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Professor Yaroslav Tagamlitzki

On December 20, 1997 the Faculty of Mathematics and Informatics organized
a special Scientific Session devoted to the 80th birthday of Prof. Yaroslav Tagam-
litzki (1917-1983). In this annual the scientific program of the Session is included,
together with the full texts of some of the lectures presented there.

Professor Tagamlitzki was a brilliant and creative mathematician, well-known
in the mathematical community, the teacher of several generations of Bulgarian
mathematicians. ‘

With this issue the Editorial Board pays a small tribute to the memory of
Professor Tagamlitzki.

The Editorial Board
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’ Baxppmaue Ha Hay4YHaTa CeCHA.



Canoso, npousneceno om npo¢. T. I'envwes npu omxpusarnemo
na VouNeTNANAE HAYYHE KONPEPEHYUF N0 cayvwal ocemdece-
mama 2o0uwrura om poxrcdenuemo na npod. Tacamauyxy

Y BarkaeMy KoJjeru, CK'bIIM 'oCTH,

OpraHu3alMOHHMAT KOMUTET M€ HATOBapu C NMPUATHATA U MOYeTHA 3aja-
ya Ja OTKPUA Hay4HaTa CeCHf B NamMeT Ha GenexxnuTua 6bJIrapcku MaTeMaTHK,
He3abpaBUMuUA yuyMuTe s Ha BCUYKU Hac, nmpodecop flpocnas Taramamiku.

PycuH 1o HalMOHAJHOCT, IpeKapaJ HeJusa CU Ch3HaTelleH KUBOT B Bbi-
rapus, TaraMJuIky U3pacTBa M Ce Pa3BUBa KaTO ObJIrapckM MaTeMATHUK U
6barapcku natpuot. Toit ce ropaeeute, ye e mpodecop umenno B Coduiickusa
YHUMBEDCUTET ¥ TBBHPAO BApBalle, Ye HAIIMAT GaKyJTeT € Hay4deH LEHTHLD, B
KOWTO Cca NpaBeHU U ce MpaBAT U3CJJeABaHUA OoT eBpomneickn Mamab. Ocra-
BAWKUA HU HeINpPEeXOIHU pe3yiNTaTU B KilacHYecKUA U QYHKUMOHAJIHUA aHAJIU3,
TaraMJIMIKK MOAKPENU CBOETO BEPYIO € €1HO 3abesIeXUTEeIHO TBOPYECKO AeJo.
Toit cmaATame, ye HprArapckaTa MaTeMaTHKa € J0CTaTb4yHO 3psAia, 33 J1a MOXKe
caMa Jla [peleHsABa CBOMTE M YYKAWTe IIOCTWKEHWA, U BUAUMO Ce Apa3Helule,
KOraTo npym o6C’hbKAaHETO Ha Hay4HU B'BIPOCU BMECTO JOBOJHM IO CHIUIECTBO
ce NpUBEXKAaXa UUTATU OT YYKAM aBTOpuTeTH. HeroBoro u3ocTpeHo 4YyBCTBO
3a [IEHHOCTUTE B HayKaTa ypaBHOBeCABallle BpoJeHaTa My A00porkenaTesiHOCT
¥ ro npeAnassame oT npubbp3anu nmoxsaau. Taramanuku Geille B3UCKATENEH,
HO HEroBaTa B3UCKaTelIHOCT He Geme eqHoCTpaH4YMBa; Toi Gellle CTPOr C'hAHMK
He caMo Ha Yy>I0TO, HO U Ha CBOeTO TBOpYecTBO. B cTpaHa ¢ HEyKpenHaJu
Hay4YH¥ TPAJMIVM, TPY TOBA B NpPOLIEC HA EKCTEH3MBHO pa3BUTHE KATO CJIEABO-
eHHa Bbarapus, HeroBaTa B3MCKaTEJHOCT, KOATO He beme HUINO APYro OCBEH
yBaKeHMe K'bM HayKaTa, 4yecTo OuBallle HEPaBUJHO pa3bupaHa U My Hocelle
HEMaJIKO OropuYeHUs. Bblipeku ToBa TO# M3II'bJHABallE HJOCTOMHO MHUCHUATA Ha
KyJITypTperep, ¢ kKosATo ce Genie Har'bpobui.

3a na paszbepeM MCTMHCKOTO MACTO Ha TaraMivilkv B MCTOPMATA Ha Ha-
wua pakynrer, TpAGBa nAa ceée BbpPHEM Ha3aj] B HAYaJlOTO Ha NIeTheceTTe To-
aumayn. [lo oHOBa BpeMe, oT BTOPOTO IOKOJIEHME YHMBEPCUTETCKM mpodecopu,
camo Ob6pemkoB Hemre oute B TBOpYECKa B'b3pacT, HO He P’bKOBOJIEIIe Hay4YeH
ceMuHap uriopasm ocobeHoCTUTE Ha CBOA XapaKTep He IpaBelle yCUIUA Na
c¢b3aane HayuHa wikoJsa. OT apyra cTpaHa, KaTo ClIeACTBUe OT BOWHaTa CTa-
pUTe HAYYHM KOHTAaKTU cbc 3anmaga (mmam npeapua ['epmanmsa m Ppannms) |
fAXa rpeKbCHATH, a HOBUTe, npeau Bcuuko ¢ MI'Y, ome He Gsxa cb3nane-
HU. VMIMeHHO Torasa, paHO AOCTUTHAJ TBop4ecka 3psajoct, TaramJaulKu Cb3-
jJajie CeMUMHap, KOWTO pPBLKOBOJeUIe C Bb3POXKIAECHCKAa BCEOTHANHOCT, BbIPEKHU
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Or'poMHaTa 3a/'bJPKMTEJIHA IIpernoJaBaTelicka paboTa, KOATO Jiexelle Ha He-
ropuTe niaemm. To3M ceMMHap, 3aeJHO ChC CHEUKYPCOBETE, KOUTO €XKEroIHO
yetenie, 0opopMu HEHTH P, OKOJIO KOTO ce rpynupaxa CTYAEHTUTE ¢ aPUHUTET
KbM HaykaTa. Ilo To3u HauMH, ¢ TajnaHT U cebepa3aaBane, TaraMJiulkyu XBbp-
JIM MOCT MEXAY MUHAJIOTO U ObAelleTo U C'hb3daZe HOBaTa Obarapcka MIKOJA.
AKo cera, mpejn rpara Ha HOBOTO CTOJIeTHe, Ce 3allMTaMe KOt € MATEMaTUKBT,
NONPUHECHJ HAW-MHOI'O 33 pa3BUTHUETO Ha (PaKyJiTeTa Npe3 MocjieHUTE eTae-
CeTUHa TOJWHW, OTrOBOPBT MOXe Aa Obuae camo eaun: flpocnas Taramiuuuxu.
U cnasa Bory, n0 103m oTroBop ce goctura u 6e3 rnpebposABaHe Ha LMTATH.

Bbrnpeku HeropuTe 6€3CrOpHM 3acCiHyry M KbM ObArapckata HayKa U KbM
6barapckoro obpa3zopanue, Taramuunku He 6elre yIZoCTOEH C YJIEHCTBO B
BAH. AkangemMuuHaTa HOMEHKJATypa My OTKa3a OHOBa, KOeTo Gelle 3aciy»ui
MHOI'OKpaTHO. HoO 3a Hac, HEroBUTe YUYeHHUIM, KOUTO MMaxMe INpPUBUIIETUATA
fa ro nosHaBaMe u obuyame, Toi Gellle ¥ € HEUIO MOBeYE OT AKAAEMHUK. 3a
Hac To# e ¢urypa ¢ Apyru M3MEpPEHUA, OT Apyr Mamab, yueH U NMpoCBETUTEJ]
B MCKOHHMA CMUCHJ Ha AyMHTe, Gopell 3a Mo-WMPOKA AYXOBHM XOPU3OHTHU U
3a M0-BMCOKa MaTeMaTHMYecKa KyJaTypa. Mwucas, 4ye HAMa ja c6bpkaM, ako
Ka)ka, ye TOBa MHEHME Ce Cnoelifllle ¥ OT Hal-1IMPOKUTE KP'broBe Ha HalllaTa
MaTeMaThyecKa 001eCcTBEeHOCT. .

Beue 14 roamuu Taramiuukm He e mexay Hac. OcBeH cBoeTo TBOpuUec-
TBO TOW HM OCTaBM M CBOofA npumep. J[lHec, B TpyAHHWTEe NpPEeXOAHW I'OAVHM,
TO3M npumep npuaobuBa ocobena crodiHoct. HamcTmHa KakBo HuxMe Morau
a MPOTUBOMNOCTABUM Ha MOpaJIHATa €po3usa, To3M HeudbexkeH CM'bTHUK Ha He-
JOUMBKa, OCBEH NpUMepa Ha Hal-nocronurTe? JlocToMHO MACTO MeXIAy TAX
3aeMa U HawmMAT He3abpaBuMm yuutena npodecop Hpocnas Taramiamukm.

OT MMeTo Ha OpraHM3alMOHHUA KOMMUTET oOABABaM JAHeNIHATA HAyYHA Ce-
CUA 3a OTKpUTa M JAaBaM aymarta Ha npod. CkophaeB na M3Hece NOKIalA 3a

KUBOTAa M HAYYHOTO HAEJIO Ha l'lpO(i). TaraMauiky.

Cogus,
20 dexemepu 1997
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AUBOTHT U JEJIOTO HA SIPOCJIAB TATAMJIMIIKN

BJIAIVMMUP YAKAJIOB, IMMUTBP CKOPIEB

YoBek'bT, KOMYTO € NOCBEeTEHa HACToAllaTa Hay4yHa CECHA, Ce € POIaMI
Ha 11.09.1917 r. B pyckusa rpaa Apmasup (rpaabT € pasNoioKeH TaM, Kb-
neto p. Ky6aHn Hanycka npeamniaHMHMTE Ha KaBka3 ¥ HaBJIM3a B paBHMHATA,
pasnoJioxKeHa Ha ceBep oT TAX). Kpbiuennoro uMe Ha To3m 4yoBek e flpocnas-
Poman Anexcannposuy Taramaunikuii. BebumHocT, kakTo TO#H e cnojensn B
pPa3roBop, MaJIKOTO My uMe, us3bpaHo oT poauTenure, e 6uano camo fpocuas
(ToBa, ¢ KOETO OBGMKHOBEHO € Ha30BaBaH MO-HATATHK), HO CBELIEHUKHT, KOUTO
e TpA6BaJIO Ja U3B'HPUIM KPHIEHHETO, C€ € BB3MNPOTUBUI CPEILy MpealoxKeHo-
TO M€, CIIOPEJ Hero €3u4ecKo, ¥ Ce € HaJIOXKUJIIO Ja Ce HaIlpaBU KOMIIPOMMC,
kaTo ce no6asu U umero Poman. PaMUIHOTO MMe II'bK HPOU3JIN3AO OT HAM-
MeHOBaHMeTo TaraMiuk, HOCEHO 0T HAKAKBO HEroJAMO HACENEHO MACTO B Ta3M
YacT Ha CTpaHaTa. KakKTo 3HaeM, MHOI'O CKOPO CJeH CIIOMeHaTaTa pOXKAEeHa
AaTa npubamkapamaTta cBoA Kpalt [I'bpBa cBeTOBHA BoliHA IpeMMHaBa B HOBH,
Olle MO-)KECTOKUA, MHOTOOPOMHU ¥ TPOABIKATEIHUA U3IUTAHAA U ChTPECEHUA
3a Pycua. Te craBat mpuumna npe3 1921 r. uanoro cemeiictBo — bGamarta
Anekcanabp Muxaiinopuu (umxeHep mo mpodecus), malikara Bepa Jleouu-
noBHa, MankuAT fpocnas u cectpa My 'anuba (¢ eaHa roamMHa mo-rojisiMa oT
Hero), na ce npeceau B bbarapua. Paktuyecku Bbiarapusa craBa poauHa Ha
fipocna TaraMauiKu u Mpe3 LEJNA CU Chb3HATEJEH XKUBOT, N0 CBOA OCHENEH
JeH — 28.11.1983 r., Toit paboTH 3a HEHHOTO pa3BUTUE U U3 AUTAHE.

Canen npecenBaHeTo ¢ B Bbarapusa cemeiicrBo TaraMiIMIKu ce ycTaHO-
BABa B Codpus, KbAeTO CUCTEMATUYHO IIOHACA I'OJIEMM MAaTE€PUaJIHA HECTOMM,
AOI'bJIHUTENIHO YTE€XKHEHM OT BCe IO-BJIONIABAIIO C€ 3APaBOCIOBHO C'hbCTOSHUAE
Ha Gamara (Mo-moApo6HM CBeJEHMA 3a TO3M NMEPUOJ MOTAaT Jla ce HAMEPAT
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B crnoMenure Ha npo¢. ['amuua Taramumuka K Moar 6pat fApocnas Taram-
TMUKK ¢, BKIIOYeHU B cbopHUKa , fApocnas TaraMauuku — ydyeH m yumren “,
usnauve Ha , Hayka u uskycreo® ot 1986 r.). OcnoBHoTo o6pa3zoBauue Ha
munaaua Taramauuku MyUHaBa Ge3 Hello Ja MOACKa3Ba 3a ToJIEeMUTE 3aJ10XK6H,
CKPHUTHM B HEro, HO NpPY TIOCTHIIBAHETO My B M3BecTHaTa BTopa MBbXkKa co-
¢uiicka ruMHa3uA HemaTa KopeHHO ce npoMeHAT. Ilo Bcuuko nuum, ye ce e
[OJIYYUJIO €AHO M3KIIOUMTENHO 6IaronpUATHO chYeTaHUe, OT eIHa CTPaHa, Ha
roJiAMaTa [PUPOAHA HAAAPEHOCT HA Ch3pesiMA Bede YUYEHUK M Heyd'hPXKUMMA
My CTpeEMeX KbM HayKaTa M, OT Apyra CTPaHa, Ha BUCOKOTO npodeCUoHAIHO
HMBO Ha YUMTEJUTE U TAXHATA Bb3POXKAEHCKa o06UY K'bM NpodhecUAara U rpu-
aTa UM 3a obyuyaBanuTe. MarteMaTU4YeCKUTe UHTEepeCH Ha TaraMiuLKM Ipe3
TO3M TepUOJ Beue gajied HAAXBBbPJAT M3ydYaBaHaTa 'MMHa3MaJIHa MaTEPUA U
TOM MMa ¥ CEPUO3HM M3ABU HAa CAMOCTOATEJIHO HAYYHO TBOPYECTBO, MaKap 3a
HEroBO pa304apoBaHMe IOJyYEeHUTe Pe3yJITATH Ja Ce OKa3BaT U3BECTHMU OT
no-pado. Ilak npe3 To3u nepuox Taramiauuku e peloBeH CaymiaTesl Ha yHH-
BepCUTETCKUTE JIeKIMY Ha roctyBaiius npe3 1935 r. B Copusa BuaeH HEMCKU
matemaTnk Oto Biiymentan. BnpouyeM He camo B MaTeMaTUKaTa M He CaMoO B
HayKaTa € IPOABMJ CBOUTE 3a0>K0U NapOBUTUAT U yueHoMO6uB Maanex. Ot
TOBa BPEMe JaTHpa HallpMMep M HErOBOTO rOJIAMO BJieYeHHE KbM MY3MKATa,
MHTEPEChT KbM KOATO M OT €CTETUHEeCKa, M OT Hay4yHa TJieAHa TOYKa He Io
HallyCKa 0 Kpad Ha »XMBOTa My.

I'mmHasunadHoro cu obpasoBanue fApocaas TaraMauiku 3aBbpliBa Iipe3
1936 r. CbmaTa roavHa NoCT’blBa B CIEIMAJHOCTTA MATEMAaTHKA Ha ToraBalll-
ana Pusuxo-mMatematTuueckd pakynrer Ha Coduitickua yuuBepcurTeT M 6bp30
NpYBJIMYa BHUMaHMETO Ha CBOMTe npodecopu KakTo ¢ AbA6oUMHATA, TaKa U C
o6xBaTa Ha CBOMTE MO3HAHUA, a 0COBEHO C’bC CBOUTE 3abelleXKUTeNIHU TBOpYeC-
ki Bb3MokHocTH. Omle 110 Bpeme Ha cie/iBaHeTo cM TaraMJIMIKM HallMCBa TPH
HaydHM cTaTuM, ny6auxysaau npe3 1938 u 1939 r. (aBe oT Tax ca ormevyaTanu
BbB ®PU3UKO-MaTEMATUYECKOTO criucanue, a Tperata — B FO6Guneen c60pHUK
Ha PM3MKO-MaTeMaTUUYECKOTO ApPYXecTBo). U TpuTe CTAaTMM CBUAETEICTBAT
3a 3pAJOCT, HECBOMCTBEHA JaXKe 3a TaKbB A06Bbp CTYHEHT, a TpeTaTa IIOKa3Ba
¥ JeTaiHO Mo3HaBaHe Ha TeopuaTa Ha Jleberosmusa uHTerpaJ, KOATO HO TOBa
BpeMe 30610 He ce npenonasa B CoduicKkna yHUBEpPCHUTET.

IIpe3 1940 r. Apocnas Taramiauuxy 3aBbplUIBa BHCLIETO cu o6pa3oBaHue
M e KOMaHAMPOBaH 0T MMHMCTEPCTBOTO Ha HapoJHATA MPOCBETa 3a HAy4Ha
pabora B Coduiickusa yuuBepcurer. [Ipe3 1942 u 1943 r. e Ha crnemmanusa-
A B Jlainuurckua yHUBepCUTET NpU ulBecTHUuTe MaTeMaTuliy Kbobe u Ban
nep Bapaen. CrnemmaamM3aumaTra My 3aBbplliBa C'bC 3alllMTa HA JOKTOPCKa pa-
6ota, B KoATO ce obobimaBa eaHa u3pecTHa Teopema Ha Krobe oT Teopuara
Ha aHaJuTU4YHMTe QyHKUMM. Tyk mposanyasa crnocobHocTTa Ha TaraMiauiKu
6'bp30 Oa HaBJe3e M Ja ce 3aabiabouu B obiaacT, KoOATO AoToraBa € 6uia u3-
B’bH MHTEPECUTE MY, U TO JO CTeIeH Ja NPUABMKUA Halpel U3CJeABAHUATA Ha
HEeHHMA C'b3aaTell.

Cnen xaTo ce spbma B buarapua, Taramaunku e npusoBan ga orbue Bo-
eHHaTa cu ciyxkba. EauH npamaTuyeH U MHOro ornaceH MOMEHT OT TOBa BpeMme
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e uzbaBaHeTo My (3a€IHO C Ollle HAKOJKO APYI'M BONAHMULM) OT HEMCKM IJIEH Ha,
reputopuaTta Ha FOrociasua npe3 ecenrta Ha 1944 r.

[Tpes 1945 r. flpocnas Taramaunku e Ha3HaUeH 3a ACUCTEHT KbM Ka-
teapaTa [0 AA(EpEeHIMaSHO U UMHTErPajlHO CMATAHE, YMATO PBKOBOAUTEJ €
opaemmaT akanemuk npog. Kupua [lonos. ToBa e Havyaso Ha U3KIIOYUTETHO
MHTEH3VMBHA Hay4YHa M MpenogaBaTeiicka paboTa, mambiHuia XuBoTa Ha Ta-
ramJyIMIKA 10 TMOCHeaHVA My JeH. MHOro ckKopo B M3CieNBaHMATA Ha MJlajAUsd
aCHCTEHT 3afo4Ba BCe T0-0CEe3aTeHO [a 3By4YM eUH JAaUTMOTUB, KOUTO cien
BpeMe J0Bexkaa N0 pa3paboTBaHeTO Ha HoBa 3a Bbarapus, TBbpAe UHTEpECHA
v obemasama HayuHa obnact. CtaBa AyMa 3a MOHATUETO HEPA3JIOKUMOCT, 32
HeroBaTa POJIA B aHAJMU3a U 32 Bb3MOKHOCTUTE 32 IIPUJIOKEHUA Ha CBOMCTBaTa
Ha HEPa3JIoXXKMMUTE ejleMeHTH. Taka HanmpuMmep B cratuaTa oT 1946 r. Pyn-
KIMAM, KOUTO YIOBJIETBOPABAT M3BECTHU HepaBeHCTBa BLPXY peaiHaTa oc“ no
C’hIIECTBO ce JA0Ka3Ba HEpa3JIOXKMMOCTTA Ha IMOoKa3aTesHaTa QPYHKIMA B €AUH
eCTEeCTBEHO B'b3HUKBAI KOHYC oT GyHKIMU. B HAkou cinexBamm paboTu ce mo-
Ka3BaT aHaJIOTMYHM CBOUCTBA U Ha De3kpaliHuTe reoMeTpuyHM nporpecum. B
nopeAnia 0T IPUBUAHO pa3HOPOAHM pe3yitaTv Taramumuku cbhbe 3abenexn-
TeJIHO MPO3pPEHUE BIKAA JbI60KaTa ChIHOCT, KOATO I'M 06eAMHABA, U HACTOSA-
TeJHO C& CTPEMM K'bM II'bJIHOTO ¥ pa3KpUBaHe ¥ K'bM HaMupaHe Ha APYTY HelHU
nposaBu. Te3n ThpceHus maBaT cBoutTe pesyirati. Ilpes 1949 r. ce noassBa
craTusATa My , BbpXy HAKOM NpuiokeHUA Ha obmiaTa TeopusA Ha NUHEHHUTE
IIPOCTPAHCTBA C YaCTHYHO HapexaaHe“. B Hesa Toit ¢popmysupa Nm'bpBUTE CHU
obmM TEeopeMu, OTHACAUIM Ce 3a JIMHEAHU NPOCTPAHCTBA, U B T€3M TEOPEMM
ce M3MON3BAT CBOMCTBaTa Ha Hepa3noxumute eimemeHTH. OT cnoMeHaTuTe
TEOpEMHU Beue Mpo3upa MIeATa Ha o6IUMA MeTod, BbPXY UMeTO C’b3JaBaHe pa-
6ot Taramauuxu. Be3 Bce oule na e popMyaupa TO3¥ MeTOH B ABEH BUA,
ApocnaB TaraMiuuk¥ AOKa3Ba MO CXOJAEH HAYMH MOpPEAMIIAa OT MHTEPECHHU M
HETPMBHAJHYM pe3yJTaTH 3a NpeAcTaBsAHe Ha QYHKLMM Ype3 Be3kpaiiuy penoBe
WM upe3 uHTerpasu. BescnopHo Hali-uHTepecHaTa My paboTa B Ta3u obiacT
e M3cJieIBAaHeTO B'bPXY MHTEepHoJiallMoHHMA pea Ha Aben, nybaukyBaHo npe3
1950 r. B 'onmmemka Ha Coduiickua yuuBepcuteT u npe3 1951 r. B Jokna-
qute Ha Akajemusara Ha HaykuTe Ha CCCP. B ToBa M3ciaensane ce nmojy4yaBa
eqMH AbA6OK pe3ysiTaT 3a npelcraBsHe ype3 cbop Ha cyma Ha Oe3kpaeH pex
¥ Ha MHTErpaJi, KaTo TO3M pe3yJTaT pa3KpuBa NPUYMUHUTE 3a MHOrobpoiiHuTe
cly4yad, B KOUTO MHTepIloJlallnoHeH pen Ha AbGen He mpencTraBA QYHKUMATA,
Ha KOATO CHOTBETCTBA. 3a CIOMEHATOTO M3cjelBaHe TaraMiMiUKu IoJyda-
Ba JluMuTpoBcKa Harpala npe3 1952 r. (npeau toBa npe3 1947 r. 3a apyru
HECOBY M3CNE/BAHUA OT ChlIaTa MOpeAMNa My ¢ JlajleHa HarpaaaTa 3a HayKa
Ha KomureTra 3a Hayka, M3KycTBO M Kyirypa). Ilpe3 1953 r. 3a HaydHarta u
npenojaBaTesiCKaTa CU JelHoCT e HarpajeH ¢ opieH , Kupun n Metommii“,
I crenen.

- Mexnyspemenso fipocnas Taramiuuku e usbpaH 3a yacTeH AOLEHT (mpe3
1947 r.) u 3a penoben nonent (npes 1949 r.). Ot 1954 r. To# e nmpodecop,
3aBeXxJall KaTeJpaTa N0 AudepeHIMaHO ¥ MHTErpajlHo cMATaHe BbB Pusm- .
Ko-MaTeMaTuueckus ¢pakynrer Ha Coduiickns yuusepcurer. Tbit kKaTo no-Ha-
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TaThIIHATE U3pa3yd Ha HAYYHO MPU3HaAHME, KOUTO TaraMMLIKM nojydasa OT
PbKOBOAHUTE MHCTAHLUMM B ObJrapckaTta Hayka, He ca 0co6eHO MHOro6poiium,
e I'M CIIOMEHeM TYK, 3a Ja He pa3KbCBaMe M3J0MKEHMETO U 3a Ja Ce ChC-
pPEAOTOYMM BLDXY TOBa, KOETO TOM CAMHAT € CUMTAJ 3a Hali-BaxkHo. I[Ipes
1958 r. My e npuchaeHa BTOpa AOKTOPCKA CTENeH — C'bIJIAaCHO HOBUTE TO-
raBa IIpaBuJia 3a Hay4yHUTe cTeneHM B cTpaHarta. [lpe3 1961 r. e u3bpan 3a
yieH-kopecrnonaeHT Ha BAH. EnnoBpemensno c kareapata mo audepeHimali-
HO ¥ MHTErpaJlHO CMATaHEe P'BKOBOJAM M CEKIMATA Mo (YHKIMOHAJeH aHAJIU3 B
Marematuueckusa nacTuTyT Ha BAH. Crnen o6enMHABaHeTO Ha ABeTE Hay4y-
HU 3BeHa B Kpas Ha 1970 r. e pbKOBOAMTEN Ha B'B3HMKHAJWUA B PE3yJITAT Ha
ToBa obeAMHEHME CEKTOp IO peajieH U (YHKUMOHAJIEH aHAJIM3 B Cb3AaJC€HUA
ToraBa EOMHEH LEHTHP Mo MaTeMmMaTuka U MexaHuka. [Ipe3 1967 r. moBTOpHO
e HarpaJjeH ¢ opaeH , Kupun u Meroauii“, I crenen, a npes 1969 r. — c 106u-
neeH Meaad , 25 roaguam HapoaHa BaacT . Ilpes 1982 r., koraTo nasspmBa 65
rOAMHM, MY € TIPMC'bAEHO 3BAHUETO , 3aCHY>KWJ AEATEN Ha HayKaTa “.

IIpe3 1952 r. ce noABsABa craTuaTa Ha Taramiunku , Bepxy reomerpusara
Ha KoHycuTe B XunbeproBure npocTpaHcTBa”, a npe3 1954 r. — obobmaBa-
maTa HeWHUs OCHOBEH pe3yirtaT cratud , Bbpxy enHo obobumenue Ha moua-
tTueto Hepas3nmokMMocT“. ChIIHOCTTA HAa TO3WM pe3yJiTaT M B IABETEe CTATHHU €
cileqHaTa: IIpU ONpelnesieHM yCHOBUSA, 33 Ja Ce ChbAbpKa eAWH KOHYC B ApPYT,
MOCTATBYHO € HEPa3JIOKUMMUTE eJIEeMEHTH Ha ITbPBMA KOHYC Aa MPUHAILJIEKAT
Ha Bropua (pasbupa ce, cTaBa AyMa 3a KOHYCHM B JIMHEHHM NMPOCTPAHCTBA).
ToBa Moxe na 6'bie ONPUIMYEHO HAa TBBLPAEHMETO Ha NPHUHLMIA Ha MaTeMa-
TUYeCcKaTa MHIAYKUMA, KOETO Ka3Ba, 4e IpPU OMNpejejieHd yCJIOBUA, 3a ha ce
ChAbPXKa MHOMECTBOTO Ha BCHMYKM €CTECTBEHM YMCJA B JAJEHO MHOXKECTBO,
JOCTAT'bYHO € Hal-MaJIKoTo 0T ecrecTBeHUTe unciaa (0 nam 1 B 3aBUCUMOCT OT
TEPMUHOJIOTUATA) Aa NPUHAMIESKM Ha BBIPOCHOTO MHOXeCTBO. PesynrtarsT
Ha TaraMauuKW, 3a KOUTO cTaBa AyMa, MOJIyyaBa HaMMEHOBAHUETO , TeopeMa
32 KOHyCUTe “ M C HEeroBa MOMOII caMMAT TaraMumiku, a Mo-HATATbK ¥ HETOBU
YUYEHMIM I0KA3BaT peaMlla U3BECTHM TEOPEMM OT aHAU3a KaTO HAlpUMeED Te-
opemaTa Ha Xaycaop¢ 3a MOMEHTHUTE, TeopemaTa Ha YUJAep 3a NpelcTaBsHe
Ha pysxkmmm c Jlannacos MHTerpas, TeopeMara Ha BepHuieliH 32 MHTEr pajHO
npejacTaBsfHe Ha PEryJiIAPDHO MOHOTOHHUTE QYHKIMM M PeA APYI'YM UHTEPECHU U
Ba)KHM TeopeMM. HAKOM HOBM pe3yiTaTH Cbllo OUBAT OTKPHUTU M JOKa3aHU
Haili-HaIpea C NOMOILITA Ha TeopeMaTa 3a KOHYCUTe, a Cjiej TOBa M 10 Mo-NpAK
Hauyud. [Ipe3 1953-1954 r. TaramMianuky AaBa U eAUH HAUMH 3a M3rpakiaHe
Ha TeopuATa Ha 06o6meHnTe YHKUMM C TOMOINTA Ha TEOpeMaTa 3a KOHYCHUTE
M Ha NMOHATUETO HEPA3JIOKUMOCT.

OcHoBHO cpeauute 3a pabora Ha TaraMiuuku ¢ Maaau obelaBamy MaTe-
MaTHIIM [10 TOBa BpeMe CTaBa C'hb3AaAEHUAT K'bM KaTelpaTa [0 AndepeHIMaaHo
M MHTErpajiHO CMATaHEe CTYJAEHTCKA KP'BXKOK (JoLjaTa OT PYCKUA €3UK AyMa
,KpBKOK“ 1o ToBa BpeMe ce ynotpe6ABa B CMMCDBJ Ha AHENIHOTO , CeMUHAp “
Y B pa3HM CIy4yay 03HauyaBa pPa3JIMUHM [0 CBOETO HUBO Hema). B roaunute Ha
M3B'bHPEAHO CHUJIHA Hay4Ha u3oJjlauusa Ha Bbirapusa ciaen Broparta cBeToBHa
BOWHa Cb3AazieHMAT 0T TaraMiauUKM KpbXOK CTaBa BCBHIIHOCT I'bPBUAT U B
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HeMaJ'bK CPOK €IMHCTBEH Hay4eH CeMMHAp OT BMCOKO HMBO B'bB (aKyiTera.
Tosa cb3naBa eaHa HEMOBTOpPUMA U HeobuuaifHa 3a Bpemero cu aTMocepa,
TIpM KOATO Ha MJIaJUTe MAaTEeMATUIM oOlle OT CTYAEHTCKaTa CKaMeiKa ce JaBa
B'b3MOXKHOCT Ja CTaHaT [I'bJHOIEHHM ¥ PABHOINPABHU CHTPYIHMUM B HayyHaTa
JeAHOCT Ha CBOA M3II'bJIHEH C €HTYCHa3bM PbKOBOAUTEN. MHOro oT akTUBHO
paboremuTe npes cilelBalluTe AeCeTUIETUA MATEMATHULIM Ce U3rpakAaT KaTo
TBOPLUM B HayKaTa MMEHHO Nnpead BCUYKo Gnaromapenue Ha paborata cu B
KpbXKoKa Ha TaramMinuku.

Pa3bupa ce, KpbXKOKBT, 332 KOWTO CTaBa AyMa, JIO M3BECTHA CTEIEH CMEK-
YyaBa HAKOM II0CJHAEeNMIM OT Hay4yHaTa M30Jallud, 3a KOATO CIIOMEHaXMe, HO
3a C'BXaJIeHWe TOM He ycnfaBa Ham'bJHO Ja ' KomineHcupa. Okxa3Ba ce, ye
MHPOpMALIMATA 3a HAKOM pe3yJiTaTy, U3BECTHM IO CBETa, [0 OHOBA BpeMe UI-
Ba B Bbiarapua c¢ ronamo 3akbcHeHue. KEauH TakbB pe3ysaTaT € Teopema-
Ta Ha Kpeiin u Munman, ny6iaukysBana npe3 1940 r. B cnmcanuero ,Studia
Mathematica®. /lnec ne 6m npexacrapasBajo npobieMm Beanara Aa ce 3abe-
JIeXKM, 4Ye TeopeMaTa 3a KOHYCUTE MOXKe Ja Ce€ ITOJYYM KaTo CJIEeACTBUE OT
TeopemaTa Ha KpeitH m Muamal, ctura na He o6pbllamMe cCleliMaJHO BHUMa-
HUE Ha B’bIIpOCa 33 M3MOJI3BAHETO M HEU3NOJI3BAHETO Ha aKcMoMaTa 3a usbopa.
Ha Bpemero o6aye 3a TOBa Ce OKa3BAT HYXHM HAKOJKO I'OJAMHU M BBIPOCHOTO
obcToATENCTBO ce m3sAcHABA exasBa npe3 1957 r. Bce nmak na Taramimuku m
Ha HErOBUTE YYEHMIM OT OHOBA BpeMe OCTaBa yTeUIeHMeTOo, Ye Ca HallpaBHWJM
peavia HOBM M HETPUBMAJHU NPUIOKEHUA Ha eAuH obin MeTon, He3aBMCHMO
Jajiu MeTOABT II€ C€ OCHOBaBa Ha TeopeMaTa 3a KOHYCHUTE WJM HalpaBO Ha
Teopemata Ha KpeiH u Munaman. He e 3a noauneHsaBaHe n ToBa, ye Hal-n06pe
ce pa3bupar, OBJAAABAT U NpUJIAraT OHE3U MOCTVKEHUA Ha MaTeMaTHUKaTa,
JI0 KOMTO YOBEK € YCIAJ Aa JOCTUTHE MJM Ja ce Nobavky camMoCTOATENHO.

Envu cneaBamy Kpbr OT M3CJeABaHMA Ha TaraM/MUKM e HacoOYeH KbM
o60bIlleHMe Ha NMOHATHETO M3MbKHaJoCT. [Ipe3 1963 r. ce nossaBa craTuaTa
My , Bbpxy npunuuna 3a oraenMMocT B abelieBuTe acoUMaTUBHU IPOCTpaH-
crBa“. B Hesa ce maBa aKcMOMaTH3allMA Ha ITOHATUETO OTCEYKa, NPU KOATO
AKCMOMATU3ALMA CTaBa J0CThIIHA 3ajJadaTa Aa ce 0606mmu o6uyaiHuAT I1PUH-
1MN 3a OTAEeNsAHE Ha HelpecUyalll¥ Ce U3IM'bKHAJU MHOXKECTBA C MOMOILTA Ha
noaynpocrpaHcTBa. [Ipr ToBa, 3a pa3jMKa 0T HAKOM TI0-PAHHYU ¥ HEU3BECTHU
10 OHOBa BpeMe B Bbhiarapusa m3scieaBaHUsa Ha APYru aBTOPH, He ce 3abpaHs-
Ba OTCEYKa C'hC ChBIAJAINA Kpauilla Ja CbAbPXKA TOYKM, PA3JIAYHUA OT THX.
ToBa naBa Bb3MOXKHOCT 3a pa3rijexJaHe Ha IMO-IIMPOK KP'bI OT MOJAENU U 3a
rioBeye NpPUJIOKEHUA HA JoKa3aHaTa oT TaraMiMIKA Teopema 3a OTAeNAMOCT.
Hanpumep, KaKTo TOM MOCOYBA, MOXKeM, KOraTo € JajJeHa elHa KOMYTaTUBHA
moNyrpyna, noja oTcedka, onpejelieHa OT ABa eJeMeHTa Ha MoJjyrpynara, Aa
pa3bupaMe eJHOTOUKOBOTO MHOMXECTBO, YAMTO €JIEMEHT € NPOM3BeAeHNEeTO Ha
NajleHUTe JBa eJIeMEeHTa, ¥ TOBa BejHara JaBa eHa TeopeMa 3a OTHeJUMOCT
Ha KOM [a e JBe Hemnpecuyamu ce noanonyrpymu. Mscaensanusara Ha Taram-
JULKMA B'bPXY NPUHLUMIA 33 OTAEJIUMOCT Ca NMPOABIKEHM OT Herosusa 6iecTALL
yuenuk MBan [IponanoB, 3a chKajieHue TBbpJAE PaHO MOKOCEH OT CMbPTTA.
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IIpoabmxaBaiiku n3cienBanuaTa cu, TaraMimukn ycnasa Aa ¢popmyaupa
eIHO naJjiedy oTuBallo obobmenue Ha Teopemara Ha Kpeitn u Munman, koeto
3a pa3jiMKa OT Hes Ce OTHACH He 3a JIOKAJHO M3M'bKHAJM JIMHEMHM NpPOCTpaH-
CTBa, a 3a OOWIM TONMONOrMYHM NpocTpaHCTBa. ToBa o6obluieHue mojyyasa
MMETO , TOMOJOTNYHA UHAYKUMA “ (KpaTKa ny6aukaima Ha Taramiauuky Bbpxy
HEero ce C’hbAbpKa B TPYAOBETe HAa MEXAYHAPOAEH TOINOJOrMYECKd CUMITO3U-
yM, npoBeeH npe3 1968 r., a Maako no-noaApobHO M3NOXKEHUE HA pe3ynTarTa,
IOArOTBEHO Ha OCHOBATa Ha MaTepuaju Ha 1araMivMuku — B TpyloBeTe Ha
cemunapa Ha ['. llloke B ITapwk 3a 1970/1971 r.). B cBos cratua ot 1975 r.
TaraMIuIKM M3M0JI3Ba TOINOJOrMYHATA WHAYKIMA, 3a JAa JA0Karke TB’bpIACHHUE,
KOeTo € B AyXa Ha eIWH IPUHIMN Ha Bpayep 3a MakCuMyM, HO € NIPUIOKUMO
M B HAKOM CJIy4YaM, KOraTo TO3U IPHUHIMII HE € NPUJIONKUM.

U3cnensanunaTa Ha TaraMiaulKyA B'bPXY MOHATUETO HEPA3JIOKUMOCT, HEro-
BOTO 0606IIeHNEe ¥ TIPUIOKEHUATA My ChOYKIAT 3HAUMTENIEH MHTEPEC B UyK-
6uHa, ocobeHo cien npoBeneHata npe3 1956 r. B Copus HayyHa cecUs ¢ Mex-
AyHapoaHo y4vacTtue. Ilokanu na ny6aMKyBa CHUCTEMaTHUYHO M3JIOXKEHME Ha,
Te3U pe3yJsTaTv Toi mosydaBa oT Ppanuma, 'epmanua u CAIIL, Ho 3a cwbxa-
JeHUe He ce CTUra A0 peaau3npaneTo uMm. He no-manko Moxke na ce c'bkajisaBba,
ye npo¢. Taramumuku He nybaMKyBa M peavua ApPYru CBOM pe3yJTaTH, Ka-
TO HAIIp¥Mep HOKa3aHUA OT Hero AUaroHaJieH NMPMHLIMN 3a 0606IeHn peauuy,
CBABPAKAIL KaTO YaCTEH cjay4yail TeopemMaTa Ha TUXOHOB 33 KOMNAKTHOCT, pe-
3yJTaTATE B TeopuATa Ha MHoroobpasusata M Ap. (cies cMBPTTa Ha Npod.
Taramnunku 6e opopmeHa nyGauKauMA BHPXY AUATOHAJHUA IPUHIMIN, KaTo
3a OCHOBA MOCJIYXMXa HAKOU HEI'OBU P'bKONMCH, MPUJIIOXKEHM K'bM 'O AUIIHU Ha-
YYHM OTYETH Ha CEKTOpa IO peajieH M GpyHKIMoHaeH aHaau3). He MoxkeM cbe
CUTYPHOCT J1a KaXeM KOA € IIPUYUHATA 34 TOBa, Ye Mpe3 NOoCHeHUTE ABageceT
rOAMHM OT »MUBoTa cU npod. TaraMimuky ny6auMKyBa TBbpAE PAILKO, B HECHOT-
BETCTBUE C MPpOAbJ/rKaBalllaTa HeroBa BUCOKa Hay4Ha akTusBHocT. Jlonyckame,
ye TA € B'bB BUCOKWA KpUTepU 3a olieHABaHe Ha HayuyHuTe paboTH, KOUTO
TO npunara ocobeHo 6e3xkoMIIpoMUCHO KbM cebe cu. MMame HAKOM ocHOBa-
HMA Ja NpeaAnonoxkuM, de TaraMIMuky e cMmATaj penuila CBOM M3CJieBaHUA
3a He3aB’bplIEHM, 3aII0TO CE€ € CTPEMAJ U Ce € HaAABAJ Ja HaMepU MHOTO Io-
ybeauTesHN TEeXHM NPUJIOMKEHUA 3a pelllaBaHe Ha C'bLIECTBEHH 3a a4, 110 pa i
KOeTO € oTJaraJj nyoJuKyBaHETO UM.

He MozxeM na He oT6enexxumM, ye HayYHUTEe UHTepecH Ha TaraMimiKyi CbB-
CEM He Ce OorpaHuM4yaBaT B paMKUTE€ Ha MaTeMaTHKaTa. B HeroBaTa HaydHa
AeHOCT ce HabJiioJaBaT YepTH Ha HAKOTAHIHUTE YYEHU-eHLMKJIONEAUCTH —
Mpear BCUYKO XXUB U aKTUBEH MHTEPEeC K'bM BCEKH BAXKEH HayueH npoﬁne'M,
HE3aBMCMMO OT HayuyHaTa obnacT, kbM KoATo cnaga. Cpen obaacTuTe, Ha
KOWTO TOW € OTHIeJIMJl HEMAJIKO BpeMe, ca TeOpeTUYHaTa PU3UKa, apXeoJoru-
ATa, HayKaTa 3a APEBHUTE e3MIM, MeaulMHaTa. CrioMeHaxMme 0-paHo ¥ 3a
‘Hay4HUTEe MY MHTepecHu B o6jacTTa Ha My3MKaTa.

B »xuBora Ha npod. flpocna Taramiamuku He mo-mMajko, a MoXe 6u u
olle TMO-TOJIAMO MSACTO OT HAaYUYHUTE U3CJIeABAHUA 3aeMa NPENoJaBaHETO Ha
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HaykaTa. Toil BUHarm e umaJjl MHOro roJjifiMa JIEKUMOHHA 3aeTocT (OT mops-
abka Ha 10 ¥ noBeye Yaca CEIMMYHO) M € [0OJIArajl OCPOMHM TPMXM, 3a Ja
HalpaBX CBOATA IpenojaBaTelicka paboTa Mo-pesynraTHa (BKIIOUYUTENHO M
NpyU CTYAEHTUTE C MO-OTPAHUYEHM BB3IMOXKHOCTH). Ilo CBOA MHMUMAaTHBa TOM
ce HATOBapBa HAIPUMep C JaBaHe U MperiexaaHe Ha MHOTOGDPORHM KoMalmHu
paboTH, KOUTO My IoMaraT Aa CJelu U Haco4Ba Pa3BUTHETO Ha BCEKM OT oby-
yaBaHMUTEe CTYAeHTH (MaBaHWUTe 3aJauyM 4YecTo GMBAT ABa BHMAA — EAHUTE ca
npeAHa3sHaYeHU 33 BCUYKM CTYAEHTH, a APYruUTe, 3HAUMTEJIHO MO-TPYAHH, ca
caMo 3a XKeJlaelllMTe ¥ yCIEelIHOTO UM pellaBaHe ce HarpaskJaBa C [10XBaJia Ha
cinepBamiaTa jgexkuusa). Y 4eGHUKBT Ha npod. Taramumiuku no amdepenumanto
¥ VMHTErpaJjlHO CMsATaHE CbIIO € NPOHUKHAT OT TaKaBa rpwka 3a obyyaBaHu-
Te, KaTO C'hIEBPEMEHHO € IbPBUAT M3AbPKaH B HayYHO OTHOLIEHMe y4yeOHMK
Mo Ta3¥ OMCUMIJIMHA y Hac. 3a HayYHOTO M3pacTBaHe Ha I10-U3ABEHUTE CTy-
JICHTU M3KJIIOYUTEJIHO I'OJIAMA POJIA M3UI'PaBaT €XEroJHO YeTEeHHUTE OT Npod.
TaramMiulKy cneuMaliHd KypcoBe, ocobeHOo Te3M 1o QyHKUMOHAIEH aHalu3,
0Tpa3ABalllM Ha-aKTMBHUTE B MOMEHTa COOCTBEHM M3C/eABaHMA Ha JIEKTOPA.

ChuiecTBEHO MACTO B AEAHOCTTA Ha TaraMJMLKMA 3aeMaT M BbLIPOCUTE
Ha mpenojaBaHeTO B cpeaHoTo yuuaume. HeBeIHbk ToM e M3HACAN moCpe-
LIAaHK C FOJIAM MHTEpec JEeKUMM npen ydeHMIM. MHoro rpmxu e mnoJiarai 3a
METOAMYECKOTO pa3paboTBaHe Ha ONpelesIeHH IIO-TPYAHA BBIIPOCH, KAKBBTO €
HAIpUMep BBIIPOCHT 3a NpEnogaBaHeTo HA OCHOBUTE HAa MATEMAaTUYECKUA aHa-
mm3 B cpearoTo yuuinine. [Ipe3 yuebunara 1973-1974 r. Toit naxe cam Boau
3aHATUA B €JHa CTOJWYHA I'MMHAa3UA B CHbOTBETCTBUE C MeTOAMKaTa, KOATO €
NpeJIONKMUI. 33 CEPUO3HOTO MY M 3a[AbJ6OYEHO OTHOLIEHHME K'bM TE3U B'bII-
pOCH CBMAETEJCTBAT HAKOJKO HEroBM MyOJMKalMM C METOAUYECKU XapaKTep
(cmex cmbprra Ha npod. Taramauinkm 6Axa MoAroTBeHU olle HAKOU Iy 6iiu-
Kallid, OTPa3fBallld YacT OT METOAUYECKOTO MYy HacleACTBO B obJjacTTa Ha
cpeanoTo obpa3oBaHMe).

BpemeTo, ¢ KoeTo pa3nojiaramMe, ¥ HalllUTe CKPOMHM B'b3MOMKHOCTH HE I103-
BOJABAT Ja AaJeM J0CTAThYHO IT'bJIHA KapTHHA Ha ToBa, KoeTo Geme 3a Hay-
KaTa, 3a YHMBEDPCUTETA U 3a Hac He3abpaBUMMAT Ham yunuTes npod. fApocaas
Taramnuuku. HacTtoAammaT Qokiaj € caMo €IUH MAJI'bK OIAT Aa M3Pa3UM CBO-
eTo AbJIOOKO MpeEKJIOHEHUE Npes 3abesIeKUTEIHOTO My eJio M Mpell CBeTaaTa
" My mamer. Hue BsApBaMme, de ApkaTa ciena, KoATO TaramijaulKW oCTaBU ClieX
cebe cm, e npebble M HAMPABEHOTO OT HEro lle ce MoJ3Ba M OT MABAILLM-
Te TOKOJEHUsA, JIMIIEHN OT IIaCTHETO Ja MMAT HeloCpeACTBEH HNOCEr C TO3M

3abenexuTeNleH 4YoBeK.

Cogus,
20 dexemspu 1997 .
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A POLYNOMIAL PROBLEM

PAVEL G. TODOROV

We show that the roots of the equation (5) with respect to z are among the roots of the
equation (6). Therefore the roots of the given equation (5) are determined by means
of a check of the roots of the resolvent equation (6). Some examples and applications
are given.

Keywords: two polynomial equations in two variables, common roots, Sylvester
method of elimination, determinants, a check of the roots of the resolvent equation
in the given equation

1991 Math. Subject Classification: primary 11C20, 12D10, 30C15

EXPOSITION OF THE PROBLEM

First we shall prove the following

Theorém 1. Let

P=P(z2)=an2” +an-12"" '+ - +a12+ag, an#0, n>1, (1)
and '
Q(2)y=bpz™ 4+ bp_1z2™ V- b1z 4 by, bn#0, m>1, (2)
and let ‘
4= Q) = bmz™ +bm-12" 1 + -+ b1Z + by, (3)
and L
i=Q(2) = bnz™ +bm-12""1 4+ -+ b1z 4 bo. (4)

Then all roots of the equation
) Q(2) = P(z) (5)
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with respect to z are roots of the determinant (resolvent) equation

( bm bm-l b1 bo—p 0 0 0
n ) 0 bm bg bl bo—-p 0 0
PO E senrsmnasmssmemmomsrm s
) 0 vo b bm=i by bo—p (6)
&, Gu_y ... @ G—-4 0 0 ... 0
m 0 an az a  a—q 0 0
POWS Dl ettt
o o ... 8 @1 ... ... @ @Go—4@

as well but, conversely, not always all roots of the equation (6) are roots of the
equation (5) as well, where the determinant is of order n 4+ m.

The determinant equation (6) has:

(i) ezactly n? roots if n > m,

(ii) ezactly n? = m? roots if n = m and |am| # |bm|, and less than n® = m
roots if n = m and |am| = |bm|, both under the condition that all the equations

2

i, = be™™, 1<s<m, ap = by % irge'? (7)

where ¢ = Argam, + Arg by, (mod 27), ro > 0 and the signs £ are taken singly,
cannot exist simultaneously, and
(iii) ezactly m? roots if n < m.

Proof. Let us examine the equations
mem+bm—1Cm'1 +--~+b1<+b0—P=0 (8)

and

@n(" +@n-1(" T+ @l + a0 —7=0. (9)
According to the classical Sylvester method of elimination, the two equations (8)
and (9) have a common root ¢ only if z is a root of the eliminating equation (6), and
conversely (see the Sylvester method, for example, in Dickson’s book [1, p. 164]).
Hence, if a common root { of the two equations (8) and (9) is equal to z, where z
is a root of the resolvent (determinant) equation (6), then z is a root of the given
equation (5) as well, taking into account the same multiplicity of z as a root of the
determinant (resolvent) equation (6). If a common root { of the two equations (8)
and (9) is not equal to z, where z is a root of the determinant equation (6), then
z is not a root of the given equation (5) as well.

If n = m, the condition in (ii) (see (7)) ensures that the equation (6) is not an
identity with respect to z. Indeed, for n = m, the determinant in (6) is identically
equal to zero with respect to z only if the two equations (8) and (9) are reduced to
one equation, i.e. keeping in mind (1)-(4), if we have the identity

P—i=XMg-p) ((=2) (10)
for some complex (or real) number A # 0 which does not depend on z and ¢. Thus
from (10) we obtain the equations

as = Aby, 1<s<m, (11)
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and the identity

ap — q = A(bo — p). (12)
Further, from (12) it follows that
by = da,, 1<s<m, (13)
and .
bo — ag = A(ap — bo). (14)
Now, from (11) and (13) for s = m, we obtain [a,,| = |b,,| and hence |A| =1, i.e.
A=¢e7¥, (15)

where ¢ = Argam, + Argb, (mod 2m). Therefore from (11) and (15) we get the
first equations in (7). Finally, if we set ap — by = rpe*®, rg > 0, a being real (a is
arbitrary if ro = 0), from (14) and (15) we find 2o = 7+ p+2k7, k = 0, 41,42, . . .,
if 7o > 0, 1.e. we obtain the second equations in (7).

Now we shall determine the degree of the resolvent equation (6) with respect
to z. For the solution of this problem we shall use the fact that each summand in
(6) consists of a product of elements of different columns and rows.

(1) Let n > m. Let k be a non-negative integer such that 0 < k < m. If we take
k times the binomial @p — ¢ and n — k times the binomial by — p, then we obtain the
expression (bg — p)”~¥(@p — )* in which the highest degree of z is n(n — k) + mk.
But n(n — k) + mk < n? for the considered n, m and k with equality sign only for
k = 0. Thus we proved that the determinant development of (6) includes only one
summand of the form (—1)"™a}'(bp — p)" (the sign is (=1)*™ since the number
of the inversions of the permutation of the columns in order m + 1, m + 2, ...,
m+mn, 1,2, ..., mis nm), i.e. the resolvent equation (6) is exactly of degree n?
with respect to z.

(i1) Let n = m and the equations (7) not exist simultaneously. Then if we take
k times (0 < k < m) the binomial ay — ¢ and m — k times the binomial by — p,
we obtain the expression (by — p)™~¥(ay — ¢)¥ in which the highest degree of z is
m(m — k) +mk = m?. Hence the determinant development of (6) contains the sum

m

)Y (~1)mebk (@0 — g)*am=*(bo — )™k, (16)

k=0 k
where the number of the summands in the inner sum is equal to the number of -
the combinations of m elements of the class k, and v, is equal to the number
of the inversions of the columns to which the considered non-zero elements of the
determinant in (6) belong. Now we shall determine the coefficient of 2™ and the
exponent Vmj in (16) with the help of the following method: From (1)—(4) we obtain
the limit equations

. Gp—¢q =
zl_x_.rg zm = ~bm ()
and ;
lim =2 = _q,,. (18)
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From (16)-(18) it follows that the coefficient of ™ is (=1)™Aom(bm,am), where
m
Aom(bm,am) = Y Y (=1)"*bm[** |am[*™ 2%, (19)
k=0 k

On the other hand, we can determine directly the coefficient of 2™ from (6). If we
take out a factor 2™ of each one of the last m columns of the determinant in (6)

and set z — oo, then by means of (17)-(18) we obtain that the coefficient of ™
is (=1)"Azm{bm, am), where

b vy O
A2m(bm;am)'E Aom <_m’ ’ _1 )
Amy, ---, A1
bm ‘bm—l bl Am 0 | - 0
a & in b, 0 am O 0
POWS:- B | . iadSiis syl il a iidie s
\{ 0 0 caw  Dwe D 0 B s Gn
= - 2
((—lm m-1 ... @ by 0 0 ... 0 ' (O)
m 0 @m .:c 8¢ 0 b 0O «oon O
Bl 1 R _
(| 0 0 vew By 0 0 0 ... bn

and the determinant is of order 2m. Now we develop the determinant (20) with
respect to the first column and again we develop the obtained two subdeterminants
with respect to the m-th columns, respectively. Thus we obtain the recurrence

relation

dom (a7 ) = el len) s (g ) )
for m > 2, where
Azcm) o i T (22)
Am am bm

From (21)-(22), by induction on m, we get the formula
Az (bm, am) = (bml* = lam|?)™ (23)

for m > 1, keeping in mind the notations (20). Hence the resolvent equation (6)
for n = m is exactly of degree m? if |am| # |bm|, and of degree less than m? if
|am| = |bm|. Further we compare (19) with the binomial expansion of (23). This

yields the formula
Uk = m — k. (24)
By means of the formula (24) we find that the part (16) of the development of the
determinant (6) for n = m has the form
m m
b (@0 — §) = @m(bo — P)]™ = |bm@0 — @mbo+ Y _(dmas — bmb)z*| ,  (25)

s=0
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keeping in mind (1)—(4). Finally, from (25) for s = m again our assertion for the
degree becomes evident.

(1ii) Let n < m. Then we interchange the roles of n and m, i.e. we examine the
case m > n as in point (i). Hence the resolvent equation (6) is exactly of degree
m? with respect to z.

This completes the proof of Theorem 1.

Now we shall examine the equation (5) for n = m under the conditions (7). In
this case from (5) and (7), keeping in mind (1)-(4), we obtain the corresponding
two equations

m m
Z byz* = e'? Z byz* + iroe"g, (26)
s=1 s=1
which coincide with their conjugate equations
m

m
. =3 s Y
bzt =" E bz’ Firge™'?2,

s=1 s=1

respectively, if the last equations are multiplied by e*%.

Theorem 2. The two equations (26) are indeterminale, i.c. they have infinite-
ly many roots z.

Proof. We set _
: by = rye'Pr, 1< s<m, (27)

where r;, > 0 (rm > 0), B, are real (8, is arbitrary if the corresponding r, = 0),

and .
z=pe'Y, (28)

where p > 0, 4 is real (3 is arbitrary if p = 0). Then by means of (27) and (28)
the two equations (26) become

m m
Zps rsei(ﬂx—-ﬁp) — Zpsrsei(¢—ﬁ.+8¢) :t iroei'g,

s=1 s=1

which, after multiplication by e""g, takes the form
m
- @
2 . - - =1
;p r,sm(m,b ﬂ,+2):i:r0 0 (29)_

The equations (29) are indeterminate with respect to p and ¥, depending on rq, ¢,
rs and B (1 < s < m).
This completes the proof of Theorem 2.

EXAMPLES AND APPLICATIONS

1. In particular,ifm = 1,0, = 1,00 =0 (3= Q(2) = z) and n > 1 (p = P(2)),
the equation (5) is reduced to the equation
2= P(2), (30)

25



keeping in mind (1). According to (6), the resolvent equation of (30) is the equation

Dp41(@n,@p-1,.-.,81,80 — 2) =
1 —p 0 0 0
n 0 1 -p 0 ... O 0
= TOWS || o iiranen e =0, (31)
0 0 0 1 -P
o B By s oo www B Bpmd

where the determinant is of order n + 1. If we develop the determinant in (31) by
the first column, then we obtain the recurrence relation

Dn+1(an,an—l, .. ',&1,?10 == Z) = Dn(&n—l;an-% coey@1,80 — z) + anpn (32)
for n > 2, where
1 -p

~ =ag — 2+ ap. v (33)
ay 4ag—=z

Dy(ay,a9 — 2) =

From (32) and (33) by induction on n we get the resolvent equation (31) of the
equation (30) in the form

@np" + @n_1p" "' 4+ a1p+ao—2=0, (34)

keeping in mind (1). We shall note that the equation (34) follows directly from (30)
with the help of the conjugate equation z = P(z) as well. If n > 1, the resolvent
equation (34) is of degree n? and hence the given equation (30) has at most n?
roots determined by (34). If n = 1, the resolvent equation (34) (p = a1z + ag) is

(|a1|2-— 1)z+dlao+&o =0, a; #0. (35)

Thus: :
(D) If |a;| # 1, from (35) it follows that the equation (30) (n = 1) has only one

root which is
_ @map+taop
lai|2—-1"

(ID If |a;| = 1, i.e. a; = €'?, p is real, the resolvent equation (35) is reduced

to
0.z + e *¥ag+ a9 = 0. (36)
- Now:

(II)) If e~*®ap + ap # 0, i.e. ag # iiroe‘g, ro > 0, thg resolvent equation
(36), and hence the given equation (30) for n = 1 and a; = €%, i.e. the equation
Z = e'?2z + agp, has not a root;

(II) If e *Pag+ap=0,i.e. ag= :Eirgei';:, ro > 0, the resolvent equation (36)
1s the 1dentity

0.z4+0=0.
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This is so, since for m = 1 the two equations (7) exist simultaneously (b; = 1,
bo =0, 83 = e™'%, ap = :hiroeiji’e). In this case the given equation (30) (n = 1)
yields the two equations
F=ertinge' T, | (37)
which coincide with their conjugate equations
F=e"Wag iroe'i‘g,
respectively, if the last equations are multiplied by e*¢. If we set z = pe'¥, p > 0,

¥ is real (¢ is arbitrary if p = 0), then from (37), after multiplication by e“‘%, we
obtain the corresponding two indeterminate equations

2p sin (¢+ g) +re =0,
which yield the unknown values p and v, depending on ry and .
2. In particular, if m = 2, b, = 1, b, is arbitrary, by = 0 (§ = Q(2) = 2% + b, 2)

and n = 2 (p = P(z) = azz? + a1z + ao, a2 # 0), the equation (5) is reduced to the
equation

72 + b1z = asz* + a;z + ap. (38)

For this case the equations (7) (m = 2) are
s =e % a;=be ", ap= :t:iroe"j{’i . (39)
with ro > 0 and an arbitrary real ¢. From (38) and (39) we obtain the two equations
524 bz = 2% + bye'Pr Lirge's, (40)

which coincide with their conjugate equations
' ; s il o g
224 biz=e 2 4 bie Wz Tirge 2,
respectively, if the last equations are multiplied by €'?. If we set z = pe'¥, p > 0,

¥ is real (9 is arbitrary if p = 0), then from (40), after multiplication by e“g, we
obtain the corresponding two indeterminate equations

2p% sin (‘2¢ + g) + 2pry sin (w - B+ g) + ro =0,

which yield the unknown values p and ¥, depending on ro, ¢, r; = |b;| and 8; =
Argb;y (B is arbitrary if r; = 0).

In the general case, if the equations (39) do not exist simultaneously, then
according to (6) (m = n = 2) the resolvent equation of (38) is the equation

(G0 — § + @2p)” + (dzby — @1) [b1 (d0 — §) + @1p] = 0, (41)
where i
o — q+azp= (|02|2 — l) 22 -+ (01(_12 - bl) Z 4+ apas + ag (42)
and
b, (ao — (j) + a)p = ((_11(12 - bl) 22 + (|a1|2 - lb1|2) z + ag@y + agh. (43)
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If |as] # 1, then from (41)—(43) it follows that the resolvent equation (41) is of
degree 4 and hence the given equation (38) has at most four roots z. If laz| = 1,
then from (41)-(43) it follows that the resolvent equation (41) is of degree at most
2 and hence the given equation (38) has at most two roots z.

3. In particular, foras = 0,0<s<n—-1,a, #0,b, =0,0< s <m -1,

bm #0,n > m > 1 and lam] # |bml, if n = m (p = P(2) = an2", § = Q(2)
bmz™), from (5) and (6) we obtain the equation
bpC™ =a@q2" ((=:2) (44)
and its resolvent equation
Fom (@i bms2) =
bz 0 oo O —ay2" 0 | S— 0
n ) 0 bm 0 0 —apz" 0 0
TOWS || ot
0 0 bm 0 0 0 ... —apz"
= | an D d® B B 0.7 08
m 0 a, ... O 0 <™ O s 0
TOWS < ................................. ,
(LB 0 . @a 0 0 0 ... =bnz™

where the determinant Epnm(an,bm,2) is of order n + m. The equation (45) is a
result of the elimination of ¢ from the equation (44) and the conjugate equation

Gn(" = bm2™ (¢ = 2). (46)
Now we can eliminate ¢ by means of another method. Namely, let

d=(n,m) (1<d<m) (47)
denote the greatest common divisor of the numbers n and m, 1.e.

n=nid and m=md, (48)

where ny (1 < n; < n)and m; (1 < my < m) are the corresponding quotients which
are relatively prime positive integers, i.e. their greatest common divisor (ny, m;) =
1. Since the product nym;d is the least common multiple of the numbers n and m,
from (44), (46) and (48) we obtain the equations

n,
= (Z—’:) #d ) (49)
and
nymyd __ bm . m?d
& = E— 2, (50)
n
From (49) we obtain d equations
4 n
o=t (=), e -
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where

.2
=¢'d (52)
and the radical is taken arbitrarily. Hence from (50)-(52) we obtain d equations of
the form
an \"' 24 b\ m2a
(E) z™M —(E—:) 27 %.=(), (53)

which yield all roots z of the equation (44). Thus from (53) and (48) we get the

resolvent equation
n Ad m d :
d 2 d .2
@@ e

of the equation (44), keeping in mind the multiplicity of the roots z, where d is
given by (47). Further, from the comparison of the equivalent equations (45) and
(54) it follows that

n m n?

Enm(an,bmsz) = Hnm (ar?ar?z d —b

m

m 2 d
bis z_d"> ; (55)

Jajs

where finm is a factor which does not depend on z. Now we shall determine g .
From (55) we obtain

Eﬂm(ambmaz) n m
Sm? o = (- ) Hnmbr, b (56)
forn>m > 1, and
Emm ’ bm: ‘
(322 ?) = HKmm (lam|2 =% lbm|2)m (57)
2=0

for n = m > 1, keeping in mind that d = (m, m) = m. On the other hand, from
(45) we obtain

Ponlln 2me 2 -1y B BED
zm 2=0
forn>m>1, and
E a ,b 4 m m
rnm(zrr:2 m ) L = (_1) (lbm|2 _ Iam|2) (59)

for n = m > 1, keeping in mind (20) (fora, = b, = 0,1 <s<m—1,if m > 2)
and (23). If we compare (56) with (58) and (57) with (59), we obtain

Hnm = (-I)m—d, n>m > 1. (60)
Thus from (55) and (60) we get the formula
n_m d
Bum(an, b 2) = (<17~ (afaf o % — 6383 %) (61)
for the value of the determinant in (45) for n > m > 1 and d given by (47).
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In particular, for n = rm, r =1,2,... (m > 1) we have d = (rm, m) = m and
hence the formula (61) is reduced to the formula

2 2 m '
Erm,m(arm,bmx z) = (a:marmzr P brmbmzm) . (62)

In particular, from (44) for n = m > 1 and (62) for r = 1 it follows that all
roots z of the equation

bz = am2 lam|? = |bm]® # 0, (63)
are represented by the multiple root z = 0 of order m? of the resolvent equation
(lawml® = o)™ 2™ =0. (64)

The resolvent equation (64) can be directly obtained if we determine 2 from
(63), which yields
m

Zi=Z€ * m —_,
brm

k=01,..,m-1,

for any value of the radical, and set these values of Z in the conjugate equation of
(63), namely in

Ui 2™ =@ 2™
Thus we obtain m equations of the form
(|aml2 = |bm|2) 2™ =0
which, when multiplied, yield (64).

OTHER EXAMPLES

The next simple cases illustrate the application of ‘exampl.e 1.

(A) Consider the equation
7 =2 (65)
The conjugate equation of (65) is z = 2 and hence the resolvent equation is the
identity z = z, i.e. the equation
0.z2=0. (66)
The solutions of (66) are all complex numbers, but the solutions of (65) are only
all real numbers, because the root ( = z of the equation { — z = 0 is equal to z if
and only if z is a real number. This result is In accordance with Theorem 2 and
example 1, item (1I2), for ¢ = 0 and 79 = 0.

(B) Consider the equation

F=z22. | (67)
The equation (67) and its conjugate equation form the two equations
(-22=0, (*-z=0. (68)
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From (6), or directly from (68), we obtain the resolvent equation
2(z* - 1) =0. (69)

. 2 A
All solutions z = 0, 1, €"3", €3 of (69) are roots of (67), because for these z the
corresponding common root ¢ of the two equations (68) is equal to the conjugate
value Zz, respectively.

(C) Consider the equation

I=2¢a. (70)
The equation (70) and its conjugate equation form the two equations
(~(2+2)=0, C+¢-2=0. (71)
From (6), or directly from (71) we obtain the resolvent equatlon
-1
0= (z+z)3 +28=2 —, 2 #], (72)
with the roots
223=0, zus=%iV2 zm=¢3, =T, =T, n=eT. (13)

For the values z = 2;, k = 1, 2, 3, 4, 5, in (73), the common roots ¢ of the two
equations (71) are equal to { =z, k = 1, 2, 3, 4, 5, respectively. Hence the roots
z1,2,3 (a triple root) and z4 5 of (72) are roots of (70) as well. For the values z = z,
k=6,7,8,9,in (73), the two equations (71) take the forms

(—27608=0, ¢(*+¢—27890=0, (74)

respectively. The common roots { of the two equations (74) are equal to { =
276,98 # 26,7,8,9, respectively. Hence the roots z6,7,8,9 of the resolvent equation
(72) are not roots of the given equation (70). Thus all roots of (70) are only the
roots 21,2345 in (73)

(D) Consider the equation

7 ' (75)
The equation (75) and its conjugate equations form the two equations
(—-2=0, ¢‘-z=0. (76)
From (6), or directly from (76), we obtain the resolvent equation
z2(z2'5-1)=0. (77)
But only the solutions '
2 -4 -6 : 8

2=0,1, €%, ¢35, e, e

of (77) are the unique solutions of (73), because only for these z the correspond-
ing common root ( of the two equations (76) is equal to the conjugate value z,
respectively.

The examples (B)—(D) are in accordance with Theorem 1.
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This paper presents a method for direct building of minimal acyclic finite states au-
tomaton which recognizes a given finite list of words in lexicographical order. The size
of the temporary automata which are necessary for the construction is less than the
size of the resulting minimal automata plus the length of one of the longest words in
the list. This property is the main advantage of our method.
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1. INTODUCTION

The standard methods for building minimal finite states (FS) automaton are
building temporary automata which generally are huge compared to the resulting
minimal automaton. This grounds the interest in the development of more direct
methods. Building an acyclic minimal FS automaton that recognizes a given list
sorted in lexicografical order is of special interest for practical applications. A
linear algorithm for that case is presented in [1, 2]. The Revuz’ method in the first
stage builds a tree-like deterministic FS automaton. Then at the second stage this
automaton is minimized efficiently. The drawback of this method is that the tree-
like automaton is huge in respect of the resulting minimal automata. To make this
method more efficient, Roche 3] proposes to divide the list into parts for which to
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build the corresponding minimal automata. After that those automata are united.
At the end it is necessary to minimize the result.

It is claimed [1] that a method for direct building of minimal FS automaton
for a given list does not exist. We will show that in general this statement is not
valid. We shall present our new method for direct building of minimal automaton.

2. FORMAL BACKGROUND AND NOTATIONS

Definition 1. A deterministic FS automaton is a tuple A = (£,S, s, F, ),
where:

¥ is a finite alphabet;

S is a finite set of states;

s € S is the starting state;

F C S is the set of final states;

p:S x X — Sis a partial function called the transition function.

The function p is extended naturally over S x X* by induction:
pr(re)=r,
" ) p(u*(r,0),a), in case pu*(r,0) and p(p*(r,0),a) are defined,
a) =
(e not defined, otherwise,

wherer€ S, c € X%, a € L.

We shall work with a definition of FS automata with a partial transition
function. The only difference from the definition with a total transition func-
tion is the absence of the necessity to introduce a dead state (a state r, for which
VYa € ¥ (p(r,a) = r)). Later we use 'u(r, o) to denote that u(r,o) is defined and
when writing p*(r, o) = z, we mean lu(r,0) & p(r,0) = z.

Definition 2. Let A = (X, S, s, F, u) be a deterministic FS automaton. Then
the set L(A) C X*, defined as

LA) ={oc € X" |\u*(s,0) & p*(s,0) € F'},

is called the language of the automaton A or the language recognized by A.

Two automata A and A’ are called equivalent when L(A) = L(A’). An au-
tomaton is called acyclic when Vr € S Vo € Tt (u*(r,0) % 7). The language of an
acyclic FS automaton is finite.

Definition 3. Let A= (X, S, s, F, u) be a deterministic FS automaton:

1. The state r € S is called reachable from ¢t € S when 30 € £* (p*(t,0) = r).

2. We define the subautomaton starting in s’ € S as Ay = (X,5,¢', FN Y,
pls'xs), where §” = {r € S| r is reachable from s'}.

3. Two states s1, 52 € S are called equivalent when L(Al,,) = L(Als,)-
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Definition 4. The deterministic FS automaton A = (T, S, s, F, u) with lan-
guage L(A) is called minimal (with language L(A)) when for every other determin-
istic FS automaton A" = (X,5',¢', F', ') with language L(A') = L(A), it holds
that [S| < |5'].

From the classical FS theory the next theorem is well-known.

Theorem.5. A deterministic FS automaton with non-emply language is min-
imal if and only if every state is reachable from the starting state, from every state
a final state 1s reachable and there are no different eguivalent states. There exists
an unique (up to isomorphism) minimal automaton for a given language.

3. METHOD DESCRIPTION

Further we assume that a finite alphabet ¥ is given and there is a linear order
in . This order induces a lexicographical order in X*.

Definition 6. Let A = (X, S, s, I, p) be an acyclic deterministic FS automaton
with language L(A). Then the automaton A is called minimal ezcept for the word
w € X* when the following conditions hold:

1. Every state is reachable from the starting state and from every state a final
state 1s reachable.

2. wis a prefix of the last word in the lexicographical order of L(A).

In that case we can introduce the notations

w=wiws .. wf, wherew{‘EEfori:l,Z,.._.,k, (1)
g =s; tf =ptg,wi'); 13 =pf, ) .t = pltly, wi), (2)
Tr= {t‘é’tf»"'tt?}' (3)

3. In the set S\ T there are no different equivalent states.

4. ¥re SYie {0,1,...,k}Va € T (p(r,a) X t; & (i > 0&r = ti— 1 &a = wf)).

Further, when working with minimal except for a given word automaton, we
use the notations (1)—(3). In case the notation is not ambiguous, we write ¢;, w;
instead of 2, w/. Clearly, if an automaton is minimal except for two different
words, one is a prefix of the other.

Proposition 7. Let the automaton A = (X, 5,5, F, i) be mintmal ezcept for
w. Then:
1. Vr € S\ T Va € E (lu(r,a) — pu(r,a) € S\ T);

2. pi(s,0) =t; - 0 =wwy... w;.

The proof of this proposition is derived directly from Definition 6.
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tO———a—-—-hﬂ b +t2—-—b——>t3——?——>t4h—£->ts

Fig. 1. The FS automaton minimal except for abbab

Example 1. On Fig. 1 an acyclic FS automaton over the alphabet {a,b} is
given. The language of the automaton is {aa, aaa,aaba,aabbb, abaa, ababb, abbab}.
This automaton is minimal except for abbab.

Proposition 8. An automaton which is minimal ezcept for the empty word €
1s minimal.

Proof. Every state is reachable from the starting state and from every state a
final state is reachable. Hence, to prove that the automaton is minimal, we have to
show that there are no equivalent states. From the definition we know that there
are no equivalent states in S\ {s}.

Let assume that r € S and s are equivalent and r # s. Let w be one of the
longest words recognized by the automaton. There exists longest word(s), because
the language is finite. The states 7 and s are equivalent, hence w € L(A|;). The
state r is reachable from s. Hence there exists o € £* and u*(s,0) = r. Then the
word ow € L(A) and from ¢ # ¢ we have that |ow| > |w|. This contradicts with
the fact that w is the longest word in the language. 0O

Lemma 9. Let the automaton A = (L, S, s, F, p) be minimal except for w =
wiws ... Wk, w # €. Let there be no state equivalent to ty in the set S\T. Then A
is also minimal ezcept for the word W' = wywy .. wi_;.

Proof. We have to check the conditions of Definition 6. The conditions 1 and 2
are obviously satisfied. Condition 3 follows from the fact that in S\ {to,?1,..., %}
there are no states equivalent to ¢;. Condition 4 follows also directly from condition
4 of the definition for minimality except for w. [J '

Lemma 10. Let the automaton A = (E,S,s,F,u) be minimal except for

36



W= wWy... Wk, w # €. Let the state p € S\ T be equivalent to the stale {r. Then
the automaton A’ = (£,5',s, F', ') defined as follows:

§' =S\ {tx},
F'=F\{t+},
p(r, a), in case v # tx-1 Va # wg and p(r,a) is definied,
y'(r,a) =< p, in case v =1p_;, a = Wi,

not defined, otherwise,

15 equivalent to the automaton A and is minimal ezcepl for the word W' =
wiwg ... . We_1.

Proof. The automaton A is equivalent to A4’, because the new automaton
is derived from the old one by removing the state tx, and the only transition to
tr (refer to Proposition 7) is exchanged with a transition to an equivalent state.
Conditions 1-3 from the definition for minimality except for w’ are trivially satisfied.
Condition 4 is obviously satisfied for tg, ¢, ..., tx_2, and holds also for {;_,, because

p(te-1,wx) =p€S\T. O

Theorem 11. Let the automaton A = (X, S,s, ¥, u) be minimal except for
W =wiwy ... wy. Let tp € L(A) be the last word in the lezicographical order of the
language of the automaton. Letw be a word which is greater in lexicographical order
than . Letw’ be the longest common prefiz of 1 and w. In that case we can denote
W= W .. WnWmyl - Wk, kK > m. Then the automaton A' = (£,5' s, F', u')
defined as follows:

tm+1,tm+2, ...,k are new states such that SN {tm+1,tm+2, .. .,tk} = (),

S’ = SU {tm+1,tm+2a .. '!tk}!

F':FU{tk},
tma1; imcaser =1y, 8 = Wnq,
a)e u(r,a), in case v € S, 'u(r,a) and r #t, V a # wpyq,
pAna)= tit1, mceaser=t;, m+1<i<k~1, a=wy,

15 not defined, otherwise,

1s minimal except for w and recognizes the language L(A) U {w}.

Proof. First we shall show that L(A’) = L(A) U {w}. We have to show that
the automaton A’ includes A. Clearly, S’ D S and F/ O F. We have to check that
¢ D p. Considering the definition of 4/, it is clear that the only problem could be
the case p'(tm,wm41). But p(tm,wm41) is not defined, because otherwise either
w’ could not be the longest common prefix of ¥ and w or w could not be greater
in lexicographical order than ¥ — the last word in the lexicographical order of the
language of the automaton.
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Hence we have that L(A’) D L(A). New words could be recognized only
by passing the additional new states. From the definition of yx’ we have that
they are reachable only from t,,. The only new word in the language L(A',,) is
W41 Wm4a - - - We. From Proposition 7 we have that ¢, is reachable from s only by
the word w’. Hence the only new word in L(A’) is the word w'Wm41Wm42 ... Wk =

w.
We have to check that A’ is minimal except for w. Let us consider the conditions
of Definition 6. Conditions 1-3 are obviously satisfied. Condition 4 is satisfied for

to,t1,...,tm—1 from the definition of minimality except for w’ of the automaton A,
for the states tm,tm41,- - -,tk the condition clearly holds because of the definition
of p'. O

Method for direct building of minimal FS automaton for a given
list. Let a non-empty finite list of words L in lexicographical order be given. Let
w(® denote the i-th word of the list. We start with the minimal automaton which
recognizes only the first word of the list. This automaton can be built trivially and
it is also minimal except for w(}). Using it as basis, we carry out an induction on
the words of the list. Let us assume that the automaton A = (%, 8, s, F, p) with
language L(™ = {w®|i = 1,2,...,n} has been built and that A is minimal
except for w(™). We have to build the automaton A(n+1) with language L("t1) =
{w®|i=1,2,...,n+ 1} which is minimal except for wntl),

Let w' be the longest common prefix of the words w(™ and w(®*tY), Using
several times Lemma 9 and Lemma 10 (corresponding to the actual case), we build
the automaton A’ = (X,5,s, F’, u') which is equivalent to A™) and is minimal
except for w’. Now we can use Theorem 11 and build the automaton A1) with
language L") = [(M U {w*+D} = {w®)|i=1,2,...,n + 1} which is minimal
except for w(?+1), ;

In this way by induction we build the minimal except for the last word of the
list automaton with language the list L. At the end, using again Lemma 9 and
Lemma 10, we build the automaton equivalent to the former one which is minimal
except for the empty word. From Proposition 8 we have that it is the minimal au-
~ tomaton for the list L. The check of state equivalence needed to distinguish between

Lemma 9 and Lemma 10 is performed efficiently using the following property:

tx is equivalent to r € S\E
— ((tx € F ~ r € F)&Va € Z((-!p(tx, a) & ~lp(r, a))
V (tu(te, a) & 'u(r, a) & p(te, a) = p(r, a))).

Clearly, all the temporary automata built during the construction of the re-
sulting minimal automaton have less states than the resulting automaton plus the
size of the longest word of the list. This is the main advantage of our method.

Example 2. To illustrate our method, let us consider the following exam-
ple. On Fig. 1 the automaton recognizing the list {aa, aaa, aaba, aabbb, abaa, ababb,
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abbab} is given. This automaton is minimal except for the last word of the list —
abbab. Let the next word be baa. The longest common prefix of those two words
is €. We have first to construct the automaton equivalent to the one on Fig. 1,
which is minimal except for €, by using Lemma 9 and Lemma 10. First we have to
apply Lemma 9 twice and then to apply Lemma 10 three times. At the end, using
Theorem 11, we construct the automaton which is minimal except for baa, given
on Fig. 2. In this way we added the next word of the list to the language of the
temporary automaton.

t0 ——»| tl ——» 12 ———»[ 13

Fig. 2. The FS automaton minimal except for baa

4. CONCLUSION

The presented method for direct building of minimal automata can be extended
for building minimal automata with labels on the final states and for automata
which are returning the index of the recognized word in the list (for a presentation
of those kinds of automata see, for example, [3]. In this way the method could be
‘widely applied for building of large grammatical dictionaries, for indexing of huge
lists, etc. The algorithms based on the method are distinguished with an excellent -
memory efficiency.
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To the memory of Prof. Y. Tagamlitzk:

The algebraic system of convex bodies with addition and multiplication by scalar is
studied. A new operation for convex bodies, called inner addition, is introduced.
New distributivity relations for convex bodies, called resp. quasidistributive and g-
distributive law, are formulated and proved. The convex bodies form a quasilinear
system with respect to addition and multiplication by scalar. The latter is isomor-
phically embedded in a g-linear system, which is an abelian group with respect to
addition and.obeys the g-distributive law. A result of H. Radstréom for convex bodies
is generalized.
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1991/95 Math. Subject Classification: main 52A01, secondary 13C99

1. INTRODUCTION

Notation. Let E = [E®, n > 1, be an n-dimensional real Euclidean vector
space with origin 0. A convex compact subset of E is called convezr body (in E)
or just a body; a convex body need not. have necessarily interior points, e. g. a line
segment and a single point in [ are convex bodies [20]. The class of all convex
bodies of E will be denoted by K = K(IE); in this work the empty set is not an
element of K. The elements of [E are called one-point sets or degenerate bodies.
The field of reals is denoted by R.
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The set K is closed under the operations

A+B = {c|lc=a+b,a€ A beE B}, A/ BeK, (1.1)
a*B = {c|lc=oab be B}, Bek, a€R, (1.2)

called resp. (Minkowski) addition and multiplication by scalar. Operation (1.1)
is well-known operation in algebra, see e.g. [1, Ch. I]. Operation (1.2) is not so
familiar; it is used in comparatively new areas like set-valued, convex and interval
analysis. The symbol “¥” in (1.2) will not be omitted throughout the paper in
order to avoid confusion with the multiplication by scalar in a linear system. The
latter will be further called a linear multiplication by scalar and will be denoted by
“”. the dot “” may be omitted as in the expression “ad” in (1.2).

Addition. We recall some properties of (1.1). For A, B, C € K we have

(A+B)+C = A+(B+0C), (1.3)
A+B = B+A, (1.4)

hence (K, +) is a commutative (abelian) semigroup. There exists a neutral element
in K — the origin 0 of E™ — such that forall A € K

A+0=A, _ (1.5)

hence (K, +) is an abelian monoid (cf. [9, Ch. 2], which will be also denoted (K, 0,+)
(to avoid misunderstandings, we shall usually denote the algebraic systems together

with their operations).
It has been proved (see, e.g., [16, Lemma 2], or [20, p. 41] that the monoid
(K, +) is cancellative, that is, for A, B, X € K the cancellation law holds:

A+X=B+X = A=B. (1.6)

The extension method. We recall that an abelian group is an ordered
quadruple (G, +, 0, —) satisfying relations (1.3)-(1.5) and (1.7). An abelian monoid
(S,+,0) turns into a (abelian) group if there exists an operation opp : S — S
such that

opp(A)+A=0 for all A €5; (1.7)

instead of opp(A) we shall also write —A or (whenever needed to avoid confusion)
—gA. Abelian cancellative monoids and abelian cancellative groups play important
role in this study, for brevity we shall write “a.c.” instead of “abelian cancellative”.

In the a. c. monoid (K, +,0) there is no opposite, hence the latter is not a group.
However, there is a standard algebraic construction, further referred to as “the
extension method”, which allows us to embed isomorphically every a.c. monoid
(Q,+,0) into an a.c. group (G,+,0,—) (see, e.g., [1]-[4], [7], [8]). Briefly, the
extension method consists in the following: define G = (Q x Q)/p as the set of pairs
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(A, B), A, B € Q, factorized by the equivalence relation p : (A, B)p(C, D) <= A+
D = B+C. Addition in G is defined by means of: (A, B)+(C, D) = (A+C, B+D).
We shall denote the equivalence class in G, represented by the pair (A, B), again by
(A, B), thus (A, B) = (A+ X, B+ X). The null element of G is the class (Z, Z); due
to the existence of null element in Q, we have (Z, Z) = (0,0). The opposite element
to (A, B) € Gis —(A, B) = (B, A); indeed (A, B) + (—(4, B)) = (A,B)+(B,A) =
(A+ B,B + A) = (0,0). Instead of (A, B) + (—(C, D)) we write (A4, B) — (C, D);
we have (A, B) - (C,D)=(A,B)+ (D,C)=(A+ D,B+C).

To embed isomorphically Q into G, we identify A € @ with the equivalence
class (4,0) = (A+ X, X), X € Q. Thus all “proper elements” of G are pairs (U, V),
U, V€ Q,such that V4+Y = U forsome Y € Q,i.e. (U,V)=(V+Y,V)=(Y,0).

The group (G, +, 0, —) obtained by the extension method is minimal in the sense
that if (G', 4+, 0, —) is any group in which (@, +,0) is embedded, then (G, +,0, ) is
isomorphic to a subgroup of (G’, +,0, —) containing (Q, +,0). The group (G, +,0,-)
is unique up to isomorphism; we shall call it the eztension group induced by (Q,+,0).

Multiplication by scalar. Recall now some proﬁerties of (1.2). For A, B € K,
v,6 € R we have

y*(A+B)=7%xA+7yxB, (1.8)
yx (6% A) = (76) * A, (1.9)
- (1.10)

where 76 denotes the (linear) product of 7,6 € R. The set of convex bodies together
with operations (1.1), (1.2) will be denoted (K, +,R, *) or (K,E, +, R, *).

Property (1.8) is known as “first distributive law”. The so-called “second
distributive law” is characteristic for any linear (vector) system, e. g. in the linear
system (E",+, R, ) we have for every C € E"

(@+B)-C=a-C+B-C, a, BER )

We recall that a system (G,+,R, ) is linear if: 1) (G,+,0,—) is an abelian
group; 1i) for all ¢, b,c € G, o, 5,y € R

(v-(a+b)=v-at7-b _
A o
| (a+B)-c=a-c+8-c

-

The last relation in (1.12) is the second distributive law. Recall that in a linear
system we have 0-a = 0 and (1) - a = —a, hence we may omit the symbols “0”
and “=” in the notation of a linear system. .

The second distributive law (1.11) is not valid in (K, +,R, *), apart of certain
special cases. For example, for C' € K and equally signed scalars a, # we have

(a+B)*xC=axC+p+C, af>0. (1.13)
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Convex bodies are a.c. monoids with scalar operator satisfying (1.8)-(1.10),
(1.13), see e. g.. [16, 17). It has been shown that such algebraic structure, called
R-semigroup with cancellation law, is characteristic for convex bodies [18].

Denote by (£, +,0,—) the group induced by the semigroup of convex bodies
(K,+,0), £L = (K x K)/p. The following question arises:

Question 1. Can we embed isomorphically (K,+,R,*) in a linear system
(L, 4+, R, ) with £ = (KxK)/p? In other words, can we isomorphically extend (1.2)
in £, so that £ (which is a group under addition) becomes a linear system, that is
(1.12) are valid in £7? '

H. Radstrom shows that if we define a multiplication by scalar “” in £ in
terms of the multiplication by scalar (1.2) in K using the relation
(y*A,y*B), 7120,
v-(A, B ={ (1.14)
ABY= (1Bl *4), 7 <0,

then (£, +,R,-) is a linear system, that is relations (1.12) hold true in £ (see [16,

Theorem 1]).
Formula (1.14) does not induce an isomorphic embedding of (X, +, R, *) into

the linear system (£,+,R,:). To see this, recall that under an isomorphic em-
bedding the element U € K is identified with (U,0) € L, hence the element
U =+*A €K is identified with (y x A,0) € L. Therefore the equality

y-(A,0) = (v *A4,0) (1.15)

should hold true for all A € K, ¥ € R. However, (1.15) does not hold true for y < 0,
A € K\ E. Indeed, from (1.14)

7 (4,0) = ((=7) %0,(=7) x A) = (0, =y x A) # (1% 4,0),

where the last inequality follows from A + (—=1)* A # 0 for A € K\ E.
An isomorphic extension of the multiplication by scalar (1.2) in £ is given by
the expression

v*(A,B)=(y*A,v*B), A, Bek, reR (1.16)

For nonnegative scalars, (1.14) and (1.16) coincide, and an embedding theo-
rem for convex cones holds true (see [16, Theorem 2]). Note that: i) the system
(K,+,R, %) is not linear, and ii) the induced via (1.16) system (£, +,R, x) is not
linear as well. We shall investigate in more detail the algebraic properties of these
two systems of convex bodies. In particular, we shall point our attention towards
extending relation (1.13) to include the case a8 < 0 and shall consider the following
question:

Question 2. Can we embed isomorphically (K, +, R, ) into (£, +, R, %), where
the operation “#” in (L, +, R, *) is defined by (1.16), and what are the properties
of the system (£, +, R, *)?
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To answer this question we shall formulate some new algebraic properties of
the original system (X, +,R, *). Since' we know that (1.8)-(1.10) hold true, what
remains to be studied is distributivity. We therefore concentrate our attention to
distributive relations, both in X and £. We first prove a modification of (1.11)
in K, called quasidistributive law, which completes (1.13). We then find out the
distributivity relation in £ induced by (1.16) and call it “g-distributive” law. With
the establishment of the distributivity relations in K and £ we are able to give
abstract definitions of K and £ as algebraic systems, arriving thus to the concept
of “quasilinear” and “g-linear” systems. We study the isomorphic embedding of
the quasilinear system of convex bodies into the g-linear system of factorized pairs
of convex bodies. We shall show that in a g-linear system relation (1.14) defines
a linear multiplication by scalar, hence every ¢-linear system involves a linear one.
Some of our results related to intervals, i.e. for convex bodies in E!, are published

in [11, 12].

2. MINKOWSKI SUBTRACTION

A set A of the form A=z + B, forz € E, B € K, is called a {ranslate of B
(by the vector z). Clearly, if A is a translate of B by , then B is a translate of A
by -z, B=A—=z. |

Let A, B € K. The expression

AXB=)(A-b) (2.17)
beB

is introduced for convex bodies and studied by H. Hadwiger (see, €. g., [5, 6]) under
the name Minkowski difference. We consider (2.17) as a partial operation defined
whenever the right-hand side is not empty. The following equivalent presentation
of (2.17) holds:

AXB = {z€E|z+BcC A} (2.18)

Expression (2.18) says that A X B is the set of all vectors z such that the
translate of B by z belongs to A. If there exists at least one ¢ € E such that
t+ B C A, then A X B is well defined and t € A £ B; in this case we shall write
B <m A. As usual, we shall write B =p; A if both B <j3y A and A < B hold,
that 1s, there exist ¢,s € [E such that { + B C A and s + A C B. In other words,
B =p A iff there exists p € [E such that A+p = B (then A = B—p), that is A and
B are translates of each other. In particular, B C A implies B <ps A. From (2.18)
we have for A, B € K [6]

(AXB)+BC 4, (2.19)
(A+B) X B = A - (2.20)
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For A, B € K we say that B is a Summand of A if there exists X € K such that
A = B+ X (then X is a summand of A4, too). Thus, we see from (2.19) that if B
is a summand of A, then A X B is a summand of A (see [20, Lemma 3.1.8]):

(AXB)+B = A. (2.21)

In other words, if for A, B € K some of the equations A+ X =B, B+Y = A
is solvable, then the corresponding solutionis X = B X A, resp. Y = A X B. The
following equality has been established in {6]:

Ax(AXB)=A+xAX)xB. (2.22)

According to (1.13) for a3 > 0 the expression (« + 3) * C' can be written as a
sum of the two terms of a*C and B*C. Can we express (a+ 8) *C in a similar way
in the case a3 < 0?7 The answer is positive. H. Hadwiger [6] proves the following

equality:
(/\—'u)v*A=/\*A.£.p*A, A>u>0. (2.23)
Relation (2.23) can be rewritten in the following form, cf. also [14:
(a+B)*xC=axCE(-B)*C, a>0, —a<p<0. (2.24)
Hence, for af < 0, (2.24) can be written more symmetrically as

[ axC 2 (=B)*C, if|a] >8],
(a+'3)*c_{ﬁ*Ci(—a)*C, if [a] < B

3. SUMMABILITY

To formulate and prove a generalization of (1.13) in K, which 1s valid for all
a, B € R, we first concentrate on some further properties of the convex bodies,
related to Minkowski subtraction. For our purposes we shall make use of the
cancellation law (1.6): A+ X =B+ X = A=Bfor A,B,X € K.

For given A, B € K, if there exists an X € K such that B is a summand of
A (i.e. B+ X = A), then, due to (1.5) and (1.6), we have in L the presentation
(A,B)=(B+X,B)=(X,0).

"Proposition 1. For A,B € K, if B is a summand of A, then there exists a
unique X € K such that A=B+ X.

Proof. By assumption, there is some X € K such that A = B+ X. Assume that
X' € K, with X’ # X, is such that A = B+ X’. Then we have B+ X = B +X’
which by the cancellation law (1.6) implies X = X', a contradiction. O

46



Proposition 2. Let A,B € K. The equality A4+ B =0 implies A, B € E and
= —A.

In what follows we shall symbolically denote the relation “B is a summand
of A” by B <z A, or A >y B; “<” 1s a partial order in K. The assertion “B
is not a summand of A” will be denoted by B £, A. Obviously, B <; A implies
B <u A; however, the inverse is not true.

Generally speaking, for every A, B € K there exist four possibilities: 1) B <y
A and A £; B, denoted B <y A; 2) A <; B and B £; A, denoted A <5 B;
3) A<z Band B <y A, denoted A =5 B; 4) A £, B and B £, A. Note that
A =y B 1s equivalent to A = B, that is A and B are translates of each other.

In cases 1)-3) we say that the pair (A, B) € £ is X-comparable. We shall
further denote the set of all £-comparable pairs by L. Clearly, if (4, B) € Ly,
then at least one of the expressions A X B, B X A is well defined.

In case 3) there exists a unique X € K such that A = B+ X and a unique
Y € K such that B = A+ Y. Summing up both equations, we obtain A + B =
(B+X)+(A+Y) = (A+B)+X+Y,and by (1.6), X+Y = 0. By Proposition 2, the
solutions X, Y are opposite to each other; they belong to the set [E of degenerate
convex bodies (one-point sets). Thus, in case 3) A is a translate of B by the
vector P, and, conversely, B is a translate of A by —P, that is B = A + (—P),
where —P = —g P is the opposite of P in [E (the point sets P and — P are symmetric
with respect to the origin 0 of E).

We summarize the above arguments in the next proposition.

Proposition 3 (T-property). Let A, B € K(E), (A, B) € Ly. For the equa-
trons

B+ X = A, (3.25)

A+Y = B (3.26)

exactly one of the following three possibilities holds true:

1) Case B <y A: there ezists a unique nondegenerate convez body. X € K \ E
satisfying (3.25), equation (3.26) is not solvable.

2) Case A <y, B: there erists a unique nondegenerate conver body Y € K \ E
satisfying (3.26); equation (3.25) s not solvable.

3) Case A =g B: both (3.25) and (3.26) are solvable for X, resp. Y, and
Y=-XeE.

From the cancellation law it follows that for-arbitrary A, B € K each of the
equations (3.25), (3.26) may have at most one solution.

Proposition 4. Let for AB,CEK, A+ B=C and0€ A. Then BC C.

Proof. Equation A+ B = C, that is UGEAa+B C, means a+BCCfor all
a€ A Hencefora=0,B=0+BCC. D
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In the next section we study an operator in K called “negation”, which plays
an important role for the algebraic description of the properties of the set of convex

bodies.

4. NEGATION

Substituting « = —1 in (1.2) we obtain the operator
(~1)x A= {-ala€ A}, A€K, (4.27)

called negation, which will be denoted by A = (—1) * A or neg(A). Obviously,
(yxA) = (D)« (yxA) = (-71) * A.

The following properties of negation are easily verified:

—~(—A)= A, A€k, (4.28)
~(A+ B) = (~A)+(-B), A, BeK, (4.29)
-“P+P=0&PeE<+ ~P=-P, (4.30)
—“A=0<=2>A=0, A€X. (4.31)

Properties (4.28)(4.29) mean that negation.is a dual automorphism (involution).
Property (4.30) means that a convex body P € K satisfies =P + P = 0 if and
only if P is a degenerate, in which case the negation (-) coincides with the
opposite operator (=) in the set E of degenerate (one-point) elements of K, i.e.
—~P + P =0. Of course, A + A = 0 does not hold in K \ E, since nondegener-
ate convex bodies have no opposite elements. We see that negation isomorphically
extends the opposite from E to K.
For brevity, we shall denote for A, B €K

A-B= A+(~B)=A+(~-)*B={a—bla€ 4, be B} (4.32)

the operation A—~B is called an (outer) subtraction.

Remarks. Instead of the symbol “=” we may use “—” as it is well adopted
in the literature on interval and set-valued analysis (see, e. g., [10, 19]); however it
should be kept in mind that there is no opposite operator in K, and that A=A £ 0
for A € K\ E. Since the notation “~” is usually associated with the equality
A — A = 0, to avoid confusion we write “=” instead of “~”. Using “-”, we also
 avoid confusion with the opposite in £. In mathematical morphology the outer

subtraction (4.32) is called dilatation, whereas the Minkowski subtraction is called

erosion [15].

Definition. A € K is called symmetric (with respect to the origin) if z € E,
z € A, implies —z € A.

Obviously, A € K is symmetric if and only if A = ~A. For A € K the set A—~A
is called the difference body of A (see [20, p. 127]). The set of all symmetric convex
bodies is denoted by Ks, that is Ks = {4 € K | A= -A}.
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Proposition 5. For A € K we have A=A € K.

Proof. Let z € E be such that £ € A~A. Then, from (4.32) —z € ~(A-A) = |
(~A)~(—A) = (~A) + A = A-A, using properties (4.28), (4.29). 0

Proposition 6. The following two conditions for symmetricity of A € K are
equivalent:

i) A=A

i1) there ezists Z € K such that A = Z-7.

Proof. i) Let A = ~A. Assume t € E and set Z = A/2+ t, where Af2 =
(1/2) * A. Using A = —A, we obtain =Z = ~A/2 -t = A/2 — ¢t. Hence Z~Z =
Z2+(~Z)=(Al2+t)+ (A2 -t) = A.

ii) Assume that A = Z—Z for some Z € K. Then we have =A = WNLH5L) =
“ZA4Z=2-Z=A. D

Definition. A € K is called t-symmetric, with center t € E, if (A—t) €Ks.

In other words, a t-symmetric element is a translate by ¢ of a symmetric ele-
ment.

Proposition 7. Every t-symmetric convez body A is a translate of its nega-

-

tion =A.

Proof. Let A € K be t-symmetric. We have to show that there exists P eE
such that -A + P = A. Since A is t-symmetric, A — 1 is symmetric, that is
(A—1t) =-(A—1t)=-A+t Thisimplies ~A+ 2t = A, hence 4 is a translate by
2t of = A; we found P=2¢. O

‘Remark. Let A € K be {-symmetric, i.e. (A ~t) € Ks. By Proposition 6
there exists Z € K such that A =t = Z-Z. To find an expression for Z, fix
s € E and set Z = (A —-1)/2+5; we obtain Z = A/2+ 5', s’ € E. Thus
A—t=2-72 = A[2-A/2 = (A-A)/2. We thus have A —t = (A=A)/2, that
is for any t-symmetric element A € K its symmetric translate by —¢ is (A-A4)/2.

5. INNER OPERATIONS

Inner addition in K. Inner sum A+~ B is defined for (some) A, B € K by

Meca (B+a), if =A<y B.

Remark. The inner sum is defined whenever one of the conditions in the right-
hand side is fulfilled. Note that =B <ps A is equivalent to B <p; —A. Note also
that if both =B <jr A and ~A <p B hold, that is ~B =p; A, then =B = A +1 for
some ¢t € K. In this case it can be shown that both intersections in the right-hand
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side of the above definition produce the same result. Therefore we can replace the
second condition above by A <3¢ B (or A <pr —B).

Inner difference A —— B, for A, B € K, is defined by the equality A —— B
= A+~ (~B) [11, 12].

In the situation when (A, ~B) € Ly, resp. (A, B) € Ly, the inner addition,
resp. inner subtraction, admits simple presentation. Namely, we have

b off ey AN Bi<sA,
A+~ B = hB4y=4; ] =4 (5.33)
X'-—:A-}-X:B: if —~A <z B,

¥ =4t OF B & A,
A——B = |B+Y A ‘ >=
Xla=sx=pg, if A< B.

The inner operations (5.33) and (5.34) are related by A+~ B = A —— (-B).
Note that A <psr B does imply =A <jp —B, but does not necessarily imply
-A <pr B. Due to this fact, for some A, B € K it may happen that A +~ B
is defined, but A —~ B 1s not, or vice versa.

A relatlon between the inner operations and the Minkowski dlﬁ'erence 1s given

(5.34)

by :
A+~ B = (AX(=B))U(B X (-A)),
A-"B = (AXB)U-(B X A).

Inner addition is commutative, A+~ B = B+~ A, other important property
isA-"A=0.

Proposition 8. Let (A, ﬂB) €Ly Then A4+~ B<s A+ B and A+~ BC
A+ B. '
Proof. From (5.33) we immediately see that A+~ B is a summand of A + B.
Indeed, if B <y A, we have ~B+(A+~ B) = A, hence B~B+(A+~ B) = A+B.
If ~A <; B, then ~A+(A+~ B) = B, and hence A~A+(A+~ B) = A+ B. Since
in both cases the other summand contains 0 (indeed, A=A 3 0 and B—B 3 0), we
have A+~ B C A+ B, using Proposition 4 and A+~ B<; A+ B aswell. O

Remark. The proof can be generalized (cf. [15]) for the more general case when
either B <p A or A <y B (in which case it may happen that (A,~B) ¢ L;).
Most of the results in the sequel can be extended to this more general case.

Proposition 9. Let (A,-B) € L;. Then
A+~ B0 if =B <
(A,ﬂB)={ AL B0, ¥ Bsod,
(0,-(A+~ B)), i ~B>: A.

Proof. From (5.33), if B <y A, then =B + (A +~ B) = A. Hence (A4,-B)
=(-B+(A+~ B),~B)=(A+" B, 0) The case B >y A is treated analogously,
using that B >,;y ~A implies B = <A+ (A +~ B), hence ~-B= A+ -(A+" B).
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6. THE QUASIDISTRIBUTIVE LAW

Proposition 10. Let C€ K, a € R, a > 0. Then

C2raxC, if 0<a<ll,
C<gaxC, tf a2l

Proof. Let 0 < o < 1. We have to verify that a*C is a summand of C, that is
a*xC+ X = C for some X € K. Take X = (1 —a)*C. Substituting 3 =1—a >0
n

a*C+p+xC=(a+p)xC, af >0,
we obtain a*C+ (1 —a)*xC = (a+ 1—a)*C = C, showing that C >z a*C,
for « € [0,1]. Let @ > 1. We look for Y such that « ¥ C = Y + C. Taking
=(a—1)*C,wesee that C <paxCflora>1. O

The above proposition shows that for o € (0,1) the solution of C' = a*C + X
s X=(1-a)*xC.

Proposition 11. Let o, €R, C € K. IfaB > 0, then (axC,f*C) € L.
If aB <0, then (maxC, B*C) € Ls.

Proof. The case a3 = 0 is obvious. Let aff > 0, say a > § > 0. We shall show
that the pair (a*C, 8% C) is E-comparable, and 3+ C <y a*C. By Proposition 10
we have that C and (a/B) * C, a/B > 1 are I-comparable with (a/8) * C' >y C,
that is C + X = (a/B) * C is solvable. Then # % C +Y = a *C is solvable, i.e.
a * C >g B % C. The other subcases of a8 > 0 are treated similarly. The case
a3 < 0 is reduced to the previous case by setting o = —y. O

Proposition 12. Let a, € R, af <0, C € K. Then
(a+P)*xC=axC+~ g+C.

Proof. Without a loss of generality we may assume that « > 0, 8 < 0. Denote
—83 =7 > 0. Using (5.33), we obtain

Yl'y¢C+Y=amC, lf 7 * C SE o % C’
X‘G*C-{-(-\X):‘ytc, if Q*CSE ‘Y*C,

H

axC+~ 8xC

s (0_7)*01 7Sal
| ~(y—a)*xC, a<m;

= (a=9)«C=(a+p)*C.
In the proof we make use of Proposition 10. O
Denote the sign of the real number @ € R by o(a) € {+, —}, that is:

(a) = +, ifa>0,
RBH= -, ifa<.
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Assuming +1 = +, we can combine Proposition 12 and relation (1.13) in the
following general quasidistributive law: for every o, € R, C € K,

(a+ﬂ)*C=a*C-+°(°’ﬂ)ﬂ*C. (6.35)

7. QUASILINEAR SYSTEMS OF CONVEX BODIES

As already mentioned, due to (1.3)-(1.6) the system (K, +,0) is an (additive)
a.c. monoid. This system is a proper semigroup (i.e. not a group itself), which
means that there exists at least one pair (A, B) such that A + X = B has no
solution for X € K. The monoid (X, +, 0) has a unique idempotent element e (such
that e + ¢ = ¢), which is the null element (¢ = 0). For a semigroup (Q, +) with
only one idempotent element it is known that the set Qp of all-invertable elements
u € Q (i.e., such that u + v = 0 for some v) i1s a group (Qo,+,0,—), which is the
unique maximal subgroup of the semigroup (see, e. g., [1, Section 1.7]). Recall that
a subgroup (M, +) of a semigroup (@, +) is called maximal (with respect to “C”)
if there s no other subgroup (M’ +) of (Q, +) such that M’ D M and M # M’.
If no doubt occurs, we shall further say “the subgroup of the monoid” instead of
“the unique maximal subgroup of the monoid”.

Using the above terminology, we can say that the system of convex bodies
(K, +,0) involves the group (E, +,0), which is the (maximal) subgroup of K com-
prising all invertible elements of K.

Given a semigroup (Q, +), we shall call 7 : @ — Q an volution in Q if it is
a dual automorphism, that is:

i) m(w(A)) = A for A€ Q;
ii) 7(A+ B) = n(A) + n(B) for A, B € Q.

A proper a. c. monoid (@, +,0) with (maximal) subgroup (Qg, +,0,—) will be
further denoted (Q, Qo,+). The subgroup (Qo, +,0,—) contains the trivial group,
and, in particular, it may happen that Q = {0}. In (Q, Qo,+) we define negation
as follows: ; '

Definition. Let (@, Qo,+) be a proper a.c. monoid. An involution neg :
Q — Q is called negation in (Q, Qo, +) if it extends the operator opposite from Qg
to Q: neg(P) = —g,P for P € Qp (i.e. neg(P)+ P =0, P € Qyp).

It is easily seen that neg(A) = 0 <= A = 0 for A € Q, which corresponds
to (4.31).

‘We shall further require that negation is unique (sufficient conditions for unique-
ness will be discussed elsewhere).

Definition [12]. A proper a.c. monoid (Q, Qg,+) with unique operator nega-
tion “neg = —” is called a quasimodule and is denoted by (Q, Qq, +, ).
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Remark. Note that a quasimodule (Q, Qo,+, ) is not a group, but it pos-
sesses the same number of basic operations as a group does: one binary “+”,
one unary “—”  and one nullary operation “0”, and the algebraic properties of
(Q, Qo, +, ™) are close to those of a group.

The relation “<gy” is defined in a general semigroup in the same manner as it
is done in the semigroup (K, +), see Sections 2, 3. Inner addition “+~” and inner
subtraction “—~" in a quasimodule are partial operations defined by (5.33)-(5.34),
hence the quasidistributivity law (6.35) mentioned in the next definition makes

sense.

Definition. Multiplication by scalar ¥ : R x @ — @, in a quasimodule
(@, Qo,+,™) is a scalar operator over IR satisfying relations (1.8)-(1.10), (6.35),
and such that (=1)x A=—-Aforall A € Q.

The last assumption (—1) * A = - A means that negation is a special case of
multiplication by scalar. Note also that the multiplication by integers n * A =
A+ A+ -+ A is consistent with the multiplication by (real) scalar (1.2), hence
the symbol “¥” makes sense in expressions like 2 x A = A + A; we also have
~(nx A) = (=1)*(n*x A) = (—n) * A. '

Definition. A quasimodule endowed with multiplication by scalar is called
quasilinear system (over the field R), or R-quasimodule, and 1s denoted by

(QsQ0r+!R7*)' '

We borrow the notion “quasilinear” from [13], where this notion is used to
denote a similar algebraic system of convex bodies over E', that is intervals.

If the subgroup of a quasimodule @ is Q¢ = ({0},+), then negation and
identity coincide. Due to =A = A, in a quasimodule with (maximal) subgroup 0
we have A+ B= A-Band A+~ B=A-"B. :

Example 1. The subgroup of the monoid of convex bodies is (E, +, 0), hence
the corresponding R-quasimodule is (K, E, 4+, R, %) (also to be further referred to
as quastlinear system of convez bodies).

Example 2. The system of symmetric elements (Ks,0,+) is a quasimod-
ule with subgroup ({0},4). The quasilinear system of symmetric elements is
(Ks,0,4,R, *). Due to =B = (—1)* B = B it is easy to check that a* B = |a|* B
for B € Ks. Using (1.2), this implies o * B = {az | z € B} = {|a|z | z € B}.

Example 3 [17]. Another instructive example of a quasilinear system with
(maximal) subgroup 0 is the system (R*, 0,4+, R, *), where (R, +) is the semigroup
of nonnegative reals with subgroup ({0},+). The system (R*,0,+,R %) can be
considered as a subsystem of (K's,0,+, R, *) whenever Ks is replaced by a subset
of symmetric bodies of the form K = r* B, r € R*, with B € Ks, B # 0,
fixed; then K% = R*. The multiplication by scalar * : R x Rt — Rt satisfies
a* A = |a|*A. In this system we have A+~ B = A—~ B = |A— B|, where |A — B|
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is defined in R by {A— B, if B < A; B— A, if A< B}. By definition, A — B for
B < A is the solution of B+ X = A.

8. THE Q-LINEAR SYSTEM

Here we shall further stay within the framework of abstract algebraic systems.
This approach aliows us to summarize several important special cases, such as the
ones considered in Examples 1-3.

Recall that every quasimodule (Q, Qo,+, ) is an a. c. monoid, and, according
to the extension method mentioned in the introduction, the quasimodule induces
an extension group with supporting set G = (@ x Q)/p. The extension group has
opposite opp(A, B) = (B, A), which will be denoted symbolically by “~g” or just
“«_»  Negation (neg = =) in the quasimodule induces a corresponding operator
in the extension group (G,+) by means of neg(A, B) = (neg(A), neg(B)), A,B €
Q, which will be again called negation (in G) and denoted symbolically by“ &
~(A, B) = (~A, ~B). The set of invertable elements Qg of the monoid is isomorphic
to a subset of G of the form Gy = {(P,0) | P € Qo}, which is subgroup of the
extension group: (Go, +,0,—) = (Qo, +, 0, —). We shall incorporate the important
elements “Go”, “=”, “~” (and, of course, “+”) in the notation of the extension
group induced by the quasimodule (Q, Qo, +, =), writing thus (G, Go, +, —, 7).

Let us first discuss in some detail the automorphisms in the extension group
(G,Go,+,—, ™). Denote the identity in G by “id” and the operator, which is a
composmon “0” of negation and opposite, by dual: dual = neg o opp, that is
dual(a) =neg(opp(a)) for a € G; the operator dual(a) is called duahzation (or
conjugation). Since negation and opposite are involutions, dualization is also invo-
lution. Any two of the four involutions id, neg, opp and dual in G are composed to

each other according to Table 1.

TABLE 1
Composition table for the involutions in G
[ o | id | neg [ opp [ dual |
id id neg | opp | dual

neg neg id dual | opp
opp opp | dual id neg
dual || dual | opp | neg id

Let (G,Go,+,m) with G = (Q x Q)/p and Go = Qo be the extension group
generated by the quasimodule (Q,Q0,+,7), and let m be any of the operators
opposite or negation in G. As already mentioned, 7 is an involution in the sense

that:

C1) n((a)) = a for a €G;
C2) m(a+ b) = n(a) + w(b) for a,b € Q;
C3) m(a)=0<=>a=0fora€g.
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It is important to note that the both involutions “opp” and “neg” extend the
operator “opp” from Qg into G, that is:
C4) w(p) = —@o(p), i.e. m(p) +p =0, for p € Go = Qo.

Since both opposite and negation satisfy conditions C1)-C4), it is interesting
to formulate characteristic conditions for the distinction of these two operators.
One such distinctive property is that opp(p) + p = 0 for every p € G, whereas

neg(p) +p # 0 for p € G \ Go. We shall next consider another distinctive property.
The class G5 of -comparable elements of G is

G=={(U,0)|U € Q}[ J{(0,V) |V € Q}. (8.36)
The function type (or direction) of an element of Gy is defined by
+, fB< 4,
7(4,B) = { il o (8.37)

The form of presentation (U, 0), resp. (0, V), appearing in (8.36) is similar to the
form used for real numbers; indeed, we may write (U;+) for (U,0) and (V; —) for
(0, V) as we do with positive, resp. negative, numbers.

An element (A, B) € Gy is proper if (A, B) = (U,0) for some U € Q. According
to the extension method the element W € Q is identified with the proper element
(W,0) € Gr. Improper E-comparable elements are of the form (4, B) = (0,V),
V € @\ Qo. A special case of proper elements are the degenerate (U,0) with
U € Qq. Using the notation (8.37), a € Gy, is proper-if 7(a) = +, and improper
if 7(a) = —. According to Proposition 9, using inner addition we can present any
Y-comparable element of G in the “(z)-form (U, 0) or (0, V), resp. (4; +).

If an element a € G is proper, then neg(a) is also proper, since a = (A,0)
implies neg(A,0) = (neg(A),0) for A, B € Q. If an element b is improper, then
neg(b) = neg(0, B) = (0,neg(B)), showing that negation preserves the type, that
is:

C5) r(neg(a)) = 7(a) for a € G5.

On the other side, for-a nondegenerate a:
C6) r(opp(a)) = —7(a) for a € Gy,
where —7 is defined by —— = +, —4 = —.

The operators identity “id” and “dual” satisfy Cl) C3) and, instead of C4),
the condition:

CT7) n(p) = p for p € Go.

However, unlike identity, dualization changes the type of a L-comparable ele-
ment. We summarize the above observations as follows: '

Proposition 13. The quasimodule (Q, Qo,+,) generates (by means of the
eztension method) a system (G,Go,+,—, ) such that:
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1) ¢ = (@ x Q)/p; (Go,+,0,—) = (Qo,+,0,=); the opposite in G is:
opp(A, B) = —(A,B) = (B,A), A,B€ Q.

9) Negation in G is given by neg(A, B) = (neg(A),neg(B)), A, B € Q; dualiza-
tion, which is a composition of negation and opposite, is: dual(A, B) = neg(B, A) =
(neg(B),neg(A)), 4,B € Q. Opposite and negation coincide on Go and dual co-
incides on Gy with identity. Opposite and dualization change the type of the -
comparable elements, whereas negation does not influence the type. The four au-
tomorphisms on G: identily, opposite, negation and dualization, obey composition
rules according to Table 1.

The following symbolic notation will be used: for a € G we write dual(a) = a,
a = ay; then a, is either a or dual(a) according to the value of o € {+,—-}. In
such notation we have for U,V € Q: (U,V). = (=V,-U).

The multiplication by scalar “#” in the quasilinear system (Q, Qo, +, R, ¥) in-
duces a corresponding multiplication in the extension group (G,Go,+,—,™) by
means of the relation

y*(A,B)=(y*A,7*B), A,Be Q. (8.38)

Applying the extension method to the quasilinear system (@, Qo, +, R, *) (that
is, extending the multiplication by scalar), we obtain a new system with basic
- properties given in the next proposition; below we assume a, 3,7 € R, q, bce G

[12].

Proposition 14. Let (Q, Qo,+,R, x) be a quasilinear system, (G,Go,+, —, ™)
be the exlension group according to Proposition 13 , and multiplication by scalar
“%” be defined in G by (8.38). Then:

1) ma = (—1) * a;

i) ax (B *c) = (af) *¢;

i) y*x(a+bd) =y*xa+yxb;

iv) 1xa = a;

V) (a + ﬁ) * Co(a+B) = & * Co(a) + B * Ca(B)s

vi) (=1)*xa+a =0 for a € Go.

Proof. Relations i)-iv) and vi) are obvious. To prove v), note that it is equiv-
alent to v') (@ + ) x ¢ = (@ * ¢ + B * €o(a)o(8) )o(a)o(a+s); We shall prove v) in this
latter form. Substitute ¢ = (U, V) € G with U,V € Q. The right-hand side of v') is

r=(ax*(U,V)+B*(U,V)o(a)e(8))o(a)o(a+8)-

If o(a)o(B) = +, using that o(a)o(a + B) = + as well, we see that r is identical
to the left-hand side

I=(a+pB)*(U,V)=((a+B)*U, (a+8)+V).
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Consider now the case o(a)o(8) = —. The right-hand side becomes

ro= (ax(U,V)+8%(U,V)_)o(a)o(at8)
= (a*x(U,V)+ 8% (=V,7U))o(a)o(a+8)
= ((a*xU,ax* V)+ ((-8)*V, (—B) * U)a(a)o(a+ﬂ)
= (a*xU+(=08)*V, axV + (=) * U)o(a)yo(atB)-

We must now consider a number of subcases. Consider, e.g., the subcase
o(a) =+, 0(8) = —, o(a+ B) = + (in this subcase we have o > —3 > 0). Adding
the zero term (—@8) * (U + V,U + V) = (0,0) to the left-hand side and using the
quasidistributive law (6.35), we obtain

I = (a+8)*xUV)+(-B)«(U+V,U+V)
e ((a+ﬁ)*U,(a+ﬁ)*V)+((—B)*U+(—B)*V,(—ﬁ)*U+(—ﬁ)*V)
= (@+B)xU+(=B)xU+(-B)*V, (a+B)+V)+ (=B)*V + (-p) * V)
= (axU+(-B)*V, axV)+(=p)*xU)=r.

The rest of the cases are treated analogously. O

Relation v) (or v')) will be called g-distributive law. The g-distributive law
can be also written in the form (a + f)c = acx + fe, with A = o(a)o(a + B),

i = a(B)o(a’+ ).
Definition. The system obtained in Proposition 14 will be further denoted
(G,Go,+,—,R, %) and called g-linear system.

Proposition 14 is a generalization of Radstrom’s embedding theorem [16] in two
directions: a) no restrictions for the signs of the scalar multipliers in the second
distributive law (that is in the quasi- and g-distributive laws) are required (lead-
ing to embedding of cones in Radstrom case), and b) our theorem is formulated
for abstract algebraic systems, comprising the system of convex bodies as special
case. Clearly, (8.38) isomorphically extends multiplication by scalar from @ into
G; briefly, Proposition 14 says that a quasilinear system can be isomorphically em-
bedded into a g¢-linear system. Thus the proposition answers fully the questions
posed in the introduction.

Proposition 15. Let (G,Go,+,—, R, %) be a g-linear system and the operation
“P R X G — G be defined by ‘

@ C=a*Cha), *ER, c€QG. | (8.39)

Then (G, +,R, ") is a linear system.

Proof. Let us check that “-” satisfies the axioms for linear multiplication.
1. Let us prove that o - (8 - d) = (af3) - d. Substitute ¢ = d,(g) in the relation
a* (B xc) = (af) * ¢ to obtain a * (8 * dy(s)) = (eff) ¥ dy(p). Using (8.39), we
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have a * (8 - d) = (af) * dy(p). “Dualizing” by o(a), we obtain a * (8 - d)s(a) =
() * do(p)o(a) = (aB) * do(pa), Or @ - (B-d) = (ap)-d, foralld€ G, a,BER.

2. To prove the relation - (a+b) = 7 -a+7- b, substitute a = c5(4), b = dy(y)
inyx(a+b) =7y*xa+7*b. Weobtain v* (co(y) + doy)) = 7 * Co(y) + 7 *da(y), OF
v*(c+ d)g(y) = Y *Co(y) + 7 * do(v)- This implies that v - (c+d) =7 ¢+ -dfor
alle,de g, yeR

The relations 1 -a=a, (a+8)-¢c=a-c+f-cand (-1)-a+a=0can be
proved similarly. O

“K»

We proved that the system (G,+,[R, ) is a linear system (and, hence, Is a
linear multiplication by scalar). The operation “.” is involved in the g-linear system
— therefore the latter can be written in the form (G, Go, +, R, *, ).

9. CONCLUSIONS

Algebraic properties of convex bodies with respect to Minkowski operations
for addition and multiplication by real scalar are studied. To this end two new
operations, called inner addition, resp. inner subtraction, are introduced, and a
new analogue of the second distributive law, called quasidistributive law, is proved.
With the latter the system of convex bodies becomes a quasilinear system. A
quasilinear system of convex bodies can be isomorphically embedded into a g-linear
system, having group properties with respect to addition. The quasidistributive
law induces in the g¢-linear system a corresponding distributivity relation, called
g-distributive law. A g-linear system has much algebraic structure and is rather
close to a linear system and differs from the latter by:

i) existence of two new automorphic operators — “negation” and “dualization”
— in addition to the familiar automorphism “opposite” (and, of course, identity);

ii) the distributivity relation (g-distributive law) resembles the usual linear
distributive law with the difference that the operator dualization is involved.

From our study it becomes clear that quasilinear and ¢-linear systems summa-
rize some of the most characteristic algebraic properties of convex bodies. However,
the following methodological question remains open: Which are the algebraic prop-
erties of the abstract systems corresponding to the notion of “convexity”? In our
abstract study we circumvent this question by stepping directly on the fundament
of abelian cancellative monoids — algebraic systems comprising well-known prop-
erties of convex bodies. Another approach could be to take into account that the
set of convex bodies is a power set of certain type over a vector (or Euclidean)
space (or lattice). For the latter approach results from [21] may be used, where the
concept of convexity has been considered in abstract algebraic systems, which are
more general than semigroups — the so-called associative spaces. Another similar
approach offers the mathematical morphology (see, e. g., [15]), where vector lattices
are used as fundament.
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The paper deals with singularly perturbed differential inclusions with time lag. The
limit behaviour of the solution set when the singular parameter tends to zero is inves-
tigated. The limits of the fast solutions are considered as Radon probability measures.
Then the upper semicontinuity of the solution set with respect to uniform convergence
of the slow motions and to weak probability convergence of the fast motions is exam-
ined.
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1. INTRODUCTION

The paper deals with singularly perturbed differential inclusions with time lag,
having the form
(’b(t))efi(tx ), Zo=p,00=¥ (1)
Ey(t) s Tty Yt ), 0=%:% =Y,

wherez € R*,ye R™t € Idéf[O, 1] and € > 0 represents the singular perturbation.

For any z: [-7,1] — R¥ and t € [0, 1] we let z; : [-7,0] — R* be defined by z(s) =
z(t+s), —7 <5 <0. Here 7 > 0, H is a set-valued map from I x C([-7, 0], R") x
L'([-7,0], R™) into R**™ and ¢ € C([-7,0],R"),¥ € C([~7,0], R™), where C
and LP, 1 < p < 0o, are the usual spaces of respectively continuous (equipped with
the uniform norm) and p-integrable functions.
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The limit behavior of the solution set when the small parameter ¢ tends to
zero is investigated here. In the literature there are mainly three ways to deal with

the problem.

1. Reduction. In this case we consider solution set Z(¢g), € > 0, of (1) consisting
of all AC (absolutely continuous) functions (z,y) satisfying (1) for a.e. ¢ € I. For
¢ = 0% it is natural to mean by Z(0) the set of all pairs (z,y), with z-AC and
y-integrable on I, satisfying for a.e. t € I the “degenerate” inclusion

(j:(()t)) €EH(t,z, 1), ZTo=9, o=V 2)

The connection between the inclusions (1) and (2) has been investigated in many
papers when they are ordinary — [4, 7, 8, 13, 15, 16]. The LSC (lower semicontinu-
ity) is proved first in [15] in the ordinary differential case and afterwards for more
general systems in 5, 6]. The topology considered is C' x L?. However, to prove the
USC (upper semicontinuity) in this topology, one has to “expand” in some sense
the set Z(0), but then the LSC will be no longer valid. It is easy to prove USC
in the weaker C x (L?—weak) topology but under restrictive conditions. It was
done in [4], where the first result concerning “reduction” technique for nonlinear

differential inclusions is published.
Considering more general functional-differential inclusion than (1), namely

z(t) B B
(Ey(t)) € H(t)z»y: xtayt)’ o=, Yo = Y, (3)

we proved in [5] under one-sided Lipschitz condition the USC of Z(¢) at ¢ = 0%
in C x (L?—weak) topology. However, generally we do not have LSC. Making
restrictive assumptions concerning the dependence of the right-hand side of (3) on
y, we get in [5, 6] LSC in some partial cases.

2. Averaging. This approach is used mainly for systems in the form
i(t) € F(t,2,9,u(t)), 2(0) = 2",

ey(t) € Glz,y,u(t)), y(0) =1y’ (4)

Here u(t) € U (U — compact subset), and u(:) plays the role of a control.
Fix z and consider the following associated systemn:

z = const,

y(t) € G(z,y(7),u(7)), y(0)€QCR™, wu(r)el, r2>0. (5)
For given = and ¢ the Aumann’s integral

- 1 [°
Vit,5.Q)= {g | Ptz Y(2,5,Q),ur)dr - uir) € U} ,
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where Y (7, z, 5, Q) is the solution set on the interval [0, S] of (5) and “cl” denotes
the closed hull, possesses a limit

V(t,z)= Jim V(t,z,5,Q)

when certain conditions are met. Then it can be shown, see, e.g. [10, 11], that the
“slow part”, i.e. the projection of Z(¢) on R", converges in the C-topology to the
solution set of the averaged inclusion

z(t) e V(t,z), z(0)==z° tel

Some other averaging results are obtained in [9, 12].

In the forthcoming paper [7] we combine the averaging technique with the
notion of generalized solutions (introduced via Radon probability measures over a
compact set K containing all “fast” solutions) and obtain that Z(e) has a limit at
¢ = 0% in C x [LY(I, C(K))]*—weak* topology.

3. Invariant measures. The fundamental theorem of Tikhonov [14] states that
for single-valued H depending on (z, y) instead of (z,4:),i.e. H = H(¢,z,y), under
appropriate conditions the unique solution of (1) converges as ¢ — 0 to a special
solution of (2) in C(I,R") x C([4, 1], R™) for every 0 < § < 1.

[ts recent generalizations for systems of ordinary differential equations and
control systems are done in [1, 2, 17]. They are based on the identification of the
limits of the fast solutions y. with invariant measures of the associated system.
The convergence in ¥, Is in some statistical sense, while the slow part converges to
a solution of specially defined “reduced” system.

We finish the introduction with some notations and definitions. For A (. RAtm
we denote by A the projection of A on R™ and by A the projection of A on R™,

Throughout the paper () is the scalar product, |- | is the norm. For a set A
denote by o(z, A) := sup(z, y) its support function and by Dy (A, B) the Hausdorff
yEA

distance between the sets A, B.

The multifunction F' from the space X into the space Y is said to be U(pper)
S(emi) C(ontinuous) (L(ower)S(emi)C(ontinuous)) at £ € X when to every open
V' D F(z) (V) F(z) # 0) there exists a neighbourhood W 3 « such that V O F(y)

(VN F(y) #0) for y € W. All the concepts non- dlscussed in details in the sequel
can be found in {3] or [18].

2. THE RESULTS

Suppose that:
A1l. The map H is compact, convex valued, bounded on the bounded sets.
Also H(:,a, B) is measurable and H(t, -,-) is USC.
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A2. There exist constants a, b, # > 0 such that for every z € R*, y € R™ and
ae te€l:

a(z, f:{(t,a,ﬂ)) < a(1+ [0 +118lIE), «€, BeC(-70R™),
o(y, H(t,a,0) < b(1+[lallz) = ulBO))?, a€C([-7,0lR"), f€Qs.

Here

0 = {ae C((=r, 0L R™ : [a(0)] = lallc = max 1a(s>\},

-7<s<0

2, = {p € O-m0LR™) £ 1900 = I8l = g 18
and a(0) = z,5(0) = v.
First, we prove the following lemma:
Lemma 1. There ezist constants Ny, Ny, L > 0 such that
| llzllc < Nzy  l¥flle < Ny, [H(t 25, 9)] < L
for every (z¢,y°) € Z(€),e >0 and t € I.
Proof. Let € > 0 be given and let (z°,y°) € Z(¢). Denote

t) = me ¢ . t) = t %
pid)i= max, |z (t+a)l’, )= max i)

From A2 it follows that
(z°(t),2°(t)) < o(zf(t), H(t, 2, ¥f))
< a(l+ 2 ()% + |1y 1|Z)

‘when |z¢(t)| = ||z{l|c ;== max |z°(t + s)|, and
_ -7<s<0

< oy (), H(t, =5, )
< b1+ ||zflIE) — ply ()7
when [y ()] = llyillc = _max _|y*(t+9)l

Obviously, p(-) and q()_ are absolutely continuous functions, hence a.e. differ-
entiable. Then we have the following two possibilities for p(t) and g(t), respectively:

p(t) < 2a(1+p(t)+q(t)) or p(t) L0,
| ei(t) < 26(1+p(t) - 2pat) or (t) <O,
reasoning like in the proof of [5, Lemma 2.1]. It is not difficult to see that p(t) <
u(t), g(t) < vlt), where
i) = 2a(1+u(t)+o(), u(0)=max{ligllc, §lvlic} .
eit) = 2b(1+u(t) —2uu(t), v(0) = H(0)

(v (1),e9° (1))
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By the first equation u(t) > 0, ¢ € I, so b(1 + u(t))/u is increasing function. Then,
since v(0) < b(1 4 u(0))/u, we have v(t) < b(1 + u(t))/u, t € I. Suppose the
opposite, i.e. that there are ¢y € (0,1) and § > 0 such that v(tg) = 6(1 + u(to))/u
and v(t) > b(1 + u(t))/p, t € (to,to + 8). Therefore, by the second equation of the
above system, v(t) < 0, t € (o,to + 8), thus v(¢) decreases and

ot) < ilta) = -Z-(l + u(to)) < 2(1 +u(t)) for ¢ € (to,to + 8).

This 1s a contradiction.
Now, we get

i) < 20 (14 (O + 20+ () ) = M(1+ u(0).

where M = 2a(1 + b/p). By virtue of Gronwall inequality one obtains

u(t) < (M +u(0))exp(M) = N,

o(t) < §<1+u)s£(1+(M+u(o>)exp(M))= (1+N2). O

|-

Remark 1. Obviously, we have that
NZ = exp(M)(M +u(®), N = (1+N2),

where M and u(0) are defined in the proof above. Furthermore, the boundedness
for € = 0 can be easily proven using Gronwall lemma.

Remark 2. We use A2 only to prove Lemma 1, so we could replace A2 by the
requirement of boundedness of all solutions of (1), uniformly in ¢ > 0 and ¢t € I.
Or we could assume A2 only locally — over the closed ball (in R**™) with radius

(N2 + Nyz)l/2 and centered at zero, which the solutions of (1) could not abandon.

We give a simple example where A2 is satisfied.

Example. Consider the following control system:

z(t) € Tty +w(t), zo=0,
ey(t) € x¢—2f(y) max |y(t+s)|+w(t), y =0,
-7<s<0

where w(-) is measurable, w(t) € [-1,1] a.e. in I, f(0) = 0 and f(y) = y/|yl, y # 0.
Then, using the simple inequality c¢d < (c? 4+ d?)/2, we get for @ and 2 such that

a(0) = =, B(0) = v:
(z, H(t,e,0)) = (a(0),a())+ ((0), B(-)){e(0), w(t))
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O , 12OP , 1BOP | [wC)

= 2 2 2
< 21+ ]e(0) +18IIE),

(v, H(t,a, ) = (B(0),(-)) — 2(B(0), F(B(O)IB(O)]) + (B(0), w(t))
< 1+l = 180)* for B € Q.

Thena=2,b=pu=1.

Theorem 1. Let Al, A2 hold. Suppose in addition
A3. For every r € R*™ o' — o in C([-7,0},R"), and ## — £° in
LY([-7,0], R™)-weak

limsupo (r, H(t, o, 8Y)) < o (r, H(t,o°, 8°)) .
1—00
Then the map € — Z(e) is upper semicontinuous at ¢ = 0% in C(I,R") x
(LY(I,R™)-weak).

Proof. Suppose ¢; — 0 and (z*,y*) € Z(¢;) for i = 1,2,... By Lemma 1 all sets :
Z(€), € > 0, are contained in a C(I, R")x L' (I, R™)-—bounded set, so it is sufficient
to prove that every cluster point of {(z*,3*)}2, in C(I,R"™) x (L'(I,R™)-weak)
belongs to Z(0). We denote where necessary a given sequence and its subsequences
in the same way to simplify the notations. -

Let (z*,y') and (zi,4i),i = 1,2,..., be subsequences, converging to (2°,3°),
respectively (z2,9%) in C(I,R") x(L'(I,R™)-weak). Obviously, z'(-) — z°(-) in
LY(I,R™)-weak.

Let » € R™ be arbitrary. Then by A3 we have

limsup o (r, H(t,z},4})) <o (r, H(t,2?,y))) forae tel

k—o0

and with standard arguments (see [5]) one can show that (2) is fulfilled.

Remark 3. We note that A3 is satisfied, for example, if for fixed (¢, @) the
map H(t,a, ) has convex graph.

Reformulated Theorem 1 states that if {(z%,y°)}es0 1s a generalized sequence
of solutions of (1), then it has a subsequence converging in C x (L' -weak) to (z°,y°),
where 2% is AC, y° isin L' and

.ot N
(xé)) € Ht,z0,4)), ==, ¥ =¥, (6)

forae t€l

If A3 does not hold, we will not be able to claim the above result. But we
will derive a close result considering the “fast” y-parts of Z(¢) as measures over
the compact set K = {y € R™ : |y| < N,} containing all y-solutions (Ny is the
constant found in Lemma 1). :
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To this end let R(K) be the set of all Radon probability measures on K and
define the set of functions .

={v:I - R(K)|v() is measurable}.

[f every point y € K Is considered as the Dirac measure é, concentrated. at the
point y (ie. 6,({y}) = 1), we can represent every measurable function y : I — K
as U(-) = by(.), which is an element of p.

Let E be the space of all Caratheodory functions f(-, ) on I x K with values in
R™, i.e. f(:,y) is measurable, f(¢,) is continuous and integraly bounded. Then E
is isometrically isomorphic to L'(I, C(K,R™)) (see [18, Theorem 1.5.25]). More-
over, from Dunford-Pettis theorem [18, Theorem IV.1.8], we know that p with the
weak norm topology is isomorphic to the space [L'(J,C(K, R'"))] equipped with
the weak#* topology. Then v* — v for v, v € pand i = 1,2,...if and only if

[ ([ rewvio@n)a— [ ([ s @)a sorevey s <.
which means that y*(-) € L'(I,R™) converges to v in (L'(I,C(K,R™))*-weak* if

and only if
tim [ 5 (vi@) = [( [ seuwm @)
for every f € E.

Theorem 2. Let Al and A2 be fulfilled and let {(z°,¥°)}e>0 be a gener-
alized sequence of solutions of (1) with e — 0. Then there erists a subsequence
{(z%,¥°)}e>0 (denoted in the same way) such that z¢ — 2% in C and y* — v in the
weak® topology of [L*(I,C(K))]* as € — 0.

Proof. Suppose ¢ — 0 and (z¢,y°) € Z(¢) for every € > 0. The net {z°(:)}c>0 s
C(I,R"™) precompact due to Lemma 1 and to Arzela- Ascoli theorem. We know that
{v*()}eo is [L'(I,C(K, R™))]* —weak* precompact {18, Theorem IV.2.1}. There-
fore passing to subsequences if necessary, (z¢,y°) converges to (2%, ) in considered
topology, where v € p. O

Obviously we have =5 — z{ in C([-7,0],R") and 3§ — v; in L'([-7,0], £) for
every t € I, where £ = [L'(I,C(K,R™))]* ~weak™. But more important question
is to define an inclusion corresponding to (6) which is satisfied by z° and v (like in
[7} where ordinary differential inclusions are con51dered) In some partial cases it

is possible.
Consider first a functional-differential inclusion with constant time lag 7 > 0:

(20 efitzunue-m), z0=9 ss) = ¥(e), s€[-n0) ()

Theorem 3. Suppose the following s true:

A1’. The map H is compact, convex valued, bounded on the bounded sets.
Also H is almost continuous, 1.e. for every § > 0 there exists Is C I with measure
greater than 1 — 6 such that H is continuous on I5 x R™+2"
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A2'. There exist constants a, b, g > 0 such that forevery z € R" and y,v € R™
o(z, H(t,a,9,v)) < a(l+](0)f +|y° +Jof*), a €,
U(y:f{(t’a:y! ‘U)) S b(l +||O’”2~) —“lylz: S C([_T’O]'Rn)’

for a.e. t € I. Here a(0) = z, v(t) = y(t — 7).

Then to every generalized sequence {(z%,y)}e>0 of solutions of (1) there exists
a subsequence (denoted in the same way) such that 2 — z° and y* — v in the same

topologies as in Theorem 2 and
-0 t
(:ro( )) € / H(t,:c?,z)p(t)(dz), To = ¢, (8)
KxK
where p(t) is the measure product v(t) @ v(t — 7). Here v(s) = by(y), s € [—T,0].

Proof. Substitute z(t) = (y(t), y(t — 7)). Then like in the proof of Theorem 2
we have ¢; — 0 and (z*,y') € Z(ei) for every i = 1,2,... such that (passing to
subsequences if necessary) (z*, z') converges to (z°, u) in considered topologies and
(2'(-), %' () converges to (zo(-),0) in L' (I, R**+™ )-weak.

Let r € R**™ be arbitrary and let [s,t] C I. For every 7 one has

t
s

(r,(2'(t) = 2*(s), &i(y' (1) = ¥’ (5)))) < / o(r, H(r,z'(r),2'(r))) dr.
Due to [18, Theorem IV.2.9], -
ll_l‘r& o(r, H(r,2' (1), 2 (1)) dT = / { / o(r, H(r, zo(7), 2)) pto(7) (dz)}d‘r.
’ ' KxK
Combining the above two inequalities, we obtain
(060 < [ { [ o B0 Dualr) @)} dr @)
KxK

for evef)'/ t > s € I. Consequently, 2o(0) = z° and z°, p satisfy (8). O
Take now a functional-differential inclusion with two variable time lags:
Ht t— hq(t t — ho(t
g — ¥, y(s) = 'l‘l)(s)» 5 € [——Ta 0]’ (10)
where hy(t), ha(t) € [0,7] and h;, hy are Borel measurable functions on I. The

measurability of h;(-) is required to assure the existence of solutions of (10). We
can formulate the same result for (10) like in Theorem 3.

Theorem 4. Suppose that the following conditions are satisfied:
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A1”. The map H is compact, convex valued, bounded on the bounded sets.
Also H is almost continuous, i.e. for every 6 > 0 there exists I C I with measure
greater than 1 — & such that H is continuous on Iz x R™t37

A2". There exist constants a,b, & > 0 such that for every t € I, (z(),y(t)) €
Rn+m

o(z(t), H(t, 2,3, y(t — hi(1)), y(t — ha(t))))

< a(l+ |z(t)]? + ly(0)]* + |yt — ha () + ly(t — ha(t))]?),
a(y(t), H(t, ze, y, y(t — ha(2)), y(t — ha(t))))

< b(1+ z(t)]* + Jyt — A (2))1® + |yt — ha(1))]?) — ply(t)]*.

A3'. If infeer{h1(2), ho(t)} = 0, then pu > 2b.

Then to every generalized sequence {(x°,y%)}c>0 of solutions of (10) there ezists a
subsequence (denoted in the same way) such that z° — z° and y* — v in the same
topologies as in Theorem 2 and

(""00(’)) e/H(t,w?,Z)ﬂ(t)(dZL 20'=tPs . i)
ks

where p(t) = v(t) @ v(t — hi(t)) @ v(t — ha(t)) and v(s) = by(s), s € [-7,0].

Proof. Using A2” and A3’, we can prove a result analogous to Lemma 1, see,
e.g. [5]. Then substituting 2() = (y(t),y(t — hi(?)), y(t — h2(t))) again, like in the
previous proof, we have ¢; — 0 and (2%, y') € Z(e:), i = 1,2,... such that (passing
to subsequences if necessary) (z*,z') converges to (z°, 1) in considered topologies
and (2'(-),&:9'(-)) converges to (zo(:), 0) in L'(I, R**™)-weak.

Now, we will show that (2°, ) satisfies (11). The proof is very similar to the
previous one —— we just have to prove (9) (with K> in the limits of the second
integral instead of K x K) for any r € R**™ and [s,t] C I.

Since H is almost continuous, we have by [18, Theorem 1V.2.9]

lim /St a(r; H.(r, z'(1),2'(1)))dr < /:{/K3 o(r, H(t,zo(7), 2)) po(7) (dz)} dr.

1 =00

Consequently,

(r, (a%t) - 2°),0)) < [ 1 [, o H(r,(0), () ()

for every r € R®*™ and t > s € I, which finishes the proof. 0

Obviously, we are able to extend the above result for inclusions with finite
number of delays

(20) € HO,z0 v 0(t=ha(0), . ult=he()), 20 = 5,4(5) = ¥(5), 5 € [,
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where h;(t) € [0,7], 7 =1,...,k, and A; are Borel measurable functions on /. But
proving the corresponding theorem for the general case (1) is an open question.
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A SEPARATION THEOREM OF Y. TAGAMLITZKI
IN ITS NATURAL GENERALITY

DIMITER SKORDEV

It is shown how the assumptions of a separation theorem of Y. Tagamlitzki can be
weakened without any essential change of the proof. In contrast to the original version
of the theorem, the obtained thus strengthened version is not an instance of Ellis’
separation theorem.
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1. INTRODUCTION

In Y. Tagamlitzki’s paper [3] an axiomatization of the notion of segment is used
as a basis for an abstract approach to separation of convex sets. The axiomatization
looks as follows.

A set K is supposed to be given, and a subset ab of K is supposed to be put
into correspondence to any a and b in K in such a way that always ab = ba. By
definition, a/b = {x € K : a € bz}.! The following denotations are adopted for
any elements a and b of the set K and any its subsets A and B:

aB:U{ab:beB}, Ab:U{ab:aEA}, AB:U{ab:aEA,bEB},

! We use this denotation instead of § used in [3] (and, similarly, further for a/B, A/b, A/B).
Another denotational difference is that we shall designate a set inclusion by C, whereas Tagam-
litzki designates it by C.
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a/B=|J{a/b:be B}, A/b=|J{a/b:a€ A}, A/B = ([{a/b:a € Abe B).

The two operations considered so far will be called multiplication and division,
respectively.
Two associativity laws are supposed to hold for any a, b, ¢ in K, namely,
(ab)e = a(be), a(b/c) C (ab)/c
(the first of these conditions allows freely using expressions of the form abe for
arbitrary a, b, c in K).

Remark. After quite a time from the appearance of the paper [3] it became
known that a somewhat more restrictive but similar axiomatization of the notion
of segment had been given earlier by W. Prenowitz in [2]. It is easy to see that

a(b/c) C (ab)/c

for all a,b,c in K iff Prenowitz’ transposition law (cf. (2, pp. 4 and 7))

(a/b)N(c/d) # 0 = (ad) N (bc) £ 0
holds for any a, b, ¢, d in K. Having this in mind, one sees that Prenowitz’s join
spaces from [2] coincide with the structures satisfying Tagamlitzki’s axioms plus the
additional ones (not required in [3]) that ab # 0, a/b # 0, aa = {a} and a/a = {a}
for any a, b in K. Therefore any join space is surely a model for Tagamlitzki’s
axiomatization. In particular, the elements of an arbitrary vector space K form
such a model if one sets
ab={pa+qb:p>04¢>0,p+qg=1}

The converse is not true, since the other models indicated in [3] do not satisfy, in
general, the whole set of conditions in Prenowitz’ definition of join space. We should
like especially to mention as an example of such other model the one (indicated on
p. 173), where K is again a vector space, but we have

ab={Aa+pub: X>0,pu>0}

(the conditions aa = {a} and a/a = {a} are violated in this model for any non-zero
element of K').

To reduce the number of brackets, we accept the convention that multiplication
and division have a higher priority than N and U (thus we could omit the brackets
in Prenowitz’ transposition law mentioned above).

A subset C of K is called convez if the condition CC C C holds. A half-space
Is a non-empty convex subset S of K such that K\ S is also convex and non-empty.
The following separation theorem plays a central role in [3]:

Theorem 1.1 (Theorem 1 of [3]). Let abb C ab for any a,b in K.2 Then for
any two disjoint non-empty convezr subsets A and B of K there is a half-space that
contains A and does not meet B.

2 This condition is surely satisfied in join spaces, since then abb = a(bb) = ab. The model
mentioned at the end of the remark preceding the theorem also satisfies the condition in question,
and we again have the equality abb = ab in this model.
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As it became clear later, the above formulated result is an instance of a more
general separation theorem of J. W. Ellis published in (1]. Ellis’ approach is based
on a direct axiomatization of the notion of convex subset of a given set (without
axiomatizing the notion of segment), and it turns out that the family of all convex
subsets of K in the situation considered in the above theorem satisfies the assump-
tions of Ellis’ one. The present paper aims at showing that Tagamlitzki’s proof
actually establishes a result stronger than Theorem 1.1 and this result is no more
an instance of Ellis’ theorem. Namely, a reduction of the assumptions of Theorem
1.1 will be done in the next section without making essential changes in its prc;of
from [3].

2. REDUCTION OF THE ASSUMPTIONS
OF TAGAMLITZKI’S SEPARATION THEOREM

We are going to formulate now the stronger result mentioned at the end of the
previous section.

First of all, we reduce the assumptions from the beginning of Section 1 by
omitting the first associativity law. For the reader’s convenience, we formulate now
what is remaining from those assumptions. Namely, we suppose in/the present
section a set K to be given and a subset ab of K to be put into correspondence to
any a and b in K in such a way that always the equality ab = ba and the inclusion
a(b/c) C (ab)/c hold, adopting the denotations introduced in Section 1 before the
formulation of the associativity laws.

Clearly, the definition of convex set remains the same as in Section 1, but the
absence of the first associativity law obliges us now to write all brackets in the
expressions that are built up by more than one application of multiplication. In
particular, Theorem 1.1 does not make sense now without specifying the meaning
of its assumption that abb C ab for any a,bin K. (Does abb mean (ab)b or a(bb)?)
The following modification of the theorem can be established with almost no change
in the proof of Theorem 1 from [3].

Theorem 2.1. Let (ab)b C a(bb) C ab for any a,b in K. Then for any two
disjoint non-empty convez subsets A and B of K there is a half-space that contains
A and does not meet B.

To see the workability of the mentioned proof in the new situation considered
now, it is sufficient to note that there are only two steps in the proof needing a
revision: the first of them is in the transition from € € S/(zz) to EzNS # 0 (cf.
p. 174), where one has to apply now the inclusion é(zz) C €z, and the second one
is in proving that ((SS)/z)/z is a subset of (SS)/(zz) — to prove this inclusion
(used on p. 175), one should consider an arbitrary element ¢ of ((§S)/z)/x and

75



apply the inclusion (§z)x C £(zz). Of course, as in the original proof one uses
many times the equivalence

BXNA#0& XNA/B#0,

where A, B, X can be arbitrary subsets of K.3

A further reduction of the assumptions is possible at the cost of a quite small
change that in fact even simplifies the proof. The change consists in using the set
(S/z)/x instead of the set S/(xz). We shall formulate now a result obtainable
thanks to the admissibility of this change, and we shall present its proof following
Tagamlitzki’s one as close as possible, making only the necessary changes (except
for small differences in the denotations).

Theorem 2.2. Let (ab)b C ab for any a,b in K. Then for any two disjoint
non-empty conver subsets A and B of K there is a half-space that contains A and
does not meet B.

Proof. Let A and B be disjoint non-empty convex subsets of K. By Zorn’s
Lemma, there is some maximal convex subset S of K containing A and not inter-
secting B. We set T = K \ S for short.

Let z be an arbitrary element of K. We shall firstly prove that

| (S/z)/x C S/z. (2:1)
In fact, let £ € (S/z)/x. Then EzNS/x # 0, and hence (Ez)zN S # 0. Making use

of the inclusion ({z)z C £x, we conclude that £z NS # 0, hence ¢ € Sz
It is easy to see now that the set SU S/z is convex. Indeed, we have

(SUS/2)(SU S/z) = 55 US(S/z) U (S/2)S U (S/z)(S/z)
= S5 U S(S/z) U (S5/z)(S/x) C SSU(SS)/zU((S/z)S)/x
C SSU(SS)/zuU((SS)/z)/x CSUS/zU(S/z)/z C SUS/z

(the first two inclusions follow from the second associativity law, the convexity of
S implies the inclusion next to the last, and (2.1) is applied to obtain the last one).
Let us consider now the particular case when z € B. We shall show that S/z
does not meet B in this case. In fact, if S/aN B # 0, then SNzB # 0, hence
SN BB # 0, and from here, by the convexity of B, the false conclusion S N B #0
follows. So S/z does not meet B and therefore the set S U S/x also does not. By
the convexity of S'US/z and the maximality of S, we get the inclusion Stz € S,
Thus we see that S/z NT = 0, hence 2 ¢ S/T. Since z can be any element of B,

it follows that
SITNB=0. (2.2)

Consider now the convex set S U S/z, where z is an arbitrary element of T. By
(2.2), this convex set does not meet B and hence, by the maximality of S, the
inclusion S/ C S holds. Since z can be an arbitrary element of T, we get the

3 This equivalence has been observed by Ivan Prodanov about 1962, but in fact it is indicated
earlier in (2] (cf. Theorem 5 of that paper).
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inclusion S/T C S. Consequently, S/TNT = @, therefore SNTT =0,ie. TT CT.
So the convexity of T is established, and it remains to notice that S and T' are
non-empty because AC Sand BCT. [

The improved versions Theorem 2.1 and Theorem 2.2 of Tagamlitzki’s Theorem
1 are not instances of the separation theorem from [1]. For any a, b in K let [a,b]
(the convez closure of the set {a,b}) be the intersection of all convex subsets of K
containing both a and b as elements. In order the separation theorem from [1] to
be applicable to the family G of the convex subsets of K, this family must satisfy
the following condition: for any set X belonging to G and any a in K the union of
all convex closures [a,z], where ¢ € X, must belong to G too. We shall give now
an example showing the existence of cases when this condition is not satisfied, but
nevertheless the assumptions of Theorems 2.1-and 2.2 are fulfilled (of course, it is
sufficient to check only the stronger assumptions — those of Theorem 2.1).

Example. Let K consist of five distinct elements p1, p2, p3, p4, ps, and let
the multiplication in K be defined by the condition that £ € yz iff some of the
three cases below 1s present:

(o) z€{y z};
(8) z=nps {y,2} = {p1,p2};
(7) T = pPs, {ys 2’} = {P3:P4}-

The commutativity of the multiplication is obvious. To check the validity of
the second associativity law, suppose a, b, ¢ are elements of K, and z is an element
of a(b/c). We shall prove that = belongs to (ab)/c. We have z € ay for some y such
that b € cy, and we must show that cz Nab # 0. If z € ay holds according to case
(a), i.e. = € {a,y}, then a € cx Nab in the case of z = a, and b€ cxNabin the
case of z = y. The situation is similar if b € cy holds according to case (). Now
suppose that each of the statements z € ay and b € cy holds according to some
of the cases (8), (7). Since {a,y} N{c,y} # 0, it is not possible that one of the
both statements holds according to (3) and the other one holds according to (7).
Therefore z = b, hence the condition cz N ab # 0 is satisfied again. We obviously
have bb = {b} for any b in K, therefore a(bb) = ab for any a, b in K. We shall prove
the inclusion (ab)b C a(bb) by proving that (ab)b C ab. Suppose = € (ab)b for some
a, b in K: we shall prove that ¢ € ab. We have ¢ € yb for some y € ab. But the
cases of ¢ € {y,b} or y € {a,b} are easy, and, on the other hand, it turns out to be
not possible that each of the statements z € yb and y € ab holds according to some
of the cases (8), (7). So we have shown that all assumptions of Theorems 2.1 and
2.2 are satisfied in this example. Let us now consider the convex set X = {p1,p4}
and the union of all convex closures [ps, z], where z € X. The union in question 1is

{p1,p2,p3} U {p2, pa} = {P1,p2,p3,pa}, and it is not convex due to ps € psps.’

Remark. Theorem 2.2 remains true if the inclusion (ab)b C ab is replaced by
the weaker one (ab)b C abU{a,b}. To see this, it is sufficient to make the following
changes in the proof:
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e The sentence “Let = be an arbitrary element of K” must be replaced by “Let
z be an arbitrary element of 77,

o The inclusion (2.1) must become (S/z)/z C SUS/z.

e The third sentence after (2.1) must become “Making use of the inclusion
(Ez)z C ExU{,z}, we conclude that £xNS #Bor & € S, hence £ € SUS/z”.

3. CONCLUDING REMARKS

- We think it is quite possible that in the time of writing [3] Professor Tagamlitzki
had already been aware of the possibility to prove a version of Theorem 1 in the
absence of the first associativity law. In our opinion, he could have the following
reasons not to mention this possibility in his paper:

¢ a lack of known interesting applications of such a generalization of the theo-
rem;

e the fact that the rest of the paper anyway needs the first associativity law
(Theorem 1 being mainly a tool for the considerations there);

e the lack of information about Ellis’ separation theorem at that time.

There is, however, a chance that a generalization of this kind could be possibly
applied in the future to some problems of interest, and also the other considerations
from [3] perhaps could be generalized in some way for the case of absent first asso-
ciativity law. If this happens, then the fact that Ellis’ theorem does not completely
cover the content of Tagamlitzki’s result will turn out to be more essential than it
could seem at the present moment.
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PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

LJUDMIL KARANDJULOV

The singular perturbation for boundary problems for linear systems of ordinary differ-
ential equations is considered. Under suitable assumptions using generalized inverse
matrix the unique asymptotic expansion with boundary function is constructed.
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1. INTRODUCTION

The theory of the singularly perturbed systems for ordinary differential equa-
tions is primarily due to the works of A. Tikhonov [1, 2] and N. Levinson (see [3,
19]) in the early 1950. The method and results of A. B. Vasil’eva [4, 5] and A. B.
Vasil’eva, V. F. Butuzov [6, 7] widely make use of the construction asymptotic so-
lution of a singularly perturbed differential systems. The questions connected with
asymptotic calculation of relaxational oscillation are considered in the monographs
(8, 9]. The method of regularization of singular perturbation is studied in [10]. A
method of separation of differential equations for obtaining asymptotic decompo-
sition similar to regularized decomposition is given in the papers [11,12]. In this
paper the behavior of the solution at ¢ — 0 is considered for a linear boundary-value

problem
ez = Az +cA (t)x+(t), tead], 0<e<]l, (1)

79



(z)=h, heR™, (2)

where the coefficients of the system (1) and the equality (2) are subordinate to the
conditions:

(H1) A is a constant (n X n)-matrix, ReA; < 0 (z = 1,n), A; € o(4);

(H2) Ay(t) is an (n x n)-matrix, A;(t) € C®[a,b]; ¢ is an n-vector function,
p(t) € C%|a,b];

(H3) 1is a linear m-dimensional bounded functional
[=col(ly,...,lm), € (C([a,b])— R" R™).

The condition (H1) shows that det A # 0.
We consider the problem (1), (2) in the class of continuously differentiable
functions. Then the domain D(L,) of the operator

(Lez)(t) = ei(t) - Ax(t) - cAs(t)a(t)

consists of a continuously differentiable in [a, b] functions, satisfying the boundary
condition (2). At ¢ = 0 we obtain the degenerate equation Azo(t) + ¢(t) = 0,
which solution zo(t) = —A~'¢(¢) for arbitrary ¢(t) € C*|a, b] does not belong to
the domain D(L.) of the operator L, since, in general, the condition l(zo) = his
not fulfilled.

Let the equation (1) is solvable for arbitrary ¢ € C*[a,b]. Then the dimension
of the kernel of the operator L, is equal to the dimension n of the system (1)
and the boundary-value problem (1), (2) is the Noetherian problem with index

m :ind[L., ] = n—m # 0. It will be the Fredholm problem (ind[L,, (] = 0) if
and only if m = n (see [13]).

We shall consider the case m # n. We use an asymptotlc method of the
boundary functions and construct an asymptotic series, satisfying the boundary-
value problem (1), (2) at det A # 0. The initial research in the case is made in
[14].

In the Fredholmian case (m = n) an asymptotic integration of boundary-value
problems for non-linear and weakly non-linear systems with two-point boundary
conditions is studied in [6,7] on the basis of the method of boundary functions, and
in [10] — on the basis of the regularization method.

The construction of an asymptotic solution of (1), (2) in the Notherian case
(m # n) is represented on the basis of generalized inverse matrices and projectors
[156-17, 13].

2. FORMALLY ASYMPTOTIC EXPANSION

We shall seek a formally asymptotic expansion of the solution of the problem
(1), (2) in the form of the series
- t—a

z(t,e) = Y [wi(t) + Wi(r))e’, 7= ; (3)

1=0 &
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where z;(t) and II;(r) are unknown n vectdr-functions. By II;(7) (see [6, 7]) we
denote the boundary functions in a neighbourhood of the point t = @ . They will
be constructed so that when ( < € < g, the inequalities

L ()| < i exp(—aiT), (4)

where v; and o; are positive constants for i = 0,1,2,...and 7 > 0, hold in [a, b].
Formally, by substituting (3) in (1), for z;(t) we obtain the recurrent expres-
sions ' -
— A" (1), 1=0,
i(t) = :
z;(t) { A~YLx;-1)@), i=1,2,..., (5)

; : ; d
where L is the differential operator Lz = prA Ai(t)z. The boundary functions

are solutions of the differential equations

d b—a

a—TH.-(T) = All;(7) + f,-(-‘r),. T€[0,n), ™ = —, (6)
where
0, 3 =
_ 0
f‘(r) B Z ;}'f"'qA(lq)(a)Hi-l._q(T), g =12, (7)
g=i-1 7% ' _

We substitute (3) in the boundary condition (2). Then the coefficients of the
expansion (3) satisfy the boundary conditions

wn(n(Q9) {51 e

€
We denote X(7) = exp(Ar) to be the normal fundamental matrix of the solu-

d
tions of the linear system ﬁ = Az, T €[0,n); D) =1(X)=1 (X(Qfl)) is an

(m x n)-matrix.
Now consider two cases depending on the structure of the matrix D(¢).

2.1. Let D(e) = Do+ O (6’ exp (—%)), where a > 0, s € N, Dq is an
(m x n)-constant matrix.
All the expressions €° exp (—%) are exponentially small and it is possible to

reject them, because they are of higher order of vanishing than an arbitrary degree
of ¢.

Let the following condition be fulfilled:
(H4) rankDg = n; < min(m,n).

Denote by P and P* the matrix orthoprojectors

P :R" — ker(Dy), P*:R™ —ker(D}), Dj=DT.
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By DF we denote the unique Moore-Penrose inverse (n x m) -matrix of the matrix
Dy [15-17, 13]. Let P; be a (d x m)-matrix with d = m — n; linear independent
rows from the matrix P*, and let P, be r = n ~ n; linear independent. columns

from the matrix P.
Consider the system (6-8) for i = 0 . Then the boundary-value problem about

ITo(7) has the form

ad;ﬂg('r) = Allo(7), (Ilg) = h - I(zp). 9)

We substitute the general solution of the system (9) IIo(7) = X(7)co in the
boundary condition. Ignoring the exponentially small elements in the matrix D(e),
we obtain by the algebraic system

D()CO = ho, (10)

where hy = H — I(z), the n-vector cy.
When the condition (H4) is fulfilled, the system (10) possesses a family of

solutions
co = Preg + Dg‘ho

if and only if
Pho=0 = Pjhy=0.

Substituting ¢q in Mo(7) = X(7)co, we obtain
Oo(7) = X, (7)eg + go(r), cHeR, (11)

where
Xr (1) = X(7)Pr ~ (n x r)-matrix, go(7) = X(7)Dg ho. (12)

We define the vector ¢j € R™ by obtaining II;(r). Consider the boundary-value
problem with respect to II;(7):

%HI(T) = Alli(r)+ fi(r), T€[0,n), i) =—I(z;), (13)

where fy(r) = Ai(a)llp(r). Keeping in mind (11), (12), fi(7) will depend on the

unknown vector cj:
fi(7, ¢0) = Ar(a) X, (7)e; + A1(a)go(7).

We substitute the general solution
(1) = X(7)ey + /X(T)X'l(s)fl(s) ds (14)
0
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of the differential system (13) in the boundary condition and ignoring the exponen-
tial small elements in the matrix D(¢), obtain the system with respect to ¢;:

Doey = hy(g), ¢ € R, (15)°

where

)
hi(e) = —l(z1) — /X (()5— a) X~1(s)fi(s,cp)ds
0

According to (H4), the system (15) has a solution
¢y = P.cj+ Dfhi(e), ] €R,

if PJhi(e) =0.
From the last equality and the form of h,(¢) we obtain

D(e)ch = Piby(e), (16)
where -
D(e) = /X( )X‘l(s)Al(a)X,.(s) ds |,
0

. ¢) 3
bi(e) = —I /x (('); “) X~ Y(s)A1(a)go(s) ds | —I(z1). (17)
0

We assume that D(e) = Do + O (e” exp (?)), where a > 0, p € N, Dy is a

(d x r)-constant matrix, and after ignoring the exponentially small elements, the

system (16) takes the form -
DOCB = Pgbl(a) : (18)

Let the following conditions be satisfied:
(H5) rankﬁo = £
(H6) PgPj=0, dy=d-r,
where P~ : R — ker(D, ). Then the system (18) is always solvable and

| ¢ = Dy Pibi(e). (19)
We substitute (19) in (11) and obtain the resultant expression for Ilo(7):
‘ .
Mo(r) = X, (r) Dy P3bi(€) + go(7)- (20)
Define the norm of the matrix B = [b.-,-] by means of the equality || B|| = max ) |b;;].
1 j=1

Keeping in mind the representation b;(¢) from (17) and the structure of the matrix
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X(7), it follows that there exists €9 and when 0 < ¢ < €, the following inequalities
are fulfilled:

[b1(e)l] < es, €a>0; || Xe(e)]| L crexp(—~ay7), ¢1 >0, a;>0;
1D <2, €e2>0; ||IPill <es e3> 0;

lgo(7)|] < csexp(—aat), ¢5 >0, az>0.

Consequently, we can indicate positive constants yp, By such that
[Mo(7)I| < voexp(—BoT),

that is the boundary function Ilg(7) decreases exponentially.
It is obvious that II;(7) (i = 1,2,...) will be determined sequentially.
Assume that the boundary functions II;(7) (1,7~ 2) are defined. Then the
vectors ¢; (0,7 2) are entirely defined. By means of II;(7) we determine the
vector ¢/_,, which participates in the boundary function II; _;:

Oi-a(7) = Xe(7)eiy + 9i-a(7), ciy ER, (21)

where ;-1 (7)) =gial7, ¢l gy ChI
We substitute the general solution of the system (6):

n,'(T)=X(T)Ci +/X(T)X'1(s)f;(s,cf_1,...,c(',)ds, Ci—1 € R”, (22)

in (8) and obtain the algebraic system (ignoring the exponentially small elements
in D(¢))
Doc,' = h;(s,c{_l,...,c{,), (23)

where
h,(é‘, C:—l g ,CS)

=] [ X((')"“)X*(s)Al(a)xr(s)ds Gy biE g ), (24)
0

b,’(E) = —1(.’[3,')

) |
1] [X0x74 9 | X S a0 @i ) + @i (o)| 4
0 g=i-1

From the solvability condition of the system (23)
Prhi(Eie] - pioey €5y =0
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and (24) we get
D(e)ci_y = Pgbi(e).

Let the conditions (H5), (H6) be satisfied. Then
¢i_y = Dy Pibi(e). - (25)
We substitute (25) in (21) and obtain the resultant expression for II;_;(7):
II;_y(7) = Xr(T)EJPJbi(E) + gi-1(7), (26)

where

gi-1(1) = X(T)D(‘,L hi-1(ci_q,...,¢0) + / X(f)X‘l(s)f,'_l(s,c';_z,. ..,Cp) ds.
0

Lemma 2.1. Let the matriz A salisfy the condition (H1), and let the vector
function f(t) € C[0,+00) and satisfy the inequality ||f(t)|]| < c* exp(—a™t),
where t >0, ¢® >0, a* > 0. Then there exist positive constants ¢ and 7, so that

d . ;
the system £ = A+ f(t) has a particular solution of the form

dt
+00
Z(l) = / K(t,s)f(s)ds,
0
satisfying the inequality
[ < cet="1, 1> 0, (27)

where

) X()X~1(s), f0<s<t< oo,
{(t,s) = ,
0, f0<t<s<oo.
Proof. The fact that Z(t) is a solution is verified directly. From the condition

(H1) it follows that || X (¢)X ~*(s)]] < Cexp(—a(t —s)) when¢ > 0, @ > 0. We have

1

2O < [IXOX NG ds < e [ om0 ds
0

0

. 2*C *=
If @ < @ (or «® > @), then choosing ¢ = — . c. >0 (c = e ?__) and
' a—a a—a

s Sl I 257 E) we get (27).
Let o* = @. Then ||z(t)|| < c*Tte~%'. But Jim te™™ = (. Consequently,

there exist constants ¢ > 0, ¥ > 0, so that (27) is fulﬁlled fort>¢ >0 0O
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Theorem 2.1. Let D(e) = Dy + 0(6’ exp (—g)) and the conditions

(H1)-(H6) be satisfied. If ¢(t) € C™[a,b] and h € R™ satisfies the condition
Pj(h — l(zg)) = 0, the boundary-value problem (1), (2) has a unique formal ez-
pansion of the form (3). The coefficients of the expansion z;(t) and II;_;(7) have
the representations (5), (20), (26), respectively, and the boundary functions II;(1)
decrease exponentially.

Proof. From the above conclusions and the conditions of the theorem it follows
that really the coefficients of the expansion (3) for the boundary-value problem (1),
(2) have the representations (5), (20}, (26). It will be proved that the functions
M;(r)(: = 0,1,...) decrease exponentially. This we have done for Mo(7). Let
the inequalities (4) be satisfied, that is ||IIx(7)|| < Y& exp(—ax7) for 7 > 0 and
k=1,7— 2. It is known that for f;_; < a = m?xak, el i = m’fxx'yk we have

(ci1m 724 iy T+ ¢i_y) exp(—ar) < ¢f_y exp(—fi-1T).

Thus ||fi—1(7)]| < ¢;_, exp(=Bi-17) for 7 > 0, where f;~;(r) are the functions
from (7). Using this inequality, Lemma 2.1 and the estimates |[[b;(¢)|] < ¢; at
¢ € (0, ¢&q], from (26) we obtain

"Hi—l(r)“ S Yi-1 CXP(-’ai_lT), T Z 0)
that is the boundary functions decrease exponentially. [

Corollary 1. Let the conditions (H1)-(H3) be satisfied and rankDy = n; = n.
Then for any function ¢(t) € C™®[a,b] and for any h € R™, satisfying Pjhi(e) =
0, :=0,1,..., the boundary-value problem (1), (2) has an unique formally asymp-
totic ezpansion in the form (3). The coefficients x;(t) have the form (5), and the
boundary functions Il;(7) have the representations

i (r) = X(r)Dih; + / X(1)X~1(s)fi(s) ds.

In this case P = 0, ¢; = Dg’h,-(e) (i =0,1,...), where hi(e) = bi(g), ho =
h — 1(130).

Remark 1. If m = n and det Dy # 0, then it is sufficient to replace D} with
Dg' in Corollary 1. If m = n and rankDy < m = n, then all considerations in this
case coincide with the mentioned above ones.

Remark 2. If m # n, rankDy = n; = m, then P* = 0 and all systems
Doc; = hi(e), 1 = 0,1,..., are always solvable. In this case we get the family of
boundary functions.

2.2. Let D(€) = Do + Di€ + Dye? + - - - + Dye® + O(e exp(—ac)), where D;
are (m x n)-constant matrices, > 0, ¢ € N.
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We reject the exponentially small elements in D(¢) and introduce the (2s +
1)m x (s + 1)n-matrix

r Do B

D Dy O

D, D,_; Dy
D, D,

0

D,

We also introduce the (s+ 1)n-vector ¢; = [cio ¢i1 - - - cis]T, where cij are n-vectors
and the (25 + 1)m-vector b; = [bjo --- bis 0 -~ 0]7. '
(s41)m AT
Let the following condition be fulfilled:
(H7) rank@Q = (s+ 1)n, ((2s +1)m > (s + 1)n).
Then rankP; = 0, rankPy = d; = (2s + 1)m — (s + 1)n, where

Py ROHOR L ker(Q), Pj: RZHU™ L ker(Q"), Q" =QT.

The algebraic system
Qc; = b; (28)

has the solution

¢i=Qth; or i =[Q b]s;, F=0;s (29)

if and only if Prb; = 0. So we obtain the conditions
(H8) Py bi=0,i=0,1,..,
where Py, is a (dy x (25 + 1)m)-matrix, and [@*bi]n,, [@Fbiln,, ..., [Q7 bi]a, are
the first n elements, the second n elements, . .., the last n elements of the (s+ 1)n-
vector Q*b;, respectively.

In this case we shall seek the solution of the system D(e)co = hg in the form

co = €oo + €co1 + - - - + €’ cos,
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where co; € R”, j = 1,s. We find the vectors co; from the system (28). From the
conditions (H5), (H6) and the equality (29) for : = 0 and IIo(7) we obtain

$

lo(r) = X(7) Y& [Q%boln;, (30)

j=0

where bg = [ho 0 --- 0]T. Obviously, the boundary function fulfills the requirement
lim Ilg(7) = 0.
T—00

Analogously, we find II;(7) from (14) and the system D(e)c; = h(e), where

(-) '
' hl(E) = —1(1‘2) i /X (() = a) X-I(S)fl(S) ds y fl("') — Al(d)no(f).

€
0 :

We seek ¢) in the form ¢y = ¢y0 + €c11 + - - + €%¢;5.
Assume that after ignoring the exponentially small elements, hy(¢) = hjo +
ehi1 + -+ €*hys. Then we obtain

3

(r) = X(1) 1o [Q*bln, + [ X)X (5)i(5)ds,
0

=0

where by = [h1g -+ k13 0 --- 0]T and lim II;(7) = 0.

T—+00

It is possible to prove (inductively) that the solution of the systems (6)—(8) for
an arbitrary ¢ and

)
hi(e) = —l(z;) -1 /X(~)X‘1(s)f,-(s) ds
0
= hio +€hiy + - - -+ €° his; + O(e? exp(—ae))

has the form
H,‘(‘r‘) = X(T) Zﬁj{Q+bi]nj + / X(T)X_l (S)fg'(S) ds, (31)
j=0 0

where b,' = [h,'o h.’, 0 .- O]T.
For II;(7) the bound (4) is fulfilled.
So we have proved the following theorem:

Theorem 2.2. Let D(e) = Do + Die + Dae® + -+ + Dye® + O(e? exp(—ag))
and the conditions (H1)—(H3), (H7), (H8) be satisfied. Then the solution of the
“boundary-value problem (1), (2) has an unique representation in the form (3). The
coefficients of the ezpansion are defined by the equalities (5), (30), (31).
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Remark 3. If rank @ < (s + 1)n, then we obtain ¢; with determination of the
boundary function II;4;(7).

Remark 4. If D(¢) = I(X) = l(e?7)
=18+ et (a2 y e (2107 a)?) e

-

1 2!
=Do+€e'D_y+e*D s+,

then we seek ¢; in the form ¢; = ¢;jo+€ '¢i1 +-- - From the structure of the matrix
X(7) it follows that lim II;(7) = 0.
T =00

3. A BOUND OF THE REMAINDER TERM OF THE ASYMPTOTIC SERIES

The solution of the boundary-value problem (1), (2) we seek in the form
z(t,e) = Xna(t,e) +e"E(t, €), (32)

where

Xn(t,é‘) = Z[z,-(t) + ﬂ,‘(T)]&,’.
1=0 .

We shall proof that in {a,b], when £ — 0, the function £(t, ) fulfills the inequality
il(t,€)]| < K, where K is a positive constant.

We substitute (32) in (1), (2), where z;(t) and II;(7) are defined in Section
9. After some transformations we obtain that the function £(t,¢) satisfies the
boundary-value problem '

e€(t,€) = AE(t,€) +eAr(t)E(t,€) + H(t,€), 1(E(-,€)) =0, (33) |

h
wnere 1

€n+1
Hy(t,€) = ="t Azn i (1), Ha(t ) = "' Fi(t,¢), (34)

H(t,e) = (Hi(t,€) + Ha(t, €)),

Fi(t.e)=) " : k)!A(ln_k)(a)T""‘Hk(r)
k=0

h - N.oq — 1 n—k n-—
+ 6 Y Al @ ()
i=1 k=0
n+l

1 . " .
+ ——(n g I)Ag +l)(a—ib fre)rmt! Zs Mi_i(r), 0<6<1.

Since z;(t), i = 0,1,..., are continuous functions in [a,b], then [|z;(t)[| < m,
where 7; are positive constants.

i=1
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So we have

1
7 H1(6)|| < JAlllIzass I < |All7a41. (35)
Let
() = 1 (n—k) 1 (n+1)
K, = max ((n = k)!IIAI (a)i], muAl (a+ 071e)]| ,'

when 0 < 8 < 1 and t € [a,b], ||ILi(7)|| < pie™*", pi > 0, a; > 0 (i = 0,n) and
a = min(e;), p = max(p;).
] 13

J
When ¢ € (0,&0), let denote ¢ = max (¢;), where g = 1, ¢; = 1+ 3 €,
i=0,n+1 k=1
n+1

g Tooms, — k
]:1,n,cn+1_ 26.
k=1

By (34) we obtain
|F1(t,e)l| < Ki[easr™™H +ent™ + -+ 17 + co) pe™®T

< Kyep[r™™ ' 4. 474 1]e7 ",
Let K3 = Kjcp. There exists @, 0 < @ < a, such that (7! 4 ... 4+ 74 1)e 7 <

e~°T,

Consequently,

1

entl = ||Fi(t,€)|| € K2¢™°T < K3 = const.

Hz(t,€)

Keeping in mind (35) and the last inequality, we have

1

”H(t,é')“ .<_ En+l H2(t)6) S ”A“T’n-i-l + K3 =mn

Hl(t,é') +

€ﬂ+1

that is [[H(t,e)|[ < 7,7 > 0.
Let W(t,s,€) be a fundamental matrix for the homogeneous system

d
6'&% = Af, W(t, s,e)=E,, E,-— (nX n)-unit matrix.

Lemma 3.1 [18, 19]. For the matriz W(t,s,¢), whena<s<t<b, 0 <e<
€9 the ezponential bound

W) < pexp (-2E22) (36)

€

-1s fulfilled, where « > 0, B > 0 are any constants.
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Lemma 3.2 [18, 19]. Any continuous solution of the system (33) is a solution
of the system of integral equations

t
E(t,e) = W(t,a,e)é(a,e) + / W(t, s,s)%[e/{l(s){(s,e) + H(s,€)]ds, (37)
and conversely.

ds ts uni-

t
Lemma 3.3 [18, 19]. When ¢ — 0, the integral / H—}W(t,s,e)
a

formly bounded in the segment [a,b).

Lemma 3.3 reveals that there exists a constant M > 0 such that for ¢ — 0 and
t € [a, b] the inequality
t
1
~Wi{t
Jlowess
a
holds.

The system (37) will be solved by the method of successive approximations.
Let

ds< M

Eo(t,€) = 0,
Ei(t,e) = F(t,e) + / W(t,s,s)%[eA;(s)fj_l(s,s) + H(s,¢)]ds (38)

be the Picard successive approximations, where F(t,e) = W(t, a,€)é(a,¢).

Theorem 3.1. Let the conditions of Theorem 2.1 (or Theorem 2.2) be fulfilled.
Let B, h, hy, ho, ha, hy, €¢ be positive constants such that

|W(t,a,ce)|l < B; ||F(t,e)|| < h1, where hy = 26h, 0 <28 < 1;

|A1(t)]] € ha, where t € [a,b];

=+
Do +” S h3;

I < hall¥ll, hsha <2, €0 <

Mn_ _ . _ 2=(1-2B)hshs

I —= =
! 1-28 = — hsh42(
dary-value problem (1), (2) has the representation (32), where £(,¢€) satisfies the
inequality [|€(t,€)]| < 2h.  The vector £(a,€) is defined by the algebraic system

D(e)é(a,e) = g(€), where D(¢) = (W(:,a,¢€)) is an (m x n)-matriz,

2Mh,y

ha, then the asymptiotic solution of the boun-

()
g(e) = ~I /W(-,s,e)é[e/h(s)f(s,e) + H(s,e)]ds | . (39)
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Besides, z(t,¢) approaches the degenerating system at € — 0 and t € (a,b].

Proof. Using (38), we shall prove that the system (37) has an unique continuous
solution, which does not leave the domain

Q={(t.&) [a<t<h, ||E]l < 2h},

depending on an arbitrary vector £(a,¢).
By the equalities (38), for the first approximation we have

e = &oll < 1N+ [ W) e lids < b+ by <

f0<e<epand g < 21‘;—}12, we obtain
/ 1
e =il < [ |wiese)2] ds @l 160 - g,

: 1 |
< eMhy ||g-a(t.€) = &i-a(t, &)l < 51151 =& all, 5=2,3,...

This reveals that in the segment [a, b], when ¢ is sufficiently small, the successive
approximations (38) are absolutely and uniformly convergent. We shall show that
the successive approximations do not leave the domain Q. We have

: |
h h h
1§k (t,€)l] < ;HG(M) ~GmbellSh+ o+ o5+ + 7 <2k
Let klim §k(t,€) = £(t, €) satisfy (37) identically. Then in the interval [a, b] for
— 00 .

£ — 0 the inequality |[£(2, €)|] < 2h is fulfilled. _
Consequently, the system (37) has an unique continuos solution, which does

not leave the domain (2 and depends on an arbitrary vector £(a, €).
We define £(a, €) by the algebraic system

D(e)é(a,€) = g(e), (40)

where ﬁ(e) and g(c) are the expressions from (39). The system (40) is obtained
substituting £(¢,€) in the boundary condition I(¢) = 0 of (33).

Let ﬁ(e) = 30 + 0 (6’ exp (— %)), v > 0, s € N, where ﬁo 1s (m x n)-

constant matrix. Then if rank Dy = n, for € € (0, €0) the system (40) has an unique
solution '

£(a,e) = 3: g(e)
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if and only if
Pig(e) =0 and Pj:R™ — ker(Dy).

The inequality ||¢(a, €)|| < 2h is fulfilled for £(a,€). Really,

(e, &)l = Dy Il Nlg(e)l

[e L AL)I NIECs, )l + [ H (s, €)ll ] ds

t
Shghz;v/“W(t,s,s)-i-

1 - h(1 - 28)
<h 2 = :
< hshaM(2chih +n) < hshaM (22Mhz2ﬂh M )

< hhzhq (2'67:1— x f= 2?)
2

28 2 — (1 — 2B)h3hy E
< hhsh — — h 1- = 2
..h 3 4(}12 hahaB 9 + 243 2h. O

4. EXAMPLE

We consider the two-poi'nt boundary-value problem

ei = Az + (1), t€(0,1], I(z)= Mz(0)+ Nz(1)=h,
=[] 4= [ 4] w0 12]

1 0 1 0 6 ]
=10 1|, ¥=|0 10 |; b= 31 |.
0 1 6 0 25 |

If ¢ = 0, then zo(t) = —A™ p(t) = [ gﬁii ] It is obvious that I{zo) =

[5 31 25]T # h. Since A2 = -1 and the normal fundamental matrix has the

— 1
form X(t) = { l;tQt litQt ] e~t, then D(e) = MX(0)+ NX (E) has the

where

representation

™ =
+
"
|
— N0
| =R
| E—
M | =
(33
i
™ [

D(5)=M+N[é ?]e—

=Dy +0 (6_
where Do = M and rankDy = 2.
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We obtain sequentially

1 0 0

1
D} = o L 1|y A=501-1] ho={100]", hy =[103333).

2 3

In this case the conditions Pfh; =0, i = 0, 1,..., are fulfilled.
According to Corollary 1, we obtain

co=Diho=[10)7, ¢; = D}h, = [10 33]7,

S 10+1127 ] _,
Mo(7) = X(7)co = [ . T] e”", Mi(r)ey = X(7)ey = [ 33t 23:] &=,

The asymptotic solution of the two-point boundary-value problem has the form
i 2t
| -1 4 t—1 T e v
x(t,s)-[_l 3][ ; ]+ ¢ e

10 + 1122
[

€

o [~
o
.
~~
™

()
.\,

+ € [___g}-f- ;
33-—232

" REFERENCES

1. Tikhonov, A. N. On dependence of the solution of differential equations on small
parameter. Mat. sb., 22, 2, 1948, 193-204 (in Russian).

2. Tikhonov, A. N. System of differential equations with small parameters of the deriva-
tives. Mat. sb., 31, 3, 1952, 575-586 (in Russian).

3. Wasow, W. Asymptotic expansions for ordinary differential equation. John Wiley,
New York, 1965.

4. Vasil’eva, A. B. On the differential equations with small parameters of the deriva-
tives. Mat. sb., 31, 3, 1952, 587-644 (in Russian). '

5. Vasil’eva, A. B. Asymptotic behavior of solutions of certain problems for ordi-
nary nonlinear differential equations with small parameters of the higher derivative.
UMN, 18, 3, 1963, 15-86 (in Russian).

6. Vasil’eva, A. B., V. F. Butuzov. Asymptotic expansions of solution of singularly
perturbed equations. Nauka, M., 1973 (in Russian).

7. Vasil’eva, A. B., V. F. Butuzov. Singularly perturbed equations in the critical case.
Moscow State University, 1978 (in Russian).

8. Mishchenko, E. F., N. H. Rozov. Differential equations with small parameter and
relaxational oscillations. Nauka, M., 1975 (in Russian).

94



10.

11.

12.

13.

14.

15.

16.

o

18.

19.

Mishchenko, E. F., U. S. Kolesov, A. U. Kolesov, N. H. Rozov. Periodic movements
and bifurcation process at singularly perturbed systems. Physical-mathematical
literature, M., 1995 (in Russian). ‘
Lomov, S. A. Introduction in the general theory of singular perturbations. Nauka,
M., 1981 (in Russian).

Feshchenko, S. F., M. I. Shkil’, L. D. Nicolenko. Asymptotic methods in the theory
of linear differential equations. Nauk. Dumka, Kiev, 1966 (in Russian).

Shkil’, M. I. Asymptotic methods in differential equations. Visha Shkola, Kiev, 1971
(in Ukrainian).

Boichuk, A. A., V. F. Zhjuravliov, A. M. Samoilenko. Generalized inverse operators
and Noether’s boundary-value problems. IM NAN Ukraina, Kiev, 1995 (in Russian).

Karandjulov, L. I., A. A. Boichuk, V. A. Bozhko. Asym ptotic expansions of solution
of singularly perturbed linear boundary-value problem. Dokl. AN Ukraina, 1, 1994,
7-10 (in Russian).

Penrose, R. A generalized inverse for matrices. Proc. Cambridge Philos. Soc., 51,
1955, 406—-413. '

Penrose, R. On best approximate solution of linear matrix equations. Proc. Cam-
bridge Philos.Soc., 52, 1956, 17-19.

Generalized invers and applications. M. Z. Nashed, ed., Acad. Press, New York, San
Francisco, London, 1967.

Haber, S., N. Levinson. A boundary-value problem for a singularly perturbed dif-
ferential equation. Proc. Amer. Math. Soc., 6, 1955, 866-872.

Levinson, N. A. A boundary-value problem for a singularly perturbed differential
equation. Duke math. journ., 2, 1958, 331-342.

Received March 7, 1998
Revised November 19, 1998

Ljudmil Ivanov Karandjulov

Technical University-Sofia

Institute of Applied Math. and Informatics
P.O. Box 384, Sofia-1000

E-mail: 1ikar@vmei.acad.bg

95



TOAUIIHUK HA COPUNCKUA YHUBEPCUTET »CB. KIMMEHT OXPUIJICKU*“
PAKYNTET IO MATEMATUKA U I/IH¢OPMATMKA

Kuura 1 — MaTemaTuka u Mexanuka
Tom 91, 1997

ANNUAIRE DE L’UNIVERSITE DE SOFIA ,ST. KLIMENT OHRIDSKI*

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Livre 1 — Mathématiques et Mecanique
Tome 91, 1997

ABOUT THE FIRST CROSSING OF THE POISSON PROCESS
WITH A CURVED UPPER BOUNDARY
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The paper is concerned with the distribution of the first crossing of a simple Poisson
process trajectory with an upper boundary. Exact formula is derived when the upper
boundary has a vertical asymptote.
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1. INTRODUCTION

Many problems in risk, queuing and storage theories can be reduced to the
study of the first crossing time or level of a given boundary with a trajectory
of a certain stochastic process. Such problems have been mainly investigated for
continuous time Gaussian or similar to Gaussian processes. In case of non-linear
boundaries and of discrete-state space, the literature is rather sparse, and it treats
only the ordinary or compound Poisson process. The reader is referred to Lundberg
(1903), Cramér (1955), Whittle (1961), Daniels (1963), Gallot (1966, 1993), Zacks
(1991), Stadje (1994), Schal (1993), Picard and Lefévre (1997), Kalashnikov (1996).

In the present work, the interest will be focused on the classical continuous
time model of an insurance company, i.e. the Poisson model.

Suppose that &1, €y, €3, ... are independent and exponentially distributed with

* The author was partially supported by the SRF of the Sofia University “St. Kliment
Ohridski” under Contract No 221/1998.
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parameter A, so that

k(@) =max{n:&{ + &+ - -+ & <t} (1)
defines an ordinary Poisson process k(t), ¢ > 0. We shall interpret
So =6 +& 4+ +én (2)

as the moment of the n-th insurance claim. If 5, represents the amount of the n-th
claim, then
Zi= ) m (3)
i<k(t)

represents the total amount of claims to time ¢. The stochastic process Z;, ¢ > 0,
coincides with k(t),t >0, whenp; =1,i=1, 2, ...
Let
Uz - f(t) ~ Zt, (4)

where f(t) is a non-decreasing real function defined on the set Ry = {z : z > 0}.
In the classical risk model, usually the function f(¢) has the form

f(t) =u+ct,

where ¢ 1s the premium income per unit time, and u := f(0) is the initial surplus.
~ Define the ruin time T as

T:=wf{t:U; <0, t >0}, (5)

i.e. 7" is the time of the first crossing of the trajectory t — Z; with the boundary
t — f(t) (disregarding the origin when f(0) = 0).

Recently, Picard and Lefévre (1997) have investigated the compound Poisson
risk model when the integer valued random variables 7y, 75, ... are independent
identically distributed and the sequences &3, &2, ... and 7y, 72, ... are indepen-
dent. They derived the expressing for the ruin probability P(T < z) in terms of
generalized Appell’s polynomials under the assumption

P(n; >1)=1 and tlim f(t) = +o0.

Our purpose is to find the ruin probability P(7' < z) in the particular case
when f(t) has a vertical asymptote (i.e. ltitmf(t) = oo for some v > 0) and 7; = 1.
v

2. THE PROBABILITY OF RUIN IN FINITE TIME

It is worth noting that the distribution of 7" is defective (P(7 = o0) > 0).
Further we shall use the quantities

va:fYn), n=0,1,2,..., (6)
where the inverse function f~!(z) is defined by

f7He) = inf{y: f(y) > ).
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Obviously, vp =0 < wv; < v <...and

nler;ovn =, ' (7)

We shall use the formula for the non-ruin probability P(T" > ) derived by
Jgnatov and Kaishev (1997) in the form

n n—i
= i z!
P(T>z)= Ze = (=1 8w, 1) Y = | aves)(®), (8)
n>0 i=0 j=0 J:
where 8(vy,...,v;) =1 fori=10 and
( vy 1 0 0 O \
vy
-2-!- (2D)] 1 0 0
3 2
= = va ... 0 O
é(vl,...,v,-)::det O e (9)
L —
(-1 (-2 (i-3) 4
\ T G- G-2 A %)
fori=2,3,...,and Iy, v,,,)(2) is the indicator function of the interval [vn, vn41)-
The formula (8) is obtained under the assumptions 1 =m = m2 = -~ and
the parameter A = 1 of the sequence &;, &, ... We shall assume now that the last
assumptions are fulfilled.
The main result in this section is the following
Theorem. If f(t) is such that v, T v, then
' > (1) 8(vr, ..., ), z> v,
1=0
P(T > z) = (10)
n o n—i pJ
e | L (=1)'é(vr,- - vi) D ET yavag)(@) 0T <0
L n>0 =0 j=0 VE

Proof. To prove the theorem, we shall use the next two lemmas.

Lemma 1. For the determinants 6(vy,...,vn) we have the identities

6(cvy, ... cvn) =c"8(v1,..., ), | (11)
S(vy+¢ ..., 0 +c)=6(vy,...,vn)—6(vy,..  Un—1,—C), (12)
8(v1,...,Un) = (=1)*"26(vn — v1,...,Vn = Un—1,Vn). (13)
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Proof. The 1dentity (11) follows immediately from the definition of a deter-
minant as a sum of certain products, in our case of the form (-I)"v{'vg’ LS
where A is a suitable integer and j; + jp + - - 4 Jn = n.

Let us introduce the matrix

1
( Lo ! ¢ o g )
(24+¢)?  (v2+0¢)! i g
21 1
Alrte,... vnte)i= (v3 +¢)3 (v3 + ¢)? (va +c)? 0 ,
3! 2! 1!
(nt o) (s +0)"! (v, 4c)n-2 (vn +c)?
\ n! (n—1)! (n-2) 1! )

then det(A(v; +¢, .. Unte)) =d8(vy+e, ... v, + e}

—c)
If we add elements of the (7+1)-th column multiplied by ( ]f) to the elements
of the first column for J=1 ..., n~1, we get
i
] b
(o .
2
V5 Uy +c¢
2! 1! 0
5(v‘1+c,...,vn+c)=det ....... 1 ......... e . (14)
Vao) (Vn—1 +c)*~2 1
(n—1)! (n—2)! ‘
Un _ (=" (v +0)! (vn + ¢)!
\n! Tl (n-1)1 T )

Indeed, for the element ip the first column and the t-th row we have

vi+c)  (=e)l(v; + )i-1 —¢)%(v; i-2 __il_'o
( al L4 ci!((:- 1)!) ( c;!((ivj)c!) +o (2 5!?6!1-6)

]

5(6—!2-—!(vi+0) (vi +¢)' + G- 1)!(—0) (vi +c)
el (=) (v +e)f =24 .. 2y : +¢)°
oM(i — 2)1 ¢ o) (v +e)

1 .
5(~c+vi+c)‘ =z—.;4 (15)

Hl

fori=1... n-1.
Fori=nitis easy to find the identity
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(vnt+e)*  (=0)'(vn+c)""' (=)’ (vn+o)"? (=9)" ! (vn + )’
Al T T om-Dl T 2m=2 T T o

e — — ——

A similar construction will be used to the elements of the second column and
SO on.
Finally, we get

§(vi+c¢,...,vn+0)

1
81
(o | o )
2 1
va v2
2 10 ’
=det ...................................... ; (16)
Yash vhli |
(n—1)! (n —2)!
A ) - R () S - O o
\ 2l " al (a-1 (- 11

From the well-known property of determinants and the form of the elements
of the last row in (16) we obtain the identity (12).

The identity (13) follows from (11) and (12). Indeed, using (12) with ¢ = v,,
we have

6(”11 —VU1,.-.,Un — Un-1,Un G 5 0) - 6(—‘01) cery —Un—1, 0) Rewe 6('—1)1! <oy ™ Un-1, -vn)
—6(=v1y.. .y, —Vn-1,—Vp) = (=1)"*15(vy,...,vs).
In the second equality we use the fact that 6(-—v1, ..y=Vp-1,0) = 0. In the

third equality we have used (11).
The proof of Lemma 1 is complete.

00
Lemma 2. If v, | v, then the series Z [6(vy, ..., vn)| are convergent, i.e.

Z 16(vy, . . v,.)] < 400. (17)

Proof. Let s be chosen such that

1
for each n > 0. We shall use the Laplace’s expansion of a .determinant and for this
purpose we introduce the notation &' '/*(vy, ..., v;) for the determinant formed

from 8(vy,...,vs) by using the elements in the rows ry, ..., ry and the columns
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Ji, -+, Js- Let us expand the determinant §(v,y, — T | I - Us4n—1, Ussn)
applying the Laplace’s formula

6(vs+n U,y Usypn — Usgn-1, vs-{-n)
= (=185 (Vegn ~ -
= O i (Vstn — V1, ..., Vg pn Us4n—1,Usn)
(jli"':j‘)ec:+n
s+1,...,84n
X‘SJ,_H, h+,‘(vs+n ULy oy Ushn = Vg, Vs4n), (19)

w7 n+s
where the summation is taken over the set C7%s, the set of ( i ) subsets
s

(J15--.,7s) from the integers (1,2,... s+ n). It is easy.to find that

1,2,.
6},, ,J, ('UH-n “ VL Usgn — Vspn—1, vs+n) =0
when at least one of the indices Ji, .- ., Js is greater than s + 1. Therefore in this
case we obtain
6(vs+n — U1,y Vgpn — Us¢n-1, va-{-n)
hel,. s
= Z (—1) 6j1,_,.,j,(vs+n TVl Usqn —vs-{-n-l,vs-}-n)
(jln“'tjt)ec:+l
s.+l,..‘, +n
x‘sj.“,...;‘.ﬂ (”s+n TV Vshn = Usgn—1, Vsqn ). (20)
For the sake of simplicity we shall denote the subset (j1,...,7,) € C?t1 by
(1,2,. —1,7,i+1,.. 28+1)ifjr #£ifork =1, -+, 8, and also we shall choose
Js+1 -1;]s+2—3+2’ ooy Js4n =8+ 0.
Now we can rewrite (20) as
6(vs+n Uy Vshn — Vspn-ti, Ua+n)
s41
h 1 12,0448
--Z( 1) AL, ‘H_l(vs-{-n“vly-'-avs-{-n“vs+n—l,vs+n)
S+1,....s4n
X&l ,,.;.2, s,5+n(vs+n TV Usgn — Vgyn_y, vs+n)- (21)

To prove the inequality (17), it is enough to prove that

o0

Y 16(v1, - . ., V44| < 00 (22)

n=0

for some positive integer s.
From (19) and (21) we get

oo 00
Z ]‘5(”1, ceey vs+n)| = Z l‘s(vs-l-n ~ U1,y Uspy — Ustn-1, 'Us-l-n),
n=0 n=0
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| B
S E E 6 2—111+1 s+1(vs+n “vla---:vs+n‘—vs-l-n-l:vs-i-n)
n=01i=1
s+1,...,5+n
X 6, _,+2 3+n(vs+n — Vyy..+,Us4n — Vs4n-1, vs+n)|
s+1 oo
_ 61 2..
Yo t*“lll+1 ’+l(v’+n —vl)"')v3+n_v3+n‘-1)v3+n)
i=1 n=0 ¢
s+1,...,5+n .
x |6; ,,+2 ,,+n(vs+n ~V1y.--yUs4n — v3+n—1>vs+n) . (23)

Let us recall the Hadamard’s inequality for a determinant of order n and value
D with real or complex elements ai;: -

DR <L Yo tasl® ) (24)
i=1 i=1
and obviously,

BESIADMLTIE (25)
i=1 el

From (25) and 1,4,,, —v; < U, ...y Usgn = Ustn-1 < v, vs4n < v for the
541
determlnant 63 8+2 ’+n(v3+n o ‘U], ceey v3+n - vs+n_1 y v3+n) we have
1,2,.
‘6 '_1“_*_1 s+1(vs+n _vl;-~-)vs+n_vs+n—l,vs+n) < e’ (26)
fori=1,...,s+1
For the determinant léfﬁ,z ’f:n(v,+n — U1,y Vstn — Vsan—1,Vs+n)| 1t is
possible to prove that for each constant ¢
+1,...,5+
6::-{-2 ss:n(c(vﬂ'n - vl)s SRS C(U,+n - v8+n'1)’ C'v3+n)
1¢cs41,...,54n
=gt ,+2 in(Vstn — VLo Usin = Us4n—1,Vs+n)- (27)
The determinant 61 ,+2 "::n(v,_m vy, - v,+n—vs+n_1,v,+n) depends only
ON Vgqn — Usg 1y - - -3 Vsbn — Ustn—=1, Vs4n: Consequent]y, using mequalltles (21), we
have i
Vsgn = Vs3i SV~ Vspi = 3’ (28)

From (18), (27) and (28) we obtain

1, +
‘6:‘:--&2 s s-?-n(vs-!-ﬂ — V1,3 VUs4n — Vs4n-1, 'Us+n)
1 n4s—itl .
s+1,...,8+
= (g) 6: .:+2 s-tn(g(v8+n S ‘U;) (vH—n = vs-}—n 1) 3vs+n)
1 n+3-i+l .
< (ﬁ) e, (29)
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Replacing the determinants in (23)

with the upper bounds ip (26) and (29),
we get
s+1 oo 1 n4s—~i41 - ( 5 s+1 1 s—14+2 oo - n-1
sv : n-— |/ R s4+3)v
2L (3)  emeae () 26)
1=1 n=0 =1 n=0
s4+2 s+1 —1
= e(s+3)v (1) 1 § -——-—.1 < o0
3/ Ty 3 e/, _ '

€
3
The proof of Lemma 2 is complete;

Proof of the theorem. The expression for the probability P(T" > x) when
0 <z < v follows immediately from formula (8). Indeed, the probability P(T" > z)
depends only on the form of the upper boundary J(t) in the interval [0, z), therefore
We can imagine that the condition tlim f(t) = oo is true and in this case we can
—+ 00
use the formula (8). It is clear that

P(T>z)=P(T > v) =ImP(T'>y) forz> .-
ylv

ylv

. 00 .

Now we can see that lim P(T > z) = 2 (=1)'8(uy, . -+, % }. The formula (8)
i=0

may be expressed as

PT2z)=3Y" (Z(-nf,s(vl, o t)e™E Y "") Ty vy (@)

)
n=0 \ ;=0 j=0 J:

—_ Z(~l)i(5(vl, s3uTeay Ui)-gi(:c))

(30)
where go(2) = 1 for z ¢ [0,v) and for i > 1
O) Z e [07'”"1):
ile) = n—1i nj
9i(2) e~7 i,, :re[v,,,v,,H).
1=0J:
When z — v, we have n — 00, S0 we get
Iing.-(:t)z I, ¢=0,1,... (31)
Since lgi(z)| < I, z€(0,v), we ha}ve
o ) oo
D I(=1)i8(vy, . %) ()] < Y 1o(v, ). (32)
i=0 =0
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Combining (32) and Lemma 2, we get that the series §(—1)‘6(v1, ., i) gi(x)
1=0

is uniformly convergent. Consequently, taking into account (31), we have

gg}Z(-n‘a(vl, vgi(e) = 3 (1) (v, ., v) lim g (<)

i=0 1=0

=Y (-1)b(ur, ..., w).
i=0

The proof of the theorem is complete.

10.
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SOLUTION OF AN AUTONOMOUS SYSTEM
OF DIFFERENTIAL EQUATIONS
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We consider the autonomous system

z=alf(z)-(1+b)z- 2],
y=—c[f(z)—z -2, (1)
é’:-—d[y-{-Z],

which is found in studying of the oscillations of electrical circuits. In this system
f(z) is a twice continuous differentiable function in R such that

zf(z) >0 for z #0, | (2)

|f(z)] < M for z € R, (3)

M is a positive constant. The positive constants a,b,c,d are subordinate to the
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conditions

LAY P (—C-—i>2+b—(E = f'(0) 4
g 2¢ 2a P ’ (4)

2¢ 2a a

d > 4.6¢sup
z€R

! i"’) +9.7c + 5a + 2.4ab. (5)

Under these assumptions all solutions of (1) are defined in R and through every
point (2o, Zo, Yo, 20) € R x R® goes an unique integral curve (see [2] and [3]).

In [1] it has been proved that the system (1) possesses a closed phase curve,
different from the degenerate curve, consisting of its unique equilibrium position
— the origin of coordinates.

This curve lies in the solid homeomorphic torus V bounded by two cone sur-

faces

y+ 2 1 (6)

NN T
y+ z 1 g
=3 (®)

VivJai+ 2 +22 2
by the ellipsoid

1 5. 1yz %, 22
g5 G rast ()
and by the cylindrical surface
¢ +a3=K. (8)

Here

z q1
yl=Stael,
z q3 .

I is the smallest and K is the greatest positive constant for which the orbits of (1)
cross the contour of V from the outside; S is the matrix, reducing the matrix to
the corresponding to (1) linear system

t=allg—1-byz—2],

y=—cllg—Dz-2, - (1)
z=—-d[y+2],

of Jordan’s normal form.
To each of the existing two possibilities for the roots of the characteristic

equation of (1)
A t[d+a(l+b)—ag] A +dlc+a(l+b)—aglA+abed =0, (9)

namely,
M <0, d=p+ik, Izg=p—ikp>0, (10)
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or
M<0, do=p >0, A3=p>0, py# po, (11)

corresponds a different matrix S.
In both cases (10) and (11) the following estimate is valid:

—d< A < —0.876d. (12)

We know from [1] that except for the two orbits, lying in the domain z2 <
y? + 22 + 4yz, all phase curves of (1) enter V and remain in it with the growth of
time t. Furthermore, all orbits, starting from

Dy=Vn{z=0, z<0},

intersect

Dy=Vn{z=0, z>0}

passing from z > 0 to z < 0, and all orbits, starting from D5, intersect D; passing
from z < 0 to z > 0.

We denote by 7" the length of the interval of time for which the orbits of (1)
with initial points in D; intersect D, again after their passing through D5. In the
present paper an estimate from above for T' is obtained. The estimate does not
depend on the initial point of the orbits if this point belongs to D.

A key role at the estimate of 7" will be played by the following

Lemma 1. Suppose that the consiants B and v are defined by

( 1.2VK |k|ac ( 0.6V K |k|ac 0
o) 9@+ TS J 9@+1? for 10
VK lp2 — pabe = 0.4VK |puz — py]be
3 1)7 for (11), i A ld 1)7 for (11).

Then for the third coordinates of all points from V N {|z| < v} the estimate
|z| > B 1s vald.

Proof. The intersection of the conical surface (6) with the plane y+2 = 1 is
defined by the system

z=+V14+22—-222

y=1-z (1-V3)/2<2<(1+V3)/2 (13)

Let (Z,9,2) be a point from this intersection. The generatrix of (6), passing
through (Z, 9, ), intersects (8) in the point A(z;,y;,2;), where

=+V1+427-282(S1)y, n=(01-2(S)s, 21=%(5);. (14)
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Here

VK|det S|
S1)i = ——t |
(Wh)s = {[iAm/sz— 252 + Agg (1 — %) + Agg3)? (15)

1/2
x [£A13V/1+ 27 — 222 + Aga(1 — 5) + A33Z]2} ,

A;; are the algebraic adjuncts to the elements of the matrix 5, 1< 4,5 <3.

In (13)-(15) there is a correspondence between the signs =+, written before the
radicals, and those in the symbol (Sy), -

Investigating (%), 1 (Z) and 21(Z2) for Z € [(1 - V3)/2,(1 + V/3)/2] allows
us to conclude that the intersection of (6) and (8) represents a simple closed curve.
By analogy we come to the same conclusion also for the intersection of (6') and (8).

Calculating A;; and det S and estimating them by the following inequalities
resulting from (5), (12) and from the relations between the roots of (9) and its
coefficients: p

d
a<§, ab<§z, C<§'ﬁ, (16)
abe < p? + k% < 0,05d* for the case (10), (17)
abe < p? + pi < a’g®  for the case (11), (18)
we get that for (1 —v/3)/2 < # < (1 — V/3)/4 the following estimate is valid:
|z1| > B. (19)

The points
1/ 3+v3 1-V3 1 [T =3+v3 1-3
Al(i -3, 2 ' 4 ) g Az(’i A= Y8y 4

are obtained from (13) for z = 1 — /3.
We denote by a; the plane containing the axis of the cone (6) and passing

through the point A4;, j = 1,2:

Va-—-/3

(6 51 z:—l~—+—\/-37(y——z),

]

4—/3
az: r=———7 (y—2).

V3

From the position of V in the space it follows that for the third coordinates of
all points from

~ Va3 V-3
W—Vn{—-'l—m“(y“z)ﬁzﬁ—l'—‘\/g—(y‘z)}
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the estimate (19) is valid as well.
By analogy, considering (6"), one proves similarly that the estimate (19) is
valid also for the third coordinates of all points from

Vg:Vﬂ{—m(y—Z)st—m(y—z)

We consider the generatrix of the cones (6) and (6'), lying in a; and a-, and
their intersection points with the surface (8).

Estimating A;;, det S and using the inequalities (12), (16)~-(18), we obtain for
the first coordinates of these points the inequality

lz| > 7.

Then VN {|z] <4} C V1 UV,. The lemma is proved. (1

Let z(t,zo, Yo, 20) denote the z-component of the orbit of (1), corresponding
to the initial condition z(0) = %o, ¥(0) = yo, 2(0) = zo.

We introduce now the constants

!

M, = |x|5a?ﬁ’f/$+1)'f (), M= |z|5af/nia()f/5+1) [f(z)].

Lemma 2. Let é;,62,t¢ be defined as follows:

: g+ BM, — g a 1
= = —toB - ;
o m’"( ’ M, ) % S (1 4107

1 Ba
10% 942 { M (My + 1) + @V [d(1+M1) (1+\/5) +1]} |

to =

Then:

a) z (¢, 2o, Yo, 20) i an increasing function in the interval [t| < 1o, ¥ (29, Y0, 20) €
V1 n {ll’l S 61};

b) .’E(to/?) — I 2 62 and g — .’L‘(—to/?) 2 52, V(:Bo,yo,ZO) € V1 N {|x| S 61}

Proof. We develop f(x) by Taylor’s formula about z = 0:

2
flz) = gz + %-f”(ﬂa:), 0€(0,1), g=f(0).

Let (zo, Yo, z0) be an arbitrary point from V) N {|z| < ¥}. Then —z; > B. We
develop z (¢, zo, Yo, 20) about ¢t = 0:

2 _
i‘(t,:vo,yo,Zo) =a (g —-1- b)xo ~ 2o + %f” (0270)} +t£(01t), 91 (S (0,1)
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Suppose that |z9| < §;. Then

(=18 °f"<ox) <z

and

2 B |
(9—1-b)zo— 20+ %f” (6z0) 2 - (21)

The orbit with an origin (zo, Yo, z0) lies in V' and the following estimates are
valid:

2l <aVI (VB+1), I <eVL, |o| <VedVL, V(zy2)eV. (22)

Then

& (t, 20, 30, 20)| < & { M (M +1) +dVL [d(l + M) (1 +VB) + 1]}

for any t € R and any (xo, Yo, 2z0) € V. Therefore, for every t € R for which |t} < 1o
and for every point (2o, yo, 20) € V1 N {}z| < 6} the following two inequalities are
valid:

1 B ’
‘t‘r (glt Zo, Yo, ZO)I = 10" ’ z(tszO)yOszD) > 0)

where n is a suitable positive integer.
To prove the second part of the lemma, we develop z (t, zo, Yo, z0) about ¢ = 0:

12 _
z (t, To, Yo, 20) = To+a[f (o) — (14 b) xo — 2o t+5:r(02t,:ro,yo, z0), 02€(0,1).

On the one hand, it follows from (20) that

t2 to Ba
gx(ozt 0, Y0, 20)| < 16107
and, from the other hand, (21) implies
t B
[f (z0) — (1 + b) Zo — 20] 50 2 gt

These two estimates together with (21) yield
t
T (EO) — 20> 6y, V(zo,%0,20) € ViN{|zo| < b1}

In a similar way the estimate for zg — z(—t0/2) is obtained. The lemma is
proved. (O
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Theorem 1. For 6 = min(é;,63) we have:

a) All orbits of (1) going from points (g, yo, z9) € Vi N{—6 < z < 0} intersect
the plane z = 0 for an interval of time not greater than to/2;

b) All orbits of (1) going from points (zo,yo,20) € Vi N {0 < z < §} intersect
the plane ¢ = § for an interval of time not greater than ty/2;

c) All orbits of (1) going from points VaN{0 < = < 8} inlersect the plane z = 0
for an interval of time with length not greater than ty/2;

d) All orbits of (1) going from points Vo N {—6 < z < 0} intersect the plane
z = -0 for an interval of time not greater than ty/2.

The proof follows from Lemma 2 and the repetition of reasoning for the points
from Vo N {|z| < v} .
We are already prepared to prove the following

Theorem 2. All orbits of equation (1), starting from D,, intersect again D,
for the interval of time not greater than T = 2t, + 4/L/(b6).

Proof. Let (0,yo0,20) be an arbitrary point from D;. Denote with t; the first
moment when the orbit beginning at this point intersects z = é, and with 77 the
second moment. Then

I(t,o,yo,ZO) >6 Vte [tl,TI]. (23)
Multiply the first equation of (1) by ¢, the second by a and sum the results:

dz dy :
et = —abcz (1) .

Integrate this equation on the given orbit from ¢; to 7;. We obtain

T,
bc/z(t,O,yo,zo) dt = y(t)) — y(Th).

ty

Estimate the left-hand side of this equati_dn from below with the help of (23), and
the right-hand one above with the help of (22). This yields the inequality

VL

-1 < ——. 24
-t (24)
In a similar way we obtain that if 5 is the first moment in which the considered
orbit intersects £ = —6, and T5 is the second such moment, then
‘ 2V L
Ty & 'E\{s_— (25)

The obtained estimates do not depend of the point (0, yo, z0) € D;.
Finally, we take into account Lemma 2, the results of Theorem 1 and egs. (24)

and (25). The theorem is proved. [
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K-THEORY OF THE C*-ALGEBRA
OF MULTIVARIABLE WIENER-HOPF OPERATORS
ASSOCIATED WITH SOME POLYHEDRAL CONES IN R™

NIKOLAJ BUYUKLIEV

We consider the C*-algebra WH(R™, P) of the multivariable Wiener-Hopf operators
associated with a polyhedral cone in R™ and the extension 0 — X — WH (R™, P) —
WH(R",P)/X — 0.

The main theorem states that if P satisfies suitable geometric conditions (satisfied,
e.g., for all simplicial cones and the cones in R", n < 3), then K.(WH(R"™,P)) = (0,0);
K.(WH(R™, P)}X) = (0, Z), and that the index map is an isomorphism. In the cource
of the proof we construct a Fredholm operator in WH(R™, P) with an index 1. The
proof is inductive and uses the Mayer-Vietoris exact sequence and the standart six term
exact sequence in K-theory.

Keywords: K-theory, Wiener-Hopf operators
1991/95 Math. Subject Classification: 47A53

0. INTRODUCTION

Let P be a polyhedral cone in R*. The Wiener-Hopf operators are obtained
by compressing the left convolution operators on L?(R") to the L%(P):

W(ew) = [ 1t s)e(s)ds.
P

The C*-algebra W H(R™, P), generated by W(f) when f runs through C.(R"),
is the C*-algebra of multivariable Wiener-Hopf operators. It is studied with various
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techniques in [2, 4, 5].

In [4] P. Muhly and J. Renault prove that W H(R"™, P) contains X = X(P) —
the ideal of the compact operators in B(L?(P)). They obtain a composition series
- for WH(R", P):

0Cl2XchLC.. Cl,2WH(R"P), (0.1)

where I /Ix-1 = Co(Z) ® X and 7 is an appropriate locally compact space. They
state a problem to calculate the K-theory of WH (R™, P). Here are calculated
K.(WH(R", P)) and K.(WH(R", P)/X) when P satisfies suitable geometric con-
ditions (satisfied, e.g., for all simplicial cones and the cones in R", n < 3).

In the present paper we consider the extension

0—»XK—WH(R", P)— WH(R",P)/X — 0. ‘ (0.2)
Our first observation is that if there exists an index 1 Fredholm operator and
if K.(WH(R" P)/X) = (0,Z) (in order to simplify notations, the K-theory is

considered to be Z-graded theory: K.(A) = Ko(4) ® K 1(A)), then we may apply
the fundamental six term exact sequence of K-theory:

Ko(XK) —  Ko(WH(R",P)) — Ko(WH(R", P)/X)
1 ind | (0.3)
KiWH(R*, P)/X) — FK(WH(R"P)) — K1 (%)

 Then we obtain that K.(WH(R", P)) = (0,0) and the index map of the ex-
tension (0.2):
ind : K1 (WH(R", P)/X) — Ko(X), (0.4)
1s an isomorphism.
Further, the quotient W H(R", P)/X can be represented as a groupoid C*-

algebra. There are groupoid subalgebras, which are more simple (in a K-theory
sense). The basic idea is to construct an increasing sequence of such algebras

B1 CBy C C'BNA:'WH(R",P)/GC

and to calculate their K-theory applying the Mayer-Vietoris exact sequence in each
step. .

The groupoid approach gives naturally pullback diagrams of appropriate de-
fined groupoid C*-algebras:

By — Bk
| !
D —  Ax
Then the corresponding exact Mayer-Vietoris sequence is
Ko(Br) — Ko(Dr)® Ko(Bk-1) — Ko(Ag)
1 L
Ki(Ar) «— Ki(Dr)® Ki(Br-1) «— Ki(B)
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In a general situation it is not sufficient to know only the K-groups of A; and
Dy. Now we note that when the middle terms in the above exact sequence are
trivial, then the maps corresponding to the vertical arrows are isomorphisms. If
all these K'-groups are trivial, then the same is true for B;. This fact motivates us
to define the class of exhaustible cones — i.e. those cones, for which we can find a
sequence of subalgebras as above, but having a trivial K-theory.

The organization of the paper is as follows: In Section 1 we set up the groupoid
notations. In Section 2 we prove that there exists a Fredholm operator with index 1
in WH(R", P)! — the algebra with the identity adjoined. As a corollary of the six
term exact sequence in the K-theory we show that if K.(WH(R", P)/X) = (0, Z),
then K,(WH(R", P)) = (0,0) and the index map (0.2) is an isomorphism. Section
3 is concerned with the quotient WH(R", P)/X. We define geometrically the
property a cone to be exhaustible and we prove the main Theorem 3.5. An example
is given.

1. PRELIMINARIES

In this section we collect some facts concerning the groupoid approach to C*- -
algebras and the groupoid construction made in [4] of a groupoid whose associated
groupoid C*-algebra is isomorphic to the one generated by the Wiener-Hopf oper-
ators.

In the paper P is a polyhedral cone in R™, i.e. P is generated by its extreme
rays. We assume that P contains no line and spans R". Let J(P) denote the set
of all faces of P; we count P and {0} among the faces of P. For F € F(P), (F) is
the linear subspase F' — F' generated by F' and St(F) is the collection of all faces
containing F'.

In [4] P. Muhly and J. Renault prove that in a general context (G is a locally
compact group and P is its subsemigroup) B = WH(G, P) is isomorphic with
an explicitly constructed groupoid C*-algebra C*(G). Here we briefly recall their
construction in the case G = R"

First step in this construction is the definition of a locally compact space Y.

It may be presented as
Y={(F,t): Fe F(P);te R" 6 (F)}.

The space R" is imbedded in Y (¢ — ({0},%)) as a dense subset and the space X
is defined to be the closure of P in Y. There exists a natural action of R” on Y
and the basic for the constructed groupoid G, whose C*-algebra yields W H(R", P),
is a reduction of a transformation group ¥ x R™ by the closed subspace X of Y.
Explicitly, the elements of G =Y x R"|X are the pairs (z,5) € Y x R™ such that
r € X and z + s € X. The family of measures on X:

A (y,8) = 6:(y) xx(v) xx(y+ s) ds

(here xx is the characteristic function of X ), is called the left Haar system of
measures of G.
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The family C.(S) of the finite functions on X becomes a normed C*-algebra
under the operations and the norm defined as follows:

f*xg(z,t)= /f(:r;,s)g(a: +5,t—s)xx(z)xx(z + s)ds,

[ (z,t) = f(z +s,-5),
1l =sup{ [ axe, [ 1 axe iz e x).

The completion of C¢(G) by the norm || - ||; is L;(G) and C*(9G) is defined as their
enveloping C*-algebra.

Let A C F(P) and X(A) consist of those z = (F,t) € X such that the face F
belongs to A. Then G(A) is defined to be the groupoid obtained by a reduction of G
by X(A) and C*(G(A)) to be the corresponding C*-algebra. We denote some often

used groupoids as follows: §(F) = 9'({1"'}), Go = §({0}) and G, = G(F(P)\ {0}).

1.1. Proposition ([4, § 4.7)). There ezists an isomorphism between the
C*-algebra W H(R™, P) and the groupoid C*-algebra C*(G). WH(R", P) contains
K = K(L2(P)), which is isomorphic to C*(So), and the quotient WH(R", P)/X 1s
isomorphic to C*(Gwo)- :

Let F be a face.of P. The set P — F is a cone containing the linear space
(F) and Pp = (P — F)/(F) denotes the cone in R" © (F) determined by F'. More
generally, if Fy € St(F), then F — Fy contains (F) and the map

Porsr (Fy—F)|{F)

is an order preserving bijection between ST(F') and F(Pr). The next proposition
describes the groupoid C*-algebra C*(G(St(F))) = WH(R",P - F).

1.2. Proposition ([4, § 3.7.1]). WH(R", P — F) is isomorphic to WH(R" ©
(F), Pr) ® Cry({F)), where the tensor product is endowed with the least C™-cross
norm.

We note that C%y((F)) = Co({F)) and that all the algebras considered here are
postliminal ([2]) and there exists an unique C*-cross norm. The above fact and the
Bott periodicity say that K;(WH(R", P~ F)) = Kiti(moa2)(WH(R" ©(F), Pr)),
where | = dim(({F)).

1.3. Observation. Here we describe a construction which allows us to use
often the Mayer-Vietoris exact sequence.

Let choose subsets A, B, C and D of F(P) such that B = CUD and A = CND.
Let denote the corresponding groupoids by G(A), G(B), 9(C), (D) and their
groupoid C~-algebras by A, B, C, D.
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When one glues the groupoids §(C), §(D) along G(A), the result is S(B). Then
the following diagram of C*-algebras is commutative:

v B LN C
\011 lv’a
D £ 4

The C*-algebra B is a pullback of (€, D) along ¢y,¢, (ie. B = {(c, d) : p1(d) =
w2(c)} CCD D (cf. [1, § 15.3))).

By [1, § 18.12.4], when a pullback diagram of C*-algebras is given as above,
then we may write the corresponding exact Mayer-Vietoris sequence

Ko(B) — Ko(D)®Ko(€) — Ko(A)
1 !
Ki(A) — Ki(D)®Ki(C) — Ki(B)

2. CONSTRUCTION OF A FREDHOLM OPERATOR WITH INDEX 1

In this section an one-dimensional projector E(z,s) in WH(R", P) and an
essentially unitary operator S in WH(R™, P)! — the algebra with the identity
adjoined, are given explicitly.

Let us choose points y;, t = 1,2,..., N, on the extreme rays of P such that
lyil] = 1. We may assume that y;, ¢ = 2,3,...,n, determine extreme rays of
P, = (P - Fy)/(F,) and let P’ be the cone spaned on y;, i = 1,2,3,...,n. We
define

E(z,s)= C [] e~ e300y pu(2)xpi (x + 5),
k=1

F(z,8) = Ce3*¥x_oo (s, 31) [ €7 ¥"e 3¢9y pi (2)xpi(z + 5).
k=2

2.1. Lemma. (i) £ is an one-dimensional projection in WH(R™, P).
(i) F 1s in WH(R", P) and satisfies the equalities

F*xF=F+F" and F+xF*=F+F"-FE.

Proof. Let first assume that P = R} . Then we rewrite E*(z,s) and F(z, s):

n
E(z,5) = [] e e ¥ xny (z)xrz (z +9),
k=1

Flz, )= e%’lx(_oo,(;](s) H C-zke_%stRl (z)xrz (z + s)xx (z)xx(z +5).
k=2
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The elements of L;(§) are the measurable functions on § with a finite norm
|| - |lz- We observe that E(z,s) = E(z+s,—s) = E*(z,s). Using the Fubini
theorem and the fact that

/e’(""")x(om)(x +s)ds =1, (2.1)

where z,s € R, we obtain

|E'l1=sup{/E(x,s)ds, /E(:c,s)ds:zEX} <1

and E belongs to WH(R", P). Similar estimate proves that F is in WH(R", P)
and we omit it.

To prove that £ is an one-dimensional projector, we have to check the equalities
E = E* E = ExFE and tr(E) = 1. The first one is obvious. Using again the Fubini
theorem and (2.1), we get

ExE(z,t)= / E(z,sjE(z + 5,6t — s)xx(z + s)ds

< Blasd) / TI e *+**) xt0.00) (2 + 5) ds = E(z,2).
k=1

By [4] E(z,z — s), where z € P, may be considered as a kernel of a selfadjoint
integral operator in L%(R4). Using the well-known formula for the trace of a
selfadjoint integral operator with a continuous kernel, we obtain

tr(E) = /E(z,O)dz — / H e " x(0.0)(z)dz = 1
k=1

and hence E is an one-dimensional projector.
We rewrite F' as follows:

F(z,s) = 7' x(_co,0)(5) En-1,

F*(J,',S) = e—%‘lX[O,OO))(s)En—ly

and then easy but tedious calculations prove the equalities of (ii).

Further, let ® be the linear map determined by the matrice (y; ;). Then the
map (z,t) — (®(z), ®(t)) may be extended to a topological isomorphism between
G(R",R7) and G(R", P’). The measures in the left-hand Haar systems differ with
a constant C = | det(y; ;)| and the statement is true if P = P’.

Finally, in the general case for P, the supports of E(z,s) and F(z,s) are in
the reduction of G(R", P') by the X({0}) U X(F;), which is a subgroupoid of §.
Thus E(z,s) and F(z,s) are in C*(§) and the above equalities are satisfied.

2.2. Theorem. (i) There ezists a Fredholm operator S € WH(R", P) such
that indS = 1.

Proof. Let S = 1—F. Then by Lemma 2.1 we have $*S = 1and SS* =1—-FE.
2.3. Corollary. If K.(WH(R", P)/X) = (0, Z), then:
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(i) K.(WH(R™, P)) = (0,0) and
(ii) the indez map of the extension (2)

ind : K1(WH(R", P)/X) — Ko(X) (2.2)
s an isomorphism.

Proof. Let us consider the fundamental six-term exact sequence of K-theory
corresponding to the extension (2):

Ko(X) — Ko(WH(R",P)) — KoWH(R",P)/X)
T ind : |
Ki(WH(R",P)/X) «— K| (WH(R", P)) — K1 (X)

Let [S] be the generator of K;(WH(R", P)/X) = Z and let [E] be the gen-
erator of Ko(X) = Z. If ind([S]) = m[E], then the image of the morphism “ind”
is mZ C Z = Ko(X). But by Theorem 2.2 [E] belongs to the image of ind. Thus
|m| =1 and ind is an isomorphism. We know that the right-hand groups of (6) are
equal to 0, thus K,(WH(R", P)) = (0,0).

3. K-THEORY OF THE QUOTIENT ALGEBRA

3.1. Proposition. Let n <3. Then K, (WH(R",P)/X) = (0,2).
Proof. Let n =1 and P = R;. We write the extension (2) as follows:
0 — X — WH(R, Ry) — Co(R) — 0.

The fact that K.(WH(R", P)/X) = K.(Co(R)) = (0, Z) is well known.

Let n = 2 and P be a polyhedral cone in R? (the quarter plane-case). The
faces of P are {0}, P and two one-dimentional faces F; and F,.

Let us denote:

91 = SIX(Fl) UX(P) and 31 = C‘(sl);
92 = 9|X(F2) UX(P) and 'Bg = C*(gz);
91,2 =GlX(P) and By, =C"(G1,2)

We recall that G, = G|X(F1) U X(F;) U X(P) and by Proposition 1.1
WH((R?, P)/X = C*(Sco)-

There exists an isomorphism of groupoids §; = R x G(R, R;), where G(R, R4)
is the groupoid corresponding to the Wiener-Hopf algebra with P = Ry C R. Then
B1 =C*(G1) = Co(R)® WH((R, Ry) and therefore

K.(B:) = K.(C*(G1)) = K«(Co(R)) x K.(WH((R, R4))
=(0,2) x (0,0) = (0,0).
Analogously, K.(B;) = K.(C*(92)) = (0,0).
Further, '31'2 = C‘(gl'g) = Co(Rz) and I{.('Bll2) = [\,‘(CQ(Rz)) = (Z, 0)
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There is a pullback diagram of C*-algebras by (1.3):
C*(goo) T, BI
! |
‘B, -— By

Further, the corresponding Mayer-Vietoris exact sequence is

Ko(WH((R?, P)/X) — Ko(B1)® Ko(B2) — Ko(Co(R?))
| |
K1 (Co(R2)) —  Ky(B1)® Ki(B2) «— K (WH((R? P)/X)

The middle terms equal {0} and hence the vertical maps are isomorphisms:
Ko(WH(R?, P)/X) = K1(Co(RY) = 0,
K1{(WH(R?, P)/X) = Ko(Co(R?)) = Z.

Let us recall that the set St(F}) of faces of P containing F; is bijective to the

set of faces of P — F). Therefore each subset A; of St(F;) determines a subset E
of F(P;), where P is the lower-dimensional cone

(P - F)/((F1)) C R" © (F))-

‘The next definition is recursive and outlines the cones with which we deal.

3.2. Definition. Let P be a polyhedral cone in R*, n > 2. We say that
L C F(P) satisfies the condition (C) iff:

(1) there exists an one-dimensional face which does not belong to L;

(i) L is an union of stars of some one-dimensional faces of P;

(ii1) there is an ordering Fi,..., Fy of these one-dimensional faces such that

foreach 1 =2,... .,k
A= SHF) N [SHF)U...USH(Fi_1)]

determines a subset A; C F(P) which satisfies the condition (C).
If n = 2, we count St(F,) and St(F2) among the sets satisfying the condition

(C).

3.3 Definition. We say that P is exhaustible iff there exists an one-dimen-
sional face F of P such that L = F(P)\{{0}, F'} satisfies the condition (C).

3.4. Lemma. The cones in R?> and R® and the simplicial cones in R" are
ezhaustible.

Proof. When n = 2, by the definitions P is exhaustible.

Let n = 3 and P be a polyhedral cone in R3. Let us choose the custumary
ordering F, Fy, ..., Fiy of the one-dimensional faces of P (i.e. the extreme rays of
P) . Two neighbouring one-dimensional faces Fi and Fi41 of P (the calculations
with the indices are mod N) span the two-dimensional face Fi p41. The rest faces

of P are {0} and P.
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It is sufficient to prove that Fy, Fy, ..., Fy_; satisfy the condition (C). It is
evident that

Ay = St(F)N[SH(F)U...USt(Fi_1)] = St(Fi-1))

for I = 2,...,N — 1. The associated with St(F;_;;) C Fp family of faces of the
cone P, = (P ~ F)/(Fi) C R? satisfies the condition (C) by the definition and this
proves the case n = 3.

Finally, let P be a simplicial cone in R". Note that each collection of extreme
rays uniquely determines a face of P and for each one-dimensional faces F and F;
of P follows that St(Fy)N St(F;) = St(Fi,;). A trivial induction on the dimension
n proves that for each ordering F}, F5,..., F,, of the one-dimensional faces of P
and for each | < n the subset Fy, Fy, ..., F] satisfies the condition (C).

3.5. Theorem. Let P be an ezhaustible polyhedral cone in R*, n > 2. Then:
(i) Ku(WH(R", P)) = (0,0);

(it) K.(WH(R", P)/X) =(0,2);

(111) the indez map of the ezxtension (0.2)

ind : K,(WH(R", P)/X) — Ko(X) (3.1)

s an isomorphism;

(iv) if A C F(P) satisfies the condition (C), then K.(C*(9(A))) = (0,0).

Proof. We shall prove the theorem by induction on the dimension n. If n = 2,
Lemma 3.1 and Theorem 2.3 prove the statements (i)-(iv). Now suppose that they
are true for 2,...,n— 1.

Let P be an exhaustible polyhedral cone in R". By Definition 3.3 there exists
an ordering F, . .., Fy of the one-dimensional faces of P such that By_; = St(F,)U
...USt(Fn-1) C F(P) satisfies the condition (C) given in Definition 3.2.

Now let us consider some subsets of F(P) and the corresponding C*-algebras:

Dy = St(Fi) and Dy = C*(9(Dy)) for k=1,2,...,N;

By = St(Fi)U...USt(Fy) and By = C*(G(Bx)) for k=1,2,...,N;

Ar = D N By and A = C*(S(Ak)) for k=2.3:.:;:N-

We note that By = D, and By = WH(R", P)/X by Proposition 1.1.

Our first aim is to compute the K-theory of these algebras, in particular to
prove that K.(Bx) =(0,0)for k=1,2,...,N - 1.

By Proposition 1.2 there is an isomorphism D; = Co((Fx)) ® WH(R" ©
(Ft), Px). Since by the condition (i) of the inductive supposition K.(WH(R" ©
(Fy), Px)) = (0,0), then for k =1,2,..., N

K.(Di) = (0,0).
Further, Ay C St(F)) and by Proposition 1.2 it determines a family A C

F(Py) of faces of F(Py) and associated with it groupoid C*-algebraﬁ: such that
A = Co((Fk)) ® Ap.
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If 1 <k < N, then by Definition 3.2 (iii) A satisfies the condition (C), and

therefore by the condition (iv) of the inductive supposition it follows K, (Ax) =
(0,0) and hence
K.(Ax) =(0,0), k=23,...,N-1. (3.2)

Now we shall show that Ay has a non-trivial K-theory. Indeed, Ay = St(Fn)\
{Fn} and by Proposition 1.2

An = Co((Fn)) ® [WH(R" © (Fn), Pn)/X].

By the condition (ii) of the inductive supposition K,(WH(R")© (Fn), PN)/X) =
(0, Z) and hence |

K.(An) 2 K.(Co(R)) ® K.(WH(R" © (Fn), Px)/X) = (0,2) x (0, Z) = (2,0).

The equalities Bx = Bg_; U D, Ax = Bi_; N D; and Proposition 1.4 imply
that there are pullbacks of the corresponding C*-algebras for k =1,2,...,N:

B — Bi-q

| l
Dy — A
Now we shall prove that
K.(B:)=(0,0); k=1,2,...,N — 1. (3.3)
Indeed, B; = D, and K.(B,) = K.(D1) = (0,0). Suppose that the above holds
for 1,...,k —1 and we write the Mayer-Vietoris exact sequence
Ko(Br) — Ko(Br-1)® Ko(De) — Ko(Ax)
1 ' |

Ki(Ax) — Ki(Bi-1)® Ki(Dx) e— Ki(By)

The middle terms in this exact sequence are the groups {0}, hence the vertical
arrows maps are isomorphisms. For k = 1,2,...,N it follows that Ko(B:) =
Ki(Ai) and K;(Bix) = Ko(Ax). Using (N — 2) times the Mayer-Vietoris exact
sequence, we obtain that K.(B;) = (0,0) for £k = 1,2,..., N — 1. Here we note
that the proof of the condition (iv) is the same as the above fragment and we omit
it. Further, the final Mayer-Vietoris exact sequence gives

K.(Bn) = (0,2). (3.4)

So, the condition (i) is verified for n. The left standing for n conditions (i)
and (iii) follow from Theorem 2.3.

It is attractive to conjecture that all the polyhedral cones in R" are exhaustible.
However, we are unable to prove it. The next example shows that the ordering of
the one-dimensional faces in Definition 3.2 (iii) is essential. We construct L C F(P)
which is an union of stars of some one-dimensional faces, but which does not satisfy
the condition (C), because some of the corresponding C*-algebras have non-trivial

K-groups.
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3.6. Example. Let P be a cone in R* such that the cut @ through P
determined of a hyperplane a is a cube. We denote the extreme points of @ (ordered

in the custumary way) by A,,..., Ag and the corresponding one-dimensional faces
of P by F],...,Fst

Ly = St(F1), K.(C*(5(L1))) = (0,0),
Ly = St(Fa) U Ly, K.(C*(9(L2))) = (0,0),
Lz = St(Fs) U Lz, K.(C*(9(L3s))) = (0,0),
Ly = St(F7) U L3, K.(C*(S(L4))) = (0,0),
~ Ls = St(Fs) U L, K.(C*(S(Ls))) = (Z,0),
Lg = St(F4) U Ls, K.(C*(S(L¢))) = (0, 2),
L7 = St(F3)U Lg, K.(C*(S(L7))) = (0,0).
Clearly, L7 with the above order of the one-dimensional faces is not exhaust-
ible. It can be verified that the customary order of the extreme points of the cube
determines an order of the one-dimensional faces of P such that L is exhaustible.
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EACH 11-VERTEX GRAPH WITHOUT 4-CLIQUES HAS
A TRIANGLE-FREE 2-PARTITION OF VERTICES

EVGENI NEDIALKOV, NEDYALKO NENOV

7

Let G be a graph, cl(G) denotes the clique number of the graph G. By G — (3,3) we
denote that in any 2-partition V; UV, of the set V(G) of his vertices either V; or V;
contains 3-clique (triangle) of the graph G; o = min{|V(G)|, G — (3,3) and cl(G) =
4}, 8 = min{|V(G)|, G — (3,3) and <l(G) = 3}. In the current article, we consider
graphs G with the property G — (3,3). As a consequence from proven results it follows
that = 8 and 8 > 12. ‘

Keywords: chromatic number, triangle free partition of vertices of graph
1991/95 Math. Subject Classification: 05C55, 05C35

1. INTRODUCTION

We consider only finite, non-oriented graphs without loops and multiple edges.
V(G) and E(G) denote respectively the set of the vertices and the set of the edges of
the graph G. We say that G is an n-vertex graph when [V(G)| = n. If v, w € V(G)
and [v,w] € E(G), then v and w are called adjacent vertices of the graph G, and the
edge [v, w] is called incidental to the vertices v and w. For v € V(G) we denote by
Ad(v) the set of all vertices adjacent to v, and by d(v) the number of such vertices,
i.e. d(v) = |Ad(v)|. For the graph G we put 6(G) = min{d(v) | v € V(G)} and
A(G) = max{d(v) | v € V(G)}. The set of vertices of a given graph is called clique
if arbitrary two of its elements are adjacent vertices. If the number of vertices in
a given clique is p, then we call it p-cligue. The biggest natural number p, such
that the graph G contains a p-clique, is called cliqgue-number of G and is denoted

by cl(G).
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Let u € V(G) and [v,w] € E(G). We say that the vertex u is adjacent to the
edge [v, w] if {u,v,w} is a 3-clique of G.

The set of vertices of a given graph is called anticligue if each two of them
are not adjacent. The anticlique consisting of p vertices is called p-anticlique. The
biggest natural number p, for which the graph G has p-anticlique, is called the
number of independence of G and is denoted by a(G).

The graph G, is called a subgraph of the graph G if V(G,) C V(G) and
E(G,) C E(G). Let M C V(G). We denote by (M) the subgraph generated by M,
ie. V((M)) = M, and two vertices of M are adjacent in (M) if and only if they.
are adjacent in G. We denote by G — M the subgraph of G that is produced by
taking off the vertices of M and all the edges incidental to the vertices of M.

The partition of V(G) into r pairwise disjoint subsets, V(G) = VjUV,U.. .UV;,
is called r-partition of vertices. If all of V}, i = 1,...,r, are anticliques, then this
partition is called r-chromatic partition. The smallest natural number r, for which
G has an r-chromatic partition, is called chromatic number of G and is denoted by
x(G). The graph G is called k-chromatic if x(G) = k. The graph G is called vertez-
critical k-chromatic graph if x(G) = k and x(G — v) < k for arbitrary v € V(G).
We need the following obvious

Proposition 1. IfG is a vertez-critical k-chromatic graph, then 6(G) > k—1.

The supplement G of a given graph G is defined by setting V(G) = V(G); twe
vertices are adjacent in G if and only if they are not adjacent in G. It is clear that
a(G) = I(G). ;

Let p and ¢ be given natural numbers. The number R(p, ¢) is the minimum of
all natural numbers n, such that for arbitrary n-vertex graph G either cl(G) > p
or a(G) > ¢. The existence of the numbers R(p, ¢) is proved by F. Ramsey in [14].
Therefore they are refered as Ramsey numbers. We need the identity R(4,3) =
R(3,4) = 9, see [3], and more precisely, its obvious consequence:

Proposition 2. If |V(G) > 9 and cl(G) < 3, then a(G) > 3.

If arbitrary two vertices of the given n-vertex graph are adjacent, then it is
called complete n-vertex graph and is denoted by K. The simple cycle of length
n is denoted by C,. Let G; and G; be two graphs without common vertices, i.e.
V(G1)NV(G2) = @. We denote by G1+G> the graph G, for which V(G) = V(G1)U
V(G3) and E(G) = E(G1)UE(G2)UE’, where E' = {[vy,v5] | vi € V(Gi), i = 1,2}.

2. MAIN RESULTS

Definition. The 2-partition V(G) = Vi U Va of the verteces of the graph G
is free of 3-cliques if each of the sets V) and V, does not contain a 3-clique of the
graph G. We write G — (3,3) when there is no 3-cliques free 2-partition of the
vertices of G.
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It is obvious that if x(G) < 4, then G has a 3-cliques free 2-partition of vertices.
Therefore we have the following

Proposition 3. If G — (3,3), then x(G) > 5.

It is clear that K5 — (3, 3) and, conversely, if cI(G) > 5, then G — (3,3). The
opposite direction is false since it is easy to check that Cs — (3,3), but ¢I(Cs) = 4.

Definition. We denote by a the minimum of all natural numbers n such that
there erists an n-vertex graph G — (3,3) with cl(G) = 4. We denote by 3 the
smallest natural n such that there is an n-vertex graph G — (3,3) with cl(G) = 3.

We prove in this paper that @ = 8 and the unique 8-vertex G — (3,3) with
cl(G) = 4 is the graph K, + C7 (Theorem 1). The existence of the number S
is proved by P. Erdos and C. Rogers in [1]. R.Irving shows in [5] that 8 < 17.
N. Nenov constructs in [9] a 14-vertex graph 'y — (3,3) with cl(I';) = 3 (see
Fig. 1), showing that 2 < 14. In the paper [10] N. Nenov proves that 8 > 11. In
the present work we prove that 8 > 12 (Theorem 2).

Theorem 1. Let the graph G be such that G — (3,3) and cl(G) = 4. Then
[V(G)| > 8 and |V(G)| = 8 only if G = K, + C7.

Fig. 1. Graph I'y
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Theorem 2. Let the 11-verter graph G be such that cl(G) = 3. Then G has a
3-cliques free 2-partition of vertices.

Definition. We say thatl the graph G is 3-saturated, if for an arbitrary anti-
cliqgue A of G, the subgraph G — A contains a 3-clique.

To prove the Theorems 1 and 2 we need also the next assertions.

Theorem 3. Let G be a 3-saturated graph and <|(G) = 3. Then [V(G)[ > 7
and |V(G)| =7 only if G = C7.

Theorem 4. Let G be a 3-saturated graph, |V(G)| = 8 and cl(G) =3. Then
either G is isomorphic to one of the graphs L;, i = 1,...,14, shown at Fig. 2-15,
or there is v € V(G) such that G — v = C7.

Theorem 5. The graphs L;, t = 1,...,14, are 3-saturaled, L; is nol isomor-
phic to Lj fori# j and for arbitrary v € V(L;) the graph L; — v is not isomorphic
to C7.

The connection between the 3-saturated graphs and the graphs satisfying G —
(3,3) is given by the following

Proposition 4. Let G — (3,3) and B be an anticlique in G. Then the
subgraph Gy = G — B is 3-saturated.

Proof. Assume that in fact G; is not 3-saturated and let A be such anticlique
of G that G, = G; — A contains no 3-cliques. In such case V(G) = V(G2)U(AUB)
is a 3-clique free 2-partition, which is a contradiction. m

If a given graph has a 3-chromatic partition, then obviously it is not 3-saturated.
That is why we have

Proposition 5. If G is 3-saturated, then x(G) > 4.

We state also the following obvious

Proposition 6. If cl(G) = 3, then Ad(v) does not contain 3-cliques for
arbitrary v € V(G). :

We are going to use the next results.

Theorem A ([6]). Let G be an 8-vertez graph with cl(G) =3 and (G) = 2.
Then G is isomorphic to one of the graphs Ly, Ly, Lz from Fig. 2-4.

Different proofs of the above theorem could be found in [8], [12] and [13].

Theorem B ([10]). Let the graph G be such that cl(G) <r and x(G) > r+1
for some r > 3. If |V(G)| = r + 4, then one of the following two assertions is
satisfied: ;

(1) there is a vertez v € V(G) such that G —v = K,_2 + Cs;

(i1) the graph G is isomorphic to one of the graphs K,_3+ F;, i = 1,...,7,
where the graphs Fy, ..., F7 are shown at the Fig. 16-22.

130



vg _Us Vg vs, Vg Vs
vr Ug U7 U4 U7 Uy
Vg v3 vg U3 vg U3
vy v2 wm v " U2
Fig. 2. Graph L, Fig. 3. Graph L, Fig. 4. Graph L3

Fig. 5. Graph L4 Fig. 6. Graph Lg

v

Ve

Fig. 7. Graph Lg Fig. 8. Graph L7

131



U4

- L'c
Fig. 9. Graph Lg

vg

o, UG

Fig. 10. Graph Lg

132

vy
uvg
LAt vs
]
L UG
Fig. 11. Graph Lo Fig. 12. Graph L,
s 'U4 Us U4 Vs, v4
Ve ve Ug
- | v &< N U3 <
v2 U2 )
‘U‘T e vg vT vy UT Ug
Fig. 13. Graph L2 Fig. 14. Graph Lj; Fig. 15. Graph L4



Ve

Fig. 16. Graph Fy Fig. 17. Graph F» Fig. 18, Graph F;

g Vs vs
U1 Vg U v2 U3 V4
" Vg vg
Fig. 19. Graph Fj Fig. 20. Graph Fj Fig. 21. Graph Fj

vg Ug

U4

V7,

v3
vy :

v2

Fig. 22. Graph Fy = C Fig. 23

133



Theorem C ([11]). Let the graph G be such that |V(G)| < 10 and cl(G) = 3.
Then x(G) < 4.

3. PROOFS OF THEOREMS 3, 4 AND 5

Proof of Theorem 3. Assume that GG is 3-saturated and |V(G)| < 7. By
adding if necessary few isolated vertices, we may assume that |V (G)| = 7. Accord-
ing to Proposition 5, x(G) > 4. As cl(G) = 3, we see that G satisfies the conditions
of Theorem B with r = 3 and we conclude that there are only two possible cases:

Case 1. G—v = K; + C5 for some vertex v € V(G). Let V(K;) = {u}.
If u and v are not adjacent, then G — {u,v} = Cs and consequently the graph G
is not 3-saturated. If u and v are adjacent, then G — u = (Ad(u)). According to
Proposition 6, Ad(u) does not contain 3-cliques and therefore G is not 3-saturated.

Case 2. G coincides with some of the graphs F;, i = 1,...,7 (Fig. 16-22).
Each of the graphs F;, i = 1,...,6, satisfies F; — {vs, v7} = Cs, so these graphs are
not 3-saturated. Then the assumption |V(G)| < 7 leads to G = C7. Obviously, C
is 3-saturated, which finishes the proof. m

To prove Theorem 4, we need some preparation.

Lemma 1. Let the graph G be such that |V(G)| =8, cl(G) = 3, and o(G) > 3.
Then G is not 3-saturated.

Proof. Let {v;, vy, vs, vs} be a 4-anticlique in G and vs, ve, v7, vg be the other
vertices of G. If G — {vy, vy, v3, v4} contains no 3-cliques, we are done. In the other
case, let for example {vs, vs,v7} be a 3-clique in G. From cl(G) = 3 it follows that
vg is non-adjacent to some of the vertices vs, vg, v7. We may assume without a loss
of generality that [v7,vs] € E(G).

Case 1. The vertex vg is adjacent to some of vs and vg, for example vg is
 adjacent to vs. We denote by A the set consisting of the vertex vs and these of

the vertices vy, v9, v3, vq, which are not adjacent to vs. It is clear that A is an
anticlique in G. As G — A = (Ad(vs)), according to Proposition 6 G — A does not
contain 3-cliques and the assertion of the lemma is shown to be true in this case.

Case 2. The vertex vg 1s not adjacent neither to vs nor to vg. If A is the
anticlique defined in Case 1, then G — A = (Ad(vs) U {vs}). As the vertex vz is
not adjacent to vg and vz and Ad(vs) does not contain 3-cliques, G — A does not
contain 3-cliques, too. m

Lemma 2. Let G be a 3-saturated 8-vertez graph and cl(G) = 3. Then
A(G) £ 5. Moreover, if v is a vertez of a 3-anticlique of G, then d(v) < 4.

Proof. Assume that for some v € V(G) we have d(v) = 7. Then G ~v =
(Ad(v)). According to Proposition 6, Ad(v) does not contain 3-cliques of G, which
contradicts the fact that G is a 3-saturated graph. If we assume that d(v) = 6 and
denote by w the vertex of G non-adjacent to ¢, then G — {v,w} = (Ad(v)). Once
again the last equality contradicts the 3-saturatedness of G. So, by now we have
proved that A(G) < 5. '
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Assume now that the second part of the lemma is false and let for example
{v,u,w} be a 3-anticlique of G and d(v) > 4. It follows that G—{v, u, w} = (Ad(v)).
Again an application of Proposition 6 gets a contradiction to the fact that G is a
3-saturated graph. m

Lemma 3. Let G be a vertez-critical 4-chromatic graph, |V(G)| = 8, and G
contain two 3-anticliques without common vertices. Then G is not a 3-saturated

fraph.

Proof. As x(K4) = 4 and G is vertex-critical, ¢cI(G) < 4. Let {v1,vs,v3} and
{va,vs,ve} be the two 3-anticliques given by the condition, and v7; and vg be the
other vertices. If G — {v4, vs, ve} contains no 3-cliques, then the assertion is proved.
Assume that G — {v4, vs, vg} contains a 3-clique and let for example {v1,v7,vg} be
such 3-clique. By a similar argument we may assume that the graph G —{v;y, v, v3}
contains a 3-clique, say {v4, v7,vs}. From cl(G) < 4 it follows that [vi, v4] € E(G).

Assume that v7 is not adjacent to v, and vs. If v7 is not adjacent also to vs and
vg, then G—vg does not contain 3-cliques and the lemma is proved. If v7 is adjacent
to both vs and vg, then v7 is adjacent to each of the vertices of the subgraph
G — {vz,v3,v7}, and from Proposition 6 it follows that G — {va,v3,v7} contains
"no 3-cliques. If the vertex vz is adjacent to only one of vs and vg, for example
[vs, v7] € E(G) and [vs, v7) € E(G), we consider the following two situations:

1. {vs,vs] & E(G). It is clear that G — {vs, v3} does not contain 3-cliques and
consequently G 1s not 3-saturated.

2. [vs,vs] € E(G). From cl(G) < 4 it follows that [v,vs5] € E(G). The
. subgraph G — vs does not contain 3-cliques and consequently G is not 3-saturated.

So, in the case when v7 is not adjacent to the vertices v, and v3 the assertion
is proved. Therefore we assume that v7 is adjacent to some of the vertices v, and
vs. Similarly, we may assume also that v7 is adjacent to some of the vertices vs
and vs. We put then without a loss of generality {v,,v7] € E(G) and [vs,v7] €
E(G). If the vertex v7 is adjacent to some of v3 and vg, then our assertion is a
consequence of Lemma 2, because d(v7) > 6. That is why we may and do assume
that [vs, v7], [ve, v7] € E(G).

Consider the subgraph G — {vs,v7}. If it does not contain 3-cliques, we are
done. Let G—{vs, v7} contain 3-cliques. Because G—{v3,v7} = (Ad(v7)U{ve}) and
Ad(v7) = {v1,v2,vs,vs,v3} does not contain 3-cliques, certainly [vs, vs] € E(G).
By similar argument we conclude that [vs, vg] € E(G). If the vertex vg is adjacent
also to some of vy, vs, then d(vsg) > 6 and we may apply Lemma 2 to get the
conclusion. Therefore we assume that vg is not adjacent neither to v, nor to vs.

Let us mention that at least one of the pairs {vy,vs}, {vi,vs}, {v2,v4} is not
adjacent in the graph G, because otherwise we would have (Ad(v7)) = Cs and
K, + Cs C G, which contradicts to the fact that G is a vertex-critical 4-chromatic
graph, since x(K; + Cs) = 4. To conclude, let see that:

If [vg,vs] € E(G), then {va,vs,v3} is an anticlique and G — {v2,vs, vg} does
not contain 3-cliques.

If [v1,vs] € E(G), then G — {v;,vs} does not contain 3-cliques.
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If [ve,v4) € E(G), then G — {vs,v3} does not contain 3-cliques. w

= 8.

Lemma 4. Let G be a verlez-critical 4-chromatic graph and |V(G)
Then oG —v) > 3 for arbitrary v € V(G).

Proof. It is obvious that if a 7-vertex graph has no 3-anticliques, then its
chromatic number is bigger than 3. Therefore a(G — v) < 3 implies x(G — v) > 3,
which contradicts the fact that G is a vertex-critical 4-chromatic graph. =

Lemma 5. Let G be a vertez-critical 4-chromatic graph and IV(G)| =
Then G s not a 3-saturated graph.

Proof. If a(G) > 3, then the assertion follows from Lemma 1. So, we assume
that o(G) < 4. Taking into account Lemma 3 we may assume that each two
3-anticliques in G have a common vertex.

Case 1. There are two 3-anticliques in G that have exactly one common
vertex. We put them to be the 3-anticliques A = {a,c,y} and B = {a,b,z}.
Consider the subgraph G — a. According to Lemma 4, this subgraph has a 3-
anticlique C = {u,v,z}. Because the sets A and C could not be disjoint, as well
as B and C, we may assume that v = ¢ and v = b, 1.e. C = {c,b,z}. From the
assumption a(G) < 4 it follows that z # 2z, ¢ # y, [a, z] € E(G), [b,y} € E(G) and
[¢, 2] € E(G). From the assumption that there are not two disjoint 3-anticliques in
G it follows that [z,y], [z, 2], [z, ¥] € E(G). So we may see that in fact the subgraph
generated by the vertices a, b, ¢, z, y, z coincides with the graph shown at Fig. 23
(the bold lines denote the edges of G and the thin lines — the ones of G). Let u and
v be the last two vertices of G. According to Lemma 2, max{d(z),d(y),d(2)} < 4.
From this inequality we conclude that none of z, y, z can be adjacent to both u
and v, hence one of u and v is not adjacent to at least two of z, y, 2. We assume
without a loss of generality that [u,z], [uv,y] € E(G).

Subcase 1.a. The vertex u is not adjacent to the vertex z. From cl{(G) = 3
it follows that v is not adjacent at least to one of z, y, z. Because of the obvious
symmetry we may assume that [v,z] € E(G). In the subgraph G — {v, z} there are
no 3-cliques and consequently the graph G is not 3-saturated.

- Subcase 1.b. The vertex u is adjacent to the vertex z. Because d(z) < 4
(Lemma 2), we have [z,v] ¢ F(G). In the subgraph G — {z,v} there are no 3-
cliques, which shows that G is not 3-saturated.

Case 2. Each two different 3-anticliques in G have two common vertices. Let
A = {u,v,w} be a 3-anticlique in G. According to Lemma 4, the subgraph G — w
contains a 3-anticlique B. Then B = {u,v, z}, since |AN B| = 2. Similarly, the
subgraph G — u contains 3-anticlique C that has two common vertices with A as
well as with B. Then C = {z,v,w} and {u,v, z,w} is a 4-anticlique and the graph
(G is not 3-saturated according to Lemma 1. »

Lemma 6. Let G be a T-verter graph, cl(G) = 3, a(G) = 2 and A(G) < 4
Then G s isomorphic to one of the graphs F;, 1 =1,...,7 (Fig. 16-22).
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Proof. From o(G) = 2 it follows that x(G) > 4. Because cl(G) = 3, we may
apply Theorem B with r = 3. From A(G) < 4 it follows that the graph G contains
no subgraph isomorphic to Ky 4 Cs. The only possibility remaining is G to be
isomorphic to one of F;. m

Proof of Theorem 4. Theorem C implies that x(G) < 4 and from Proposi-
tion 5 we know that x(G) > 4. Consequently, x(G) = 4. According to Lemma 5,
G is not a vertex-critical 4-chromatic graph, i.e. there is a vertex, say vs € V(G),
such that x(G — vg) = 4. We apply Theorem B with » = 3 to the subgraph G — vg
to conclude that either G — vy is isomorphic to some of F;, ¢ = 1,...,7 (Fig. 16-22)
or there is a v7 € V(G) such that G — {v7,vs} = K; + Cs. Assume that there is no
v € V(G) such that G — v # C7 = Fr. The above considerations show that there
are the following possibilities:

Casel. G—uvg = F; (Fig. 16). We shall use the following automorphisms of
the graph Fi:

w(va) = vs, @(va)=v7, @(v6) =v2, o(v7)=vs, o(vi)=vi, i=13,5,
Y(vi) = v, Y(va) =ve, Y(ve) =vs, Y(vr)=v1, Y(w)=wv, i=245.

Subcase 1.a. The vertex vg is adjacent to at least one of the vertices vy, v3, vg.
Because p(vg) = v2, ¥(vs) = vz, we may do assume without a loss of generality
that vg is adjacent to vg. From cl(G) = 3 it follows that vs is not adjacent to
at least one of v and v3. Because of the symmetry it is enough to consider the
case [vs,vg] € E(G). Certainly, v; € Ad(vs), since otherwise {v,,vs, vg} would be
an anticlique and G — {vy,v3,vs} would not contain 3-cliques. From cl(G) = 3
and vy,vs € Ad(vg) it follows that v, & Ad(vs). If we assume that vy & Ad(vs),
then {vy,v4,vs} is an anticlique and G — {vg, v4,vs} does not contain 3-cliques;
and if we assume that vs € Ad(vs), then G — {vg, v7} does not contain 3-cliques.
We have got a contradiction in both cases, which means that vs,vs € Ad(vs).
Consequently, either Ad(vs) = {v1,v4, vs,v5} and G is isomorphic to L4 (Fig. 5) or
Ad(vs) = {v1,v4,v7,vs5,v6} and G is isomorphic to Lg (Fig. 7).

~ Subcase 1.b. The vertex vg is adjacent to none of vq, v3, ve. If we assume that
v1 € Ad(vg), then {vy,v3,vs} is an anticlique and G — {v;, v, v} does not contain
3-cliques; if v4 ¢ Ad(vs), then {ve,v4,vs} is an anticlique and G — {vz,v4,vs}
does not contain 3-cliques; if we assume that vs ¢ Ad(vs), G — {vs, v7} does not
contain 3-cliques, and if vz € Ad(vs), then the subgraph G — {vg, v7,vs} does not
contain 3-cliques. Thus we have proved that {vy,vs4,vs,v7} C Ad(vs). Because
vy, v3, v & Ad(vs), we compute Ad(vs) = {v1,vs,vs,v7}, and G is isomorphic to
the graph Ls (Fig. 6).

Case 2. G —vg = I, (Fig. 17). We shall use the followmg automorphism of
the graph Fy:

o(v1) =vs, @(v2) =va, @(v3)=vs, ¢(v4)= 2,
p(vs) =v1, ¢(ve) =v7, @(vr) = ve.

The vertex vg is adjacent to at least one of the vertices vg, v7, since otherwise
{vs, v7,v3} would be an anticlique and G — {vg, v7,vs} would contain no 3-clique.

137



Because of the certain symmetry (p(ve) = v7) we may assume that vg € Ad(vs).
From cl(G) = 3 it follows that vs is not adjacent to the edges [vi, v}, [v2,v3],
[vs, vq). Because G — {ves,v7} contains 3-cliques, we have two possibilities:

Subcase 2.a. The vertex vg is adjacent to the edge [vq,vs]. From cl(G) =3 it
follows that v, & Ad(vs). Certainly, v4 € Ad(vs), since otherwise {v2, v4, v3} would
be an anticlique and G — {v3, v4, v} would contain no 3-clique. So, {v1, v4, vs,v6} C
Ad(vs). Because cl(G) = 3, we have Ad(vs) = {v1,vs,vs,v6}. Wesee that o(G) = 2
and then by Theorem A the graph G is isomorphic to the graph L, (Fig. 3).

Subcase 2.b. The vertex vg is adjacent to the edge [v4,vs5]. From cl(G) = 3 it
follows that vs, v7 € Ad(vs). If v; & Ad(vs), then G — {v2, v4} contains no 3-clique.
If v; € Ad(vg), then as in subcase 2.a we conclude that the graph G is isomorphic
to the graph L, (Fig. 3).

Case 3. G —vg = F3 (Fig. 18). If vg,v7 & Ad(vs), then {vs,v7,vs} is an
anticlique and G — {vg, v7, vs} contains no 3-clique, which is a contradiction. Thus
the vertex vg is adjacent to at least one of vg, v7. Because of the symmetry we
may assume that vg € Ad(vs). From cl(G) = 3 it follows that vg is not adjacent
to the edges [v1, v2], [v2, v3], [v3, v4). Because G — {vs, v7} contains 3-cliques, vs is
adjacent to at least one of the edges [vy,vs)], [va, vs].

Subcase 3.a. The vertex vg is adjacent to the edge [vy, vs] and is not adjacent
to the edge [vaq,vs], i.e. v1,v5 € Ad(vs) and vq ¢ Ad(vg). From cl(G) = 3 it
follows that vy, v7 € Ad(vs). So, {vi,vs,ve} C Ad(vs) and vy, vq,v7 ¢ Ad(vs).
That is why either Ad(vs) = {v1,vs,vs} or Ad(vs) = {v1,vs,v6,v3}. If Ad(vs) =
{v,,vs,v6}, then the graph G is isomorphic to the graph Ly (Fig. 10). If Ad(vs) =
{v1,vs,v6,v3}, then a(G —v3) =2 and A(G —v2) = §(G —v2) = 4. From Lemma 6
it follows that G — v is isomorphic to some of the graphs Fj, 7 =1,...,7. Because
§(F;)=3fori=1,...,6, we have that G — vy = C7 = Fy, which contradicts the
assumption at the top of the proof.

Subcase 3.b. The vertex vs is adjacent to the edge [v4, v5] and 1s not adjacent
to the edge [vy, vs], i.e. v4,vs € Ad(vs) and vy ¢ Ad(vs). From cl(G) = 3 it follows
that vs, vz € Ad(vs). If vy € Ad(vs), then G — v is isomorphic to the graph Fi
and we are back to the case 1. If v, € Ad(vs), then G is isomorphic to the graph
Lio (Fig. 11).

Subcase 3.c. The vertex vs is adjacent to the both edges [v),vs] and [v4, vs].
From cl(G) = 3 it follows that vg is not adjacent to any of vz, v3, v7. We take the
conclusion that G is isomorphic to the graph Lj; (Fig. 12).

Cased. G—vg = Fy (Fig. 19). We use the following automorphism of the

graph Fy:
o(v1) =vs, @(v2) =v7, @(v3) =v3, ¢(vs)=vs,
o(vs) =v1, @(ve) =va, ¢(v7)= 2. |

We consider three subcases:

Subcase 4.a. The vertices vq,v6 € Ad(vg). From cl(G) = 3 and vs € Ad(vs)
it follows that the vertex vs is not adjacent to the edges [vy,vs], [v2,va], [v3, va).
From this fact we conclude that vs € Ad(vs) (otherwise vz is not adjacent to
any of the edges of the 5-cycle vy, va, vs, vs, v5, v1 and G — {vg,v7} contains
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no 3-cliques). From cl(G) = 3 and w4 € Ad(vs) it follows that the vertex vg is
not adjacent to the edges [v3, vs], [v3,v7], [v7,vs]. Hence v; € Ad(vs) (otherwise
vs 1s not adjacent to any of the edges of the 5-cycle vy, vg, va, v7, vs, v; and
G —{v2, va} contains no 3-cliques). So, {vy,v4,vs,vs} C Ad(vs). Because cl(G) = 3,
we compute Ad(vg) = {v1, vs, vs, v}, and G is isomorphic to the graph L7 (Fig. 8).

Subcase 4.b. The vertex vz is adjacent to only one of the vertices v4, vg.
Because of the certain symmetry (¢(ve) = v4) we may assume that vs € Ad(vs) and
va & Ad(vs). If vy & Ad(vs), then {v2, v4, vs} is an anticlique and G — {vy, v4, vs} =
Cs contains no 3-cliques — a contradiction. If v € Ad(vg), then from cl(G) = 3 it
follows that vg is not adjacent to v; and v3. Since vg is not adjacent also to vs, we
have that vg is not adjacent to any of the edges of the 5-cycle vy, vg, v3, v4, vs, vy.
This is a contradiction, because G — {vs, v7} does not contain 3-cliques.

Subcase 4.c. The vertices vs,ve & Ad(vg). Certainly, vo,v7 € Ad(vs): if
v2 & Ad(vg), then G — {vz,v4,v3} contains no 3-cliques; if v7 ¢ Ad(vs), then
G — {ve,v7,vs} contains no 3-cliques. If vs is adjacent to the edge [v;,vs}, then
a(G) = 2 and from Theorem A it follows that the graph G is isomorphic to the
graph L, (Fig. 2). Assume now that the vertex vs is not adjacent to the edge
[v1,vs]. Then either v; € Ad(vs) or vs & Ad(vg). From the reasons of symmetry
(p(v1) = vs) we may assume that vy € Ad(vs). The subgraph G — {ve, v7} contains
a 3-clique and thus vz € Ad(vg). If vs ¢ Ad(vs), then Ad(vs) = {v2,v3,v7}, and G
is isomorphic to the graph Lg (Fig. 9). If vs € Ad(vs), then the subgraph G — v
1s isomorphic to Fy, which is the case 1.

Cased. G—vg = Fs (Fig. 20). We consider the following two possibilities:

Subcase 5.a. The vertex vs ¢ Ad(vs). Here we surely have vs,v; € Ad(vs):
if vs & Ad(vs), then {vs,vs,vs} is an anticlique and G — {vs, vs, vs} contains no
3-cliques; if vz € Ad(vs), then {vg,v7,vs} is an anticlique and G — {vs, v7, vs}
contains no 3-cliques. From cl(G) = 3 it follows that v;,v4 & Ad(vs). Because
G — {vs, v7} contains a 3-clique, the vertex vg is adjacent to the edge {vs, v3]. Thus
the subgraph G ~ v7 is 1somorphic to Fy, which is the case 1.

Subcase 5.b. The vertex vg € Ad(vg). From cl(G) = 3 it follows that the vertex
vg is not adjacent to the edges [v1, v2], [v2, v3] and [v3, v4]. Because G — {vg, v}
contains a 3-clique, the vertex vs is adjacent to at least one of the edges [v;, vs] and
[v4, vs]. For the symmetry we may assume that vg is adjacent to the edge [vy, vs].
From cl(G) = 3 we have that v; ¢ Ad(vg) and thus vg is not adjacent to the edges
[v1,v7] and [vs,v7]. But vs is not adjacent also to the edges [v, v3], [vz,vs] and
[v3, v4] and the subgraph G — {vs, v¢} contains no 3-cliques, a contradiction.

Case 6. G—uvg = Fg (Fig. 21). We shall use the following automorphisms of

the graph Fg:
p(va) = v, (vs) =v2, (vs) =v7, e(vr)=vs, @(vi)=v i=1,3,4,
P(vi) =v1, Y(v2) =vs, ¥P(va) = v, Y(vg) = va,
Y(vs) = va, WY(ve) =v7, Y(vr) = vs,
v(vy) = v1, v(vg) = vy, V(Us) = vg, V(vg)=vs,

v(vs) = vs, v(ve)=vs, v(v7)= va.
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- Subcase 6.a. The vertex vg is not adjacent to some of the vertices va, vs, v,
v7. Because of the symmetry (¢(v2) = ve, ¥(v2) = vs, v(v2) = v7) it 1s enough to
consider only the situation when vy ¢ Ad(vs). In this situation certainly vs,v7 €
Ad(vs) (if vs € Ad(vs), then {va,vs, vg} is an anticlique and G—{vy, vs, v3} contains
no 3-clique; if vz € Ad(vs), then {vy,v7,vs} is an anticlique and G — {vy, v7, v3}
contains no 3-clique). From ¢l(G) = 3 and vs,v7 € Ad(vg) it follows that vy, v4 ¢
Ad(vs). The subgraph G — {vg,v7} contains no 3-cliques, a contradiction,

Subcase 6.b. The vertex vs is adjacent to all vertices vq, vs, vg, v7. From
cl(G) = 3 it follows that vs is not adjacent to the vertices vy, vs, va. We get the
conclusion that the subgraph G — {vs, v7} contains no 3-cliques, a contradiction.

Case 7. There are vy,vg € V(G) such that G — {v7,vs} = K; + (5. Let
V(K1) = {ve} and C5 = v,v2,v3,v4,vs5,v;. From Lemma 2 and the fact that
d(ve) > 5 we conclude that A(G) = 5 and v7,vs € Ad(ve). Certainly, [v7,vs] €
E(G) (or, otherwise, {vs,v7,v3} is an anticlique and G — {ve,v7,vs} contains no
3-clique). If we assume that a(G — v7) = @(G — vs) = 2, then from [v7, vs] € E(G)
it follows that a(G) = 2 and according to Theorem A the graph G is isomorphic
to some of Ly, La, La.

Let us now assume that at least one of the numbers (G — v7), a(G — vs)
is ‘bigger than 2. Without a loss of generality, (G — v7) > 2. This means that
the vertex vy together with two non-adjacent vertices of the cycle vy, vo, vs, vg,
vs, v1 form a 3-anticlique. Let, for example, {vs, vs,v7} be a 3-anticlique. Then
vy,v2 € Ad(vz), since G ~ {vg, vs} contains a 3-clique. From cl(G) = 3 it follows
that vs is not adjacent to at least one of the vertices vy, va. Let vg be non-adjacent
to vy.

Assume first that vg is not adjacent also to v. Put V5(G) = {v € V(G) |
d(v) = 5}. Then V5(G) C {va4,ve}. Because G — {uvs,v7} contains a 3-clique, it
follows that the vertex vs is adjacent to at least one of the edges [v3, v4], [va,vs].
For the symmetry we may assume that vs is adjacent to the edge [v4,vs]. Then
a(G — v3) = 2 and from V5(G) C {va,vs} it folows that A(G — v3) = 4. According
to Lemma 6, G — v3 is isomorphic to some of the graphs F; fori=1,...,7. By our
assumption G — vz # F7 and thus we turn to one of the cases 1-6.

Assume now that vg is adjacent to vs.

_ "Subcase 7.a. The vertex vq € Ad(vg). It is clear that a(G —v3) = 2. Note that
A(G — v3) = 4 since V5(G) C {va,v4, v6,va}. According to Lemma 6, G — v3 is
isomorphic to some of the graphs F; forz = 1,...,7. By our assumption G—vs # F7
and thus we turn to one of the cases 1-6.

Subcase 7.b. The vertex vs ¢ Ad(vg). Because we have also vy ¢ Ad(vs), the
vertex vg is adjacent to none of the edges [vi, vs], [v1, v2], [v3, v4], [v4, vs]. But the
subgraph G — {vg, v7} contains a 3-clique and therefore the vertex v is adjacent to
the edge [vg,v3). So, we proved that the vertex vz is adjacent to the edge {v),v]
and, eventually, to the vertex vq, and the vertex vg is adjacent to the edge [v3, v3]
and, eventually, to the vertex vs. Now,if v4 ¢ Ad(v7) and vs ¢ Ad(vs), then the
graph G is isomorphic to the graph L2 (Fig. 13). If v4 € Ad(v7) and vs & Ad(vs)
or v4 € Ad(v7) and vs € Ad(vs), then the graph G is isomorphic to the graph L;3
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(Fig. 14). If v4 € Ad(v7) and vs € Ad(vg), then the graph G is isomorphic to the
graph L4 (Fig. 15). w

Proof of Theorem 5. We fix some notations:

e(G) = |B(G)],

t(G) 1s the number of the 3-cliques of the graph G,

t(G) is the number of the 3-anticliques of the graph G,

n(G) is the number of the pairs of 3-anticliques that have only one common
vertex,

m(G) is the number of the pairs of 3-anticliques that have no common vertex;

i= 1 2 3 4 5 6 7 8 9 10 11 12 13 14
e(Ls) 16 17 18 16 16 17 16 15 16 16 17 15 16 17
t(L;) 8 10 12 8 7 9 9 7 8 8 10 8 8
L) o o0 0 1 1 1 1 2 2 2 1 2 2
n(L) 0 0 0 0 0 0 0 1 0 1 0 0 0

m(Li) 0 0 0 0 0 0 0 0 0 0 0 1 1

From these relations we see that each two of the graphs L;, i = 1,...,14, are
not isomorphic. As a(L;) < 3, for proving that the graphs L;, i = 1,..., 14, are
3-saturated, we need to show that:

(1) t(L; — v) > 1 for an arbitrary v € L;, i = 1,...,14;

(2) t(L; — {u,v}) > 1,7 =1,...,14, for each two non-adjacent vertices u and v
from L;;

(3) t(L; — {u,v,w}) > 1,7 =1,...,14, for an arbitrary 3-anticlique {u, v, w} of L;.

We need the following assertions:

Proposition 7 ([2], see also [7]). Let [V(G)| = 6. Then t(G) +{(G) > 2.

O N 0o

Proposition 8 ([4], see also [7]). Let |V(G)| = 6, {(G) = 2 and the both
3-anticliques of G have only one common vertez. Then t(G) > 1.

For arbitrary ¢ = 1,..., 14 and for arbitrary vertex of L; there is non-adjacent
vertex of L;, therefore (2) implies (1). Because {(L;) < 2, the check of (3) is easy.
We only show the 3-anticliques of the graphs L;. The graphs L,, L, and L3 have not
3-anticliques. The graphs L4, Ls and Lg have the unique 3-anticlique {vy, v4,v7}.
The graph L7 has the unique 3-anticlique {vg,v7,vs}. The graph Lz has two 3-
anticliques — {vy, v4,vs} and {vs,ve, vs}. The graph Lo has two 3-anticliques —
{va,v4,vs} and {va,v7,vs}. The graph Ljo has two 3-anticliques — {vy, v3,vs}
and {v,v7,vs}. The graph L;; has the unique 3-anticlique {vq, v7,v3}. Each of
the graphs Lyy, Li3 and L4 has only these two 3-anticliques — {vs,vs,v7} and
{v1,v4, v8}. i

We now show the inequalities (2). If ¢ = 1,2,3,4,5,6,7,11, then ¢(L;) < 1
and the inequality (2) follows from Proposition 7. Let ¢ = 8,10. If at least one
of the vertices u, v is a vertex of a 3-anticlique of the graph L;, then (2) follows
from Proposition 7. If none of the vertices u, v is a vertex of a 3-anticlique of the
graph L;, then the subgraph L; — {u, v} satisfies the conditions of Proposition 8
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and hence (2) is satisfied. Let i = 9. The graph Lg has only the 3-anticliques
{va,vs,vs} and {vy,v7,v5}. If u,v € V(Lg), [u,v] € E(Lg), and at least one of the
vertices u, v is a vertex of a 3-anticlique, then #(Lg — {u,v}) < 1 and the inequality
t(Lg —{u,v}) > 1 follows from Proposition 7. If none of the vertices u, v is a vertex
of a 3-anticlique, then the pair {u,v} coincedes with one of the following pairs of
non-adjacent vertices of Lo: {v1,v3}, {vs,ve}, {vs, vs}, for which (2) is obvious.

Consider the graphs L3, L3 and Li4. It is enough to prove (2) for L;3, since
Ly, is a subgraph of L3 and Li4. The only vertices of L;; that do not take part
in 3-anticliques are vy and vg. Since v, and ve are adjacent vertices of the graph
L5, if the vertices u and v are not adjacent, it follows that one of them is a vertex
of a 3-anticlique of Li3. Therefore (L2 — {u,v}) < 1. From Proposition 7 we get
Lz — {u,0}) > 1.

We can see that L;—v # C7, Vv € V(L;), comparing the inequalities §( L; —v) <
3and 6(C7)=4. m

4. PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1. Assume that |V(G)| < 8. By adding if necessary
isolated vertices, we may consider only the case |V(G)| = 8. According to Propo-
sition 3, we have x(G) > 5. We apply Theorem B (r = 4) to conclude that either
G=Ki+F;,i=1,...,7,or there exists v € V(G) such that G —v = K3+ Cs. We
are going to prove that in the second case we can also find a vertex that is adjacent
to all other vertices of the graph G. Let G — v = Ky + Cs and V(K3) = {z,y}. If
the vertex v is not adjacent to the edge [z,y], then {z,y,v} U V(C5) is a 3-cliques
free 2-partition of the vertices of G, which is impossible. Hence the vertex v is
adjacent to the edge [z, y] and then z is adjacent to all other vertices of the graph
G. So, if the graph G satisfies the conditions of Theorem 1, then there is a vertex
vo € V(G) which is adjacent to all other vertices of the graph G. Proposition 4
implies that G — vg is a 3-saturated 7-vertex graph. It is clear that cl(G — vo) = 3.
According to Theorem 3, G —vg = C- and since vg is adjacent to all vertices of Cz,
it follows that G = K1 +C7.

We need the next lemmas.

Lemma 7. Let A be an anticliqgue of the graph G, G; = G — A; and V(G,) =
BUC be a 3-cliqgues free 2-partition of vertices of Gy such that: each verter of A,
that is adjacent to some edge of the subgraph (B), is not adjacent to any edge of
the subgraph (C). Then G has a 3-cliques free 2-partition of vertices.

Proof. Let A; = {v € A | v is not adjacent to any edge of (B)}. Put Vi =
AjUB and V3 = (A\ A;)UC. Consider the 2-partition V(G) = ViUV,, ViNV, = @.
It is clear that Vi does not contain 3-cliques of the graph G. If v € Vo3 N A, then v
is adjacent to some edge of the subgraph (B) and therefore is not adjacent to any
edge of the subgraph (C). That is why V2 does not contain 3-cliques, too. =
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Lemma 8. Let G be a graph, |V(G)| = n, cl(G) = 3, and A be an anticlique
of G,|Al=n—-8. PutGi=G-A. IfG— (i 3), then either Gy = Lq4 (Fig. 15)
or there erists v € V(G,) such that G, — v = Cy.

Proof. According to Proposition 4, the subgraph G, is a 3-saturated graph.
Since |V(G1)| = 8 and cl(G) = 3, we can apply Theorem 4 to the subgraph G;. If
we assume that the assertion of Lemma 8 is false, then G, is isomorphic to one of
the graphs L;, 1 = 1,...,13. We shall consider all these cases:

Casel. G is some of the graphs Ly, Ly, L3. We put B = {v3, v4,v7,v3} and
C = {v1,v3,vs,v6}. For any of L, L, Lz we have E((B)) = {[vs, v4], [v7, v3]}.

For any of Li, Ly, L3 it is true that each edge of (C) belongs either to
E((Ad(v3))) or to E({Ad(v4))). Therefore, if we assume that some v € 4 is ad-
jacent to the edge [v3, v4], then cl(G) = 3 implies that v is not adjacent to any
of the edges of (C). Similarly, if some v € A is adjacent to {v7,vs], then v is not
adjacent to any of the edges of (C). We see from Lemma 7 that G has a 3-cliques
free 2-partition of vertices, which 1s a contradiction.

Case 2. G, is some of the graphs L4, Ls, L. We put B = {v2, v3,vs5,vs} and
C = {v),v4,v6,v7}. For any of Ls4, Ls, Le we have E({B)) = {[v2, v3], [vs, vs]} and
E((C)) = {[v1, ve}, [va, ve]}. If some of the vertices of the anticlique A is adjacent
to the edge [vz, vs], then cl(G) = 3 implies that this vertex is not adjacent to the
edges [v1, ve), [va, vs], 1.€. it is not adjacent to any of the edges of (C). If any of
the vertices of the anticlique A is adjacent to the edge [vs, vs], then from ¢}(G) = 3
it follows that this vertex is not adjacent to the vertices v; and v4. Consequently,
it is not adjacent to the edges [v;,vs] and [v4, vg] of the subgraph (C). We see
then from Lemma 7 that G has a 3-cliques free 2-partition of vertices, which is a
contradiction.

Case 3. G, is some of the graphs L7, Lg, Lio Ly1. We put B = {v1,v3,v4}
and C = {vy,vs,vs,7,vs}. Forany of L7, Ls, L1g, L11 we have E((B)) = {[vs, v4]}.
Also, for L7, L1o, L11 we denote Ey = E((C)) = {[va, vé], [vs, vs), [vs, vs], [vs,v7]},
and for Lg — E» = E((C)) = {[vz2, ve], [v2,vs]), [vs, v7], [vs,v7]}.

Let the vertex u € A be adjacent to the edge [v3, v4). For the graphs L7,
Lyg, L11 we have that {vs,v6} C Ad(vs) and {vs, ve,v7,v8} C Ad(vs). Therefore
cl(G) = 3 implies that the vertex u is not adjacent to any of the edges from Ej.
For the graph Lg we have that {vs,ve,v7,v8} C Ad(vs) and {vs,v7} C Ad(vs).
Therefore cl(G) = 3 implies that the vertex u is not adjacent to any of the edges
from Ez.

So, the conditions of Lemma 7 are satisfied and we conclude that in the con-
sidered case the graph G has a 3-cliques free 2-partition of vertices, which is a
contradiction.

Case 4. G, coincides with the graph Ls. We put B = {v1,v3,v4,v3} and
C = {vy,vs,v6,v7}. We have that E({B)) = {[v1,vs], [vs,v4]}. If some of the
vertices of the anticlique A is adjacent to the edge [vq,vs], then cl(G) = 3 and
C C Ad(v;) imply that this vertex is not adjacent to the edges [v2, vg] and [vs, v7],
i.e. it is not adjacent to any of the edges of (C). If the anticlique A contains a
vertex that is adjacent to the edge [v3, v4), then from cl(G) = 3 it follows that this
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vertex is not adjacent to the edges [vs, vg], [vs, v7], 1.€. it 1s not adjacent to the edges
of (C'). We see from Lemma 7 that G has a 3-cliques free 2-partition of vertices,
which is a contradiction.

Case 5. Gp.is some of the graphs Lys, Li3. We put B = {v;,vs,v4} and
C = {v3,vs,vs,v7,v3}. We have that E((B)) = {[v1,v2]} and E({C)) = {[v7, vs],
[vs, vs), [v3, vs], [vs, ve]}. Let some of the vertices of the anticlique A be adjacent to
the edge [v1,vs]. From cl(G) = 3 and {vs, ve, v7,v8} C Ad(vy) it follows that this
vertex is not adjacent to the edges {v7, vs}, [vs, vs] and [vs, ve]; from cl(G) = 3 and
{vs,vs} C Ad(vy) it follows that this vertex is not adjacent to the edge [vs, ve].

The above reasoning shows that the conditions of Lemma 7 are satisfied and
we conclude that the graph G has a 3-cliques free 2-partition of vertices, which is
a contradiction. m :

Lemma 9. Let G be an 1l-vertez graph, c(G) = 3, and G have three 3-
anticliques, each two of which have an emply intersection. Then the graph G has

a 3-cliques free 2-partition of vertices.

Proof. Let A, B and C be the anticliques given by the condition. As-
sume the contrary, ie. G — (3,3). We put G; = G — A. Because () has
two anticliques B and C with empty intersection and a(C7) = 2, we have that
Gy —v # Cq, Yv € V(G;). From Lemma 7 it follows that G, = L4 (Fig. 15).
Let A = {vg,vi0,v11}. At least one of the vertices vg, vio, v1; is adjacent to the
edge [vg,v6] (if not, {v2, ve,ve,v10,v11} U {v1,v7,v8,v3,v4,vs5} 1s a 3-cliques free
2-partition of the vertices of G). Thus we assume that vg is adjacent to [vg, ve].
At least one of the vertices vg, v19, v11 is adjacent to the edge [v;,v2] (if not,
{v1,v9, v, vo, V10, v11} U {v3, vs, v6, v7, v3} is a 3-cliques free 2-partition of the ver-
tices of G). The vertex vy is not adjacent to the edge [v1,v2], since otherwise
{v1, vq, 6,79} would be a 4-clique. Hence we may assume that vy is adjacent to
the edge [v1,v2]. Surely, one of the vertices vg, v19, v11 is adjacent to the edge [vy, ve]
(if not, {vy,ve, vs, ve, v10,v11} U {va, v3, v4,v5,v7} is a 3-cliques free 2-partition of
the vertices of G). cl(G) = 3 implies that both vertices vg and vy are not adjacent
to the edge [v1, vs], thus vy is adjacent to the edge [vy, vg].

Consider the 2-partition V(G) = Vi U Va, where V) = {vg,v7,vs,v10} and
Vo = {v1, va, v3, v, Us, Vo, v11}. Since vyg is adjacent to the vertex vy and cl(G) = 3,
the vertex wyg is not adjacent to the edge [v7, vs]. That is why Vi contains no 3-
cliques. From cl(G) = 3 and the fact that vy is adjacent to the edge [vg, vg] it
follows that vg is not adjacent neither to the vertices vy, vz nor to the edge [v4, vs).
Thus ve is not adjacent to any of the edges of the 5-cycle vy, vo, vs, v4, vs, v;.
From cl(G) = 3 and the fact that vy, is adjacent to vy, ve] it follows that vy is
not adjacent neither to the vertices vy and vs nor to the edge [v3, v4]. This shows
that v is adjacent to none of the edges of the 5-cycle vy, vy, v3, va, vs, v1. Since
vg and vy, are not adjacent, Vo does not contain 3-cliques. We have proved that
V(G) = ViUV, is a 3-cliques free 2-partition of the vertices of G. This contradiction
completes the proof. m
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Proof of Theorem 2. Assume the contrary, ie. G — (3,3). According
to Proposition 2, a(G) > 3. Let A = {vo,v10,v11} be a 3-anticlique of G. Put
Gy = G — A; V(Gy) = {v1,...,vs}. Because L4 (Fig. 15) has two disjoint 3-
anticliques, Lemma 9 implies that G; # L;4. From Lemma 8 it follows that there
exists v € V(G1) such that Gy, — v = C7. Let, for example, Gy — vs = Cr = F
(Fig. 22). :

We shall prove first that the vertex vs together with some two vertices of C7
form a 3-anticlique of the graph G. From cl(G) = 3 it follows that the vertex v
is not adjacent to some of the vertices of C7. Let, for example, vz be not adjacent
to vy (Fig. 22). If the vertex vg is not adjacent to vy or w7, then {vy,vs,vs} or,
respectively, {vy,v7,vs} is a 3-anticlique of G. If vs is adjacent to both vy and w7,
then ¢I(G) = 3 implies that {v4, vs,vs} 1s a 3-anticlique of G.

So, we may assume that {v;, vy, v} is a 3-anticlique of the graph G. From
cl(G) = 3 it follows that vs is not adjacent to one of the vertices of the 3-clique
{vs,vs,v7}. We shall consider the following two cases.

Case 1. The vertex vg is not adjacent to vz or vy, for example vz is not
adjacent to vz. One of the vertices vg, vi0, v11 is adjacent to the edge [vy,v3] (if
not, {vi, va, vs, vs, ve, V10, v11 } U {v4, s, vs, v7} is a 3-cliques free 2-partition). Let,
for example, vg be adjacent to the edge [v1,v3]. From cl(G) = 3 it follows that
{vs,vg,vg} is a 3-anticlique. One of the vertices vg, vjg, v1; is adjacent to the
edge [v1,vg] (if not, {v1,ve, v7,ve, v10,v11} U {v2, v3,v4,v5,vs} is a 3-cliques free
2-partition). From cl(G) = 3 it follows that vg is not adjacent to the edge [v;, vg].
Therefore we may assume that vyq is adjacent to the edge [vy, vg]. From cl(G) = 3 it
follows that {vs, v4,v10} 1s a 3-anticlique. We obtain that G contains the pairwise
disjoint 3-anticliques {vi,vs,vs}, {vs,vs,ve} and {v3,v4,v10}, which contradicts
Lemma 9.

- Case?2. The vertex vg is not adjacent to vs. Surely, one of the vertices vg, v,
vy, is adjacent to the edge [vy, ve] (if not, {v1, vs, v7, v9, V10, v11} U {v2, v, v4, v5, v8}
is a 3-cliques free 2-partition). Let, for example, vg be adjacent to [v,vg]. From
cl(G) = 3 it follows that {vs, v4,vg} is a 3-anticlique. One of the vertices vg, v10, v11
is adjacent to the edge [vs, v4] (if not, {vs, v3, va, ve, vi0, v11 }U{v1, vs, v6, v7, v8} 1s &
3-cliques free 2-partition). Because vg is adjacent to vg and cl(G) = 3, we know that
vg is not adjacent to the edge [v2, v4]. Consequently, we may assume that the vertex
v10 is adjacent to the edge [vy, v4]. From cl(G) = 3 it follows that {ve,v7,v10} is a
3-anticlique. We have obtained that G contains the pairwise disjoint 3-anticliques
{v1,v2,vs}, {vs,v4,v9} and {ve, v7,v10}, which contradicts Lemma 9.

The proof of Theorem 2 is completed. m

5. AN EXAMPLE

We consider the graph L4 (Fig. 15) and the following subsets of V/(L14): M; "=
{v2,va,ve, v7}, M2 = {v2,v5,v6,v8}, M3 = {v1,v3,v5,v8}, Mg = {v3,vs, 05,08},
Ms = {va, v3,v4,v7}, Me = {v1,v4,v6, v7}, M7 = {v4,v5,v7,vs}. We denote by T'y
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the extension of the graph L;4 that is obtained by adding to V(L14) new 7 vertices
uy, ..., ur, none of which are adjacent and such that Ad(w;) = M;,1=1,...,7.

Proposition 9. I'y; — (3,3) and cl(T'3) = 3.

Proof. The equality cl(T'2) = 3 is true, because cl(Ly4) = 3, {u;,...,uz} is an
anticlique, and Ad(u;) does not contain 3-cliques fori =1,...,7.

Let V(') = V3 U V5 be an arbitrary 2-partition of the vertices of I';5.

Case 1. vy and vg belong to only one of the sets Vi and V3, for example
ve,ve € V7. From ve,vg € Vi it follows that at least one of the vertices vy, vs
belongs to V. Let, for example, vz € V5. From ve,vs € Vj it follows also that
at least one of the vertices v4, vs belongs to V5. Therefore we have only two
possibilities:

Subcase 1.a. vq € Vo. If uy € Vi, then {uy, vs, v6} is a 3-clique of T'y, contained
in Vy. If u; € Vs, then {u;,vq,v7} is a 3-clique of I'z, contained in V5.

Subcase 1.b. vs € Vi, From vg, vg € Vj it follows also that v; € V5. Let vg € V.
If ug € Vi, then {ua,vs,vs} is a 3-clique of 'y, contained in V;. If uzg € Va, then
{us, v1,vs} is a 3-clique of I', contained in V;. Assume that vz € V5. If ug € Vi,
then {us, v, vg} is a 3-clique of T'y, contained in Vi. If uy € Vo, then {us, vs,vs} is
a 3-clique of 'y, contained in V5.

Case 2. One of the vertices vy, vg belongs to V; and the other one belongs
to V,. Let, for example, vy € V}, vg € V5.

Subcase 2.a. One of the vertices v7, vg belongs to V), for example vz € V;. If
vg € V; or v; € Vi, then V; will contain respectively the 3-clique {vy, v7,vs} or the
3-clique {vy, vy, v7}. Therefore we assume that vy, vs € V5.

Let v4 € V;. If ug € Vi, then {ug,vs,v7} is a 3-clique of T'y, contained in V.
If ug € Vo, then {ug, vy, v} Is a 3-clique of I'y, contained in V5.

Let vg € V. If uy € Vq, then {uy, vy, v7} is a 3-clique of I'y, contained in Vj.
If uy € Vs, then {uy,v4,v6} is a 3-clique of I'y, contained in V5.

Subcase 2.b. wvy,vgs € Vo. Assume first that at least one of the vertices vy,
vs belongs to Vs and let, for example, v4 € Vo. If v3 € Va, then {v3,vs,v6} is a
3-clique of I'y, contained in V3. Thus we assume that vz € V;. Now, if us € Vi,
then {us, vy, v3} is a 3-clique of 'y, contained in V. If us € V3, then {us,vs,v7} is
a 3-clique of I's, contained in V5.

Finally, we consider the case when v4,v5 € V;. If uz € Vi, then {u7,v4,vs} is
a 3-clique of I'y, contained in V;. If uz € V,, then {uz,v7,vs} is a 3-clique of Ty,
contained in V5. m
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For a random dispersion of identical spheres, the known two-point correlation functions
like “particle-center,” “center-surface,” “particle-surface,” etc., are studied. Geomet-
rically, they give the probability density that two points, thrown at random, hit in
various combinations a sphere's center, a sphere, or a sphere’s surface. The basic result
of the paper is a set of simple and integral representations of one and the same type for
these correlations by means of the radial distribution function for the set of sphere’s
~ centers. The derivations are based on the geometrical reasoning, recently employed by
Markov and Willis when studying the “particle-particle” correlation. An application,
concerning the effective absorption strength of a random array of spherical sinks, is
finally given.
Keywords: random media, dispersions of spheres, correlation variational bounds, ab-
sorption problem
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1. INTRODUCTION

In many cases of great practical interest the macroscopic behaviour of a two-
phase medium is strongly influenced by the amount and the internal distribution of
the interfacial surface. A classical problem of such a kind is supplied first of all by
the theory of diffusion-controlled reactions, as initiated by Smoluchowski in 1916.
Formally, this is equivalent to the problem, concerning a species (defects) diffusing
in the presence of an array of ideally absorbing traps (sinks). Another classical
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problem is the quest for the permeability of porous solids. The reason is that in
both problems the observed macroscopic response is ruled by the events that take
place at the boundary between the phases: in the first case chemical reactants’
encounter (or absorption of defects) happens there and in the second case the
viscous fluid flows around the particle surfaces, where no-slip boundary condition
is to be satisfied. Hence it is natural that in studying both these phenomena the
interfacial statistics should essentially enter the appropriate theories. Perhaps the
first example was provided by Doi [3] who derived bounds on both the effective
sink strength and the permeability. These bounds were put on a firmer base and
generalized by Torquato and co-authors [9, 16, 10, 1]. The bounds include integrals
of the interfacial two-point statistical correlations, which later on were thoroughly
studied within a more general framework by Torquato [15, 14]. An alternative
approach in the absorption context has been proposed by Talbot and Willis [12]
who, using a Hashin-Shtrikman’s type variational principle, derived a bound on the
effective sink strength for a dispersion of nonoverlapping spheres which eventually
utilizes only an integral incorporating the total correlation function. At a first
glance this bound is entirely different from Doi’s one since no interfacial statistics
is even mentioned in Talbot and Willis’ reasoning. As we shall see below, the Talbot.
and Willis bound turns out, however, to be identical to that of Doi.

The evaluation of the interfacial statistical characteristics for realistic two-
phase random models meets with considerable difficulties. Only for the simplest
model of fully penetrable spheres (the Boolean model) the needed quantities can be
comparatively easily evaluated, as done by Doi himself. For dispersions of nonover-
lapping spheres — a model that very often is appropriate for particulate type media
— such an evaluation is much more involving, and the reason can be well seen from
the already mentioned paper of Torquato [15]. In the same paper the author notes
that the needed interfacial correlations have a convolution structure which allows,
in principle, to reduce them to single integrals containing the total correlation
functions for the dispersions, provided the Fourier transform is employed in the
statistically isotropic case. No further details are given in [14], however, apart from
appropriate formulae valid for a dilute dispersion, and numerical results for the
semi-empirical Verlet-Weis distribution [18], see also [13]. (Note that the dilute
results have been derived by Berryman [2] by means of a different approach.)

In the recent paper [7], a simple geometrical reasoning was proposed, which
allowed the authors to represent the two-point correlation function of the region,
occupied by the spheres (that is, the “particle-particle” correlation), as a simple
integral that contains the radial distribution function of the spheres. The aim of
the present work is to demonstrate that the same geometrical reasoning can be
straightforwardly applied when considering the two-point interfacial correlations, if
combined with a formula, noted by Doi [3]. In this way the said correlations will be
reduced to even simpler integrals of the same type as that for the “particle-particle”
one. To accomplish this, the definitions of the three basic interfacial characteristics
are first introduced in Section 2, preceded by that of the simple “particle-center”
correlation. The investigation of the latter in Section 3 serves as a model for a
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similar treatment of the interfacial characteristics, performed in Sections 4-6. (The
study of the “particle-center” correlation, detailed here, is outlined in the author’s
paper [6].) The formulae for all two-point correlations have a fully similar structure,
which is summarized in Table 1 (Section 9). In Section 7 the first two moments of
the various two-point correlations are directly evaluated by means of an alternative
and simpler method which is applicable in the 2-D case as well. As an elementary
application of the obtained formulae it is finally shown (Section 8) that the Doi’s

bound on the effective sink strength of the dispersion coincides with that of Talbot
and Willis.

2. DEFINITIONS OF THE BASIC TWO-POINT STATISTICAL
CHARACTERISTICS

Consider a dispersion of equal and nonoverlapping spheres of radius a in R3,
whose centers form the random set of points { za}. The assumption of statistical
isotropy and homogeneity is adopted henceforth. Introduce after Stratonovich [11]
the so-called random density field for the dispersion

¥(z) =Y b(z ~ za), | (2.1)

6(z) is the Dirac delta-function. All multipoint moments of the field ¥(z) can be
easily expressed by means of the multipoint probability densities of the random set
{24}, but in what follows only the first two simplest formulae of this kind will be
needed, namely,

(¥(2)) =n, F<(z) = (¥(2)¥(0)) = né(z) + n’g(z), (2.2)

where n i1s the number density of the spheres, and g(z) = ¢(r), r = |z], is their
radial distribution function, see [11]. The brackets (-) signify ensemble averaging.
Note that the assumption of nonoverlapping implies that g(z) = 0 if || < 2a. The
notation F ¢(z) in (2.2) is justified by the interpretation of the quantity ((z)%(0))
— this 1s the “center-center” correlation, in the sense that it obviously gives the
probability densities of finding centers of particles both at the origin and at the
point z.

Let
€ i ke X

h(z) = { (2.3)

0, otherwise,

be the characteristic function of the region K, occupied by the spheres. Then

1(2) = (ha +9)(@) = [hale - 0)du, Li(2) = [rae-vweidy, @4

where ¥/(y) = ¥(y) — n is the fluctuating part of the field ¥(y) and hy(y) is
the characteristic function of a single sphere of radius a, located at the origin. All
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integrals hereafter are over the whole IR® and, as usual, f#*g denotes the convolution
of the functions f and g. The simple integral representation (2.4), combined with
the formulae (2.2), serves as a basis for evaluating the needed interfacial statistical
characteristics in what follows. Its simplest consequence reads

m = (Li(z)) =nVa, Vo= %7"03, (2.5)

having taken averages of both sides of (2.4); n, is the volume fraction of the spheres.
In turn, the two-point correlation most often used is

FPP(z) = (1,(0)]i(=)) . _ (2.6)

The interpretation of (I;(0)I;(z)) is obvious — this is the probability that two
points, separated by the vector z, when thrown into the medium both fall within
a sphere. That is why (I;(0)I1(z)) can be called “particle-particle” correlation,

which explains its notation F'PP(z) in (2.6).
Before introducing the interfacial characteristics, it is noted that another corre-
lation, closely related to F'PP(z), will be useful as well. This is the “particle-center”

one

FPe(z) = (L(2)¥(0)) , (2.7)

which obviously gives the probability that for a pair of points, separated by the
vector z, one hits a sphere’s center while the other falls into a sphere.
It is natural to represent the above introduced correlations as

Fe(a) = 2+ F (), F*(z)=nm+F*(z), F™()=n+F(), (2.8)
‘where, as it follows from (2.2), (2.4), (2.6) and (2.7) ,

F(x) = (¢/(0)¢'(2)) = né(z) + n’vs(z),

F™(2) = (I(2)¥(0) = (ha * F)(z) = nha(z) + n” j ha(z = y)va(y) dy, (2.9)

FP(z) = (Ii(2)}(0)) = (ha * F*)(2) = (ha % ha x F ) (2).
Here

va(y) = g(y) — 1 (2.10)

is the so-called binary (or total) correlatlon funct,xon for the dispersion. Due to the
no long-range assumption, all vo(z), F~ (), F' (z)and F"" (z) vanish as z — oo,
since the constants in the right-hand sides of (2.8) are just their long-range values.

Let us recall now the definitions of the interfacial correlations. The first one,

F*(z) = (|VLi(z)]{¥(0)), (2.11)

can be called “surface-center.” Since |VI,(z)| and ¥(z) are delta-functions, the
former concentrated over the surface 0K, of the spheres and the latter over the

154



set {z4}, the interpretation of F*°(z) is obvious — this is the probability that if
two points, separated by the vector z, are thrown into the medium, one of them
falls on the surface of a sphere, while the other hits a center z, of a sphere. This
interpretation explains the terminology used here (note that it differs from that
used by Torquato [15], where (2.11) is called “surface-particle” correlation).

The second interfacial correlation is

F*®(z) = (|V1Li(2)| [,(0)) (2.12)

— obviously the “surface-particle” one. The reason is that it gives the probability
that one of the two points, separated by the vector z, when thrown into the medium,
falls on the surface of a sphere, and the other falls within a sphere. (Note again the
difference in terminology used here: Torquato [15} calls (2.11) “surface-particle”
correlation, while (2.12) is very closely connected to the “surface-void” correlation
of Doi {3].)
Finally, let _
F*(z) = (VL) VL)) (2.13)

be the “surface-surface” correlation, which gives the probability that the two points,
separated by the vector z, thrown into the medium, both fall on the spheres’
surfaces. (The terminology agrees here with that of Doi {3] and Torquato [15].)

Let now hp(z) be the characteristic function of the sphere of variable radius b,
located at the origin. Then

%)

g (z) | =6(e] - a). (2.14)

b=a

As a matter of fact, the formula (2.14) was noted by Doi [3] who employed it
for evaluating the interfacial correlations for the Boolean model of fully penetrable
spheres. Coupled with Stratonovich density field (2.1), it gives

VIE) = [ 2 hE-0v@dy| (2.15)
' b=a

since |VI;(z)| is a sum of delta functions, concentrated on the surfaces of the
spheres. The formula (2.15) will play a central role in our study. Its first and
simplest consequence is the formula for the specific surface, S, of the dispersion,
i.e. the amount of the interface in a unit volume. Due to the nonoverlapping
assumption, obviously S = 4ma®n. Formally, the latter formula immediately follows
after averaging (2.15):

d 2
=n (2b°) = 4ra’n. (2.16)

b=a

§ = (Vh()) = ng; [ha(z-v)dy

b=a
Similarly to (2.8), represent the interfacial correlations in the form
F*(z) = nS+F > (z), F®@)=mS+F (z), F*@)=S"+F (z), (2.17)
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where, as it follows from (2.11), (2.4), (2.12) and (2.13) ,

Fo(2) = (IVL(2)l¥'(0)) n- hy(z

)
b=a

+n —- /hb(m — y)va(y) dy

F¥(2) = (VL@IL0) = (haxF)(z) = / ha(z = y)F " (y) dy,

F*@) = (VhEI(VAO) - $) = (4 b+ F*)(a) (218)

b=a

a - 8C -
= [ gphala - F“wydy

b=a

Similarly to (2.8), all F~ (z), F " (z), F () vanish at infinity, since the constants
in the right-hand sides of (2.17) are the appropriate long-range values.

It is noted after Torquato [15] that the “surface-center” correlation (2.11) is
the most important in the sense of (2.18), i.e. the other two — F*P(z) and F'*(z)
— can be easily represented by means of F'*¢(z).

It should be pointed out also that all the correlation functions, mentioned in
this section, are particular case of the much more general statistical characteristics
for two-phase random media, as introduced by Torquato [15]. Our aim here will be
however much more specific, namely, derivation of simple integral representations
of these correlations by means of the total correlation function for the set {zo} of
sphere’s centers of the type of Eq. (3.13) below.

3. THE “PARTICLE-CENTER” CORRELATION

Let us split the radial distribution function, g(z), as

g9(z) = g"*(z) + 9(z), (3.1)
where |
"(z) = 1 — haa(z) = 0, ifl|z| < 2a, (3.2)
7@ =1=2a(@) = el %, :

corresponds to the simplest “well-stirred” distribution of spheres; g(z) is then the
“correction” to the latter. In turn, the total correlation v2(x), defined in (2.10), is
represented as

vo(2) = —haa(z) + (). (3.3)

Moreover, one has
va(z) =va(z) = g(z), if |z|> 2a,
(3.4)
va(z) =g(z), if |z| < 2a,
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as a consequence of the nonoverlapping assumption. The formula (3.4); will allow
us to replace below g(z) by the binary correlation vo(z) when |z} =r > 2.

Let us recall now the well-known formula for the common volume of two spheres
of radii b and &, the first centered at the origin, the other at the point z, || = »:

73, f0<p<pu-—r,
(he * he)(z /hb(x— he(y)dy =Va ¢ Y(p;p,7), fp—-7<p<pu+r,
0, fp>pu+r,
| (3.5)
where. 1
Y(p;p,7) = TE;S(" +7=p)2 (P +2p+1)p—3(u-1)%), (3.6)

with the dimensionless variables
p=rla, p=E/a, T=1b/a. (3.7)

It is assumed in (3.5) that £ > b, i.e. p > 7. The elementary formulae (3.5) and
(3.6) will play a central role in the sequel.
From (2.8), (3.1) and (3.2) it now follows

F™(z) = Fyy(2) + FP(a), - (38)
where
FE: (@) = nha(z) = n*(ha * h2a)(2)
nn (3'9)_

= nmha(z) - 7 (3 - )% (p* + 6p — 3)[ haa(x) — ha(z)],

Fre(e) = n [ ho(z - Tw) . o (310)
This formula implies that |
FP(z)=0, if |z|<a, (3.11)

since §(z) = 0 at |z] < 2a, see (3.4),.
To represent FP°(z) as a simple one-tuple integral, containing the functlon
g(z), write down the latter as

o0

9(y) = g 9(4) —hA(y) d4, (3.12)

which follows from (2.14). Then, in virtue of (3.5) (at 7 = 1) and (3.4)2,

: f'PC(x) — n2[2 du 'j(p)-é(?;‘—(ha * he)(r) _ 13

3nm

p+1 5
= / [1— (1 — p)?] pva(p) dp.
’ P Jmax{2,p-1}

157



The obtained simple representation of F'P°(z) by means of the total correlation
allows one to interconnect the moments

oo
9};°=/0 pFFP(r)dp, k=0,1,..., (3.14)

of FP¢(r) on the semiaxis (0, c0) with the appropriate moments of the total corre-
lation. Indeed, due to (3.8) and (3.9),

6P = P 4 gP°. (3.15)

k,ws

The first term in (3.15) corresponds to the well-stirred distribution when F*<(r) =
FP(z) is given in (3.9); the appropriate integration is elementary. In turn, §BS
corresponds to the deviation g(r) of the radial distribution function from the well-
stirred statistics. Using (3.13) and changing the order of integration give

(s 0]
L =nm /2 HE(p)pve(p)dp,
(3.16)

+1
HE () =§/: P 1= (n—p)?] dp.

The functions HE(y) in (3.16) are polynomials whose explicit evaluation is straight-
forward. In particular,

HP(wy=1, Hy (p)=pn, et (3.17)

Hence, if

& .
mg :/ pfva(p)dp, k=0,1,..., (3.18)
2

are the moments on (2, 00) of the binary correlation v5(p) or, which is the same, of
the “correction” g(p) to the radial distribution function, then the formulae (3.16)
and (3.17), together with (3.9), imply

o — 197)1 1 - 87)1 )
6Pc = T GPC = ( ) te. A
. nny ( Tom, + ml) y 05 nm 3 4 mo ete (3.19)

4. THE “SURFACE-CENTER” CORRELATION

Inserting (3.3) into (2.18); gives

F*(2) = Foula) + () (4.1
where 5
Fo(z) = né(r—a)—n’— - a ; :
Fas(a) =nir-a)=n'gy [ -phautay| . 42)
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F*(z) = n?= /hb z—y)g(y) dy ; (4.3)

b=a
Hence, the first term, F3<(2), in (4.1) corresponds to the well-stirred distribution,
while the second one, F 5¢(z), is due to the deviation, g(z), of the radial distribution
function from the latter.
Combining (2.18); and (4.2), and using (4.3) (at £ = 2a) give eventually the
“surface-center” correlation (2.11) in the well-stirred case:

0, f0<p<1,
Fr)=ns(lel -y -ns{ CEIE=D i cn @y
0, if p > 3.

To evaluate the deviation F*¢(z) from (4.3), we shall use once again the rep- -
resentation (3.12):

o 82
sC o D25

F*(z)=mn 4 d£ 9(5){61585 hy(z — y)he (y) dy}bza- (4.5)

Applying (3.5) yields the needed formula

i 0, H)<ps]l,

F*(z pti : 4.6
(=) = 2p / pvo(p)dp, ifp>1. (#0)

max{2,p—-1}

Similarly to Section 3, consider the evaluation of the moments of F'*¢(z), i.e.
the quantities -
o< _ / AT (r)dp, k=0,1,... (4.7)
0 ,
Due to (4.1), again
05" + 0“ (4.8)
— the first term in (4.8) corresponds to the well-stirred distribution and its eval-
uation is elementary; the second is due to the “deviation” g(r). To evaluate the
latter, insert (4.6) into (4.7) and change again the order of integration:

o =ns [ HEGOT@R
W (s + 1) = (u - 1)
HSe - _/ pk—l dp — )
k (’1) 9 Sy 2%
Hence H*(p) = 1, HE(u) = p, etc. Together with (4.8), (4.4) and (4.9), this

implies

9’1“: = nS (1—:—.—}&/—2 + ml) R ;c = nS (1 = 8171 +m2) ) etc. (410) ‘

kws

(4.9)

3m
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5. THE “SURFACE-PARTICLE” CORRELATION .

First, let us evaluate F'*P(0):

F5P(0) = (|VL(0)] I(0)) = 3% /j (y1)he(y2) (¥(v1)¥(y2)) dyrdy:

=% /ha(y)hb(y) dy
(5.1)

having used (2.2) and the fact that g(y; — y2) = 0 if |y1 — y2| < 2a, due to the
nonoverlapping assumption. But

5% /h (Y)he(y)d aab {

which equals 0 if b > a, and 47b? if b < a. Hence, a question appears, which of the
two values, 0 or S = 4ma?n, should be attributed to F*P(0) when putting 6 = a in
(5.1) and (5.2). The correct answer is one-half of these two values, i.e.

b=a

b
b=a

ma®, ifb> a,
(5.2)

Wb Lol

63, ifb<a,

F*P(0) = %s. (5.3)

This will be confirmed by the formal calculations below. Roughly speaking, 1/2 in
(5.3) means that the boundary 0K is “equally shared” between the constituents.
We imagine, in other words, that if a point lies in K, “half” of it belongs to K
and the other “half” to X,.

To evaluate F " (z), employ its definition from (2.18) and the formula (2.2):

FEEy= ‘(% //ha(yl)hb(x —y2) (&' (y1)¥' (y2)) dyrdya = Ain+ Ayn?,
b=a
(5.4)
where "
Ar= o [ ha(y)he(z - y)dy ; (5.5)
b=a
t= g [ [hatwdnte = gy vaton - v dwd | (55)

The coefficient A; can be immediately found differentiating (3.5) at £ = b and
putting b = a in the result:

0

(he » b)(r) 2{2—p, i< ra2a, (5.7)
- * r = 7ma ;
TR L 0, if r > 2a,
and hence
1 1—p/2, if0<r<2aq,
Aln = —-S . (58)
2 0, if r > 2a.
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The formula (5.8) means that

s(1- ;—a) haa(2) + o(n),

w!»—-t

F®@)=F () =

which agrees with the result of Berryman [2], see also [14], found by means of
different arguments.

To evaluate the coefﬁc1ent Aj from (5.6), we shall literally follow the reasoning
of {7]. Consider to this end the triple convolution

(hes Gmem) 0| =@ OB, 69)
b=a
where, according to (5.7),
eP(t) = (h * 2 hb) (r) = ra’(2-1), t=r/a. (5.10)

Similarly to [7], we treat ©°P(t) as pertaining to an inhomogeneous and radially-
symmetric ball whose density decreases along the radius according to (5.10). This
inhomogeneous ball is then approximated, for a given division 0 = § < & <

.. EN-1 < En = 2a of the interval (0,2a), by a family of concentric spherical
layers & < r < £i41, each one homogeneous and of density ¢*P(;). In the limit
A€ = & — E—1 — 0 one finds

2a
(@) *ha) ) = [ (€/0) g (he s ha)r)
= e/ ha)) [ - 3 /0 e+ ha) ()2 P €/ G
2 = .
= 1ra2/0 (hf * hA)(r) dp = 4na®V,Usp(p; 7),

since p°P(2) = 0 and h¢ * hy I = 0. In accordance with the notations (3.7),
€=0
p = €&/a and 7 = A/a > 2. The evaluation of the function Usp(p,'r) is obvious,

using (3.5) at b = A in (5.11), and the final result reads
(UP(p;7), if0<p<T-2,
(”)(p; r), ifr-=2<p<r,
US ™ (p;7), ifr<p<THL,
\ O, if p>T -+ 2,

Usp(p;7) = (5.12)
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where

1 2
Ul p;r) = - /#3du=1,
4 Jo
11 i 1 [?
Ui en) =3 [ wdur g [ weradn (5.13)
T—p

2
vl (p; 1) = %/ V(p; 7, 1) dps,
. p—T

with ¥(p; 7, p) defined in (3.6). The integrals in (5.13) can be analytically evaluated,
but the only formulae that will be important for the sequel are

(h * (—%—hb * h2a) (r) = 41ra2VaUsp(p; 2),

b=a
'1—%p2+ Tg-d-p3+-i%6p4, if0< p<2, (5.14)
Usp(p; 2) = < (4~p)3(02+7p—4), 9.2 Sid,
160p
\ 0, if p > 4.
Also, it turns out that
0 3T

3 SP(p7T) _Gsp( - T)!

o), it-2<1<0,
GP(t) = { f°(~1), if0<t<2, (5.15)
0, if 1| > 2,
f) = 241 (1-1).

As a first application of the foregoing formulae, consider the well-stirred ap-
proximation, see (3.2). The coefficient 4, from (5.6) then becomes

o,
. A2n2 = —n2 (ha * % hb * h2a> (T)

b=a

and application of (5.4), (5.8) and (5.14) gives eventually
F(r) =mS + Fui(),

(1 p 1, 9 1 :
A i P <p<
2 4 " [l 1" T 160" +160”] Hhgrsd (5.16)
Fus(r) =54 (4= p)*(4 ~Tp - p?) -
1607 M, if 2 < p <4,
[ 0, if p > 4.
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In the general case the radial correlation function g(r) is decomposed again as
the sum (3.1), so that

F®(r) = FE2(r) + F*P(r), (5.17)

with the well-stirred contribution, given in (5.16), and

FoP(r) = n?= //h (y1)ho(z — ¥2) 9(91 — y2) dyrdy:

(5.18)

b=a

The evaluation of this integral follows the reasoning of Section 3. Namely, inserting
(3.12) in the right-hand side of (5.18) yields

- Ohy
FSP(r):n/ A (ha * h ) r)dA
- g( )aA 61) A ( ) b=a
- 2,.2 e 0 :
=4ra“n‘V, g(T)g—Usp(P,T) dr (5.19)
3 T

"lS p+2

P Jmax{p-2,2)

G*®(p — ) Tva(7) dr,

as it follows from (2.16) and (5.15).

The formulae (5.16), (5.17), (5.15) and (5.19) provide the needed represen-
tation of the “surface-particle” correlation F'°P(r) for an arbitrary dispersion of
nonoverlapping spheres. They imply, in particular, that indeed F*?(0) = S/2, as
it was argued in the beginning of this Section, see (5.3). The correction to the
total correlation function, g(r) = v2(r), see (3.4), for the set of sphere centers fea-
tures in the expression for F*P(r) through a simple one-tuple integral in (5.19). It
is noted that the obtained formula for F*P(r) is fully similar to that of Markov
and Willis {7] for the “particle-particle” correlation FPP(r) defined in (2.6). (In
the latter case, let us recall, the counterpart of the function f*°(¢) from (5.15) is
f(t) = fPP(t) = (2 +t)3(4 — 6t +t2), see [7, eq. (33b)].) ' .

Similarly to the previous Sections, the formula (5.19) allows us to evaluate the
moments of F " (z) on the semiaxis (0, 00) to be '

o7 = [ T (ee = 07, + 0 (5.20)

k = 0,1,.... The well-stirred contribution 6" “ws can be found by means of an ele-
mentary integration, using (5.16). For the “corrections” 63" we have

o0
0F =mS /2 HP (n)pva(p)dp,
(5.21)

I
Hip(u)=/_2p"‘1fsp(p—u) dp+/ p* P (n - p) dp,

7
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as it follows from (5.19) and (5.20). Recalling the form of f*P(t) from (5.15), one
easily finds, in particular, H{"(p) = 1, H3®(u) = p, etc., and hence, using (5.16),

5 — 26m, 1—8n,
- . sp _
8F =S ( T + ml) , 050 =Sm ( 3 +my ), etc., (5.22)

where mj. are the moments (3.18).

6. THE “SURFACE-SURFACE” CORRELATION

Due to (2.17), (2.15) and (2.2), we have in this case

F @)= gz [ [moulhee =) (@) o)) dnde | = Byt Ban,
be=a

(6.1)

where

32
Bi = gz [Mwhe(e ) dy L (6.2)
62

By = 552 //hb(yl Yhe(z = y2) v2(y1 — y2) dy1dys e (6-3)

The coefficient B; can be immediately found, evaluating the second mixed
derivative 9%/0udt of the function ¥, see (3.5), and putting g = 7 = 1 in the
result: )

27a { 1, ifp<L2,
By = — '
P 0, ifp>2,
which means that in the dilute case

(6.4)

F*(z)=F (x) ihga(z)-{-o(n).

The latter agrees with the result of Berryman [2] see also [14], found by means of
different arguments.
To calculate Bj, consider again the appropriate triple convolution, similar to

(5.9):

(gb Lk ;c hes ha ) () s ((¢**(¢/a)haa) # ha ) (r)
£=2a 9
=¢*(¢/a)(he x ha)(r) T /0 (hf*hA)(T)i*Pss(u)dp (6.5)

=7a(hy, * hA) (r) + 4maV,Uss(p; 1),

having used that .
)= (ghorahe) )| =2

7—haa(t),

be=a
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t = r/a, see (6.2) and (6.4). The function Us{p; T) in (6.5) has the same form as
that of its “surface-particle” counterpart Usp(p;7) in (5.12), with the functions

1 2
U ps7) = / pdp = 1,

p (TP 1.£% 1
II . - .
Ui pir)y =5 [ wdutg [ ¥ di (6.6)

-p

1+ A
VS =5 [ 25 W) d
p—1 H

-1

where ¥(p; 7, 1) is defined in (3.6). The integrals in (6.6) can be analytically eval-
uated, similarly to those in (5.13), but again the only formulae important for the
sequel are, first,

= ma(hza * hoa)(r) + 47aVaUss(p; 2),

9, 0
(b—b hb* 5-h *hga) (1’)

be=a
( 1 2 1 .
“gp‘gzl” if0<p<2 (6.7)
64p
\ 0, if p> 4.
Second, it turns out that
d 3

6 ss(P, T) 2 Gss(p - T)

Ss(t). if —2<t<0,
Gy(t) =< fai(-t), f0<t<2,

0, if |t > 2,
fet) =(2+1)%

In the well-srirred case, as it follows from (3.5), (6.1), (6.3), (6.4) and (6.7),

(6.8)

Fae)= o { 2 hte) - [f—ﬁ(p—4)2(p+8)h4a(z)+_4Uss<p;2)]}- (6.9)

In the general case g(r) is once again decomposed into the form (3.1), so that
F*(r) = Fan(r) + F(r) (6.10)
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with the well-stirred part, 7‘:':(1’), given in (6.7), and

_ © 9 (Bhy Oh
sSs syl ¢
o (")“"’/ kY, (66 * e

2a

*hA) (r)dA

be=a

=L §(r)£{wa(hza x ha)(r) +4maV,Us(p; 7) dr} (6.11)

p+2
oSt [ ==+ GRo— )] i),

B 16p max{p-2,2}

as 1t follows from (2.16), (3.5), (3.6) and (6.8), 7 = A/a. Taking into account (6.8),
we can recast (6.11) into the following final form:

- 52 P+2
F2(r)y= -—-—/ G*(p — 1) Two(7) dr, (6.12)
P Jmax{p-2,2}

where the function G** has the same form as G§® in (6.8), but with the function
f53(t) replaced by

o (t) = %(2+ t). (6.13)

For the moments of F ' (z) on the semiaxis (0,00) we have, similarly to the
previous sections,

o0
;s_-./ P T (r)dp = 08, + 0%, k=0,1,...,
0

B = 5 / HE ()i ()ds,
2 (6.14)
B=2

u
His(#)=%{/ p"“(2+p—#)dp+/ p"“‘(2+u—p)dp},
I

H(p) =1, H(u)=p, etc

The well-stirred contribution, 65° , can be elementary found by means of (6.9). In

particular,
1 —5m 1 —8n
55252( +m), 58:32( + ), 6.15
: 3m ; : 3 (6.15)

where my are the moments (3.18).

7. DIRECT EVALUATION OF THE FIRST TWO MOMENTS OF THE
CORRELATION FUNCTIONS

In the application to be dealt with below (Section 8), the first moments like
%P, 6%°, etc., will be of central importance. They were evaluated in the preceeding
sections as consequences of the appropriate integral representations of the two-
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point correlations through the radial distribution functions. There exists, however,
a simpler and more direct method, based on the interconnections (2.9) and (2.18).
The method works equally well in the 2-D case, when the derivation of the coun-
terparts of the above integral representations for the two-point correlations should
be considerably more complicated. (The reason is that the common surface of two
circles in the plane is not already a rational function of the distance between the
circle’s centers and their radii, in contrast with the 3-D simple function (3.6) that
gives the common volume of two balls.)

Integrate (2.9)2 over the whole R® and introduce (3.1) in the result:
/7”(3) dz = 471a05° = nV, + n®Va(—Vaa + 41a®my),

having used the definition of ms, see (3.18). Since V3, = 8V, and nV,; = 7, the
already known formula for 5° immediately follows, cf. (3.19).
Integrate next (2.9)3 over R>:

FP(z)dz =V, [FP(z)dz, ie 65 =V, 65°
2 2

or

1-8
95F = m ( 37711“ + mg) (7.1)

— a formula derived in [7] by means of the appropriate integral representation of
FPP(z) through the radial distribution function.

The reasoning is fully similar in 2-D; only the volume V; = g-vra
by the surface S, = 7a?, gy = nS, and Sy, = 45,4, which yields

3 is replaced

TP (z)dz = 27a® [ pF ' (z)dp = 2ma?85", R =8, 05",
1

1 —_ 4771 1 47]1 .
pe _ gPP — 2 2-D.
03 n ( 5 - mml) , 01" =m ( o + my in 2

(7.2)

Note that the correlation function F'PP(z) should be positive definite for any
realistic random constitution, see, e.g. [17]. This implies, in particular, that in
the 3-D case 657 > 0, because 657 is proportional to the value of the Fourier
transform of F pp(:z:) at the origin; s1mxlarly, PP > 0 in 2-D. From (7.1) and (7.2)
it follows then that the well-stirred approximation (3.2) (for which m; = m; = 0)
is admissible only if 7; < 1/8 in 3-D and 7, < 1/4 in 2-D (more generally, if 7, <
1/2¢ in a d-dimensional space). Both these critical 3-D and 2-D values have been
conjectured by Willis [19] who noticed that the quasi-crystalline approximation in
the wave propagation problem in random dispersions fails if ; is bigger. A rigorous
justification of this conjecture in 3-D was proposed, e.g., in [5] and [7].
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For the interfacial correlation, the formulae (2.18) are to be employed in a
similar manner. Namely, integrating (2.18); over R®, together with (3.1), gives

0
o / o (48°)

=4ra’n + 47razn2(—8Va + 47!’03"12),

0
4ra’05 = nap (%ﬂba)

va(y) dy
b=a (7.3)

and it remains to notice that n/a = nS/(3n;) in order to reproduce the formula for
s f. (4.10).
Integrate next (2.18); over R®:

/ TP de=, / F*(2)de, ie 6P = V6%, (7.4)
cf. (5.22). Finally, from (2.18), it follows
/'F-ss(:c) de= 47ra2/78C(2:) dz, ie 65 = §9“ = -S_GZP,
n m

cf. (7.4) and (6.15).
The 2-D counterparts of the above moments are immediately derived. The
counterpart of (7.3) now reads

oma’dsc =n-?— (mb?)

b Vz(y) dy

b=a

s,
2 OB 2
b=a+n /ab (1rb)

=2mran + 27ran2(-—45¢, - 27ra2m1),
so that
' 1 —4m
27)1
where L = 2man is the “specific length” — the 2-D counterpart of the specific

surface S = 4ma’n in the dispersion; we have also noted that 1/a = L/(2n,) in this
case. In turn,

gx;c =nl ( + ml) n 2-D, . (75)

1 —4n,
2m

1~- 4771
2m

- ml) in 2-D.

(7.6)
To find in 3-D the moments 6}°, 877, etc., multiply first the formula (2.9); by
G(z) = 1/(47|z|) and integrate the result over R®:

8P = S.01° = L ( +m1) , o= %O’fc =L? (

a%6%c = / G(z)F*(z)dz = n / G(z)ha(z) dz + n? / 0a(y)va(y) dy

a2

=n% w2 / 0a(y)h2a(y) dy + n? /Mzzasoa(y)uz(y) dy,

168



where
(3a2 —r?)/6, ifr < a,

va(z) = (G * ha)(z) = {3/(3r) .

is the well-known harmonic potential of a sphere of radius a. Elementary integra-
tion, using (7.7), reproduces the formula for 87°, cf. (3.19).
In turn, multiply (2.18)3 by G(z) and integrate over R?:

a2o§P = / G(z)F™(z)dz = / 0a(¥)F > (y) dy. (7.8)

But, as it follows from (7.7),

(7.7)

va(z) = VaG(z) + [%(302 ] ha(2), (7.9)

which is introduced into (7.8):

1 V.
2pPP _ 2 pc 2 2 a
a“0y" = a”V,0] +/[ (3a Fe] r] ho(z)dz.

It remains to notice that ' (z) = nns if |z| < a, as it follows from (3.8), (3.9) and
(3.11), so that the integral in the last formula equals —a?n;/10 and therefore

%P = V07 — 10 = (g—g;?ﬂ + ml) (7.10)

— a result, also derived in [7] by means of the appropriate integral representation
of FPP(z).

For the interfacial correlation we have, first of all

265 = / G(z)F*(z)dz
| (7.11)

dz + n?
b=a

v2(y) dy,

b=a

=n /G(z)% hy(z)

see (2.18);. Using (7.7) and (3.1) reproduces the formula (4.10) for 6i¢ after simple
integration. In turn, from (2.18) it follows

0P = [G@F(2)de = [ () dv.

Inserting here (7.9) elementary yields the already known formula for 07", cf. (5.22).
Finally, from (2.18)3 one has

F*(y)dy

b=a

2205 = / G(2)F " (z) dz =

= 4ra? / G(z)F*(z) dz +/a (1 - i:-) F*(2)hq(z)dz,
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having used that

%) | < anate) 4o (1 2) o) (112

which follows from (7.9). But F' (z) = né(r — a) — nS, as it is seen from (4.1),
(4.2) and (4.6), and the known formula (6.15) for §{* shows up once again.

8. THE DOI-TALBOT-WILLIS BOUND

_As a first and simplest application of the integral representations of the vari-
ous kinds of two-point correlations, derived in Sections 2 to 6, consider a dispersion
of ideal and nonoverlapping spherical sinks (the phase ‘1’), immersed into an un-
bounded matrix. The governing equations of this well-known problem read

Ac(z)+ K =0, z€Ks cz) l =0 (8.1)
0K 3
This equation describes the steady-state behaviour of a species (defects), gen-
erated at the rate K within the matrix phase ‘2, occupying the region K5, and
absorbed by the sinks (the “trapping” phase ‘2’) in the region X; = R*\K,. Then
the creation of defects is exactly compensated by their removal from the sinks, so
that in the steady-stae limit under study

k2 {c(z)) = K(1—ny). (8.2)

The rate constant k*? is just the effective absorption coefficient (the sink strength)
of the medium. Its evaluation and bounding for special kinds of random constitution
and, above all, for random dispersion of spheres, have been the subject of numerous
works, starting with classical studies of Smoluchowski (1916), see, e.g. [4, 3, 12, 9,
16] et al. (Note that we have added the factor 1 — 7 in (8.2), due to the fact that
in the case under study, defects are created only within the phase ‘2’ (the sink-free
region), see Richards and Torquato [8] for a discussion.)

We shall confine the analysis to variational bounding of the sink strength £*2,
taking into account the foregoing two-point statistical characteristics. Recall to
this end the variational principle of Rubinstein and Torquato [9].

Let A be the class of smooth and statistically homogeneous trial fields such
that : :
A= {u(x) | Au(z)+ K =0,z € Kz}. (8.3)
Then

A’z(l B 1)1)
GEVa@)R
The equality sign in (8.4) is achieved if u(z) = ¢(z) is the actual field that solves
the problem (8.1).

ez (8.4)
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Since (I;(z)|Vu(z)[*) < (|Vu(z)|?), another bound immediately follows from
(8.4), namely,
2 s Ko -m)
~ (IVu()l?)
see [9]. Though weaker than (8.4), the evaluation of the bound (8.5) is simpler,
because it obviously employs smaller amount of statistical information about the
medium’s constitution.
Following Doi {3] and Rubinstein and Torquato [9], consider the trial fields

(8.5)

u(z) = K [ Gz =) (1) - €IV )] 4y, (8.6)

where G(z) = 1/(4n|z}). Since AGo(z)+6(z) = 0, it is easily seen that Au(z) = K
if £ € Ko, and therefore the fields u(z) in (8.6) are admissible. The constant  is
uniquely defined from the condition that the integrand in (8.6) should possess zero
mean value: '

(L(y)) —€(VIi(y)) =m—€S=0, ie &=& =m/S (8.7)
For this choice of £, the trial field (8.6) becomes

u(z) = —K / Gz — ) [E(w) + & (VL) - ) dy,

and hence ,
(IVu(z)]?) = K2 (657 + 26065° + €56%) |

after an obvious integration by parts. Using (8.7), (8.5) and the formulae for the
appropriate moments (7.10), (5.22) and (6.15) leads eventually to the bound

4 3n1(1 —m)
k*2a? > ) 8.8
= 1-5m —nj/5+3mm (5B)

which coincides with the bound derived by Talbot and Willis [12] by means of
an ingineous variational procedure of Hashin-Shtrikman’s type, see (6] for more
details and discussion. The fact that the original Doi’s result, for a dispersion of
nonoverlapping spheres, can be recast in the elegant Talbot and Willis’ form (8.8)
was noticed by Talbot (unpublished manuscript) and, independently, by Beasley
and Torquato [1], who apparently were not aware of the paper [12]. Due to all these
reasons it seems proper to call (8.8) Doi-Talbot-Willis bound. Another variational
procedure that leads to (8.8) has been recently proposed by the author [6].

9. CONCLUDING REMARKS

In the present paper we have represented all two-point correlation functions
(2.9) and (2.18) for a random dispersion of nonoverlapping spheres as single inte-
grals containing the binary correlation function vo(r) for the random set of sphere’s
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centers. The reasoning of the recent paper [7], where only the “particle-particle”
correlation has been treated in detail, has served as a basis of the analysis. The rep-
resentations for all two-point correlations have one and the same structure, which
can be summarized in the following formulae:

- cor

Fp) =F"+F " (p), lim F*(p) =
p—o0
F*"(p) =Fgi* + F*(p), (9.1)
N p+0
F(p) = F;;“/ G (p — 1) Tva(1)drT,
max{p-3,2}
where
fcor(t)) lf —.B S t S O)
G )= =1, <€t <8 (9.2)
0, if jt| > 8.

In (9.1) and (9.2), F" is the long-range value of the appropriate correlation,

F*"(p) — its part that decays at infinity; Faof 1s the contribution to the latter,
generated by the well-stirred part (3.2) of the radial distribution function g(r) for
the set of sphere’s centers, and F<°*(p) is due to the “deviation” g(r) of g(r) from
the well-stirred one, cf. (3 1) (recall that g(r) = va(r) if r > 2a, see (3.4)). The
parameter 3 takes the values 1 or 2, depending on the kind of correlation under
study. We note also that

Gcor(t) - fc°r(t), if |t| <8,

provided f°°(t) is even, which is the case with “particle-center” and “surface-
center” correlations (for which 8 = 1), see (3.13) and (4.6).

For the sake of completeness, the function f<°r(t) for the “particle-particle”
correlation F'© P(z) is also given, see [7]. In this case, the well-stirred contribution
reads

(1 __3p  (Q+3m)p®  9myp’
4(1 v~ 771) 16(1 == 771) 160(1 — 7)1)
6
mpe .
S + ; if0<p<2,
Fon(ry=14  2240(1—m) o W AR (9.3)
m  (p—4)"(36 —34p—16p* - p?) :
L sens 3240, , if2<p<4,
\ 07 lf P 2 4,

see once again [7] for details and references.
Another set of useful formulae, derived in the paper, concerns the moments

oo
9g°'=/ PEF(p)dp, k=1,2,..., (9.4)

0
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TABLE 1. Notations, parameters and functions in the integral representations (9.1)
of the various two-point correlations

Correlation Notation | Fg2F f:,:' (r) i ol {4 g8
center-center Fee n? né(z) — n®haa(z) - -
particle-center FPec nmny Eq. (3.9) %(] ~ 1?) 1
surface-center b Qo nS Eq. (4.4) % | 1
particle-pmjticle FPP Yif Eq. (9.3) %(2 +t)%(4 -6t + t2) 2'
surface-particle Fsp n? Eq. (5.16) %(2 +1)2(1-1) 2
surface-surface F* n? Eq. (6.9) 3(2 + t) 2

of the two-point correlations (2.9) and (2.18). For an arbitrary k, they can be
evaluated by means of the representations (9.1), summarized in Table 1, and thus
interconnected to the appropriate moments (3.18) of the binary correlation. In
the cases ¥ = 1 and k£ = 2, which seem to be most interesting for applications,
evaluation of (9.4) does not need however the aforementioned representations, but
can be done directly, using, as a matter of fact, just their definitions. This was
illustrated in Section 7. The results, concerning 65°" (in 3-D) and 6{°" (in 2-D), can
be concisely summarized in the simple formulae

05T =FEr (———1 gﬂs”’ + mz) in 3-D,
1
1-2 o)
65T =FSr (.-gnﬂ + ml) in 2-D,
1

where F<°F are the long-range values of the appropriate correlation, see Table 1 and
Egs. (7.1), (7.2), (3.19), (4.10), (6.15), (7.5) and (7.6).
In 3-D the moments #5°" have a form, similar to (9.5):

077" = Fo" (T7°"(m) + m1), (9-6)

but now the functions 75°"(m;) are specific for different correlations. They are
listed in Table 2, in which the foregoing formulae (3.19), (4.10), (6.15) and (7.10)
are simply put together.
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TABLE 2. The functions T7°" (1) in Eq. (9.6) for the various two-point correlations

Correlation Fpe Fsc FPP Fsp Fpss

5-19m | 1—11m;y/2 | 2—-9n; | 5-26m | 1-5n

TCOl’(n] )
1 107, 3m 5m 15m 3m
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A NEW APPROACH FOR DERIVING ¢?-BOUNDS ON THE
EFFECTIVE CONDUCTIVITY OF RANDOM DISPERSIONS

KRASSIMIR D. ZVYATKOV

A new variational procedure for evaluating the effective conductivity of a dilute random
dispersion of spheres is proposed. The classical variational principles are employed, in
which a class of trial fields in the form of suitably truncated factorial series is intro-
duced. In general, this class leads to a rigorous formula for the effective conductivity,
which is correct to the order “square of sphere fraction,"” and makes use of the distur-
bance to the temperature field in an unbounded matrix, generated by two spherical
inhomogeneities. The basic idea in the present study consists in replacing this “two-
sphere” field by a superposition of disturbances, generated by the same two spheres,
but considered as single already, together with the disturbance due to another single
sphere, centered between them and radially inhomogeneous. In this way new varia-
tional bounds on the effective conductivity are derived and discussed in more detail
for a special choice of the middle sphere’s properties. The obtained bounds improve,
in particular, on the known three-point bounds on the effective conductivity of the
dispersion.

Keywords: random media, dispersions of spheres, variational bounds, effective con-
ductivity

1991/95 Math. Subject Classification: 60G60, 60H15, 49K45

1. INTRODUCTION

Consider a statistically homogeneous dispersion of equi-sized nonoverlapping
spheres of conductivity £y and radii a, immersed at random into a matrix of con-
ductivity km. In the heat conductivity context and absence of body sources, the
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temperature field, #(x), in the dispersion is governed by the equations
V.q(x) =0, q(x)=x(x)Vi(x), (Vi(x)) =G, (1.1)

where k(x) is the random conductivity field of the medium, q(x) — the heat flux
vector, G is the prescribed macroscopic value of the temperature gradient, and the
brackets (-) denote statistical averaging [1]. Since the field x(x) takes the values
ks or km depending on whether x lies in a sphere or in the matrix respectively, it
allows the representation

() = () + (] [ hx -y () &, (12

where [k] = K — Km, h(x) is the characteristic function of a single sphere of radius
a located at the origin, and 9’(x) is the fluctuating part of the random density field

Y(x) =Y 6(x —x;),
i

generated by the random field {x;} of sphere’s centers {2]. The integrals hereafter
are over the whole R? if the integration domain is not explicitly indicated.

The solution of Eq. (1.1) is understood in a statistical sense, so that one is
to evaluate all multipoint moments (correlation functions) of #(x) and the joint
moments of x(x) and 6(x), see, e.g., [1]. Let ¢ be the volume fraction of the
spheres, then n = ¢/V, is their number density. As discussed in [3-5], the solution
6(x) of the random problem (1.1), asymptotically valid to the order ¢?, can be
found in the form of truncated functional series:

0(x) = G-x +/T1(x - y)D{(y) &%
(1.3)
+//T2(x = ¥1; X — )'2)Dfpz)()'1 ¥y2) d°y1 dya,

where T} and T3 are certain non-random kernels and the fields

D’ =1, DP(y)=v'(y), DP(y1,¥2) = $(y1)[¥(y2) - 8(y1 — ¥2)]
(1.4)

~ngo(y1 — y:)[D.(,,l)(yz) + D,(,,l)(yz)] —n’go(y1 — y2)

are the first three terms in the c?-orthogonal system, formed as a result of the
appropriate virial orthogonalization, see again [3-5] for details and discussion. In
Eq. (1.4) go(r) is the leading part of the well-known radial distribution function
g(r) = fa(r)/n? for the dispersion in the dilute case n — 0, i.e. g() = go(r) +O(n);
f2(r) denotes the two-point probability density for the set of sphere centers and
r=lyr =yl
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The identification of the kernels 7} and T} is performed in [4] and [5] by means
of a procedure, proposed by Christov and Markov [6]. It consists in inserting the
truncated series (1.3) into the random equation (1.1), multiplying the result by the
fields Dg’ ), p = 0,1,2, and averaging the results. In this way a certain system of
integro-differential equations for the needed kernels of the truncated series can be
straightforwardly derived. The solution is analytically obtained in [4] and hence the
~ full statistical solution of the problem (1.1), asymptotically correct to the order ¢2,
is known. In particular, this solution allows one to derive the effective conductivity
k* of the dispersion, to the same order ¢?, through evaluating the one-point moment

(k(x)VO(x)) = £* (VO(x)) = k" G.

As a result, the renormalized c?-formula of Jeffrey [7] for the effective conductivity
of the dispersion was rederived, but with rigorous justification of the integration
mode in the appropriate conditionally convergent integrals.

* As shown in (8], the same result is obtained when the truncated series (1.3)
are employed as trial fields in the classical variational principle, corresponding to
the problem (1.1):

Walb()] = <n(x)lv0(x)|2> — min, (Vé(x)) = G, (1.5)
min Wy = k*G? | see, e.g., [1]. Moreover, the leading parts in the virial expansions
Ti(x) = Tv(x;n) = Tho(x) + T1a(x)n + - -, (1.6)

To(x,y) = Ta(x,y; n) = T20(x,y) + T2 (x,y)n+ -+~ (1.7)

of the optimal kernels T and T5 suffice to determine the effective conductivity x*
to the order ¢2. In this way the equations for the virial coefficients T} o and 750,
already found in [4], have been rederived. It turned out that T} o(x) coincides with
the disturbance T(1(x) to the temperature field G - x in an unbounded matrix,
introduced by a single spherical inhomogeneity, located at the origin:

Ty o(x) = TY(x) = 368G - Vip(x), (1.8)

is the Newtonian potential for the single sphere

where ¢(x) = @(x,a) = h* T

_ of the radius a and 8 = [k]/(ks + 2&m). For the coefficient T3 o one has
9T30(x, % — 2) = TH(x;2) - TH(x) - T (x - 2), (1.9)

where T(3)(x; z) is the disturbance to the temperature field G - x in an unbounded
matrix of conductivity km, generated by a pair of spherical inhomogeneities of
conductivity &y, centered at the origin and at the point z, |z| > 2a.
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It is important to point out that the variational derivation, involving the trun-
cated series (1.3), leads to a c2-formula for the effective conductivity that contains
absolutely convergent integrals solely. Namely, let

*

=1+30c+awe®+ -+, az =38+ adj,, (1.10)
m

be the virial expansion of &*. For the c?-deviation a}. . from the well-known

Maxwell formula one has

1
a5, G? = ,[:]V h(x) d*x /go(y)VzT(‘)(x—y)'VzT(z)(x;Y)dayx (1.11)

m

where V, = 27a®. (See also [9,10], where the Hashin-Shtrikman variational princi-

ple was employed to derive the same formula (1.11).)

In order to calculate the c2-coefficient aa,, one needs the field T(2)(x;z). The
latter can be explicitly found, e.g. by means of the method of twin expansions. The
calculations, based on this solution and the formula (1.11), however, will be not
simpler than the ones in the well-known works [7] and [11], based on the “renormal-
ized” formula of Jeffrey [7]. That is why our aim here is to look for an appropriate
approximation for the field 7?)(x;z) which, when combined with (1.9), will pro-
duce a class of trial field in the form (1.3). However, this class will be narrower
than (1.3) and as a result certain variational bounds on a3« will follow only.

Consider first the simplest case when the kernel 77 in (1.3) is adjustable and
the kernel 75 vanishes: 75 = 0, 1.e.

(x) =G -x+ /Tl(x - y)D‘(;)(y) dy. (1.12)

This class has been introduced and discussed in detail by Markov in [12], where
it is shown that minimizing the functional W4[0(-)] over the class (1.12) gives
the best three-point upper bound «(®) on the effective conductivity «*, i.e. the
most restrictive one which uses three-point statistical information for the medium.
According to (1.9), this bound corresponds to the approximation

T(z)(x; z) ~ TO(x) + T (x - 2) (1.13)

of the disturbance 7(?)(x;z). We will come back to the three-point bounds again
in Section 2.1.

Obviously, the approximation (1.13) is appropriate when the two spheres are
far away, i.e. |z| 3> 2a. Here we propose an improvement of this approximation that
consists in adding the disturbance T(l)(x~ z/2) to the adjustable temperature field
®(z) - x, generated by a single radial inhomogeneous sphere, centered between two
spheres, i.e. at the point z/2. Thus, we assume the approximation

- TO(x; z) ~ T ( ~ 5) +TW(x) + T (x - 2). (1.14)
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This idea is suggested by some successful models in the theory of dispersions, see,
e.g., [13] and [14], where, in fact, the interactions of the spheres are taken into ac-
count by introducing a single radial inhomogeneous sphere, immersed into effective
medium. According to (1.9), the approximation (1.14) leads to the following choice
of the kernel T5 in (1.3):

R 3
To(x ~y1,%x — y2) = 5T (x- i yz)- (1.15)

2

In Section 2.2 a new variational procedure will be considered. It is based on
the possibility to vary both the field ®(z) and the conductivity distribution of the
middle sphere. Its counterpart that yields lower bounds will be discussed in Section
2.3. Finally, in Section 3 a simple case will be considered, when the middle sphere
is homogeneous and encompasses the other two spheres. This case allows us to
obtain quite easily explicit results, which will be then compared with some of the
known variational bounds.

2. THE VARIATIONAL PROCEDURE

The disturbance T(!)(x — z/2) to the temperature field #(z) - x, generated by
a single radial inhomogeneous sphere, centered at the point z/2, has the form

Z

7O (x - 5) #(z) Vf (x - §,z) , (2.1)
where f(w,z) = f(|w|,z) is a function, specified by the radial distribution of the
conductivity coefficient of the sphere. The dependence of f(w, z) on its second ar-
gument z indicates explicitly the possibility that the latter distribution is arbitrary
for the moment. Hereafter the differentiation of the function f(w,z) is with respect
to its first argument, V = V,,.

According to (1.15) and (2.1), we should employ the classical variation principle
(1.5) over the class of trial field (1.3), provided the kernel T has the form

To(x,x ~2) = -;-di(z)-Vf (x—— g-,z),

1.e.

1 +
T(x -y, x—y2) = -2-¢(y2 -y1):-Vf (x— e 5 2. v "YI) : (2.2)

Here the kernel 73 (y), the functions @ and f are adjustable. To this end it is ap-
propriate to remind briefly the variational procedure, connected with the derivation
of the so-called optimal three-point bounds.
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2.1. THE THREE-POINT BOUNDS FOR THE DISPERSION

Making use of Eq. (1.2) and the formulae for the moments of the random den-

sity field 1(x), we find an expression for the restriction W/(,I)[Tl (-)] of the functional
W4 over the class (1.12), see [12] for details. The optimal kernel 7;(x), i.e. the

solution of the Euler-Lagrange equation for the functional Wz(il), is looked for in
the virial form (1.6). This representation of Tj(x) generates the appropriate virial

expansion of the restriction Wf\l)[Tl(-)], namely,
WO = () G + WEDIT00ln + W26, TiaOn? + -, (23)
see [15, Egs. (4.2)-(4.5)]. An analysis of the coefficient ng”) shows that
sWM DT o()] = 0 <= Ti0(x) = TM(x), (2.4)

where T()(x) is the disturbance (1.8), generated by a single spherical inhomogene-

ity. It turns out, however, that at T} o(x) = T()(x) the virial coefficient Wf‘ 2)
does not depend on T ;(x), i.e.

WAITO(), Ty, ()] = Wy 21O = 36% ( *u"‘)szz (2.5)

where

mq = mg[go(-)] =2 /(—A-aij-ﬁ go(Aa)dA, A= |y|/a, (26)

is a statistical parameter for the dispersion, introduced in [12]. Hence, according
to Eq. (2.3), we have for the optimal upper tree-point bound x(3)

k' G? < kOGP = (v) G2+ v;Wﬁ"”[T“’(-)w oW IO +o(e?). (27)

On the base of this analysis it is shown in [15] that the Beran’s bounds [16] are ¢*-
optimal in the above explained sense. Egs. (2. 5) and (2.7) yield straightforwardly
the following estimate for the ¢ -coefﬁcxent ayx in the virial expansion (1.10) of x*
(see [12, 15]) :

ax < a3, a3 = 3ﬁ2 (1 + L‘ﬂmg) ; (2.8)

Km

Let us note that the formula (2.8) for the upper bound a3, can be obtained
also if we insert (1.13) into (1.11), taking into account (1.10) and the identities

/h(x) dax/go(y)VT(l)(x —y) - VT(x) d®x = 0, (2.9a)
/ h(x) dx / go(¥) | VTD(x - y)[? ¥y = 362V, (2.9b)
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It 1s interesting to point out that inserting (1.13) into the “renormalized” formula
of Jeffrey [7] leads, however, to the Maxwell c¢®-value ay, = 38% that corresponds
to the Hashin-Shtrikman bound.

2.2. NEW UPPER BOUND FOR THE DISPERSION

Using the formulae for the moments of the fields D,(,,l) and Dfpz), see {4, Egs.

(3.4)], the restriction Wf) [T1(:), T5(:, )] of the functional W4 over the general class
(1.3) becomes

W Ti(), (-, )] = WRITO + WP T (), Tl )], (2.10)

where

W T(), o, )] = 20k / / go(¥1 = ¥2) [VaTa(x — y1,x = y5) [ d®y1 &y

+ 2"2['€]//90()'1 — y2)[h(x = y1) + h(x — y2)] |V T2 (x — y1,%x — y2)|* d®y1 d°y»

+20%] [ [ go(ys = 2) [hx = y2) VT3 = y2) + h(x = y2) VT (x = )]

V:To(x — y1,x — y2) d%y1 d®y2 + o(n?), (2.11)

see [8, Section 3]; here we have used the fact that the kernel 75(y;,y2) is a sym-

metric function of its arguments.
Let us consider now the narrower class (1.3) when the kernel 73 has

the form (2.2). Then, according to Egs. (2.3) and (2.10), for the restriction
Wf) [T1(-), ®(:), f(:,-)] of the functional W, over this class we get

-

WO (), (), ()] = (£) G2+ W) [T10()] n

(2.12)
WD [T 0(), T, (), B(), S(-, )] m* + o(n?),
where
WD T, Tia (), 20), () T
. W}(‘l'z) [77,0(-), T1,1(')] o W,(f) [TI,O(’), $(Y; 7l
W [T3.0(), 80, S, ) = W) [:ra,o(-), 38() VI, -)] . (2139)

Here Wj(ll’l) and Wj(il'nare the virial coefficients from Eq. (2.3) for which, let us

recall, Egs. (2.4) and (2.5) hold. Hence, the minimization of the functional ngz) 18
reduced to that of the functional

Wf” [@(), f(-,)] = "Wi(f) [T(l)(.),,p(.),f(., .)] _ (2.14)
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Taking into account Egs. (1.8) and (2.13b), after an appropriate change of integrand
variables in (2.11), we find the following form of functional (2.14):

W' [8(), ()]
o / / go(z) Km + 2[K]h (w - -z-)] |B(z) - VVf(w,z)?d*w d®z  (2.15)

+68[k]G - //go(z)h w— -2-) VVe (w + ) -VVf(w,2) &(z)d*wd’z.
The minimizing functions @ and f satisfy the Euler-Lagrange equations
WP =0, §WH=0. (2.16)
The first of these equations yields straightforwardly

&(z) -/[nm + 2[k)h (w - ;—)] VVf(w,z)  VVf(w,z)d>w
(2.17)

= —66(x]G -/h (w=2) vVe (w+3) VVf(w,2) dw

at |z| > 2a, whose solution &(z) can be easily found for a given function f. Taking
into account that f(w,z) = f(|w|,z), the second equation in (2.16) is recast as

3:00,(2) [ {rm (B1(1w]2) 5+ 206 (b (w=3) fax(iwl,) |} as
- (2.18)
= —60[]G;®; (z) / w — —) P.ik ( + -;—))'kj dS,

at |z| > 2a, where Qlw is the sphere |w|=1.

Eqgs. (2.17) and (2.18) form a very complicated system of integro-differential
equations for the optimal functions @ and f. That is why we shall consider a
simpler procedure in which the function f is fixed.

Making use of Eq. (2.17), the minimum value of the functional W( M can be
recast now in the form in which the solution #(z) of this equation enters linearly:

min W [8(), £, )]
(2.19)

= 36[x]G - / / go(2)h (w - -) VYV (w+ 2) VS (w,2) B(z) dPw dz.
With the notations

R(z) = 7 /[1+2['°] %)] VVf(w',z)-VVf(w,z) d*w,  (2.20a)
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0= g [ (0= 5) 7 v+

Egs. (2.17) and (2.19) can be written in the form

) VVf(w,2)dw, (2.20b)

Q(Z) : 'R(Z) = "6,3£_K]‘G : J(Z),

min W' [B(), £, )] = 36[x]VaG - / 90(2) () - B(2) 2.

Thus the solution of Eq. (2.17) is
&(z) = —6,8;[:—]G - JHz) - R~ (2) (2.21)
m
and the minimum value of the functional Wf‘i’)f 1S

min W' [8(), £(, )] = 18ﬂ2[iV G- / 90(2)T(z) - R™(2) - T(z) d°2 - G.
(2.22)
Hence, according to Eqs. (2.4), (2.5), (2.7), (2.12)~(2.14), we obtain the fol-
lowing upper bound on the effective conductivity «*:

kG2 < kG, k'GP = (k) G? + — 7 L Do) ¢
(2.23)

1

2
o (F2O0] + min TP} 2 4 o 2)_5(3)'*'; min W ¢ + o(c?).

In turn, Egs. (2.5), (2.22) and (2.23) yield straightforwardly an upper bound for
the c2-coefficient as, in the virial expansion (1.10) of k™, namely,

2
tgx Sias s a3l = 34? (1 + Ei]-mg - (-’-[Cﬂ) Fr’z‘z‘) , (2.24)

m

where
g = wslao(), 1), ol = - [0 u[T) R @) - )] &' (225)

is a new statistical parameter for the dispersion, o = k;/km,. This parameter
depends not only on the leading part go(r) of the radial distribution function g,
but on the given function f(w,z) and on the ratio « for the dispersion as well, see
Egs. (2.20).
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2.3. ON THE LOWER BOUNDS FOR THE DISPERSION

In order to obtain a similar lower bound on «*, we shall employ the classical
dual variational principle for the problem (1.1), formulated with respect to the heat
flux q(x) = V x U(x),

WalUO) = (k@IV x UEP) — min, (a(x)=Q,  (226)

minWg = k*Q?, k* = 1/k*. The compliance field k(x) = 1/x(x) has the form
(1.2), i.e.

k) = (1) + [ [hx =y W 0) &y, =k ~kn.  (220)

Similarly to the above-performed analysis, consider the functional Wg over the
class of trial field

U(x) = -;-Q X X +/Sl(x —y)DP(y) dy
(2.28)

+//Sz(x —y1,x— y2)DP(y1,y2) Py1 &y

— the counterpart of the class (1.3). Similarly, if the kernels S; and S, are ar-
bitrary adjustable functions, the class (2.28) leads to the exact c¢?-value of the
effective compliance k£*, as it was the case with the effective conductivity «*. For

the restriction Wt(;z) [S1(*), S2(-, )] of the functional Wy over this class one has
Wy [510),82( )] = W [S1()]+ W5 [$1(), 8, )], (2.29)
where Wl(;l)[Sl( )] is the restriction of Wpg over the class
1
U(x) = -2-Q %3 +-/Sl(x - y)D‘(;)(y) d’y (2.30)
and

. Wg) [S1(-), S2(:, )] = 2n°km //.%(Jh —¥2) V2 X Sa(x — y1,x — y2)|2 d®y; &Py,

+2nk] [ / go(y1 — y2) [A(x = 1) + h(x— y2)] [V x Sa(x — y1,x - y2)[* dy1 &

+ 2n2[k]//g0(y1 —y2) [H(x = y1)V % S1(x ~ y2) + h(x ~ y2)V x S1(x — y1)]

Ve X Sa(x — y1,%X — y2) d®y1 &y + o(n?). (2.31)

The class (2.30) is the counterpart of (1.12) and leads to the c2-optimal three-
point lower bound 1/k® on the effective conductivity £*, see [12]. The solution of

the Euler-Lagrange equation & Wg) [S1(:)] = 0 now has the form
S1(x) = SW(x) + 0(c),
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where q(V)(x) = V x S(1)(x) is the disturbance to the constant heat flux Q in an
unbounded matrix, introduced by a single spherical inhomogeneity, located at the
origin:

q(x) = 38Q-[VVep(x) + h(x)I], ie SI(x)=-38Q x Vp(x). (2.32)

Then
B <k, k3@ = minWS[S:(-)] = WHISD()] + o(c?)
(2.33)

= ki {1 —3Bc+ 3,62 (2 + I[c_k]'m2) 02} Q2 + 0(02)’

where m; 1s the statistical parameter (2.6). In virtue of these relations, the optimal
three-point lower bounds for the ¢2-coefficient ay« in the virial expansion (1.10) of
k* are straightforwardly obtained (see [12, 15]):

ab, < azx, @b = 367 (1 + E—:ﬂmz) : (2.34)
f
Egs. (2.29) and (2.31) are the counterparts of Egs. (2.10) and (2.11) respec-
tively. A fully similar analysis shows in turn that the leading part S; ¢ of the
optimal kernel S,, Sa(x,y) = S2,0(x,y) + O(c), has now the form

255 0(x, x — 2) = S(x;2) ~ SM(x) — SW(x - z), (2.35)

where q(x;z) = V, x S(3)(x;z) is the disturbance to the constant heat flux
Q in an unbounded matrix of conductivity k., generated by a pair of spherical
inhomogeneities of conductivity &y, centered at the origin and at the point z.

In order to improve on the optimal lower bound (2.34), similarly to Egs. (1.8),
(2.1)-(2.3) for the upper one and (2.32), we can make the following choice of the
kernel S, in (2.28):

Syx,x—2) = %Q(z) w L (x - g,z) , | (2.36a)

where the functions @ and f can be again treated as adjustable. Let us note that

now the field

dz(x,x — 2) = 2V, x Sa(x,x ~ z)
(2.36b)

zZ z
= —&(z) [VVf (x— §,z) N (x— §,z)l] ,

in general, is not the disturbance to a certain heat flux in an unbounded matrix,

introduced by a single radial inhomogeneous sphere, centered at the point z/2.

A simple check shows, however, that for a homogeneous middle sphere the field

do(x, x — z) is indeed such a disturbance, see Eqgs. (2.32) and (2.36a). An example

of this kind will be considered in Section 3.
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The further analysis is fully similar to the one, already performed in Section
2.2. That 1s way we shall present the basic results only. The explicit form of the
functional

W0, 1) = 5T [$90. 380 vae] e

is obtained straightforwardly by means of Egs. (2.29), (2.31), (2.32) and (2.36); it
is of the same form (2.15), provided we replace & by k, G by Q, VV¢ by VVe+hl
and VVf by —(VVf ~ A fI).

With the notations

R(z) = Via/[l _ 2[f]h (w - g)] [VVf(w,z)— Af(w,z)I]

(2.38a)
(VY f(w,2) - Af(w,z)I] d°w
(z) = 7 h(w—§) [Vch(w+§ z)+h(w+2)1]
(2.38b)
[VVf(w,z2) — Af(w, z)I] d°w
the Euler-Lagrange equation 64>/W71(32)7 = 0 reads
3(2) R(s) = 65, Q - S(),
whose solution is
8(s) = 69 2Q () - R (s) (239

Then the minimum value of the functional Wl(B " 1S

min W [@(), £, )] = - 1882 [:]2

v.Q. / 90(2)3(z) - R™\(z) - ¥(2) &z - Q.
(2.40)

According to Egs. (2.29), (2.33), (2.37) and (2.40), an upper bound k! on the
effective compliance k™ immediately follows

k*Q? < I‘:7Q2 =k 4 — V — min W( 2 + o(c?)

a

2
= R {1 — 3Bc + 332 (2+ ’[ci]mz - % ﬁté) c2} Q% + o(c?)

Here
iy = Mlgo(), S, ), o) = % / 00(2)tr[3(2) - R™(2) - 3(2)] Pz (241)
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is the counterpart of the statistical parameter m}, see (2.25). In virtue of these
relations we obtain straightforwardly the following lower bound for the ¢?-coefficient
azx in the virial expansion (1.10) of k*:

2
aé'n < aze, ag =36 (1 + [f;]mg + (E—f}) ﬁz;) . (2.42)

Let us note that the bounds (2.24) and (2.42) are five-point bounds in the
sense that they require knowledge of the first ¢-point moments for the random
density field ¥(x) up to £ = 5, see Egs. (1.2)-(1.5), (2.26)-(2.28). To get explicitly
the parameters m) and 7% for a given function f, an analytical evaluation of the
integrals (2.20) and (2.38) is needed however.

3. A SIMPLE EXAMPLE

Let us choose now the function f(w,z) in Eqgs. (2.2) and (2.36) in the form

f(w,z)=¢ (w, l%l + A)

at |z| > 2a, 1.e.
z _ z |z

where A is a scalar parameter, A > a, so that |z|/22 + A > 2a.

According to the foregoing analysis, this choice means that the disturbance
T()(x;z), generated by two spheres centered at the origin and at the point z, is
approximated by the superposition of the disturbances TM(x) and TM(x = 2),
generated by the same two spheres, but considered as singly, and the disturbance
T(1)(x —2/2), generated by a single homogeneous sphere, centered exactly between
them and encompassing the same spheres, see Egs. (1.8), (1.14), (2.1) and (3.1).
At that, let us recall, the middle sphere is immersed into adjustable temperature
field ®(z) that has been varied in order to derive the best ¢?-bounds on the effec-
tive conductivity. Now we shall obtain this bounds as functions of the parameter
s=Afa, s> 1.

After simple change of the integrand variable the fields R(z) and J(z) in (2.20)
are recast as

R(z) = via/[l +2'[c—-'fn]-h(u)J VVf (g -—-u,z) .VVf(; ~u, z) Pu,
(3.2)

J(z) = -li—a/h(u)VVgo(z —u) - VVf (-z- ~u, z) d3u.
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Taking into account that VVe(u,z) = —1I at |u| < |z| and the Egs. (3.1) and
(3.2), we get
ERS IR
R(z) = 9{3 (—2;+s) + 2-;; I,

J(z) = - %w(z), w(z) = —é-/h(u)VVw(z —u)d®u.

The field w(z) is the same one that appears in the variational procedure of Willis
[17], see [9, 10] also, whose explicit form is

(3.3)

3
w(z) = % (ﬁ—l) (3erer — 1), e, =12z/lz|. (3.4)

In the same way one obtains for the fields R(z) and I(z) in (2.38) the following
formulae:

Ky

3
R(z) = -g- {3 (-'2—%’ + s) — 4 [K']} I, $(z)= -g—w(z). (3.5)

After simple algebra, based on Egs. (2.25), (2.41), (3.3)-(3.5), we get eventually
the needed parameters mj§ and mj:

1/2

5
= a p
"2 = 32]90 (p) 3(1 4 2sp)® + 16p3[]/km dp’
0

(3.6)

5
AT S

Thus, for the simple choice (3.1) of the function f(w,z), we have obtained
the c?-bounds (2.24), (2.42) explicitly. A simple check shows that the integrands
in (3.6) are always positive, and so are the parameters m) and mj. Then, from
(2.8), (2.24), (2.34) and (2.42), we can conclude that the obtained bounds always
improve on the optimal three-point bounds. Moreover, it is immediately seen that
the parameters ) and Mm% are decreasing functions of the parameter s, vanishing
as s — 00. Therefore the obtained bounds are the best if s = 1, i.e. when the
middle sphere, encompassing the other two ones, touches them. This fact suggests
that the consideration of the case when the middle sphere overlaps the other two
spheres could lead to better results. The calculations in this case, however, are
more complicated. In the limiting case s — oo our bounds coincide with the
optimal three-point bounds.

The behaviour of our bounds is illustrated in the well-stirred case when g(z) = 1
at |z| > 2a, see Table 1. It is seen that the new lower bound (at s = 1) improves
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TABLE 1. Comparison of various bounds on the ¢2-coefficient ay for a well-stirred
dispersion of spheres; the exact values are due to Felderhof et al. [11] and

the value of the parameter m; is my & 0.14045 [12]

Lower bounds Upper bounds
I} a 3-point  present Willis exact | present 3-point Willis
(2.34)  (2.42) [9, (7.21)] (2.24) (2.8) (9, (7.21)]
-0.5 0 - 00 -~00 - 0.588 0.641 0.645 0.659
-0.49 | 0.013 -6.715 -2.934 - 0.617 0.620 0.634
-0.4 0.143 0.076 0.165 - 0.399 0.421 0.422 0.433
-0.3 | 0.308 0.185 0.194 - 0.236 0.243 0.244 0.250
-0.2 0.500 0.103 0.104 - 0.110 0.111 0.112 0.114
-0.1 0.727 0.028 0.028 - 0.029 0.029 0.029 0.029
0 1 0 0 0 0 0 0 0
0.2 1.75 0.127 0.127 0.126 0.130 0.132 0.133 -
0.4 3.00 0.525 0.527 0.529 0.563 0.607 0.615 -
0.6 5.50 1.204 1.211 1.249 1.370 1.686 1.763 =
0.8 13 2.169. 2.185 2.328 2.638 4.437 5.156 -
0.9 28 2.759 2.782 3.016 3.485 8.576 11.645 -
0.99 298 3.352 3.382 3.726 58.705 125.592 -
1.0 (o'} 3.420 3.450 3.811 4.506 ford) 00 -

considerably on the respective three-point bound when o — 0; a similar improve-
ment takes place for the upper ones at @ — oco. In Table 1 the bound of Willis
[9] is also given. Recall that it improves on the lower three-point bound, but the
upper one is worse.

Finally, we shall note that the proposed approach to derive variational bounds
can be employed on the base of the variational principle of Hashin-Shtrikman. In
this case it can be easily shown, for example, that the bounds of Willis correspond
to the approximation VT'()(x;2z) = VT()(x) + &(z), see [9, 10]. This means that
the bounds of Willis can be treated as the exact HS-counterpart of our bounds,
derived in Section 3. More details will be given elsewhere.
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The paper discusses the intelligent computer algebra system STRAMS being under
development at the Faculty of Mathematics and Informatics, Sofia University. The
functional facilities and the architecture of STRAMS are briefly described. The pre-
sentation focuses on issues related to the suggested knowledge representation formalism,
the structure and the contents of the knowledge base of STRAMS and the implemented
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1. INTRODUCTION

In the last three decades Computer Algebra Systems (CAS) have been widely
used in the automation of scientific computation and design. These systems can
help in the solution of various problems connected with the execution of complicat-
ed and labour-consuming transformations of mathematical expressions. However,
irrespective of their good capabilities, “classical” CAS like Reduce, Maple, Mathe-
matica etc. are sometimes difficult for use. The most serious problem here [2, 3] is
that “classical” CAS behave as black boxes and therefore the interpretation of the
suggested solutions can call for significant efforts.

The reason for this problem is that “classical” CAS have no mathematical
knowledge represented in an explicit, declarative way. Their knowledge is embedded
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implicitly in the algorithms and is inaccessible to the user.

Therefore a series of successful attempts have been made in order to build
various kinds of the so-called intelligent CAS. In general, intelligent CAS are sys-
tems that are capable to manipulate different types of mathematical knowledge
and use a large set of Artificial Intelligence methods and techniques. Because of
adequacy and efficiency considerations, intelligent CAS usually are hybrid [1, 4] by
means of combining several formalisms and paradigms.

A set of projects aimed at the investigation of different aspects of the inte-
gration of the classical approaches for developing CAS with Artificial Intelligence
methods and tools have been under development at the Faculty of Mathematics
and Informatics, Sofia University. An approach to building intelligent CAS has
been developed [5]. The first version of a knowledge-based tool for developing CAS
called KAM [6] has been implemented. The experimental intelligent computer
algebra system STRAMS discussed in this paper has been under development
using KAM. In general, STRAMS is a knowledge-based CAS that can solve various
types of mathematical problems, learn and explain the results of its work. The
approach used for the development of STRAMS and the major features of this
system are described and argumented in details in [5, 6]. Therefore we emphasize
here on the analysis of the architecture of STRAMS, the contents of its knowledge
base and the implemented mathematical problem solving mechanisms.

2. FUNCTIONAL FACILITIES AND ARCHITECTURE OF STRAMS

STRAMS is a general-purpose intelligent CAS. The definition domain D of the
expressions that can be manipulated in STRAMS includes all expressions contain-
ing numbers, symbols and the functions: +, —, %, /, power function, exponential,
logarithmic and trigonometric functions. STRAMS 1s intended for soIvmg the fol-
lowing main problem types:

— simplification (reduction to a canonical form) of expressions from D;

— symbolic equation solving (solving equations of the form expr; = exzprs,
where expr; and expr; are expressions from D),

— symbolic differentiation of expressions from D;

— symbolic integration (formal integration of functions belonging to a particu-
lar subset of D).

The architecture of STRAMS is determined by its functional facilities and
some additional design requirements like transparency and learning and explanation
generation capability. The architecture of the environment KAM used as a tool for
the implementation of STRAMS exerts a considerable influence as well.

STRAMS includes the following functional components: a mathematical
problem solving engine, an explanation module, an interface module, a control
block.

The architecture of STRAMS is shown in Fig. 1.

The mathematical problem solving engine consists of two modules: a knowledge
engine and a learning module realizing respectively the problem solving and the
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J' EXPLANATION
| MODULE

USER

Fig. 1. Architecture of STRAMS

learning capabilities of STRAMS. The structure and the functioning mechanisms
of the mathematical problem solving engine are discussed in Section 4 of this paper.

The explanation module realizes the explanation generation capabilities of
STRAMS. These capabilities are described in [5, 6] and will not be discussed in
this paper.

The interface module is the component of STRAMS the users are in touch
with. It analyzes the user requests, converts them into the corresponding internal
form and sends appropriate messages to the control block. The current version of
the interface module provides only some relatively primitive communication means
that will be improved in the further versions.

The control block realizes the general control of the system’s work and the
interaction between the other components.

3. KNOWLEDGE REPRESENTATION IN STRAMS

The formalism supported by the environment KAM is used for the knowledge

representation in STRAMS. It is oriented to the description of knowledge about the
properties of the manipulated functions and the methods for mathematical problem
solving defined by these properties. This formalism is described and analyzed in
details in [5, 6]. Here we present it in brief and give appropriate examples.
_ The knowledge of STRAMS about the properties of the manipulated functions
is described using a special type of rules called rewrite rules. The structure of
each rewrite rule includes the description of a correct transformation of a class of
mathematical expressions and the formulation of some general preconditions for its
performance (if there are any). Examples of rewrite rules:

(z+y)(c—y) =2* -y’
e“e¥ = etV
t tgb . . : 2k + 1
SR with precondition a, b, a + b different from (——+—-)1
1—tgatgb 2

The description of the methods for transformation of the expressions and
equations STRAMS can manipulate is realized by the so-called generalized rules

tg(a+b) =
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(methods). Each generalized rule describes a sequence of transformations of the
given expression aimed at its conversion into a particular form. In this sense
usually generalized rules contain sequences of properly grouped rewrite rules. More
precisely, each generalized rule consists of two parts — a precondition and a body.
The precondition is a predicate whose satisfaction is a necessary condition for the
application of the generalized rule and for achieving its purpose. The evaluation
of the precondition of a given generalized rule is the first step of its application. If
the precondition is true, then the body of the generalized rule is performed. The
body of a generalized rule may contain:

— a sequence of rewrite rules. Each of them can include some additional
control information. In this case the generalized rule is called declarative;

— the code of a procedure realizing the application of the rule. Such generalized
rules are called procedural;

— a set of pairs (patfern, procedure) such that when the examined expres-
sion matches one of the patterns, the corresponding procedure is executed. These
generalized rules are called hybrid.

Declarative generalized rules are most numerous in STRAMS. As it was men-
tioned above, the body of such a rule consists of a sequence of rewrite rules that
can be divided in three groups: pre-rules, basic rules, post-rules.

The pre-rules are intended to prepare the given expression for the performance
of the basic rules. The post-rules are used to remove some “defects” remaining
- after the performance of the basic rules.

There are three basic types of declarative generallzed rules according to the
mode of application of their bodies: normal, cyclic and recursive. The body of
a normal generalized rule is performed in the following way. First the pre-rules
are consecutively applied to the given expression. Each of them is executed on
the result returned by the previous one. Then the basic rules are applied in the
same way on the result of the execution of the pre-rules. At last the post-rules are
applied in the described way.

The body of a cyclic generalized rule contains only one basic rule. It is per-
formed in the following way. First, the pre-rules are executed as in the case of a
normal rule. Then the basic rule is executed. If it has not changed its argument,
the execution of the body of the generalized rule stops and the current result is
returned. In the other case, the corresponding post-rules are performed and then
a cyclic execution of the described sequence of steps is carried out until the basic
rule returns its argument unchanged.

The body of a recursive generalized rule is first executed on the subexpressions
of the given expression and then it is applied to the obtained new argument.

It is possible to construct some combinations between the basic types of
declarative generalized rules. In this sense very attractive are the so-called cyclic
recursive generalized rules that can be used as a proper mean for the description
of some methods for expression simplification (reduction to a canonical form). As
an example of such a method we can examine the transformation called expansion.
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This transformation can be defined by the equality

(T1tzot-+zm)nitet Fw)=an+ayp+ o+ iy
+ 22y + T2y + -+ TaYn

............

+Zmy1 + Tmy2+ -+ TmYn.

It is described in STRAMS by a cyclic recursive generalized rule with a body
containing the following basic rule:

i=1 =1

n k n k n k
HAi(i‘l +zg+ f--+:vm)HBj = HAixl HB,- +HAi(22 +---+zm)HBj-
j=1 j=1 i=1 ' i=1
Another classification criterion of the generalized rules is the role they play
in the problem solving process of a given, relatively complex task (such tasks in
STRAMS are equation solving and symbolic integration). In this sense they can be
classified as key and non-key ones. The key generalized rules play a significant role
in the contro) of the search in the state graph of the corresponding problem. In the
role of examples of key and non-key generalized rules we give here the descriptions
of two generalized rules included in the knowledge base of the equation solving

subsystem of STRAMS.

Example 1. Isolation. Let an equation eq : expry = expre be given and let f
be the outermost function in ezpr;. The execution of the body of the generalized
rule consists in the application of the inverse of f to expr) and ezprs. The precon-
dition of the generalized rule is: the unknown occurs in only one of the arguments of
f and expry does not contain the unknown. The goal is to remain in the left-hand
side of eq only the argument containing the unknown.

This generalized rule is a key one and is implemented procedurally due to
effectiveness considerations.

Example 2. Collection. The goal of this generalized rule is to reduce the
number of occurrences of the unknown. Collection is a non-key generalized rule
with no explicit precondition. STRAMS applies it only if none of the key gener-
alized rules can be applied. So the precondition of Collection (and of all non-key
generalized rules) is: there is no key generalized rule with satisfied preconditions.

This generalized rule is declarative, normal. One of its rewrite rules is:

AB + AC = A(B + C) with the precondition A must contain the unknown.

The knowledge of STRAMS about the problem solving methods for the
included types of tasks is described either directly by proper generalized rules or
using specific constructions called schemata. A schema is a sequence of non-key
generalized rules. It describes a definite step in the problem solving process of
a relatively complex task (equation solving or symbolic integration). For a more
precise definition of the concept of a schema one can use the following additional
considerations:

e cach schema is a sequence of at least two non-key generalized rules;
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e cach schema begins either with the first generalized rule used in the problem
solving process or with a generalized rule applied after the application of a key
generalized rule;

e after the application of a schema either the corresponding problem is found
to be solved or a key generalized rule can be applied.

Thus schemata are a natural generalization of generalized rules. The precon-
dition of a schema is the applicability of its first generalized rule. The goal is to
solve the problem or to be able to apply a key generalized rule after the application
of the schema.

4. STRUCTURE AND FUNCTIONING MECHANISMS
OF THE MATHEMATICAL PROBLEM SOLVING ENGINE

As it was mentioned in Section 2, the mathematical problem solving engine of
STRAMS consists of two modules: a knowledge engine and a learning module. The
knowledge engine includes the so-called inference control block and the following
processing subsystems:

—- a simplification subsystem,;

— an equation solving subsystem;

— a symbolic differentiation subsystem;

— a symbolic integration subsystem.

The structure of the knowledge engine is shown in Fig. 2.

The processing subsystems realize the main functional facilities of STRAMS
listed in Section 2. Each of these subsystems is a relatively autonomous knowledge-
based system with its own knowledge base and problem solving program. The
typical structure of the processing subsystems of STRAMS is presented in Fig. 3.

KNOWLEDGE ENGINE
PROBLEM SOLVER

INFERENCE CONTROL BLOCK I

KNOWLEDGE BASE

SIMPLIFL- EQUATION oo SYMBOLIC C T Tscmmara |

CATION SOLVING TATION INTEGRATION
E

SUBSYSTEM SUBSYSTEM ABSTETIAL SUBSYSTEM GENERALIZED RULES

REWRITE RULES
Fig. 2. Structure of the knowledge engine Fig. 3. Structure of the
processing subsystems of
STRAMS

The knowledge base of each processing subsystem includes the set of general-
ized rules and rewrite rules that have been used in solving the corresponding type
of problems. Additionally, the knowledge bases of the equation solving subsys-
tem and the symbolic integration subsystem contain the corresponding schemata
accumulated by the learning module of STRAMS during the system’s work.
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The problem solver of each processing subsystem realizes the search in the state
space of the current problem of the corresponding type. This problem can either be
formulated by the user or be generated by some of the processing subsystems. In the
role of operators in the state space search the problem solvers use the schemata and
generalized rules available at the moment. The application of the chosen generalized
rules is performed by the generalized rule interpreter supported by the environment
KAM. Some additional search control knowledge has also been used by the problem
solvers. It is formulated as a result of some experiments carried out with the
particular processing subsystems.

The inference control block realizes the interaction between the knowledge
engine and the learning module of STRAMS. The second main function of the
inference control block is to manage the interaction between the particular pro-
cessing subsystems (for example, all processing subsystems generate canonization
problems that are solved by the simplification subsystem).

In terms of the functioning mechanisms of the mathematical problem solving
engine, the method of work of the problem solvers is most interesting. The par-
ticular problem solvers are adjusted copies or simplified versions of one and the
same prototype (the control block of the inference engine of KAM [6]). Therefore
they perform modifications of one and the same algorithm. The differences are in
the kind of the used operators (only generalized rules or schemata and generalized
rules) and in the form of the used search control knowledge.

Let us consider as an example the method of work of the problem solver of
the equation solving subsystem. There are at least two reasons causing our special
interest to this subsystem:

e its problem domain is appropriate for the application of the schemata formal-
ism. Therefore it can do a kind of learning based on the capability for discovering
and memorizing the schemata used in the problem solving process;

e it is well known [7] that the state space of some of the types of equations
admissible in STRAMS is enormous (includes of the order of 10'° states). Therefore
the use of some strategic knowledge in order to avoid the exhaustive search is
necessary from the point of view of the practical applicability of STRAMS.

The discussed problem solver uses for search control purposes a special evalu-
ation function Complezity(eq,var). Complezily(eq,var) is a linear combination of
the number of occurrences VarOccur{eg,var) of the symbol var in the equation egq
and the sum of the nesting depths Common VarDepth(eq,var) of var in eq:

Complezity(eq, var) = c1VarOccur(eg, var) + c;CommonV ar Depth(eq, var).

This function is used in the examination of all equations. Initially, the value of
Complezity(eg,z), where eq is the given equation and z is the unknown, is computed
and the variable initial complezity_factor gets this value:

initial_complezity_factor = Complenity(eq,z).

Then the problem solver does not explore all equations eq’ in the state graph
of eq that do not satisfy the so-called simplicity criterion:

fisteps_done). Complezity(eq’,z)-initial complezity factor

< cg.amitial_complezity factor,
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where steps_done is the number of transformations reducing eq to eq’. In this way
the simplicity criterion plays the role of a heuristics for pruning a part of the state
graph of the current equation in order to avoid the exhaustive search.

Another heuristics used for search control purpose states that the application
of a key generalized rule as an operator can significantly shorten the path to the
solution. Therefore, when a key generalized rule is applied at a given step, the
discussed problem solver continues its work with the exploration of the equation
obtained as a result of the application of this generalized rule. If no key generalized
rule can be applied at the current step, the problem solver looks for a proper schema
leading to the applicability of a key generalized rule.

The general form of the function Complezity(eq,var) and the simplicity crite-
rion, the definition of the function f(n) and the concrete values of the parameters
c1, €2, c3 are suggested in [9).

Let us assume that an equation eq has to be solved with respect to the symbol
var. During its working cycle the discussed problem solver supports a list of equa-
tions belonging to the state graph of eq that have to be explored. We shall refer
to this list as eq_list and to its first element as currenf_eq. Then the algorithm of
work of our problem solver can be formulated in general as follows.

S1. Initialize eq_list to the list containing only eq. Initialize initial complezity_
factor to Complexity(eq,var).

S2. If eq list is the empty list, then report failure and quit.

S3. If the equation current_eq is solved, then return curreni_eq and quit.

S4. If current_eq does not satisfy the simplicity criterion, then remove current_
eq from eq_list and go to S2.

S5. If a key generalized rule i1s applicable to curreni_eq, then replace current_eq
in eq list by the equation obtained as a result of the application of the found
generalized rule to curreni_eq. Go to S3.

S6. If an existing schema is applicable to current_eq, then modify eq list by
analogy with S5 and go to S3.

S7. Remove current_eq from eq list and add to the end of eq list the equa-
tions that can be produced by the application of all non-key generalized rules to
current_eq. Go to S2. .

Whenever an equation is successfully solved, an attempt for the extraction of
new schemata is made. For that purpose the inference control block activates the
learning module of STRAMS. The learning module analyzes the used sequence of
generalized rules, constructs the new schemata candidates (in accordance with the
definition of the schema concept) and merges them with the set of existing schemata.
In this way STRAMS does a kind of unsupervised learning by accumulation in the
corresponding knowledge base of new, successfully applied schemata that can be
used in its further work.
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5. IMPLEMENTATION OF STRAMS

The implementation of STRAMS has been realized using the environment
KAM. The program modules of the mathematical problem solving engine of
STRAMS are either exact copies or simplified versions of some of the program
modules of KAM. The knowledge bases of the processing subsystems of
STRAMS are built by direct recording of the corresponding rewrite rules and gener-
alized rules in internal form. The knowledge base of the simplification subsystem
includes rewrite rules and generalized rules described in [8, 9], and the knowledge
base of the equation solving subsystem includes rewrite rules and generalized rules
described in [9].

The explanation module of STRAMS is a copy of the module of the same name
of KAM. The interface module and the control block of STRAMS are developed
especially for the purpose. All program modules of STRAMS are written in Com-
mon Lisp.

6. SUMMARY AND CONCLUSION

STRAMS is a knowledge-based CAS with the following main features:

e it can solve various types of problems using a set of methods and techniques,
traditionally taught in the secondary school and in the introductory university
courses;

e it is able to do a kind of learning and explanation generation,;

e it can easily be integrated with other software packages;

e its functional facilities can easily be extended. '

These features of STRAMS determine its potential applicability in building
expert systems, intelligent tutoring systems etc.

Our current activities are directed to the improvement of the user interface of
STRAMS and to the extension of its functional facilities.
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In this note the variances of thé basic random fields — temperature and heat flux —
in a dilute dispersion of spheres with a small volume fraction ¢ € 1, subjected to a
constant macroscopic temperature gradient are studied. The basic result is an estimate
on the ¢2-term of these variances, which includes the well-known c?-term of the effective
conductivity, extensively studied in the literature.
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1. INTRODUCTION

The aim of this note is to report some preliminary results concerning field
fluctuation in a dispersion of nonoverlapping spheres. The heat conduction context
is chosen, above all, for the sake of simplicity. A similar study of any transport
phenomenon through the medium in the linear case can be performed along the
same line.

Let us recall first how the problem is stated. Assume we have an unbounded
matrix material of conductivity £m throughout which filler particles of conductiv-
ity #; are distributed in a statistically isotropic and homogeneous manner. The
random conductivity field x(x) of the medium takes then the values km or «y, de-
pending on whether x lies in the matrix or in a particle, respectively. If G denotes
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the prescribed macroscopic temperature gradient imposed upon the medium, the
governing equations of the problem, at the absence of body sources, read

V-q(x) =0, q(x)=«k(x)Vi(x), (1.1a)

under the condition

(Vo(x)) = G (1.1b)

which plays the role of a “boundary” one. In equations (1.1a) q(x) is the flux
vector and f(x) is the random temperature field. Hereafter (-) denotes ensemble
averaging. ;

The random problem (1.1) possesses a solution, in a statistical sense, which
is unique under the natural condition 0 < k; < &(x) < k2 < o0, see [11]. This
means, let us recall {1], that all multipoint moments of the temperature field 6(x),
and the joint moments of 6(x) and x(x), can be specified by means of the known
moments of the conductivity field. In particular, among the joint moments, the
simplest one-point moment defines the well-known effective conductivity «* of the
medium through the relation

Q = (4(x)) = (K(X)VH(x)) = K*G (12)

(having assumed statistical homogeneity and isotropy). Note that the definition
(1.2) of the effective conductivity k* reflects the “homogenization” of the problem
under study, in the sense that from a macroscopic point of view, when only the
macroscopic values of the flux and temperature gradient are of interest, the medium
behaves as if it were homogeneous with a certain macroscopic conductivity «*. This
interpretation explains why x* and its counterparts, say, the effective elastic moduli,
have been extensively studied in the literature on homogenization. There one can
find a number of rigorous or approximate schemes of their evaluation, especially, in
the context of mechanics of heterogeneous and composite media, see, e.g. [9, 21, 14]
et al. However, k™ 1s only a tiny part of the full statistical solution of the random
problem (1.1). Moreover, its evaluation cannot be torn away from the full statistical
solution of (1.1), i.e. of specifying all needed multipoint moments, as pointed out for
the first time by Brown [8]. (The latter fact explains the failure of all schemes that
try to determine solely the effective property «* without trying to solve the whole
stochastic problem (1.1).) Besides, there are plenty of reasons why one should pay
much more attention to other statistical characteristics of random fields like 8(x)
in (1.1), that appear in problems in random heterogeneous media. For instance, in
the context of waves in random media or turbulence phenomena, one of the most
important quantities is the variance of local fields, connected with the square of its
fluctuation, see [1].

The (undimensional) variances, which we shall discuss hereafter, are defined

s _ (Ve 5 (ld®)P)

Ve = ¢z YT gz ¢

the primes denote in what follows the fluctuating parts of the respective random
fields, so that, in particular, V#'(x) = V#(x) — G, and hence (V6'(x)) = 0.

as

(1.3)
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It is noted that for any two-point medium the variances 0%, and ag are simply

interconnected. Indeed, since the conductivity field x(x) takes only two values, «;
and k,,, we have

K2 (x) = (kg + Km)K(X) = Ky him
and hence
(a’(x)) = (nz(x)IVO(x)|2) = (kKf + Km)&"G? — K1k (lVﬂ(x)P),
having used (1.2). A simple algebra yields eventually

a_ _Krkm o (KT — k7)Y~ Km)
¢ T T gr2 Ive — K2 : (1.4)

o

Let us point out immediately that the study of variances in particular, and
of the multipoint moments in general, is much more complicated than that of the
effective properties due to the fact that, as a matter of fact, no variational principles
for the former have been proposed and applied in the literature. (Though, see the
book [5, p. 143], where an extremely concise exposition and some ideas along this
line are indicated.)

To the best of the authors’ knowledge an investigation of the variances, in
addition to the effective properties in the scalar conductivity context, was initiated
by Beran et al. [2, 4, 3]. In particular, Beran [2] obtained bounds on the variances
through the effective properties, investigated in great detail in the literature. The
Beran’s estimates are quite crude and this is inevitable since they are applicable to
any statistically homogeneous and isotropic medium.

More restrictive bounds can be obtained only if additional information about
the medium constitution is available and the needed random fields are specified at
least to a certain extent. This is the case with random dispersion of spheres which
we shall study in more detail later on.

The above mentioned results of Beran indicated that there may exist more
intimate connection between variances and effective properties. Indeed, as shown -
independently by several authors [6, 7, 15], the variance is simply connected to the
derivatives of the effective conductivity K* = k*(ky, £m ), treated as a function of the
material properties Ky, k., of the two constituents in a binary medium. This is an
interesting and important result, but its practical application is limited by the fact
that very rarely rigorous analytical formulae for k*(ky, km) are known for realistic
random constitution. Rigorous bounds on k*(kj, &m) are well-known, of course,
but they obviously cannot supply any estimates for the appropriate derivatives.

In the present note we shall employ another method for studying variation
in random dispersions. Namely, we shall use the fact that for the latter the full
statistical solution of the problem (1.1) can be conveniently constructed by means
of the functional series approach, see [10, 16, 17]. Moreover, the first two kernels
of the series can be explicitly found, which results, in particular, in a formula for
the needed variances, which is ezact to the order ¢?, where ¢ is the volume fraction
of the spheres. Then the observation that some of the terms in the appropriate
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formulae are sign-definite produces a bound on the variances which, as it turns out,
can be simply expressed by means of the ¢?-coefficient of the effective conductivity.
The latter, as it is well-known, represents a quantity extensively studied in the
literature.

2. C*-SOLUTION OF THE BASIC PROBLEM (1.1) FOR DISPERSIONS OF
SPHERES

To get certain rigorous results for the variance, one should somewhat narrow
the class of two-phase random media. To this end, consider in more detail here
a random dispersion of spheres as a typical representative of the wide and im-
portant class of particulate microinhomogeneous media, extensively studied in the
literature.

Let us recall first the so-called virial (or density) expansion of k* in powers of
the volume fraction ¢ of the spheres:

*

=14ac+ac®+--- (2:1)

Km

Note that hereafter we shall try to cover simultaneously both 3-D case (dispersion
of spheres) and its 2-D counterpart — a matrix containing an array of circular
and aligned fibers subjected to a macroscopic gradient perpendicular to fiber axes.
Depending on dimension, a will denote either the sphere radius (3-D) or the radius
of the cylinder cross-section (2-D). For the volume fraction ¢ of the spheres we have
¢ =nV,, Vo = 3ma® in the 3-D case, or ¢ = nSy, S, = ma® in 2-D, n is the number
density of the spheres or of the fibers.

As it is well-known, the coefficient a; in (2.1) is the only thing rigorously
calculated by Maxwell {20] in his classical theory of macroscopic conductivity of a
random dispersion. The Maxwell result reads

(%]
A (d = l)nm ’

hereafter d =3 in the 3-D case and d = 2 in the 2-D-case.
For higher sphere fraction, the Maxwell theory [20] yields the well-known ap-
proximate relation

ay =dfy, pBq= = (k] = K5 = Km; (2.2)

LA dB4c

s 1 — Bac
wl_,.:i;he so-called Maxwell (or Clausius-Mossotti) formula [14]. The latter produces
in’turn the following approximation for the c?-coefficient, namely:

(2.3)

a;=dp:, d=2,3. : (2.4)

The rigorous evaluation of a; has attracted the attention of many authors,
because this is the simplest case in which the multiparticle interaction shows up in
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a nontrivial way. We refer here to the papers [22, 13, 12, 16] et al., where a, has
been expressed in a closed form, making use of the zero-density limit go(r) of the so-
called radial distribution function for the spheres, and of the one- and two-inclusion
fields for the conductivity problem under study. (Recall that the radial distribution
function g(r) = fo(r)/n?, where r = |y1 — y2/|, so that g(r) = go(r) + o(n) in the
A dilute limit n — 0; fa(r) = fa(y1—y2) denotes the two-point probability density for
the set of sphere centers.) In the 2-D case (fiber-reinforced material), the coefficient
a; has been evaluated analytically by the authors [19], making use of the earlier
reasoning of Peterson and Hermans [22].

As already mentioned, the full statistical solution of the problem (1.1) for a
random dispersion can be conveniently constructed by means of the functional series
approach, see [10, 16, 17] for details. In particular, as shown by one of the authors
[16], the temperature gradient fluctuation in the dispersion of spheres, correct to
‘the order ¢?, has the form of the truncated functional series:

VG'(x) :/V:Tl (x - y)D'(pl)(y) dy

(2.5)
where | B i o '

DY = ¢/ (x) = ¥(x) — n, | (2.6)

DP(y1,¥2) = $(y1)lb(y2) ~'6(v1 — ¥2)] 2.7)

—ngo(y1 — y2)[¥'(y1) + ¥'y2)] - n 2g0(y1 — ¥2),

and the kernel T5(y;,y2) is a symmetric function of its arguments y; and y,.
Recall that n is the number density of the spheres, so that their volume fraction is

¢ =n3ma®in 3-D and ¢ = n7a? in 2-D. The integrals hereafter are over the entire

space R? if the integration domain is not explicitly indicated. In (2.5) to (2.7)
P(x) = E&(x ~ Xo)

is the random density field of Stratonovich [23], generated by the random set {x.,} :
of sphere centers. The fields D(l) D(z) and the constant field D( ) = 1 constitute
a c?-orthogonal family, i.e.

<D'(pl)> — <D§o2)> — <D:(;;1)D’(ﬁ2)>'= o(c?), (2.8)

which means that in the c*>-analysis performed below the averaged values in (2.8)
can be neglected. We have also ’

(00D ) = b =rRas =y, Rl =1-ail)

<~D1(/’2 ((v1,2)D '(.bz)(y‘*’ Y4)> = n?go(y1 — ¥2)(813624 + 14823),
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where 6;; = 6(y: —y;), and go is the above mentioned low-density limit of the
radial distribution function for the set of sphere centers, which is the only statis-
tical characteristics of the dispersion needed in the c?-statistical solution for the
temperature gradient. The relations (2.9), as well as all formulae in the sequel, are

correct to the order ¢? only.
The kernel T} that enters (2.5) has the form

Ty(x) = Tio(x) + nTic(x). (2.10)

In (2.10) Tyo(x) is the “one-sphere” solution, i.e. the disturbance field super-
imposed by a single spherical inclusion of radius a (located at the origin) on a
temperature field in the matrix with constant gradient G at infinity. Recall that

Tio(x) solves the equation
kmAT10(x) + [£]V - {h(x)[G - VTw]} =0 (2.11a)

and hence
Tio(x) = dB4G - V(x), (2.11b)

where p(x) is the Newtonian potential for a sphere (in 3-D) or for a circle (in 2-D)
of radius a; h(x) denotes the characteristic function of a single sphere (or disk in
2-D) centered at the origin, and 8; was defined in (2.2). As it is well known, the
potential ¢(x) solves the equation :

Ap(x) + h(x) =0, : (2.12)
which implies, in particular, that
h(x)VTm(x) = —dﬂdh(x)G, AT}O(X) = —dﬂdV . (h(x)G) (213)

To specify T11(x), we should first note that to the order ¢? the kernel 75 in
(2.5) equals Tap. The latter solves the equation

20m AToo(%, % — 2) + [£] V - {2[h(x) + h(x — 2)] VT20(x,x — 2)
4+ h(x)VTio(x — 2) + h(x — 2)VTio(x)} = 0. (2.14)

The differentiation hereafter is with respect to x, and z plays the role of a'parameter.
Hence

2T50(x — 2;X) = T?)(x;2) — To(x) — Tio(x — z) (2.15)

with T(®)(x; z) denoting the “two-sphere” solution, i.e. the disturbance to the tem-
perature field in an unbounded matrix, introduced by a pair of identical spherical
inhomogeneities with centers at the origin and at the point z, |z| > 2a, when the
temperature gradient at infinity equals G. Thus

km AT (x;2) + (K] V - {[h(x) + h(x - 2)] [G + VT (x; z)]} =0, (2.16)
which is the counterpart of the “single-sphere” equation (2.11a).
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The coefficient Ti1(x) can be represented as

Tu(x) e ,BdVaTm(x) + 2L20(x)’ L20(x) — go(z)Tzo(x =% X) dz. (217)
|Z{>2a

To calculatg t}xe effective conductivity x* through the kernels 77 and T3, note
that the conductivity field #(x) of the dispersion has a form, similar to (2.5), namely,

r(x) = (k) + £'(x), k'(x) = [m]/h(x - Y)D‘(pl)(y) dy. (2.18)

That is why, inserting (2.5) and (2.17) into (1.2) and using the orthogonality of the
fields Dfpl) and D,(f), see (2.8), give

K'G = (k(x)V8(x)) = (k) G + (K'(x)V¥'(x))
» (2.19)
= (k) G + nx] / h(x)VS(x) dx

with the function
S(x) = Ti(x) - n/T1(x — ¥)Ro(y) dy = So(x) + nSi(x), (2.20)

so that, due to (2.10),

So(x) = Tho(x),  Si(%) = Ty (x) / Too(x - y)Ro(y)dy.  (2.21)

Inserting (2.10) and (2.21) into (2.9) and comparing the result with (2.16) give
for the virial coefficients a; and ap:

R (1 — ﬂd);[ci]- =df3, (222)
which indeed coincides with the exact value, given in (2.17), and
ay =dBi+ay, ayG=2 I[cﬂf/% /h(x)VLgo(x) dx. (2.23)
m Vg

Note that the integrals in (2.17) and (2.23) are conditionally convergent, the
mode of integration being extracted in the course of the statistical solution of the
problem (1.1), see [16, 18] for details and discussion. Namely, one should integrate
first with respect to the angular coordinates at fixed » = R and only then with
respect to the radial coordinate R. This mode of integration will be tacitly used
hereafter to avoid convergent difficulties for some of the integrals in Section 4.

Let us point out finally that though the formula for @) in (2.23) is written
for a 3-D dispersion, it holds as well in the 2-D case, with the only change that
the volume V, of the inclusions is replaced by their area S, and the integrals are
two-tuple. The same will hold true in all formulae in the sequel. Moreover, a
closed form analytic formula for @ in the 2-D case was derived, let us recall, by

the authors in [19].
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3. C>-FORMULA FOR THE VARIANCES 0%, AND ¢},

Insert the representation (2.5) into the definition (1.3) of the variance. Due to
the orthogonality of the fields D,E,,l) and Dfpz), see (2.8), we get

1
Tve = YeF] (A1 + Az), (3.1)
where

A =//VzT1(x ~yy) V:Ti(x— yz)<D$)(yx)D.(pl)(yz)> dyidys,  (3.2)

A =////VzT2(x—.Y1‘,x*Y2)'Vsz(x*Y:s,x-'Yq)

(3.3)
X <D,(,,,2)(y1,y2)0.(¢,2)(y3,)'4)> dy; dy» dys dya.
Note that
o (2) G
Az = I VeTa(x =y, X~ )’2)D¢, (¥1,y2) dy1 dy: I )
which implies immediately that Az > 0, and hence
1

T%e 2 5,3-41- (3.4)

An evaluation of the term A; yields thus the lower estimate (3.4) of the variance.

Note that the evaluation of A; is much easier than that of A;. The reason, as
we shall see below (Section 4), is that to evaluate A; only the single sphere solution
Tyo is needed together with the values, assumed known, of the c2-term ay in (2.16).
At the same time.A, involves already the double-sphere field 7(?) in a nontrivial
way, which essentially complicates the investigation. Note also that the term Aj
has the order O(c?) (see (2.9)), so that the lower estimate (3.4) gives correct to the
order O(c) results in the dilute case ¢ < 1. Hence from (3.4) the exact value of the
c-coefficient A, see (3.12), and a lower bound on the c®-coefficient A3 in the virial
expansion, see (4.5) below, of the variance 0%, will follow in particular,

4. EVALUATION OF THE TERM A,
Using (2.9) into (3.2), we get
Ay = n/VTl(x) - VS(x)dx (4.1)

with the function S(x) defined in (2.20), and hence due to (2.10) and (2.21)
A] = n(.Au + Tl.A12), (42)
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Ay = f VTy0(x) - VTio(x) dx, (4.3)

Ajp = 2/VT10(x) - VT (x) dx —/VTm(x) -/V,Tlo(x —y)Ro(y)dydx. (4.4)

Let
09s = Arc+ Apc® + - -, o7 = Bic+ By’ + -+ (4.5)

be the virial expansions of the variances, similar to the classical expansion (2.1) for
the effective conductivity. The leading terms A; and B; can be easily found, since
this requires an evaluation of the integral A,; from (4.3). To this end integrate by
parts in (4.3), use (2.13), and once again integrate by parts

.A]_l = —/Tlo()() . ATIQ(X) dx = dﬂdG /h(x)VTw(X)‘ dx,

so that using (2.13) once more gives
A =diviGE.

Together with (4.2) this gives the leading terms of the virial expansions (4.6) of the
variances, namely,

Ay = faay =dfi, By=d(d—1)83 = (d- 1)A:. (4.6)

Turning to the evaluation of A;», we start with the first integral in (4.4).
Integrating by parts and using (2.13) together with the formula (2.15) for T}, we
have

/VTm(X) : VT“(X) dx Z/ATlo(X)Tn(X) dx = -dﬂd/V . (h(X)G)Tu(X) dx
ot —dﬁdG -/-h(x)VTll(x) dx = -—dﬂdG -/h(x) [ﬂdVa_VTlo(x) + QVLgo(x)] dx

= dB3V2G? - 2dB4G - / h(x)V Lyo(x) dx.

The second term in the last formula is connected with the c2-value as of the
effective conductivity, see (2.23), so that

dKkm
K+ (d—1

/VTm(x) -VTii(x)dx = (Bg - P (ag — dﬂg)) dV2iG?.  (4.7)

The second integral in (4.4) is similarly simplified through integration by parts,
and applying (2.13):

/VTw(x) -/V,Tm(x—y)Ro(y) dydx = —dBdG-//VTlo(x)h(x—y)Ro(y) dydx
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= 282G . / / h(x — y)Ro(y)VVe(x) dydx - G, (4.8)

having used the representafion (2.11b) of the single sphere solution T1¢(x) through
the Newtonian potential of the sphere. But, due to the isotropy of the latter, the
integral in the right-hand side of (4.8) represents a second rank isotropic tensor, so
that

[ [ hx = ¥)Ra(3) 9 Vp(x) dyax = 1 (4.9)

and, upon contraction,

vd = [ [hx = y)Ro(y)ap(x) dydx = - [ [ hx = y)hx)Ro(v) dyds,

see (2.12). The product h(x — y)h(x) does not vanish however only in the sphere
l¥| < 2a, where Ro(y) = 1 — go(y) = 1, due to the nonoverlapping assumption
(go(y) = 0if |y| < 2a, since the spheres are forbidden to intersect). Thus yd = —V?
and from (4.8) and (4.9) it follows that

/ VTio(x) - / V:Tio(x — y)Ro(y) dydx = —dB3 V2G> (4.10)
Combining (4.7) and (4.10) into (4.4) and using (3.1) and (2.5) give eventually

Arz = (dBF = 2(1 ~ Ba)as) VEG?.

From (3.4), (4.4) and the last formula, as it was already discussed, immediately
follows the lower bound

A1z < Az, Apz = dB3 —2(1 — Ba)as, (4.11)

for the c2-coefficient of the variance ¢2,. Using (1.4) gives in turn the following
upper bound for the respective coefficient of the flux variance ag, namely,

By < Bia, Bia=df3 [d(1-2a+2afs) ~ o+ [2(1 - fa)a+a—1]as. (4.12)

5. CONCLUDING REMARKS

The estimates (4.11) and (4.12) for the ¢-coefficients in the virial expansions
(4.5) of the variances represent the central result of the present note. They have
been obtained without using variational arguments — instead the full statistical
solution of the problem (I.1) has been appropriately exploited. The estimates
account for the statistics of the dispersion through the well-known and extensively
studied in the literature c?-coefficient as of the effective conductivity. Moreover,
they remain finite for high-contrast media, when the ratio @ = xy/km goes to 0
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or co. A more detailed investigation of the estimates (4.11), (4.12) and of their
implications will be performed elsewhere.
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METHOD OF VARIATIONAL IMBEDDING

FOR IDENTIFICATION OF HEAT-CONDUCTION
COEFFICIENT FROM OVERPOSED BOUNDARY DATA

TCHAVDAR T. MARINOV, CHRISTO I. CHRISTOV

We consider the inverse problem of identifying a spatially varying coefficient in diffusion
equation from overspecified boundary conditions. We make use of a technique called
Method of Variational Imbedding (MVI) which consists in replacing the original inverse
problem by the boundary value problem for the Euler-Lagrange equations presenting
the necessary conditions for minimization of the quadratic functional of the original
equations. The latter is well-posed for redundant data at boundaries. The equivalence
of the two problems is demonstrated. In the recent authors’ works difference scheme
and algorithm have been created to apply MVI to the problem under consideration. In
the present work we show that the number of boundary conditions can be decreased,
replacing them with the so-called “natural conditions” for minimization of a functional.
A difference scheme of splitting type is employed and featuring examples are elaborated
numerically.

Keywords: inverse problem, coefficient identification, diffusion equation
1991/1995 Math. Subject Classification: 35N10, 35R30, 65R30, 65N06

1. INTRODUCTION

The attention attracted by the ill-posed (inverse, incorrect, etc.) problems
constantly increases during the last decade because of their practical importance.
The optimization of technological processes and identification of material properties
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yield as a rule mathematical problems in which initial or boundary conditions are
missing (or overdetermined), while additional information is available for the needed
solution (or additional unknown functions are present).

At the same time the incorrect problems have a great potential for inciting
the development of the applied mathematics itself. According to [1}: “The analysis
of inverse problems is of relevant importance for mathematical modelling and, in
general, for applied mathematics. With this in mind, the applied mathematician
should attempt the solution of problems without artificial simplification, which may
obscure the information he hopes to obtain from the real system.”

Naturally, the whole variety of the mentioned “non-standard” problems goes
well beyond the framework of the Hadamard’s [10] definition of incorrect problem.
His definition does not cover all of them and is pertinent only to stability of a solu-
tion. For this reason, when we speak of “inverse problems,” we mean the whole set
of problems which are unusually or inconveniently posed. To distinguish from the
problems for which Hadamard’s definition applies, we shall call the latter “incor-
rect in the sense of Hadamard.” In this instance we shall follow the classification
from [1].

The work of Hadamard spurred significant activity for creating regularizing
procedures (see, e.g., [15]) for the problems that are incorrect in the sense of
- Hadamard, e.g. for smoothing the data in order to evade the instability provoked by
the pollution of the data. Such an approach has an important implication for the
practical problems. At the same time the very notion of replacing the ill-formulated
(e.g., ill-specified and inverse) or ill-posed by a well-formulated mathematical prob-
lem is of not lesser importance. Indeed, if one succeeds in doing so, one arrives at
a problem that is also correct in the sense of Hadamard and then it is automati-
cally regularizing the data if some pollution is present. To this end the Method of
Variational Imbedding (MVI — for brevity) was proposed by the second author of
the present paper. The idea of MVI is to replace an incorrect problem with the
well-posed problem for minimization of quadratic functional of the original equa-
tions, i.e. we “embed” the original incorrect problem in a higher-order boundary
value problem which is well-posed. For the latter a difference scheme and numerical
algorithm for its implementation can easily be constructed.

The inverse problems for diffusion equation can be roughly separated into three
principal classes. The first 1s the coefficient identification from over-posed data at
the boundary; the second is the identification of the thermal regimes at one of the
spatial boundaries from over-posed data at the other one (the parabolic version of
the so-called analytical continuation); the third is the reversed-time problem for
identification of initial temperature distribution from the known distribution at
certain later moment of time. The second problem appears to be the most stud-
ied, due to the successful technique proposed in [14, 11}, called “quasi-reversibility
method” (see also [15]). Apart from being inyerse, the second and the third prob-
lems are also incorrect in the sense of Hadamard (see [10]). The first one is merely
inverse without being incorrect in the strict sense of amplifying the disturbances.
The problem then is how to create the appropriate algorithm. This is the aim of
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the present paper. We make use of the above mentioned MVI technique, which
consists in replacing the original inverse problem by the boundary value problem
for the Euler-Lagrange equations for minimization of the quadratic functional of
the original equations.

The first application of MVI was to the problem of identification of homoclinic
trajectories as an inverse problem [2] (see also the ensuing works [8, 7]). The way to
treat the classical inverse problems by means of MVI was sketched in [3-5]. In the
recent authors’ work [9] difference scheme and algorithm have been created to apply
MVTI to the problem under consideration. In the present work we show that the
number of boundary conditions can be decreased replacing them with the so-called
“natural conditions” for minimization of a functional. A similar case has already
been treated in [12], where the identification of the boundary-layer thickness was
done by means of MVI.

2. PROBLEM OF COEFFICIENT IDENTIFICATION

Consider the (1+1)-D equation of heat conduction

_ Ou 0 du
Au = 5 ¥ 52 [/\(1:)5;] = {0, (2.1)

in the domain, shown in Fig. 1. The initial and boundary conditions are

u |‘=0= uo(z), (2.2)
ut,0) = f(t), u(t,1) = g(t), (2.3)

that are to match continuously, i.e. |
£(0) = ug(0), g(0) = uo(?). - (29)

The initial-boundary value problem (2.1)—(2.3) is correctly posed for the tem-
perature u(t,z), provided that the heat-conduction coefficient A(z) is a known

positive function.
Suppose that the coefficient A is unknown. In order to identify it, one needs
more information. We consider here the case when a “terminal” condition is known:

u =2} (2.5)
=
There can be different sources of such an information, e.g. the temperature
in some interior point(s) as function of time, fluxes at the boundaries, etc. In the
recent authors’ work [9] we consider the case when the heat fluxes at boundaries
are known functions of time, namely,

=4 . (26)

z=l

202 =, a0 5

=0
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The goal of the present work is to show that the number of boundary conditions
can be decreased as compared to (2.6). More precisely, we shall consider here the
problem when only the values of the unknown coefficient A(z):

AM0) =22 XD =), (2.7)

are prescribed in the boundary points.

3. METHOD OF VARIATIONAL IMBEDDING

We replace the original problem (2.1) by the problem of minimization of the
following functional:

l

Ou 6u6/\ 8%u]’ :
F= //.Au dz dt = //[ 81: 31: )\(:c)—(%—z] dz dt = min, (3.1)

0 0

where u must satisfy the conditions (2.2), (2.3). The functional Z is a quadratic
and homogeneous function of Au and hence it attains its minimum if and only
if Au = 0. In this sense there is one-to-one correspondence between the original
equation (2.1) and the minimization problem (3.1).

The necessary conditions for minimization of (3.1) are the Euler-Lagrange
equations for the functions u(t,z) and A(z). The equation for u reads

u 0 d?
- a—tz‘ + 5;)(2?)5?2-/\(3)5; =

This is an elliptic equation of second order with respect to time and hence it
requires two conditions at the two ends of the time interval under consideration.
These are the initial condition (2.2) at ¢ = 0 and the “terminal” condition (2.5)
at t = 7T'. It is of fourth order with respect to the spatial variable z and its
solution must satisfy the four conditions at the spatial boundaries -— the original
boundary conditions (2.3) and the so-called natural conditions for minimization of
the functional Z:

(3.2)

Au = —%% E’% [/\(x)%:s] =0 for =0, (3.3)
The problem is coupled by the Euler-Lagrange equation for A, namely (see [4]):
%F(z)g—:- + G(z)A = K(z), (3.4)
where
‘ T T T .
F(z) = /u,z, dt, ) = /u,u,n dt, K(z)= /ut,u, dt, (3.5)
0 0 0

with the boundary conditions (2.7).
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4. DIFFERENCE SCHEME

4.1. GRID PATTERN AND APPROXIMATIONS

In order to get second-order approximations of the boundary conditions, we
employ a staggered mesh in the spatial direction, while the mesh in the temporal
direction is standard (see Fig. 2). For the grid spacings we have h = I/(N — 3),
T =T/(M — 1), where N is the total number of grid lines in the spatial direction,
M — in the temporal diréction, and the grid lines are defined as follows:

Ep={]=2h, j=LioN; L=[{~1), d=l;..,M, (4.1)
We employ symmetric central differences for the operators
Xj— Aj—1+ Aj A;
Azzti; - ——;121 Ujj—1— J—;lz""_]ui,j + ";%ui,j-i-l
0 d '
= —\z)= h? 4.
ax/\(z)axu(t,:c)+0( ) (4.2)
Aj—2Aj - Aj—2+2X1 4+ Aj)Aj-
Azz::c:rui,j déf 2 ,224] lui.j°2-( 1= ‘Jh4l J) ! lui,j—l
o1+ A)ZHXI_ A2 (Aisi 20+ A4 R ik
4 ( J)h4 3= _'Lui,j—( §=1 Jh4 J+1) J+1ui,j+1+ JZ; Jui‘j+2
3} 0? 0
S () Sl V¥4 M3 h? 4,
=A(@) 5 @) ult,2) +O(RY) , (43)

where u; ; = u(t;, ;) and A; = X(z; + h/2).
The integrals, entering the equation for the diffusion coefficient, are approxi-
mated to the second order of accuracy as follows:

def |1 fu ai:N? 1 Cusg TS s it e Y
F"‘T[z( o )+2( oh )+Z( %h )}

1=2

T
- /(u,)2 FO(2+RY), j=1,2,...,N=2 (44)
0 : '

G der [ (v m Uy (Buiee = 3un41 + 31, —th o
=7 9 h h3

1 fupmj1—um,j up,j+2 — Sumj+1 + Jumj — “M.j—i)
2 h h3

M-

n Zl Ui j41 — Uiy Ui j+2 — 3ui,j+1 4 3ui,j — Ui j-1
e h h3
i=

T
= /u,u,u + 0(1"2 + hz), 2528 ol =2 (4.5)
4 : ,

£
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Fig. 1. Sketch of the domain Fig. 2. Grid pattern

2 2
def 1] fupmipi—um; " _ (U141 = Y1 ‘ 5 :
11,..2[( B ) ( . )] j=23,...,N-2. (4.6)

4.2. THE SCHEME FOR THE “DIRECT"” PROBLEM

In order to gather “experimental” data for the “terminal” condition (2.5), we
solve numerically the “direct” initial-boundary value problem (2.1)-(2.3). To this
end we use a two-layer (Crank-Nicolson type) implicit difference scheme with second
order of approximation in time and space, namely,

ui+ 11j -.— .uiij
T

1
=5 (Azztigrj + Azzuij) (4.7)

fori=1,....M —=1and j=2,...,N — 1. The algebraic problem is coupled with
the difference approximations of the initial and boundary conditions

upj = uo(®;), 41,2 = f(tir), wipr,N-1 = g(tig). (4.8)

4.3. THE SPLITTING SCHEME FOR THE FOURTH-ORDER ELLIPTIC EQUATION

The particular choice of scheme for the fourth-order equation is not essential
for the purposes of the present work. We use the iterative procedure based on
the coordinate-splitting method because of its computational efficiency. The most
straightforward approximation is the following:

1
- ~1—_-2- (u,‘+1,j — 2ug,,- + ui—l.j) + Annu,‘,j = (4.9)
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Upon introducing a fictitious time, the equation (4.9) adopts the form of a parabolic
difference equation for which the implicit time stepping reads

n+l _ . n.
ui,j u' = A i n
7 Uu i,] xzrzu;’,j; (410)

where the notation A, stands for the second time difference, which enters (4.9).
Then the splitting is enacted as follows:

L S P =t = A WP -l (442)
o == Att“i,j - Axx.cxui,j’ zzzz |U; ; U; .

where 4, ; is called “half-time-step variable.” The latter can be readily excluded,
which yields the following O(c?) approximation of (4.10):

un+1 —ul.
B ) 2 —_ Attu:}‘.’ = Azzzzu?.j, (4-12)

a

where B = (E ~02A4 Ay 522 is an operator whose norm is always greater than one.
This means that the splitting scheme is even more stable than the general implicit
scheme (4.10).

4.4. THE SCHEME FOR THE COEFFICIENT

If the solution u;; of the imbedding problem is assumed known, then the
coefficient can be computed on the base of the following second order scheme of
approximation:

; ‘ ’
7z Fidier — (F + Fi-) A + Fi-idja] + Gy = K;, (4.13)
where F;, G; and K, are defined in (4.4), (4.5) and (4.6), respectively.

4.5. GENERAL CONSEQUENCES OF THE ALGORITHM

(I) With given A(z), uo(x), f(t) and g(t), the “direct” problem (4.7), (4.8) is
solved.

(IT) With the obtained in (I) “experimentally observed” values of the u;(z), the
fourth-order boundary value problem (4.11) is solved for the function u. The
iterations with respect to the fictitious time are terminated when

n+1

max (w7 ~ uf;)/uf;| <e.

(IIT) The current iteration for the function A(z) is calculated from (4.13). If the dif-
ference between the new and the old A(z) is less than ¢, then the calculations -
are terminated, otherwise one returns to (II).
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5. NUMERICAL EXPERIMENTS

The first numerical experiment was to verify that the fourth-order elliptic
problem for a given coefficient and consistent boundary data has the same solution
as the “direct problem.” We found that the iterative solution of the fourth-order
problem does not depend on the magnitude of the increment o of the artificial time.
The optimal value turned out to be ¢ = 0.05. After the convergence of tiie “inner”
iteration of the coordinate-splitting scheme, the obtained solution coincided with
the “direct” solution within the truncation error of the scheme.

The second numerical experiment was to verify the approximation of the
scheme for identification of the coefficient, with the field u considered as known
from the solntion of the “direct” problem. Once again the result was in a very
good agreement within the truncation error.

Then the global iterative process can be started. The convergence of the
“global” iterations does not necessarily follow from the correctness of the above
discussed intermediate steps. For boundary data, which are not self-consistent, the
“global” iteration can converge to a solution which has little in common with a
solution of the heat-conduction equation.

To illustrate the numerical implementation of MVI, we solved the “direct”
problem for a given diffusion coefficient and thus we obtained the self-consistent
“experimental” over-posed terminal profile (2.5) at t = T..

The accuracy of the developed here difference scheme and algorithm were
checked with the mandatory tests involving different grid spacing 7 and h and
different increments of the artificial time 0. We conducted a number of calcula-
tions with different values of mesh parameters and verified the practical convergence
and the O(7% + h?) approximation of the difference scheme. The results confirmed
the full approximation of the scheme (no dependence on o) and the O(h? + 72)
approximation.

To illustrate the accuracy and efficiency of the scheme, we considered the heat-

conduction coefficient
Mz) =z%+1, (5.1)

whose profile is shown in Fig. 3a. For smaller 7 and A the differences are graphically

indistinguishable. In Fig. 3b the ratio of the identified and “true” coefficient is

shown, 1.e.
Aidentified (5.2)

==
A(.l‘l.lle

for different grids: h = 7 = 1/64,1/128, 1/256.
A very serious test for the algorithm was the identification of a broken heat-
conduction coefficient

¢y =const = 1 for 0<z<0.3,
Mz)=< c2=const=11 for 03<z<0.7, (5.3)
c; = const = 1 for 07<z<1.
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Fig. 3. Results of identification with T = 1,1 =1, ¢ = 5- 10~8 for three different grid steps:
a) the identified shape of the coefficient A(x); b) the ratio between the identified and the true
coefficient: ¢ — h=7=1/64,0 —h=7=1/128, 84 — h=171 = 1/256

A
1.1004 &
1.075-
1.050-
1.0254
1.000+ L .
I L i | 1 L
| | | } |
0 0.2 0.4 0.6 0.8 1.0

Fig. 4. Shapes of the identified and the true coefficient (5.3) for three different grid steps:
& - the true coefficient, ¢ -7 =1/128, h = 1/64,Q - 7 = 1/256, h = 1/128, & - 7 = 1/512,

h = ]/256

In Fig. 4 the shape of the “true” coefficient and the shapes of the three iden-
tified with different mesh-spaces coefficients are shown. The values of these coeffi-
cients are 7 = 1/128, h = 1/64, 7 = 1/256, h = 1/128 and 7 = 1/512, h = 1/256,
respectively.

In Fig. 5 the ratios of-the identified and “true” coefficient are shown,
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Fig. 5. Ratio between the identified and the true coefficient (5.3) for three different grid steps:
O -7=1/128,h=1/64,0 - 1 =1/256,h = 1/128, & - 7 =1/512,h = 1/256

6. CONCLUSIONS

In the present paper we have displayed the performance of technique called
Method of Variational Imbedding (MVI) for solving the inverse problem of coeffi-
cient identification in parabolic equation from over-posed data. The original inverse
problem is replaced by the minimization problem for the quadratic functional of
the original equation. The Euler-Lagrange equations for minimization comprise a
fourth-order in space and second-order in time elliptic equation for the temperature
and a second-order in space equation for the unknown coefficient. For this system
the boundary data is not over-posed. It is shown that the solution of the original
inverse problem is among the solutions of the variational problem, i.e. the inverse
problem is imbedded into a higher-order but well posed elliptic boundary value
problem (“imbedding problem”). In the present work we show that the number of
boundary conditions can be decreased replacing them with the so-called “natural
conditions” for minimization of a functional. Featuring examples are elaborated |
numerically with two different coefficients through solving the direct problem with
a given coefficient and preparing the over-posed boundary data for the imbedding
problem. The numerical results confirm that the solution of the imbedding problem
coincides with the direct simulation of the original problem within the truncation
error O(1% + h?). '
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