑡 + 𝑞)-lines. This implies that �̃�(𝑃 ) ≤ 𝑡(𝑞 + 1) + 𝑏𝑞

and, by Lemma 3, we have 𝑏 = 0. So, we have proved that for every 1-line 𝐿, �̃�(�̃�) = 𝑡.

Now consider a 1-plane 𝜋. Let 𝐿 be a 0-line in 𝜋 which is contained in another 1-plane
(different from 𝜋). Counting the multiplicities of the planes through 𝐿, we get �̃�(�̃�) = 𝑡. There
are 𝑞2

− 𝑡 such lines. Hence 𝑞2 + 𝑞 + 1 − 𝑡 of the lines through 𝜋 are 𝑡-lines, and the remaining
lines have multiplicity 𝑡 or 𝑡+ 𝑞. Now ∣�̃�∣ = 𝑡(𝑞 + 1) + 𝑡𝑞 and, again by Lemma 3, ∣�̃�∣ = 𝑡(𝑞 + 1).
This implies that �̃� is a sum of planes and 𝒦 is 𝑡-extendable.
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In this paper we establish an analogue of the classical Lichnerowicz’ theorem giving a
sharp lower bound of the first non-zero eigenvalue of the sub-Laplacian on a compact
seven-dimensional quaternionic contact manifold, assuming a lower bound of the qc-
Ricci tensor, torsion tensor and its distinguished covariant derivatives.
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1. INTRODUCTION

The aim of this paper is to prove a seven-dimensional version of the main
result established in [22]. Namely, we give a sharp lower bound of the first non-
zero eigenvalue of the sub-Laplacian on a compact seven-dimensional quaternionic
contact (abbr. QC) manifold, assuming some condition on the qc-Ricci tensor,
torsion tensor and its derivatives. We pay attention to the fact that a similar result
has been established in our resent paper [23], in which it is concerned the so called
P-function and its non-negativity for any eigenfunction.

The problem concerning the sharp estimation of the first eigenvalue of the
sub-Laplacian arises from the classical Lichnerowicz’ theorem [33], giving a sharp
lower bound of the first eigenvalue of the (Riemannian) Laplacian on a compact
Riemannian manifold, assuming some a-priori estimate on the Ricci tensor. More
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precisely, it was shown in [33] that for every compact Riemannian manifold (𝑀, 𝑔)
of dimension 𝑛 for which the a-priori estimate

𝑅𝑖𝑐(𝑋,𝑌 ) ≥ (𝑛− 1)𝑔(𝑋,𝑌 ) (1.1)

holds true, the first positive eigenvalue 𝜆1 of the Laplacian satisfies the sharp esti-
mate

𝜆1 ≥ 𝑛. (1.2)

The above estimate is sharp in the sense that the equality is attained on the round
unit 𝑛-dimensional sphere 𝑆𝑛(1).

In a natural way, a similar question arises in the sub-Riemannian geometry.
Recently, a number of Lichnerowicz-type results have been established in the CR
case. All of them are provoked by the Greenleaf’s work [17], in which it is obtained
a Lichnerowicz-type result for a (2𝑛+ 1)-dimensional CR manifold, 𝑛 ≥ 3. Subse-
quently, the above result was extended to the case 𝑛 = 2 in [34], where the authors
have used Greenleaf’s method. Another, more restrictive result can be found in
[1]. In the quaternionic contact geometry a sharp estimate of the first eigenvalue of
the sub-Laplacian is established in [22] for the (4𝑛+3)-dimensional QC manifolds,
𝑛 ≥ 2.

The situation is more delicate in the lowest dimensions in the CR geometry
and the QC geometry. The reason that this happens is that in the low-dimensional
geometries appear some additional difficulties, which require a different geometric
analysis, see [18, 20] for the QC case. In the CR, as well as in the QC low-
dimensional geometries it is necessary to be involved some different methods in
comparison with these in the bigger dimensions. An exception to the rule is the
conformal flatness problem, where there are no differences between the seven and
the bigger dimensional cases in the QC geometry, in contrast to the CR geometry,
see [6, 12, 30, 25]. In the three-dimensional CR geometry a sharp estimate is
obtained in [13], where, in contrast to the higher dimensions, the author involves the
CR-Paneitz operator and imposes the additional assumption for its non-negativity
(some related results in the CR geometry appear in [7, 8, 9, 10] and [11]). In
the seven-dimensional QC geometry a similar result has been established in [23],
where the authors introduce a non-linear 𝐶 operator, motivated by the Paneitz
operators, which appear in the Riemannian and the CR geometries. Precisely, the
next theorem holds.

Theorem 1.1. [23] Let (𝑀, 𝑔,ℚ) be a compact quaternionic contact manifold
of dimension seven. Suppose there is a positive constant 𝑘0 such that the qc-Ricci
tensor 𝑅𝑖𝑐 and the torsion tensor 𝑇 0 satisfy the Lichnerowicz type inequality

𝑅𝑖𝑐(𝑋,𝑋) + 6𝑇 0(𝑋,𝑋) ≥ 𝑘0𝑔(𝑋,𝑋) (1.3)

for every horizontal vector field 𝑋. If, in addition, the 𝑃−function of any eigen-
function of the sub-Laplacian is non-negative, then for any eigenvalue 𝜆 of the
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sub-Laplacian △ we have the inequality

𝜆 ≥
1

3
𝑘0. (1.4)

Another proof of the main result in [22] is given in [23] via the (established)
non-negativity of the 𝑃 -function in the higher dimensions.

Another Lichnerowicz-type result in the 3D CR geometry is proved in [34],
where the Ricci tensor, the torsion tensor and some its covariant derivatives partake
in the a-priori condition. The main result of the present paper is namely a QC
analog of the upper result.

Our main result follows.

Theorem 1.2. Let (𝑀, 𝑔,ℚ) be a seven-dimensional compact quaternionic con-
tact manifold. Suppose there exists a positive constant 𝑘0 such that the qc-Ricci
tensor 𝑅𝑖𝑐 and the torsion tensor 𝑇 0 satisfy the Lichnerowicz type inequality

𝑅𝑖𝑐(𝑋,𝑋)− 2𝑇 0(𝑋,𝑋)−
36

𝑘0

𝐴(𝑋) ≥ 𝑘0𝑔(𝑋,𝑋) (1.5)

for any horizontal vector field 𝑋, where

𝐴(𝑋)
def
=

3
∑

𝑠=1

[1

6
(𝐼𝑠𝑋)2𝑆 + 2∣𝑇 (𝜉𝑠, 𝑋)∣2 −

2

9
𝐼𝑠𝑋

(

(∇𝑒𝑎
𝑇 0)(𝑒𝑎, 𝐼𝑠𝑋)

)

+
1

6
𝐼𝑠𝑋

(

(∇𝑒𝑎
𝑇 )(𝜉𝑢, 𝑒𝑎, 𝐼𝑡𝑋)− (∇𝑒𝑎

𝑇 )(𝜉𝑡, 𝑒𝑎, 𝐼𝑢𝑋)
)

− (∇𝜉𝑠
𝑇 )(𝜉𝑠, 𝑋,𝑋)

]

.

Then for the first nonzero eigenvalue 𝜆 of the sub-Laplacian the next sharp estimate
holds true

𝜆 ≥
1

3
𝑘0. (1.6)

The torsion tensor 𝑇 0, the QC-Ricci tensor 𝑅𝑖𝑐 and the normalized QC-scalar
curvature 𝑆 are defined in (2.6) and (2.11). See Convention 1.4 for the summation
rules in the definition of the function 𝐴(𝑋).

Another natural question that arises from the Riemannian geometry is study-
ing the case of equality in the estimate (1.6) of Theorem 1.2. The corresponding
problem in the Riemannian case was considered by Obata [36]. More precisely, as
a consequence of his general result it can be stated that the equality in (1.2) is
attained if and only if the Riemannian manifold (𝑀, 𝑔) is isometrical to the unit
sphere 𝑆𝑛(1) endowed with the round metric, as (1.1) holds. This result has pro-
voked a similar question in the sub-Riemannian geometry and in particular in the
CR geometry, where the problem is successfully solved, see [28, 29, 35].

The corresponding question in the QC geometry is completely resolved for
higher dimensions (𝑑𝑖𝑚𝑀 ≥ 11) in [24], but it remains still open in the seven-
dimensional case, except of the 3−Sasakian case [23, Corollary 1.2], where it was
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shown that the minimal possible eigenvalue of the sub-Laplacian is attained only
on the standard unit 3−Sasakian sphere (up to a QC-equivalence).

In [21] the authors describe explicitly the eigenfunctions corresponding to the
first eigenvalue of the sub-Laplacian on the standard unit 3−Sasakian sphere.

In connection with the studying of the equality cases in the estimates (1.4)
and (1.6) we get as a simple consequence from Theorem 1.1 and Theorem 1.2 the
following

Corollary 1.3. Let (𝑀, 𝑔,ℚ) be a compact quaternionic contact manifold of
dimension seven and 𝑓 be an arbitrary eigenfunction of the first eigenvalue 𝜆 of the
sub-Laplacian. Assume that some of the next a-priori conditions holds:

a) The inequality (1.3) is satisfied and 𝑇 0(∇𝑓,∇𝑓) ≥ 0 (resp. 𝑇 0(∇𝑓,∇𝑓) ≤ 0).

b) The inequality (1.5) is satisfied and 2𝑇 0(∇𝑓,∇𝑓) − 36

𝑘0

𝐴(∇𝑓) ≥ 0 (resp.

2𝑇 0(∇𝑓,∇𝑓)− 36

𝑘0

𝐴(∇𝑓) ≤ 0).

If, in addition, 𝜆 takes its minimal possible value, 𝜆 = 1

3
𝑘0, then the sharp estimate

𝑆 ≤
𝑘0

6
(resp. 𝑆 ≥

𝑘0

6
) (1.7)

holds true.

In order to simplify the exposition, we state the following

Convention 1.4. Throughout this paper we shall suppose that:

a) 𝑋,𝑌, 𝑍, 𝑈 denote horizontal vector fields, i.e. 𝑋,𝑌, 𝑍, 𝑈 ∈ Γ(𝐻), while 𝐴, 𝐵,
𝐶, 𝐷 denote arbitrary vector fields, i.e. 𝐴,𝐵,𝐶,𝐷 ∈ Γ(𝑇𝑀);

b) {𝑒1, . . . , 𝑒4𝑛} stands for a local orthonormal basis of the horizontal distribution
𝐻;

c) if two equal vectors from the basis {𝑒1, . . . , 𝑒4𝑛} appear in a given formula, then
we have summation over them. For example, for a (0,4)-tensor 𝑃 , the formula
𝑘 = 𝑃 (𝑒𝑏, 𝑒𝑎, 𝑒𝑎, 𝑒𝑏) means 𝑘 =

∑
4𝑛

𝑎,𝑏=1
𝑃 (𝑒𝑏, 𝑒𝑎, 𝑒𝑎, 𝑒𝑏);

d) the triples (𝑖, 𝑗, 𝑘) and (𝑠, 𝑡, 𝑢) denote cyclic permutations of (1, 2, 3);

e) 𝑠 is a number from the set {1, 2, 3}, 𝑠 ∈ {1, 2, 3}.

2. PRELIMINARIES ON THE QUATERNIONIC CONTACT GEOMETRY

The quaternionic contact structures were introduced by O. Biquard [4]. One
can think these are quaternionic analogues of the CR structures. We refer the
reader to [18], [25] and [27] for comprehensive exposition and further results.
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2.1. QUATERNIONIC CONTACT MANIFOLDS AND THE BIQUARD CONNECTION

Definition 2.1. A quaternionic contact (QC) structure on a (4𝑛+ 3)-dimen-
sional manifold 𝑀 is the data of co-dimension three distribution 𝐻 on 𝑀 (which
is called horizontal space), locally given as the kernel of a 1-form 𝜂 = (𝜂1, 𝜂2, 𝜂3)
(the contact form) with values in ℝ3, 𝐻 = 𝐾𝑒𝑟(𝜂), which satisfy:

1. 𝐻 is equipped with an 𝑆𝑝(𝑛)𝑆𝑝(1)-structure, i.e. there exist a Riemannian
metric 𝑔 on 𝐻 and a rank three bundle ℚ consisting of endomorphisms on
𝐻, locally generated by the three almost complex structures 𝐼𝑠 : 𝐻 → 𝐻,
𝑠 = 1, 2, 3, satisfying the quaternionic identities: 𝐼2

1
= 𝐼2

2
= 𝐼2

3
= −𝑖𝑑∣𝐻 ,

𝐼1𝐼2 = −𝐼2𝐼1 = 𝐼3, and which are Hermitian compatible with the metric:
𝑔(𝐼𝑠⋅, 𝐼𝑠⋅) = 𝑔(⋅, ⋅);

2. the compatibility conditions

2𝑔(𝐼𝑠𝑋,𝑌 ) = 𝑑𝜂𝑠(𝑋,𝑌 ), 𝑠 = 1, 2, 3,

hold.

A manifold 𝑀 , endowed with a QC structure, is called a quaternionic contact (QC)
manifold, and is denoted by (𝑀, 𝑔,ℚ) (or (𝑀, 𝑔,ℚ, 𝜂)).

Note that given a QC structure generates a 2-sphere bundle 𝑄 of almost com-
plex structures on 𝐻 , locally given by 𝑄 = {𝑎𝐼1 + 𝑏𝐼2 + 𝑐𝐼3∣𝑎

2 + 𝑏2 + 𝑐2 = 1}. As
Biquard shows in [4], given a contact form 𝜂 on 𝑀 determines in a unique way
the metric and the quaternionic structure on the horizontal space 𝐻 (if they exist).
Moreover, the rotation of the contact form and the quaternionic structure (i.e. the
almost complex structures 𝐼1, 𝐼2 and 𝐼3) by the same rotation gives again a contact
form and an almost complex structures, satisfying the above conditions (the metric
is unchanged). Another essential fact is that given a horizontal distribution and
a metric on it determine at most one 2-sphere bundle of associated contact forms
and a corresponding 2-sphere bundle of almost complex structures [4].

Basic (and essential) examples of QCmanifolds are the quaternionic Heisenberg
group G(ℍ) (the flat model), endowed with the corresponding QC structure, and
the 3-Sasakian manifolds, see [27].

On a quaternionic contact manifold with a fixed horizontal distribution 𝐻 and
a metric 𝑔 on it there exists a canonical connection, the Biquard connection, defined
in [4]. Precisely, the following theorem holds.

Theorem 2.2. [O. Biquard, [4]] Let (𝑀, 𝑔,ℚ) be a QC manifold of dimension
4𝑛+ 1 > 7 with a fixed horizontal distribution 𝐻 and a metric 𝑔 on it. Then there
exist a unique connection ∇ on 𝑀 with torsion tensor 𝑇 and a unique supplemen-
tary distribution 𝑉 to 𝐻 in 𝑇𝑀 , such that the following conditions hold:

1. ∇ preserves the decomposition 𝐻 ⊕ 𝑉 and the 𝑆𝑝(𝑛)𝑆𝑝(1)-structure on 𝐻,
i.e. ∇𝑔 = 0 and ∇𝜎 ∈ Γ(ℚ) for any section 𝜎 ∈ Γ(ℚ);
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2. the restriction of the torsion on 𝐻 is given by 𝑇 (𝑋,𝑌 ) = −[𝑋,𝑌 ]∣𝑉 and for
any vector field 𝜉 ∈ Γ(𝑉 ) the torsion endomorphism 𝑇𝜉(⋅) := 𝑇 (𝜉, ⋅)∣𝐻 of 𝐻
lies in (𝑠𝑝(𝑛)⊕ 𝑠𝑝(1))⊥ ⊂ 𝑔𝑙(4𝑛);

3. the connection on 𝑉 is generated by the natural identification 𝜑 of 𝑉 with the
subspace 𝑠𝑝(1) := 𝑠𝑝𝑎𝑛{𝐼1, 𝐼2, 𝐼3} of the endomorphisms on 𝐻, or in other
words, ∇𝜑 = 0.

Throughout this paper we shall denote by ∇ only the Biquard connection.
Note that in condition (2) of Theorem 2.2 the inner product < ⋅, ⋅ > of the endo-
morphisms on 𝐻 is given by

< Φ,Ψ >:=

4𝑛
∑

𝑎=1

𝑔(Φ(𝑒𝑎),Ψ(𝑒𝑎)), Φ,Ψ ∈ 𝐸𝑛𝑑(𝐻).

In [4] Biquard explicitly describes the supplementary subspace 𝑉 (the vertical
space) on the QC-manifolds of dimension bigger than seven. Namely, 𝑉 is lo-
cally generated by the three vector fields 𝜉1, 𝜉2 and 𝜉3 (called Reeb vector fields),
i.e. 𝑉 = 𝑠𝑝𝑎𝑛{𝜉1, 𝜉2, 𝜉3}, satisfying the conditions:

𝜂𝑠(𝜉𝑡) = 𝛿𝑠𝑡, (𝜉𝑠┘𝑑𝜂𝑡)∣𝐻 = −(𝜉𝑡┘𝑑𝜂𝑠)∣𝐻 , (𝜉𝑠┘𝑑𝜂𝑠)∣𝐻 = 0, (2.1)

where ┘ means the interior multiplication of a vector field and a differential form.
In the seven dimensional case the Biquard’s theorem is not always true. How-

ever, Duchemin [14] shows that if we assume the existence of the Reeb vector
fields, satisfying conditions (2.1), then Theorem 2.2 holds true. Because of this,
throughout this paper we shall assume that a QC structure in the 7D case satisfies
conditions (2.1).

The Riemannian metric 𝑔 on 𝐻 can be extended to a metric on the entire 𝑇𝑀
(i.e. to a Riemannian metric on𝑀) by the requirements 𝐻 ⊥ 𝑉 and 𝑔(𝜉𝑠, 𝜉𝑡) = 𝛿𝑠𝑡.

Note that the extended metric (which we shall again denote by 𝑔) is invariant under
the rotations in 𝑉, i.e. the action of the group 𝑆𝑂(3) on 𝑉, and of course is parallel
with respect to ∇, ∇𝑔 = 0.

The fundamental 2-forms 𝜔𝑠 of the quaternionic structure (ℚ, 𝑔) on 𝐻 are
defined in a standard way by

𝜔𝑠(𝑋,𝑌 ) := 𝑔(𝐼𝑠𝑋,𝑌 ), 𝑠 = 1, 2, 3,

and can be extended to 2-forms on 𝑀 by the requirement 𝜉┘𝜔𝑠 = 0, 𝜉 ∈ Γ(𝑉 ).
The covariant derivatives of the quaternionic structure and the Reeb vector

fields with respect to the Biquard connection are given by

∇𝐼𝑖 = −𝛼𝑗 ⊗ 𝐼𝑘 + 𝛼𝑘 ⊗ 𝐼𝑗 , ∇𝜉𝑖 = −𝛼𝑗 ⊗ 𝜉𝑘 + 𝛼𝑘 ⊗ 𝜉𝑗 , (2.2)

where 𝛼𝑠, 𝑠 = 1, 2, 3, are the 𝑠𝑝(1)-connection 1-forms of the Biquard connection.
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The orthonormal frame

{𝑒1, 𝑒2 = 𝐼1𝑒1, 𝑒3 = 𝐼2𝑒1, 𝑒4 = 𝐼3𝑒1, . . . , 𝑒4𝑛 = 𝐼3𝑒4𝑛−3, 𝜉1, 𝜉2, 𝜉3}

of 𝑇𝑀 is called a QC-normal frame at a given point 𝑝 ∈ 𝑀 , if the connection
1-forms of the Biquard connection vanishes at 𝑝. The existence of a QC-normal
frame at any point of 𝑀 is provided by Lemma 4.5 in [18].

2.2. INVARIANT DECOMPOSITIONS OF THE ENDOMORPHISMS OF 𝐻

Any endomorphism Ψ : 𝐻 → 𝐻 of 𝐻 can be decomposed in a unique way
into four 𝑆𝑝(𝑛)-invariant parts with respect to the quaternionic structure (ℚ, 𝑔) as
follows:

Ψ = Ψ+++ +Ψ+−− +Ψ−+− +Ψ−−+,

where Ψ+++ commutes with all three 𝐼𝑖, Ψ+−− commutes with 𝐼1 and anti-
commutes with the others two, etc. Further, we can regard Ψ as decomposed
into two 𝑆𝑝(𝑛)𝑆𝑝(1)-invariant parts with respect to (ℚ, 𝑔), Ψ = Ψ[3]+Ψ[−1], where
Ψ[3] = Ψ+++,Ψ[−1] = Ψ+−− + Ψ−+− + Ψ−−+. Note that in the above decompo-
sition the lower indices [3] and [−1] arise from the fact that Ψ[3] and Ψ[−1] appear
the projections of Ψ on the eigenspaces of the Casimir operator

Υ = 𝐼1 ⊗ 𝐼1 + 𝐼2 ⊗ 𝐼2 + 𝐼3 ⊗ 𝐼3,

corresponding, respectively, to the eigenvalues 3 and −1, see [5].
In the case 𝑛 = 1 an important fact is that the space of the symmetric en-

domorphisms of 𝐻 , commuting with all three almost complex structures 𝐼𝑠, is
one-dimensional. Consequently, the [3]-component Ψ[3] of any symmetric endo-
morphism Ψ of 𝐻 is proportional to the identity operator 𝐼𝑑∣𝐻 of 𝐻, explicitly,
Ψ[3] = −

𝑡𝑟Ψ

4
𝐼𝑑∣𝐻 .

2.3. THE TORSION AND THE CURVATURE OF BIQUARD CONNECTION

The torsion tensor 𝑇 of Biquard connection is defined as usually by

𝑇 (𝐴,𝐵) = ∇𝐴𝐵 −∇𝐵𝐴− [𝐴,𝐵].

The corresponding tensor of type (0, 3) via the metric 𝑔 is obtained in a standard
way and is denoted by the same letter, 𝑇 (𝐴,𝐵,𝐶) = 𝑔(𝑇 (𝐴,𝐵), 𝐶). The restriction
of the torsion to the horizontal space 𝐻 has the expression

𝑇 (𝑋,𝑌 ) = −[𝑋,𝑌 ]∣𝑉 = 2

3
∑

𝑠=1

𝜔𝑠(𝑋,𝑌 )𝜉𝑠,
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see [27]. For an arbitrary but fixed vertical vector field 𝜉 ∈ Γ(𝑉 ) one obtains an
endomorphism 𝑇𝜉 on 𝐻, defined by

𝑇𝜉(⋅) := 𝑇 (𝜉, ⋅)∣𝐻 : 𝐻 → 𝐻.

The torsion endomorphism 𝑇𝜉 is completely trace-free [4], i.e. 𝑡𝑟𝑇𝜉 = 𝑡𝑟(𝑇𝜉∘𝐼𝑠) = 0,
or explicitly

𝑇 (𝜉, 𝑒𝑎, 𝑒𝑎) = 𝑇 (𝜉, 𝑒𝑎, 𝐼𝑠𝑒𝑎) = 0. (2.3)

We shall need the identities

𝑇 (𝜉𝑖, 𝜉𝑘, 𝜉𝑖) = 𝑇 (𝜉𝑖, 𝜉𝑗 , 𝜉𝑖) = 0, (2.4)

see e.g. [27, Eqn. (4.34)]. The torsion endomorphism 𝑇𝜉 can be decomposed in a
standard way into a symmetric 𝑇 0

𝜉
and a skew-symmetric 𝑏𝜉 parts, 𝑇𝜉 = 𝑇 0

𝜉
+ 𝑏𝜉,

and the symmetric part enjoys the properties

𝑇 0

𝜉𝑖
𝐼𝑖 = −𝐼𝑖𝑇

0

𝜉𝑖
, 𝐼2(𝑇

0

𝜉2
)+−− = 𝐼1(𝑇

0

𝜉1
)−+−,

𝐼3(𝑇
0

𝜉3
)−+− = 𝐼2(𝑇

0

𝜉2
)−−+, 𝐼1(𝑇

0

𝜉1
)−−+ = 𝐼3(𝑇

0

𝜉3
)+−−.

(2.5)

For a fixed Reeb vector field 𝜉𝑖 the skew-symmetric part 𝑏𝜉𝑖 of 𝑇𝜉𝑖 can be represented
as 𝑏𝜉𝑖 = 𝐼𝑖𝑈, where 𝑈 is a traceless symmetric endomorphism of𝐻, which commutes
with all three almost complex structures 𝐼𝑠, 𝑠 = 1, 2, 3. As a consequence in the
case 𝑛 = 1 one obtains that the tensor 𝑈 vanishes identically, 𝑈 = 0, (see the end
of Subsection ) and the torsion endomorphism 𝑇𝜉 is a symmetric tensor, 𝑇𝜉 = 𝑇 0

𝜉
.

Ivanov et al. have introduced [18] the two 𝑆𝑝(𝑛)𝑆𝑝(1)-invariant symmetric and
traceless tensors 𝑇 0 and 𝑈 on 𝐻, defined by

𝑇 0(𝑋,𝑌 ) = 𝑔((𝑇 0

𝜉1
𝐼1 + 𝑇 0

𝜉2
𝐼2 + 𝑇 0

𝜉3
𝐼3)𝑋,𝑌 ) and 𝑈(𝑋,𝑌 ) = 𝑔(𝑈𝑋, 𝑌 ). (2.6)

These tensors satisfy the equalities

𝑇 0(𝑋,𝑌 ) + 𝑇 0(𝐼1𝑋, 𝐼1𝑌 ) + 𝑇 0(𝐼2𝑋, 𝐼2𝑌 ) + 𝑇 0(𝐼3𝑋, 𝐼3𝑌 ) = 0,

𝑈(𝑋,𝑌 ) = 𝑈(𝐼1𝑋, 𝐼1𝑌 ) = 𝑈(𝐼2𝑋, 𝐼2𝑌 ) = 𝑈(𝐼3𝑋, 𝐼3𝑌 ).
(2.7)

The symmetric part 𝑇 0

𝜉𝑠
of 𝑇𝜉𝑠 enjoys the property [25, Proposition 2.3]

4𝑇 0(𝜉𝑠, 𝐼𝑠𝑋,𝑌 ) = 𝑇 0(𝑋,𝑌 )− 𝑇 0(𝐼𝑠𝑋, 𝐼𝑠𝑌 ), (2.8)

where as usually 𝑇 0(𝜉,𝑋, 𝑌 ) = 𝑔(𝑇 0(𝜉,𝑋), 𝑌 )
(

= 𝑔(𝑇 0

𝜉
(𝑋), 𝑌 )

)

. As a corollary of

(2.7) and (2.8) we obtain the equality

𝑇 (𝜉𝑠, 𝐼𝑠𝑋,𝑌 ) = 𝑇 0(𝜉𝑠, 𝐼𝑠𝑋,𝑌 ) + 𝑔(𝐼𝑠𝑈𝐼𝑠𝑋,𝑌 )

=
1

4

[

𝑇 0(𝑋,𝑌 )− 𝑇 0(𝐼𝑠𝑋, 𝐼𝑠𝑌 )
]

− 𝑈(𝑋,𝑌 ).
(2.9)
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As a consequence of (2.7) and (2.9) we get

3
∑

𝑠=1

𝑇 (𝜉𝑠, 𝐼𝑠𝑋,𝑌 ) = 𝑇 0(𝑋,𝑌 )− 3𝑈(𝑋,𝑌 ). (2.10)

The curvature tensor 𝑅 of Biquard connection is defined in a standard way by

𝑅(𝐴,𝐵,𝐶) = ∇𝐴∇𝐵𝐶 −∇𝐵∇𝐴𝐶 −∇[𝐴,𝐵]𝐶.

The corresponding tensor of type (0, 4) with respect to the metric 𝑔 is denoted by
the same letter, 𝑅(𝐴,𝐵,𝐶,𝐷) := 𝑔(𝑅(𝐴,𝐵,𝐶), 𝐷).

There are several tensors, arising from the curvature tensor, which play crucial
role in the QC geometry. The QC-Ricci tensor 𝑅𝑖𝑐, the QC-scalar curvature 𝑆𝑐𝑎𝑙,
the normalized QC-scalar curvature 𝑆, the QC-Ricci forms 𝜌𝑠 and the Ricci-type
tensors 𝜁𝑠 of the Biquard connection are defined, respectively, by the following
formulas.

𝑅𝑖𝑐(𝐴,𝐵) = 𝑅(𝑒𝑏, 𝐴,𝐵, 𝑒𝑏), 𝑆𝑐𝑎𝑙 = 𝑅(𝑒𝑏, 𝑒𝑎, 𝑒𝑎, 𝑒𝑏), 8𝑛(𝑛+ 2)𝑆 = 𝑆𝑐𝑎𝑙,

𝜌𝑠(𝐴,𝐵) =
1

4𝑛
𝑅(𝐴,𝐵, 𝑒𝑎, 𝐼𝑠𝑒𝑎), 𝜁𝑠(𝐴,𝐵) =

1

4𝑛
𝑅(𝑒𝑎, 𝐴,𝐵, 𝐼𝑠𝑒𝑎).

(2.11)

Some significant relations between the upper objects and the torsion tensors are
established in [18] (see also [20, 25]). Namely, the following formulas hold true.

𝑅𝑖𝑐(𝑋,𝑌 ) = (2𝑛+ 2)𝑇 0(𝑋,𝑌 ) + (4𝑛+ 10)𝑈(𝑋,𝑌 ) + 2(𝑛+ 2)𝑆𝑔(𝑋,𝑌 ),

𝜁𝑠(𝑋, 𝐼𝑠𝑌 ) =
2𝑛+ 1

4𝑛
𝑇 0(𝑋,𝑌 ) +

1

4𝑛
𝑇 0(𝐼𝑠𝑋, 𝐼𝑠𝑌 )

+
2𝑛+ 1

2𝑛
𝑈(𝑋,𝑌 ) +

𝑆

2
𝑔(𝑋,𝑌 ),

𝑇 (𝜉𝑖, 𝜉𝑗) = −𝑆𝜉𝑘 − [𝜉𝑖, 𝜉𝑗 ]∣𝐻 , 𝑆 = −𝑔(𝑇 (𝜉1, 𝜉2), 𝜉3),

𝑔(𝑇 (𝜉𝑖, 𝜉𝑗), 𝑋) = −𝜌𝑘(𝐼𝑖𝑋, 𝜉𝑖) = −𝜌𝑘(𝐼𝑗𝑋, 𝜉𝑗) = −𝑔([𝜉𝑖, 𝜉𝑗 ], 𝑋).

(2.12)

In the seven dimensional case (𝑛 = 1) the above formulas are valid with 𝑈 = 0.
An important class of QC structures consists of the QC-Einstein structures,

defined as follows.

Definition 2.3. A QC structure is called QC-Einstein, if the horizontal re-
striction of the QC-Ricci tensor is proportional to the metric, i.e.

𝑅𝑖𝑐(𝑋,𝑌 ) = 2(𝑛+ 2)𝑆𝑔(𝑋,𝑌 ). (2.13)

A manifold endowed with a QC-Einstein structure is called QC-Einstein man-
ifold. The first equality in (2.12) implies that the QC-Einstein condition (the
equation (2.13)) is equivalent to the vanishing of the torsion endomorphism, i.e.
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𝑇 0 = 𝑈 = 0. An established in [18] result asserts that a QC-Einstein structure of
dimension greater than seven has constant QC-scalar curvature, and the vertical
distribution is integrable. The corresponding result in the seven-dimensional case
was established recently in [19].

Note that the vanishing of the horizontal restriction of the 𝑠𝑝(𝑛)-connection
1-forms 𝛼𝑠, 𝑠 = 1, 2, 3, implies the vanishing of the torsion endomorphism 𝑇𝜉 of the
Biquard connection, see [18].

Examples of QC-Einstein manifolds are the 3-Sasakian manifolds, since they
have zero torsion endomorphism. The converse is also true in a local sense, namely,
any QC-Einstein manifold with positive QC-scalar curvature is locally 3-Sasakian
[18] (see [26] for the case of negative QC-scalar curvature).

2.4. THE HORIZONTAL DIVERGENCE THEOREM AND THE SUB-LAPLACIAN

On a QC manifold (𝑀, 𝑔,ℚ) of dimension 4𝑛+ 3 the horizontal divergence of
a horizontal 1-form (or a horizontal vector field) 𝜔 ∈ Λ1(𝐻) is defined by

∇

∗𝜔 = −𝑡𝑟∣𝐻∇𝜔 = −∇𝜔(𝑒𝑎, 𝑒𝑎).

If 𝜂 = (𝜂1, 𝜂2, 𝜂3) is a fixed local contact form of the QC manifold then for an
arbitrary 𝑠 ∈ {1, 2, 3} the form 𝑉 𝑜𝑙𝜂 = 𝜂1 ∧ 𝜂2 ∧ 𝜂3 ∧ 𝜔

2𝑛

𝑠
is locally defined volume

form, which is independent of the choice of 𝑠 and the local 1-forms 𝜂1, 𝜂2 and 𝜂3.

Consequently, 𝑉 𝑜𝑙𝜂 is globally defined volume form on (𝑀, 𝑔,ℚ). If the QC manifold
is compact, the integration by parts over 𝑀 is possible due to the next divergence
formula: ∫

𝑀

(∇∗𝜔) 𝑉 𝑜𝑙𝜂 = 0,

see [18], [37].
For a smooth function 𝑓 on 𝑀 the horizontal Hessian ∇

2𝑓(⋅, ⋅) : Γ(𝐻) ×
Γ(𝐻)→ Λ0(𝑀) and the sub-Laplacian Δ𝑓 ∈ Λ0(𝑀) are defined in a standard way
by

∇

2𝑓(𝑋,𝑌 ) = (∇𝑋𝑑𝑓)(𝑌 ) and Δ𝑓 = ∇∗𝑑𝑓 = −∇2𝑓(𝑒𝑎, 𝑒𝑎).

By definition, the horizontal gradient of 𝑓 is the vector field ∇𝑓, s.t.

𝑔(∇𝑓,𝑋) = 𝑑𝑓(𝑋), 𝑋 ∈ Γ(𝐻).

Any (non-zero) smooth function 𝑓 satisfying the equation Δ𝑓 = 𝜆𝑓 for some
constant 𝜆 is called eigenfunction, corresponding to the eigenvalue 𝜆 of Δ. In the
case of compact 𝑀 the last equation and the divergence formula yield the non-
negativity of the spectrum of the sub-Laplacian.
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3. SOME BASIC IDENTITIES

In this section we list some identities which we shall use in the proof of the
main results. We shall need the following Ricci identities [18, 27]

∇

2𝑓(𝑋,𝑌 )−∇2𝑓(𝑌,𝑋) = −2

3
∑

𝑠=1

𝜔𝑠(𝑋,𝑌 )𝑑𝑓(𝜉𝑠),

∇

2𝑓(𝑋, 𝜉𝑠)−∇
2𝑓(𝜉𝑠, 𝑋) = 𝑇 (𝜉𝑠, 𝑋,∇𝑓),

∇

3𝑓(𝜉𝑖, 𝑋, 𝑌 ) = ∇3𝑓(𝑋,𝑌, 𝜉𝑖)−∇
2𝑓 (𝑇 (𝜉𝑖, 𝑋) , 𝑌 )−∇2𝑓 (𝑋,𝑇 (𝜉𝑖, 𝑌 ))

− 𝑑𝑓 ((∇𝑋𝑇 ) (𝜉𝑖, 𝑌 ))−𝑅(𝜉𝑖, 𝑋, 𝑌,∇𝑓).

(3.1)

As a consequence of the first identity in (3.1) we get

𝑔(∇2𝑓, 𝜔𝑠) = ∇
2𝑓(𝑒𝑎, 𝐼𝑠𝑒𝑎) = −4𝑛𝑑𝑓(𝜉𝑠). (3.2)

The next basic formula we shall need is a representation of the curvature tensor
[25, 27]

𝑅(𝜉𝑖, 𝑋, 𝑌, 𝑍)=−(∇𝑋𝑈)(𝐼𝑖𝑌, 𝑍)+𝜔𝑗(𝑋,𝑌 )𝜌𝑘(𝐼𝑖𝑍, 𝜉𝑖)−𝜔𝑘(𝑋,𝑌 )𝜌𝑗(𝐼𝑖𝑍, 𝜉𝑖)

− 𝜔𝑗(𝑋,𝑍)𝜌𝑘(𝐼𝑖𝑌, 𝜉𝑖) + 𝜔𝑘(𝑋,𝑍)𝜌𝑗(𝐼𝑖𝑌, 𝜉𝑖)

− 𝜔𝑗(𝑌, 𝑍)𝜌𝑘(𝐼𝑖𝑋, 𝜉𝑖) + 𝜔𝑘(𝑌, 𝑍)𝜌𝑗(𝐼𝑖𝑋, 𝜉𝑖)

−

1

4

[

(∇𝑌 𝑇
0)(𝐼𝑖𝑍,𝑋) + (∇𝑌 𝑇

0)(𝑍, 𝐼𝑖𝑋)
]

+
1

4

[

(∇𝑍𝑇
0)(𝐼𝑖𝑌,𝑋) + (∇𝑍𝑇

0)(𝑌, 𝐼𝑖𝑋)
]

,

(3.3)

where the Ricci 2-forms are given by (see [25] or [27])

6(2𝑛+ 1)𝜌𝑠(𝜉𝑠, 𝑋) =(2𝑛+ 1)𝑋(𝑆) +
1

2
(∇𝑒𝑎

𝑇 0)[(𝑒𝑎, 𝑋)− 3(𝐼𝑠𝑒𝑎, 𝐼𝑠𝑋)]

− 2(∇𝑒𝑎
𝑈)(𝑒𝑎, 𝑋),

6(2𝑛+ 1)𝜌𝑖(𝜉𝑗 , 𝐼𝑘𝑋) =− 6(2𝑛+ 1)𝜌𝑖(𝜉𝑘, 𝐼𝑗𝑋)

=(2𝑛− 1)(2𝑛+ 1)𝑋(𝑆)−
4𝑛+ 1

2
(∇𝑒𝑎

𝑇 0)(𝑒𝑎, 𝑋)

−

3

2
(∇𝑒𝑎

𝑇 0)(𝐼𝑖𝑒𝑎, 𝐼𝑖𝑋)− 4(𝑛+ 1)(∇𝑒𝑎
𝑈)(𝑒𝑎, 𝑋).

(3.4)

By the well-known formula for the relation between two metric connections,
we obtain the next one in the case of the Biquard connection ∇ and the Levi-Civita
connection ∇𝑔 of the extended Riemannian metric 𝑔:

𝑔(∇𝐴𝐵,𝐶)− 𝑔(∇𝑔

𝐴
𝐵,𝐶) =

1

2

(

𝑇 (𝐴,𝐵,𝐶)− 𝑇 (𝐵,𝐶,𝐴) + 𝑇 (𝐶,𝐴,𝐵)
)

. (3.5)
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4. PROOF OF THEOREM 1.2

Let 𝜆 is the first (non-zero) eigenvalue of the sub-Laplacian and 𝑓 is a smooth
function on 𝑀 that satisfies the equalities

Δ𝑓 = 𝜆𝑓 and

∫

𝑀

𝑓2 𝑉 𝑜𝑙𝜂 = 1. (4.1)

Note that the second equality in (4.1) can be always obtained by a suitable constant
rescaling of 𝑓 . The proof of Theorem 1.2 depends on a number of lemmas, which
we formulate and prove below. We start with the following

Lemma 4.1. Let (𝑀, 𝑔,ℚ) be a compact quaternionic contact manifold of
dimension seven. Then the following integral inequality holds true

∫

𝑀

[

𝑅𝑖𝑐(∇𝑓,∇𝑓)− 2𝑇 0(∇𝑓,∇𝑓)−
3

4
𝜆∣∇𝑓 ∣2 − 12

3
∑

𝑠=1

(

𝑑𝑓(𝜉𝑠)
)2]

𝑉 𝑜𝑙𝜂 ≤ 0. (4.2)

Proof. Following [34], we start with the Bochner-type formula, established in
our previous paper [22, Eqn. (3.3)]

−

1

2
△∣∇𝑓 ∣2 =∣∇2𝑓 ∣2 − 𝑔 (∇(△𝑓),∇𝑓) +𝑅𝑖𝑐(∇𝑓,∇𝑓)

+ 2

3
∑

𝑠=1

𝑇 (𝜉𝑠, 𝐼𝑠∇𝑓,∇𝑓) + 4

3
∑

𝑠=1

∇

2𝑓(𝜉𝑠, 𝐼𝑠∇𝑓).
(4.3)

Similarly to the case of higher dimensions, this formula is a crucial ingredient of
the proof of the desired estimate. The next basic formula is [23, Eqn. (3.3)]

3
∑

𝑠=1

∇

2𝑓(𝜉𝑠, 𝐼𝑠𝑋) =
1

4𝑛

3
∑

𝑠=1

∇

3𝑓(𝐼𝑠𝑋, 𝐼𝑠𝑒𝑎, 𝑒𝑎)−

3
∑

𝑠=1

𝑇 (𝜉𝑠, 𝐼𝑠𝑋,∇𝑓). (4.4)

Integrating over 𝑀 the both sides of (4.4) for 𝑛 = 1 and 𝑋 = ∇𝑓 and using the
integral identity

∫

𝑀

3
∑

𝑠=1

∇

3𝑓(𝐼𝑠∇𝑓, 𝐼𝑠𝑒𝑎, 𝑒𝑎)𝑉 𝑜𝑙𝜂 = −16

∫

𝑀

3
∑

𝑠=1

(

𝑑𝑓(𝜉𝑠)
)2

𝑉 𝑜𝑙𝜂 (4.5)

and (2.10), we obtain

∫

𝑀

3
∑

𝑠=1

∇

2𝑓(𝜉𝑠, 𝐼𝑠∇𝑓)𝑉 𝑜𝑙𝜂 = −

∫

𝑀

[

4

3
∑

𝑠=1

(

𝑑𝑓(𝜉𝑠)
)2

+ 𝑇 0(∇𝑓,∇𝑓)
]

𝑉 𝑜𝑙𝜂. (4.6)

It should be pointed out that in our calculations for getting (4.5) we have used
(3.2), an integration by parts and the 𝑆𝑝(𝑛)𝑆𝑝(1)−invariance of the expression
∑

3

𝑠=1
∇

3𝑓(𝐼𝑠∇𝑓, 𝐼𝑠𝑒𝑎, 𝑒𝑎), which allows us to work in a QC-normal frame.
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Further, we take the next inequalities for the 𝑆𝑝(𝑛)𝑆𝑝(1)-invariant parts of the
horizontal Hessian, [22, Eqs. (4.6) and (4.7)],

∣(∇2𝑓)[−1]∣
2
≥ 4𝑛

3
∑

𝑠=1

(

𝑑𝑓(𝜉𝑠)
)2

, ∣(∇2𝑓)[3]∣
2
≥

1

4𝑛
(△𝑓)2,

which in the seven-dimensional case (𝑛 = 1) give the next inequality for the norm
of the horizontal Hessian:

∣∇

2𝑓 ∣2 = ∣(∇2𝑓)[−1]∣
2 + ∣(∇2𝑓)[3]∣

2
≥ 4

3
∑

𝑠=1

(

𝑑𝑓(𝜉𝑠)
)2

+
1

4
(Δ𝑓)2. (4.7)

Taking into account the divergence formula, we get the integral identity

∫

𝑀

(△𝑓)2 𝑉 𝑜𝑙𝜂 = 𝜆

∫

𝑀

∣∇𝑓 ∣2 𝑉 𝑜𝑙𝜂. (4.8)

Finally, integrating (4.3) over 𝑀 and using (2.10), (4.6), (4.7) and (4.8), we
obtain (4.2).

Our next goal is to find a suitable estimate of the term
∫

𝑀

∑
3

𝑠=1

(

𝑑𝑓(𝜉𝑠)
)2

𝑉 𝑜𝑙𝜂

which appears in (4.2). The aim of the following results is to establish one such
estimate.

Lemma 4.2. [”Vertical Bochner formula”] Let 𝜙 be a smooth function on a
QC manifold (𝑀, 𝑔,ℚ) of dimension 4𝑛+3. Then the following formula holds true:

3
∑

𝑠=1

Δ(𝜉𝑠𝜙)
2 = 2

3
∑

𝑠=1

[

− ∣∇(𝜉𝑠𝜙)∣
2 + 𝑑𝜙(𝜉𝑠)𝜉𝑠(Δ𝜙) − 𝑑𝜙(𝜉𝑠)𝑅(𝜉𝑠, 𝑒𝑎, 𝑒𝑎,∇𝜙)

−𝑑𝜙(𝜉𝑠)(∇𝑒𝑎
𝑇 )(𝜉𝑠, 𝑒𝑎,∇𝜙)− 2𝑑𝜙(𝜉𝑠)𝑔

(

𝑇𝜉𝑠 ,∇
2𝜙

)]

.

(4.9)

Proof. First, it should be noted that the tensor 𝑇𝜉𝑠 appearing in the last term of
the right-hand side of (4.9) is assumed to be the tensor of type (0, 2), corresponding
to the torsion endmorphism 𝑇𝜉𝑠 via 𝑔. The left-hand side of the desired equality
(4.9) is an 𝑆𝑝(𝑛)𝑆𝑝(1)-invariant and hence we can carry out our computations in
a QC-normal frame. Using the first and the third Ricci identity in (3.1) and the
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properties of the torsion endomorphism, after some standard calculations we obtain

3
∑

𝑠=1

Δ(𝜉𝑠𝜙)
2 =2

3
∑

𝑠=1

[

− ∣∇(𝜉𝑠𝜙)∣
2 + 𝑑𝜙(𝜉𝑠)Δ(𝜉𝑠𝜙)

]

=2

3
∑

𝑠=1

[

− ∣∇(𝜉𝑠𝜙)∣
2
− 𝑑𝜙(𝜉𝑠)∇

3𝜙(𝑒𝑎, 𝑒𝑎, 𝜉𝑠)
]

=2

3
∑

𝑠=1

[

− ∣∇(𝜉𝑠𝜙)∣
2
− 𝑑𝜙(𝜉𝑠)

(

∇

3𝜙(𝜉𝑠, 𝑒𝑎, 𝑒𝑎) +∇
2𝜙(𝑇 (𝜉𝑠, 𝑒𝑎), 𝑒𝑎)

+∇2𝜙(𝑒𝑎, 𝑇 (𝜉𝑠, 𝑒𝑎)) + 𝑑𝜙((∇𝑒𝑎
𝑇 )(𝜉𝑠, 𝑒𝑎)) +𝑅(𝜉𝑠, 𝑒𝑎, 𝑒𝑎,∇𝜙)

)]

=2

3
∑

𝑠=1

[

− ∣∇(𝜉𝑠𝜙)∣
2 + 𝑑𝜙(𝜉𝑠)𝜉𝑠(Δ𝜙) − 𝑑𝜙(𝜉𝑠)𝑅(𝜉𝑠, 𝑒𝑎, 𝑒𝑎,∇𝜙)

− 𝑑𝜙(𝜉𝑠)(∇𝑒𝑎
𝑇 )(𝜉𝑠, 𝑒𝑎,∇𝜙)− 2𝑑𝜙(𝜉𝑠)𝑔

(

𝑇𝜉𝑠 ,∇
2𝜙

)]

,

which completes the proof of Lemma 4.2.

Applying (4.9) to the case of a seven-dimensional QC manifold and an eigen-
function 𝑓 on it, we obtain the next lemma.

Lemma 4.3. On a QC manifold (𝑀, 𝑔,ℚ) of dimension seven the following
formula holds true:

3
∑

𝑠=1

Δ(𝜉𝑠𝑓)
2 =2

3
∑

𝑠=1

[

− ∣∇(𝜉𝑠𝑓)∣
2 + 𝜆

(

𝑑𝑓(𝜉𝑠)
)2

−

2

3
𝑑𝑓(𝜉𝑠)𝑑𝑆(𝐼𝑠∇𝑓)

−

2

3
𝑑𝑓(𝜉𝑠)

(

(∇𝑒𝑎
𝑇 0)(𝜉𝑢, 𝑒𝑎, 𝐼𝑡∇𝑓)− (∇𝑒𝑎

𝑇 0)(𝜉𝑡, 𝑒𝑎, 𝐼𝑢∇𝑓)
)

+
8

9
𝑑𝑓(𝜉𝑠)(∇𝑒𝑎

𝑇 0)(𝑒𝑎, 𝐼𝑠∇𝑓)− 2𝑑𝑓(𝜉𝑠)𝑒𝑎

(

𝑇 (𝜉𝑠, 𝑒𝑎,∇𝑓)
)]

.

(4.10)

Proof. As in the proof of the previous lemma, we can work in a QC-normal
frame. Using the properties of the torsion tensor, listed in Subsection 2.3, we get

3
∑

𝑠=1

𝑑𝑓(𝜉𝑠)(∇𝑒𝑎
𝑇 )(𝜉𝑠, 𝑒𝑎,∇𝑓)

= −
1

4

3
∑

𝑠=1

𝑑𝑓(𝜉𝑠)
[

(∇𝑒𝑎
𝑇 0)(∇𝑓, 𝐼𝑠𝑒𝑎) + (∇𝑒𝑎

𝑇 0)(𝐼𝑠∇𝑓, 𝑒𝑎)
]

.

(4.11)
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Next we use (3.3) and the properties of the torsion tensor to obtain

3
∑

𝑠=1

𝑑𝑓(𝜉𝑠)𝑅(𝜉𝑠, 𝑒𝑎, 𝑒𝑎,∇𝑓)

=

3
∑

𝑠=1

𝑑𝑓(𝜉𝑠)
[

−

1

4

(

(∇𝑒𝑎
𝑇 0)(𝐼𝑠∇𝑓, 𝑒𝑎) + (∇𝑒𝑎

𝑇 0)(∇𝑓, 𝐼𝑠𝑒𝑎)
)

− 2𝜔𝑡(𝑒𝑎,∇𝑓)𝜌𝑢(𝐼𝑠𝑒𝑎, 𝜉𝑠) + 2𝜔𝑢(𝑒𝑎,∇𝑓)𝜌𝑡(𝐼𝑠𝑒𝑎, 𝜉𝑠)
]

.

(4.12)

We use representations (3.4) for the Ricci 2-forms that appear in (4.12) to obtain

𝜌𝑢(𝐼𝑠𝑒𝑎, 𝜉𝑠) = −
1

6
𝑑𝑆(𝐼𝑢𝑒𝑎) +

5

36
(∇𝑒𝑏

𝑇 0)(𝑒𝑏, 𝐼𝑢𝑒𝑎)−
1

12
(∇𝑒𝑏

𝑇 0)(𝐼𝑢𝑒𝑏, 𝑒𝑎),

𝜌𝑡(𝐼𝑠𝑒𝑎, 𝜉𝑠) = −
1

6
𝑑𝑆(𝐼𝑡𝑒𝑎) +

5

36
(∇𝑒𝑏

𝑇 0)(𝑒𝑏, 𝐼𝑡𝑒𝑎)−
1

12
(∇𝑒𝑏

𝑇 0)(𝐼𝑡𝑒𝑏, 𝑒𝑎).

(4.13)

Substituting (4.11), (4.12) and (4.13) in the right-hand side of (4.9) and using
the properties of the torsion tensor, we get (4.10) after a number of standard
computations.

An integral equality, which is one of the main instruments for derivation of the

needed sharp estimate for the term
∫

𝑀

∑
3

𝑠=1

(

𝑑𝑓(𝜉𝑠)
)2

𝑉 𝑜𝑙𝜂 appearing in (4.2), is

given in the next lemma.

Lemma 4.4. On a seven-dimensional compact QC manifold (𝑀, 𝑔,ℚ) the
following integral formula holds true:

∫

𝑀

3
∑

𝑠=1

∣∇(𝜉𝑠𝑓)∣
2 𝑉 𝑜𝑙𝜂

=

∫

𝑀

3
∑

𝑠=1

[

2∣𝑇 (𝜉𝑠,∇𝑓)∣
2 +

1

6
(𝐼𝑠∇𝑓)

2𝑆 −
2

9
𝐼𝑠∇𝑓

(

(∇𝑒𝑎
𝑇 0)(𝑒𝑎, 𝐼𝑠∇𝑓)

)

+
1

6
𝐼𝑠∇𝑓

(

(∇𝑒𝑎
𝑇 )(𝜉𝑢, 𝑒𝑎, 𝐼𝑡∇𝑓)

)

−

1

6
𝐼𝑠∇𝑓

(

(∇𝑒𝑎
𝑇 )(𝜉𝑡, 𝑒𝑎, 𝐼𝑢∇𝑓)

)

− (∇𝜉𝑠
𝑇 )(𝜉𝑠,∇𝑓,∇𝑓) + 𝜆

(

𝑑𝑓(𝜉𝑠)
)2]

𝑉 𝑜𝑙𝜂.

(4.14)

Proof. We begin with integrating over 𝑀 the both sides of (4.10). We shall
work as before in a QC-normal frame in view of the 𝑆𝑝(𝑛)𝑆𝑝(1)-invariance of the
tensors under consideration. Having in mind the divergence formula, we shall
simplify some of the terms that appear under the integral.
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Using (3.2) and integration by parts, after some standard calculations we get
the identities

∫

𝑀

3
∑

𝑠=1

𝑑𝑓(𝜉𝑠)𝑑𝑆(𝐼𝑠∇𝑓)𝑉 𝑜𝑙𝜂 = −
1

4

∫

𝑀

3
∑

𝑠=1

(𝐼𝑠∇𝑓)
2𝑆 𝑉 𝑜𝑙𝜂, (4.15)

∫

𝑀

3
∑

𝑠=1

𝑑𝑓(𝜉𝑠)(∇𝑒𝑎
𝑇 0)(𝑒𝑎, 𝐼𝑠∇𝑓)𝑉 𝑜𝑙𝜂

= −
1

4

∫

𝑀

3
∑

𝑠=1

𝐼𝑠∇𝑓

(

(∇𝑒𝑎
𝑇 0)(𝑒𝑎, 𝐼𝑠∇𝑓)

)

𝑉 𝑜𝑙𝜂,

(4.16)

∫

𝑀

3
∑

𝑠=1

𝑑𝑓(𝜉𝑠)(∇𝑒𝑎
𝑇 )(𝜉𝑢, 𝑒𝑎, 𝐼𝑡∇𝑓)𝑉 𝑜𝑙𝜂

= −
1

4

∫

𝑀

3
∑

𝑠=1

𝐼𝑠∇𝑓

(

(∇𝑒𝑎
𝑇 )(𝜉𝑢, 𝑒𝑎, 𝐼𝑡∇𝑓)

)

𝑉 𝑜𝑙𝜂.

(4.17)

In order to transform the term
∫

𝑀

∑
3

𝑠=1
𝑑𝑓(𝜉𝑠)𝑒𝑎

(

𝑇 (𝜉𝑠, 𝑒𝑎,∇𝑓)
)

𝑉 𝑜𝑙𝜂, let us

introduce some auxiliary notation and facts. We denote by 𝑑𝑖𝑣∇ and 𝑑𝑖𝑣∇
𝑔

the
divergences corresponding to the Biquard connection ∇ and to the Levi-Civita
connection ∇𝑔, respectively. For any vertical vector field 𝜉 on a QC manifold of
dimension 4𝑛+ 3 we have

𝑑𝑖𝑣∇
𝑔

(𝜉) =

4𝑛
∑

𝑎=1

𝑔(∇𝑔

𝑒𝑎
𝜉, 𝑒𝑎) +

3
∑

𝑠=1

𝑔(∇𝑔

𝜉𝑠
𝜉, 𝜉𝑠)

=

4𝑛
∑

𝑎=1

𝑔(∇𝑒𝑎
𝜉, 𝑒𝑎) +

3
∑

𝑠=1

𝑔(∇𝜉𝑠
𝜉, 𝜉𝑠)

= 𝑑𝑖𝑣∇(𝜉),

(4.18)

where for the second equality we have used (3.5) and the properties of the torsion
tensor (2.3) and (2.4). Since the volume form 𝑉 𝑜𝑙𝜂 differs from the Riemannian vol-
ume form 𝑑𝜇𝑔 by a constant multiplier 𝐶, 𝑉 𝑜𝑙𝜂 = 𝐶.𝑑𝜇𝑔 , we get by the Riemannian
divergence formula and (4.18)

∫

𝑀

𝑑𝑖𝑣∇(𝜉)𝑉 𝑜𝑙𝜂 = 𝐶

∫

𝑀

𝑑𝑖𝑣∇(𝜉) 𝑑𝜇𝑔 = 𝐶

∫

𝑀

𝑑𝑖𝑣∇
𝑔

(𝜉) 𝑑𝜇𝑔 = 0. (4.19)
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We have
∫

𝑀

3
∑

𝑠=1

𝑑𝑓(𝜉𝑠)𝑒𝑎

(

𝑇 (𝜉𝑠, 𝑒𝑎,∇𝑓)
)

𝑉 𝑜𝑙𝜂

=−

∫

𝑀

3
∑

𝑠=1

∇

2𝑓(𝑒𝑎, 𝜉𝑠)𝑇 (𝜉𝑠, 𝑒𝑎,∇𝑓)𝑉 𝑜𝑙𝜂

=−

∫

𝑀

3
∑

𝑠=1

[

𝑇 (𝜉𝑠, 𝑒𝑎,∇𝑓)𝑇 (𝜉𝑠, 𝑒𝑎,∇𝑓)

+∇2𝑓(𝜉𝑠, 𝑒𝑎)𝑇 (𝜉𝑠, 𝑒𝑎,∇𝑓)
]

𝑉 𝑜𝑙𝜂

=−

∫

𝑀

3
∑

𝑠=1

[

∣𝑇 (𝜉𝑠,∇𝑓)∣
2
− 𝑑𝑓(𝑒𝑎)𝜉𝑠

(

𝑇 (𝜉𝑠, 𝑒𝑎,∇𝑓)
)]

𝑉 𝑜𝑙𝜂

=

∫

𝑀

3
∑

𝑠=1

[

− ∣𝑇 (𝜉𝑠,∇𝑓)∣
2 +

1

2
(∇𝜉𝑠

𝑇 )(𝜉𝑠,∇𝑓,∇𝑓)
]

𝑉 𝑜𝑙𝜂,

(4.20)

where we have used integration by parts for the first equality in the above chain,
next we took into account the second Ricci identity in (3.1) to obtain the second
one, and finally, in order to get the third and the fourth equalities , we have used
(4.19) for the vertical vector field 𝜉 := 𝑇 (𝜉𝑠,∇𝑓,∇𝑓)𝜉𝑠.

Now, substituting (4.15), (4.16), (4.17) and (4.20) in the integrated over 𝑀
equality (4.10), we get (4.14).

An important role for obtaining the desired estimate plays the integral equality

∫

𝑀

3
∑

𝑠=1

(

𝑑𝑓(𝜉𝑠)
)2

𝑉 𝑜𝑙𝜂 =
1

4

∫

𝑀

3
∑

𝑠=1

𝑑𝑓(𝐼𝑠𝑒𝑎)𝑑(𝜉𝑠𝑓)(𝑒𝑎)𝑉 𝑜𝑙𝜂, (4.21)

which follows easily by (3.2) and an integration by parts. We have:

3
∑

𝑠=1

∫

𝑀

𝜆

(

𝑑𝑓(𝜉𝑠)
)2

𝑉 𝑜𝑙𝜂 =

3
∑

𝑠=1

∫

𝑀

𝜆

4
𝑑𝑓(𝐼𝑠𝑒𝑎)𝑑(𝜉𝑠𝑓)(𝑒𝑎)𝑉 𝑜𝑙𝜂

≤

3
∑

𝑠=1

[ ∫

𝑀

𝜆2

16

(

𝑑𝑓(𝐼𝑠𝑒𝑎)
)2

𝑉 𝑜𝑙𝜂

] 1

2

[ ∫

𝑀

(

𝑑(𝜉𝑠𝑓)(𝑒𝑎)
)2

𝑉 𝑜𝑙𝜂

] 1

2

≤

1

2

3
∑

𝑠=1

[ ∫

𝑀

𝜆2

16

(

𝑑𝑓(𝐼𝑠𝑒𝑎)
)2

𝑉 𝑜𝑙𝜂 +

∫

𝑀

(

𝑑(𝜉𝑠𝑓)(𝑒𝑎)
)2

𝑉 𝑜𝑙𝜂

]

=
3𝜆2

32

∫

𝑀

∣∇𝑓 ∣2 𝑉 𝑜𝑙𝜂 +
1

2

3
∑

𝑠=1

∫

𝑀

∣∇(𝜉𝑠𝑓)∣
2 𝑉 𝑜𝑙𝜂.

(4.22)

For the above chain we have used (4.21) to obtain the first equality and the Cauchy-
Schwarz inequality for the integral scalar product to get the first inequality. The
second inequality is obtained in an obvious manner.
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Using the notation 𝐴(𝑋) from the statement of Theorem 1.2, the equality
(4.14) takes the form

∫

𝑀

3
∑

𝑠=1

∣∇(𝜉𝑠𝑓)∣
2 𝑉 𝑜𝑙𝜂 =

∫

𝑀

[

𝐴(∇𝑓) +

3
∑

𝑠=1

𝜆

(

𝑑𝑓(𝜉𝑠)
)2]

𝑉 𝑜𝑙𝜂,

which, combined with (4.22), gives the next integral inequality

3
∑

𝑠=1

∫

𝑀

∣∇(𝜉𝑠𝑓)∣
2 𝑉 𝑜𝑙𝜂 ≤

∫

𝑀

[

2𝐴(∇𝑓) +
3𝜆2

16
∣∇𝑓 ∣2

]

𝑉 𝑜𝑙𝜂. (4.23)

For any constant 𝑏 > 0 we have the following chain of relations:

3
∑

𝑠=1

∫

𝑀

(

𝑑𝑓(𝜉𝑠)
)2

𝑉 𝑜𝑙𝜂 =
3
∑

𝑠=1

∫

𝑀

√

𝑏

4
𝑑𝑓(𝐼𝑠𝑒𝑎)

1
√

𝑏
𝑑(𝜉𝑠𝑓)(𝑒𝑎)𝑉 𝑜𝑙𝜂

≤

3
∑

𝑠=1

[ 𝑏

16

∫

𝑀

(

𝑑𝑓(𝐼𝑠𝑒𝑎)
)2

𝑉 𝑜𝑙𝜂

] 1

2

[1

𝑏

∫

𝑀

(

𝑑(𝜉𝑠𝑓)(𝑒𝑎)
)2

𝑉 𝑜𝑙𝜂

] 1

2

≤

3𝑏

32

∫

𝑀

∣∇𝑓 ∣2 𝑉 𝑜𝑙𝜂 +
1

2𝑏

3
∑

𝑠=1

∫

𝑀

∣∇(𝜉𝑠𝑓)∣
2 𝑉 𝑜𝑙𝜂,

(4.24)

where we have used (4.21) to obtain the equality and the Cauchy-Schwarz inequality
for the integral scalar product to get the first inequality. The second inequality is
obvious. Combining (4.23) and (4.24), we get the next key inequality

3
∑

𝑠=1

∫

𝑀

(

𝑑𝑓(𝜉𝑠)
)2

𝑉 𝑜𝑙𝜂 ≤

∫

𝑀

[ 3𝑏

32
∣∇𝑓 ∣2 +

1

𝑏
𝐴(∇𝑓) +

3𝜆2

32𝑏
∣∇𝑓 ∣2

]

𝑉 𝑜𝑙𝜂. (4.25)

Substituting (4.25) in (4.2), we obtain

∫

𝑀

[

𝑅𝑖𝑐(∇𝑓,∇𝑓)−2𝑇 0(∇𝑓,∇𝑓)−
12

𝑏
𝐴(∇𝑓)+(−

3

4
𝜆−

9𝑏

8
−

9𝜆2

8𝑏
)∣∇𝑓 ∣2

]

𝑉 𝑜𝑙𝜂≤0. (4.26)

Taking into account the a-priori condition

𝑅𝑖𝑐(𝑋,𝑋)− 2𝑇 0(𝑋,𝑋)−
12

𝑏
𝐴(𝑋) ≥ 𝑘0𝑔(𝑋,𝑋) for any 𝑋 ∈ Γ(𝐻),

we deduce from (4.26)

∫

𝑀

(

−

3

4
𝜆−

9𝑏

8
−

9𝜆2

8𝑏
+ 𝑘0

)

∣∇𝑓 ∣2 𝑉 𝑜𝑙𝜂 ≤ 0.

The last inequality implies

−

3

4
𝜆−

9𝑏

8
−

9𝜆2

8𝑏
+ 𝑘0 ≤ 0,
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which after choosing 𝑏 = 𝑘0

3
becomes

(3𝜆− 𝑘0)(9𝜆+ 5𝑘0) ≥ 0. (4.27)

Since 9𝜆+ 5𝑘0 > 0, the inequality (4.27) gives the estimate

𝜆 ≥
𝑘0

3
, (4.28)

which completes the proof of Theorem 1.2.

5. PROOF OF COROLLARY 1.2

In [23, Remark 4.1] the authors give the identity

10𝑇 0(∇𝑓,∇𝑓) + 6𝑆∣∇𝑓 ∣2 = 𝑘0∣∇𝑓 ∣
2, (5.1)

which holds for the extremal eigenfunction 𝑓 in the case of equality in Theorem 1.1,
i.e. 𝜆 = 1

3
𝑘0. Assuming the condition a) in Corollary 1.3 and taking account (5.1),

we obtain (1.7).
In a similar way, the case of equality in Theorem 1.2, i.e. 𝜆 = 1

3
𝑘0, together

with the a-priori condition (1.5) and (4.26) imply the identity

𝑅𝑖𝑐(∇𝑓,∇𝑓)− 2𝑇 0(∇𝑓,∇𝑓)−
36

𝑘0

𝐴(∇𝑓) = 𝑘0∣∇𝑓 ∣
2,

which holds for the extremal eigenfunction 𝑓 . Using the first formula in (2.12), the
upper identity can be rewritten as

6𝑆∣∇𝑓 ∣2 + 2𝑇 0(∇𝑓,∇𝑓)−
36

𝑘0

𝐴(∇𝑓) = 𝑘0∣∇𝑓 ∣
2. (5.2)

Now, obviously the assumption of the condition b) in Corollary 1.3 yields the desired
estimate (1.7), which completes the proof of Corollary 1.2.
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DRAGOMIR I. ALEKSOV

An approach for derivation of Markov-type inequalities in 𝐿2 norms proposed in [9] is
applied to the classical case of a constant weight function. According to a result of

E. Schmidt, the sharp constant in this inequality is asymptotically equal to 𝑛2

𝜋
. We

obtain upper and lower bounds for the best constant.

Keywords: Markov type inequality, ultraspherical polynomials, quadratic forms.
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1. INTRODUCTION AND STATEMENT OF THE RESULTS

Throughout this paper, 𝜋𝑛 will mean the class of algebraic polynomials of
degree not exceeding 𝑛.

A classical result in Approximation Theory, the inequality of the brothers
Markov [5], [6], asserts that for any 𝑓 ∈ 𝜋𝑛

∥𝑓 (𝑘)
∥ ≤ ∥𝑇 𝑘

𝑛
∥∥𝑓∥ for 𝑘 = 1, . . . , 𝑛,

where ∥ ⋅ ∥ stands for the uniform norm in [−1, 1] and 𝑇𝑛(𝑥) := cos𝑛 arccos𝑥 is the
Chebyshev polynomial of the first kind.

The topic of this paper is Markov type inequalities in the 𝐿2-norms, i.e., norms
of the type

∥𝑓∥ :=
(∫ 𝑏

𝑎

𝑤(𝑥)∣𝑓(𝑥)∣2𝑑𝑥
)1/2

,
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where 𝑤(𝑥) is a weight function on the finite or infinite interval [a,b] (i.e., 𝑤(𝑥) is
non-negative and integrable on [a,b] with all moments finite). It is well-known that
(see, e.g., [4] or [8]) there exists a constant 𝑐𝑛 = 𝑐𝑛(𝑎, 𝑏, 𝑤) such that

∥𝑓 ′
∥ ≤ 𝑐𝑛 ∥𝑓∥ for every 𝑓 ∈ 𝜋𝑛. (1.1)

The sharp constant 𝑐𝑛 in (1.1) is known to be the largest singular value of a certain
matrix (see, e.g., [3] or [7, Theorems 1.6.3 and 1.6.5]). Despite of this simple
characterization, not much is known about the exact constants even in the classical
cases of weight function of Hermite, Laugerre and Gegenbauer. Schmidt [10] has
found that in the case of Hermite weight function (𝑎 = −𝑏 =∞, 𝑤(𝑥) = exp(−𝑥2))
the best constant is 𝑐𝑛 =

√

2𝑛, and the Hermite polynomial 𝐻𝑛 is the extremal
polynomial. Turán [12] has proven that the best constant in the case of Laguerre
weight function (𝑎 = 0, 𝑏 =∞, 𝑤(𝑥) = exp(−𝑥)) is

𝑐𝑛 =
(

sin
𝜋

4𝑛+ 2

)
−1

In the case [𝑎, 𝑏] = [−1, 1], 𝑤(𝑥) = 1, E. Schmidt [10] found the best constant
asymptotically, proving that for 𝑛 ≥ 5,

𝑐𝑛 =
(2𝑛+ 3)2

4𝜋

(

1−
𝜋2
− 3

3(2𝑛+ 3)2
+

16𝑅

(2𝑛+ 3)4

)
−1

, where − 6 < 𝑅 < 13. (1.2)

The proof of this asymptotic estimate runs in a paper of about 40 pages.
G. Nikolov [9] has studied Markov-type inequalities in the 𝐿2-norm induced by

the Gegenbauer weight function

𝑤𝜆(𝑥) := (1 − 𝑥2)𝜆−1/2 , 𝜆 > −1/2, 𝑥 ∈ (−1, 1).

The notation ∥ ⋅ ∥𝜆 will stand for the 𝐿2[−1, 1] norm induced by 𝑤𝜆, i.e.,

∥𝑓∥𝜆 :=
( ∫ 1

−1

𝑤𝜆(𝑥)∣𝑓(𝑥)∣
2𝑑𝑥

)1/2

.

Specifically, in [9] are proven Markov-type inequalities in the 𝐿2-norms induced by
the Chebyshev weight functions 𝑤0(𝑥) = (1− 𝑥)−1/2 and 𝑤1(𝑥) = (1− 𝑥)1/2.

Theorem A. For every 𝑛 ∈ ℕ and 𝑓 ∈ 𝜋𝑛, the following inequality holds true:

∥𝑓 ′
∥0 ≤ 0.478849(𝑛+ 2)2∥𝑓∥0. (1.3)

Moreover, for every 𝑛 ∈ ℕ there exists 𝑓 ∈ 𝜋𝑛 such that ∥𝑓 ′
∥0 ≥ 0.472135𝑛2

∥𝑓∥0.

Theorem B. For every 𝑛 ∈ ℕ and 𝑓 ∈ 𝜋𝑛, the following inequality holds true:

∥𝑓 ′
∥1 ≤ 0.256861(𝑛+ 5/2)2∥𝑓∥1. (1.4)

Moreover, for every 𝑛 ∈ ℕ there exists 𝑓 ∈ 𝜋𝑛 such that ∥𝑓 ′
∥1 ≥ 0.248549𝑛2

∥𝑓∥1 .
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Let us mention that, although the constants in (1.3) and (1.4) are not sharp,
the supplementary inequalities in Theorems A and B show that they overestimate
the best constants by a factor not exceeding 1.0142 and 1.0334, respectively.

Here, we apply the approach proposed in [9] to obtain an elementary proof of
𝐿2 Markov inequality associated with a constant weight function, i.e., 𝑤1/2(𝑥) = 1.
Our result reads as follows:

Theorem 1.1. For every 𝑛 ∈ ℕ and 𝑓 ∈ 𝜋𝑛, the following inequality holds
true:

∥𝑓 ′
∥1/2 ≤ 0.325779(𝑛+ 1.6)2 ∥𝑓∥1/2. (1.5)

Moreover, for every 𝑛 ∈ ℕ there exists 𝑓 ∈ 𝜋𝑛 such that

∥𝑓 ′
∥1/2 ≥ 0.317837 (𝑛+ 1/2)2 ∥𝑓∥1/2. (1.6)

2. REQUISITES

In this section we introduce some results from [9] which will be needed for the
proof of Theorem 1.1.

The notation ∣⋅∣ will stand for the Euclidean norm, i.e., if t = (𝑡1, . . . , 𝑡𝑚) ∈ ℝ𝑚,
then ∣t∣ = (𝑡2

1
+ ⋅ ⋅ ⋅+ 𝑡2

𝑚
)1/2. The unit sphere in ℝ𝑚 is denoted by 𝑆𝑚,

𝑆𝑚 := {t ∈ ℝ𝑚 : ∣t∣ = 1}.

By 𝑆+

𝑚
(resp. ℝ𝑚

+
) we shall mean the subsets of 𝑆𝑚 (resp. ℝ𝑚) with non-

negative coordinates.

For the Markov inequality in the 𝐿2-norm corresponding to 𝑤𝜆(𝑥) we need some
facts about the associated orthogonal polynomials. The latter are the ultraspherical
polynomials (also called Gegenbauer polynomials) {𝐶𝜆

𝑚
(𝑥)}∞

𝑚=0
. It is well known

that (see [11]), for 𝜆 ∕= 0

∫
1

−1

𝑤𝜆(𝑥)𝐶
𝜆

𝑗
(𝑥)𝐶𝜆

𝑘
(𝑥)𝑑𝑥 = 𝛿𝑗𝑘ℎ

2

𝑘
𝑗, 𝑘 = 0, 1, . . . ,

with 𝛿𝑗𝑘 being the Kronecker symbol and

ℎ𝑘 = ℎ𝑘,𝜆 :=
(21−2𝜆𝜋Γ(𝑘 + 2𝜆)

𝑘!(𝑘 + 𝜆)Γ2(𝜆)

)1/2

.

For t ∈ ℝ𝑚, we introduce the following positive definite quadratic forms:

𝑃𝑚(t) :=
𝑚
∑

𝑘=1

( 𝑚
∑

𝑗=𝑘

(2𝑘 + 𝜆− 1)
ℎ2𝑘−1

ℎ2𝑗

𝑡𝑗

)2

(2.1)
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and

𝑄𝑚(t) :=

𝑚
∑

𝑘=1

( 𝑚
∑

𝑗=𝑘

(2𝑘 + 𝜆− 2)
ℎ2𝑘−2

ℎ2𝑗−1

𝑡𝑗

)2

. (2.2)

The best constants in the Markov-type inequalities in ∥ ⋅ ∥𝜆-norm, 𝜆 ≥ 0 and the
quadratic forms 𝑃𝑚(t) and 𝑄𝑚(t) are related through the following

Theorem 2.1. ([9]) If 𝜆 ≥ 0, then

sup
𝑓∈𝜋𝑛,𝑓 ∕=0

∥𝑓 ′
∥

2

𝜆

∥𝑓∥2

𝜆

=

⎧




⎨




⎩

4 sup
t∈𝑆

+

𝑚

𝑃𝑚(t), if 𝑛 = 2𝑚,

4 sup
t∈𝑆

+

𝑚

𝑄𝑚(t), if 𝑛 = 2𝑚− 1.

The next lemma provides upper bounds for the supremum over 𝑆𝑚 of positive
definite quadratic forms like 𝑃𝑚 and 𝑄𝑚.

Lemma 2.1. ([9]) Given positive 𝑎𝑘𝑗 (1 ≤ 𝑘 ≤ 𝑚, 𝑘 ≤ 𝑗 ≤ 𝑚), set

𝐾(t) :=

𝑚
∑

𝑘=1

( 𝑚
∑

𝑗=𝑘

𝑎𝑘𝑗 𝑡𝑗

)2

.

Then, for every p = (𝑝1, . . . , 𝑝𝑚), (𝑝𝑘 > 0, 𝑘 = 1, . . . ,𝑚),

sup
t∈𝑆𝑚

𝐾(t) ≤ max
1≤𝑘≤𝑚

𝐴𝑘(p), (2.3)

where

𝐴𝑘(p) :=
1

𝑝𝑘

𝑘
∑

𝑖=1

𝑎𝑖𝑘

( 𝑚
∑

𝑗=𝑖

𝑝𝑗𝑎𝑖𝑗

)

.

The equality in (2.3) occurs only if 𝐴1(p) = 𝐴2(p) = ⋅ ⋅ ⋅ = 𝐴𝑚(p).

We shall use a familiar property of the trapezium and the midpoint quadratures

𝑄𝑇𝑟

𝑚+1
[𝑓 ] =

ℎ

2
[𝑓(𝑥0) + 𝑓(𝑥𝑚)] + ℎ

𝑚−1
∑

𝑘=1

𝑓(𝑥𝑘), 𝑄𝑀𝑖

𝑚
[𝑓 ] = ℎ

𝑚
∑

𝑘=1

𝑓(𝑥
𝑘−1/2),

where 𝑥𝑗 := 𝑎+ 𝑗ℎ and ℎ = (𝑏− 𝑎)/𝑚 .

Lemma 2.2. a) If 𝑓 is convex in [𝑎, 𝑏], then

𝑄𝑀𝑖

𝑚
[𝑓 ] ≤

∫
𝑏

𝑎

𝑓(𝑥)𝑑𝑥 ≤ 𝑄𝑇𝑟

𝑚+1
[𝑓 ].
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b) If 𝑓 ′′
≥ 0 and 𝑓 ′′ is convex in [𝑎, 𝑏], then

𝑄𝑀𝑖

𝑚
[𝑓 ] ≥

∫
𝑏

𝑎

𝑓(𝑥)𝑑𝑥−
ℎ2

24
[𝑓 ′(𝑏)−𝑓 ′(𝑎)], 𝑄𝑇𝑟

𝑚+1
[𝑓 ] ≤

∫
𝑏

𝑎

𝑓(𝑥)𝑑𝑥+
ℎ2

12
[𝑓 ′(𝑏)−𝑓 ′(𝑎)].

3. PROOF OF THEOREM 1.1: THE CASE OF EVEN 𝑛, 𝑛 = 2𝑚

According to Theorem 2.1, we have

sup
𝑓∈𝜋2𝑚,𝑓 ∕=0

∥𝑓 ′
∥

2

1/2

∥𝑓∥2

1/2

= 4 sup
t∈𝑆

+

𝑚

𝑃𝑚(t), (3.1)

and in our particular case 𝜆 = 1/2 the quadratic form 𝑃 defined by (2.2) becomes

𝑃𝑚(t) =

𝑚
∑

𝑘=1

(
𝑚
∑

𝑗=𝑘

1

2

√

(4𝑘 − 1)(4𝑗 + 1) 𝑡𝑗

)2

. (3.2)

3.1. AN UPPER BOUND

We apply Lemma 2.1 to 𝐾 = 𝑃𝑚, the quadratic form given by (3.2), i.e., with
𝑎𝑘𝑗 =

1

2

√

(4𝑘 − 1)(4𝑗 + 1). We obtain

4 sup
t∈𝑆

+

𝑚

𝑃𝑚(t) = 4 sup
t∈𝑆𝑚

𝑃𝑚(t) ≤ 4 max
1≤𝑘≤𝑚

𝐴𝑘(p) = max
1≤𝑘≤𝑚

4 𝐴𝑘(p),

where

𝐴𝑘(p) =
1

𝑝𝑘

𝑘
∑

𝑖=1

1

2

√

(4𝑖− 1)(4𝑘 + 1)

⎛

⎝

𝑚
∑

𝑗=𝑖

1

2

√

(4𝑖− 1)(4𝑗 + 1) 𝑝𝑗

⎞

⎠

=
1

4𝑝𝑘

𝑘
∑

𝑖=1

√

(4𝑖− 1)(4𝑘 + 1)

⎛

⎝

𝑚
∑

𝑗=𝑖

√

(4𝑖− 1)(4𝑗 + 1) 𝑝𝑗

⎞

⎠

=

√

4𝑘 + 1

4𝑝𝑘

𝑘
∑

𝑖=1

(4𝑖− 1)

⎛

⎝

𝑚
∑

𝑗=𝑖

√

4𝑗 + 1 𝑝𝑗

⎞

⎠ ,

and p = (𝑝1, . . . , 𝑝𝑚) is an arbitrary 𝑚-tuple of positive numbers. Let us choose

𝑝𝑗 =
(4𝑗 + 3)𝛼 − (4𝑗 − 1)𝛼

√

4𝑗 + 1
, 𝑗 = 1, . . . ,𝑚,
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where 𝛼 ∈ (3, 4) will be specified later. In view of inequality

(4𝑘 + 3)𝛼 − (4𝑘 − 1)𝛼 ≥ 4𝛼(4𝑘 + 1)𝛼−1, 𝑘 ∈ ℕ,

we get

4𝐴𝑘(p) =
4𝑘 + 1

(4𝑘 + 3)𝛼 − (4𝑘 − 1)𝛼

𝑘
∑

𝑖=1

(4𝑖− 1)

𝑚
∑

𝑗=𝑖

(

(4𝑗 + 3)𝛼 − (4𝑗 − 1)𝛼
)

≤

4𝑘 + 1

4𝛼(4𝑘 + 1)𝛼−1

𝑘
∑

𝑖=1

[

(4𝑖− 1)(4𝑚+ 3)𝛼 − (4𝑖− 1)𝛼+1

]

=
(4𝑘 + 1)2−𝛼

4𝛼

[

(2𝑘2 + 𝑘)(4𝑚+ 3)𝛼 −
𝑘
∑

𝑖=1

(4𝑖− 1)𝛼+1

]

.

(3.3)

We estimate from below the latter sum with the help of Lemma 2.2 b). We have

𝑘
∑

𝑖=1

(4𝑖− 1)𝛼+1
≥

∫
𝑘+1/2

1/2

(4𝑥− 1)𝛼+1 𝑑𝑥−
4(𝛼+ 1)

24

[

(4𝑘 + 1)𝛼 − 1
]

=
1

4(𝛼+ 2)

[

(4𝑘 + 1)𝛼+2
− 1
]

−

𝛼+ 1

6

[

(4𝑘 + 1)𝛼 − 1
]

≥

1

4(𝛼+ 2)
(4𝑘 + 1)𝛼+2

−

𝛼+ 1

6
(4𝑘 + 1)𝛼

(for the latter inequality we used that 𝛼+1

6
−

1

4(𝛼+2)
> 0, since 𝛼 ∈ (3, 4)). Applying

this estimation to (3.3) and performing further estimation we obtain

4𝐴𝑘(p) ≤
(4𝑘 + 1)2−𝛼

4𝛼

[

(2𝑘2 + 𝑘)(4𝑚+ 3)𝛼 −
1

4(𝛼+ 2)
(4𝑘 + 1)𝛼+2 +

𝛼+ 1

6
(4𝑘 + 1)𝛼

]

=
(4𝑘 + 1)2−𝛼

4𝛼

[
(4𝑘 + 1)2 − 1

8
(4𝑚+ 3)𝛼 −

1

4(𝛼+ 2)
(4𝑘 + 1)𝛼+2 +

𝛼+ 1

6
(4𝑘 + 1)𝛼

]

≤
(4𝑘 + 1)2−𝛼

4𝛼

[
(4𝑘 + 1)2(4𝑚+ 3)𝛼

8
−

1

4(𝛼+ 2)
(4𝑘 + 1)𝛼+2 +

(
𝛼+ 1

6
−

1

8

)

(4𝑚+ 1)𝛼
]

=
(4𝑘 + 1)4−𝛼

32𝛼

[

(4𝑚+ 3)𝛼 −
2(4𝑘 + 1)𝛼

𝛼+ 2

]

+
4𝛼+ 1

96𝛼
(4𝑘 + 1)2−𝛼(4𝑚+ 1)𝛼

≤
(4𝑘 + 1)4−𝛼

32𝛼

[

(4𝑚+ 3)𝛼 −
2(4𝑘 + 1)𝛼

𝛼+ 2

]

+
4𝛼+ 1

96𝛼
(4𝑚+ 1)2 .

For the first summand in the last expression we need an upper bound which
does not depend on 𝑘. The function

ℎ(𝑥) :=
𝑥4−𝛼

32𝛼

[

𝑀𝛼

−

2𝑥𝛼

𝛼+ 2

]

, (𝑀 ∈ ℕ , 0 < 𝑥 < 𝑀 , 𝛼 ∈ (3, 4))

has a derivative

ℎ′(𝑥) =
𝑥3−𝛼

32𝛼

[

(4− 𝛼)𝑀𝛼

−

8

𝛼+ 2
𝑥𝛼
]

,
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hence under the above assumptions ℎ(𝑥) has a unique critical point 𝑥0 in (0,𝑀),

𝑥0 =

(

(4− 𝛼)(𝑎+ 2)𝑀𝛼

8

) 1

𝛼

=

(

(4− 𝛼)(𝑎 + 2)

8

) 1

𝛼

𝑀.

Since ℎ′(𝑥) > 0 in (0, 𝑥0) and ℎ′(𝑥) < 0 in (𝑥0,𝑀), it follows that 𝑥0 is a point
of an absolute maximum for ℎ(𝑥) in the interval (0,𝑀). For the maximal value of
ℎ(𝑥) in (0,𝑀) we obtain

max
𝑥∈(0,𝑀)

ℎ(𝑥) =
1

128

(

(4− 𝛼)(𝛼 + 2)

8

) 4−𝛼

𝛼

𝑀4.

Going back to the estimation of 4𝐴𝑘(p), substituting 𝑀 = 4𝑚+3 and 𝑥 = 4𝑘+1,
we get

4𝐴𝑘(p) ≤
1

128

(

(4− 𝛼)(𝛼 + 2)

8

) 4−𝛼

𝛼

(4𝑚+ 3)4 +
4𝛼+ 1

96𝛼
(4𝑚+ 1)2,

and the latter inequality holds true for 𝑘 = 1, 2, . . . ,𝑚. Hence,

sup
𝑓∈𝜋2𝑚,𝑓 ∕=0

∥𝑓 ′
∥

2

1/2

∥𝑓∥2

1/2

≤ max
1≤𝑘≤𝑚

4𝐴𝑘(p)

≤

1

128

(

(4 − 𝛼)(𝛼+ 2)

8

) 4−𝛼

𝛼

(4𝑚+ 3)4 +
4𝛼+ 1

96𝛼
(4𝑚+ 1)2 .

The above inequality holds for every value of the parameter 𝛼 ∈ (3, 4), and we
exploit this fact to minimize with respect to 𝛼 the coefficient of (4𝑚 + 3)4. With
the help of Wolfram’s MATHEMATICA, we find that the minimum value of the
function

𝜓(𝛼) :=
1

128

(

(4 − 𝛼)(𝛼+ 2)

8

) 4−𝛼

𝛼

, 𝛼 ∈ (3, 4),

is equal to 𝜓(𝛼∗) = 0.006633243689 . . ., where 𝛼∗ = 3.23308 . . . satisfies 𝛼∗ ∈ (3, 4).
We obtain

sup
𝑓∈𝜋2𝑚,𝑓 ∕=0

∥𝑓 ′
∥

2

1/2

∥𝑓∥2

1/2

≤ 0.006633244(4𝑚+ 3)4 +
4𝛼∗ + 1

96𝛼∗

(4𝑚+ 1)2 . (3.4)

It is easy to see that for every 𝑚 ∈ ℕ we have

0.006633244(4𝑚+3)4+
4𝛼∗ + 1

96𝛼∗

(4𝑚+1)2 ≤ 0.006633244(4𝑚+3.2)4, 𝑚 ∈ ℕ. (3.5)

Indeed, the expression
(4𝑚+ 3.2)4 − (4𝑚+ 3)4

(4𝑚+ 1)2
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is an increasing function of 𝑚, and it suffices to verify (3.5) for 𝑚 = 1 only.
Combining (3.4) and (3.5), we obtain

sup
𝑓∈𝜋2𝑚,𝑓 ∕=0

∥𝑓 ′
∥

2

1/2

∥𝑓∥2

1/2

≤ 0.006633244 (4𝑚+ 3.2)4 = 0.106131904 (2𝑚+ 1.6)4

≤ 0.3257789192 (2𝑚+ 1.6)4 ,

which implies

sup
𝑓∈𝜋2𝑚,𝑓 ∕=0

∥𝑓 ′
∥1/2

∥𝑓∥1/2

≤ 0.325779 (2𝑚+ 1.6)2 .

Thus, inequality (1.5) is proven for 𝑛 = 2𝑚.

3.2. A LOWER BOUND

To prove inequality (1.6), we observe that every even polynomial 𝑓 ∈ 𝜋2𝑚

can be written as a linear combination of Legendre polynomials with even indices
{𝑃2𝑘(𝑥)} (written below as polynomials of Gegenbauer with a parameter 𝜆 = 1/2
in order to avoid confusion with the quadratic forms 𝑃 ). If

𝑓(𝑥) =
𝑚
∑

𝑘=1

𝑡𝑘𝐶
1/2

2𝑘
(𝑥) , (3.6)

then
∥𝑓 ′
∥

2

1/2

∥𝑓∥2

1/2

= 4
𝑃𝑚(t)

∣t∣2
,

and it suffices to find a vector of coefficients t = (𝑡1, 𝑡2, . . . , 𝑡𝑛) in the expression

(3.6), such that 4𝑃𝑚(t)

∣t∣2
≥ 0.3178372(2𝑚+ 1/2)4.

For an arbitrary 𝛽 ∈ (3, 3.5) (its value will be specified later), we choose

𝑡𝑗 :=
(4𝑗 + 3)𝛽 − (4𝑗 − 1)𝛽

√

4𝑗 + 1
, 𝑗 = 1, . . . ,𝑚 .

With this choice of t we shall find a lower bound for the value of the quadratic form
4𝑃𝑚(t) and an upper bound for ∣t∣2. This will imply a lower bound for 4𝑃𝑚(t)/∣t∣2

(depending on the parameter 𝛽).
For the value of the quadratic form 4𝑃𝑚(t) we obtain

4𝑃𝑚(t) =

𝑚
∑

𝑘=1

(4𝑘 − 1)

[
𝑚
∑

𝑗=𝑘

(

(4𝑗 + 3)𝛽 − (4𝑗 − 1)𝛽
)
]2

=
𝑚
∑

𝑘=1

(4𝑘 − 1)
[

(4𝑚+ 3)𝛽 − (4𝑘 − 1)𝛽
]2

= (2𝑚2 +𝑚)(4𝑚+ 3)2𝛽 − 2(4𝑚+ 3)𝛽
𝑚
∑

𝑘=1

(4𝑘 − 1)𝛽+1 +

𝑚
∑

𝑘=1

(4𝑘 − 1)2𝛽+1.

(3.7)
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Now we estimate from below 4𝑃𝑚(t). We estimate from above the first sum of the
last line of (3.7) using Lemma 2.2 a):

𝑚
∑

𝑘=1

(4𝑘 − 1)𝛽+1
≤

∫
𝑚+1/2

1/2

(4𝑥− 1)𝛽+1𝑑𝑥 <
1

4(𝛽 + 2)
(4𝑚+ 1)𝛽+2 .

A lower bound for the second sum in the last line of (3.7) is obtained with the help
of Lemma 2.2 b):

𝑚
∑

𝑘=1

(4𝑘−1)2𝛽+1
≥

∫
𝑚+1/2

1/2

(4𝑥−1)2𝛽+1𝑑𝑥−
1

24

[

4(2𝛽+1)(4𝑚+1)2𝛽−4(2𝛽+1)
]

=
1

8(𝛽+1)
(4𝑚+1)2𝛽+2

−

2𝛽+1

6
(4𝑚+1)2𝛽+

2𝛽+1

6
−

1

8(𝛽+1)

>
1

8(𝛽 + 1)
(4𝑚+ 1)2𝛽+2

−

2𝛽 + 1

6
(4𝑚+ 1)2𝛽

(for the later inequality we used that 2𝛽+1

6
−

1

8(𝛽+1)
> 0).

Substituting the above lower bounds in (3.7), we obtain

4𝑃𝑚(t) >
1

8

[

(4𝑚+ 1)2 − 1
]

(4𝑚+ 3)2𝛽 −
1

2(𝛽 + 2)
(4𝑚+ 3)𝛽(4𝑚+ 1)𝛽+2

+
1

8(𝛽 + 1)
(4𝑚+ 1)2𝛽+2

−

2𝛽 + 1

6
(4𝑚+ 1)2𝛽

=
1

8
(4𝑚+ 1)2(4𝑚+ 3)2𝛽 −

1

2(𝛽 + 2)
(4𝑚+ 3)𝛽(4𝑚+ 1)𝛽+2

+
1

8(𝛽 + 1)
(4𝑚+ 1)2𝛽+2

−

2𝛽 + 1

6
(4𝑚+ 1)2𝛽 −

1

8
(4𝑚+ 3)2𝛽

=(4𝑚+ 3)𝛽
[1

8
(4𝑚+ 1)2(4𝑚+ 3)𝛽 −

1

2(𝛽 + 2)
(4𝑚+ 1)𝛽+2

]

+
1

8(𝛽 + 1)
(4𝑚+ 1)2𝛽+2

−

2𝛽 + 1

6
(4𝑚+ 1)2𝛽 −

1

8
(4𝑚+ 3)2𝛽 .

A further lower bound is obtained from the inequality

(4𝑚+ 3)𝛽 > (4𝑚+ 1)𝛽 + 2𝛽(4𝑚+ 1)𝛽−1

(which follows from Maclaurin’s formula (1 + 𝑥)𝛽 = 1 + 𝛽𝑥 + 𝛽(𝛽−1)

2
𝑥2(1 + 𝜉)𝛽−1

with 𝑥 = 2

4𝑚+1
and 0 < 𝜉 < 𝑥):

4𝑃𝑚(t) >
[

(4𝑚+ 1)𝛽 + 2𝛽(4𝑚+ 1)𝛽−1

]

×

[1

8
(4𝑚+ 1)𝛽+2 +

𝛽

4
(4𝑚+ 1)𝛽+1

−

1

2(𝛽 + 2)
(4𝑚+ 1)𝛽+2

]

+
1

8(𝛽 + 1)
(4𝑚+ 1)2𝛽+2

−

2𝛽 + 1

6
(4𝑚+ 1)2𝛽 −

1

8
(4𝑚+ 3)2𝛽
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=
𝛽2

8(𝛽 + 1)(𝛽 + 2)
(4𝑚+ 1)2𝛽+2 +

𝛽2

2(𝛽 + 2)
(4𝑚+ 1)2𝛽+1

+
(𝛽 − 1)(3𝛽 + 1)

6
(4𝑚+ 1)2𝛽 −

1

8
(4𝑚+ 3)2𝛽 .

The expression in the last line is positive when𝑚 ≥ 2 and 𝛽 ∈ (3, 3.5), and therefore
can be neglected. Indeed, to prove the inequality

4(𝛽 − 1)(3𝛽 + 1)

3
>

(4𝑚+ 3

4𝑚+ 1

)2𝛽

,

we observe that its right-hand side is less than
(

11

9

)7

while its left-hand side is

greater than 8.10

3
= 80

3
, and 80

3
−

(

11

9

)7

> 0.

Hence,

4𝑃𝑚(t) >
𝛽2

8(𝛽 + 1)(𝛽 + 2)

[

(4𝑚+ 1)2𝛽+2 + 4(𝛽 + 1)(4𝑚+ 1)2𝛽+1

]

. (3.8)

Our next task is to obtain an upper bound for the norm of t. For the purpose
we estimate all of its components

𝑡𝑗 =
(4𝑗 + 3)𝛽 − (4𝑗 − 1)𝛽

√

4𝑗 + 1
, 𝑗 = 1, . . . ,𝑚 ,

bearing in mind that 𝛽 ∈ (3, 3.5). On using the Maclaurin series, we obtain

(1 + 𝑥)𝛽 − (1− 𝑥)𝛽 =2𝛽𝑥+
𝛽(𝛽 − 1)(𝛽 − 2)

3
𝑥3

+
𝛽(𝛽 − 1)(𝛽 − 2)(𝛽 − 3)

24
𝑥4

[

(1 + 𝜃1𝑥)
𝛽−4

− (1− 𝜃2𝑥)
𝛽−4

]

,

where 𝜃1, 𝜃2 ∈ (0, 1). For 3 < 𝛽 < 4 and 0 < 𝑥 < 1 the expression in the square
brackets is negative, therefore for such 𝛽 and 𝑥 we have

(1 + 𝑥)𝛽 − (1− 𝑥)𝛽 < 2𝛽𝑥+
𝛽(𝛽 − 1)(𝛽 − 2)

3
𝑥3 . (3.9)

Applying this inequality with 𝑥 = 2

4𝑗+1
(𝑥 ∈ (0, 1)), we get an upper bound for 𝑡𝑗 :

𝑡𝑗 < 4𝛽(4𝑗 + 1)𝛽−3/2 +
8

3
𝛽(𝛽 − 1)(𝛽 − 2)(4𝑗 + 1)𝛽−3

1

2

= 4𝛽(4𝑗 + 1)𝛽−3/2

[

1 +
2

3
(𝛽 − 1)(𝛽 − 2)

1

(4𝑗 + 1)2

]

< 4𝛽(4𝑗 + 1)𝛽−3/2

[

1 +
5

2

1

(4𝑗 + 1)2

]

.
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Consequently,

𝑡2
𝑗
< 16𝛽2(4𝑗 + 1)2𝛽−3

[

1 + 5
1

(4𝑗 + 1)2
+

25

4

1

(4𝑗 + 1)4

]

≤ 16𝛽2(4𝑗 + 1)2𝛽−3

[

1 +
21

4

1

(4𝑗 + 1)2

]

,

and thus

𝑡2
𝑗
< 16𝛽2(4𝑗 + 1)2𝛽−3 + 84𝛽2(4𝑗 + 1)2𝛽−5 , 𝑗 = 1, . . . ,𝑚 . (3.10)

To obtain an upper bound for ∣t∣2 = 𝑡2
1
+𝑡2

2
+⋅ ⋅ ⋅+𝑡2

𝑚
, we shall use (3.10) and the fact

that for 𝛽 ∈ (3, 3.5) the functions 𝑔1(𝑥) = (4𝑥 + 1)2𝛽−3 and 𝑔2(𝑥) = (4𝑥 + 1)2𝛽−5

are convex and have convex second derivatives in the interval [0,𝑚]. This enables
us to apply Lemma 2.2 b) to estimate the sums which appear. With 𝑄𝑡𝑟

𝑚
being the

(𝑚+ 1)-point trapezium quadrature formula for the interval [0,𝑚], we have

𝑚
∑

𝑗=1

(4𝑗 + 1)2𝛽−3 = −
1

2
+

1

2
(4𝑚+ 1)2𝛽−3 +𝑄𝑡𝑟

𝑚
[𝑔1]

<
1

2
(4𝑚+ 1)2𝛽+3 +

∫
𝑚

0

(4𝑥+ 1)2𝛽−3𝑑𝑥+
4(2𝛽 − 3)

12

[

(4𝑚+ 1)2𝛽−4
− 1
]

<
1

8(𝛽 − 1)
(4𝑚+ 1)2𝛽−2 +

1

2
(4𝑚+ 1)2𝛽−3 +

2𝛽 − 3

3
(4𝑚+ 1)2𝛽−4 ,

𝑚
∑

𝑗=1

(4𝑗 + 1)2𝛽−5 = −
1

2
+

1

2
(4𝑚+ 1)2𝛽−5 +𝑄𝑡𝑟

𝑚
[𝑔2]

<
1

2
(4𝑚+ 1)2𝛽−5 +

∫
𝑚

0

(4𝑥+ 1)2𝛽−5𝑑𝑥+
4(2𝛽 − 5)

12

[

(4𝑚+ 1)2𝛽−6
− 1
]

<
1

8(𝛽 − 2)
(4𝑚+ 1)2𝛽−4 +

1

2
(4𝑚+ 1)2𝛽−5 +

2𝛽 − 5

3
(4𝑚+ 1)2𝛽−6 .

We use (3.10) and these two estimations in order to obtain an upper bound for ∣t∣2:

∣t∣2 < 16𝛽2

𝑚
∑

𝑗=1

(4𝑗 + 1)2𝛽−3 + 84𝛽2

𝑚
∑

𝑗=1

(4𝑗 + 1)2𝛽−5

<
2𝛽2

𝛽 − 1
(4𝑚+ 1)2𝛽−2 + 8𝛽2(4𝑚+ 1)2𝛽−3 +

16𝛽2(2𝛽 − 3)

3
(4𝑚+ 1)2𝛽−4

+
21𝛽2

2(𝛽 − 2)
(4𝑚+ 1)2𝛽−4 + 41𝛽2(4𝑚+ 1)2𝛽−5 +

84𝛽2(2𝛽 − 5)

3
(4𝑚+ 1)2𝛽−6

=
2𝛽2

𝛽 − 1
(4𝑚+ 1)2𝛽−2 + 𝛽2(4𝑚+ 1)2𝛽−3

×

[

8+

(

16(2𝛽−3)

3
+

21

2(𝛽−2)

)

1

4𝑚+1
+

41

(4𝑚+1)2
+
84(2𝛽−5)

3

1

(4𝑚+1)3

]

.
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With 𝑚 ≥ 2 and 𝛽 ∈ (3, 3.5) we estimate the expression in the square brackets as
follows:

8 +

(

16(2𝛽 − 3)

3
+

21

2(𝛽 − 2)

)

1

4𝑚+ 1
+

41

(4𝑚+ 1)2
+

84(2𝛽 − 5)

3

1

(4𝑚+ 1)3

< 8 +
(64

3
+ 7
)

⋅

1

9
+

41

92
+

168

3
⋅

1

93
< 12 .

Hence for 𝛽 ∈ (3, 3.5) and 𝑚 ≥ 2 we have

∣t∣2 <
2𝛽2

𝛽 − 1

[

(4𝑚+ 1)2𝛽−2 + 6(𝛽 − 1)(4𝑚+ 1)2𝛽−3

]

.

This inequality combined with (3.8) yields, for 𝛽 ∈ (3, 3.5) and 𝑚 ≥ 2,

4
𝑃𝑚(t)

∣t∣2
>

𝛽 − 1

16(𝛽 + 1)(𝛽 + 2)
(4𝑚+ 1)4

1 + 4(𝛽+1)

4𝑚+1

1 + 6(𝛽−1)

4𝑚+1

>
𝛽 − 1

(𝛽 + 1)(𝛽 + 2)
(2𝑚+ 1/2)4.

Since the last inequality holds true for every 𝛽 ∈ (3, 3.5), we can optimize our
choice, searching for the maximum of the function

𝜑(𝛽) =
𝛽 − 1

(𝛽 + 1)(𝛽 + 2)
, 𝛽 ∈ (3, 3.5).

The zeros of 𝜑′ are 𝛽1 = 1−
√

6 and 𝛽2 = 1+
√

6; only 𝛽2 = 1+
√

6 = 3, 44949 . . .
is in (3, 3.5), and 𝛽 = 𝛽2 is a point of a global maximum for 𝜑(𝛽) in this interval.
We have

𝜑(1 +
√

6) =

√

6

(2 +
√

6)(3 +
√

6)
=

√

6

12 + 5
√

6
=

1

5 + 2
√

6
= 5− 2

√

6 = (
√

3−
√

2)2.

Therefore for 𝛽 = 𝛽2 and 𝑛 = 2𝑚, 𝑚 ≥ 2, we have

4
𝑃𝑚(t)

∣t∣2
> (
√

3−
√

2)2(𝑛+ 1/2)4 .

The last inequality means that for the polynomial 𝑓(𝑥) =
∑

𝑚

𝑘=1
𝑡𝑘𝐶

1/2

2𝑘
(𝑥) we have

∥𝑓 ′
∥

2

1/2

∥𝑓∥2

1/2

= 4
𝑃𝑚(t)

∣t∣2
(
√

3−
√

2)2(𝑛+ 1/2)4 .

Since
√

3−
√

2 = 0.317837245 . . ., this proves the lower bound (1.6) in Theorem 1.1
for 𝑛 = 2𝑚, 𝑚 ≥ 2.
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4. PROOF OF THEOREM 1.1: THE CASE OF AN ODD 𝑛, 𝑛 = 2𝑚− 1

According to Theorem 2.1, we have

sup
𝑓∈𝜋2𝑚−1,𝑓 ∕=0

∥𝑓 ′
∥

2

1/2

∥𝑓∥2

1/2

= 4 sup
t∈𝑆

+

𝑚

𝑄𝑚(t), (4.1)

where, in our particular case 𝜆 = 1/2, the quadratic form 𝑄𝑚 defined by (2.3)
becomes

𝑄𝑚(t) =
𝑚
∑

𝑘=1

(
𝑚
∑

𝑗=𝑘

1

2

√

4𝑘 − 3
√

4𝑗 − 1 𝑡𝑗

)2

. (4.2)

4.1. AN UPPER BOUND

For any p = (𝑝1, . . . , 𝑝𝑚) ∈ ℝ𝑚

+
, Lemma 2.1 applied to 𝐾 = 𝑄𝑚 implies

4 sup
t∈𝑆

+

𝑚

𝑄𝑚(t) = 4 sup
t∈𝑆𝑚

𝑄𝑚(t) ≤ 4 max
1≤𝑘≤𝑚

𝐴𝑘(p) = max
1≤𝑘≤𝑚

4 𝐴𝑘(p),

where

𝐴𝑘(p) =
1

𝑝𝑘

𝑘
∑

𝑖=1

1

2

√

4𝑖− 3
√

4𝑘 − 1
( 𝑚
∑

𝑗=𝑖

1

2

√

4𝑖− 3
√

4𝑗 − 1𝑝𝑗

)

=

√

4𝑘 − 1

4 𝑝𝑘

𝑘
∑

𝑖=1

(4𝑖− 3)
( 𝑚
∑

𝑗=𝑖

√

4𝑗 − 1𝑝𝑗

)

.

For some 𝛼 ∈ (3, 4), which will be specified later, we choose

𝑝𝑗 =
(4𝑗 + 1)𝛼 − (4𝑗 − 3)𝛼

√

4𝑗 − 1
, 𝑗 = 1, . . . ,𝑚.

For any such 𝛼 we have the inequality

(4𝑘 + 1)𝛼 − (4𝑘 − 3)𝛼 ≥ 4𝛼(4𝑘 − 1)𝛼−1, 𝑘 ∈ ℕ,

and we apply it to obtain

4𝐴𝑘(p) =
4𝑘 − 1

(4𝑘 + 1)𝛼 − (4𝑘 − 3)𝛼

𝑘
∑

𝑖=1

(4𝑖− 3)

𝑚
∑

𝑗=𝑖

((4𝑗 + 1)𝛼 − (4𝑗 − 3)𝛼)

≤

4𝑘 − 1

4𝛼(4𝑘 − 1)𝛼−1

𝑘
∑

𝑖=1

[

(4𝑖− 3)(4𝑚+ 1)𝛼 − (4𝑖− 3)𝛼+1

]

=
(4𝑘 − 1)2−𝛼

4𝛼

[

(2𝑘2
− 𝑘)(4𝑚+ 1)𝛼 −

𝑘
∑

𝑖=1

(4𝑖− 3)𝛼+1

]

=
(4𝑘 − 1)2−𝛼

4𝛼

[

(4𝑘 − 1)2 − 1

8
(4𝑚+ 1)𝛼 −

𝑘
∑

𝑖=2

(4𝑖− 3)𝛼+1
− 1

]

.

(4.3)
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For the last sum appearing in the right-hand side of (4.3) we apply Lemma 2.2 b)
to obtain

𝑘
∑

𝑖=2

(4𝑖− 3)𝛼+1
≥

∫
𝑘+1/2

3/2

(4𝑥− 3)𝛼+1 𝑑𝑥−
4(𝛼+ 1)

24

[

(4𝑘 − 1)𝛼 − 3𝛼
]

=
1

4(𝛼+ 2)

[

(4𝑘 − 1)𝛼+2
− 3𝛼

]

−

𝛼+ 1

6

[

(4𝑘 − 1)𝛼 − 3𝛼
]

≥

1

4(𝛼+ 2)
(4𝑘 − 1)𝛼+2

−

𝛼+ 1

6
(4𝑘 − 1)𝛼

(for the latter inequality we have used that 𝛼+1

6
3𝛼 − 3

𝛼

4(𝛼+2)
> 0, since 𝛼 ∈ (3, 4)).

Substitution of this bound in (4.3) and a further estimation yield

4𝐴𝑘(p) ≤
(4𝑘−1)2−𝛼

4𝛼

[
(4𝑘−1)2−1

8
(4𝑚+1)𝛼−

1

4(𝛼+2)
(4𝑘−1)𝛼+2+

𝛼+1

6
(4𝑘−1)𝛼−1

]

≤
(4𝑘−1)2−𝛼

4𝛼

[
(4𝑘−1)2−1

8
(4𝑚+1)𝛼−

1

4(𝛼+2)
(4𝑘−1)𝛼+2+

(
𝛼+1

6
−
1

8

)

(4𝑚−1)𝛼
]

=
(4𝑘 − 1)4−𝛼

32𝛼

[

(4𝑚+ 1)𝛼 −
2(4𝑘 − 1)𝛼

𝛼+ 2

]

+
4𝛼+ 1

96𝛼
(4𝑘 − 1)2−𝛼(4𝑚− 1)𝛼

≤
(4𝑘 − 1)4−𝛼

32𝛼

[

(4𝑚+ 1)𝛼 −
2(4𝑘 − 1)𝛼

𝛼+ 2

]

+
4𝛼+ 1

96𝛼
(4𝑚− 1)2 .

From the analysis in the case (𝑛 = 2𝑚) we know that the function

ℎ(𝑥) :=
𝑥4−𝛼

32𝛼

[

𝑀𝛼

−

2𝑥𝛼

𝛼+ 2

]

has a unique global maximum in the interval (0,𝑀) for 𝛼 ∈ (3, 4). Repeating the
argument from Section 3.1, substituting 𝑀 = 4𝑚+ 1 and 𝑥 = 4𝑘 − 1, we obtain

4𝐴𝑘(p) ≤
1

128

(

(4− 𝛼)(𝛼 + 2)

8

) 4−𝛼

𝛼

(4𝑚+ 1)4 +
4𝛼+ 1

96𝛼
(4𝑚− 1)2, 1 ≤ 𝑘 ≤ 𝑚.

Minimization of the major term in the right-hand side with respect to 𝛼 yields

sup
𝑓∈𝜋2𝑚−1,𝑓 ∕=0

∥𝑓 ′
∥

2

1/2

∥𝑓∥2

1/2

≤ max
1≤𝑘≤𝑚

4𝐴𝑘(p) ≤ 0.10613184(𝑛+ 1.6)4 .

Inequality (1.5) is proven in the case 𝑛 = 2𝑚− 1, 𝑚 ≥ 2.

4.2. A LOWER BOUND

Every odd polynomial 𝑓 ∈ 𝜋2𝑚−1 can be expressed as a linear combination
of the Legendre polynomials with odd indices {𝑃2𝑘−1}, which we write again as
polynomials of Gegenbauer with a parameter 𝜆 = 1/2. If

𝑓(𝑥) =

𝑚
∑

𝑘=1

𝑡𝑘𝐶
1/2

2𝑘−1
(𝑥) , (4.4)
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then
∥𝑓 ′
∥

2

1/2

∥𝑓∥2

1/2

= 4
𝑄𝑚(t)

∣𝑡∣2
.

We will find a suitable vector of the coefficients t = (𝑡1, 𝑡2, . . . , 𝑡𝑚) ∈ ℝ𝑚

+
in (4.4),

such that 4𝑄𝑚(t)

∣t∣2
≥ 0.3178372(𝑛+ 1/2)4.

For a 𝛽 ∈ (3, 3.5), which will be specified later, we choose

𝑡𝑗 :=
(4𝑗 + 1)𝛽 − (4𝑗 − 3)𝛽

√

4𝑗 − 1
.

As it was done in Section 3.2, we estimate from below the quadratic form
4𝑄𝑚(t) and from above ∣t∣2, thus obtaining a lower bound for 4𝑄𝑚(t)/∣t∣2. For
this choice of t we have

4𝑄𝑚(t) =

𝑚
∑

𝑘=1

(4𝑘 − 3)
( 𝑚
∑

𝑗=𝑘

(4𝑗 + 1)𝛽 − (4𝑗 − 3)𝛽
)2

=

𝑚
∑

𝑘=1

(4𝑘 − 3)
[

(4𝑚+ 1)𝛽 − (4𝑘 − 3)𝛽
]2

= (2𝑚2
−𝑚)(4𝑚+ 1)2𝛽 − 2(4𝑚+ 1)𝛽

𝑚
∑

𝑘=1

(4𝑘 − 3)𝛽+1 +

𝑚
∑

𝑘=1

(4𝑘 − 3)2𝛽+1.

(4.5)

For the first of the sums above we apply Lemma 2.2 a) to obtain

𝑚
∑

𝑘=1

(4𝑘 − 3)𝛽+1 = 1 +
𝑚−1
∑

𝑘=1

(4𝑘 + 1)𝛽+1 < 1 +

∫
𝑚−1/2

1/2

(4𝑥+ 1)𝛽+1𝑑𝑥

= 1 +
1

4(𝛽 + 2)

[

(4𝑚− 1)𝛽+2
− 3𝛽+2

]

<
1

4(𝛽 + 2)
(4𝑚− 1)𝛽+2 ,

where for the last inequality we have used that 1− 3
𝛽+2

4(𝛽+2)
< 0 .

Lemma 2.2 b) applied to the second sum of the last line of (4.5) yields

𝑚
∑

𝑘=1

(4𝑘 − 3)2𝛽+1 =

𝑚−1
∑

𝑘=0

(4𝑘 + 1)2𝛽+1 = 1 +

𝑚−1
∑

𝑘=1

(4𝑘 + 1)2𝛽+1

> 1 +

∫
𝑚−1/2

1/2

(4𝑥+ 1)2𝛽+1𝑑𝑥−
2𝛽 + 1

6

[

(4𝑚− 1)2𝛽 − 32𝛽

]

=
1

8(𝛽 + 1)
(4𝑚− 1)2𝛽+2

−

2𝛽 + 1

6
(4𝑚− 1)2𝛽 + 1 +

2𝛽 + 1

6
32𝛽

−

9

8(𝛽 + 1)
32𝛽

>
1

8(𝛽 + 1)
(4𝑚− 1)2𝛽+2

−

2𝛽 + 1

6
(4𝑚− 1)2𝛽 ,

where for the last line we have used that 1 + 32𝛽

(
2𝛽+1

6
−

9

8(𝛽+1)

)

> 0.
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Substitution of the bounds for these sums in (4.5) implies

4𝑄𝑚(t) >
1

8

[

(4𝑚− 1)2 − 1
]

(4𝑚+ 1)2𝛽 −
1

2(𝛽 + 2)
(4𝑚+ 1)𝛽(4𝑚− 1)𝛽+2

+
1

8(𝛽 + 1)
(4𝑚− 1)2𝛽+2

−

2𝛽 + 1

6
(4𝑚− 1)2𝛽

=
1

8
(4𝑚− 1)2(4𝑚+ 1)2𝛽 −

1

2(𝛽 + 2)
(4𝑚+ 1)𝛽(4𝑚− 1)𝛽+2

+
1

8(𝛽 + 1)
(4𝑚− 1)2𝛽+2

−

1

8
(4𝑚+ 1)2𝛽 −

2𝛽 + 1

6
(4𝑚− 1)2𝛽

=(4𝑚+ 1)𝛽
[1

8
(4𝑚− 1)2(4𝑚+ 1)𝛽 −

1

2(𝛽 + 2)
(4𝑚− 1)𝛽+2

]

+
1

8(𝛽 + 1)
(4𝑚− 1)2𝛽+2

−

1

8
(4𝑚+ 1)2𝛽 −

2𝛽 + 1

6
(4𝑚− 1)2𝛽 .

Furthermore, from (4𝑚+ 1)𝛽 > (4𝑚− 1)𝛽 + 2𝛽(4𝑚− 1)𝛽−1 we get

4𝑄𝑚(t) >
[

(4𝑚+ 1)𝛽 + 2𝛽(4𝑚− 1)𝛽−1

]

×

(

1

8
(4𝑚− 1)2

[

(4𝑚+ 1)𝛽 + 2𝛽(4𝑚− 1)𝛽−1

]

−

1

2(𝛽 + 2)
(4𝑚− 1)𝛽+2

)

+
1

8(𝛽 + 1)
(4𝑚− 1)2𝛽+2

−

1

8
(4𝑚+ 1)2𝛽 −

2𝛽 + 1

6
(4𝑚− 1)2𝛽

=
[1

8
−

1

2(𝛽 + 2)
+

1

8(𝛽 + 1)

]

(4𝑚− 1)2𝛽+2 +
(𝛽

2
−

𝛽

𝛽 + 2

)

(4𝑚− 1)2𝛽+1

+
𝛽2

2
(4𝑚− 1)2𝛽 −

1

8
(4𝑚+ 1)2𝛽 −

2𝛽 + 1

6
(4𝑚− 1)2𝛽

=
𝛽2

8(𝛽 + 1)(𝛽 + 2)
(4𝑚− 1)2𝛽+2 +

𝛽2

2(𝛽 + 2)
(4𝑚− 1)2𝛽+1

+
(3𝛽 + 1)(𝛽 − 1)

6
(4𝑚− 1)2𝛽 −

1

8
(4𝑚+ 1)2𝛽.

For 𝑚 ≥ 2 and 𝛽 ∈ (3, 3.5) the expression in the last line is positive, and therefore
can be neglected. Indeed, in the inequality

4(𝛽 − 1)(3𝛽 + 1)

3
>

(4𝑚+ 1

4𝑚− 1

)2𝛽

the right-hand side is <
(

9

7

)7

, the left-hand side is > 80

3
, and also 80

3
−

(

9

7

)7

> 0.

Therefore,

4𝑄𝑚(t) >
𝛽2

8(𝛽 + 1)(𝛽 + 2)
(4𝑚− 1)2𝛽+2 +

𝛽2

2(𝛽 + 2)
(4𝑚− 1)2𝛽+1

=
𝛽2

8(𝛽 + 1)(𝛽 + 2)
(4𝑚− 1)2𝛽+2

[

1 + 4(𝛽 + 1)
1

4𝑚− 1

]

.

(4.6)
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Next, we find an upper bound for the norm of t. For this purpose we estimate
all of its components

𝑡𝑗 =
(4𝑗 + 1)𝛽 − (4𝑗 − 3)𝛽

√

4𝑗 − 1
, 𝑗 = 1, . . . ,𝑚 ,

using that 𝛽 ∈ (3, 3.5). Inequality (3.9) applied with 𝑥 = 2

4𝑗−1
yields an upper

bound for 𝑡𝑗 :

𝑡𝑗 < 4𝛽(4𝑗 − 1)𝛽−3/2 +
8

3
𝛽(𝛽 − 1)(𝛽 − 2)(4𝑗 − 1)𝛽−3

1

2

= 4𝛽(4𝑗 − 1)𝛽−3/2

[

1 +
2

3
(𝛽 − 1)(𝛽 − 2)

1

(4𝑗 − 1)2

]

< 4𝛽(4𝑗 − 1)𝛽−3/2

[

1 +
5

2

1

(4𝑗 − 1)2

]

.

Since 𝑗 ≥ 1, we have

𝑡2
𝑗
< 16𝛽2(4𝑗 − 1)2𝛽−3

[

1 + 5
1

(4𝑗 − 1)2
+

25

4

1

(4𝑗 − 1)4

]

≤ 16𝛽2(4𝑗 − 1)2𝛽−3

[

1 + 5
1

(4𝑗 − 1)2
+

25

36

1

(4𝑗 − 1)2

]

= 16𝛽2(4𝑗 − 1)2𝛽−3

[

1 +
205

36

1

(4𝑗 − 1)2

]

.

Thus,

𝑡2
𝑗
< 16𝛽2(4𝑗 − 1)2𝛽−3 +

820

9
𝛽2(4𝑗 − 1)2𝛽−5 , 𝑗 = 1, . . . ,𝑚 . (4.7)

To estimate from above ∣t∣2, we make use of (4.7) and the fact that for 𝛽 ∈ (3, 3.5)
the functions ℎ1(𝑥) = (4𝑥 − 1)2𝛽−3 and ℎ2(𝑥) = (4𝑥 − 1)2𝛽−5 are convex and
have convex second derivatives in the interval [1,𝑚]. Let 𝑄𝑡𝑟

𝑚−1
be the 𝑚-point

trapezium quadrature formula for the interval [1,𝑚]. By Lemma 2.2 b) we have

𝑚
∑

𝑗=1

(4𝑗 − 1)2𝛽−3 =
32𝛽−3

2
+

(4𝑚− 1)2𝛽−3

2
+𝑄𝑡𝑟

𝑚−1
[ℎ1]

<
32𝛽−3

2
+
(4𝑚−1)2𝛽+3

2
+

∫
𝑚

1

(4𝑥−1)2𝛽−3𝑑𝑥+
2𝛽−3

3

[

(4𝑚−1)2𝛽−4
−32𝛽−4

]

=
1

8(𝛽 − 1)
(4𝑚− 1)2𝛽−2 +

1

2
(4𝑚− 1)2𝛽−3 +

2𝛽 − 3

3
(4𝑚− 1)2𝛽−4

+
[1

2
−

2𝛽 − 3

9

3

8(𝛽 − 1)

]

32𝛽−3 ,
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𝑚
∑

𝑗=1

(4𝑗 − 1)2𝛽−5 =
32𝛽−5

2
+

(4𝑚− 1)2𝛽−5

2
+𝑄𝑡𝑟

𝑚−1
[ℎ2]

≤

32𝛽−5

2
+
(4𝑚−1)2𝛽−5

2
+

∫
𝑚

1

(4𝑥−1)2𝛽−5𝑑𝑥+
2𝛽−5

3

[

(4𝑚− 1)2𝛽−6
−32𝛽−6

]

=
1

8(𝛽 − 2)
(4𝑚− 1)2𝛽−4 +

1

2
(4𝑚− 1)2𝛽−5 +

2𝛽 − 5

3
(4𝑚− 1)2𝛽−6

+
[1

2
−

2𝛽 − 5

9
−

3

8(𝛽 − 2)

]

32𝛽−5 .

Using these two estimations we obtain

∣t∣2 < 16𝛽2

𝑚
∑

𝑗=1

(4𝑗 − 1)2𝛽−3 +
820

9

𝑚
∑

𝑗=1

𝛽2(4𝑗 − 1)2𝛽−5

=
2𝛽2

𝛽 − 1
(4𝑚− 1)2𝛽−2 + 16𝛽2

[1

2
(4𝑚− 1)2𝛽−3 +

2𝛽 − 3

3
(4𝑚− 1)2𝛽−4

]

+
205𝛽2

18(𝛽 − 2)
(4𝑚− 1)2𝛽−4 +

820

9
𝛽2

[1

2
(4𝑚− 1)2𝛽−5 +

2𝛽 − 5

3
(4𝑚− 1)2𝛽−6

]

+

(

16
[1

2
−

2𝛽 − 3

9
−

3

8(𝛽 − 1)

]

+
820

81

[1

2
−

2𝛽 − 5

9
−

3

8(𝛽 − 2)

]
)

𝛽232𝛽−3 .

Let us show that the expression in the last line is negative. Set

𝜓(𝛽) = 16
[1

2
−

2𝛽 − 3

9
−

3

8(𝛽 − 1)

]

+
820

81

[1

2
−

2𝛽 − 5

9
−

3

8(𝛽 − 2)

]

,

where 𝛽 ∈ (3, 3.5). Since

𝜓′(𝛽) = −
4232

729
+

6

(𝛽 − 1)2
+

205

54(𝛽 − 2)2

is a decreasing function in the interval (3, 3.5), therein we have

𝜓′(𝛽) < 𝜓′(3) = −
4232

729
+

3

2
+

205

54
< 0,

so 𝜓(𝛽) decreases in the interval (3, 3.5), and therefore 𝜓(𝛽) ≤ 𝜓(3) < 0.
Thus, we obtain

∣t∣2 <
2𝛽2

𝛽−1
(4𝑚−1)2𝛽−2+8𝛽2(4𝑚−1)2𝛽−3+

[16𝛽2(2𝛽−3)

3
+

205𝛽2

18(𝛽−2)

]

(4𝑚−1)2𝛽−4

+
410

9
𝛽2(4𝑚− 1)2𝛽−5 +

820𝛽2(2𝛽 − 5)

27
(4𝑚− 1)2𝛽−6

=
2𝛽2

𝛽 − 1
(4𝑚− 1)2𝛽−2 + 𝛽2(4𝑚− 1)2𝛽−3𝐷(𝛽,𝑚) ,
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where

𝐷(𝛽,𝑚) := 8 +

(

16(2𝛽 − 3)

3
+

205

18(𝛽 − 2)

)

1

4𝑚− 1
+

410

9(4𝑚− 1)2
+

820(2𝛽 − 5)

27(4𝑚− 1)3
.

An crude estimation reveals that 𝐷(𝛽,𝑚) < 14 for 𝑚 ≥ 2 and 𝛽 ∈ (3, 3.5). There-
fore, for these 𝛽 and 𝑚 we have

∣t∣2 <
2𝛽2

𝛽 − 1

[

1 +
7(𝛽 − 1)

4𝑚− 1

]

.

By (4.6), for 𝛽 ∈ (3, 3.5) and 𝑚 ≥ 2 we also have

4𝑄𝑚(t) >
𝛽2

8(𝛽 + 1)(𝛽 + 2)

[

1 +
4(𝛽 + 1)

(4𝑚+ 1)

]

,

whence

4
𝑄𝑚(t)

∣t∣2
>

𝛽 − 1

16(𝛽 + 1)(𝛽 + 2)
(4𝑚− 1)4

1 + 4(𝛽+1)

4𝑚−1

1 + 7(𝛽−1)

4𝑚−1

.

Since 4(𝛽 + 1) > 7(𝛽 − 1) for 𝛽 ∈ (3, 3.5), the above inequality implies

4
𝑄𝑚(t)

∣t∣2
>

𝛽 − 1

16(𝛽 + 1)(𝛽 + 2)
(4𝑚− 1)4 =

𝛽 − 1

(𝛽 + 1)(𝛽 + 2)
(𝑛+ 1/2)4 .

Repeating our final argument from Section 3.2, we maximize the coefficient of
(𝑛+ 1/2)4 with respect to 𝛽 to obtain inequality (1.6) for 𝑛 = 2𝑚− 1, 𝑚 ≥ 2.

The proof of Theorem 1.1 is complete, but (1.6) is shown for 𝑛 ≥ 3 only, due
to our assumption 𝑚 ≥ 2. This restriction is easily removed, see the next section.

5. FINAL REMARKS

1. The proof of (1.6) in the cases 𝑛 = 2𝑚 and 𝑛 = 2𝑚 − 1 was accomplished
under the assumption that 𝑚 ≥ 2. In fact, for 𝑛 ≤ 8 inequality (1.6) is
verified with 𝑓 = 𝑃𝑛 - the 𝑛-th Legendre polynomial. We have

∥𝑃𝑛∥ =

√

2

2𝑛+ 1
,

and to evaluate ∥𝑃 ′

𝑛
∥, we exploit the fact that 𝑃𝑛 is orthogonal to 𝜋𝑛−1 and

other well-known properties of 𝑃𝑛 such as 𝑃𝑛(1) = 1, 𝑃𝑛(−1) = (−1)𝑛 and
𝑃 ′

𝑛
(1) = 𝑛(𝑛+ 1)/2:

∥𝑃 ′

𝑛
∥

2 =

∫
1

−1

𝑃 ′

𝑛
(𝑥) 𝑑𝑃𝑛(𝑥) = 𝑃𝑛(1)𝑃

′

𝑛
(1)−𝑃𝑛(−1)𝑃

′

𝑛
(−1)−

∫
1

−1

𝑃𝑛(𝑥)𝑃
′′

𝑛
(𝑥)𝑑𝑥

= 2𝑃 ′

𝑛
(1) = 𝑛(𝑛+ 1) ,
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i.e., ∥𝑃 ′

𝑛
∥ = 𝑛(𝑛+ 1). The inequality (1.6) with 𝑓 = 𝑃𝑛 is equivalent to

√

𝑛(𝑛+ 1) > (
√

3−
√

2)
(𝑛+ 1/2)2
√

𝑛+ 1/2
.

It is easy to see that the last inequality is true for 𝑛 ≤ 8.

2. With more elaborate estimations of 𝑃𝑚, 𝑄𝑚 and t (including a Taylor series
expansion up to ninth term), and using MATHEMATICA, inequality (1.6)
could be improved to

∥𝑓 ′
∥1/2 ≥ 0.317837(𝑛+ 3/2)2 ∥𝑓∥1/2.

We however decided to skip the derivation of this slightly better inequality.

3. In view of (1.2), the overestimation of the best constant in Markov’s 𝐿2

inequality, given by (1.5), is asymptotically equal to

0.325779

1/𝜋
= 1.02346 . . . .

On the other hand,
1/𝜋

√

3−
√

2
= 1.00149 . . . ,

which shows that the lower bound for the best constant in Markov’s 𝐿2 in-
equality, given by (1.6), is rather satisfactory.
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