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Professor Dr. Dimiter G. Skordev

On June 1, 1996, Professor Dimiter Skordev turned sixty. To mark this event,
the Fourth Logical Biennial was dedicated to this anniversary. The Biennial took
place in the “St. Kliment Ohridski” University House in Gjuletchitza from Septem-
ber 12 to September 15, 1996. Three invited lectures and seventeen contributed
talks were presented during the meeting. The opening lecture of Dr. L. Ivanov was
a review of the contributions of Prof. Skordev in the field of Algebraic Recursion
Theory. This review, together with the scientific programme of the Colloquium
and the full texts of most of the contributed talks, delivered there, are included in
the present volume of the Annuaire.

Professor Skordev joined the Faculty of Mathematics at the “St. Kliment
Ohridski” University of Sofia almost 40 years ago — in 1959, immediately after
his graduation. He received his Ph. D. degree in 1967 with a thesis, devoted to
some problems of the functional analysis. In 1986 he became a Doctor of Science
in Mathematical Logic. Since 1972 he has been chairing the Department of Math-
ematical Logic at the Faculty of Mathematics and Informatics. The main research
interests of Professor Skordev are in the areas of Logic and Computer Sciences.
He is a founder of the Bulgarian School of Computability Theory. Eight graduate
students have written their Ph. D. works under his supervision. During the years
1960-1996 Professor Skordev published more than seventy research papers and two
monographs. For his achievements in Algebraic Recursion Theory he was awarded
the Obreshkov Prize in 1981.

The Editorial Board of the Annuaire of the Faculty of Mathematics and In-
formatics, together with the numerous friends, colleagues, students (both former
and present) of Professor Skordev use with great pleasure this occasion to wish him
many years of fruitful work for the general benefit of the Bulgarian and the world
mathematics.

The Editorial Board
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FOURTH LOGICAL BIENNIAL
Gjuletchitza, September 12—-14, 1996

September 13, 1996

L. L. Ivanov. Skordev’s Contribution to Recursion Theory

J. R. MoscHOVAKIS. Some Recursive and Non-Recursive Realizabilities
Y. N. MoscHovAKIS. Fixpoint Recursion

J. ZASHEV. A Categorial Framework for Code Evaluation Method

J. ZAsSHEV. First Order Axiomatizability of Recursion Theory in Cartezian Linear
Combinatory Algebras

L. L. Ivanov. Platek Spaces

A. DitcHEV. Sufficient Conditions for Theories Admitting Recursive Models
D. DoBREV. Strawbery Prolog: An Announcement for a new Prolog Compiler
S. NikoLova. I19-positive Inductive Definability on Abstract Structures

L. Borisov. Naturally-inductive Sets on Abstract Structure

V. BALEVA. A Semantics of Logic Programs with Parameters

A. Soskova & I. Soskov. Admissibility in £3-enumerations

I. Soskov. A Jump-inversion Theorem

September 14, 1996

D. VAKARELOV. Proximity Logics

A. DENEVA & D. VAKARELOV. Modal Logics for Local and Global Positive and
Negative Similarity Relations

T. TINCHEV. Logics with Graded Modalities

D. GELEV. Propositional Dynamic Logics with Qualitative Probabilities

S. Mitov. A Constraint Based System for Lexical Knowledge Retrieval

M. STEFANOVA. A Schematic Proof of Strong Normalization for Barendregt’s Cube

E. STANCHEVA. Studying the System Knowledge of Mathematics and Computer
Science



F'OAUWHUK HA COPUNCKUA YHUBEPCUTET »CB. KIMMEHT OXPUICKU*“
PAKYJITET MO MATEMATUKA U UHOPOPMATHUKA

Kunra 1 — Maremaruka m Mexaumka
Tom 90, 1996

ANNUAIRE DE L'UNIVERSITE DE SOFIA | ST. KLIMENT OHRIDSKI*

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Livre 1 — Mathématiques et Mecanique
Tome 90, 1996

SKORDEV’S CONTRIBUTION TO RECURSION THEORY

Opening address at the Fourth Logical Biennial
dedicated to the sixtieth anniversary of D. Skordev,
September 12-14, 1996, Gyuletchitza

LYUBOMIR L. IVANOV

Ladies and gentlemen,

I would like first to thank the organizers of the Logical Bienrial for the invi-
tation to briefly share some reflections on the scientific deed of Professor Skordev.
[ feel greatly honoured by this invitation, indeed. At a jubilee like this it might
be a permissible departure from the norm for a student to estimate his teacher’s
work rather than the opposite. | am not going to discuss so muck specific results
but rather concentrate on some methodological aspects of Skordev’s contribution
to Recursion Theory.

A cursory review of Skordev’s past scientific activities reveals that a fairly
major portion of his research and publications was devoted to Recursion Theory.
Following his early papers [18, 19] on computable and mu-recursive operators and

recursively complete arithmetical operations, and the subsequent ones {20, 21] on
universal functions, Professor Skordev had over 30 publications on Recursion The-

ory during the period subsequent to 1974. Most of those publications were actually
on Algebraic Recursion Theory, including the monographs [23, 24]. Likewise, it was
for his research in Algebraic Recursion Theory that Professor Skordev got his Doc-
tor of Sciences Degree and was awarded the Nikola Qbreskkov Prize, this countr
most prestigious award for achievements in the area of mathematics.




Professor Skordev set about his undertaking to generalize and axiomatize Clas-
sical Recursion Theory in the early seventies. That happened in the context of par-
ticularly interesting developments connected with a number of attempts to expand
the scope of Recursion Theory. Probably, the first substantial advancement in that
direction were the papers of Kleene [9, 10], affording a presentation of the hyper-
arithmetic theory via recursion in a second order object embodying quantification
over natural numbers. Kleene’s generalization was specifically important for not
only initiating a new area in Recursion Theory known as Higher Recursion Theo-
ry, which was considerably advanced in the sequel, but also for setting a pattern
and paving the way for other generalizations, especially those of Platek [16] and
Moschovakis [12]). Research on computability over algebraic structures occurred as
early as in the sixties, but the appropriate concepts of such computability were
devised by Moschovakis [12] and by Friedman [5], the finite algorithmic procedures
of the latter accounting for the lightface version. Incidentally, the concepts of prime
computability and search computability of Moschovakis had a significant influence
on the genesis of Skordev’s generalization itself.

It is of interest to clarify the motives behind the various endeavours to general-
ize Recursion Theory beyond the classical study of effectively computable number-
theoretic functions. For instance, recursion on infinite ordinals originated in Takeu-
ti’s papers [25, 26] with the necessity of introducing and studying such recursion,
arising most naturally out of several areas of Mathematical Logic: Proof Theory,
Model Theory and Set Theory. Such recursion was needed in order to deal with
concrete problems such as ‘effectivity’ of proofs and ‘arithmetical’ undefinability
in a generalized sense, as well as to achieve a more precise understanding of set
structure, based on which to find solution to some problems already formulated in
Set Theory.

Apart of particular problems originating in other areas, the study of effective
computability in a more general context was put on the agenda also by certain
general principles ensuing from Recursion Theory itself. These comprised the com-
mon aims of a mathematical generalization: to design abstract structures that are
not only new and support a rich in content theory, but which also clarify Classical
Recursion Theory and would possibly prove useful in application. More than that,
it was hoped that if successful, such developments would eventually provide an
axiomatical foundation of Recursion Theory.

The effort of some of the most brilliant logicians of the sixties and the seventies
led to successful generalizations of Classical Recursion Theory in several directions,
in the sense that suitable notions of effective computability were identified, provid-
ing the means for desired applications in the areas for which the relevant general-
izations had been intended. The resulting Generalized Recursion Theory, initially
regarded as technically forbidding but for a small community of devoted experts,
later got much better and streamlined presentations. The progress in axiomatizing
Recursion Theory, however, was less than satisfactory, at least until the invention
of Skordev combinatory spaces.

10



Skordev’s ideas of generalizing and axiomatizing Recursion Theory evolved
around 1974 by way of extracting certain algorithmic properties of multiple-valued
functions which turned out to permit axiomatical treatment. Professor Skordev
successfully materialized his ideas by a combination of mathematical intuition and
a refined technique based on an excellent command of the apparatus of Classical
Recursion Theory and related domains of Logic. In the process, however, he not
only achieved the aims he had set, but went far beyond his original goals, taking
advantage of the rich opportunities offerred by the very approach invented by him.
Actually, within few years Skordev laid the foundations and outlined the scope of
a general theory notable for its deepness and elegance combined with an unusually
wide scope of application. If the place of Skordev’s theory in mathematics is to be
described in few words, one might say that from a philosophical viewpoint Skordev’s
theory captured the nature of effective computability very much in the same way
as Group Theory related to the concept of symmetry.

The hard core of Skordev’s axiomatic approach was based on the algebra-
ic structure of combinatory space. The principal characteristics of those spaces
comprised: first, dealing with more general mathematical objects, members of a
partially ordered semigroup rather than just functions or functionals; and second,
choosing few basic or initial operations and setting forth their fundamental proper-
ties by means of a small number of elegant algebraically-styled axioms including a
mu-induction principle. The basic operations of a combinatory space correspond-
ed both intuitively and in a direct way to certain constructions to be found in
structural programming or to certain patterns of combining computational devices,
namely composition, branching or if-then-else statement, loop or while-do state-
ment. Their axioms were first order axioms and also a first order mu-induction
axiom sufficed for the bulk of the theory.

It is instructive to notice that in essence the basic operations of combinatory
spaces occurred independently in other works, mainly in Computer Science, e.g. in
the functional programming structures of Backus [1] and the schemes of Bohm and
Jacopini [2], where, however, their mathematical potential had not been profitably
exploited due to a number of reasons. The method of mu-induction, too, could
be found in Computer Science; indeed the mu-induction axiom of combinatory
space was a particular instance of Scott’s mu-induction rule. A comparison shows
that, due to the right choice of basic operations and initial elements, mu-induction
in combinatory spaces was a powerful technical device, while the general Scott’s
rule was not, precisely because the system of Scott [17] lacked such suitable basic
elements and operations.

Owing to the combination of aptly chosen basic operations and the mu-induc-
tion technique, a fairly non-trivial results were obtained in the general theory of
combinatory spaces. Typical of that theory are assertions such as the Normal
Form Theorem, the Enumeration Theorem and the First and Second Recursion
Theorems, abstract Rice and Rogers Theorems. Needless to say, representation
of the ordinary partial recursive functions was available too, hence the Classical
Recursion Theory was not just a particular instance (i.e. model of the general
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theory) but at the same time was always imbedded as a minimum component. This
was very much the case of Kleene-recursiveness in finite type objects, which was
both a particular instance of relative recursiveness within a suitable combinatory
space, and was also represented (and thus imbedded) in hierarchies of spaces and
in a certain kind of more sophisticated spaces studied in Ivanov [6, 8].

On the other hand, the appropriate choice — or one might say design —
of the basic operations and their axiomatically captured properties resulted in a
surprising variety of models or particular spaces with essentially different semantics
of various order. Apart of the standard case of single-valued and multiple-valued
functions forming first order spaces, and monotonous functionals and second order
relations forming second order spaces, these included also spaces of first and higher
order related to certain concepts of everywhere-definedness and complexity of data
processing, or comprising functions with finite types arguments, ordinal functions,
probabilistic functions, fuzzy relations and the like. This abundance of spaces made
it possible, first, to generalize via Skordev’s approach already existing notions of
effective computability, thereby paving the way for ample applications of the general
theory. And second, it allowed to introduce notions of effective computability in
areas which had not supported such notions before.

The approach initiated by Skordev provided a good illustration to another
aspect of generalization by contributing to better understanding of Classical Re-
cursion Theory and Generalized Recursion Theory. Certain phenomena which in
Classical Recursion Theory were muted by ‘too much arithmetic’, i.e. by the avail-
ability of uninherently strong tools, had been known to emerge even in Generalized
Recursion Theory. Such was, for instance, the distinction between lightface and
boldface versions of the theory; also the understanding that Classical Recursion
Theory traditionally employed operations which fitted better in arithmetic, but be-
long less naturally in Recursion Theory. Indeed, unsuccessful attempts to make use
of minimization (or least number) operator in Generalized Recursion Theory had
shown that operation to be inadequate for the purposes of prime or search com-
putability or, as a matter of fact, recursion in higher types or recursion on ordinals.
In contrast, the iteration operation of Skordev that superseded the least number
operator was always suitable, because it was defined by its properties needed for
the theory.

Of course, this universality of the axioms of combinatory space had most inter-
esting semantical implications for its operations, resulting in semantic multiplicity
even within a single higher order space. That applies particularly to multiplication
and, as a consequence, to iteration operation. The semigroup multiplication would
usually be a sort of composition, executed however in an opposite order, respective-
ly in first and higher order spaces. The first order semantics of iteration was more
or less of a loop nature, while in higher order spaces iteration at the higher level
was nothing else but the least fixed point operator over the preceding level. Thus
in the context of Algebraic Recursion Theory one could ascertain a sort of identity
between seemingly completely different operations: the least fixed point operator
was a particular instance of iteration which in turn was a particular instance of the

12



least fixed point operator. Another similar phenomenon in the axiomatic theory
was explicated by Skordev’s pairing operation, which drew the lightface-boldface
division line in the theory. Its first order semantics dealt with coding of pairs of
data other than natural numbers, while its higher order semantics, as shown in
Ivanov (8], took care of lambda abstraction.

An important aspect of any mathematical theory are not just its statements
but their proofs as well. Here we see one of the unmistakable symptoms of a non-
trivial generalization in the fact that quite a few of the proofs in Skordev’s general
theory were new rather than just modified proofs extracted from particular in-
stances. More often than not those proofs tended to be streamlined and elegant on
account of avoiding the temptation to solve problems ‘by force’ due to availability
of excessive tools. At the same time, Skordev’s axiomatic theory established com-
mon proofs and direct links between theorems belonging to different theories which
otherwise seemed to be analogous, but actually proved to be particular instances
of one and the same abstract proposition of Algebraic Recursion Theory; the situ-
ation earlier discussed for operations applies here to statements. For example, the
First Recursion Theorem of Skordev generalized both the Kleene First Recursion
Theorem and the Moschovakis Induction Completeness Theorem.

One of the popular and quite natural approaches to generalizing Recursion
Theory was by way of employing inductive definability as a foundation, an idea
stemming from Moschovakis [14] and supported by Feferman [3], too. The interest-
ing try of Moschovakis [15] was further aimed at elevating the theory of inductive
definability to a more abstract axiomatic level comparable with that of Skordev’s
setting for Recursion Theory. From the point of view of Recursion Theory however,
Skordev’s approach had the advantage of being not transplanted but intrinsic to
that theory. Moreover, his approach made it possible for the inductive definability
itself to be dealt with as a particular instance of relative recursiveness in a suit-
able combinatory space, i.e. within Recursion Theory, thus showing that Recursion
Theory was just as fundamental as Inductive Definability Theory.

Returning to the strive for building axiomatic foundations of Recursion Theory,
the attempts prior to Skordev’s one might be regarded as partially successful, as
far as their results and acceptance by the logician community were concerned. It
was true that considerable effort had been allotted to the detailed elaboration of
certain axiomatic approaches to Recursion Theory; typical example of that were the
so-called computation theories of Moschovakis [13] studied extensively by Fenstad
[4]. It turned out eventually that it was possible to embrace a number of notions of
Generalized Recursion Theory in the framework of the computation theories and
to reaffirm once again the relevant results from particular theories, leaving however
the feeling of a persisting necessity to readapt the general setting, i.e. lack of true
uniform general approach. Combined with the domination of modified proofs, that
hinted at a certain creative potential deficiency.

Needless to say, there are still many open problems in Algebraic Recursion
Theory. One of the major challenges at this stage appears to be the necessity to
identify a reasonable concept of ‘finite’ in Algebraic Recursion Theory, needed, e.g.,
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to deepen the study of abstract degrees initiated by Ivanov [7]. The importance of
such a step in any generalization of Recursion Theory was stressed by Kreisel [11].

With its undoubted quality of good mathematics the approach of Skordev
inspired natural interest among a number of other logicians as well as computer
scientists. That resulted in dozens of publications, M.Sc. and Ph.D. theses by N.
Georgieva, J. Zashev, O. Ignatov, L. Ivanov, R. Lukanova, S. Nikolova, E. Pazova,
V. Petrov, A. Radenski, I. Soskov, M. Tabakov and others. Most interesting are
the works of Zashev [27-29] in a related new area, Recursion Theory on partially
ordered combinatory algebras and further generalizations at categorial level. Dur-
ing the last two decades Professor Skordev worked out a new portion of Recursion
Theory which, with the contribution of his followers, evolved to form an original
school in the Theory of Effective Computability. Apart of that, ideas and methods
originating in Skordev’s approach were applied to other areas of Recursion Theory
and to Non-Classical Logic by A. Dichev, I. Soskov, A. Soskova, D. Vakarelov, G.
Gargov, S. Passy, T. Tinchev and V. Goranko. As a matter of fact, a good deal of
Bulgarian logicians have had a more than passing interest in this subject matter.

In conclusion, as a witness of these developments during the last twenty years
or so, in which I was honoured to participate, I would like to take this opportunity
to most cordially congratulate Professor Skordev as my teacher, on the occasion of
his anniversary, and wish him best health and further twenty years of tireless and

fruitful work.
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This paper describes a set-theoretical argument for proving Strong Normalization (SN)
for the systems of the so-called A-cube. The argument is relatively simple and, more-
over, flexible. It can be adapted to extensions of the systems considered, such as
additional sorts, inductive types or sub-types.

Keywords: typed lambda calculus, normalization, inductive types
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1. INTRODUCTION

In the recent years a lot of attention has been paid to the property of Strong
Normalization for second- and higher-order dependent type systems. The number
of the existing SN-proofs can be informally divided into two groups:

e ‘syntactically-oriented’ proofs—proofs which are based on mixed syntactical
and semantical methods ([6, 5, 3, 14, 15]), and

o ‘semantically-oriented’ proofs—pure semantical proofs ([1, 7, 8, 9, 16]).

Most of these proofs make use of the idea of interpreting all typable terms
as elements of sets of strongly-normalizing terms. Further, one can prove that
a typable term belongs to the interpretation of its type and thus it is strongly-
normalizing. However, semantically-oriented proofs make use of fully-compositional

* Lecture presented at the Fourth Logical Biennial, Gjuletchitza, September 12-14, 1996.
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models, while syntactically-oriented ones are based on models which disregard some
of the dependencies in a typable term. This has several consequences for both the
kinds SN-proofs.

In general, the syntactically-oriented proofs are relatively simple but lacking
flexibility and modularity. It is not easy and sometimes impossible to adapt them
to various extensions such as additional type-constructions, more universes or sorts
or sub-types. Any extension of the systems requires reconsideration and significant
changes in such a SN-proof (see, for example, [14, 15, 13}). Furthermore, the relative
simplicity of such a syntactically-oriented proof is usually lost after adapting it to
a richer system.

Semantically-oriented proofs are based on operational or denotational seman-
tics of the system under consideration (see [7, 1, 8]). These proofs seem to be more
flexible than the syntactically-oriented ones in the sense that they can be easily
adapted to various extensions of the system in question. Furthermore, they suggest
generic methods for normalization proofs of PTSs (see (8, 9, 1, 16]).

However, in order to obtain compositional interpretations, most of them intro-
duce very complicated structures, which are difficult to be mapped intuitively to the
corresponding type system. Most of them use a realizability or categorical semantics
(see [1, 8]) instead of a naive set-theoretic semantics as in the syntactically-oriented
proofs.

The SN-proof considered in this paper combines advantages of syntactically-
and semantically-oriented proofs: simplicity, flexibility and genericity. It can be
classified as semantically-oriented. It is based on a naive set-theoretical semantics
and as so Is similar to the syntactically-oriented proofs. The principal difference
with them is that type-dependencies are not disregarded in the interpretations, i.e.,
the interpretations are fully-compositional. This is achieved by defining simultane-
ously the interpretations of types and their elements.

The benefits one gets from this proof are in general the same as those in [I, 8,
9] — extendibility to more powerful systems. However, it is still simpler to interpret
new type-constructors and reductions in the present set-theoretical setting. The
flexibility of the proof presented is shown by extending it to systems with inductive
types. We treat the case of Natural Numbers in the last section.

2. BARENDREGT’S CUBE

In this section precise definitions of the pure type systems in Barendregt’s cube
are given (see also [2]).

Definition 2.1 (PTS-definition). A system of Barendregt’s cube AS is a triple
AS =(7T,R,R) such that:

e 7 is a set of pseudoterms defined by the abstract syntax

T :=Var | {+,0} | TT | \War:T.T |IVar:T.T,
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where Var = Var*|JVar® and Var*, and Var® are infinite enumerable disjoint
sets of object and constructor variables, respectively. The object variables will be
denoted by the small Latin letters z, y, z (with or without subscripts) and the
constructor variables — by the small Greek letters o, 8, v. When we do not want
to make a distinction between object and constructor variables, we will use the
small Latin letters u, v, w.

The notions of B-reduction and f3-conversion are defined on 7 by the contrac-

tion rule
(A:T1.T2)T3 —p Ta[T3/v);

e R is the set of rules of the system AS and consists of ordered pairs (s1, 52),
such that s;,s; € {*,0} and (*,*) € R;
e R is the set of derivation rules of AS specified bellow.

(aziom) Fx:0,
(var) _7;}-_5__ ; s € {*,0}, veVar\ FV(D),
wT't2: T
(weak) Tre: MI-U:’ s€ {60}, ve Var \ FV(T),
vTHM:U
Tksy: vTHU: s
(D T CreER, veVart,
) vTHFM:U MwT.UFs: | s€ {x,0),

AwT.MEIvT.U :
MEFIIv:TU: NRT:

(app) MN & U[N/v] : ’

( ) MFT: Uls: o U G{ D}

conv = ; D) *, U,
MFU : e

The eight systems of the A-cube are listed below (see Table 1) according to the
sets of their rules. The set of (1ypable) terms of the system AS is defined by

Terms:= {T €7 |3, U(THFU: ox UFT:) }.

It is convenient to divide the typable terms into subsets (see {2, 4]) in the
following way:

Kind(AS) = {A€T |3l (AFDO:)},
Constr(\S) = {CeT|3LA(CHA:):0},
Type(AS) = {c€T |3l (ck=*:)},
0bj(AS) = {te€T |3I,o(tko:):*}
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Table 1. The systems of the A-cube

System | (x,%) | (,0) | (O,*) | (©,0)
A— X - - -
AP ) 4 X - -
A2 X - X -
AP2 X X X -
Aw X - - X
APw X X - X
Aw X - X X
AC X X X 4

We will skip the subscript S in the above notations when it is clear which is
the system under consideration.

3. INFORMAL OUTLINE OF THE PROOF

Let AS be a system of the A-cube. Classification of typable terms of AS into
objects, types, constructors and kinds determines a hierarchical structure which
will be called type hierarchy in the sequel (see Fig. 1(a)). The type hierarchy has
a fine structure — it contains two sub-hierarchies: the one of types and the other
of kinds (see Fig. 1(b)).

Intuitively, every type is the set of objects of this type, and every kind is
the set of constructors typable with it. All of these four levels are connected by
Type C Constr.

The typable terms of the system AS are interpreted in levels according to
their level in the type hierarchy. In fact, the type hierarchy is mapped into a set-
theoretical hierarchy, which will be called AS-hierarchy. The carrier, or the bottom
level of the AS hierarchy is simply the set 7 of pseudo-terms.

Each system AS of the A-cube is determined by its PTS-specification and its
derivation rules. There are two sorts in each of the systems of the A-cube: one of
types (*) and another of kinds (0). Suppose that these sorts are interpreted by
the set-universes U% and U§. The conditions which U% and U9 should satisfy are
determined by the rest of the specification of AS, i.e., by its axioms and PTS-rules.

There is one axiom for each AS of the A-cube, namely, * : O. This corresponds
to the requirement U% € U§. Further, suppose that (s, s2) is a rule of AS. That
means that one of the derivation rules of AS is

'FT:sy T,vTHU: s,
Tk Ov:T.U : s, '

This rule says informally that the sort s, is closed under dependent-product terms.
The corresponding “meaning” in the model of this derivation rule would be that
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Fig. 1. The type-hierarchy

the universe Ug? is closed under some suitable operation II§!. More precisely, II3}
takes as arguments a set X € UG and a family {Yz }:ex of sets of U and returns
aresult again in UZ?. In order to improve readability, we will denote the application
33 (X, {Yz}zex) by

iz € X.Y:.

Now, suppose we have found the collections U% and U§ and the operations
113}, The type-hierarchy of AS is mapped into a set-theoretical hierarchy (AS-
hierarchy) through the interpretation functions || |2, | |* and | |° (see Fig. 2). Note
that it is not allowed to construct elements of a lower level of the AS-hierarchy
by means of elements on higher levels (the crossed arrows in Fig. 2). The typing
relation : between legal terms is mapped into the relation € on sets, so that if X is
an element on level 7 of the AS-hierarchy, then there is an element Y on level i 4 1
such that X € Y.

The typable terms of AS are interpreted as follows:

e Every kind A, (I' F A : O) is mapped by the interpretation function || |? to
an element of U§. Intuitively, dependent kinds are interpreted with the help of the
operations II§ and I3, if respectively the rules (¥, 0) and (O, O) are present in the
specification of AS;

e Every constructor C, (I'F C : A : Q) is mapped by the function | |! to an
element of the collection

UUS={X132(X€Z A Z € U3)}

in such a way that [C|' € JA}?. In particular, every type o, ([ F o : %) is inter-
preted as an element of the universe U%. Impredicative types (i.e., types formed
by the rule (O, #)) are interpreted with the help of the operation II7. Pure product
types (rule (*,*)) are interpreted by using II;. Constructors formed by A-abstrac-
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tion are interpreted as set-theoretical functions and applications of constructors to
terms — as set-theoretical applications of functions to their arguments;

e Finally, every objects ¢, (I' F ¢t : ¢ : %) is mapped to a pseudo-term in a
trivial way by using abstraction and application operations on pseudo-terms. For
the interpretations of objects we have [¢[° € [o[*.

The interpretations | [°, | |* and ] }? are compositional, i.e., the interpretation
of a term is built up from the interpretations of its sub-terms by means of proper
operations. For that reason all constructors are mapped into the set of pseudo-
terms, in order to be able to interpret objects of the form Az:0.t as Az:]a°.¢[°.
This implies that all kinds should be mapped into U% in order to prove proper
inclusion properties for the new interpretations of constructors. To summarize (see
also Fig. 2):

— Every kind A is mapped into U% by the function | |* and into 7 by the
function | [°.

— Every constructor C (I'F C : A : O) is mapped into 7 by the function | |°
in a way that |C]° € | A[".

Note that for the systems A — and AP it is not necessary to interpret kinds as
pseudo-terms, but we will do it in order to obtain more uniform treatment for all
the systems of the cube. However, these two cases can be treated separately.

A final remark is that the interpretation functions || | and | ]! are constructed
simultaneously on the structure of the typable terms. Due to this, it is possible to
keep type dependencies in the interpretations.

4. THE FORMALIZATION

Any system AS of the A-cube is interpreted into ZF-set theory. The typable
terms are interpreted as sets and the typing relation “” as the inclusion relation

22



€ between sets. In particular, every object is mapped into a pseudo-term?, every
constructor —- into a set-theoretical function, every type — into a set of pseudo-
terms, and every kind — into a set of set-theoretical functions.

Note that the existence of this model does not contradict the result in [11],
which simply says that in polymorphic A-calculus one cannot interpret all abstrac-
tion-terms (i.e., terms of the form Av:7}.T,) as set-theoretical functions and all
application-terms (i.e., terms of the form 7773) as function-applications. We in-
terpret only the abstraction and application terms which are at the predicative
level of AS as set-theoretical functions and function applications. The terms which
are at the impredicative level are interpreted as A-abstractions and applications of
pseudo-terms.

4.1. PRELIMINARIES

As it has been mentioned before, the set 7 of pseudo-terms will be identified
with the set w. Thus an additional equality to the usual set-theoretical equality on
w will be used in order to represent S-equality. It will be denoted ambiguously by

Definition 4.1. Let a and b be sets. We say that a is v-equal to b (notation
a =, b) iff a and b are both pseudo-terms or are both sets and:

(1) a =g b in the case a,b € T;

(i1) a = b, otherwise.

Note that if t; =g {3 and t; € a, it is not necessarily to € a. We extend the
equality =, on sequences of elements of U in the following way.

Definition 4.2. Let «, 7 be sequences of elements of U. Then a =, v iff
lal = |v| and a(i) =, y(i) foralli=1,...,|a|.

The set-theoretical functions which will be used in the model of AS form a
restricted class of the functions in set theory. They are defined below.

Definition 4.3. Let a and b be sets such that a,b ¢ 7. The set F is a v-
function from a to b (notation F : a = b) iff F' consists of ordered pairs (z,y) such
that

Vz €a 3y €b ((z,y:) € F)

and
Vzy,Zo, 11, Y2 (21 =v T2 A (21, 11), (T2, 42) € F = 11 =y ¥2).

! Note that the set of pseudo-terms can be identified with the set w of standard sets representing
natural numbers, so every pseudo-term t can be thought as a numeral n, which is uniquely assigned
to it. For convenience we will use in the sequel the set of pseudo-terms instead of the set w of
their images into ZF set theory.
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Remarks 4.4.

e Let F :a > b. The v-function application is defined in the usual way. That
is, if (z,y) € F, then App,(F,z) =, y. For simplicity the v-function application
will be written as F'(z), since the usual function-application will not be used in the
sequel. Thus, if F(z) is defined, that means that F' is a v-function, i.e., it respects

B-equality.
e Let F:a = band F(z) =, y, for z € a. This F will be denoted by A\, z€a.y,.

Lemma 4.5. The v-functions F; : a; b, i=1,2, are v-equal, e.q. F\ =, F»
iff ay =y ay and for all z € a,, Fi(z) =, Fa(z).

Definition 4.6. Let a be a set such that a ¢ 7, and let {b;};¢, be a family
of sets such that b, ¢ 7 for all z € a:

(i) The set-theoretical v-dependent product is defined as
M z€a.b, :={F:a— sz | Ve € a (F(z) € b;)}.

r€a

(i1) The dependent sum is defined as
Yyz€a.by := {{(m,n) | m € a,n € by, }.

Note that if ' € [I,z€a.b, and z, =, z, then F(z;) =, F(z3).

Lemma 4.7. Leta,a’' ¢ T and let {b;}zeqa, {b.}zea be families of sets such
that b, b, ¢ T. Then

N,z€a.b; =3 M z€a" b, <> a =p a'&Vz € a (by =p b).

The hierarchy of sets into which the typable terms (kinds, constructors, types
and objects) will be mapped is specified as follows:

Definition 4.8. For every ordinal number « € Or the sets V,(7) are defined
in the following way:

(i) Vo(T)=T;
(i) Va41(7) = Va(T)UP(Va(T));

(iii) Vo(7T) = | JVs(T) if a is a limit ordinal.
f<a

Definition 4.9. Let o be an operation which takes as arguments a set and a
family of sets, indexed by this set, and gives as a result a set:

(1) The set A C Vo(7) is a-closed under the operation o if for any set a € A and
any family {b;}zeq of sets from A, the set o(a, {bz},eq) belongs to A;
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(i1) The set A C Vo(7) is weakly-a-closed under the operation o if there exists
an ordinal 3 such that § < (a — 1) and moreover, for all ordinals v such that
B < 7 < a and for any family of sets {bs}:¢a, for which b, € ANV, (T), the
set o(a, {bz}zeq) belongs to A.

4.2. THE UNIVERSE U% AND UZ

The interpretation U§ of the predicative universe O is chosen to be the set
Vu(T)\Vi(T).

The next lemma shows that it is weakly-w-closed under the set-theoretical depen-
dent product II, (defined in Definition 4.6).

Lemma 4.10. The universe U s weakly-w-closed under the operation II,,.
Proof. We haye to find an ordinal # < w such that for all n > £ it holds that

[I,z€a.b; € Ug

if a € US and {b;}zeq is a family of sets such that b, € U NV,(T) for any z € a.
Note that

US| JVa(T) =0 Va(T) \ Vi(T).
Now, let us choose 8 = 2. Let a € US and let n > 2. From the definition of UY it

follows that there exists a natural number m > 2 such that a € V,,,(7).

The elements of the set II,z€a.b, are v-functions and thus sets of pairs of the
form (z,y), where £ € a and y € b,. By definition, a pair (z,y) is a set {z, {z,y}}.
Thus, if z € a € V(7)) and y € b; € Va(T), then (z,y) € Vmax(m-1,n-1)+2(7).
Consequently,

Il,z€a.b; € Vmax(m-l,n—l)-H(T)»

and hence II,z€a.b, € UY since obviously

Myz€a.by & V(7). w

It is convenient to specify the interpretation U% of the impredicative universe
* to be the collection SATg of (-saturated sets. SATg is closed under arbitrary
non-empty intersections and under an operation of dependent product defined on

the set 7 of pseudo-terms.
Let SNg C 7 be the set of pseudo-terms which are strongly normalizing under

B-reduction.

Definition 4.11. The set Bg of (-base terms is defined as the smallest set
satisfying the following conditions:

(i.) Var*|JVar® C Bg;
(ii.) If M € Bg and N € SNg, then MN € Bg.
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Definition 4.12. The S-key-reduction is the relation —ka defined by the con-
traction schemes for B-reduction and the following compatibility condition:

My 55 My = MiN 55 MyN.

Lemma 4.13. If the proper sub-terms of a term M are B-strongly normalizing,
M —k>p N and N € SNg, then M € SNg.

Definition 4.14. The set X C 7 of pseudo-terms is called 3-saturated if the
following conditions hold:

(i.) X C SNg;
(ii.) Bs C X;

(i) If M —km N, N € X and the proper subterms of M are (-strongly normaliz-
ing, then M € X.

The collection of all f-saturated sets will be denoted by SATg. Thus one
chooses U* = SATjg.

Definition 4.15. The operation II] of dependent product on 7 takes as
arguments a set X C 7 and a function F' : X — P(7) and is defined as follows:

Mime X.F(m)={teT |Vge X (tg € F(q)) }.
The operation I12 is defined as intersection of sets. Namely,

MzeXY,= ()Y
zeX
Note that X # @ for any X € UJ. The next lemma shows that the universe U%,
e.g. SATp, satisfies the necessary closureness properties.

Lemma 4.16. The set SATg is closed under II; and under arbitrary non-
emply intersections.

4.3. THE INTERPRETATIONS

In this subsection the interpretations | [2, [ |* and | |° are defined (see Fig.
2). For that purpose we need two valuations

¢:Var® —+UU? and p:Var‘LJVarD —T

to interpret all constructor variables at the middle level of the AS-hierarchy (see Fig.
2) and all constructor and object variables at the level of atoms. The interpretation
0 |2 , 1s obtained simply by applying the substitution p on its argument. Thus it
does not depend on the assignment § and for this reason it will be written as [ |9.
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The other two interpretations are constructed simultaneously by induction on the
structure of typable terms of the system AS.

Definition 4.17. Let p: Var*|JVar® — T be a valuation of constructor and
object variables. The atom-interpretation,

11S:{o} UKindUConstrUObj -7,
is defined as []ng = p(T'), where p(T') is the term obtained from T by applying the
substitution p to 7.

Definition 4.18. Let R)s be the set of PTS-rules of the system AS. Let
p: Var'JVar? — T and ¢ : Var® — [JUZ be valuations. The constructor-
interpretation of constructor and kinds,

0 ﬁé.p : {0} UKindUConstr — UU?,
and the kind-interpretation of kinds,
D11Z,: {0} UKind - U8,

are defined simultaneously by induction on the structure of the typable terms as
follows:

Sorts of AS:
[]* I?,p — BDI?,p — SATﬁ,
] * ﬂé,p = ﬂDlé,p = SNﬂ.

Kinds of AS:

e (0,0) € Rys (A, B € Kind(AS), a € Var®).
IMe:A.BlZ, =~ Hya€lAl;, M,melAlg ,.|BlZ,.

=a),pla:=m]’

“Ha:A’BIé.P = ﬂ H:meI]AUé,p’ﬂBlgl'[a:a],p[a:::m]’
el Al?,

o (x,0) € Rrs (A € Kind(AS), o € Type(AS), £ € Var*).
ﬂnx:o'Alg,p = vaeﬂol%,p'uAug,plt:zm]’

Mzo.Al}, =~ Wiméeloll, 1A fam

Constructors of AS:

e Constructor-variables (a € Var®).
lale, = &(a).
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e (0,0) € Ras (P,Q € Constr(AS), A €Kind(AS), & € Var®).

1PQE, = IPlg,(1Q), 1QIp),
[Aa:A.Pl, =~ Xa€]AlZ, Aome]Alg , [Pl

=a),pla:=m]"
e (x,0) € Rys (P € Constx(AS), t € 0bj(AS), o € Type(AS), =z € Var*)
iPele, =~ (Pl (00D,

ﬂ)\x:a.Pﬂé’p ~ Aumeﬂaﬂé'p.ﬂPlé’p[z:m].

e (O,%) € Rrs (A €Kind(AS), o € Type(AS), a € Var®).

UHO?A-Ulé,p = ﬂ IIime€ gAlél',p'ua'é[a:za],p[azzm]‘
aelAlg'P

e (x,%) € Rxs (0,7 € Type(AS), = € Var*).

[z:0.7)g , >~ Mim € [olg ,-17l¢ po:=m)-

Remark 4.19. The equality =~ is the usual Kleene equality as the interpreta-
tions | ﬂg'p and [ |; , may not be always defined.

The next lemma says that the atom-interpretations of 3-equal terms of AS are
also (-equal.

Lemma 4.20. Ift,,t; € Term(S) and t, =g t,, then [t1]5 =5 [t2]Y.

For the interpretations | l: »» k = 1,2, the substitution property, which is
stated in the next lemma, holds.

Lemma 4.21 (Substitution). If C € Constr(AS), t € 0bj(AS), M, M[C/q],
M(t/z) € Kind(AS) N Constr(AS), then

IM[C/ollg, =~ (M|

k
fla:=ICR ) plai=iCpe)
IM[t/2)l§, =

k
IMI e =pege)
Jor k=12,

Lemma 4.22. Let My, M, € Constr(AS) UKind(AS). If My —p M, and
ﬂMllg,p is defined, then [IMllf‘p =, HMd?m fork=1,2.

Proof. Let My —5 M;. The following cases are treated:

o Let (Aa:A.C)Q —p Cla := Q] for A € Kind(\S) and C,Q, (A a:A.C)Q €
Constr(AS). Assume that the interpretation [(Aa:A.C)Q|; , is defined, i.e., it is

equal to |]CI;[O:=|Q|2.’],p[a:=uq|gl (see Definition 4.18). Thus, from Lemma 4.21, it
28



follows that the constructor-interpretation of Cla := @] is defined and moreover,
it 1s equal to the constructor-interpretation of (Aa:A.C)Q.

e Let Ct, —p Ctz, where C € Constr(AS) and t;,1; € 0bj(AS), and let
[Ct:1]¢ , be well-defined. That means that |C|; , is a v-function (see Remarks 4.4)
and since [t |5 =p [t2]), it follows that [Cty]} , =p [Ct2; ,.

The rest of the cases are trivial and their proof is similar. We have proved that
if My —5 M, and ﬂMxlf,,, is defined for k = 1,2, then the interpretation ﬂlefp
is also defined and v-equal to ﬂM;If’p. ¥ '

Definition 4.23. The object interpretations p, and p, are compatible under
the B-equality if for all v € Var, p1(v) =p pa2(v).

The proofs of the next two lemmas are trivial by induction on the structure of
typable terms.

Lemma 4.24. If M € Term(AS) and p, and p2 are compatible object-valua-

tions, then

Lemma 4.25. Let M € Constr(AS)UKind(AS) and let py and p; be compatible
object-interpretations. If the interpretations [M[ , and [M|; , are defined (k =
1,2), then

IMIE,5, =0 IMIE,,,-

We have mentioned earlier that the interpretations of the typable terms should
satisfy some inclusion properties (Section 3). For that purpose, we introduce the
notion of satisfaction of a context I'. In such a way we restrict the possible valua-
tions, so that the interpretations | f¢ , and | [? , are defined.

Definition 4.26. The valuations
§:Var® - UU? and p: Var'UVarU -7
satisfy the context I' (notation £, p = I') iff:

(i) for every constructor variable a and kind A, such that (a: A) € T,
§(a) € JAlE, and p(a) € JAlg,, and

(ii) for every object variable z and type o, such that (z : 0) €T,

p(z) € [olg -

Definition 4.27. The (legal) context I' models that the (typable) term M has
a type T (notation I' M : T') iff:
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(i) if M € 0bj(AS), then for all {,p = T,
M5 € ITlg 5

(i1) if M € Constx(AS), then for all §,p =T,
IMI; €1T)g, and Mg, € ITI¢ ,;
(iii) if M € Kind(\S), then there exists a natural number n > 2, such that for all

EpET,
IMIZ, € Va(T), [M]{,€ SATs and [M]J € SNp.

Theorem 4.28 (Soundness). If 'FM : T, then T =M : T.

Proof. The proof of 1-3 is done by induction on derivations. The following
cases are treated:

e The ()) rule. The case when the bound variable is a constructor variable and
the term formed by the A-rule is a constructor (i.e., (0,0) € R)s) is considered.
The proof for all other cases of the A-rule is done in a similar way.

a:AFP:B T'tIla:A.B:0O

' Aa:A.P : lla:A.B
Let £, p =T. We have to prove that

[Aa:A.P]; , € [lla:A.B|Z , and [Aa:A.Pf) € [la:A. Bl ,.

From the induction hypothesis [A[Z | is an element of U§, [A]; , is an element of
SATp, and for all a € |AJf , and m € [A|; ,

2 o
uan[a:=a],p[a'=m] € US‘
Furthermore, for a € [A]Z , and m € [A[} ,

ﬂpué[a::a],p(a:m] € nB“g[a:za],p[a:m]' (1)
From Lemma 4.25 it follows
my =g my = ﬂpgé[a:a],p[at:m,] =v ﬂplé[a:za],p[a:=m2]
for all a € JA] , and m;,m; € JAl¢ ,, and hence the function
’\vaeﬂAug,p"\vmeUA"%,p'ﬂplé[a:a],p[a::m]
is indeed a v-function. Thus, from (1) and by the definition of [Aa:A.P[; , it follows
[Aa:A.PJ¢ , € [Ia:A.B|Z ,.

To prove [Aa:A.P|) € [lla:A.B|; ,, we have to prove that for any a € [A]Z ) and
m € [A];,
[Aa:A.Plym € | Blgg.=a) fa-=m]-
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The term [Aa:A.P|Om key-reduces to the term [P[° which by the induc-

pla:=m]’
tion hypothesis belongs to the saturated set ﬂBIé[a::a] pla:=m) @nd hence the term
JAa:A.P|m itself belongs to I]Bléla:
e The (app) rule. Again only the case when the applied terms are constructors
is considered (i.e., (0,0) € Rys). The proof of the other cases is done in the same
or even simpler way.

=a],pfa:=m]"

F-P:NMla:AB:0O THQ:A:D
' PQ: B{Q/<a]
Let £, p = I'. From the induction hypothesis it follows
1Pl;,, € (Nx:ABZ ., [Qlg, € 1Al;, and QI € [4l¢,,-

Thus,
1 2
1PQl., € 1Blgia-=jap: ) sfo=101

From the Substitution Lemma (see Lemma 4.21) it follows
[PQIg , € [Ble:= QI ,-

e The (J]) rule. The case of (3,0) € R)s is considered again. The proof in
the case (x,0) is similar and the proofs in the cases (O, x) or (*, *) follow directly
form the closure properties of SATgs (see Lemma 4.16). Let now the last rule in
the derivation of T+ M : T be

'FA:0 T,a:AFB:0O
TFIa:A.B: 0O |

Let £&,p E T. From the induction hypothesis it follows that there exist m,n > 2
such that

gAﬂ?,p € Vm(T), uAIé,p € SATﬁr and HBlg[azza],p[azzm] € vﬂ(T)

for any a € |A]? , and b € [Al; ,. Thus [lla:A.BJZ , is defined and equal to the
set

Ity aegAIg,p'nvbe“AIé,p'"Bug[a:a],p[a::b]' (2)

The elements of this set are v-functions which consist of triples of the form (a, b, ¢)
with @ € JA[Z ), b € [Alg, and ¢ € |BIZ,._ ) jfo=)- Thus for any such triple
(a,b,c)it follows a € V,u1(7), b € Vo(7) and ¢ € V,_1(7). Note that by definition

(a,b,¢) = {a, {a, {b,{b,c}}}}.
Thus (a,b,c) € vmax(n+1,m-1)+2(T) and hence
HvaeﬂA?,p-nvbeuA'é,p'nBig[a:za],p[azzb] € Vmax(n—l,m—1)+4(T)-

Consequently,
I]HQIA.BH?J, € vmax(n-— 1,m— 1)+3(T).
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e The (conv) rule.
'FM:T TFHU:s

'FM:U
Let, for example, U be a kind, i.e., s = 0. From the induction hypothesis it follows

ﬂM"e p € "Tﬂk+1

T'=3U.

for k¥ = 0,1. Moreover, the interpretations []Tlf::’ and U []2"“;1 are defined for
k = 0,1. Since the property of confluence holds for S-conversion on the set of
pseudo-terms, it follows that there exists a pseudo-term V' such that 7" —3 V and
U -—»5 V. Thus, from Lemma 4.22 it follows

nT|k+1 =, ﬂvnk-H and [IU|k+1 =, “V|k+l
for k = 1,2, and hence [lTl]"+1 = []Ulk"'1 Consequently,
k
Mg, € ITIE

The theorem is proved. =

5. STRONG NORMALIZATION

The property of Strong Normalization for the system AS of the A-cube is ob-
tained as a corollary of the Soundness Theorem.

Theorem 5.1 (Strong Normalization for AS). For every contezt ' of AS and
for every terms M and T, such that ' = M : T, it follows that M € SNg.

Proof. We define a maximum element for every kind-interpretation of kinds in
the following way:

maz( SATg) = SNy,
ma:c([]Ha:A.Bﬂg’p) = A.,aE[]Aﬂg'p.,\,,mE[]A[]é,p.ma:t([]Bﬂ§[°:=a],p[a:=m]),
maz(|lz:0.B[,) = Avm€lofg . maz(|BIE, piz.m))-

Let p(v) = v for every variable v, and £(a) = ma.‘r([]AI]?,p) for every (a:A) € T.
(This is possible due to the linearity of the legal contexts.) Obviously, the so-chosen
valuations satisfy I'. From the Soundness Theorem it follows that [M ] € [T|; , C
SNg, and hence M € SNg. =

6. INDUCTIVE TYPES

In the following a method for extending the present SN-proof to systems with
inductive types is presented. For simplicity we consider only the system AC. It is
the most general system of the A-cube and all non-trivial cases are captured.
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In order to use a typing system for practical applications, there should be
a certain mechanism for defining data types (e.g., inductive types) in it. The
study of inductive types, however, happens to be a rather difficult task as well for
defining a general inductive scheme as for studying the metatheory of type systems
with inductive types. A general scheme for defining inductive types is presented,
for example, in [10]. Here we will use a particular example, e.g., the type Nat
of Natural Numbers, to show the flexibility of the present SN-proof. The system
obtained from AC by adding the derivation and reduction rules for Nat will be
denoted by AC + Nat.

The main problems for studying the metatheory of AC with inductive types
arise when there are inductive types at the impredicative level of AC (i.e., which
are of type x) and it is possible to define a type (respectively, predicate) over the
clements of some inductive type. That means that for different elements of this
inductive type the elimination scheme yields different types. Thus, the elements
of an inductive type are distinguishable and one can prove inequalities like 0 # 1.
Therefore, the well-known syntactically-oriented proofs of Strong Normalization for
AC and similar systems ([5, 6]), which exploit the idea of unifying all inhabitants of
a type, are not directly adaptable for systems with inductive types. In such proofs
many new technical complications must be added in order to adapt them to a system
with inductive types (see [14, 15, 13]). Further, it is very likely that it is not possible
to extend such syntactically-oriented proofs to normalization proofs of systems with
mixed inductive types and kinds. Since the dependencies between constructors and
objects are not disregarded in the interpretations presented here, we do not face
the above problems. The present SN-proof is extended in a straightforward way to
systems with other type-constructors. In the present section such an extension is
shown for the system AC + Nat!

The additional rules of AC 4 Nat are listed in Table 2.

The rule (elim, *) is called small elimination and the rule (elim, O) — large
elimination.

There are two additional reduction rules for computing the values of recursive
functions over Nat. This sort of reduction is called ¢-reduction. The contraction
rules for the t-reduction are defined as follows:

ReC(P[x]QfO,fs[x’v])(O) - fo,
Rec(P[z]; fo, fs[z,v])(sn) —. fs[z := n,v:=Rec(P[z]; fo, fs[z, v])(n)].

The proof is extended as follows. First, the notion of v-equality is modified
in order to comprise t-reduction as well. This modification is obvious (see Defini-
tion 4.1). Further, the notion of saturated set should be adapted to Bi-reduction.
This is done below. Let SNg, C 7 be the set of pseudo-terms which are strongly
normalizing under B:¢-reduction.
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Table 2. Rules for the type Nat

(form) F Nat: *
(introl) F 0: Nat

' n: Nat

(intro2)
I'F s(n) : Nat

FFn:Nat T',z:Natk P :s
, 'k fo: Pz :=0]
(ehm, S) F,szat,va I fs . P[.’D v S(Z)] s € {*; G}

'+ Rec(Plz]; fo, fs[z,v])(n) : Pz := n]

Definition 6.1. The set of Si-base terms B, is defined as the smallest set
satisfying the following conditions:

(i) Var C Bg,;

(i) if M € Bp, and P, fofs,t € SNp,, then Rec(P[z]; fo, fs[z, v])(M) € Bg..

Definition 6.2. One step [i-key-reduction is defined by the contraction
scheme

QT T)Ts S5 Tofv:=T,

Rec(P(z]; fo, filz,v])(0) Sp.  fo,

Rec(P][z]; fo, fs|z,v])(sn) ﬁ»p‘ fslz := n, v := Rec(P[z]; fo, fs[z,v)(n)]

and by the compatibility extensions

T -E'pt T, = TTiM —k*p; oM,
Tl i’ﬂt T2 == Rec(P[z];fO:f:[x’v])(Tl) ’E’ﬂl ROC(P[“']; fo,f,[-'t,v])(Tz).

Fact 6.3. If the proper sub-terms of a term T; are fi-strongly-normalizing,
Ti -E»p‘ To and Ty € SNp‘, then T} € SNp,.

The next definition describes the collection SATp, of Bi-saturated sets. Note
that only the subscripts differ from those in Definition 4.14.

Definition 6.4. The set X of pseudo-terms is Bi-saturated if:
(1) X CSNg,;

34



(") Bs. C X;

(i) if Ty -f-vm Ty, Ty € X and the proper sub-terms of 7} are (i-strongly-
normalizing, then 77 € X.

It is easy to check that the closureness properties listed in Lemma 4.16 are also
valid for the collection SATyg,.

The interpretations which are needed to be added to those in Definitions 4.18
and 4.17 are specified as follows:

Atom-interpretations:

[Nat]$ := Nat,
[s(m)1; == s(Inlp),

[Rec(P[z]; fo, flz, W])(n)I} :=
Rec Plp[x -z][z] Ifo'ﬂ’uf’ plz: -ff‘"—”][x v])([]nlo)

Constructor-interpretations:

e The constructor-interpretation of the type Nat is defined to be the smallest
[i-saturated set which contains 0 and is closed under s, that is

INatfg , := uX € SAT,(0 € X&(z € X = s(z) € X)). (3)

e The constructor-interpretation of terms of the form

Rec(A[z]; fo, fs[z, a])(n),

obtained by applying the rule for large elimination over Nat, is defined below. Its
definition uses recursion over the set ﬂNatﬂé, ,- First some auxiliary functions are

defined. Let in the following
Go = [folg, - (4)

Let also g(n) and G,(n,a) be (dependent) set-theoretical functions de-
fined by the equations (n € [Nat|; ,, a € [Alf ;i;.—n) 2nd z € FV(A, fo, fs, 2, 2))

g(n) I]Rec(A[:c] fo’fs[x a])(‘z)'p[z :=n)» (5)
Gg(n,a) = ﬂfs5%[0::0],p[a::g(n),r::n]* (6)
Finally, let G(n) be a set-theoretical function with domain [Nat[; ,,.defined by
G(n) . maz(ﬂAH?,p[x:=n])' (7)
Now we define a function F(n) by recursion on n € |Nat|2,p:
F(0) = {7;
F(s(n)) = Gs(n, F(n)), 3
F()) = G(b) if b€ By, (8)
F(M) = F(M) if M55 M
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Then we can define
[Rec(P(z]; fo, flz, v])(n)l¢ , = F([nlp)- (9)

The Lemmas 4.20-4.22, 4.24, 4.25 and their proof are extended in an obvious
way. The proof of the Soundness Theorem 4.28 is also extended in a trivial way
for the new rules. The case when the last rule in the derivation of a judgment
'+ M : T is the rule for large elimination over Nat, will be treated here:

I'Ft:Nat T',z:NatF A:0
Lk fo:Alz:=0] T,z:Nat,v:AF f, : Alz := s(z)]

[+ Rec(Alz]; fo, fs(z,a])(t) : Alz =]
We have to prove that if £, p =T, then
"RQC(A[:L']; fO’ f,,[:t, v])(t)lé,p € HA[“: i t]l?,p

and

[Rec(Alz]; fo, fi[z, a])(®)]; € VA= := 1] ,.
From the induction hypothesis the following inclusions follow:
(i) Bt € [Natlg ;

(ii) Vn € [Nat|; ,
1A ooy € U,
HAI(l',p[z:zn] € SATﬂn
B"ﬂg[z::n] € SNg,;

(iii) Efolé,p € “Alz,p[z:=0]’
1folp € DAl pzi=op;
(IV) Vn € nNatEé,p) Va € UAIg,p[zzzn]’ Vie ﬂAlé,p[::=n] :

"fllé[a::a],p(a::l,z::n] € "AI?,P[’-'3=3(")’
"fllg[a:zl,zzzn] € ﬂAIé.P[:‘::s(")]'

Note that Go and the function G(n) are well-defined (see (4), (iii), (7) and
(i1)). We will prove also that the function G,(n, a) is well-defined. First, we shall
prove that g(n) € [Al; ,1;.=, (see (5)) by induction on n € [Natf; :

1. Let n = 0.
g(O) = Rec(ﬂAlg[z:t][z]; ﬂf0|2, ufa 2[:::::,0::01])(0)’
and hence g(0) —k+,3‘ 1fol9. Thus, from (iii), (ii) and Definition 6.4 it follows

9(0) € “Al,l;[z:o]-
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2. Let n = s(m) for some m € [Nat]; , and let us assume g(m) € 1Al rA—
g(s(m)) = Rec(ﬂAlg[z:x][z]; ﬂf0I2! I]f3 2[z:=z,a:=a])(s(aml]2)'

Thus g(s(m)) -’f*pa ﬂfslg[a:g(m).,_.::m] and hence from (iv), (ii) and Definition 6.4
we obtain

g(s(m)) € uAlé,p[tzzs(m)]'

3. Let n € Bg,. Then also g(n) € Bg, (see Definition 6.1 and (5)) and hence
g(n) € Al iz.=n since [ Al fz.=n) is @ Be-saturated set.

4. Finally, let n -&p‘ n’ and let us assume g(n’) € []Alé.p[x:n,]. Note that

g(n) Lﬁ‘ g(n’) (see Definition 6.2) and hence g(n) € ﬂAﬂé plz:

j since ﬂAIé il
is a saturated set. Further, from Lemma 4.25 it follows

=n' =n']

nAné,p[z:n’] = []Aué,p[z:zn]’
and hence g(n) € |Alg jfz.=n)-

Thus we have proved that g(n) € ﬂAﬁé'p[z:n]. This implies that, first, the
function G4(n,a) (see (6)) is well-defined, and second,
[Rec(A[z]; fo, fslz, ])(®)], € [Alz := 1]l , (10)

since [Rec(Alz]; fo, £o[z, ) (OIS = g(It ).

It follows now that the function F(n) (see (8)) is well-defined, because Gy
and the functions G and G, are well-defined. Now we shall prove that F(n) €
JAIE z.=nj by induction on n € INat]; ,:

1. Let n = 0. By definition
F(O) = lfolé,p'

Thus, from (iii) it follows F(0) € [AIZ ..o

2. Let n = s(m) for some m € [Nat]; , and let us assume

F(m) = uA'?,p[:r:=m]'

By definition (see (8)) F(s(m)) = [lfgI;la:gf‘(m)],p[a::g(m),z:___m]- Thus, from (iv) it
follows F(s(m)) € EAI?,p[::::S(m)]'

3. Let n € Bp,. In this case F(n) = maz(JA[; ,,._,)) and hence F(n) €
ﬂAIg,p[r::n]'

4. Let now n -4, n’ and let F(n') € 141 ..
and thus from Lemma 4.25 it follows

F(n) € ﬂAlg,p[zzzn}‘

By definition F(n) = F(n')

=nl/]"
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Thus we have proved that F(n) € ﬂAlg’p[x.:n] and hence
[Rec(A[z]; fo, fslz, v])(t)ié,p €Az := t]ﬂf,p. (11)

The proof of the Soundness Theorem in the case of the rule for large elimination
over Nat follows directly from (10) and (11).

The proof of Strong Normalization for AC + Nat follows in a trivial way from
the Soundness Theorem (see Theorem 5.1).

7. DISCUSSION

We have presented a simple semantical proof of Strong Normalization for the
systems of the A-cube. We have shown that the property of Strong Normaliza-
tion can be derived directly from a simple denotational semantics of the system
considered. Further, the flexibility of this semantical proof has been illustrated by
extending the system AC + Nat.

We have not addressed the following questions, which deserve some attention:

e Generalized Inductive Definitions. The proof presented here is extendible in a
straightforward way to a proof of Strong Normalization of systems with generalized
inductive definitions. Such definitions are a convenient tool for defining various
inductive types, such as lists of a type o, sigma types, finite sets, etc. A proof
of Strong Normalization of AC enriched with generalized inductive definitions is
presented in [12].

e Inductive kinds. In some systems there is a clear distinction between the level
of formulas (*) and the level of domains (O). In such systems one prefers to define
data-types rather as kinds than as types. An interesting issue, which seems to have
not been considered yet in the literature, is the metatheory of a system in which
inductive definitions are allowed at the both levels x and O. In such systems one
can define inductive predicates (for example =4: A—A—x) at the level of formulas
and inductive data types (for example Nat : O) at the level of domains. The proof
described here is adapted to systems with inductive kinds in [12].

e Generic strong normalization argumeni. The proof presented above suggests
a generic method for proving Strong Normalization for PTSs. The genericity lies in
the fact that the properties of interpretations U* and U® of the universes * and O
are derived directly from the PTS-presentation of the systems in the A-cube. For
example, the axiom * : O is interpreted by U* € U®, and the PTS-rules — by
requiring adequate closure properties on U* and UP.

We outline how one can generalize the method to a subclass PTSs.

A PTS § = (5, A,R) is specified by three sets: S of sorts, A of axioms, and
R of rules (see [2] or [4] for a detailed presentation of PTS-s). The set S of sorts
is simply a set of fixed constants s;. Every axiom has the form s; : s, and every
rule — (si, sj,5x). The PTS-rules say what kind of dependent products can be
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constructed inside the system S. For example, if (s;, 55, sx) € R, then the following
([T)-rule is allowed in the system S:

AFs;: vAF B:s;
IMMv:A.BF s : .

A relation < is defined on the sets of sorts to be the smallest relation satisfying
the following conditions:

(i) si:s; = si < sj;
(11) s; < s; and s; < s = §; < 8.

Below we sketch out the properties each interpretation U?® of a sort s should
pOssess:

— for any axiom (s; : 5;5) € A it holds that U’ € U*s;

— for any rule (s;,s;,sx) € R, such that s; < s, one can define an operation
I13: for which holds

VX € U V{Y;}oex € U Mz € XY, € U,

— for any rule (s;,s;,sx) € R, such that s; > sy, it follows that U** is closed
under arbitrary non-empty intersections;

— for each sort s, @ ¢ U®.

It is interesting to see for which PTSs the universes U, exist.. For example, it
is clear that for PTSs, for which the relation < is not a strict order, i.e. s < s for
some sort s, such universes can not be found. Further, one needs to study more
precisely the dependencies in the PTS considered, in order to specify as precise as
possible the operations II3:.

e Models. The Strong Normalization proof presented here is based on specific
models of the systems of the A-cube. In [12] an abstract notion of a model of AC
will be presented. This abstract model construction generalizes the ideas presented

here.
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FIRST ORDER AXIOMATIZABILITY OF RECURSION THEORY
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JORDAN ZASHEV

A modification of recursion theorem in Cartesian linear combinatory algebras is proved
which yields first order formalizability of theory of the last algebras. Some other
improvements of this theory are demonstrated. '
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1. Cartesian linear combinatory algebras (shortly CLCA) were introduced in
{1]; the principal objective was to provide a theoretical example to be compared
with other partially ordered algebras used for abstract axiomatical treatment of
the fundamentals of recursion theory. In the present note we are going to give an
improved exposition of principal results of [1], which is based on replacement of the
concept of iterative CLCA with that of strictly iterative one.

Let F = (|F], <, App, O, A, C, K, C', D) be a Cartesian linear combinatory
algebra in the sense of {1]; App is the application operation and we write as usual ¢
for App(y, ¥) and adopt the other traditional notational conventions for application
(association to left, etc.). By definition this means that |F| is a set partially ordered
by <, App is a binary operation in |F] increasing on both arguments, O is the least
element of |F| with respect to <, and A, C, K, C’, D’ are elements of |F| such that
the following equalities hold for all ¢, ¥, x € |F]:

* Lecture presented at the Fourth Logical Biennial, Gjuletchitza, September 12-14, 1996.
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D'O0 =0; Apyx =p(¥x); Ce¥ =vp; Ko = gp;
and

C'o(D'¥x) = p¥x.
We shall write F for |F| below, and we shall use some other notations and termi-
nology from [1]. Especially, for any set C of operations in F (which may include
elements of F considered as operations of zero arguments) an element of F or an
operation in F will be called C-expressible iff it can be defined by an explicit ex-
pression containing application and operations from C.

A set A will be called an admissible iteration domain (of first, second, etc.
kind, respectively) iff it has one of the following four forms:

A={(€TF[p < ¥}

) A={(£9)eF|E<I&LDOI<I&I<LY);

i) A={(£,9,n) €F° |£<I & I < xnd & D'ny’ <¢'};

iv) A= {{€TF| D' < ¢},
where @, ¥, x, ¢’, ¥’ are elements of F such that D'O¢’ < 9.

A CLCA F will be called strictly iterative iff for every ¢ € F the inequality
wé < € has the least solution I(p) € F with respect to £ such that the following
three conditions are fulfilled:

I;) For every admissible iteration domain A of first or fourth kind such that
@A C A we have I(p) € A,

I;) For every admissible iteration domain A of second kind and every a € F
such that (p€,ad) € A for all (§,9) € A there is 9’ € F such that (I(p),¥') € A4;

I3) For every admissible iteration domain A of third kind and every F-expres-
sible mapping I' : § — F, and every a € F, if (€, ad,I'(n)) € A forall (§,9,9) € A,
then there are ¥',n’ € F such that (I(¢),?Y’,7’) € A.

The element I(p) will be called iferation of ; it is the least fixed point of the
mapping £ — €.

This notion of strict iterativity is clearly first order formalizable, while the
previous notion of iterativity of a CLCA in the sense of [1] is not. It seems, how-
ever, that a formalization of I3) would require infinitely many (first order) axioms,
because it involves arbitrary F-expressible mappings I'. This is not really the case,
since we may safely restrict condition I3) to mappings I of the form I'(§) = &€
(for fixed ¢ € F) only, as it will be explained below in Remark 1.

The next Proposition 1 is an analog of the usual criteria of iterativity in alge-
braic recursion theory; it shows that in typical cases CLCA will be strictly iterative.

Proposition 1. Let F be a CLCA and let k be a cardinal number such that
sup ; ezists for all increasing (ransfinite) sequences p; € F and all ordinal num-
i<l
bers | < k. Suppose at least one of the following two conditions holds:

1) k = w and sup pp; = psup p; for all increasing sequences @; in F and all

i<k i<k
@ €73,
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2) cardF < k and the following equalities hold for all increasing transfinite
sequences ; in F, alll < k and allp € F:

2a) sup(pi®) = (sup ¢:)¥;
i<l i<l
2b) sup D'piyp = D'(sup ¢;)¥;
i<l i<l
2¢) sup D'pyp; = D'+p(sup ;).
i<l i<l
Then F is strictly iterative.

Proof. In the case of condition 1) we define by induction ¢g = O and ¢,41 =
@¥n, where ¢ is a fixed element of F. The usual argument shows that the sequence
¢n increases and I(p) = sup ¢, is the least solution of pé < £ with respect to € in

n<w
F. If A is an admissible iteration domain of first or fourth kind such that p A C A,
then by induction on n we have ¢, € A. Indeed, O € A since D’OO = O and
OpB = O for all B € F, because O < KOf = O, and the induction step is obvious.
Using the supposition that increasing suprema commute with application, we get
I(p) = sup ¢, € A. (Note that condition 1) implies sup(pn¥) = sup(Cp,) =

n<w

Cv sup ¢n = (sup pn)¥.) To show that condition I;) holds, consider an admissible
iteration domain A of second kind and an element o € F such that

(€, 9) €A = (pf,ad) €A

for all £,9 € F. Define inductively ap = O and a, 41 = aa,. The sequence «y, in-
creases and a,, = sup o, exists in F. Since obviously (0, O) € A, we have by induc-
tion on n that (¢,,an) € A, whence, using condition 1), we obtain (I(¢), a,) € A.
In similar way we see that condition I3) holds: for an admissible iteration domain
A of third kind and an element a € F and a mapping I' : F — F such that

&9, €A = (p€,ad,I'(n) €A

we define a, as before and v, as I'(O) and prove by induction on n that
(¢n, an, ) € A, whence (I(p), a,,supys) € A.

In the case of condition 2) the usual Platek argument holds. We define by
transfinite recursion a sequence ¢; € F (¢ < k), and prove simultaneously that
@i = suppyj, pi < @i, and (pj)j<i increases for all i < k. Then [(p) = ¢m,

j<i
where m is the least ordinal number for which ¢, = ¢m+1, 1s the least solution
of o€ < £ with respect to £ in F. To show that condition I;) holds, we prove by
induction on i that ¢; € A for all i < k and every admissible iteration domain
A of first or fourth kind such that A C A, using 2a)-2c). Then I(¢) = ¢m €
A. For condition Iy), given an admissible iteration domain A of second kind and
an element a € F such that (£,9) € A implies (p€,a?d) € A for all {,9 € T,
we construct in a similar way a transfinite increasing sequence a; € JF such that
a; = sup aq;j for all ¢ < k, whence, using induction on i, we see that (pi,ai) €A
j<i
for all i < k and therefore (I(¢), am) € A. Finally, given an admissible iteration
domain A of third kind, an element o € F and an expressible mapping I' : F — F
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such that (£,9,7) € A implies (p€,a?¥,I'(n)) € A for all £,n,9 € F, we define

transfinite increasing sequences a; as before and y; = sup I'(%;) (using monotonicity
i<i

of expressible mappings I'), and prove by induction on i that (¢;, a;, ;) € A for all
i < k, whence (I{(p), am,1m) € A.

Proposition 1 is applicable to all the examples of CLCA in [1] and shows that
these CLCA are strictly iterative; particularly, the algebras F in the examples 1 and
2 in [1] satisfy condition 1) in the last proposition, and the algebras F in examples
3 and 4 in [1] satisfy condition 2) of the same proposition.

Let us note in this connection that the Proposition 5.2 in [1], treating the
same question of general iterativity criteria, is incorrect. A correct version of this
proposition would be that a CLCA is iterative if it satisfies the conditions of the
above Proposition 1 in such a way that 1) in the last proposition holds. However,
this correct version does not imply the iterativity of the CLCA JF in the examples 3
and 4 in [1], and the last CLCA are indeed non-iterative. Thus the notion of strict
iterativity provides also the necessary improvement to comprise these examples as
well.

Theorem 1. Let F be a strictly iterative CLCA and let C C F. Then for
every C-expressible unary operation ' : F — F the least fized point of I exists and
is CU{A, C, K, C', D', I}-ezpressible.

Proof. The proof begins as that of Theorem 5.3 in [1]; using a short notation
" (&) for p(p(...p(p€)...)) (where we have n occurrences of ¢ and ¢,§ € F are
arbitrary) and the basic equalities for the constants A, C, C’, D' in the definition
of CLCA, we find an CU {A, C, C’, D'}-expressible element cr € F such that for
all o, v, VE€F

crd((D'p)*(¥)) = D'T(p)(99),
where k is the number of occurrences of the variable (for) £ in the explicit expression
defining I'(€). Next we define ¥ = [(cr) and V(p) = I(D'¢) and prove that for all
pETF
V(T(¢)) = 1V(p). (1)

This is done by making use of strict iterativity of F, especially condition I;). Name-
ly, the set

Ao ={§ € F[EV(p) < V(I'(p))}
is an admissible iteration domain of first kind. If £ € Ag, then
créV(p) = cré((D'9)*(V(p))) = D'T(9)(EV()) < D'T(p)V(T(p)) = V(I(p)),

since V(p) = D'oV(p) = (D'p)*(V(p)), because V() is the least fixed point of
the mapping & — D'p€. Thus cpAg C Ao and by condition I;) ¥ = I(cr) € Ao, i.e.

YV(p) < V(I(y)).

The reverse inequality follows from
D'T(e)(7V(9)) = crv((D'9)*(V(9))) = errV(p) = 7V(¥)
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and proves (1). Then for an arbitrary £ € F such that I'(§) < £ we have

1V(§) = V(I(§)) < V(§),
whence I(y) < V(£) and
Ll(y) < LV(§) = L(D'¢V(E)) = ¢
(where L = C'K and therefore L(D'py) = ¢ for all ¢, 9 € F).

Therefore it remains to show that ['(Lu) < Ly, where we are writing shortly
u for I(). For this we show first that

D'Op < p. (2)
Indeed, consider the set
A={ENeF|E<I&DOI<I &V < p).
It is an admissible iteration domain of second kind. To apply condition I,) suppose
(€,9)€ A,ie. £ <9I, D'OY <9I and J < p. Then we have v¢ < 49 and
v < yp =v1(y) SKy) = p.

Moreover, by induction on n we see that for all natural n

(D'OY*(9) < 9,
and using the definition of cr we have

D'O(y9) < D'T(0)(y9) = ery((D'0)*(9)) < eryd = 9.
So we see that (y€,vY) € A. Then by condition I3) (y,9J) € A for some ¥ € F,
whence we obtain (2). From (2) it follows that the set
B={(9,n)eF|E<V&ILDnI & D'nu < p}

is an admissible iteration domain of third kind. To apply condition I3), suppose
(€,9,n) € B,ie. £ <V, 9 < D'nd and D'nu < p. Then ¥¢ < 7Y and by induction
on n we have

9 < (D'n)"(9)
and

(D'n)"(p) S p
for all natural n, whence

79 < 1(D'm)F(9)) = cor(D'm)*(9)) = D'T(n)(79)
and
D'T(n)p = D'T(n)(vs) = erv((D'n)*(p)) < cryu = 10 = p.
Therefore (v€,v9,'(n)) € B, and by condition I3) (4,9,n) € B for some 9,9 € J.
Thus we have p < ¥, ¥ < D'nd and D'nu < p, whence Ly < LY < L(D'nd) =7
and
D'(Lp)u < D'np < .
By definition of the operation V this inequality shows that V(Ly) < u, whence
by (1)
V(I(Lp)) = ¥V (Lp) S vp = p,

and
D(Lu) = L(D'T(Lw)V(T(Ly))) = LV(D(Lw)) < Lp.
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2. Let F be a strictly iterative CLCA and define V as in Section 1. Then we
have

Theorem 2. There is an {A, C, C', D', I}-ezpressible element § € F such
that for all p € F we have

8V(p) = D'V(p)V(p).
Proof. Using the basic equalities in the definition of a CLCA, we define two
elements D;, Dy € JF such that
Dyén(D'9o¥1) = D'(D'§90)(D'nd;)
for all ¢, 7,90,V € F, and
D9(D'E(D'1¢)) = Drén(¥¢)

for all §,7n,9,( € F; and let § = I(D;). To prove the inequality

D'V(p)V(p) < 6V(p), (3)

consider the set
A={£€TF| D€ <6V (p)}

which is an admissible iteration domain of fourth kind. We shall show that D'pA C
A. Suppose € € A. Then

D'(D'p€)(D'p€) = Dypp(D'€€) < Dipp(8V(p)) = D28(D' (D' oV (9)))
= D26V (p) = 6V (9),

whence D'p€ € A. By condition I;) V() = I(D'w) € A, which proves (3). To
prove the reverse inequality, consider the admissible iteration domain B of first
kind defined by

B={(€TF|EV(p) < D'V(p)V(p)}.

Then for ¢ € B we have
D2V (p) = D2&(D'p(D'pV(9))) = D1op(€V(¥)) < Dipp(D'V(p) V()
= D'(D'eV(p))(D'9V(9)) = D'V(p)V(p),
which by definition of B means that Dy € B; thus we have D;B C B and
6 =1(D,) € B.

Corollary 1. There is {A, C, C', D', [}-ezpressible k € F such that for all

@ € F we have
kV(p) = V2(p) = V(V(p)).

Proof. Define D3 € JF so that the equality
D39(D'n¢) = D'n(¥¢)
holds for all J,7,{ € F. Next define §; € F to satisfy
619€ = D39(6€)
for all ¥,€ € F, and define x = [(§;). Then
KV(¢) = 816V(p) = Dar(§V(p)) = Dar(D'V()V(9)) = D'V($)(xV(¥)),
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whence
V(p) < £V(p).

To prove the reverse inequality, consider the admissible iteration domain of first
kind A, = {€ € F| EV(p) < V2(p)}. If £ € Ay, then

8:6V () = D3€(8V (p)) = D3€(D'V(p)V(9)) = D'V(9)(€V(p))
< D'V(p)V¥(p) = V(p),
which shows that 6, € A;. Thus §;.A; C A; and & = I(6;) € A;.

The next theorem is Lemma 5.5 in [1], stated for strictly iterative CLCA instead
of iterative ones.

Theorem 3. There are {A,C,C’, K, I}-ezpressible. € F and {A,C,C’, D', I}-
expressible p € F such that for all p, € F the following two equalities hold:

(a) ¢V(p) =1(p);
(b)  uV(e)V(¥) = V().

Proof. There is an {A, C, C'}-expressible element e € F such that for all £, 5,

¢, ¢’ in F we have
eén(D'¢¢’) = €¢(ng’).
We shall show that for all p, x € F
I(ex)V(9) = I(x¥). (4)
Indeed,
xe(I(ex)V(y)) = exI(ex)(D'oV(p)) = I(ex)V(¢),

whence I(x¢) < I(ex)V(p). To prove the reverse inequality, consider the admissible
iteration domain A of first kind, defined by

A={£ €T [EV(p) <I(xyp)}-
If £ €A, then
extVp) = exé(D'eV(p)) = xp(EV () < xel(xp) = Kxyp),
i.e. exé € A. Since ¥ is supposed strictly iterative, this implies I(ex) € A, which
means that I(ex)V(¢) < I(x¢) and proves (4). For ¢ = l(e]), where I = A(CA)K,

this gives the equality (a) of the theorem. To define y, consider an {A,C, C’, D', I}-
expressible element b € F such that for all €, 5, {, (' in F we have

¥n(D'¢¢") = D'(€¢)(nC’).-
The equalities
D' (p9)(I(bp) V() = bpl(bp)(D' ¢V (¥)) = Kbp)V(¥)

show that V(pv) < I(bp)V (%), and the reverse equality follows from the inclusion
bpB C B for the admissible iteration domain B of first kind defined by

B={£€TF|EV(Y) < V(py)}
Indeed, for £ € B we have |
b€V (%) = bp€(D'¥V (%)) = D'(e¥)(EV(¥)) < D'(p¥)V(py) = V(py),
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i.e. bp€ € B. Therefore I(bp)V(¥) = V(p9), and defining u = I(eb), we obtain
from (4) the equality (b) of the theorem.

Corollary 2 (First normal form theorem). There is an element X € 7,
recursive in {A, C, K, C', D'}, such that for every recursive in € C F mapping
[':F — F there is an CU{A, C, C', D'}-expressible mapping A : F — F such that
['(&) = AI(A(€)) for all £ € T.

Proof. By Proposition 1.2 in [1] and the proof of Theorem 1 we have I'(¢) =
L(LI(I(cr+))) for suitable CU {£ }-expressible mapping I’ : F — . It is clear by the

definition of cp- in the proof of Theorem 1 that ¢y = A’(€) for certain C-expressible
mapping A’ : F — F and all £ in F. Then by Corollary 1 and Theorem 3 we have

[(€) = L(L(V(V(A'(€)))) = L(L((rV (1) V*(A'(€)))))
= ALL(Ay(uV (1)) (,V(A'(€)))) = A(ALL)(Au(prV (2)))(cV(A'(€)))
= A(A(ALL)(Au(puV (1))))I(D' A'(€)),
and we can take D' A’(€) for A(§) and A(A(ALL)(A(2V(1))))« for A.

Corollary 3. The algebra F is a combinatory algebra with respect to the
application operation App, defined by App(p,¥) = »V(¥), and with recursive in
{A, C, K, C', D'} combinators.

Proof. This follows from Propositions 1 and 2 in [2] and [3], since V is a ‘DW-
producing’ operator (a storage operation would be a better terminology) in terms
of [2]. By definition, the last means that there are five constants I*, M*, Q*, P*,
D* in F such that the following five equalities hold for all ¢, ¥ € F:

I'v(e) = ¢; ()
M*V(p)V(¥) = V(py); (6)
Q" V(p) = Vi(p); (7)
PV (p)Y = ¢; (8)
D*V(p) = Dyyp, (9)
where D is an {A, C}-expressible element of F such that
Doyx = xp¢

for all ¢, ¥, x in F. We may find such elements I*, M*, Q*, P*, D*, as follows.

Define I* = L; M* = p (the element defined in Theorem 3); Q* = « (defined by

Corollary 1); P* = A(AR)D', where R is an {A, C, K, C'}-expressible element of

F such that R(D'én) = n for all €, n € F; and define D* by the condition that
D*(D'¢n) = C'D(D'¢(Lm))

for all §,n € F. Then the equalities (5)-(7) are immediate and for the last two ones
we have

P* V(o) = AR(D'V(p)) = R(D'V(¢)¥) = ¥
and
D*V(p) = D*(D'¢V(p)) = C'D(D'¢(LV(p))) = C'D(D'pp) = Dpep.
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The equalities (5)-(9) form with the basic equalities for the constants A and C
a combinatory type-free variant of axioms for a ‘decomposed’ application operation
(in the sense of the decomposition of the application first observed by Girard for
his coherence spaces semantics of the typed lambda calculus and used by him for
the development of linear logic). The fact that they imply the usual combinatory
axioms for the operation App can be easily verified by a direct calculation, as follows.

Define
K* = A(AI")P*,

and define S* as a {A, C, I*, M*, Q*, D" }-expressible element such that
§*¢n¢ = C(So€n)(D*()

for all £,1,( € F, where Sy is an {A, C, I*, M*, Q*}-expressible element such that
for all €, n,(, 9 € F we have

SoénCd = I"EC(M ™ n(Q"Y)).
Then for all , ¥, ( € F we have
App(App(K”®, 9), %) = K*V(p)V(¥) = AI"(P*V(9))V(¥)
= I"(P*V(p)V(¥)) = I"V(¥) = ¢;
and
App(App(p, €), App(¥,()) = ¢V({)V(¥V(())
= I"V(p)V(O)(M*V(¥)(QV(())) = SoV(p)V(¥) V() V()
= DV(()V(()(SoV(9)V(¥)) = C(SoV(e)V(¥))(DV(()V(C))
= C(SoV(p)V(¥))(D*V(()) = S*V(p)V(¥)V(()
= App(App(App(S”, ¥), %), ().

Corollary 4 (Second normal form theorem). For every recursive inC C F
mapping ® : F — F there is recursive in CU{A, C, K, C’, D'} element ¢ € F such
that ®(€) = V(&) = pI(D'E) for all€ € F.

Proof. It follows easily from (5) that the original application in JF is explicitly
expressible through application operation App from the last corollary. (Indeed, the
clement a = A(CI*)(AAI") satisfies the equality afn = I*¢(I*n) for all {,n € F,
whence

e = I"V(p)(I"V(¢)) = aV(p)V(¥) = App(App(a, ¢), ¥)
for all ¢, € F.) Then Corollary 3 implies that every C-expressible mapping
[': F — T is representable in the form I'(§) = yV(€) for certain v € F recursive in
CU{A4, C, K, C', D'}. Thence by Corollary 2

®(¢) = M(yV(§)) = AV(yV(€)))

for a similar v, and by (6) and (7) we get an element ¢ € J satisfying the conditions
of Corollary 4.

Remark 1. The element v in the last proof of Corollary 4 is actually CU
{A, C, K, C', D', I}-expressible and this is seen without using Theorem 1. Then
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the inequality I'(§) < £ being equivalent to YV (€) < &, any inequality of this kind
may be reduced to a system of inequalities of the form

<€ D'én<ny, (10)

since the first member &g of the least solution (g, 7o) of the last system with respect
to €, n is the least solution of YV (€) < € and therefore of I'(§) < €. On the other
hand, it is easy to see that if (p is the least solution of the inequality

D'(v(R¢)) < ¢,

where R = C'K’ and K'¢'n’ = 7/ for all ¢,/ € F, then § = L{o and 19 = R{o
is the least solution of (10). Thus, the inequality I'(§) < £ may be reduced to an
inequality of the form ¢(¢ < ¢ for certain CU {A, C, K, C', D', I}-expressible
v € F. Hence, it would be enough to prove Theorem 1 for mappings of the form
['(€) = €€, for which we need condition I3) for such mappings only.

Remark 2. Admissible iteration domains of fourth kind were used in the
proof of Theorem 2 only. We may exclude them from axioms by the restricting
condition I,) to such domains of first kind. Still all results above remain valid if
we replace the storage operation V with its square VZ(p) = V(V(yp)). This can
be shown by using the obvious analogue of the normal form theorem from (1] (for
strictly iterative CLCA instead of iterative ones), which is seen to hold (even after
such excluding of admissible iteration domains of fourth kind) in the same way as
in [1].
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In the middle of the seventies Skordev proposed to consider in general the so-called
fixpoint complete partially ordered algebras, introduced in [3}. The code evaluation
method is an universal method for establishing a fixpoint completeness of such algebras.
Its principal result — the code evaluation theorem (or the coding theorem, as it was
called before) — implies easily all basic results of algebraic recursion theory. In the
present work we give a categorical analysis of code evaluation proofs for operative
spaces. Thus we obtain an algebraic formulation of the fundamentals of recursion
theory which can be considered as an abstract recursion theory of higher level — by
one level higher, compared with the usual theory of operative spaces [1]; and it may be
otherwise considered as a generalization of the last theory in a new categorical direction,
in which the role of multiplication in partially ordered semigroups is played by some
kind of weak tensor product in partially ordered (weak) premonoidal categories.
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1. CATEGORICAL PRELIMINARIES

Let C be a category and let F : € — € be an endofunctor. By Cp we denote
the category of F-algebras in C; objects of Cr are the arrows ¢ : F(X) — X in
@, and arrows between two objects ¢ : F(X) — X and ¢ : F(Y) = Y of C are
the arrows f : X — Y in C such that f o = ¥ o F(f). The least fixed point of

* Lecture presented at the Fourth Logical Biennial, Gjuletchitza, September 12-14, 1996.
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F'1s an initial object m : F(M) — M in Cp. For every object ¢ : F(X) — X
of Cr there is an unique A : M — X in C such that hom = ¢ o F(h). The last
equality can be considered as an abstract definition of the evaluator h by primitive
recursive iteration. To treat the more general case with primitive recursion, we use
the following concept: Let A and F’ be endofunctors in C, and let ¥ : AoF = F'oA
be a natural transformation. Then we say that a parameterized evaluation holds
for the least fixed point m : F(M) — M of F with respect to A, F’ and 9 iff for
every arrow f : F'(X) — X in C there is an unique C-arrow € : A(M) — X such
that £ o A(m) = f o F/(£) o ¥:

A(F(M)) Aw) N
J '3
F'(A(M)) _Fe | F'(X) / X

Theorem 1.1. Suppose C has an initial object O and co-limits of all w-
sequences Xo — X, — ---, and the functors F and A commute with those co-limils

and A(O) = O. Then the least fized point m: F(M) — M of F ezists and a

paramelerized evaluation holds for it with respect to A, F' and ¥, where F' and ¥
are arbitrary.

Proof. The least fixed point m: F(M) — M is obtained from a limiting

cone ¥, : F*(O) — M of the sequence O — F(O) — F?*(0) — --- of arrows

9n = F™(do) : F*(0) — F**1(0) in a well-known way, namely: since F preserves
these co-limits, then F(¥,) : F*+1(0) — F(M) is a limiting cone for the sequence
F(0) —» F?*(0) — ---, whence there is an unique m : F(M) — M such that
In4+1 = mo F(J,) for all natural n; this m is the least fixed point of F.

Now let f: F'(X) — X be an C-arrow. Since A commutes with co-limits of

w-sequences in €, we have a limiting cone

A(9a) : A(F™(0)) — A(M) (1)

for the sequence
A(9,) : A(F™(0)) — A(F™1(0)).

Define a sequence of arrows £, : A(F™(0)) — X by induction on n: §p is determined
uniquely, since A(Q) is an initial object in C, and €n41 = f o F'(€s) 0 9. Then by
induction on n we have

ﬁn = En-H o A("n) (2)
Indeed, for n = 0 this is trivial, since A(O) is an initial object in C, and for the
induction step:

€nt20 A(Un41) = fo F'(§nt1) 00 A(Uny1) = f o F'(€ny1) 0 F'(A(Fn)) 0 9
= foF'(§at10A(In)) 09 = fo F'(§n) 0 = &ns.

From the limiting cone (1) we obtain an unique arrow § : A(M) — X such that
én = €0 A(U,,) for all n. Next we show that

§oA(m)=foF'(§)od (3)
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by proving that for all n
=foF'(§)odoA(m™") o A(J,).
For n = 0 the last equality is trivial, and for n > 0 we have
foF'(€)odoA(m ' 0d,) = foF'(€)od o A(F(9,-1))
= foF'(§) o F'(A(Dn-1))) 09 = fo F'(€n- 1)0’9 €n-
Conversely, if £ : A(M) — X satisfies (3), then for all n

Eﬂ = 6 o A('&n), (4)
whence it follows that the arrow £, satisfying (3), is unique. For n = 0 the equality
(4) is obvious, and for the other cases we use induction:

§0A(Jns1) =€0A(mo F(dn)) = fo F'(§) oo A(F(Jn))  (by (3))
= foF'(€)o F'(A(Wp)) o9 = foF'(€,) 09 = €ny.
The term ‘parameterized evaluation’ is motivated by the following example: €

m .
is the category of sets, F'is a ‘polinomial’ F(X) = > A; x X7, A(X) =Y x X and
=0

F'(X) =Y x F(X) for a fixed set Y of ‘parameters’. An F-algebra f: F(X) — X
in Cis then an universal algebra with a set (corresponding to A;) of j-ary operations
for all j < m. For the least fixed point m : F(M) — M of F, M is the set of terms
freely generated by those operations. The equality (3) then may be interpreted as

E(y,a(to, ..., tj-1)) = f(y,a(€(y, t0), - .., €(¥,t5-1))),

where y € Y is a parameter, a is a j-ary operation from basic ones, and fo,...,t;_;
are terms from M; it is a definition of £ by some kind of parameterized recursion.

A partially ordered category is a category € with partial order in every hom-set
such that a composition of arrows is increasing on both arguments. We denote the
partial order with the usual symbol <, i.e. f < g for two arrows in a partially
ordered category C means that f and g have the same domain and co-domain
and f precedes g in the sense of the partial order in the corresponding hom-set.
The universal example of partially ordered category is the category of posets and
increasing mappings, shortly referred to as ‘category of posets’. The partial order
in the last category is defined in an obvious way: f < g means that f(z) < g(z)
for all z in the domain of f and g.

The notion of increasing functor F' : € — D between two partially ordered
categories C and D is also obvious: F is increasing iff f < g implies F(f) < F(g)
for every pair of arrows f, g in C.

Let C be a partially ordered category and let F : € — € be an increasing
endofunctor in €. Then we shall call an F-algebram : F(M) — M in C a proper
least fixed point of F iff for every F-algebra f: F(X) — X in € there is an arrow
f:M — X in € such that fom = fo F(f) and the following two conditions hold
MOreover:

a) for every C-arrow ¢ : M — X, such that f o F(p) < ¢ om, we have f<e;

b) for every C-arrow ¢ : M — X, such that pom < fo F(p), we have ¢ < f.
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Obviously, a proper least fixed point of F' is also such one in the usual sense, and f
is the corresponding evaluator for any F-algebra f. We shall desist from discussing
general criteria of existence of proper least fixed points, restricting ourselves with
the remark that this is a natural concept. Typically, the usual least fixed points of
increasing endofunctors are proper. For instance: consider the ‘polinomial’ F(X) =

m .

> Ajx X7 in the category € of partially ordered sets and increasing mappings. The
Jj=0

category C is partially ordered in an obvious way: f < g means that f(z) < g(z) for
every z in the domain of f and g. The least fixed point m : F(M) — M exists and

the object M is the set of all terms generated by j-ary operations corresponding

to the elements of A; (for all j < m) with the trivial partial order coinciding with
the equality. This least fixed point is proper one and conditions a) and b) express
in abstract way the possibility of proving inequalities by induction on complexity
of terms (for instance in a) we prove f(t) < (1) by induction on the complexity of
the term t € M).

9. NORMAL EVALUATION IN STRUCTURED RING-CATEGORIES

A structured ring-category (shortly, SRC) is by definition a 5-tuple
(C,0,a, R,Jr), where: C is a category with finite co-products and co-limits of
w-sequences Xg — X; — -+ -; © 1s a bi-endofunctor €% — C in C such that for any
fixed object Y of € the functor Y ® _ preserves those co-products and co-limits;
a: X0 ©Z)— (XOY)OZ is a natural transformation (not necessarily iso-
morphism) satisfying Mac Lane pentagonal aca = (@a® l)oao(l®a); Ris an
endofunctor in € and g : X © R(Y) — R(X ©Y) is a natural in X,Y € C trans-
formation satisfying R-coherence: R(@) o¥9po (1 ® dgr) = Jgroa, i.e. the following
commutative diagram:

X 0 (Y © R(Z)) (1098) | »q R(YY © 2) YR R(X ®(Y 0 2))
i R(a)
(X ®Y)0 R(2) oL S R(XOY)0 2)

We fix a SRC (C,®, a, R, 9g) and we shall write shortly € for the last 5-tuple.
To ensure existence of some least fixed points and applicability of Theorem 1.1
in some cases below, we shall suppose that the endofunctors R, Fi(X) = X © X
and F»(X) = X © B in € commute with co-limits of w-sequences Xo — X; — - -
for any fixed object B of C. Binary co-products in € will be denoted by +, and
we write Iy and I; for the canonical monics X; — Xo + X, of the co-product
Xo+ X; (1 = 0,1). Thus Iy and I, are natural in Xp, X; transformations, and
we shall use short notations for their compositions, for instance: Iy, = Iy o I,
Loy = I 0 Iy o I, etc. We also write [fo, f1] for the unique arrow Xo + X; — Y
such that [fo, filo L = fi : Xi = Y (i = 0,1). Since the functor Y © _ preserves
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binary co-products, there is an isomorphism
,50 :Y@(X0+X1) — (Y@Xo) +(Y®X1),

natural in Y, Xy, X, such that 651 = [1®Ip,10]. This means that 650(10L;) =
I; for both ¢ = 0,1, and for every pair of arrows ¢,% : Y © (Xo + X;) — A in C,
such that po(1® L) =9 o (10 L) for both i = 0,1, we have ¢ = 1. A proof of an
equality ¢ = 9 of this kind based on the last principle will be called below a ‘proof
of ¢ = 9 by considering cases’.

Algebraic structures concerning the present paper are represented in this con-
text by standard C-algebras, i.e. arrows a : (X ® X) + R(X) — X in C, satisfying
the following two equalities:

ago(l®ag) =apo(ag®1)oa, (5)
apo(l®ay) =a;oR(ap)o Vg, (6)

where a; = ao I;, 1 = 0,1. The equality (5) means that ap : X 0o X — X is a
‘premonoid’ in € (note that C is not supposed to be premonoidal category with
respect to ©, since the associativity transformation @ may not be an isomorphism).
Equality (6) corresponds to the equality (¢, ¥)x = (¢x, ¥x) in operative spaces in
notations of Ivanov [1]. Thus operative spaces are standard C-algebras in the SRC
of sets, i.e. the SRC (C, ®, a, R, ¥g), where C is the category of sets, ® is the usual
Cartesian product, R(X) = X x X, a is the usual associativity isomorphism, and

Jp: X x (Y xY)—= (X xY) x (X xY) is the natural transformation defined by

Ir((z, (v, y))) = ((z,9), (=, y¥)) (z€X, y,y €Y).

The forgetful functor P : SA(C) — € from the category SA(C) of standard C-
algebras to C has a left adjoint L : € — SA(C), which in the case of the SRC
of sets assigns to each set X the free standard C-algebra L(X) generated by X.
In the present section we shall give an explicit construction of this adjunction in
terms of the least fixed points, and this construction is essential for the categorical
axiomatization of code evaluation which we give in the next two sections 3 and 4.
The reader will probably notice the analogy between sections 2 and 3.
Now consider two bi-endofunctors S and S in the fixed SRC €, defined by

S(B,X)=B+((X ©X)+ R(X))
and .
S(B,X) =B+ ((X © B) + R(X))
for objects B, X of € and arrows as well. We shall fix the object B of € and write

shortly S(X) and S(X) for S(B,X) and $(B, X), respectively (for arrows S(f)
means S(B, f) = S(1g, f) and, similarly, for S). We have a functor N : Cs — C;

from the category of S-algebras in C to that one of S'-a.lgebras, defined by

N(f) = [fo,[f100 (1O fo), ful]

for objects f : S(X) — X of Cg, i.e. S-algebras in €, and N(p) = ¢ for arrows
¢ in Cg, where fo = fo Iy, fio = fo Lo, and fy3 = f o I}y, as we shall write
shortly below for any suitable arrow f in €. N is indeed a functor, since for an
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arrow ¢ : f — g between two algebras f : S(X) —» X and g : (Y) = Y in Cg, i.e.
an arrow ¢ : X — Y in C such that p o f = g0 S(p), we have
poN(f)=lpofo,[po fioo (10 fo),po ful]

=[g0S(p) o lo,[g0 S(p) o Lo 0 (1O fo),g05(p) 0 In]]

= [90,[910 0 (p © 9) 0 (10 fo), 911 0 R()]]

= [90, (910 0 (9 © g 0 S() 0 Io), 911 0 R()]]

= [0, [910 © (¥ © g0), 911 © R(p)]]

= {90, {9100 (1 © g0), g1l o (1B + ((» © 18) + R(¥)))

= [90, [910 0 (1® g0), 911]) 0 S() = N(g) o S(y),
ie. o : N(f) = N(g) in C;.

Let 7 : S(T) - T and 7 : S’(T) T be the least fixed points of S and S, re-
spectively, in €. (Actually, T and T' are endofunctors in € and 7(B) : S(B,T(B)) —
T(B) and 7(B) : $(B,T(B)) — T(B) are natural in B isomorphisms.) In the SRC
of sets T' is the set of terms generated from elements of B by means of two binary
operations — 119 = 70 Iy and 7; = 7o I};, and T is the set of normal terms.

Denote by D the full subcategory of Cs, consisting of those S-algebras f :
S(X) — X for which f; = fol; : (X ® X)+ R(X) — X is a standard C-algebra.
We are looking for an algebra f : S(X) — X in D such that N(f) = 7.

To find such an algebra, consider the natural in X,Y € C transformation

9:Y 0 S(X)— S(Y)+5(Y 0 X),
defined by .

9= (Lo+I1o(@a+JIr)oéy)oby.
This definition is equivalent to the following three equalities:

90 (10 Ih) = oo, (M)
Yo (1® Io) = oo a, (7')
190(1@111)211110!9}%- (7")

Proposition 2.1. Every algebra f : S(X) — X from D satisfies the equality

fioo(LON(f)) = N(f) o [L, 5(f10)] o I, 8)
X ® $(X) 10 N{) X0 X
J fio
S(X) + S(X © X) L GL)) son YD

Proof. By considering cases. Denoting by ¢ and v the left- and right-hand sides
of (8), respectively, we shall conclude ¢ = 9 by showing that wo(101y) = ¥o(101y),
wo(10110) =vo(10I1) and po (1@ I11) = Yo (1O I1;). Consider, for instance,
the second of the last three equalities, leaving the other ones to the reader:
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9o (1©5o)=fioo (1O N(f) o I10) = fioo (1O froo (10 fo)),

and

Y0 (10 Lo) = N(f) o [1,8(fr0)] © f1j00d = N(f)oS(fio)olgoa
=N(fyoLioo(fio®1)oa= fi1p0(1® fo)o(fio®1)oa
= fioo (fio® fo)oa = fioo (1® froo (10 fo)),

the last equality being the equality (5) for the algebra f € D. In the case with
(1 ® I ;) the equality (6) is used in a similar way.

Now suppose an algebra f : S(X) — X from D satisfies N(f) = 7. Then,
obviously, X = T', and composing the equality N(f) = 7 from right by I, and I,
we obtain fo =7 =7o0lp and fj; =Ty = _ro I11, whence f should be of the form
(70, {1, T11]] for some arrow p : TOT — T in €. Then the equality N(f)=171s
equivalent to po (1@ 7) = 19 = 7o [1g. If f € D, then by (8) we obtain

po(1@7) = 70o[l,S5(u)]od, (9)
FosH) —2T et -t T
, 7
$(T) +S(T o T) 1, 5G] ~ $(T)

The last equality determines u uniquely by the principle of the parameterized
evaluation, i.e. by Theorem 1.1 (with the functors S for F, T® X for A(X)
and S(T) + F(X) for F'(X)). This suggests to define p by (9). Then the ar-
row f = [7o, [, T11]] satisfies N(f) = 7, because a composition of (9) from right by
1 ® Iy yields

po(107)=7o[l,S(u)edo (10 L) =+oll,S(u)] o oo = 0.
The arrow f will be denoted below by 7%V, i.e

TN = [T"O’ [F: ‘i.ll]])

where p satisfies (9). Thus we see that 7V : S(T) — T is the unique S-algebra f
satisfying (8), such that N(f) = 7.

Proposition 2.2. For every S-algebra f : S(X) — X in C satisfying (8) there
is an unique arrow h : 7V — f in Cg, i.e. an unique h : T — X in C, such that

hot™ = foS(h), (10)
and the arrow h is the unique one h: 7 — N(f) in Cg, t.e.
hot= N(f)oS(h). (11)

Proof. f h : ¥ — f is an arrow in Cg, then h = N(h) : 7 — N(f) is such
one in Cg, but the arrow h : 7+ — N(f) in C; is unique, since 7 is the least fixed

point of S. Therefore the arrow h : T — X, satisfying (10), can be only the unique
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arrow h : 7 — N(f) in C4. To show that the last arrow satisfies (10), we consider
the cases:

hotNoly=hor = N(f)oS'(h)oIo = N(f)olo=fo=foly= foS(h)o Iy
hor™Nol); = hotyy = N(f)oS(h)ol}y = N(f)oli10R(h) = fiyoR(h) = foS(h)ol)y;
but hor¥ o I1g = hop and f o S(h) o I1io = fioo (h ®h). Therefore it remains to
show that

hou= figo(h®h). (12)
We shall do this by the principle of the parameterized evaluation. For that define
wo=hopu, p1 = fioo(hOR), and

n= N(f)o[S(h),1]: S(T) + S(X) — X.
By the principle of the parameterized evaluation (Theorem 1.1) there is an unique
C-arrow ¢ : T ®T — X such that
9o (107) =no(1+S(p)) 9. (13)

We shall show that both ¢o and ¢; satisfy (13) with respect to ¢, whence it will
follow (12) and the proof will be completed. For ¢g this can be done without using

(8):
woo(lOT) = hopo(l.(D‘i') = ho1"o.[1,.5"(p)]ot9.= N(f)oS"(h)o[l,S'(;f)]ozé
= N(f) o [S(h), (po) o9 = N(f) o [5(h), 1] o (1+ S(o)) o ¥
=no (14 S(po)) o 9.
For ¢, the equality (8) is used:
p10(107) = froo(h®hot)= fioo (h® N(f)oS(h))
= fo (1O N(f)) o (h® 5(h) = N(f) o [1,5(fro)] 0 F o (h © S(h))
= N(f)o[L,S(f0)] o (S(h) + $(h O h)) o ¥
= N(f)o[S(h),S(¢1)] 09 = no(1+ S(p1)) 0 .
Since 7: S(T) = T and 7 : S(T) — T are least fixed points, there are unique
arrows v : T — T and ¢ : T — T such that

vor=1NoSW) (14)

and .
ot = N(1)oS5(e), (15)

respectively.
Proposition 2.3. v s a retraction with inverse ¢, i.e.
vor=1= 17'-.
Proof. 1t 1s enough to show that voto7 = 1"o$'(i/oz), since the arrow 1 : 7 — 7
in C; is unique. But
vototr =voN(T) oS(L) =vo[rn,(reo (10 m),nillo S(:,)
=[vor,[Pomeo(l1®m),rom]o S(t)
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=[N oSW) oIy, [N o S(W)olipo (10 70), ™ 0 S(v) 0 I11]] 0 S(¢)
= [fo,[ne (v O V)0 (10 m), 711 0 R(¥)]] 0 S(1)

= [#o, [0 (¥ ® 7o), 711 © R()]] 0 S(1)

= [0, [f10 0 (¥ © 1), 711 0 R())] 0 S(¢)

= [fo, (10, Tul} o (1 + ((? @ 1) + R())) 0 S(1)
=70S(H)oS(t)=70S(Wou).

Denote by v the morphism to v : T'— T'. This is the ‘normalizing’ morphism,
in the SRC of sets v assigns to each term its normal form. For any S- algebra
f :8(X) — (X) in € denote by f the evaluator of f with respect to 7, i.e. the
unique arrow f : 7' — X such that for = fo S(f) (In the case of SRC of sets f
assigns to each term in 7' its value in the algebra X.)

Corollary 2.1. For any S-algebra f : S(X) — X in C the following conditions
are equivalent:

(a) fov=F;

(b) there is @ morphism h: v — f in Cg;

(b’) there is an unique morphism h : ™V — f in Cs;

(c) there is a morphism h : T — X in C such that hov = f;

(¢') there is an unique morphism h : T — X in C such that hov = f;

and when they hold, the unigue arrows h in (b’) and (c') are the same as the
evaluator of N(f) with respect to T or the unique morphism h : v+ — N(f) in C;.

Proof. (a) = (b) Let for = f and h = for. Then
horV = fororV 0 S(v o) (by Proposition 2.3)
= forovoroS(t) (by (14))
= fovoroS(t)=foroS()=foS(f)oS()=foS(h).
(b) = (c)&(b’) Let h: T — X and ho 7V = f o S(h). Then
hovor=hor¥oS8(¥) = foS(h)oS(¥)=foS(hov),
and by the uniqueness of the evaluator f we have f = ho . Thence, also for =
hov ot =h and therefore the morphism h : ™ — f in € is unique.
(c) > (a) Let h: T — X and how = f. Then
fov=hovov=hovotov=hov= f.

(c) = (c') Because hov = f implies h=hovor= fou.

The implications (b’) = (b) and (c¢') = (c) are tr1v1al The equivalence of
(a)-(c') is proved. If they hold, then for the morphism h : ¥ — f in (b’) we have
h=N(h):7=N(V) = N(f) in C5. From the proof of (b) = (c) it is clear also
that the morphism satisfying (b’) coincides with the unique morphism in (c’).

The morphism h from this corollary, when (a)-(c’) hold, will be called below a
normal evaluator of f. The next proposition is partially a reverse one to Proposi-

tion 2.1.
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Proposition 2.4. If the S-algebra f : S(X) — X satisfies (8) and the arrow
lx ©(1x O f) is an epic, then f € D.

Proof. We have to prove that
f100(10 fi0) = fioo(flo®1)oa (16)

and
fi00 (1O fi1) = fu1 © R(f10) o Jr. (17)

The equality (17) follows easily from (8) by a composition from right with 1® I;.
Similany, a composition with 1 ® ;o yields the equality

f100 (1@ fioo(1© fo)) = fro© (f10 @ fo) 0, (18)
which is weaker than (16). To prove the last one, we shall show that
f100(1© froo (10 for)) = froo (fro® for)oa. (19)

From (19) the equality (16) will follow immediately by canceling from right the
arrow 1 © (1® f o). This can be done because 1 © (1® f) is right-cancelable by
suppositions of Proposition 2.4, and f = fov = f o101, whence 10 (16 fo L) is
also right cancelable. Therefore it remains to prove (19). For that we shall use the
principle of the parameterized evaluation. Consider the C-arrow

¥ =[froo (1O N(f), N(f)] : (X 0 8(X)) + S(X) = X
and the natural in X,Y € C transformation
9,: X0(X0S3(Y) = (X0S(X)+S(Xo(X0Y))
defined by
V1= ((105g)+L1o(ao(lOa)+P9ro(10TR)))o(1+6p)obgo(l1O(1+6g)06p),

which is equivalent to the following three equalities:

J10(10 (10 L)) = Ipo (1O I); (20)
J10(10(1® L)) =I1100ao (10 a); (20)
Y10(10(1® 1)) =Litodro (10 Ir). (20")

By Theorem 1.1, applied to functors F(Y) = S(Y), A(Y) = X © (X © Y) and
F'(Y) = (X ©S(X)) + F(Y), there is an unique C-arrow o : X O (X 0 T) - X
such that .

po(10(107)) =v¢o(l+S(p))od;. (21)
Therefore, to complete the proof, it is enough to show that both sides of (19) satisfy
(21) with respect to ¢. Denote the left- and right-hand sides of (19) by o and ¢,
respectively. To prove

0o (10(107)) =9o(l+S(p)) o, (22)

we use the following form of the principle of considering cases: composed from
right by 1© (10 Ip), 1 ©(1® I1p) and 1© (1 ® I1;), the two sides of (22) become
equal, hence we shall conclude (22). We shall show this for 1 © (1 ® I}0), leaving
the other two cases for the reader (they are similar or simpler). First, notice that
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by Proposition 2.2 and Corollary 2.1 'we have f = h o v, where h is the normal
evaluator of f, and therefore f o = h (by Proposition 2.3), whence

foror=N(f)oS(fou), (23)
and
20o(10(107)) = fioo(10 froo(10 forot)) = fioo(1® froo (1O N(f)oS(for))).
Then
¢0°(1®(1®+))°(1®(1®IIO)):floo(l@floo(l@N(f)OS(fOL)OIm))
= f100(10 fo0 (10 fioo (f o1 ® fo))).
On the other hand,
Yo(1+ S(po)) 0910 (1O (1® o)) = Y o (1 + S(¢o)) 0 g0 @0 (10 a)
=yol108(po)olipoao(l1®a)=N(f)oloo(po®1l)odo(l®a)
= fioo(po © fo)oao(10Qa)
= fi00(fioo (10 f100(1® fo01))® fo)oao (10 a)
= f109 (f10® fo) o (10 froo (1® for)) @ 1)odo (10 a)
= fi00(fio® fo) 0@o (10 (foo (1® for)©1)) o (1 ®a)
= f100(10 fioo (10 fo)) o (10 (froo (1@ for) @ 1)) o (10 &)
= f100(10 f100 (10 f0)) o (10 (f1o®@1))o(10((10 for)®1)0a)
= f100(1® f100(10 f0)) o (10 (fio ©1)) 0 (10 @0 (1O (fo: © 1))
=flo°(1®f10°(f10®fo))0(1®ﬁ)°(lO(IO(fOLQI)))
= f100(10 fi00(10 fi00 (10 fo))) o (10 (10 (fo L0 1))
= f100 (1@ f100(10 fioo (fo1® fo))) = po o (10 (10 7)) o (1O (10 Io))-
To prove .
p10(10(10 7)) =¢o(l+5(p1))od, (24)
consider the cases as in the proof of (22). Again, we shall consider the case with
1® (1 ® I10) only, leaving the other ones to the reader (note that in the case with
1O (1 ® I;) the R-coherence is used in the same way in which the Mac Lane
pentagonal diagram for a is used in the case with 1 ® (1 ® I1o)). We have, using
(23) as before,
©10(10(107)) 0 (10 (10 o)) = froo (fio ® fot)odo (10 (1@ 710))
= fioo (fio® forotoli)oda= fioo(fio® fioo(for® fo))oa.
On the other hand,

Yo(l+ .S"((pl))oﬂl 0o(10(105)=vo(l+ S(cpl)) oljjpoao(10a)
:N(f)oS(cpl)oIloo&o(IQ&)=N(f)olmo(gol(al)o&o(l@&)
= fioo (10 fo)o(p1 ®1)oao(l®a)
=fmo(l@fo)o(floo(floefOL)o&@1)0&0(1@&)
=floo(l@fo)o(fwo(floefOL)G)l)o&o&
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= fioo (fio® fo)oao (fio®(for®1))oa
= f100(10 fi00 (10 fo)) o (fo®(fot®1))oa
=f10°(f10®f10°(f°t®f0))°&=<P10(1®(1®+))o(1@(1@1m)),

Corollary 2.2. The algebra ™ : S(T) — T belongs to D, and therefore it s
an initzal object of D.

Proof. Since the evaluator v : T — T of 7V is right-invertible by Proposition
2.3, the arrow 1®(1®v) is an epic. Then by Proposition 2.4 the algebra 7%V belongs
to D and by Proposition 2.2 it is an initial object of D.

3. MINIMAL EVALUATION IN PARTIALLY ORDERED SRC

A partially ordered SRC is a SRC (€, ®,a, R,Vg) such that C is in the same
time a partially ordered category and all involved functors (i.e. ®, R and +) are
increasing with respect to the partial order in € on every argument. In the present
section we shall fix a partially ordered SRC (C, ®, a, R, 9g) satisfying all conditions
from the previous section, and we shall suppose moreover that the least fixed point

7(B) : S(T'(B)) — T(B)

is a proper one with respect to the partial order in C. The bi-endofunctors S and
S, defined as in the previous section, are increasing. Consider the bi-endofunctor
S*(B, X) = S(B, X) + X which also is increasing. As in the previous section, we
shall write shortly S(X), S(X) and S*(X) for S(B, X), S(B,X) and S*(B, X),
respectively. We have the functor N : C¢ — Cg+ defined by N(f) (f,1] for

objects il S(X) — X of C; and N(g) = ¢ for morphisms ¢. The composition

NoN :Cs — Cs+ preserves morphisms and we shall write shortly f1 for the value
N(N(f)) of N o N for obJects i.e.

= [[fo, [fio e (1 © fo), f11], 1].

Now, for the fixed object B of C we shall suppose that B = By + B;, where By and
B, are two fixed objects of C. As usual, we denote the canonical monics By — B
and B; — B by I and I, respectively. Intuitively, the object By will be considered
as the object of ‘parameters’, and B; — as the object of ‘variables’, which is just
the case for the SRC of sets. We use the short notations So(X), So(X) and Sg (X)
for S(Bo, X), S(Bo, X) and S*(By, X), respectively. (Thus we define endofunctors
So, So and SF in @, for instance, So(f) = S(Bo, f) = S(1g,, f) for an arrow f
in G, etc.) We have a functor P : Cg — Cg, defined by P(f) = f o S(Io, 1) for
objects f, and P(p) = ¢ for arrows ¢ of Cg, where Ij is here the canonical monic
Iy : Bg — B of the co-product By + B;. Intuitively, the functor P simply ignores
interpretation of variables. We have also another functor @ : B — Cs which is in
some sense inverse to P. Here B is the category, defined as follows: objects of B
are pairs (z, f), where z : By — X and f : So(X) — X are C-arrows with the
same co-domain X, and morphisms ¢ : (z, f) — (v, ¢) in B, where y : B; — Y and
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g: So(Y) — Y, are the C-arrows ¢ : X — Y which are simultaneously morphisms
in the comma category (B) | €) and in Cg,, i.e. y=poz and po f = go Sp(p).
For objects (z, f) € B the functor Q is defined by

Q(z, f) = [[fo, 2], i] : S(X) — X,

and for arrows ¢ in B the functor Q is defined trivially: Q(¢) = . The reader
can easily check that Q is indeed a functor and Q(fo1, P(f)) = f for any object f :
S(X) — X of Cs, where, as usual, fo; = fool) : By — X and also P(Q(z, f)) = f
for all (z, f) € B.

Next we define a natural in X,Y € C transformation

IP=9F : X0StH(Y) - StH(X)+SH(X0Y),

similar to the transformation 9 in the previous section, namely,

9t = [(Jo + Ip) o 19,I11] 0dg,
which is equivalent to the pair of equalities

9* o (10 o) = (Io+ Io) 0¥
and

d*o(10 L) = 1.

The transformation 19:’9'0, defined in the same way for the functor Sy instead of S,
will be denoted shortly by 97 .

Proposition 3.1. For any algebra f : S(X) — X in Cg the equalities (8) and
froo (10 f*) = ftoll, S*(fi0)] 0 9* (25)
are equivalent, and therefore (25) holds for every object f of D.
Proof. An easy consequence of definitions.

Now consider a morphism o : B; — T = T(B). In the case of SRC of posets
and the trivial order (coinciding with the equality) in By, o assigns to each variable
v € By a normal term o(v) € T which may contain any variable from B;. Thus
o determines a system of inequalities {o(v) < v | v € B;}. A solution of the last
system in an Sp-algebra f : So(X) — X in this SRC is a function z : By — X such
that the evaluator h : T — X of the algebra N(Q(z, f)) : S(X) — X with respect
to the least fixed point 7 satisfies the inequality

hoo < ho 7y, (26)

where 791 = 7rolgo I} : By — T is the mapping, which assigns to each variable
in B, the same one considered as a normal term from 7. When Q(z, f) € D,
ie. f1 is a standard algebra in the SRC of posets, the mapping h: 7' — X is a
morphism h : 7V — Q(z, f) in Cs (by Propositions 2.1 and 2.2), and therefore
P(h) = h: P(N) — f is such one in Cg,, i.e.

hotN 0 S(Iy,1) = foSo(h). (27)
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And the solution z can be restored from h, namely, z = h o 79, which follows from
the equality h o 7 = N(Q(z, f)) o S(h) by a composition from right with Toi.

In the general case, when we have an arbitrary partially ordered SRC @ and
an Sp-algebra f : So(X) — X in it, such that f; € SA(C), the above consjderation
suggests to treat an arbitrary arrow o : By — T as a system of inequalitjes and
morphisms h : P(rV) — f of Sp-algebras in €, satisfying (26) as solutions of the
system o. The next proposition will give us a more convenient form of (26).

First we define an arrow a : 7' — S§ (T), called analyzer of the system o, by
the following equality:

a=[Io+0), [(lo+preo(100a))ody, Ion1]]o 7!,

An equivalent and perhaps more clear form of this equality is the following definition
‘by cases’:

a o Too = Igo; (28.1)
aoT = loo,; (28.2)
a o0 (10O Io) = Ioio; (28.3)
aompo(lOonh)=Lopuo(l®o); (28.4)
a o 11y = Io11. (28-5)

Proposition 3.2. For any Sp-algebra f : So(X) — X in € and any morphism
h: P('rN) — f of such algebras, i.e. any C-arrowh : T — X for which (27) holds,
we have the equivalence

hoo <hoty ¢ ftoSt(h)oa<h.
Proof. The reverse direction (<=) of the last equivalence is easy to be proved
and does not use (27):
ftoSf(h)oaot = froSi(h)oljoo=ftolhohoo=hoo. (29)

To prove that hoo < ho 7o implies f+ oS3 (h) oa < h, suppose hoo < ho 7.
Since 7 is an isomorphism, it is enough to prove the inequality

ftoSf(h)oaor < hor. (30)
We shall do this by considering cases as in the definition of a. We have, using
(28.1) and (27),
froSt(h)oaotyoly=ftoSF(h)olp = f*olyoSo(h)o o
=N(f)olp=fo=foSo(h)oly= ho 1V o0S(Ip,1)0Io
=horNolyp=hotolp. (31)
On the other hand, by (29) and the supposition koo < h o 79, we have
ftoSf(h)oaotol; <horgol,

whence (using the supposition that the functor + is increasing on both arguments)

we conclude that
f+ oS&"(h)oaoi‘o S ho‘f'o.
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In this way it would be enough to show that
ftoSt(h)oaor; <horm;
for both i = 0, 1. The case with i = 1 is easter:
froSg(h)oaotiy = f*oSF(h)olosy = N(f)oSo(h)o I1y = N(f)o I o R(h)
= fiioR(h) = foSo(h)oIjy =hot™ 0S(Iy,1)0 Iy = ho 7.
For the case 1 = 0 we again consider cases, as follows:
froSf(h)oaotino(1®I)= f* oSt (h)olpio= N(f)oSo(h)o I
=N(f)oLipo(h®1l)= fioo(1® fo)o(h® 1),
and using the chain of equalities (31) and the equality (27), we have
f+oS(',“(h) oaoT00 (10 )= fioo(h®hoty)=foSs(h)oIino(l® )
= foSs(h)oLipo(1® 7)) =hot™ 0S(Iy,1)0 I1g0 (1O 700)
=hopo(l®7)o(lO© L) =hofpo(l0® I);
on the other hand (using twice (27) and the supposition ho o < h o 7y;),
froSt(h)oaotpo(105L)=ftoSi(h)oLiouo(l®o)
=ftolhohopo(l@o)=houo(l1®o)=horV¥ oS(Iy,1)ohpo(l1G0)
= foSy(h)olipo(1® o) = fipo(hOhoo)
< fioo(h®hoty)= foSo(h)olipo(l® 7o)
=hot™ 0S5(p,1)ol100(1®701)=hopo(l® 7o)
=hopo(l®m)o(l®@hL)=hotgo(l10® ).
From the last two chains of equalities and inequalities we conclude
ftoS§(h)oaot < hory,
using again the fact that the composition o and the co-product functor + are
increasing with respect to <.

Proposition 3.3. We have the equality

wou=[1,5¢ W09t o(10a) (32)
TOT a T * S(')*'(T)
10a [1, 55 (w)]
b 5t e Ve

Remark. Note the analogy between (32) and the equality (9) written in the
form 7~ opu = [1,S5(u)] 0o (1l ®771).

Proof. Since 7 is an isomorphism, it is enough to show
aopo(lO7)=[1,SF(u)odf o(10aor),
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which according to (9) is equivalent to
ao*i-o[l,S(p)]oé = [1,S§ (n)} o 95 o(ldaor).

To prove the last equality, denote its left- and right-hand sides with ¢ and ¥,
respectively, and consider cases as in the definition of a. Indeed, using definitions
of ¥, 93 and a, we have

ch(l(DIoo)=aofo[1,5(p)]oz§o(l®[oo)=aoi-o[l,S(p)]o[omo(lglo)
= ao7po (10 Ip) = Ioro,
and
Yo (10 Ioo) = (1,55 (1)} o 95 o (1 @ @oto0) = [1,5F (1)) 0 9F o (1® Ioo)
= 1,55 (W] o (Io + To) 0 9o 0 (1 ® o) = [I, S (1) © Io) © Toro
= [fo, Io 0 So()] © Ioro = Toro = ¢ 0 (1® Ino),

where ¥ is the natural transformation d for the functor So instead of S. In a
similar way,

Yo (10 o) = (1,55 (W] 09 o (1@ a0 01) = [1,SF(W)] 0 9 0 (10 Iy 0 0)
=[1,8f(W)olo(100) =S () ohho(l®o)=TLopuo(100)
=°‘°’i’10°(1®ll)?a°+°[1sS(#)]°101o°(1®Il)
=aoto[l,S(u)edo(10 o) =po(10 In),

whence by considering cases we conclude
pwo(l10Is) =9yo(10I).
Next we have
$o(10 Iipo (10 L)) = [1, S5 (u)] o 9§ o (1@ a0 tg0 (10 L))
= (1,85 ()} 0 93 0 (10 Too) = [1, 5§ ()] © (o + o) 0¥ 0 (1 ® I10)
= [Io,IooS"o(p)]oéoo(l(DIlo) = (fo, Io 0 So(p)] 0 10 0 @
=IooS"o(p)ono&= Ipjoo(p® 1)oa,
and
wo(1® Lipo(l1® Ih)) =aoto[l,5(u)]odo (10 Iipo (10 h))

=aoro[l,S(u))ohodo(10(10 ) =aotoS(u)olpnoaoc(10 (10 1))

=aorgo(p®1)oao(lO(10 L)) =aoctpo(u@®@1l)o(10l)oa

=aofpo(l10h)o(p®l)oa=1Ioo(p@1l)od=9o(10 Lo (10 h)).

Furthermore,

Ppo(10 Lo (10 1)) =[1,5F (u)] o 93 o (1@ @000 (1O Lh))

= (1,5} W] 0 9¢ 0 (10 houo(160)) = [1,SFW o fuo (10 k0 (100))
=St oho(1Opo(100)) =Lopo(1Opuo(100)),
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and using also Corollary 2.2,
po(10 o010 L)) =aotol,S(u)]odo(16 hoo(l0 h))
:ao'i'o[l,S(p)]quoo&o(l@(l@ll))=aofoS'(u)oIloo&o(l@(1@[1))
=aotpo(p®l)oao(l1O(10ON)) =aotmgo(up®1)o(10)oa
=aorgo(lOj)o(pu®l)oa=lLopuo(l®o)o(p®l)oa
=hopo(p®l)ecao(10(1Q0o))=Lopo(lOuo(l1e o))
:¢0(1®Iloo(l®ll)),
whence we obtain
po(1® Iig)=9o(l16 o).
Finally,
Yo(loIn)=[1,55(n)]odg o(lOaom) =15 (u)]od o (10 Ion)
= [1,55 (u)] o (Io + Io) 0 9o 0 (1® I1y)
= [Io, Iy 0 So()) 0 I111 0 9r = Io 0 So(p) 0 I1; 0 IR
= Ipj1 0 R(p) o Vg
and
<po(l®In)=ao*i'o[l,S'(,u)]quloﬂR=ao'i'oS"(p)oI11019R
=aofoR(p)odr=IonnoR(p)odr=vo(10I).
Definition. Given an Sp-algebra f : So(X) — X in € and an C-arrow a :

T — SF (T), another C-arrow h : T'— X will be called an a-minimal evaluator of
f iff h is the least solution of the inequality

froSf(moa<ny (33)
with respect to n in C(T", X) and for all x € &(T, X) and ¢ € C(T' ® T, X) satisfies

an additional condition, written symbolically as follows:
Vn € &(T, X)(po(10m) < ¥ = po(10f*oSf (n)oa) < ¥) = po(10Oh) < ¥, (*)
where ¢ = fiopo(x ©1) TOX — X.

Lemma 3.1. Let 0 : By — T be a system with analyzer o : T — Ay (T), let
f:So(X) — X be an So-algebra in C such that f; € SA(C), and let h : T — X
be an a-minimal evaluator of f. Then for every C-arrow x : T — X the arrow
fioo(x© h): T®T — X is the least solution of the inequality

X' o (1+5¢(¢) 093 o(10a) ¢ (34)
with respect to ¢ in (T OT, X), where x' = f+o[SF(x),1]: SF (T)+SF(X) - X.
Remark. Note the analogy of (34) with (13).
Proof. The arrow h being a solution of (33), we have
fioo(x©h) > froo (x © f* 0 S5 (k)0 a)
= fre(10fF)o(x© S5 (h)o(10a)
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= fto[1,5f (fio)] o9 o (x ® S (h)) o (1@ ) (by Proposition 3.1)
= f*o (1,55 (fi0)] o (S (x) + S5 (x O k) 0 ¥F 0 (10 @)

(since 97 is natural)
= fto[S§(x), S5 (froo(x ©h))])odF o (10 a)
=x' o(14+S§(fioo(x@h))) oI o(1®a) (by definition of x'),

ie. ¢ = fioo (x © h) satisfies (34). For an arbitrary solution ¢ of (34) in
C(T oT, X) we shall show that fig e (x ® h) < (, using the additional condi-
tion (%) in the definition of a-minimal evaluator. For an arbitrary n € &(T, X)

suppose fipo(x @ 1)o(1©n) < (¢, ie. fioo(x©n) <. Then
fioo(x @) o (1@ ftoS§(moa)= fioo (10 fH)o(x®SF(n)o(10a)

= f*o (1,55 (f10)] 095 o (x © S5 (m) 0 (10 @)
= f*o[1, S5 (f10)l o (S5 (x) + S5 (x @ n)) 0I5 0 (10 a)
= f*o[SF(x),Sf (froo(xOm)]o Vg o (10 a)
=x' o (1455 (fioo(x®@n))) o ¥ o (1®a)
<X o(1+55(¢)ed5o(lOa)<( (by (34)).

This proves the hypothesis in () with ¥ = {, whence o (1O h) < (, i.e.

fioo(x©h)= fioo(x®1)o(1Oh)=po(10h) <.

Theorem 3.1. Let o : By — T be a system with analyzer o : T — SSL(T), let
f:S0(X) = X be an Sp-algebra in C such that f, € SA(C), and let h : T— X
be an a-minimal evaluator of f. Then h : P(tN) — f is a morphism in Cs,, t.¢.
(27) holds.

Proof. By Lemma 3.1 figo (h © h) is the least solution of
W o(1+S5(()odF o(10a) ¢ (35)

with respect to { € T ®T,X), where A’ = f* o [SF(h),1]. But the arrow
hou:TO®T — X satisfies (35) because

Wo(1+ 5§ (hou))odg o(1®a)= f* oS (h),S5(hop)odfo(1®a)
= *oSH(h) oL, SH(W]odF o (1@a) = f* o SF(R)oaon  (by (32))
< hoypu.

Therefore
fioo(h®h) L houp, (36)

which is the same as
foSo(h)olip< horVo8(Is,1)0 L.
On the other hand,
foSo(h)olo = fo=N(f)oSo(h)oIo = f* 053 (k)0 Ioo = S* o SF (h) o a0 70
<hotgo=hotNolyp =hot" 0S(ly,1)0 o
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and
foSo(h)o Iy = firoR(h)=N(f)oSy(h)o Iy = f* o SF(h)o Ipy,
=ftoSf(h)oaor; <hoty=horV 0S(Ip,1)o Iy,
whence by considering cases
foSo(h) <hor™ oS(Ip,1). (37)

To prove the reverse inequality, consider the arrows

t=hoty :B1 = X
and

fn=Qz, f) = [[fo, 2], fi] : S(X) — X.

We shall prove that

froS(h)<horVN, (38)

Indeed, since h is the least solution of (33) with respect to 7, we have f+ oS} (h)oa =
h, whence

z = hoy :f+053‘(h)oao1'-01 =f+o.S’(')*(h)olloo=hoa
and
fooS(h)o Iy = fnolp =[fo,z] = [fo,hoo0]
= [f* o SF(h)oIgo, ft 0 ST (R)o I, 00]
= [ft o S§ (h) oo oo, fT 0 SF () o aog]
= f*oS5(h
= ftoSF(h

oao 7o [lp, 1]

ocaofg=hoty=hor" ol.

Again, as before,
faoSh)oliy = fuoR(A) = ftoSH(h)oaor; =homy=horN ol
and the inequality
fh OS(h)OIloShOTNOIlo

is the same as (36). Thus (38) is proved by considering cases. A composition of
the last one with S(v) yields

froShov)<hor™oS(¥)=hovor
(we use (14)), whence follows the inequality
fo<hov (39)
for the evaluator f, : T — X of the algebra fy : S(X) — X with respect to the

least fixed point 7 : S(T') — T, using the supposition that the least fixed point 7 is
proper one. We shall prove the reverse of (39) by showing that

h S fh O L. (40)
Indeed, the algebra f; belongs to D and by Propositions 2.1and 2.2 the normal e-

valuator h; of f; exists, and by Corollary 2.1 (¢') hyor = fi, whence by Proposition
2.3 hy = frot. So fh ot is amorphism 7V — f; in Cg, i.e.

froto = froS(fnou),
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and composing the last equality from right with S(Ip, 1), we obtain
fa OLOTNOS(Io,l) = foSo(fh o).
Moreover, using the inequality fj o ¢ < h which follows from (39), we have
frotoo < Itoaz T = [fq’,x]oll =ff' olp = fhoS(fh)oIm
= fhoTolpt = fooN(t)oS(¢t)o oy = frotoy.
Thence by Proposition 3.2 it follows
f"’oS&*‘(fh ol)oa< fou,

and since h is the least solution of (33), this implies (40). Using Corollary 2.1(a),
from (40) we obtain the reverse inequality of (39):

hov< fhotov= faov=f.
Thus we get the equality hov = fn, whence it follows
horNoS()=hovor= fyoS(hov),
and composing this from right with S(Ip,¢), we obtain
hot" 0S5(Iy,1) = foSo(h).

4. CODING FORMALIZM AND CODE FACTORIZATION
OF THE MINIMAL EVALUATOR

The code evaluation method in algebraic recursion theory uses coding to ob-
tain certain simple standard expression for the minimal evaluator of a system of
inequalities. In the context of the previous Section 3 the last evaluator may be
defined as the evaluator with respect to the least fixed point 7 : S(T)) — T of
the algebra Q(z, f), where f : So(X) — X is an Sp-algebra in the SRC C and
z : By — X is the least solution of a ‘system’ ¢ : B; — T in the algebra f. In
the present section we propose a conceptual mechanism for treatment of coding on
categorical level in the context of Section 3. We give also an interpretation for the
case of SRC of posets, which shows how usual coding theorem in operative spaces
. (in the sense of [1]) can be obtained as a special case.

We assume suppositions and notations of Section 3, especially, we shall have
fixed a partially ordered SRC (C,®, a, R, g). In the special case with € — the cat-
egory of posets, ® and @ — the usual product X in € and the natural isomorphism
of associativity of x, respectively, R(X) — the Cartesian square X X X, and dp
— the natural transformation defined as in the SRC of sets in Section 2, we shall
call the 5-tuple (C,®,a, R, Jg) the ‘SRC of posets’. It is a partially ordered SRC
with respect to the obvious order mentioned in Section 1. We fix also an Sp-algebra
f:5(X)— X. '

Consider a set = of natural in Y € C transformations § : Y — X @Y. We
shall say for an endofunctor F' : € — C that the last one is linearized by a natural
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in Y € C transformation A : X © F(Y) — F(X ®Y) with respect to = iff for all
£ € = we have

F(§) = Ao,
which is a short one for the equality
F(§(Y)) = MY) o &(F(Y)),

expressing the commutativity of the diagram

§

F(Y) —— X0 F(Y)
FON, |
F(XQY)

forall Y € C.

For example, in the SRC of posets the endofunctor R is linearized by the
natural transformation 95 with respect to the set of all natural transformations
£:Y — X xY of the form £(y) = (z, y) for fixed z € X.

In the general case, the set = is partially ordered in a natural way:

(<& = W eCEY)<E(Y)).

Given a C-morphism g : X — X such that (9© 1) o€ € Z for all £ € E, we may
consider the inequality

(901)0f<¢ (41)
with an unknown £ € Z.

Definition 4.1. An element w € = will be called ®-pseudominimal solution of
(41) for asubset ® C €(XOT, X) iff w is a solution of (41), i.e. (901)ow(Y) < w(Y)
for all Y € €, and the following two conditions hold for all C-arrows x : 7" — X
and ¥ :TOT — X and all p € &:

VEEZ(pol<x = po(901)oé<x) = pow<y, (*')
VEEE(P' o (106 <Y = ¢o(lO(g01)0é)<¢) = ¢ o(l10ow) <9, (¥)

where ¢’ = fio 0 (x © ¢).

A remark on notations. As usual, we do not write the arguments in a
natural transformation; e.g., writing ¢ o £, we mean this instance of £ which makes
it composable with ¢; in this way £ in (¥') and () is €(T) and w is w(T).

Definition 4.2. Let Z be the set of natural transformations§ : Y — X QY as
above, and let g : X — X be a C-arrow such that (901)of €= forall§{ € E. Let
also o : B; — T be a ‘system’, i.e. an C-arrow with analizer o : T — Sg (7). Then
by coding for the system ¢ in the algebra f : So(X) — X with respect to = and
g we mean a pair (k,\{) consisting of an C-arrow x : X © T — X and a natural
transformation

AN X055 (Y)— Sf(XoY),
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which linearizes S§ with respect to =, such that the following equality holds for
the coding morphism k:

ko (g@1) = f*oS5F (k)0 )} o (1O @) (42)
XoT 991 | xof X
10a &4
XoSHI) — 2 stx o) — 2 ooy

Theorem 4.1. Let (k,A§) be a coding for 0 : By — T in f : So(X) — X
with respect 1o =, g be as in the previous definition, and let w € = be a {k}-
pseudominimal solution of (41). Then the morphism kow : T — X is an a-minimal
evaluator of f, where a is the analizer of o.

Proof. The proof is rather straightforward:

froSf(kow)oa=ftoSF(k)org owoa  (because A} linearizes S )
=ftoSf(k)orTo(lOa)ow (since w is natural)
=ko(gO1)ow (by (42))
<Kow (since w is a solution of (41)),

i.e. kow is a solution of (33). To show that it is the least solution of (33), suppose
K o£ < 7 for an arbitrary solution n : 7" — X of (33) in G(T X) and an arbitrary
¢ € Z. Then

ko(gO1)of=ftoSf(k)orfo(lOa)ol  (by (42))
= ft oSt (k)oM oboa (since £ is natural)
=ftoSH(koé)oa (because Al linearizes S7)
<ftoSf(moa<ny.
This proves the hypothesis in (¥') for ¢ = k and x = 7, and since w is a {k}-
pseudominimal solution of (41), we obtain k ow < 7. Therefore kK ow is the least
solution of (33). To check the condition (), take arbitrary C-arrows x : 7" — X
and 9 : TOT - X,let o= fioo(x©® 1) and suppose also that for every C-arrow
n:T—X
po(10N) <Y = ¢o(10 ftoSF(n)oa)<y. (43)
We have then to prove that
po(l®kow) <.
For an arbitrary £ € = suppose g o (1® k) o (1 ®€) < . Then by (43)
0(10 f* o SH(xoE)oa) < ¥,
and therefore
po(10k)o(10(gO1)of)=po(10 ffoSf ()0l o(lGa)ok)
=po(10 ftoSH(k)oAf o€oa)
=po (10 f*oSf(koE)oa) <,
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which proves the hypothesis in (x”) for ¢’ = fipo(x ® k) = po(l®«k), and since w
is a {k}-pseudominimal solution of (41), we conclude that o (1 k)o(1 Ow) <Y,
l.e. po(l®kow) <. Therefore k ow is an @-minimal evaluator of f.

Now consider the special case with the SRC (C, x, a, R, 9R) of posets. Take an
operative space X in the sense of Ivanov {1]. This is, up to notational variations, a
partially ordered algebra X with two binary operations — multiplication (denoted
in the usual way: zy is the result of applying this operation on z,y € X) and
pairing (notation: [z,y] for the result of applying this operation on z,y € X) and
three constants e, 29, 2; such that the multiplication is associative with the unit e
and the following three equalities hold for all z,y,v € X:

2y, ] =[zy,2y]; [z, glio=2;  [zy)i=w.

Consider also a set By € € with the trivial partial order (coinciding with equality)
and a mapping fo : Bo — X. The set By is supposed to contain three different
elements regarded as symbols for the constants e, zg, 23, and fy is supposed to
map those symbols on those constants, respectively. The other elements of By are
treated as parameters. The mapping fo and the space X determine an Sp-algebra
f 1 S0(X) — X in C such that fio and f;; are multiplication and pairing in X,
respectively. As in Section 3, we consider also a set B; with the trivial partial order,
the elements of which are treated as variables. The sum (i.e. the disjoint union)
B = Bo + B, has also the trivial partial order, and such is the order in the objects
T and T of the least fixed points 7 : S(T) — T and 7 : S(T) — T, respectively,
the elements of which are all terms and normal terms (in the sense, for instance, of
[5]), respectively.

Take for = the set of all natural in Y € € transformations £ : ¥ — X x Y
defined for allY € C and ally € Y by

£(y) = (=,9), (44)

where z € X. In the category C of posets = and X are isomorphic — the obvious
isomorphism assigns to each £ € = the unique ¢ € X for which (44) holds for every
y € Y and all Y € C. This isomorphism transforms the inequality (41) into the
inequality g(z) < z with one unknown z € X for every C-arrow (i.e. an increasing
mapping) ¢ : X — X. The notion of the ®-pseudominimal solution of (41) is

transformed as follows.
An element w € Z is a -pseudominimal solution of (41) iff every subset J C X

of one of the following two forms:

{ {z € X | p(z,t) < x(t) for all t € T},
{z € X | x(s)p(x,t) < 9(s, ) for all t, s € T},

where p € ®, x : T — X and ¢ : T xT — X are arbitrary C-mappings, which is in-
variant with respect to g, i.e. g(J) C J, contains the element w € X corresponding
tow (i.e. w(y) =(w,y) forally€Y and Y € C).

Take for @ the set of all mappings ¢ : X X T"— X of the form <p(:r t) = zk(t),
where k : T — X is an arbitrary function (since the order in 7' is trivial, all
such functions belong to C); and take for g the mapping g : X — X defined by

(45)
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g9(z) = [e,z]r, where r € X. We shall call an element w € X an iteration of r € X
iff g(w) = w and w € J for every set of one of the forms (45) such that g(J)CJ.
The supposition that every r € X has an iteration is a possible version of the notion
of iterativity for the operative space X. (This version differs from the version of
Ivanov in [1] and is close to the version in [5]. However, it is a natura] version
— the examples of iterative spaces in [1] are typically iterative in this sense also.)
Therefore, supposing the space X iterative in this sense, we have that for every
mapping g of the form g(z) = [e, z]r there is a ®-pseudominimal solution w € X
of (41).
Next define the natural in Y € € transformation
X XOSF(Y)—SF(X oY)
by
Ap = ((r+(a+9Rr)obp)obp + 1) o ég,

where 7 is the projection X x Bo — Bg. A direct checking shows that A7 linearizes
S& with respect to Z. For the coding morphism & : X x T — X we have to ask
that £ € @, i.e. £ = fioo (1 x k) for a suitable k : T'— X, and that the coding

equality (42) is satisfied. In terms of elements, the last equality is equivalent to the
following five ones:

g(2)k(d) = fo(b) for all b € By,
g(z)k(v) = zk(o(v)) for all v € By,
g(2)k(td) = zk(t) fo(b) forallte T and be By,

g(z)k(tv) = zk(u(t,o(v))) forallt€ T and v € B,

9(z)k([t, s]) = z[k(t), k(s)] for all t,s € T.
Here we use short notations for terms in 7% b for To0(b), v for 791(v), tb for
T10(t, Too(b)), tv for 7y9(¢, 701(v)), and [t,s] for 71;(t,s). The mapping o repre-
sents a system of inequalities: o(v) < v (v € B;). The last five equalities follow
easily from the following ones:

Tk(b) — tofo(b) for all b € By,
rk(v) = t1k(c(v)) for all v € By,
rk(tb) = i1 k(t) fo(b) for all t € T and b € By,

rk(tv) = i, k(u(t, o(v))) forallt € T and v € By,
rk([t, s]) = 4, [k(2), k(5)] forallt,se T,

and when the last ones are fulfilled, we say that k¥ and r provide a coding for
the system o with respect to fo (compare with the notion of coding in [5, 6]); they
can be satisfied comparatively straightforwardly, using a representation of primitive
recursive functions and a weak form of axioms for the translation operation (see [5]).
This construction of coding combined with the code evaluation theorem implies
easily all basic facts of algebraic recursion theory in operative spaces. The last
theorem states that if k and r provide a coding for a system o and w is iteration
of r, then the mapping z : B; — X defined by z(v) = wk(v) is the least solution of
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the system o; and it follows from Theorems 4.1 and 3.1. Indeed, by Theorem 4.1
kow = fioo(l x k) ow is an a-minimal evaluator of f, where w(y) = (w, y) for all
y €Y and all Y € C. Thus, for t € T' we have (kow)(t) = fio(w, k(1)) = wk(t).
By Theorem 3.1 k ow is a Cs,-morphism, whence by Proposition 3.2 it is the least
such morphism h : P(rN) — f satisfying the inequality

h(e(v)) < h(v) = h(701(v))
for all v € B;. Thence it follows that the mapping z : By — X defined by
z(v) = (k ow)(v) = wk(v) (i.e. the ‘restriction’ of h on By) is the least solution
of the system represented by o, since every mapping z : B; — X can be uniquely
extended to a Cg,-morphism A : P(tN) — f, the mapping h : T — X assigning to
each term £ € T its value under the evaluation provided by z.

In this sense the theory of operative spaces is a special case of the results of
Sections 3 and 4. The natural categorical generality for the last theory being thus
reached, various other special cases may be expected to be of interest. Especially,
we shall mention one of them, which is connected with an attempt by Petrov and
Skordev [4] to generalize Skordev’s theory of combinatory spaces for some kind of
category-like partial ordered structures in which the role of multiplication is played
by a composition of arrows. This special case is obtained by applying the theory
of Sections 3 and 4 to an SRC (C,®, a, R,Jg) in which € is a suitable subcategory
of the category of directed graphs and © is the product xp over a fixed set O
of objects in the terminology and notations of {2]. It may be optimistically said
that in this way a theory of that kind, which was aimed at by Petrov and Skordev
in [4], may be reached in full (in [4] only a part of the desirable results has been
reached, especially, the corresponding analogue of the recursion theorem has not
been obtained). We are leaving this topic for the possible further publications.
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1. INTRODUCTION

Let 2 = (A; Ry, Ry, ..., Ri) be a countable abstract structure, where each R;
is an a;-ary predicate on A.

A total mapping f of the set of the natural numbers N onto A is called a total
enumeration of A. Every total enumeration f of 2 determines a unique structure
Br={N; R{, Ré, ey R{) of the same relational type as 2, where

Rl(zy,...,2a,) <= Ri(f(z1),..., f(za,)):

Let a < w{X. A subset M of A® is said to be 2 -admissible in 2 if for every
total enumeration f of 2 the pullback f~}(M) of M is £? in the diagram D(B;)
of By.

The notion of £¢-admissibility with respect to injective total enumerations was
introduced in 1964 by Lacombe (3] under the name V-admissibility. Several modifi-
cations and generalizations of this notion have appeared since 1964. Among them

* Lecture presented at the Fourth Logical Biennial, Gjuletchitza, September 12-14, 1996.
This work was partially supported by the Ministry of Education and Science, Contract I 604/96.
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we would like to mention the L9-admissibility in partial enumerations introduced
in [5] and the relatively intrinsically £3 sets introduced in [1] and [2], which are
defined by means of £-admissibility with respect to injective total enumerations.

In [5] the author made the observation that the sets on an abstract structure
which are £9-admissible with respect to partial enumerations with relatively recur-
sively enumerable (r.e.) domains coincide with the sets which are %0-admissible
with respect to total enumerations.

In the present paper we are going to study further the interplay between ad-
missibility in total and partial enumerations. For we introduce the notion of £2-
admissibility in partial enumerations with relatively £3 domains, and more gener-
ally, for k < n, £9-admissibility with respect to partial enumerations with relatively
$0 domains. A normal form of the admissible sets is obtained. It turns out that for
k < n the admissible sets coincide with those which are £2-admissible in all partial
enumerations and are described by means of quantifier free recursive ¥? formulas.
If k = n, then our notion of admissibility leads to a class of sets, described by
means of a simple kind of recursive £ formulas on the abstract structure, in which
the quantifiers ranging over the domain of the structure are existential and appear
only on the last level.

The arguments use the machinery of the so-called regular enumerations, which
seems to have a wide range of other applications.

2. PRELIMINARIES

Consider again the countable structure % = (A; Ry, Ry, ..., R;), which from
now on we shall suppose fixed.

2.1. Definition. An enumeration of 2 is an ordered pair (f,B;), where
f is a partial surjective mapping of N onto A with an infinite domain, B, =
(N;o1,02,...,01) is a structure of the same relational type as 2, and the following
condition holds for every i € [1,1] and all z,,...,z4, € dom(f):

0’,‘(.’1,‘1, “e ')xai) — R;‘(f(l']), . -,f(za.))-

2.2. Definition. Let n > 1. The enumeration (f,B;) is called £? if the
domain of f is L2 in the diagram D(B;) of B;.

2.3. Definition. Let k > 1. A subset M of A% is £0-admissible in (f,B;) if
there exists a £J in D(By) subset W of N¢ such that for all z,,...,z, € dom(f)

(1,-..,20) EW &= (f(z1),...,f(zs)) € M.

As stated in the introduction, our goal is to obtain an explicit characterization
of the sets which are ©2-admissible in all 3 enumerations, k < n. For we consider
two kinds of recursive £9 formulas in the language L, of the structure 2, which
we call “quantifier-free” and “existential”, respectively.
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The 9, the 1} and the Agﬂ quantifier-free formulas are defined simultane-
ously with their indices by induction on k. We shall suppose that a coding of the
formulas in £ is fixed. Given an index v, by ®¥ we shall denote the formula hav-
ing index v. For every formula @, by ®(X,,..., X,) we shall denote that the free
variables in @ are among X, ..., X,.

As usual, by Wy, ..., W,,... we shall denote the standard enumeration of the
r.e. sets of natural numbers.

2.4. Definition.

(i) The logical constant T and all atomic formulas in £ are TJ quantifier-free
formulas.

The logical constant F and all negated atomic formulas in £ are IIJ quantifier-
free formulas.

The A quantifier-free formulas are finite conjunctions of £§ and II3 quanti-
fier-free formulas.

The indices of the L3, IIS and A} quantifier-free formulas are their respective
codes as formulas in L.

(ii) If every element of W, is index of some A} +1 Qquantifier-free formula with
variables among X1, ..., Xg, then

\/ @'(X,...,Xa)
veEW,

is a 7., quantifier-free formula with index (0, %+ 1,¢€).

If & is a &Y +1 Qquantifier-free formula, then —® is a 14 +1 Quantifier-free
formula. For every index (0, k + 1,¢) of ®, the triple (1,k + 1,¢e) is an index

of = .
If &;,..., % are 2 or %, r < k+ 1, then x = ®,&... &, is a A},
quantifier-free formula. If vy,..., v, are indices of ®1,...,®P;, respectively,

then (2, vy, ..., v) is an index of x.

2.5. Definition. A I} ezistential formula, k > 1, is a formula of the form

\V 33, (N, Yy, X1y 0 Xa),
veV
where V is an r.e. set of indices of Ag formulas.

Let M C A% and (X1, ..., X4, Z1,...,2;) be a £} quantifier-free or existen-
tial formula. .

2.6. Definition. The set M is definable by ® on 2 if for some #;,...,t € A
(Vs1,...,50 € A)((51,...,8.) E M <= A= ®(51,...,5a,11,...,1p)).
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In the rest of the paper we are going to prove the next two theorems.

2.7. Theorem. Let M C A® and 1 < k < n. The set M is £2-admissible in
all 2 enumerations of 2 if and only if M is definable by some XY quantifier-free
formula on 2.

2.8. Theorem. The set M 1is Eg-admz'ssible in all 22 enumerations of U if
and only if M is definable by some £ existential formula on .

3. GENERIC ENUMERATIONS

The proofs of Theorem 2.7 and Theorem 2.8 use a forcing construction. In this
section we shall describe the fundamentals of this construction.

3.1. Satisfaction relation. To simplify the notations we shall consider only
the subsets of the domain of the structure 2. All results can be easily proved for
subsets of A%, a > 1.

Let (f,By) be a partial enumeration of the structure A = (A; Ry, R, ..., ).
And suppose that B; = (N;04,02,...,01). We shall identify the diagram D(B;)
of By with the set consisting of the codes of the atomic and the negated atomic
formulas which are true on B;. In other words, we shall assume that

D(B¢) = Al 25 «3%a::€) : Oi(D1524:%a) =€ 1€ [1;1]}.
If u € N, then define
fE u< ue D(B,;).
If E is a finite subset of N, then
fEE<= fEuforeach u€ F.

Assume also fixed an effective coding of all finite sets of natural numbers. By
E, we shall denote the finite set with the code v.

Let us fix for every n > 1 and each ¢ € N a unary predicate letter F'. We
adopt the notation =*F(z) = F*(z) if i = 0 and =*F*(z) = =F?(z) ifi = 1. We
shall assume that the code of —=*F*(z) is (i, n, e, ).

For each z € N and every predicate letter F' the satisfaction relation f |=
—~*F7(z) is defined by induction on n. Given a finite set E of natural numbers
and n > 1, by f =, E we shall denote that every element u of F is of the form
(i,n,e,z) and f | ='F*(z).

3.2. Definition.

(i) fEF.(z) <= 3v((v,z) €W, & f F Ey);
fE-F(z) < [ F(2)
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(i) f | FI*(z) <= Fo((v,z) € We & f |0 E);
fE-FIT(z) < [ ().
3.3. Proposition.
(1) The sets {z : f = F}'(z)} coincide with the £ in D(B;) sets.
(2) The sets {z: f = ~F}(z)} coincide with the IIS in D(B;) sets.

Proof. The proof is by induction on n.
For n = 1 note that from the definition of “=” we have

f | FX(z) <= z € T.(D(By)),

where T, is the e-th enumeration operator, see [4]

Since N\ D(*By) is enumeration reducible to D(B;), the r.e. in D(By) sets
coincide with the sets which are enumeration reducible to D(‘By).

The step from n to n + 1 follows easily by the Strong hierarchy theorem,
see [4].

3.4. Corollary. A set M C A is X2-admissible in (f,B;) iff there ezists an
e € N such that for all z € dom(f)
[ Fl(z) <= f(z) e M.
3.5. Finite parts and forcing. The conditions of the forcing are finite
mappings of N into A with some additional properties which we call finite parts.

We use 6, 7, p to denote finite parts.
Let [0, ¢] be an initial segment of V.

3.6. Definition. A finite part § on [0, ] is an ordered triple (as, Hs, Ds) with
the following properties:

(1) as is a partial mapping of [0, ¢] into A;
(2) Hs C[0,q);
(3) dom(as)U Hs = [0, ¢] and dom(as) N Hs = 0;

(4) Djs is the diagram of a finite structure of the same relational type as % and
domain [0, ¢], and such that if z;,...,z4, € dom(as), then

(iy Liy.- -)za.;E) E D6 = Ri(QJ(xl)) ‘s ’106(101)) =8
Let A be the set of all finite parts.
3.7. Definition. Given finite parts § and 7, let

If (f,By) is an enumeration, then let

6 C <f,‘B]) <> a5 C f & HsNdom(f) =0 & Ds C D(%f).
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Let 6 € A.
Ifu€ N, then §IF u iff u € Dj.
If £E={uy,...,u,} is a finite subset of N, then let

OIFE < 6lFu; & ... & 6 IF u,.

Now we are ready to define the forcing relation é I F*(z) for all e,z € N by
induction on n > 1. As before we shall denote by é I, E' that every element u of
the finite set E is in the form (i,n,e,z) and § It = F?(z).

3.8. Definition.
(i) §IF F}(z) <= Jv({v,z) € W, & 6 I+ E,);
§IF =F)l(z) <= Yp(p 2 6 = plf F)(2)).
(i) 6 IF Fr+l(z) <= Fv({v,z) € W, & §IF, E,);
§IF ~Frtl(z) <= Vp(p 2 6 = p ¥ FP1(z)).
From the above definition follows immediately the monotonicity of the forcing,
i.e. if §IF F*(z) and 6 C 7, then 7 Ik F}(z).

3.9. Definition. Let Y C A. The enumeration (f,B;) meets Y if for some
beY, 6 Cf.

3.10. Definition. A subset Y C A is dense in the enumeration (f, By) if
(V6 C N)BreY)(sCr)

3.11. Definition. Let F be a family of subsets of A. An enumeration (f, By)
is F-generic if whenever Y € F and Y is dense in (f, B;), then (f,B;) meets Y.

As usual, we have that for every countable family F of subsets of A and every
é € A there exists an F-generic enumeration (f, B;) such that f D 4.

Let Fp = {0}. Forn > 1set Y, = {7 : 7IF F(z)} and let F, = (|, , Y.";) U
- -

The following Truth lemma can be proved by induction on n:

3.12. Lemma. Let (f,By) be an enumeration, n > 0. Then for alle,z € N:
(1) If (f,By) is Fn-generic, then
fEFM(z) <= (36C f) (8 IF F ().
(2) If (f,By) is Fny1-generic, then
fE-F(z) <= (36C f)6IF-F(2)).
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3.13. Definition. Let 6 C 7. Then 7/6 is the finite part (a5, H, U(dom(a,)\
dom(ay)), D).

By 6 < 7 we shall denote that dom(as) = dom(a,) and § C 7.

3.14. Lemma.

(1) If § C 7, then § < 1/4;

(2) If 6 C 1 C 1y, then 1 /6 X 12/$;

(3) If 6 C T and 7/6 < p, then there exists a finite part p' such that r < p’ and
P16 = p.

Proof. (3) Let 6 C 7 and 7/6 <X p. Then 7/6 = (as, H; U (dom(a,) \
dom(as)), D;). 7/6 <X p implies p = (as, H; U (dom(a,) \ dom(as)) U H', D,),
where D, C D, and H' N (dom(a;) U H,) = 0.

Let p' = (a,,H, U H',D,). Then 7 <X p’ and p'/6 = (as, Hr U (dom(a,) \
dom(as)) U H', D,) = p.

3.15. Stared forcing. We define a stared forcing relation 6 IF* F*(z) for all
n> 1, e,z € N by means of the following inductive definition:

3.16. Definition.

(i) 6 IF* Fl(z) <= §IF F}(z);
1 ~F)(z) <= Vo(p = 6 =5 p " FL(z)).

(i) §1F* Frtl(z) <= 3v((v,z) € W, & 6 Ik}, E,);
§IF" ~Frtl(z) <= Yp(p = 6§ = pIF* F2(2)).

Here 6 I, E, means, as before, that every element of E, is in the form
(i,n,e,z) and & IF* = FP*(z).

From the definition above it follows immediately that the stared forcing is
monotone with respect to “<”,i.e. 6 IF* Fl'(z) & 6§ X 7= 7IF* F}}(z).

3.17. Lemma. Let § C 7. Then for alle,z € N, n > 1,
(1) Ik EXz) < 761" FZ(z);
(2) TIF~FMz) &= T[8 I ~F2(2).

Proof. The proof is by induction on n.

Since Dy = Dy g, (1) holds for n = 1.

Suppose now that (1) is true for some n > 1.

(2) (=). Let 7 Ik =F2(z). Assume that /8 |f* —~F2(z). Then there is a finite
part p > 7/6 such that p IF* F['(z). By Lemma 3.14 there exists a finite part p’
such that p' > 7 and p'/é§ = p. Then p'/6 It* F?(z) and by induction p’ IF F(z).
Clearly, p’ D 7. A contradiction.
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(2) («). Let 7/6 IF* =F}(z). Assume that 7 If =F?(z). Then there ex-
ists p 2 7 such that p IF F'(z). By induction p/é IF* F}(z). By Lemma 3.14
p/é > T/6. A contradiction.

Now, using the respective definitions, we get immediately that

Tk FMY(z) <= 7IF* Fr(g),

3.18. Lemma. Let § be a finite part, n > 1, e,z € N. Then
(1) 61 F}z) < 61" FI(z);
(2) Ar28)(rIF Fl(z)) <= (Fp = &)(p k" F7(2)).

Since 6/6 = 6, (1) follows from the previous lemma. By the same argument
81k ~Fl(z) <= 6IF" ~F}(z). From here (2) follows by contraposition.

4. REGULAR ENUMERATIONS

Given a finite part § defined on [0, ], we shall call ¢q the length of § and denote
it by [6]. If p < ¢, then by §[p we shall denote the restriction of § on [0,p], 1.e.
§1p = (as[{0,p], Hs[[0, p], Ds[[0, p]). Clearly, 6[p is a finite part and é[p C 6.
Given finite parts 7, and 7, say that m is shorter than 7, if:

(a) Im| < |m2| or
(b) |m| = |m2| and the code of the finite set D, is less than the code of D-,.

Notice that “being shorter than” is a recursive relation and for every finite part é
it is a well ordering on the set {7]6 < 7}.

Let F, be the sequence {X§, XT',..., X", ...} of sets of finite parts, where
X)=0and X = {r:7I+" F(':)o((i)l)} forn > 1.

The finite part 7 decides X' if 7 € X or (Vp > 7)(p € X). Clearly, for every
§ and 17 there exists a 7 > 6 such that 7 decides X'. By Lemma 3.18, if 7 decides
X and 7 C p, then p also decides X*.

Let

. 6 if (Vr > 68)(r ¢ X1'),

#n(i,0) = {(the shortest T)(6 <7 & T € X?) otherwise.

Clearly, pn(i,é) decides X*. Notice also that the length of u,(i,6) depends only
on the length || of § and on its diagram Ds. Moreover, there exists a recursive in
0(™) function A, such that

VlV(S(/\n(Z, I‘SI) D6) = |"‘n(i’ 6)')

4.1. Definition. Let é be a finite part on [0,9]. Then é is n-regular if
0 € dom(as), and if go < g1 < ... < ¢, are the elements of dom(ay), then:

(a) (Vi < r)(61(gi41 — 1) = pn(i, 614:));
(b) 6 = pn(r,élgr).
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We shall denote the number r from the above definition by ||6]|.

4.2. Lemma. Let é6 be an n-regular finite part, where dom(as) = {qo <
q1 <...<q,}. Then for each i <r, 6[(giy1 — 1) is n-regular.

4.3. Definition. An enumeration (f,B;) of A is called n-regular if for each
finite part 6 C f there exists an n-regular finite part 7 such that § C r C f.

4.4. Lemma. Let (f,B;) be an n-regular enumeration of A. Then for each
natural number r there exists an n-regular finite part § C f such that ||6]| = r.

Proof. Given an r, consider the first 741 elements go < q; < ... < ¢- of dom(f).
Let & be the shortest n-regular finite part such that {qo,...,¢,} C dom(as) and
6 C f. Assume that ||6]] > r. Then there exists an element g,4; of dom(as) such
that ¢, < ¢r41. By Lemma 4.2 §[(g,4+1 — 1) is n-regular. Clearly, 6[(q,41 — 1) is
shorter than 6 and {qo,...,¢r} C dom(amqr“_l)). The last contradicts the choice
of .

Recall the family 3, . Notice that by Lemma 3.18 F, = JF,.

4.5. Proposition. Let (f,B;) be an n-regular enumeration of A. Then
(f,By) is F,-generic.

Proof. Skipping the trivial case n = 0, suppose that n > 1. We shall show
that (f,B;) is generic with respect to the family J7,. Suppose that X[* is dense in
(f,Bs). We have to prove that (f,B,) meets X, i.e. there is a 6 C f such that
6 € XI. By the previous lemma there exists an n-regular 6 C f such that ||6]| = .
Clearly, 6 decides X*. Assume that § ¢ X!. Then é I+” —»F(’;f)o((i)l) and hence, by
Lemma 3.17, 6 I+ —vF(':-)o((i)l). The last contradicts the density of X

4.6. Proposition. Let (f,B;) be an n-regular enumeration of A. Then
dom(f) s AS,, relative to D(By).

Proof. We have the following recursive in D(B;) @ 0 procedure, which lists
the elements of dom(f) in an increasing order.

We start by printing out 0. Suppose that the first » + 1 elements qo,..., ¢,
of dom(f) are listed. Consider the finite part §, C f on [0,¢.]. Using the oracle
D(By), we can obtain the diagram Ds_. Let ¢,4; be the first element of dom(f)
greater than g,. Clearly, there exists an n-regular finite part 7 such that 6, C 7
and g,y € dom(a,). By Definition 4.1 ¢,+1 = As(r,¢-, Ds,) + 1.

5. THE NORMAL FORM THEOREMS

In this section we shall obtain a normal form of the £%-admissible in all X9
enumerations of U sets for k < n. We start with the case k = n.

Let § be a finite part, z = |§| + 1 and s € A. By é * s we shall denote the finite
part (o', Hs, D), where dom(a’) = dom(as) U {z}, as C o, &'(z) ~ 5, and D is
the appropriate extension of the diagram Ds.
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5.1. Theorem. Let M C A, n > 1, and M be a L2-admissible in all £°
enumerations of A set. Then there ezists a finite part § and a natural number e
such that for each s € A ifz = |6 + 1, then

SEM <= (372 6xs)(r is (n —1)-regular & 7IF* Fl(z)). (5.1)

Proof. Assume the opposite. We shall construct an (n — 1)-regular enumera-
tion (f,B;) of A such that M is not admissible in it.

The construction of (f,B;) will be carried out by steps. On each step j we
shall define an (n — 1)-regular finite part §;, so that §; C 6,41, and take f = (J s,
and By to be the structure with diagram {J Ds; .

On the even steps we shall ensure that f is onto A. On the odd steps we shall
ensure that M is not admissible in (f,B;).

Let tg,t1,...,t;, ... be a fixed enumeration of the elements of A.

Let 6o be the shortest (n — 1)-regular finite part such that as,(0) = ¢o.

Step j = 2e + 1. Let z = |63¢] + 1. By the assumption there exists an s € A
such that

~[s€M <= (3r Db xs)(7 is (n— 1)-regular & 7 IF* F}(z))].

We have two possibilities:

Case (1). s € M and (V7 D 83, *s)(7 is (n — 1)-regular = 7 I} F*(z)). In this
case let 85,41 be the shortest (n — 1)-regular finite part 7 such that 7 D &2, * s;

Case (i1). s € M and (37 D 62, * s)(7 is (n — 1)-regular and 7 IF* F'(z)). In
this case let §5.41 be the shortest such 7.

Step j = 2e+2. Let t be the first £; € A such that t ¢ range(as,,,,). Let 62042
be the shortest (n — 1)-regular finite part 7 such that 7 D 83041 *¢.

Clearly, the enumeration (f,B) is (n — 1)-regular and hence dom(f) is L2
relative to D(*By) and (f,B;) is F,_,-generic.

Towards a contradiction assume that M is £J-admissible in (f,B;). Then
there exists an ¢ € N such that for all z € dom(f)

fz)e M <= [ Fl(z).

Consider the stage j = 2e + 1 of the construction. Let & = |62, + 1. Using the
Truth lemma (Lemma 3.12), we get that

f(z) €M <> (3r)(b2e41 C7C f & 7IF E™(2)).

On the other hand, according to our construction this is not the case. So, M is not
¥9-admissible in (f,By).

5.2. Theorem. Let k < n, M C A and let M be X9-admissible in all Y
enumerations of U. Then there ezxisls a finite part 6 and a natural number e such
that for each s € A ifz = |6+ 1, then

SEM <> (3r > xs)(r IF* F¥(z)). (5.2)
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Proof. Assume the contrary. We shall construct an enumeration (f,B;) of A
with the following properties:

(1) (f,By) is Fn—1-generic;
(2) dom(f) is ¥0 relative to D(B;);
(3) the set M is not Xf-admissible in (f, B;).

The construction of the enumeration (f,B;) is very similar to that used in
the proof of the previous theorem. Again it will be carried out by steps. On steps
j = 3e + 1 we shall satisfy that (f,B,) is an F,,_,-generic enumeration. On steps
j =3e+2 — that M is not £-admissible in (f,B;). And on steps j = 3e + 3 we
shall ensure that f is a mapping onto A.

Let to,%y,...,t;,... be a fixed enumeration of the elements of A and let §y be
the shortest (n — 1)-regular finite part such that as,(0) = .

Step 7 =3e+ 1. Let 63.41 = ﬂn_1(€,63e).

Step j = 3e +2. Let £ = |83e41|+ 1. According to the assumption there exists
an s € A such that

~[s €M <= (3r > 8341 *s) (T IF* Fek(x))]

We have two possibilities:

Case (i). s € M and (V7 > 83c41 * 8)(7 " F¥(z)).

Put 63,42 = 83e41 * S;

Case (ii). s € M and (37 = b3e41 * s)(7 IF* FJ(2)).

In this case let 83,42 be the shortest such 7.

Step j = 3¢ + 3. Find the first ¢t € A such that t ¢ range(as,,,,). Let
03¢+3 = 03e42 * 1.

The enumeration (f,B;) is constructed as in Theorem 5.1,i.e. f ={Jas; and
D(%/) = U D&,- .

Arguments very similar to those used in the previous section show that (f, B/)
is Fn_1-generic and dom(f) is A2 in D(By).

Assume that M is I9-admissible in (f,B;). Then there is an e € N such that
for all z € dom(f)

fEFiz) <= f(z) eM.

Consider the stage j = 3e+2 of our construction and let z = |63¢41]|+ 1. There
exists an s € A such that:

Case (i). s € M and (V7 > 83e41 * 5)(7 " FF(2)).

Since 83,42 C f, f(z) € M. Then f | FXz). Clearly, (f,B;) is Fx_1-
generic. By Lemma 3.12 and Lemma 3.18 there exists a finite part 7 such that
b3e41 *5 < 7 & TIF* F¥(z). A contradiction;

Case (ii). s € M and (37 > 83041 *s)(7 IF* F¥(z)). Since 83e42 C f, f(z) = 5.
Using again Lemma 3.12 and Lemma 3.18, we get f |= F¥(z). A contradiction.
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6. THE PROOFS OF THEOREM 2.7 AND THEOREM 2.8

If a subset M of A is definable by a £ quantifier-free formula on 2, then it is
clear that M is L}-admissible in all enumerations of 2. 1t is easy to verify also that
if a set M is definable by a X existential formula on 2, then M is £0-admissible
in all £ enumerations of 2.

The proofs of both theorems in the non-trivial directions make use of the
respective normal form theorems.

Suppose that the first order language L consists of the predicate letters
{Py,..., P} and let var be a recursive one to one mapping of the natural num-
bers onto the set of all variables.

6.1. Lemma. Let K,H,D be finite sets and K = {z1,...,2,}. Let Z, =
var(z),..., Zr = var(z;). There ezists a uniform effective way to define a AY
quantifier-free formula N g p(Z1,...,2Z,) such that for all t,,...  t, € A

Ql}:HK.H'D(Zl/tl,...,Z,-/t,.) <= 3Jé(dom(as)=K & Hs=H & Ds =D
& asla) & ).

Proof. If KN H # @ or KU H is not an initial segment [0,¢] or D is not
a diagram of a finite structure of the language £ with domain K U H, then set
g g p = F. Otherwise, let {uy,...,u,} be all elements of D such that if u; =
(i,21,...,2q,,€),1 € [1,1], then {z1,...,2,,} C K. For every such u; let L; =
- P;(var(z,),...,var(zgs,)) and define g gy p = L1& .. . &L,.

6.2. Corollary. There ezists a uniform effective way, given finite sets K, H, D
and E, to define a AY quantifier-free formula llg g p g with free variables among
{var(z) : 2 € K} such that if K = {z1,...,2,} and var(z)) = Z;, then for all
R |
AElgupe(Zi/ty,...,Z:/t,) < 36(dom(as)=K & Hs=H & Ds =D

&(Vi € [1,r])(as(z:) >~ t;) & 6 IF° E)).

Proof. Set lx yp g =Fif EZ D and let llgx g p g = Ik g p otherwise.

6.3. Lemma. Let k > 0, § = (as, Hs, Ds) be a finite part, dom(as) =
{z1,...,2;} and as(z1) =~ ty,...,a5(z,) ~ t,. Suppose that var(z;) = Z;. Then
there ezxists a uniform in dom(ay), Hs, Ds effective way, given natural numbers e, z
and finite set E of natural numbers, to define:

(1) A A2+1 quanlifier-free formula Fgom(ag),Hg,Dg,E(Zl""’Z") such that

U Thom(as) He.0s,8(Z1/t1, - Ze[t;) <= 81} E;
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(2) A 22+1 quantifier-free formula @5:;(06),}“.06‘6’:(21,...,Z,) such that

k+1 *
Ql":ed:m(ag),m,Da,e,z(Zl/tl""’Zf/tf) <=> 6 IF Fe"+1(.1:);

(3) A 22“ quantifier-free formula W*+! (Zy,...,2;) such that

dom(ag),Hs,Dg,e,x

m |= ‘I’ck]:r:)((Ig),Hs,Ds,e,z(Zl/tl! *t Zr/tr) = (31- t 6)(T “—* Fek+1(1"))3

(4) A H2+1 quantifier-free formula o+l (Z1,...,2;) such that

dom{as),Hs,Ds,e,x

ml:Qz:nt(ag),ﬂg,Ds,e,z(Zl/tl’""Z'/t’) <& §IF* —'Fek+l(2:).

Proof. Induction on k. Using Corollary 6.2, we shall suppose that (1) is true
for k and proceed to prove (2), (3) and (4). After that we shall show the validity
of (1) for k+1. Let R, = {v: (v,z) € W,}. Following the definition of the stared
forcing, we get

k+1 — k
6d0m(ag),H6,D6,e,I - V I‘dom(aé)pH6lD6lEu’
VER, »
k+1 - k+1
\I’dom(aa).ﬂo,Da.e,z - \/ Hd°"‘("°)'”'D & @dom(as).H,D.e.x’
HDHs,DDDs

k+1 — —‘\I’k+l
dom(as),Hs,Ds,e,x — dom{ag),Hs,Ds ez’

So it remains to construct I' = I‘g:r;(aé) He Do g O¢t I' = F if not all elements
u of E are of the form (i,k + 1,e,z),7 € {0,1}. Otherwise, for every element

u = (i,k+ lez) of E let L* = 38 . , _ifi = 0, and let
u k+1 . o _
L* = @4 ae) Hs Dgee H 1= 1. Put T'= Muer B°.

As a corollary we obtain the proof of Theorem 2.7. Indeed, suppose that
M C A, 1<k < n,and M be X)-admissible in all T3 enumerations. Using
Theorem 5.2, we obtain that there exist ¢ and e such that if ¢ = |§| + 1, then for

all s€ A
SEM <= (37 = 6xs)(1IF° FX(z)).

Let dom(as) = {z3,...,2-}, var(z) = Z;, var(z) = X. Denote by K the finite
set dom(as)U {z}. Put ¥ = \F’,‘{'H‘;,Dé.e'r. Clearly, the variables of ¥ are among
{Z\,...,Z,,X}. Let as(z;) ~t;. Notice that as.(z) ~ s for all s € A. Then

SEM <= AR V(21 /ty,...,2:[tr, X]s).

Using Lemma 6.3 and the definition of the regular finite parts, one can easily
prove the following

6.4. Lemma. For every n > 0 there ezxists a uniform effective way to con-
struct, given finite sets K = {zy,...,2.}, H and D, a finite disjunction Qk up of
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Al ., quantifier-free formulas with variables among var(z,), . . .,var(z;) such that
if var(z;) = Z; and ty,...,t, are elements of A, then

AEQkup(Z1/t,..., 2 [t,) <= 36(6 is n-regular & dom(as) = K & Hs = H
& Ds = D & (Vi € [1,r])(as(2:) ~ t:)).

Now we are ready to prove Theorem 2.8. Let n > 1, M C A. Suppose that M
is £ admissible in all £ enumerations. By Theorem 5.1 there exist § and e such
that if z = |6| + 1, then forall s € A

SEM <= (37 2 6xs)(ris (n— 1)-regular & 7 IF* F]'(z)).

Let dom(as) = {21,...,2-} and as(z;) = t;. Let var(z;) = Z; and var(z) = X.
Given any formula ® and finite set K = {y; < ... < y,}, by 3(y € K)® we shall
denote the formula 3var(y,)...3var(y,)®. Let K5 = dom(as)U {z}. Define

(I’(Z],...,Z,-,X): V a(ye K’\A’6)( ?(TI},D& e';(,}{,D,e,r)'
KDKs,HOHs, DD Ds

Clearly, ® is a £ existential formula and

Ak ®(Z1/t,...,2:[tr, X[s) <> (37 2 bxs)(7 is (n—1)-regular & 7 IF* F](z)).
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Inductive definability by means of ﬂ?-positive formulas is studied in the paper. An
explicit characterization of the H?-positive inductive sets on an arbitrary abstract struc-
ture with equality is presented. A relationship between these sets and the sets of all
points of V-definedness of non-deterministic programs is established.
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ness, prime computability
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1. INTRODUCTION

It 1s well-known that on the first order structure of arithmetic every inductive
set can be defined inductively also by means of very simple formula — I, and
positive with respect to its set variable ([2, 6]). When study induction on abstract
structures, it is reasonable to consider the so-called acceptable structures. Even in
this case, however, the above mentioned result of Kleene and Spector is no longer
valid. In other words, there are acceptable structures for which the class of the
[19-positive inductive sets is strictly included in the class of all inductive sets (cf.
for example [1]). So, a question arises to find a characterization for this type of
inductive definability.

* Lecture presented at the Fourth Logical Biennial, Gjuletchitza, September 12-14, 1996.
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Let us mention that a similar problem is considered in [1], where the sets, which
have X9 and simpler (excepting I19 positive) inductive definitions, are characterized
by means of prime and search computability in Kleene’s quantifier £, Here we
describe IIY positive inductive definability in terms of some particular characteristic
of the non-deterministic programs — the so-called sets of points of V-definedness
([3, 5]). It turns out that a set is [I3-positive inductive iff it is the set of all points
of V-definedness of some non-deterministic program.

From here it is easily obtained that every [1¢-positive inductive set on accept-
able structure 2 can be represented as {5 | Va3dnR(a(n),n, s)} and vice versa. Here
the predicate R is prime computable over 2 and the second order variable a ranges
over the set of all infinite sequences with elements in |2].

In view of further applications, we shall consider here some special acceptable
structures, namely least acceptable extensions [4]. It will be transparent, however,
how to modify the proofs for an arbitrary acceptable structure with a sufficiently
simple coding scheme.

2. PRELIMINARIES

Given an arbitrary total structure %o = (B; fi,..., fa; R1,..., Ry) (the case
fi is O-ary is admitted as well), we define its least acceptable extension 2 in the
following way. Take an object O ¢ B and fix some pairing operation Il : CxC — C
(C D BU{Q}) such that no element of B U {Q} is an ordered pair. Let B*
be the smallest set containing B U {Q} and closed under II. Denote by () the
restriction of I on B*. We extend the initial functions and predicates of % on B*,
setting fi(s1,...,sn) = Qif (s1,...,8,) € B", and Rj(s1,...,5,) = “falsity” if
(S[,...,Sm) g B,

Now put A = (B*;0,( ), f1,..., fa; B, R1,..., R). From now on we shall
suppose that the equality relation is among the basic predicates of . Throughout
the paper we shall assume this structure fixed.

Let ¢(z1,...,2k, X) be a formula in the first order language Lo of A with &
object variables zy,..., zx and one k-ary relational variable X which occurs in ¢
only positively. Then ¢ determines the following mapping ', : (B*)* — (B*)*:

Lo(A) = {(s1,..-,5K) | p(s1,. .., 5%, A)}.
Define IS, by transfinite induction on € as follows:
£=T,(JB).
n<¢
Then the set I, = |J IS is the least fixed point of 'y, (see for example [4, Ch. 1A}).
§
For every 5 € [, set
|5 = min{€ | 5 € Ig,}.

It will be convenient to consider that |§| = |B*|* for 5 ¢ I,, where |B*|* is the
least cardinal, greater than the cardinal number of B*.
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Aset A C (B*)* is called inductively definable (by @ on ) if A = {(s1,...,8k) |
(81, .8k, 11, 1) € [)} for some fixed ty,...,t,, n > 0, built up from the basic
functions and constants of 2.

Remark. The last requirement imposed on ¢;,...,t, is a slight deviation
from the usual definition in [4, Ch. 1D], where these parameters are supposed
arbitrary. In our case perhaps more appropriate would be to say that A is absolutely
inductively definable.

We shall say that the set A is £ (119) positive inductive (on ) iff it is induc-
tively definable by some X9 (I19) X-positive formula ¢(z, X).

[n this paper we shall consider non-deterministic programs, in which the non-
determinism 1s understood as possibility of choosing arbitrary elements of |2J.
These programs are built up from the following three types of (eventually la-
beled) operators: assignment operator z; := 7(zj,,...,;,), conditional opera-
tor if R(zj,,...,z;j,) then go to ¢ (7 and R being a term and a quantifier-free
formula in £q, respectively), and choice operator z; := arbitrary (B*).

Semantics of the assignment and conditional operators is the usual one. The
execution of the choice operator assigns to the variable z; an arbitrary element of
B*. The choice of this element is arbitrary: it does not depend on the input, on
the current configuration, etc.

Now let P be such non-deterministic program. Along with the usual input-
output relation Rp in this case we can speak also about the so-called set of points
of V-definedness of P, to be denoted by Dp. An input § belongs to Dp iff all
possible executions of P, starting from this input, are finite.

The main part of the exposition is based on a certain syntactical description
of these sets of points of V-definedness. It is easily obtained from a more gener-
al uniform characterization of all possible pairs (Rp, Dp) which we are going to
formulate below.

Let us call x elementary if it is atomic or a negation of an atomic formula.
A clause is an expression of the form Il = 7, where 7 is a term and Il is a finite
conjunction of elementary formulas in the language £o. A sequence of clauses
() = r(")}n is regarded primitive recursive if the function, which assigns to

each n the code of 1" = (™) is primitive recursive.

Throughout the paper a = {a(n)}5%,; will denote an infinite sequence with
elements from B*. As usual, @(n) will stand for ((a(1),...,a(n))), where ({ )) is
some effective coding of all finite sequences from B*.

Proposition 2.1 (Normal form theorem). Let P be a non-deterministic
program with k input and one output variables. Then there exists a primitive recur-
sive sequence of clauses {H(") = r(")},, each with variables among zo,z,,. .., T,
such that

(s1,...,5%) € Dp & VaInll™(a(n),s,...,s),
($1,.--,5k,t) €E Rp Baﬁn(ﬂ(")(d(n),sl, ; ..,sk)&r(")(dr(n),sl, T

&me<nﬁﬂ(m)(d(m), . sk))
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for every sy, ..., sk, tin B*.
Conversely, for every such sequence {H(") => 'r(")}'1 there erists a program P
such that Dp and Rp satisfy the above equivalence.

The proof of this proposition is rather technical to be presented here. We
are going to make some comments instead. Every a : N — B* can be thought
of as being a sequence of successive values of the choice operator (which may be
assumed unique). So, every particular (finite or infinite) execution of P is uniquely
determined by the input § and some choice sequence a. In addition, this execution
is carried out in elementary steps in some canonical way. More precisely, given an
input 5 and a sequence a, the values IV (a(1), 5), 1?) (&(2), 5), ... are computed
in turn until the first n with 11(") (@(n), ) = true is reached. Then an output
(") (&(n), 5) is returned.

From this point of view it is clear that an input § belongs to Dp iff for every
a there exists n such that (™) (a(n), s) holds. Further we shall be interested in
sets of the type Dp rather than of Dp and Rp as a pair. For this purpose it will
be enough (and even more appropriate) to consider non-deterministic programs
without output variable. In this case a particular execution is regarded finite if the
output operator stop is reached during the computation.

So, as a consequence of Proposition 2.1, for any non-deterministic program P
(with or without output variable) we have

Proposition 2.2, Let P has k inputl variables. Then there exists a primitive

recursive sequence {l'[(”)}n with variables among zg,2,,...,z} such that
(s1,...,8k) € Dp & Va3nIl™) (a(n),sy,...,8),
whenever sy, ..., sk € |U|.

3. INDUCTIVE DEFINABILITY OF THE SETS
OF ALL POINTS OF V-DEFINEDNESS

We begin with some preliminary definitions. Set
Nat = {0, (0,0), ((0,0),0), (((0,0),0),0), ...}.

We shall identify the natural numbers 0,1,2,... with elements of Nat (as listed
above). For every n € Nat, n+ 1 will stand for (n,0). Let L and R be the left and
right decoding functions for the mapping (). We shall assume that L(0) = R(0) = 0
and L(s) = R(s) =1 for s € B.

A coding (( ) of all finite sequences from B* is defined inductively by the
equalities

) =0, {s1) =(0,51), (51,...,8n41) = ({51, .., 50)), 5n41). -
Set also Seq = {s | s = {(s1,...,8n)) for some s1,...,8,, n > 0}. The function
lh (length) is defined in the usual way:

Ih(s) = {n if s = ((s1,...,8n)),

0 otherwise.
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Finally, denote by (s); the decoding function corresponding to {{ )):
(8) = {'sf if s =((s1,..-,8n)) and 1 < i <,

0 otherwise.

Suppose that t = ({t1,...,t,)). As customary, t * ¢ will stand for (¢,q) =
((t1,...,tn, q)). For any sequence o we shall write o > ¢ to denote that a(i) = ¢;
for every : = 1,...,1h(?).

Now let P be an arbitrary non-deterministic program over 2. We shall assume
for simplicity that P has one input variable. According to Proposition 2.2, there
is a primitive recursive sequence {l'I(")}:o=0 with variables zg and z; such that for

every s € B*
s € Dp & Va3nll™(a(n),s).

Let us fix some effective coding " ... 7 of all finite conjunctions of elementary
formulas with variables among zo and z;. Let ® be the universal relation for this
class of formulas, defined by the equivalence

®(n,t,s) < nis a code of some elementary formula x and x(z, s) holds.
Denote by ¢ the primitive recursive function An."I("7, Then we have
s € Dp & Vadn®(g(n),a(n),s). (3.1)
Now set
¢*(n,t,s,X) < Nat(n)&Seq(t) & (®(g9(n),t,s) VVq((n+ 1,1 % ¢q,s) € X))).

Let us first check that Dp is a section of I, *.

Lemma 3.1. Dp = {5](0,0,5) € I ,*}.

Proof. For the inclusion Dp D {5 (0,0,s) € I,-} we need the following more
general assertion:

Seq(t) & Ih(t) = n& (n,t,s) € I,» = VYa,,ImP(g(m), a(m),s). (3.2)
We are going to prove (3.2) by transfinite induction on |n,t,s|. It can be easily
seen that

o0 it B(g(n),,5),
T Y sup{|ln+1,t*q,s| +1|¢€ B*} otherwise.

If |n,t,s| = 0, take m = n. We have by assumption

a(m) = a(n) = (a(1),...,a(n)) =1t
and therefore ®(g(m), a@(m), s).

Now choose some (n,t,s) € I,» with |n,t,s| > 0 (and, of course, Seq(t) and
Ih(t) = n). Take some > t and set a(n+1) = q. We have [n+1,t*q,s| < |n,t, s,
as well as Seq(t*q) and lh(txq) = n+1. So by induction hypothesis ®(g(m), &(m), s)
for some m, which completes the verification of (3.2).

Now put t = { )} ( = 0) and n = 0 in (3.2) and use (3.1) to conclude that
Dp 2 {S l (O:O)S) € I‘P°}'
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To see that the converse inclusion also holds, take some s such that (0,0, s) ¢
I,+. By the definition of ¢* we have -~®(g(0),0,s) and (1, {q1)),s) ¢ I,- for
at least one q;. Assume that for some n > 1 we have found ¢y,..., ¢, with
-®(g(7), {q1,--.,q:)),s) fori=1,...,n—1and (n,{q1,...,9n)),5) & I,.. From the
latter it follows that —~®(g(n), {q1,...,qs),8) and (n + 1, {(q1,...,qn41)), s) & Ip
for some ¢ 4.

In this way we construct a sequence a = qj,qs,... for which the right-hand
side of (3.1) fails. Therefore s € Dp.

For any list g;,...,9%; @), ..., @ of functions and predicates in B* denote by
(A;91,. .-, 9% Q1,...,Q1) the extended structure

(B';O)())flv"')fd)glx' '"gk;BrRl)"'iRb)Ql)"')Ql)-

We have established so far that the set Dp is inductive in the structure
(%; g; Nat, Seq, ®). To eliminate the additional function and predicates, we shall
need the following refinement of the Transitivity Theorem [4, Th. 1C.3], which
follows immediately from the corresponding proof in [4]:

If (2, X) is £ (119) formula in (; Q), positive with respect to
X and @, and Q is XY (IT?) positive inductive on 2, then I, is
¢ (119) positive inductive on 2. (3.3)

Further we shall apply this fact in the next modified form.

Lemma 3.2 (Transitivity Lemma). Let ¢(z,X) be £} (I19) formula in
(As g1,y 98 Qs - .., Q1) tn which Qq, ..., Q and X occur only positively. Suppose
also that the graphs Gy,,...,Gq, are XY (G, ,..., Gy, are 1Y) positive inductive
on A and Qy,...,Q: are XY (I19) positive inductive on A. Then I, s LI (19)
positive inductive on 2.

Proof. Assume first that g; has a unique occurrence in ¢ and let 7, ..., 7,
be the arguments of g, in this occurrence. Let % be the formula which is ob-
tained from ¢ when we replace g;(m1,...,7m) by y. If ¢ is £Y, then ¥ is £{ in
(A 92, .-, 95;Q1, ..., Q1) Set

x(z2,X) € y(Gq(71,.... T, y) & V).

Obviously, ¢ <> x. By assumption G, is Z{ positive inductive on 2 and according
to (3.3) I, (and hence I,) is ¥ positive inductive on (; g2, ..., 9x; Q1, ..., Qu).
When ¢ is 119, consider the 19 formula

X(f?,X) ~ Vy("ng(Tl»---,Tm,y)V'f))-

If g, has ¢ > 1 occurrences in ¢, proceed by induction on ¢, applying the above argu-
ment to the innermost g;. Iterating this procedure, exclude successively g2, ..., gk.
For the elimination of @, ..., Q; apply directly (3.3).

Lemma 3.3. Let p(z,X) 1s 2 (M) positive formula and 1, is the unique
fized point of Uy. Then I, (the complement of 1,) is I1Y (£2) positive inductive.
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Proof. We have £ € I, <& ¢(Z,1,) and hence
zel, & ~p(z,1,) & ¢'(z,1,),
where '(z, X) is obtained from —¢ after the replacement of every occurrence of X

by ~X. Obviously, ¢’ is equivalent to some ¢”(z, X), which is X-positive and II}
(£9) if ¢ is XY (I19) respectively. From the above equivalence it follows that

iel, & ¢'(z,1,),
i.e. I, is a fixed point of T'y». Assuming that A is another fixed point of I',» we
obtain successively

T€A & (T & (A & ¢@&,A.

So A is a fixed point of I', and hence A = I,, A = I, i.e. I, is the unique fixed
point of T'yn.

Say that a set is A} positive inductive on 2 if it is both £Y and I1} positive

inductive on 2.

For any s € B* define ||s|| (norm of s) as follows: ||s|| = 0 for s € B U {O},
I(s1, 52)|| = max(||s1]],][s2]]) + 1. We shall use systematically an induction on this
norm when proving the next lemma.

Lemma 3.4. (i) Let f € {L, R,lh,Az,i.(z);}. Then Gy (the graph of f) is
X{ posttive inductive on U and Gy is I1] positive inductive on 2.
(ii) Nat, Nat, Seq and Seq are AY positive inductive on 2.

Proof. By definition we have
L(s)=t & s=t=0VseB&t=1V3q(s=(tq)).

So the set Gy is explicitly definable by £¢ formula and, in particular, it is LY
positive inductive on 2. Similarly, G is 1Y explicitly (and hence inductively)
definable on . The case f = R is analogous.
Set
p(z,X) & z=0VR(z)=0& L(x) € X.
Evidently, Nat is a fixed point of T'y,. Towards establishing that it is the unique
fixed point of 'y, assume that A and A’ are some fixed points of I',. Then

€A © r=0VR(z)=0&L(z) €A and
zeA © z=0VR(z)=0&L(z) e A" (3.4)

Let s €A. We shall use induction on ||s]| to see that s € A". Suppose, first, that
|Is|| = 0. The case s = 0 is obvious; the other case s € B is impossible, since then
we would have R(s) = 0. If s = (s}, s2), then by (3.4) R(s) =0 and L(s) = s; € A.
By induction hypothesis s; € A’ and applying again (3.4) we conclude that s € A’
So A C A’ and symmetrically, A” C A. Thus Nat is the only fixed point of I',.
Consequently, Nat and (by Lemma 3.3) Nat are AJ inductive on (; L, R). Now,
having in mind the facts about L and R just established and applying Lemma 3.2,
we obtain that Nat and Nat are A? positive inductive on 2.
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For the predicate Seq apply the same argument to the formula
Yz, X) & z¢ B&(z =0V L(z) € X).
By virtue of its definition lh satisfies the equivalence
lh(s) =n & (-Seq(s) Vs=0)&n =0
V Seq(s) & s # 0& Nat(n)&n # 0&1h(L(s)) = L(n).

An easy induction on [|s|| convinces us that lh is the only function with this property.
In other words, Gyy, is the unique fixed point of I'y, where

x(z,y, X) & (—Seq(z)Vz =0)&y=0
VSeq(z) &z # 0& Nat(y) &y # 0& (L(z), L(y)) € X.

L So, by Lemma 3.3 G\n and G)y, are AJ positive inductive on (%; L, R, Nat, Seq,
Seq). To see that Gy, is L positive inductive on 2, apply again the Transitivity
LLemma and the previous results; similarly for G)y.

Finally, for the function (z); it is also immediate that G(;), is the unique fixed
point of I'g, where

0(z,i,y,X) < (~Nat(/) Vi=0Vi>lh(z))&y =0
VSeq{z)&z #0& (Ih(z) =i&y = R(z)V (L(z),1,y) € X).
Here the predicate “>” (greater than) over Nat is defined inductively as
n>k & Nat(n)&Nat(k)&n#0&(k =0V L(n) > L(k))

and therefore is AY positive inductive on 2. To complete the proof, repeat the
arguments used above.

Let f is a k-ary function in B*. Say that f is primitive recursive if the restric-
tion of f over Nat* is primitive recursive (considered as a function over the natural
numbers) and f(5) = 0 for 5 ¢ Nat*.

Lemma 3.5. Let f be primitive recursive. Then Gy is ¢ positive inductive
on U and Gy is Y positive inductive on .

Proof. By induction on the definition of f. If f is initial primitive recur-
sive, then it has a AJ explicit definition on . If f is a superposition, say f =
fo(f1,..., fa), then we have the representation

f(s1,...,5.) =1t < Nat(s1)& ... &Nat(sx)&3q; ...3q(fi(s1,...,8x) = qide ...
& fa(s1,..8k) = gn & fo(q1, -, qn) = 1)
V —(Nat(s;) & ... & Nat(sx)) &t = 0.

Now the result follows easily from the induction hypothesis, Lemma 3.4 and the

Transitivity Lemma.
Finally, assume that f is obtained by primitive recursion from some g and A.

Then

f(s1,.,8k,9) =t & Nat(s;) & ... &Nat(sp) & Nat(q) & (¢ = 0&t = g(s1, .., 5%)
Vg#0&3r(f(s1,...,8,L(q)) =r&h(s1,...,s,L(g),r) =1)
V ~(Nat(s;) & ... & Nat(s;) & Nat(g)) &t = 0.
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A trivial induction on ¢ € Nat convinces us that f is the unique function,
satisfying this equivalence. To see that f has the desired properties, proceed as in
the proof of the previous lemma.

It remains to check that the universal relation @ from the definition of ¢* is
inductive on 2. Of course, ¥ depends on the particular coding of the syntactical
objects that we have fixed. Below we specify some primitive recursive coding, which
allows us to assert that ® has AY inductive definition on 2.

In order to save space, here we shall assume that the basic functions and
predicates of g = (B; f1,..., fa; R1,..., Ry) are unary. We shall use also the same

letters for the corresponding symbols in L.
Let p; be the i-th prime number (starting from po = 2). Set also (0); = 0;

(n)i = max{j | p! divides n} for n > 0.
Now put
O = 0’ '-xoj — 1, rxl'o - 2’ r<7.1’,rz)-1 - 22_3'1,“5"13“’
Cfi(r)" =223 for1 <i<a,
"Ri(r) =357, TRi(r)'=3"57 for1<i<,
CB(r) = 3R+ 57T, TaB(r) = 342577 Ty fahy = B3 5T 7TV
Obviously, the predicates
K(n) <> nis a code of a term with variables among zo, zi,
M(n) ¢ nis a code of some finite conjunction of elementary
formulas with variables among z¢, z;

are primitive recursive.
Let U be the universal for the class of all terms with variables among z, and

Ty, in other words,
U(n,t,s) = ¢ ¢ nisa code of a term 7 with variables z,, z3 and 7(t,5) = ¢.

Lemma 3.6. (i) Gy is LY positive inductive on A and Gy is I positive
inductive on .
(ii) ® is A9 positive inductive on .
Proof. (i) By definition we have
U(n,t,s)=q & ~K(n)&q=0
VM(n)&(n=0&q=0Vn=1&q=tVn=2&q=3s
V{n)o = 2&30:3¢2(U({n)1,t,8) = 1 & U((n)2,¢,5) = q2& ¢ = (91, q2))
V{n)o =3&3q(U((n)1,t,8) = i & filq) =g}V ...
V{n)o = a+2&30(U({n)1,t,5) = a1 & fa(q1) = q))-
Moreover, U is the unique function which satisfies this equivalence (a simple
induction on n). All arithmetic functions which appear in the above formula are

primitive recursive. Now proceed again as in the proof of Lemma 3.4, using also

the previous lemma.
(ii) To see that ® is both £J and I} positive inductive on 2, use the same

argumentation, noticing first that ® is the unique relation satisfying the equivalence
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®(n,t,s) & M(n)&((n)y = 1& R (U({(n),,t,5)) V...
Vn)y = b& Re(U({n)2,t,5)) V(n)1 = b+ 1& Ry (U({n)2,t,5)) V...
V(n); = 2b& ~Ry(U({(n)2,t,5)) vV (n)y = 2b+ 1 & B(U((n),,1,5))
V(n); = 2b+2&-B(U({n),,t,s))
V(n); = 2b+ 3& ®((n)2, t,s) & ®({(n)s,t, s)).

Now we are in a position to claim

Proposition 3.7. Every set of points of V-definedness Dp 1s 1] positive
inductive on 2.

Proof. By Lemma 3.1 Dp is a section of I+, where ¢* is II? positive formula
in some extended structure (; g; Nat, Seq, ®). Here g is primitive recursive, so by
Lemma 3.5 G, is I1{ positive inductive on . According to Lemma 3.4 and Lemma
3.6 the predicates Nat, Seq and @ are I1{ positive inductive on %. Now apply the
Transitivity Lemma to conclude that I,. is 1Y positive inductive on .

4. PROGRAM CHARACTERIZATION
OF THE 119 POSITIVE INDUCTIVE DEFINITIONS

Let ¢(z1,..., %k, X) be an arbitrary II$ formula in which the k-ary relational
variable X occurs positively. After contracting the quantifiers and converting the
matrix into the disjunctive normal form, ¢ becomes equivalent to a formula of the

following type:

vy (@, PV (&, 1) & (+2,... ) exe. & (1'1(1,2‘,... D) exv..
Vom(E0) & (180, ) € X & b (7)) € X)),

where ¥, ¥y, ..., ¥, are quantifier-free formulas in which X does not occur.

Further we shall consider the case k = 1, m = 2 and n; = ny = 1, since it 1s
sufficiently representative. Without essential loss of generality we may omit also
Y1 and v (dropping the formula 1, however, trivializes the problem). So ¢ takes
the form

Vy(¥(z,y) V7(z,y) € XV p(z,y) € X).

Now consider the following simple non-deterministic program P, for which we
are going to establish that Dp coincides with the fixed point I,:
P: input(z); z := ((z));

1: y := arbitrary(B*); z := head(z);

if ¥(z,y) then stop;

.= append(tail(a:), «T(Z’ y)s “(Z) y)»)z

if £ = z then go to 1.

Head, tail and append act as the usual string-transforming operations, here
applied to codes of sequences. It is an easy exercise to show that these functions
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can be computed by means of programs of the type considered here. Of course, in
the above program P the operators, involving this functions, should be considered
as macros rather than as assignments.

The proof of the equality Dp = I, will be carried out by two lemmas. For
the first one let us denote by D the set of all t € B* such that Seq(t) and every
computation of P, starting from the choice operator y := arbitrary(B*) with
current. value of the variable z equal to ¢, is terminating.

Obviously, s € Dp iff (s)) € D. Further, if Seq(t), then

teD « Vq(P(head(t),q)
V append(tail(t), ((r(head(t), q), u(head(t),q))) € D). (4.1)

Lemma 4.1. Let s € I,. Then for everyt = ((t1,...,s,...,1,)) is true that
teD.

Proof. Transfinite induction on |s|. Let us notice (having in mind the agree-
ment |s| = |B*|* for s € I,) that whenever s € I,

0 if Vqi(s, q),
s| = { sup (min(|7(s,q)|, |¢(s,q)])+ 1) otherwise. (4.2)
g:7Y(s.9)

For every t = {(t,...,5,...,1,)) set pos(s,t) = min{i | s = t;}.

Now let s € I, and suppose first that |s| = 0. Using induction on pos(s,t), we
are going to prove that ¢ € D for every ¢t = {t1,...,s,...,ta).

Case 1: t = {(s,t2,...,t,)). From the assumption |s| = 0 it follows that
Yqu(s, q), in other words, Vqy(head(t), ¢) and therefore by (4.1) t € D.

Case 2: t = ((t1,...,t,)) with s = ¢; for some 7 > 1. Pick any ¢ € B* and set
t' = ((ta,...,1n, 7(t1,9), u(t1,q)). Obviously, pos(t’,s) = i—1 and hence t' € D by
induction supposition. Since g is arbitrary, applying again (4.1) we obtain t € D.

Now let s € I,, |s| > 0 and assume that for all s’ with |s'| < |s| the lem-
ma is true. We shall use second induction on pos(s,t) again. Suppose first
that ¢ = {(s,t2,...,ta)). In order to establish that the right-hand side of (4.1)
holds, take an arbitrary ¢ € B*. If (s, ¢), there is nothing to prove; if not, by (4.2)
|s| > min{|7(s, )|, |#(s,¢)|}. Suppose for definiteness that |s| > |r(s, ¢)|. Then,
in particular, 7(s,q) € I, and by induction hypothesis for s’ = 7(s, ¢), applied to
t' = ({ta,...,tn, 7(5,9), u(s, q)), we obtain t' € D. So by (4.1) t € D. Finally, con-
sider t = ((t1,...,1,)) with pos(s,t) =1 > 1. For t' = ((t2,...,tn, 7(t1,q), u(t1, 9)),
where ¢ is any element of B*, we have pos(s,t') = ¢ — 1. Therefore ¢’ € D and
hence t € D.

Applying this result to t = {(s)), we obtain I, C Dp. The opposite inclusion
is given by the next lemma.

Lemma 4.2. Dp C I,.

Proof. Consider particular execution (finite or infinite) of P with some input s.
Let z, and y, be the current values of the variables z and y immediately after the
n-th running of the choice operator (if the execution has stopped after the m-th run
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of this operator, we assume that z, = z,, and y, = ym for n > m). Set a(n) = y,,
n =1,2,... Obviously, every z, is uniquely determined by the input s and a. Let
F be such that F'(s,a,n) = z,.

Now choose some s ¢ I,. In order to prove that s € Dp, it is enough to find
a sequence « such that

—Y(head(F(s,a,n)),a(n)) for every n=1,2,... (4.3)

To this end we are going to define recursively two sequences {s,}, and {gn}n
satisfying the condition

s1 =258 Sok =7(Sk,qk); S2k+1 = K(Sk,qk);
—Y(sk,qk) and sp & I, for k=1,2,... )

We shall see later that (4.3) is true for & = {gn }n.

Indeed, set s, = s. By assumption s ¢ I, and therefore ~(s, I,). Consequent-
ly, there is q; € B* such that ~¥(s;,q1), s2 = 7(s1,q1) € I, and s3 = p(sy,q,) & I,.
Let us assume that for some n > 1 we have found s,,...,82~n_y and q1,...,gon-1_,
with the property

st =8 Sok = 7T(Sk,qk);  Sok+1 = p(Sk,qr);
—(sk,qx) forevery k=1,2,...,2" ' = 1; s ¢1Ip,....52n.1 ¢ Lp. (¥)n

We shall construct elements gon-1,...,q2n_1 and Sgn,...,89n41_1 such that
(¥)n4+1 holds for sy,...,89n41-1 and q3,...,¢2n—1. Let k be an arbitrary number
between 2"~! and 2" — 1. From the fact that s ¢ I, it follows that for some
q € B*, ~¥(sk,qx), T(sk,qc) & Ip and p(sk,qx) & L. Set sox = 7(sk,qx) and
sok+1 = M(5k, gr). Obviously, all the requirements of (x), 41 are satisfied. Therefore
(%) is true for the sequences {s,}, and {qn}n constructed in this way.

Set finally a(n) = ¢qa, n = 1,2,... We are going to check that (4.3) holds for
this sequence a. Let us first notice that for every n, Fi(s,a,n) = {(sn,..., S2n-1)).
Indeed, the case n = 1 is obvious. Assuming that this is true for some n > 1, we
shall have head(F(s,a,n)) = s5. By (*) -%(sn, gn) and therefore

F(s,a,n+ 1) = append(tail(F(s, o, n)), {7(sn, qn), #(sn,qn)))
= append({(sn+1, -, 52n-1)), (S2n, 52n41) = (Sn+1, -, S2n+1))-
So, in particular, head(F'(s,a,n)) = s, for every n = 1,2,... and using again (*)

we conclude that (4.3) is true.

Proposition 4.3. Let A be a IIY positive inductive set. Then there ezists a
non-deterministic program P such that A = Dp.

Proof. If A is I,, the result follows directly from the lemmas just verified.
Otherwise A is a section of some I, 1.e.

A=A{(s1,...,86) | (51,..., 8k, 81, -, tm) € L)}

for some fixed t;,...,tm, bullt up from the basic constants and functions of .
Choose some 7y,...,Tm such that mgq =3, ..., Tma = tm. Let Py be such that
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I, = Dp. Denote by z,,...,Z¢4m the input variables of Py. Now consider the
following program P with input variables z,,..., z;:

Pt Zpiq =15 o Bhim =T Po.
Obviously, Dp, = A.

5. INDUCTIVE DEFINABILITY BY EXISTENTIALLY
RESTRICTED FORMULAS

Let us call ¢ ezistentially restricted (e.r.) iff all existential quantifiers of ¢
range over the set Nat C B*. In this section we establish that these quantifiers do
not increase the inductive expressive power, i.e. the least fixed point I, of every
e.r. X-positive ¢(z, X) is II? positive inductive. This result is based on the next
lemma, which ascertains the same for the I1J positive formulas.

Lemma 5.1. Let p(z, X) be ezistentially restricted 119 positive formula. Then
I, is 11§ positive inductive.

Proof. Our aim is to build a non-deterministic program Q with Do = I, and,
applying Proposition 3.7, to conclude that I, is II{ positive inductive.

We shall assume for simplicity that ¢ has one object variable z, so it is in the
following general form:

Yy(3z€ Nat)(¥(z,y,z2) Vi (z,y,2) & € X & ... &Tin, EX V...
VYm(z,y,2)&mi €X & ... &Tmn, €X), (5.1)

where ¥, ¥1, ..., ¥m are quantifier-free.

For the sake of clarity we shall confine ourselves to the case m = 1. When
m = 2 (a case which 1s typical of the general case), combine the idea used in the
construction of the program @ below with the in-width search in an appropriate
binary tree, as carried out in the previous section.

Dropping also #; in (5.1) (since it is unessential here), we come to the following
formula ¢:

Vy(3z€ Nat)(¥(z,y,2) V7(z,y, 2) € X).
Now define the program @ as follows:
Q: input(z); t = (()); u:=0;
l: z :=z; y:= arbitrary(B*),
t:= append(t, (y)); v:=u+1; v:=1;
2: if ¥(z,(t)y,[u]v) then stop;
if u = v then go to I;
z2:=7(2,&),[uly); vi=v+1;
if z = r then go to 2.
By An,1.[n]; we have denoted the decoding function for a fixed effective coding
x of all finite sequences of natural numbers (assuming, as customary, that [n]; = 0 if
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i > lh(n)). Obviously, An,i.[n];, being recursive, can be computed with a program
of our type.

Let us mention that the program () that we propose here is far from being the
most efficient one with the property Do = I,. Its advantage is the easy way to
prove this fact.

Let us consider a particular execution of @ with input s. Suppose that during
the computation we have arrived at the operator 2: if ¥(z,(¢)y,[u],) then stop
with current values of variables 2, {, u and v, respectively ¢, 7, n and 7. Obviously,
q is uniquely determined by s, r, n, i, i.e. there is a function g¢ such that ¢ =
go(s,r,n,i). Set g(s,a,n,i) = go(s,a(n),n,i). Clearly, g satisfies the following
equalities:

g(s) a’ n’ 1) - s’
g(s,a,n, i+ 1) = 7(g(s, @, n, 1), a(i),[n];) for 1 < i< n.
Using this observation, one can easily check that
s € Do iff Vadn,o(Iiici<n¥(9(s, a,n, 1), a(?),[n];). (5.2)

We shall use this equivalence in proving that the program @ has the desired
property I, = Dg.

Now let us agree until the end of the proof that n (eventually indexed) denotes

an element of Nat.
For the first inclusion I, C Dg we shall use induction on |s|. A straightforward

verification convinces us that for every s € I,
0 if YVgany(s,q,n),
Is| =

sup  (min{|7(s,q,n)|+ 1| n € Nat}) otherwise.
¢:Vn-y(s,q,n)

Now take some s € I,. In order to show that s € Dg, it suffices to see
that the right-hand side of (5.2) holds. To do this, pick a sequence & and denote
its first element by ¢q. If |s| = 0, then there exists ny : ¥(s,q,n4). Set : = 1 and
n = x(n,) (or, for example, n = x(n,, 0) if x(n,) happens to be 0). Then, obviously,

w(g(saaan)iLa(i))[n]i)'

Now suppose that |s| > 0. If there is n, with ¥(s,q,n,), proceed as above.
Otherwise there should exist n, such that 7(s,q,n,) € I, and |7(s,q,n)| < |s|.
Set 8(n) = a(n+ 1), n = 1,2,... By induction hypothesis 7(s,¢,n,) € Dg and
according to (5.2) exist m and ji<j<m:

¥(9(r(s,q,ny), 8, m, j), B(5), [m];). (5.3)
Now take n > 7+ 1 such that
[nJi=n, and [ni=[m)i-1forl=2,...,5+1.
An easy induction on ¢ = 1,...,j convinces us that
g(s,a,n, i1+ 1) =.g(7(s, q,nq), B, m, 7).

In particular, g(s,a,n,j + 1) = g(7(s, q,nq), 8, m,j). From here, using (5.3) and
taking i = j + 1, we get the desired

¢(g(5: a,n, i), a(i)’ [n]l)
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Towards establishing the converse inclusion Do C I,, suppose that A is an
arbitrary fixed point of I', and take some s ¢ A. Then —y(s, A) and therefore for

at least one q; € B~
Vni-9Y(s,q1,n) and Vni7(s,q1,n;) & A.
Analogously, from the latter there exists some ¢, € B*:
VniVna-y(7(s,q1,1n1),92,n2) and Vn Vnor(7(s, q1,n1),q2,n2) € A.

Iterating this procedure, we build a sequence a = q, qq, . .. satisfying for each
nandi€ {l,...,n}
~Y(g(s, a, n, 1), a(i), [n);).

From here, applying (5.2), we get s ¢ Dog.

Proposition 5.2. Let ¢(z, X) be an arbitrary ezistentially restricted positive
formula. Then I, is 119 positive inductive.
v 1

Proof. Our idea is to reduce ¢ to a II§ positive formula ¢* such that I, is a
section of /,+ and to apply the result just obtained.

With no loss of generality we may assume that ¢ has one object variable z.
Now consider first the case when ¢ is II$ formula, i.e. it is equivalent to

VzItenatV2' Itena ¥(2, 2,8, 2/, 1)
with ¥ — a quantifier-free. Let ¢*(z,y, X) be the formula
VaItena(y = 0& ((z, 2,t),1) € X Vy = 1&(z, 2,1, X)),
where 1 is constructed from % in the following way: first replace simultaneously
the variables z, z, t, 2/, ' by (z), (z)2, (z)3, z and ¢, respectively. Then in the
formula thus obtained replace each formula 7 € X by (7,0) € X. We claim that

for every s € B*
s€l, & (5,0) € Iy (5.4)

We are going to prove (5.4) for the case when the matrix v is in the following

simple form:
x(z,2,t,2", ')V (2, 2,1,2',t') € X,

since the verification of the general case is much similar to it.
So the corresponding formula ¢*(z, y, X) is the following:

VzItenar(y = 0& ({(z,2,1),1) € X
Vy = 1& (@, ()2, ()8, 2,8) V (@((@)1, ()2, (2)s, 2,),0) € X).
The set I, is a fixed point of I',., therefore for any z
(2,0) € I« & VzIena((((z, 2,1),1) € Ip0)
& VzdtenaVz'Iena (X(2, 2,8, 2, ) V (a(z, 2,t,2',1'),0) € L,.).  (5.5)

Towards establishing the equivalence (5.4) suppose that s € I,. Then s € Ig,
for some ordinal £. Using transfinite induction on &, we are going to check that
(5,0) € I,-. Indeed, under definition, s € I¢ if and only if

VzItenaV2' It na (x(s, z,t, 2\t YVa(s, 2,t,2,t') € U Ig). (5.6)
n<§
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Taking an ordinal < €, we get by inductive supposition that
a(s, z,t,2, V') e I = (a(s,z,t,2,1),0) € I,..
So, using (5.6), we obtain
Vz3teNat V2 Stena (X (5, 2,8, 2, 1) V (als, 2,8, 2/, 1), 0) € 1,0),

which according to (5.5) means that (s,0) € I,..

Now, conversely, assuming that (s,0) € If,. for some £, by induction on § we
prove that s € I,. We have

(5,0 € . & (5,0) € rg,.(U 1;.) & VaHtena ((((s,z,t)), ne 1;.).

n<§ n<§
Now suppose that (((s,z,t)),1) € |J I. for some < €. Then
n<§
Vz'3te Nat (x(s,z,t,z',t') \%; (a(s, z,t,2,1"),0) € U If’f.))
u<n

and by the induction hypothesis for u
V2 Menar(X(5,2, 1,2, ') Va(s, 2,12, t') € L,).
So we obtained
({(s, z,t),1) € U . = V2'3ena(x(s, 2,8, 2, V) Vals, 2,1, 2,t') € I).
n<§ N
From here
Vadtena: (5,20, 1) € U 1.)
n<§
= Vz3tenatV2' Henae(X(5, 2,8, 2, t") Va(s, 2,t, 2, ') € L),
in other words,
(5,00€ 5. = sel,

and hence s € I,.

Thereby, the verification of equivalence (5.4) is completed. So I, is a section of
I+, which is TI3 positive inductive on (%, Az,i.(z);). From here, I« is IIJ positive
inductive on 2 (under Lemma 3.4 and Transitivity Lemma). By Lemma 5.1 I, is
MY positive inductive on 2 and hence I, is II? positive inductive on 2.

Now let p(z, X) be an arbitrary e.r. positive formula. We may assume that ¢
is I3, £ > 2, i.e. that ¢ is equivalent to

V'3l - - V2E SN (2, 22 80 ..., 25, 25, X)
with ¢ — a quantifier-free. Set ¢* to be the following formula:
VzItenat(y = 0& ({z,2,t), 1) EX V.. Vy=k-2&({z,2,t), k- 1) e X
Vy=k—1&¢(z,2,1)).

Here the formula 1,13(z,z,t) is constructed from ¥ as it follows: first replace in ¥
variables z, z! and t! by (z);, (z)2 and (z)s, respectively, and denote the formula
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thus obtained by ¥(1). To define ¥(?), replace in ¥(*) each occurrence of (z); by
((z)1)i for i = 1,2,3 and 22 and t? by (), and (z)3, respectively. Repeat this
procedure k — 1 times. Finally, in the formula ¥*~1) replace z* and t* by z and
t, respectively, and then replace all formulas of the type 7 € X by (7,0) €X. The
formula, constructed in this way, is ¥.

Now the equality I, = {s | (5,0) € I,-} is verified as above. As we have
already seen, it immediately implies that I, is TI{ positive inductive on .

Theorem 5.3. Let A C (B*)*. The following conditions are equivalent:

(i) A 1s the set of all points of V-definedness for some non-deterministic pro-
gram P;

(i) A is inductively definable by some 11 positive formula;

(i11) A 1s inductively definable by some ezistentially resiricted positive formula;

(iv) A = {5 | YaanR(&(n),n,s)}, where the predicate R is prime computable
on 2.

Proof. The equivalence between the first three conditions follows from Propo-
sition 3.7, Proposition 4.3 and Proposition 5.2. The easiest way to complete the
proof of the theorem, is to show that (i) and (iv) are equivalent. We shall use the
observation that prime computability (PC) is equivalent to computability by means
of deterministic programs (see, for example, [5, Ch. 1.3]).

Now, assuming that the non-deterministic program P is determined by the
recursive sequence {II(™}, (in the sense of Proposition 2.2), let us set

R(t,n,5) < Seq(t)& Nat(n) & Ih(t) = n & IM)(2, 5).

Having in mind some basic facts about prime computability, we may assert
that R is prime computable on 2. It is clear that Dp = (5 | VadnR(a(n),n,5)}.

Conversely, let R(t,n,5) be a prime computable predicate and Py be some
deterministic program that computes it. Denote by y, z, z,, ..., ¢ the input
variables of Py. Now set

P: input(zy,...,zx); y:={(); 2:=0;
1: t := arbitrary(B*); y :=y*t; z:=z+ 1,
Py; if £1 = z; then go to 1.

It is immediate by the construction of P that

§ € Dp & VYa3n(P, stops at input (&(n),n,s)) < Va3nR(a(n),n,s).
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AN INEQUALITY OF DUFFIN-SCHAEFFER-SCHUR TYPE

GENO NIKOLOV

It is shown here that the transformed Chebyshev polynomial of the second kind Un(:r)
:= Un(z cos 757) has the greatest uniform norm in [-1, 1] of its k-th derivative (k =
1,...,n) among all algebraic polynomials of degree not exceeding n, which vanish at +1
and whose absolute value is less than or equal to 1 at the points {cos 2 / cos ;%};‘__:ll :

Keywords: Markov inequality, Chebyshev polynomials
1995 Math. Subject Classification: 41A17, 26D05

1. INTRODUCTION AND STATEMENT OF RESULT

Denote by m, the set of all real algebraic polynomials of degree at most n.
As usual, T,(z) = cosnarccosz denotes the n-th Chebyshev polynomial of the
first kind. In what follows, || - || will mean the uniform norm in [-1,1}, ||f]} :=

sup |f(z)|.

z€[-1,1]
The classical inequality of I. Schur [15] asserts that the transformed Cheby-

shev polynomial T, (z) = T, (a: Ccos 21) has the greatest uniform norm of its first
n

derivative on [~1, 1] among all f € m,, which vanish at the boundary points +1,
and whose uniform norm is less than or equal to 1.

Recently, this result was extended to higher order derivatives by Milev and
Nikolov {10] (the special cases k = 2 and k = 3 have been examined earlier by

* The research was done during the author’s stay at the University of Bradford, UK. The author
was supported by a grant from the Royal Society and by the Bulgarian Ministry of Education,
Science and Technologies under Grant MM-513/95.

109



Milev [8, 9}).
Theorem A ([10, Theorem 1.1]). If f € 7, satisfies

f(-1)=f(1)=0 (1.1)
and
Al <1, (1.2)
then .
1@ < 1T (1.3)

fork =1,...,n. Equality in (1.3) is possible if and only if f = +T,,.
Let {y}‘};‘;l’ be defined by

x _ cos(jm/n)
Yi T os (m/2n)

For k > 2 Milev and Nikolov proved the following extension of Theorem A.

Theorem B ([10, Theorem 1.2]). Let f € w, satisfy (1.1) and
IS, j=1,...,n-1 (1.4)

Then the inequality (1.3) holds for k = 2,...,n. Moreover, equality is possible if
and only if f = +T,,.

Theorem B asserts that the condition (1.2) in Theorem A is unnecessarily
restrictive, and that for £ > 2 the inequality (1.3) remains valid if (1.2) is replaced
by the weaker requirement |f(z)| < [Tn(z)| at the extremal points of T, i.e., at
{y7}i= L. This is very similar to the extension of the Markov inequality, found by
Duffin and Schaeffer [4]. For some related results the reader may consult (1, 2, 5,
11-13, 16].

Regarding Theorem B, the following question arises in a natural way: what
would happen if the “comparison points” {y} ;’._fl’ in (1.4) are replaced by some
other points? Answering this question for arbitrary {y; };;11 seems to be a very
difficult task.

In this paper we examine completely the case

L cos (jm) .
Y% = s/ = beenL
It turns out that in this case the extremizer for all k € {1,...,n} is the transformed

Chebyshev polynomial of the second kind U,,

— s
Ual(2) =05 (xcos — 1) .
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Precisely, we prove the following Duffin-Schaeffer-Schur type inequality:

Theorem 1.1. Let f € 7, salisfy (1.1) and

dComy

),51, j=1,...,n—1 (1.5)

Then o
A2 < W70 (1.6)

for all k € {1,...,n}. Moreover, equality in (1.6) is possible if and only if
f=4U,.

The paper is organized as follows. In Section 2 we prove a pointwise inequality
(Theorem 2.1), which is the main ingredient of the proof of Theorem 1.1. The
necessary auxiliary results are proven in Section 3, with the exception of Lemma
3.5, the proof of which is the content of Section 5. In Section 4 we prove Theorem
1.1

2. A POINTWISE INEQUALITY

For the sake of convenience we examine the usual Chebyshev polynomial of

' 1
the second kind Up(z) := sin[(n + 1) arccos z]

V1-—2z?

on the interval [—n,n], where 5 :=

€08 ——- For this reason the conditions (1.1) and (1.5) are replaced by
n
f(=n) = f(n) =0, (2.1)
and .
lf(cos-J-T:—r-) <1, j=1,...n-1 (2.2)
Throughout, || - ||x will mean the uniform norm in [-7, 7], i.e.,
Ifll:= sup [f(z)].
z€[~n,1]

Theorem 1.1 is proved with the help of the pointwise inequality, given by the
next theorem.

Theorem 2.1. Let f € 7, satisfy the conditions (2.1)-(2.2).
Then for each k € {1,...,n} and for every z € [-7,n)

15 (2)| < max{|UN )], |Zn x(2)1},
where

Zus(e) = - | (7 LA ) 1000 + keI 29
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Proof. Let zg < 21 < ... < z, be the zeros of w(z) := (2 — n?)T%(z), and let

wy(z) ;=w(z)/(z —z,), »=0,...,n. For every polynomial f of degree at most n
the Lagrange interpolation formula yields
= f(zv)
) (z) = — 7 )(z). 24
@)=3 @ (24)

In particular, for f € 7, satisfying (2.1)-(2.2), (2.4) yields

n—1

IF®) ()] < Z

=1

"’(z)

2.5
e (2.5)

According to a well-known result of V. Markov, if the zeros of two polynomials
interlace, then the interlacing property is inherited by the zeros of their derivatives
(for a proof see, e.g., [14, Lemma 2.7.1]). In particular, for polynomials of the same
degree this result could be interpreted as monotone dependence of the zeros of the
derivative of a polynomial on its zeros ({1, p. 39]). Since for i > j the zeros of w;(z)
are less than or equal to the corresponding zeros of w;(z), we conclude that the

(k) (k) Hence, the j-th Zeros

same relation remains valid for the zeros of w;’ and w;
of the polynomials {w( )}" are Iocated between the j-th zero of w8 and the

Jj-th zero of w((, ). Denote by {B:};2 ¥ and {; )7} the zeros of wi¥) and w(()k),
respectively, arranged in increasing order Set oy = =1, Bn-k+1 := 7, then the
above reasoning implies that

sign {w{¥)(z)} is the same for all v € {1,...,n — 1} when z € [a;,3;].  (2.6)
We observe that the zeros of w and U, interlace, and in addition
Unl2,) = sign{w,f2,)} = (=1)*"*, v=1,..,n=1

Therefore, for z € [, 5] (7 € {1,...,n — k + 1}) the substitution f = U, in (2.4)
yields
= fwi(z)

wy(zy) |

(2.7)

v=1

Comparison of (2.7) and (2.5) 1mphes that if f satisfies the assumptions of Theorem

2.1, then
n—-k+1

1fB(2) < [U(2)| forallze | [a;,8]. (2.8)
j=1
Our next goal is to prove that under the same assumptions
n—k

f®)(2)] <1Zna(z)] forallze U (Bi, a541)- (2.9)
Jj=1
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Observing that the j-th zero of U, is located between the j-th zero of w, and the
Jj-th zero of wy (precisely, the first zeros of U, and w, and the last zeros of U,

and wp coincide), we conclude on the basis of V. Markov’s result that each interval

(Bj,aj+1), 7=1,...,n— k, contains exactly one zero of U,gk), and consequently

sign {U{") ()} = sign {UF(B;)} = (=1)*H' %3, j=1,...,n—k (2.10)
Using the identity (cf. [17, eqs. (4.7.28)])
U (=) = 2Us2\(2) + (n+ BUSS D (a), (2.11)

it is not difficult to see that

1 n+k \
_77(k) — - (k)
Zna(@) = U) = - (2= 2250 uf(a), (2.12)
(k) _ 1 n <+ k (k)
Zﬂ,k(x) .3 Un (I) - k—ﬂ -+ n n}|Wwy (.’L‘), (213)

whence

) —U,(;k)(x) forz=aj j=2,...,n-k+1,

U,(,k)(:c) forz=p6;, j=1,...,n-k.

If f € 7, satisfies the assumptions of Theorem 2.1, then according to the above rea-
sonings | f(¥)] < IU,(,k)I at the zeros of wgk) and ws,ks. The relations (2.14) and (2.10)
then imply that each of the polynomials Z,, ; & f*) has at least one zero in each of
the intervals [aj, 3;], j = 2,...,n — k. Moreover, sign {(Z, x = f*))(an-k+1)} =
—sign {U,(,k)(a,,-k.,,l)} = —1. Since Z, 1 £ f*) have positive leading coefficients,
it follows that each of them has at least one zero located to the right of ap_g41.
Similar arguments show that 7, :i:f(") must have at least one zero located to the
left of 8,. Hence, each of the polynomials Z, ¢ + f(*) has maximal possible number
of zeros (n — k + 1), and all these zeros lie outside the set U;’;f(ﬂj ,@j4+1). Now the
observation that |f(¥)] < |Z, x| on the boundary of this set completes the proof of

(2.9). Theorem 2.1 is proved. &

Remark 1. The claims of both Theorem 1.1 and Theorem 2.1 are trivial
when n < 2. Following the proof of Theorem 2.1, one observes that if £k = n, then
[f®) ()| < IU,(;k)(a:)l on the whole real axis for every function f satisfying (2.1) and
(2.2). Thus, for k=n

175N < NSO (2.15)

Furthermore, if k = n — 1, then f*) is a polynomial of degree 1, and therefore
|| f¥)]4 is attained at z = —n or at z = 1. According to (2.8), at these points we
have |f(®)| < |U,(.k)|, and therefore again (2.15) holds. The statement of Theorem
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1.1 then follows for k = n — 1, n from (2.15) after a linear transformation (see also

(16, Corollary 4]).

For this reason, we may restrict our considerations to the case n > k + 2.

Remark 2. Studying carefully the proof of Theorem 2.1, one can see that
n—k

for any fixed point zo € |J (B;,@;+1) the exact upper bound for [f(*¥)(zo)| in
i=1

(2.5) subject to the constraints (2.1)-(2.2) is attained for a polynomial, which
alternates between —1 and 1 at the points {z;}=}' with only one exception (i.e.,
|f(z;)]=1,i=1,...,n—1,thereisal € {1,...,n— 2}suchthatf(:c)‘)f(a:,\+1) >0
and f(z;)f(zi+1) < 0 for i # A). Following the notations of Gusev [6], we may
call these polynomials as Zolotarev polynomials. The number of the essentially
different Zolotarev polynomials is [(n —1)/2}], e.g., 1,ifn = 3,4; 2, if n = 5,6; 3, if
n = 7,8, etc. Hence, for small n one can examine directly all the possible extremal
polynomials in Theorem 1.1.

3. AUXILIARY RESULTS

We begin with llstm% in a lemma some well-known properties of the ultra-
spherical polynomials P (A > —1/2). Recall that P is the n-th orthogonal
polynomial in [—1, 1] with respect to the weight wx(z) = (1 — 2%)*~'/2 and nor-

A-1
malized (for A # 0) by P, A)(l) - (ﬂ +2n )
case A = 0 the Chebyshev polynomial 7}, is orthogonal and satisfies 7,(1) = 1.

(in particular, P, PV = Un). In the

Lemma 3.1. (i) For every A > —1/2, A #0,
d A
—{(PP(@)} = 2P11(2)

(the case A = 0 reads as T, (z) = nP( )1("-'))
(i) For every A > p > —-1/2, Pm) obeys a representalion

n
P,EA)(.'L‘) = Z am,n(A)l‘)Pr(np)(z) with am,n(/\,ﬂ) > 0, m= 0,ic:;m
m=0

(iii) For A > 0 the absolute values of the local extrema ofP ) increase as the
distance between the points of local extrema and the origin increases.
(iv)y= pM satisfies the differential equation

¥ — (22 + D)zy + n(n+2))y = 0.

For easy reference we formulate in a lemma two simple facts from calculus
which will be used frequently in the sequel.
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Lemma 3.2. (i) For any fized o € (0,2) the sequence a, = nsin ﬂ, B =2,
n

3, ..., 1s monotone increasing.
(ii) For any fized 0 < a < B < 2 the sequence b, := -S,‘i(ﬁw—/n)-, n=34,...
sin{am/n)
1§ monotone increasing.
Lemma 3.3. For every natural n > 2 and for k= 2,...,n there holds
max T ()] = T (). (3.1)

z€[— cos(x/n),cos(x/n)]

Proof. It suffices to prove only the case k = 2. Indeed, if (3.1) is established
for k = 2, then it follows that |[Tja|l« = Ti2(n) for all m < n. For k > 3, Lemma
3.1(1)-(i1) yields

n—k+42
T@)= Y amTi(z) witham >0,
m=2
and consequently,
n—k+2 n—k+2
ITPle < Y- amliTlls = Y amTm(n) = TH(),
m=2 m=2

Thus 1t remains to prove (3.1) for k = 2. The cases n = 2, 3 are trivial, therefore we
suppose that n > 4. According to Lemma 3.1(i), (ii1), we have to compare 7}/(n)
with 7)/(z), where z = cos 7 is the last critical point for 7/, i.e., the last zero of
T!"'. The explicit representation of 7}, yields, with z = cosf, 0< 8 < =,

in nf cos nf
TV (p) = gsinnd 5 cosnd 9
w ()= i g8 sn30 " sinZf’ {5:4)
TV (z) = — ns 7 {I3— (n*+2)sin®§)sinnf ~ 3nsin6 cosf cosnf} . (3.3)
sin
Putting 6 = 27/n and 6 = 37/(2n) in (3.3), we get
T (cos ?i) = —3n22i(i7r/2)” <0,
n sin”(2m/n)
11 3 n 2 I ) 3
il 9 o
Tn (°°S on) = s @iy [ TS g 3 >0
; 3 2T 3T ; : :
hence T}" has a zero in the interval [cos —, COs %) This zero is readily seen to
n
be unique, and it is the last critical point of 7.
The equation (3.2) can be rewritten as
T/ (cos0) = ———p(0), 3.4
(c030) = 500 (3.4
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where ©(6) = (n + 1)sin(n —1)§ — (n — 1)sin(n + 1)f. The points in (0, 7), at

which the function ¢ has local extrema, are 6, = —f-, k=1,...,n=1, and
n

ok
lo(6x)] = 2nsin 7” (3.5)

i : i 27 3 ,
Taking into account the inequalities cos — < cos T < cos 5, e obtain from (3.4)
n

n
and (3.5)

|TY (cosT)| < nzsl:;ggf:%;)l)) (3.6)
The substitution 6 = ;:- in (3.2) yields
™ n?
‘ iy (cos ;)l = . T (3.7)

and the lemma will be proved if we succeed to show that the right-hand side of
(3.7) is greater than the right-hand side of (3.6), which is equivalent to

(sin(?ﬂr/(2n)))3 > 2c08. ™. (3.8)

sin(m/n) n

According to Lemma 3.2(i), the left-hand side of (3.8) is increasing with respect to
n, and for n > 4 it is greater than 2. This completes the proof of Lemma 3.3. 1

Remark 3. A more precise examination of equation (3.3) shows that forn > 5
. : . ) 27 i
the last critical point of T} is located in (cos —, COS -——) (see the proof of Lemma

n 4n
5.1 below).
As an immediate consequence from Lemma 3.3 we get
Corollary 3.1. For all natural k < n there hold:
(a) US|l = U (n);
(b) Tl = T{H(n) for k > 2.

The function Z, x(z) appearing in Theorem 2.1 can be represented as

Zn'k(:l,‘) = ck[un'k(x) = vn,k(:c)], (39)

where ¢ := 1/(kn) and
U k(2) = (2% — )TE(2) + k2T (2), (3.10)
Un k(Z) 1= (n: knz -~ 1) T+ (). (3.11)
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We quote without proof the following simple lemma:

Lemma 3.4. The inequality

n+k ,
>
n 21

holds for every n > 9 if k = 1, for everyn > 5 if k = 2, and for every n, k > 3.

Corollary 3.2. For n and k as in Lemma 3.4 there holds

|vn kllx = vn k(n).
The next lemma shows that a similar conclusion holds for the function u, (z).
Lemma 3.5. For all natural k > 3 there holds

tm ell = un,e(). (3.12)

The proof of this lemma requires more work, and we put it off to the last
section.

4. PROOF OF THEOREM 1.1

According to Remark 1, we may assume that n > k + 2. We exclude also the
cases k = 1, 3 < n <8 and k = 2, n = 4, which are verified directly as indicated
in Remark 2. For the remaining n and & we shall prove the inequality

1Za kllx < NUSPlls. (4.1)

Having established (4.1), we can readily deduce Theorem 1.1 as a corollary of
Theorem 2.1. Indeed, if f € m, satisfies (1.1) and (1.5), then p(z) := f(z/n) will
satisfy (2.1)-(2.2). Tt follows then from Theorem 2.1 that for every z € [—7,7)

Ip(z)| < max{|UE (@)}, 1Zn ()]} < JJUPl = UP(n). (4.2)
Then f(z) = p(zn) will satisfy
k
IFBN = 74 p® ke < #FUP @) = 1T,

whence the inequality of Theorem 1.1 follows. To clarify the cases in which equality
holds, we observe that equality in (4.2) is possible only if z = 7 and p = *U,.
This completes the proof of Theorem 1.1.

[t remains to prove (4.1). Equation (3.9) and Corollary 3.2 yield

[1Zn,kllx < celllun kll + [fvn klle] = cklvne(n) + [lun,kll]

= —Zn k() + ck[uni(n) + ”un.k”*]

k(2n + k)
Ck -————n

= UM () — T)T,(;k)(ﬂ) + ck{un k(n) + [lun k)
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(for the last equality we used equation (2.13)). Clearly, the inequality (4.1) will
hold if we succeed in showing that

T (n). (4.3)

In the proof of (4.3) we shall distinguish between the cases k =1, k = 2 and k > 3.
Note that

() + [t} < 222HE)

) = T = n(n 4 1) ST+ D)
T T =n T =n+ Do

Tn(n) = —cos (4.4)

Case k = 1. Lemma 3.1(iv) implies that u, 1(z) = n?T,(z) and the inequality
(4.3) in this case reduces to
2
T n
Tl (n -+ l) '

the verification of which causes no difficulties.
Case k = 2. Using Lemma 3.1(iv) we obtain u, »(z) = (n?-1)T%(z) - 2T (z).
The explicit form of 7, and Lemma 3.3 yield the estimate

! 1" n(n2 _ 1)
un 2l < (0 = DITalle + 122 @l < o5,

+ T, (n),

and consequently,
tn 2(n) + ||tn 2|l < n(n?—1) (1 +sin~! —,
; : n+ 1

Therefore, (4.3) will follow with & = 2 if

+ sin?

n(n—1) sin —— S

4(n + 1) cos® :
]< (n+1)cos —

Putting A, := (n + 1)sin n—j-—T’ we rewrite the latter inequality in the following

form
w

_ 2 . P,
(n 2)An+An+(An+2)smn+l+2sm m—

According to Lemma 3.2(1), A, < As = 7, and we increase the left-hand side of
(4.5) to obtain the inequality

<4(n+1). (4.5)

m m

<A4(n+1),

(n —2)7 4+ 7% + (7 + 2) sin

2sin’
n+1+ sin T

which is easily seen to be true for all n > 4.
Case k > 3. According to Lemma 3.5, in this case ||un k|[x = un x(n) and the
inequality (4.3) becomes

k2
(1= n*)TEHD () + =0T (n) 2 0,
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which is obviously true, since 7 is located to the right from the right-most zero of
) k= 1,...,n. With this (4.3) is proved and therefore Theorem 1.1. 1

5. PROOF OF LEMMA 3.5

We first observe that the general case is a consequence of the case & = 3.
Indeed, let

nun,BH* — un,3(77)' (51)
It is readily seen that u, 3 is strictly monotone increasing to the right of z = 7.

This implies that (5.1) follows also with n replaced by m, m < n. Then for k£ > 4
Lemma 3.1(ii) and Corollary 3.1(b) yield

n~k+3
T (z) = Z bmT,, (z) with non-negative b,,, m=3,...,n —k + 3,
m=3

l[un,kllx = [I(z* = VTFHD(2) + 32T () + (k = 3)eT{H (=)l
n—k43

= > bmtms(z)+ (k- 3)zTH ()|l

m=3
n—k+3

< S bmllumglls + (k= 30T (n)
m=3

n—k+3
= ) bmuma(n) + (k= 3T (1) = unk(n).

m=3

The proof of (5.1) goes through several lemmas. For the sake of simplicity we
suspend the indices in u, 3(z) and simply write u(z), where

u(z) = (22 — )TV (z) + 32T (z) = (n® — )T} (2) - 22T} ().

It is not difficult to verify that (5.1) is true for n < 10 and we suppose in what
follows n > 11.

We shall need information about the location of the last critical points of
u(z) (i.e., the last zero of u'(z)), which we denote by £. As a first, we observe

that the zeros of u'(z) and T,g”(::) interlace and a brief examination shows that

£ € (cos i , CO8 g—:) Sharper bounds are given in the next lemma.

Lemma 5.1. For every natural n > 10 there holds

T or
cos 7 < € < cos I (5.2)
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Proof. Putting z = cos @, after some straightforward calculations we obtain

—nsin nf

/ —
()= 575

(54 on)t3 — 30tn] [g(tn, on) + cos b cot nb] , (5.3)

where o, :=4/n?, t, = t,(0) := nsin 6, and

(14 20)t* — (15 + 60)t? + 30
t =
9(t., o) (5 + o)t3 — 30t

(5.4)

; 2 3
Since £ € (cos Tﬂ-, cos 2—:;) and n > 11, we may assume that ¢,(6) > 11sin 2—; >
4.5and 0 < 0, < 1/30, ie., (I, 0,) € A, where

A:={(t,o0)|t>45, 0<0<1/30}.

The function g(t¢,0) has continuous derivatives in A and Qg_ > (0 therein. This

do
implies for (¢,0) € A

t4 —15t2 4+ 30 32t% — 4562 + 900

= < g(t < = .

where ¢,(t) = ¢g(¢,0) and g2(t) = g(t,1/30). Moreover, g,(t) and g,(t) are monotone
increasing for t > 4.5. Looking at (5.3) and taking into account 8 € (3w/(2n}, 27/n),
we observe that '

sign {u'(cos0)} = sign {g(tn,0n) + cos @ cot nf} ;= sign {h(6)}. (5.6)

For 0, = Zl Lemma 3.2(1) yields t,(61) < too(01) < 5.498, hence for n > 11
n

h(01) < g2(5.498) — cos % = —0.065 < 0.

For 05 = % and n > 11 Lemma 3.2(i) asserts t,(62) > t;1(02) > 5.04 and therefore
om
h(02) > ¢1(5.04) + cot 5 = 0.024 > 0.

. (7 :
Consequently, we obtain u’ (cos 4—2) < 0 and (cos ;—:) > 0. This completes

the proof of Lemma 5.1. I

Lemma 5.2. The local mazima of |u(z)| increase as |z| increases.

For the proof of Lemma 5.2 we apply the following result (see, e.g., [17, (7.31)]):
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Lemma 5.3 (Theorem of Sonin-Polya). Let y(z) be a non-trivial solution of
the differential equation
(ry) + Py =0, (5.7)

where p(z) and P(z) are continuously differentiable and positive in the interval
(a,b), and let the function p(x)P(z) be non-decreasing (non-increasing) on (a,b).
Then the relative mazima of |y| in (a,b) form a non-increasing (non-decreasing)
sequence.

The application of Lemma 5.3 with y = u is possible because of the next

lemma.

Lemma 5.4. The funclion u(z) satisfies a differential equation of the type
(5.7) with

— 22Y7/2
and
— 22)5/2 [(n? — \n2(1 — 22) — 10n2
P(z) = (1 )32 [( 4)n?(1 ) — 10n? + 48] | (5.9)

[n2(1 - 22) - 6]”

The proof of Lemma 5.4 is by direct verification, applying Lemma 3.1(iv). For

the proof of Lemma 5.2 one only have to check that the functions p and P defined

by (5.8) and (5.9) are positive in (— cos 2—”, cos gl> and that (pP)’ is negative in
n n

- ; : om
(0, cos §—ﬂ> . This is an easy exercise if the inequality n?(1 —z?) > t%, (3—-) > 25
n n
is taken into account.

Now we are in a position to prove (5.1). According to Lemma 5.2,

llullx = max{|u(§)], u(n)}

and it suffices to show that

[u(e)] < u ( T 1) | (5.10)

We have

m _n(n+1)cos(m/(n+ 1) in . 9
! (COS m) — sin*(n/(n+1)) [ {4 Z)sin

n+1

and for n > 11 the application of Lemma 3.2(i) yields the estimate

n(n+1)

u (cos oy 1) > 3'457sin4(7r/(n ) (5.11)
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At the point £ we have (n? — 6)7’,&3)(0 = 2£T,54)(£), and using Lemma 3.1(iv)
repeatedly, we obtain

4¢£?
=11 2 1"
' e § : - n om
According to Remark 3, 7,/(z) is monotone increasing in co8s -, cos o and
n

equation (3.2) shows that 7’ is negative therein. Therefore |T”(£)| is bounded

T
i i (cos Z—n-) .

equation (5.12) is given by 1+ 4/(121sin? 57/33 — 10). Substituting these bounds
in (5.12), we obtain

from above by For n > 11, an upper bound for the first factor in

n(n? — 4)

|u(é)| < 5.7885in3(77r/(4n)).

(5.13)

In view of (5.11) and (5.13), (5.10) will hold if

sin(7m/(4n))
(sin(w/(n T 1))) L

Zo [ 2],

or if the following stronger inequality holds:

sin(77/(4n)) n? -4
( sin(/n) ) 230y

According to Lemma 3.2(ii), the left-hand side of the latter inequality increases
monotonically as n increases and for n > 24 it is greater than 5.26. By verification
its validity is seen also for 11 < n < 23. This proves (5.10), (5.1) and Lemma 3.5. 8

Remark 4. It is not difficult to see that Theorem 1.1 remains true even if
the polynomials under consideration are allowed to have complex coefficients (the
same applies to Theorem B). Indeed, let p be the extremal polynomial from this

larger class, and let

sup(If I} = 1P| = 5, T -1,

with some real 6. Then the polynomial g(z) = Re {¢!’p(z)} also belongs to the
class under consideration and satisfies g(¥)(7) = |p(¥)()|. Thus we found another
extremal polynomial, which, in addition, has real coefficients. Following the proof
of Theorem 1.1, we conclude that this is only possible if 7 = +1 and g = +U,,.
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FACTORIZATIONS OF THE GROUPS Q4(q)"

ELENKA GENTCHEVA, TSANKO GENTCHEV

The following result is proved:
Let G = Q7(q) and g is odd. Suppose that G = AB, where A, B are proper non-Abelian
simple subgroups of G. Then one of the following holds:

(1)
(2)
(3)
(4)
(5)
(6)
(7)

q=3and A = L4(3) or G2(3), B & Spe(2) or Ag;
g = -1 (mod 4) and A & G2(g), B = L4(9);
=1 (mod 4) and A & G,(q), B = Uy(g);
qg= 3?27+l 5 3and 4 & 262(9)- B L4(Q);
g = 32"*1 and A > U;(q), B & La(q);
q=32" and A & Lj(q), B = Us(q);
A Ga(g), B PSpy(q).

Keywords: finite simple groups, groups of Lie type, factorizations of groups
1991/95 Math. Subject Classification: 20D06, 20D40; secondary 20G40

1. INTRODUCTION

In [1-3] we determined all the factorizations with two proper simple subgroups
of all groups G of Lie type of Lie rank 3 except for G = Q7(g). In the present
work we extend this investigation to the simple groups Q7(q) of Lie type (Bs) over
the finite fields GF(g). Thus we complete the determination of all factorizations
(into the product of two simple groups) of all simple groups of Lie type of Lie
rank 3. Here we may assume that ¢ is odd in view of the well-known isomorphism

* This work was partially supported by the Bulgarian Ministry of Education and Science, Grant

No MM 412/94.
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Q7(q) = PSps(q) if ¢ is even (recall that the factorizations of the groups PSpe(q)
have been determined in [3]). We prove the following

Theorem. Let G = Q7(q) (¢ is odd) and G = AB, where A, B are proper
non-Abelian simple subgroups of G. Then one of the following holds:

(1) ¢ =3 and A = L4(3) or G2(3), B = Spe(2) or Ag;
(2) g= -1 (mod 4) and A = G1(q), B = L4(q);

(3) g =1 (mod 4) and A = G1(q), B = Us(q);

(4) ¢ = 32"+ > 3 and A= 2G4(q), B = La(q);

(5) ¢ =3**! and A= Us(q), B = Ly(g);

(6) ¢ = 3°" and A= L3(q), B = Ua(q);

(7) A= Ga(g), B = PSpa(q).

The factorizations of Q7(¢) into the product of two maximal subgroups have
been determined in {7]. We make use of this result here.

We shall freely use the notation and basic information on the finite (sim-
ple) classical groups given in [6]. L%(q) denotes Ln(q) if ¢ = + and Uyn(q) if
€ = —. Let V be the natural 7-dimensional orthogonal space over GF(q) on which
G acts, and let ( , ) be a non-singular symmetric bilinear form on V. There is
a basis {d,e;, fi | i = 1,2,3} of V, called a standart basis, such that (d,d) = 2,
(d,e,-) = (d,f,') = (e,-,e,-) = (f.',fj) = 0,(6,',fj) = 5,‘]' for i,j = 1,2,3. Let Pk be
the stabilizer in G of a totally singular k-dimensional subspace of V. If W is a
non-singular subspace of V' of dimension k, we denote the stabilizer Gw of W in G
by Nf (e = ), where W+ has type O7_j if k is odd, and W has type O% if k is
even. From Propositions 4.1.6 and 4.1.20 in [6] we can obtain the structure of P,
and N{. In particular, it follows that

P (o) (- 1)/2x PSpa(a))2, Py [¢°]: 5GLs(o)

NP =Q06(g)2=(2,(g —€1)/2)-Lg(q)-2,  N; =((q~€1)/2 x PSpa(q))-[4].

From this it follows immediately that N} contains a subgroup isomorphic to L§(q)
if and only if ¢ = —¢1 (mod 4); also, in P; there exists a subgroup isomorphic to
L3(g) only if g #1 (mod 3). Lemma 4.1.12 in [6] gives us a possibility to describe
in P; the subgroup L isomorphic to PSps(q), namely, we may regard L (up to
conjugacy in G) as the subgroup of G fixing the vectors e;, fi and stabilizing the
subspace (d, €2, e3, f3, f3) of V. In the same way , using again Lemma 4.1.12 in [6],
we may take (if ¢ # 1(mod 3)) the L3(g) subgroup of Ps to be the subgroup K of G
fixing the vector d and stabilizing each of the subspaces (e;, e, e3) and (fi, f2, f3)
on which K induces an SL3(q) subgroup. Note that each of the groups Nf and Nj
also contains a subgroup isomorphic to PSp4(q).
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2. PROOF OF THE THEOREM

Let G = Q7(q), where ¢ = p™ and p is an odd prime, and G = AB, where
A, B are proper non-Abelian simple subgroups of G. The factorizations of Q7(3)
are determined in [4]; this gives (1) and (2), (5), (7) (with ¢ = 3) in the theorem.
Thus we can assume that ¢ > 3. The list of maximal factorizations of G is given
in [7]. This leads, by order considerations, to the following possibilities:

1) A= U4(q) (in N), B = G2(\/7) (in a G2(g) subgroup of G), m even;

2) A= Uy(g) (in Ny), B = L3(q) (in P3), ¢ = 1(mod 4) and ¢ # 1(mod 3);

3) A= Ga(q), B= PSpa(q) or B = Li(q) (in N{ with ¢ = —¢l(mod 4));

4) A= 2G,(q), B = L4(q) (in NJt), ¢ = 32+1 > 3;

5) A = L§(q) (in a G2(g) subgroup of G), B = L7 “(q) (in N ¢), ¢ # €1 (mod 3)
and ¢ =€l (mod 4).

We consider these possibilities case by case.

Case 1. Here |[ANB| = ¢— 1. Now let B; = G2(g) be a subgroup of G
containing B. Then G = AB; and |AN By| = |SU3(q)|. Since (ANB;)NB = ANB
has order g — 1, it follows (by order considerations) By = (AN B,)B. However, the
group B) = G(q) possesses no such factorization ([5]), a contradiction.

Case 2. Here we use the following two realizations of the group G1 = SO7(q):

(i) SO+(q) ={X € SL7(q) | X*HX = H}, where

is the matrix of the bilinear form ( , ) in the standart basis d, ey, €2, €3, f1, f2, f3;
(ii) SO2(q) ={Y € SL7(q) | Y*IY = I}, where

(2 0 0\
I
1
I=| o0 2 0
1
1
\" 0 0 3y

is the matrix of the form ( , ) in the basis e; + Afi, ez, €3, d, f3, f2, e1 — Afy with
A a non-square in GF(q).
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Let X,Y € SL7(q) and Y = Ty ' X Ty, where

000100 0
100000 1
010000 0
To=] 001000 0
A0 000 0 —A
000001 0
\0 00010 o)

Then Y'IY = ] if and only if X*HX = H.
Now, from the above description of the L3(g) subgroup in P3, with respect to
(i), we have

1{o] o
B={(0 M| 0 ) I M€SLs(q)}“=‘La(q)-
0 0 [ M~

Further, we may take A to be the Us(gq) subgroup in the subgroup P of SO7(gq)
which has the following form about (it):

10

P= 0ls | E SO7(q) ¢ = SOg (9) = 2 x Us(q)-

Moreover, we have PN G = A and hence PN B = AN B. A direct calculation
shows that

1 0 0
170
PNB=T;" 0177 : To,
1] 0
o 0 BT

where T € SLy(q). Thus ANB = SL,(gq) and order considerations imply G # AB.
Now we proceed to prove that in the remaining cases 3-5 (with suitable ¢) the
factorizations exist.
Case 3. Let us consider the following realization of the group SOz(g):
(it1) SO+(q) ={Z € SL:(q) | Z*JZ = J}, where

( L)
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is the matrix of the bilinear form in the basis e, e, €3, d, f3, fo, fi (see (i) above).
Now, with respect to (iii), we make use of the well-known 7-dimensional represen-

tation of the group G(g) over the field GF(q) ([8]).
The root system of type (G3) is

Z = {£&1, £62, £€3, (&1 — €2), £(&2 — &3), (&5 — &1)},

where {; +€3+€3 = 0. Let £ and E;;, —3 < 1,7 < 3, denote the 7x 7 identity matrix
and matrix units, respectively. Then the generators z.(t) (r€ >, t € GF(q)) of
(G2(q) are represented as follows:

g,-¢,; (1) = E+U(E-i-; — Eji),
T+e,(t) = E+U(X2F5i0 F Eoxi  Exjzi F Egryj) — tqu:iii,
where (7, j, k) is an even permutation of 1, 2, 3. Note that
wr = 2, (D)z_r(=Dzr(1), he(t) = z.()z_r (=t Nz, (]’
Any element of A = G(g) can be written uniquely in the form

za(t1)ze(t2)Tatb(t3)T2a+6(t4)23a+5(t5)T3a428(t6 ) ha(u)hs(v) w za(s1)zs(52)
Za+b(53)Z2a45(54)T3a45(55)T3a426(86),

where a = £, b = &) — €2, ti, 8 € GF(q), u,v € GF(g)* and w = 1, wq, wp, waws,
WhWa, WaWpWa, Whwawh, (Waws)?, (Whwa)?, (Waws)?ws, (whwa)?wy or (waws )3.

On the other hand, using the above description of the PSp4(q) subgroup in P,
with respect to (iii) we may take B = PSpa(q) to be a subgroup in the following
subgroup @ of SO7(q):

1{0]0
Q= { ( 0|%x1|0 ) € SO7(q)} =~ S05(q) = PSpa(q).2
01011

Moreover, QNG = B and hence ANQ = AN B. A direct computation shows that
A N B consists of the following elements of A:

zy(ta)ho(v), zs(t2)he(v)wszs(sz) (v € GF(q)*, ta,s2 € GF(q)).

Hence |AN B| = q(g? — 1) (in fact, AN B = (z4(t), z-s(t)) = SL2(q)). Now order

considerations imply G = AB. This is the factorization in (7) of the theorem.
Further, let A = Gy(q) be the subgroup of G described in the above paragraph

and B = L4(q) be the subgroup of G in the subgroup R of SOz7(g) which has the

following form with respect to (iii):

* | 0|«
Rz{(O 1 O)6507(q)}’550g(q)%’2xL4(q).

x| 0] %
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Here, again RN G = B and thus AN R = AN B. Just as above, we can find the
common elements of these G2(q) and L4(g) subgroups of G; they are as follows:

zp(22)T3a+5(t5)T3a42(t6) Ra(u)hs(v),
zp(t2)x3a+5(ts)T3a+28(t6) ha(u)hs(v)wpzs(s2),
zy(t2)x3a+5(t5)T3a426(t6)ha(u)hs(v)wawswaZ3a45(Ss),
Zy(t2)T3a45(ts5) 230426 (t6)ha(u)he(v)(waws ) Ty (52) T30 +26(56),
zo(t2)T3a+b(ts)T3a+25(t6) ha(u)hs(v)(wWowa)? T3a45(55)ZT3a+26(56),
z5(t2)23a+5(t5)T3a+26 (t6) ha(w)he(v)(Wswa) wszs(52)T3a+5(55)T3a+25(56).
Hence |ANB| = ¢*(¢°~1)(¢*~-1) (in fact, ANB = (z15(t), Z+(3a45)(1), T+ (3at25)(t) |
t € GF(q)) = SL3(q)). Again order considerations imply G = AB. This is the
factorization in (2) of the theorem.

Now, with respect to (iii), let A = G2(q) be the same subgroup of G described
above and B = U4(q) be a subgroup, in realization (ii), of the group P considered
in the previous case. Let ¥, Z € SL+(q) and Y = K;'ZK,, where

( 1 000 0O 1 \
01 00 OO 0
0 01 0 0O 0
K=} 0 0 01 0 0 0
0 00010 0
0 0 0 0 0 1 0

\A 00000 -

Then Y'IY = I if and only if Z'JZ = J; here I and J are the matrices described

above.
A direct computation shows that the common elements (in realization (ii)) of

the above G2(q) and Us(gq) subgroups are

K§ ' (za(t1)zs(t2)za+5(t3) 20 +b(ta)Z3a+6(t5)T3a+25(t6)
ha(u)hp(v)wza(s1)Z5(52)Za+5(53)T2a+5(54)Z3a+5(55)T3a+25(56)) Ko,
where:
w=landu=1,t) =tlzg=tl4=ts =l =51 =83 =53 =84 =55 =8¢ =0

wW=wgand sp =s3 =84 =85=86=0, 5 = —u, {; = —uv-l, t3 = t,i,,
tq = tit3, ts = —t1lg, te = t1laly — 1115 — tats + u~lvA;

wwiasnde=lL1==li=sthy=ls=n1=a=n=5=5=0;

W = WaWyp and §) =84 =85 =8 = 0, s3=u,t; = —-uv“, i3 = tltz, i = tlt3,
ts = —t1tg, te = Au~1v — t3ly;
w=wpwgands; =s3=s4=856=0,8 = —u,s5 = -u"lvty, tz3 = t{t3—u"2v,

tq = titg, ts = —t2t3 — Aulv™1, tg = t3tyt3 — 21, 13;

W = Wawpwg and s2 = s3 =56 =0, 51 = u~lvty, 54 = t1ta—14, 55 = —u—25184,
tz3 = titg + u= 2wl — u”2wsd, tg = ulum! — Uyt te = tytats — 1113 — 13ty
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w = wpwawp and §; = 54 = 55 = 0, 53 = u, 56 = u”lvty, t3 = —u~2v + 4,
{q = ilg, i = —up~1) — l1lg, teg = tytatg — tlt_% — t3t4;

= 2 - _ -1
w = (wawp)® and s; = 855 = 0, 56 = u — 25354, t; = —uv~lsz, tz3 = tyty —

"2vs:‘; + u‘2v/\, t4g =11tz — 84, 15 = uv-! - t1l4, te = t1taty — t;tg — i3l4;

u

w = (wpwq)? and s3 = s3 =0, 55 = —u— 25154, 1 = uv~1(s2 — 5386 — A), {3 =
u"2vsl +i1tg, 14 = t1l3 — 84, l5 = —u2v"36 —11tg, lg = tilaty —tltg —tgts+uty:

w = (wawp)?wq and s; = 0, ) = uv™1(2s;54+55—5%53), t3 = u'zv(ss+2sss4)+
t1lg, 14 = t1i3+ 54 — 8183, I5 = -u2v"lsl —t1lq, e = Lytoty — tltg —t3ty — u“lvs;;,
52 + s355 — 5156 — 2515354 = U+ A;

w = (wpwg)?wy and 57 = 0, s6 = u— 25354 — 5255, 11 = uv~ (s34 5355 —A), t3 =

-2 21)_185—t1t4,t5 =u‘lv+t1t2t4—t1t§—t3t4;

u v33+t1t2,t4=t1t3—s4,t5=—u
w = (wewp)® and t; = —uv~(se+25354+5255), t3 = tita—u"2v(s?s3— 25,54 —

$5), 14 = L1t + 84 — 5183, t5 = u?v~ sy —tty, tg =ttty — tltg — gty — u‘lvsl,

s:*; + (33 - 8182)35 — 28183584 — 5186 = u + A.

Hence |ANB| = ¢*(¢3+1)(¢*—1) = |SUs(q)| (in fact, from [7, 5.1.14 (a)] we can see

that AN B = SU3(g)). Order considerations yield G = AB and the factorization

in (3) of the theorem is proved.

Case 4. Here ¢ = 32"t > 3. In case 3 we proved that G = AB, where
A = Go(3%0t1), B = L4(3%**!) and D = AN B = SL3(3?**1). Take a subgroup
C = 2G,(3**!) of A. Then (as shown in [9]) A = CD. It follows that |C N B| =
|C N D| =q~ 1. This implies G = CB, the factorization in (4) of the theorem.

Case 5. Suppose that G = AB. As A lies in a subgroup A; = G5(q) of G, we
have also G = A, B. Since |[AN(A; N B)| = |AN B| = ¢? - 1, it follows (by order
considerations) that A; = A(A; N B). Now, from the list of all the factorizations
of G»(q) given in [5], it follows that this is possible only if Ay N B = L3°(q), and
=37t ife=— ¢g=3"ife=+.

Conversely, with these restrictions on ¢, let Ay = G3(q) and B = L;°(q) be
the subgroups of G described in case 3. As we have seen, Ay N B = L3°(¢) and
then (by [10]) there is a subgroup A == L§(q) of A; such that 4; = A(A; N B). It
follows that |[ANB| = |AN(A1NB)| = ¢?—1 and hence G = AB, the factorizations
in (5) and (6) of the theorem.

This completes the proof.
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POCT LEJIBIX ®YHRIUN, OBPAIIAKIINXCA B HOJIb
HA AHAJUTUYECKOM MHOAKECTBE

MAPUSA U. MUTPEBA

Let f be an entire function in C", V be the set of its zeroes, and ny(2’,zn) be the
number of zeroes of f(z’,2,) in the circle |zn| < t. We construct an entire function F
such that F' vanishes on V and its growth is estimated in terms of ny(z’,t).

Keywords: entire functions, bounds on the growth
1991/95 Math. Subject Classification: 32A15

Mycts f(z) uenas pyuxkuma B C*, X = {z € C*, f(z) = 0} ananuTnye-
CKOE MHOXKE€CTBO Pa3MEPHOCTU n — 1, T. . aHAJIUTUYECKAA TMIIEPIIOBEPXHOCTb.
[Monoxkum u(z) = In|f(z)]. Dr1o Byner naopucybrapmonuueckas QyHKUUA B
C", crpeMamanca Kk —oo Ha X, KoTopas TakK ke ABJiAETCA cybrapMoHUYecKoi
mo Kaxaoi nepemensoit. na kakaoro z = (z1,...,2n-1,2n) € C" nosoxum
2 = (z1,...,2n-1) u nyctb X' = {2/ = const} N X. Iycrs ns(2’,t) o3navaer
YMCI0 KOopHeil pyHKIMMA f 10 MepeMeHHOM z, Npu (UKCUPOBAHHOM 2’ B Kpyre
paauyca i, T. €. 8T0 MHOXECTBO Tex To4eK M3 X', ;i KOoTOphIX |z,| <t (cMm.

(3]). Torna ussectHo, uTO Ny 3auaerca popmynoi
4 d?u
/
n )= — —— dzn. 1
0= 57 [ goge 0
[za] <1

Hama 3amauya 6yner cocToaTs B mnocrpoeHum ueio B C" dyHkumm
F(z) # 0, pasHoii Hymo Ha X ¥ Takoi, uro poct In|F(z)| mo mepemennoi
z, He npesBplmaeT pocT dynkumu ny(2’,t) ana t = |z,|.
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CdopmynupyeM OCHOBHYIO TeopeMy:

Teopema. Ecau f(2) yeaas gynxyus ¢ C", X ee nysesoe munoxcecmso, mo
0ast 206020 € > 0 u 0as xamcdotd mouxu 2° € X cywecmeyem yeaas Pynxyus
F(2), 0as xomopo® {z € C", F(2) =0} D X, F(20) #0 u

In|F(2)] < C(2°%¢€,2') (1 + |2a|*)ns (2, |2a] + 2¢), (2)

20e ny mo xce camoe, wmo v eviwe (cm. (1)), a C(2°%,¢€,2') pynxyus, nesasucsuas
om zp,.

CHauaJjla A0Ka)KeM JBe JIeMMBI.
Jdemma 1. Ecau f(z) yeaas dynxyus 6 C", ny — dedunuposannas e (1)

Pynxyus, cuumanuas nyaetd f, mo das awbozo € > 0 cywecmeyem cybzapmonu-
yecxads no zn, Pynxyus v, maxas wmo:

a) v(z) —In|f(z)| nenpepeiena no z, u pasnomepno no 2’ ozpanuvena cHu3y
cybzapmonuvecxod pynxyuetd a(z,), xomopes paena —00 MOABKO HE MHONCECTREE
X' npu anbom duxcuposannom z', m. e. v(z',2,) > a(z,), V2 € C* 71,

6) Cywecmsyem xoncmanma C(g), nesasucqwas om 2z’ u z,, max ¥mo
W2, 2m) < C(E)]zalny (2, l2] + ). (3)

I NpOCTOTHI 3alUCH BCIOAY B JAajbHeieM 6yaeM CUATATb, 4YTO N = 2
u 6yaem paboraTh B npocrpancTse C? Toyek Buaa (z,w), z€ C, w € C.

Moxaszameavcmeo. Ilycts € > 0 npousBoabHo. [locTpoum ¢pyHKUMIO
1 ¢
ulzw) == [uzw+0p(2) &, (4)
C¢
rae p(z) € C§P(R). DTo monokMTeIbHAS, C KOMITAKTHBIM HOCHUTeJeM suppp C

1
{lz] < 1} dynkumsa, ana koropoit [ p(z)dz =1 n p(¢) = p([¢]), ¢ € C. Tlo Te-
0

opeMe 06 MHTErpUpoBaHUU CyOrapMoOHMYECKMX PYHKIMIA u.(z,w) Gyner cy6-
IapMOHMYECKO# OTHOCUTEJIbHO W, a BBUAY JaJIbHEHUIEr0o U3JIOKEHUA TNpeJic-
TaBUM €€ B Apyroi Buia. 3adpUKCUpPyeM z MPOU3BOJLHBIM o6pa3oM M NycTh
6(w) = u,(w) = u(z,w). Torma

wew)=5 [ [ owrop(S) aa=3 [o(3) @ [ Gow+od

0 |¢|=t 0 I¢|=t
1
= 27r/p(m)§ma(w,e:c) dz,
0
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rae Ms(w, €x) ecTb cpeaHee 3HaUeHME GYHKUMM & 1O KPYTy C LEHTPOM B W M
paauycom €x. BBuAy cBoiicTB QyHKumMM p m cybrapmonnuHoct# §(w), mouy-
yaeM

u(e, w) ~ u.(z,w) = 2#/[6(1») — Ms(w,ex)} p(z) dz < 0.

Teneps noTpebyem, yTobbl UCKOMaA GYHKUUA v MMeJia BUA
v(z, w) = u(z, w) — v (z,w) + ¥(z, w),

rae HeusBecTHada GyHkuMa y(z,w) cy6brapMOHMYHA MO W M Takas, UYTO cama
v(z,w) Toxke cybrapMoHmuHa no w. Jlaa 8TOro AOCTATOYHO YTOBLI

D%y s 0%ue
owdw ~ Owow

[ToaToMy nanbiie 6ynemM UCKaThb ¢ B BUAE
7(z,w) = x(z,|w]?), (5)

rae x(z,t) ecTh BhINykias, Bo3pacTawwan no t Gynkima. Or aToro yciaosus
cleayeT, 4To

?y 62X|w|2 ax ? O%ue
dwdw  Ot? o = 6w6 D’
M JUIA HaC TOTAa AOCTATOYHO YTOGHI

dx
py —=(z,1)

0%u,
2 dwdw

Nonb3ysacs popmyaamu (1) u (3), ouennBaeMm npasyio cTopoHy (6) Tak:

Ou, 1 0%u ¢
dwdw ~ €2 6wau‘;(z’"’+<)” (Z) &

(6)

t=|w|?

C
1 %u
< 3 max|p(u)l / acoc H 94
iK1 wl+e
27

= —K-—-—n;(z lw| + €) = C(e)ny(z, |w| +€),

rae K u C(¢) cyTh noJioxuTeNbHBIE KOHCTAHTHI, HE3aBUCALIME OT z M w. Beuay
(5) moctaTouHo YTOGLI X yNOBJIETBOPAJIA yCJIOBUIO

g—f(z,t) = C(e)ny(z, Vit +e),

OTKYda Mnony4daemM

t Vi
x(z,t) = /C(e)n,(z,ﬁ-i-e)ds::C(e)/mnj(z,z+€)dz

0

< C(C)tnf(z) '\/t-"!' el
135



WIIH
X(z, [wl?) < C(e)wl*ny (2, [w| +¢),
u ansa y(z,w) noyiydaem HepaBeHCTBO
v(z,w) £ C(e)|wlny(z, lw| +¢),

KOTOpPOMY OyzeT YyAOBJIETBOPATH TakKe U GYHKIMA v. DTUM NIPOBEPEHO YCJlo-
Bue 6) JeMMbI. Y CIOBUE &) CIEAYET U3 HENPEPBIBROCTU GYHKUMI ¥, M ¥ 110 w
Y U3 CBOMCTB MHOUMyMa Cyb6rapMoHUYeCKUX GYyHKUMA.

[TocTpoenue uckoMoii byukuuu F(2) ocHOBaAHO M Ha ciedyIOUlell JIeMMbl,
HOKa3aTeNlbCTBO KOTOPOM UCNONb3YeT B CYLIECTBEHHOM pe3ynbTarThl XepMaH-
aepa [2] o cymecTBoBaHMyM pemenns J-npobiemMbl ¢ oueHKamu (cM. Takxke [1]).

Jemma 2. I[Tycms p(z,w) seagemcd cybzapmonuvecxold no w € C' Pynx-
yueil @ C" u npu guxcupoeannom z € C"~' mouxa wy = wo(z) maxosa, wmo
cyweemayem r > 0, dag xomopo2o

sup / e~ ?EW) dy = M < +o0. (7)

z2eC*?
|w=wo|<r

Tozda cywecmeyem gynxyus F(z,w) co ceoticmeamu:

1) F(z,w) zoaomopgnua no w ecwody npu awvbom guxcuposannom

z € Cn_l;
2) F(z,wo) # 0 das xamxcdozo fuxcuposannozo z € C*~';
3) sup [ |F(z,w)|?e*C®)(1+ |w|?)~? dw < +o0; (8)
z C,

4) F(z,w) zoaromopfna no z 6 C"~! npu awbom Puxcuposanmon
weCl.

Jloxazameascmao. Bysem cuMTaTh, YTO MOCJE TOrO KaK 3apUKCUPOBAJIH Z,
TOUka Wo = wo(z) mepeuia B HOMb., DTO HUCKOJIBKO HE YMEHBIUUT OBIIHOCTD
II0Ka3aTeNhCTBA.

B miockocTty z = const pacCMOTPUM MHOX€CTBa

() = {5 w), lwl<r}, Q) ={(zw), we C').
[Moctpoum dyukumu hi(z,w), ha(z, w) co cBoiticTBaMu:
1) hi(z,w) ronomopdusr no w B Q;(z);
2) hi(2,0) #0;
3) sup [ |hil2e=2(1 + |w|?)~*+3dw = N < +oo;
2 0,

4) hi(z,w) npu mo6oM GUKCMPOBAHHOM W r'0JIOMOPQHBI MO 2;

5) ha(z,w) = hip(|w|’) —wu(z, w), ¥ € Co(R), ¥(t) =0, |t|>r, ¥(t) =1,
lt] < r/2, a u(z,w) onpenenena u3 yciaosuis 1)-4).
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Taxue GyHKUMM CylIECTBYIOT (HAPUMED, MOXKEM MO JIOKUTh hy(z,w) = a,
rae a # 0 koHcTaHTa). DTO TpeGoBaHMe obecneunBaeT Cpa3y BHINOJHEHME yC-
noBuii 2) u 4) ana hy(z, w). OueBuano raxxe, yro hy ronoMopdua Bciony no
w U yuntbiBan (7), uMeeM

/ lh1%e=% (1 + |w|?)73*3 dw = |al? / e ¥dw < M < +4oo.
jw|<r lw|<r
Ilna Toro, utobbl hy(z, w) BeIMONHANA ycaoBuik 1)—4), Heobxo Mo o 106-

paTh GyHkuMIO u(z,w) TakK, 4TO
Fwha(z, w) =0,

5wu(z,w) = hy(z, w)z/)'(lwlz) duw = az,/)'(lwlz) dw.
O6o3nauum mociieHee BhlpaXkeHue depe3 afz,w), oHO Asaserca mudpdepen-

umaibHoit dgopmoit Tuna (0, 1) mo w. OueBuano ans Hee dy,a = 0 M oHa
YAOBJIETBOPSAET OIIEHKE

llell = / la|?e™% dw < |a|®C / e ¥dw < M < 400,
Cv lw‘Sr

rae yusmy, yro ¥ € CA(R), ee HocuTenb conepUTCA B Kpyre paaMdyca r U B
OKPECTHOCTH HyJis BbInoJiHeHo (7). TeM caMbIM Mbl HAXOAMMCH B YCJIOBUAX Te-
opembl Xepmataepa (cm. (2], Teopema 4.4.2). 3nauur, cymecTByeT GQyHKIUA
u € L?(Cy,loc) Takas, uro

[ fee 1+ 1wl dw < ol (9
Cu

Toraa oynkuma ha(z,w) 6yaer rosomopoHa no w, a B cuie (9), npumenss
IU151 OLIEHKU HepaBeHCTBo [‘ennepa, mns Hee moayyaem

/ |ha)2e™%(1 + ]11)]2)'3 dw < M + 2\/1\71 / l;'—l + %Hal] < 40
Cw

¢ KOHCTaHTOM M, He3aBUCALLEH OT W M z.

Kpowme Toro, B B

0:hy(z,w) = 0,u(z, w)

u Tak kak o(z,w) # 0 npunamnexxmur kaaccy L%(C,,¢), To ypaBHeHMe
d,u(z,w) = 0 Toxe umeet peuenne u hy(z,w) 6ymer rojomopdua u no z. Mul
Bo3bMeM F(z,w) = hy(z,w), uro u 6yner uckoMoit pyHKUMel B Cuiie TeOpeMbl
laprorca (cm. [4]). Jlemma noka3aHa.

Jloxazameascmeo meopemst. Ilycts € > 0 npoussonbho, mycts 20 = (27, ...,
z0) € X. 3adukcupyem 2’ = 2'® = const. Torza, o nemMme 1, cymectByeT cy6-
rapMoHUYEcKas 1o 2z, GyHKuUA v co cBoiictBamu a) u 6). Ilpumenum semmy
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2 k ¢oyukumm @(z',2,), paBHoit v(z). Ilna Hee BbimoxnHeHo (7), 3HAUUT InA
F(z) 6yner srmonneno (8), a ¢pyuxkmma F(z)/f(z), xoTopad, BooGuie ropop4,
MepomopdHa 1o z,, Gymer uenoi (uMmeer ycrpaHumbie ocobennoctm). OHa
10 CBOEM BbIGOpe He TOXKAECTBEHHO PaBHA HYJIO, a NIPA UHTEPUPOBAHUU TIO
z, COXpaHAeT aHAaJUTUYHOCTb. CBOMCTBO (2) MOXHO NPOBEPUTHL NMPH MOMOLIM
CTaHAAPTHOM oueHkm |F| yepe3s ee cpenHee 3HaueHUe IO WAPY ¢ PAAUYCOM T.
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A CONSTRAINT BASED SYSTEM
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*

STOYAN MIHOV

This paper is concerned with the lexical knowledge retrieval system created at the Linguistic
Modelling Laboratory. The main goal of the system is to provide a powerful and comfortable
interface for lexical knowledge retrieval from large morphological dictionary. To achieve this a
constraint based approach is applied that leads to a very effective algorithm. The algorithm for
query building, which is also used for retrieving of general grammatical knowledge, is presented
in details. In our opinion this method is very suitable for knowledge retrieval in domains with

complex and irregular classifications.

Keywords: lexical knowledge retrieval, morphological dictionary, query building
1991/95 Math. Subject Classification: 68T50

1. INTRODUCTION

Recently, many systems containing large amount of lexical knowledge have
been built. They make use of different approaches for processing and knowledge
representation. Detailed study of the problem is presented in [4] and [1].

The Linguistic Modelling Laboratory is working on a Large Morphological Dic-
tionary that will cover most of the wordforms in modern Bulgarian (see [3]). Now
the system contains grammatical information for more than 500 000 wordforms and
is systematically upgraded. The gramrmatical information is structured in Features
Structures (refer to [5] for a good introduction). It is known that Feature Structures
(FSs) are de facto standard for representing linguistic information. That is because

* Lecture presented at the Fourth Logical Biennial, Gjuletchitza, September 12-14, 1996.
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they allow comfortable description of knowledge with complex classifications and
many irregularities.

The program which interfaces the lexical knowledge in our system is called
kernel program. We can think the knowledge as a set containing all 500 000 feature
structures corresponding to the information of wordforms. The kernel input is a
Feature Structure — the query constraint that should be satisfied. The output
contains all Feature Structures included in our knowledge base, unifiable with the
input. See Fig. 1 for some examples of the kernel functioning. It is clear that it is
very inefficient to keep all 500 000 FSs in the memory and to check every one for the
query constraint satisfaction. The kernel program uses a synthesizing algorithm.
The grammatical information of the output Feature Structures is built by the uni-
fication of certain basic constraints. Each basic constraint is a Feature Structure
which corresponds to a feature-value pair of the grammatical information. In Fig.
2 there are some examples of Feature Structures' which present basic constraints
corresponding to feature-values.

This paper revcals in details our approach for query building. It is shown
how general grammatical knowledge is retrieved by our procedure. In Section 2
we describe the problem for query building. Then in Section 3 the algorithm is
presented and explained. In Section 4 some details about the implementation are
described. Some comments on the possibilities for generalization are given in the

conclusion.

2. PROBLEM DESCRIPTION

The main goal of the system is to provide an appropriate way for knowledge
retrieval. There are very different necessities concerning system interaction. For
example, in syntactic analysing systems the grammar information should be ex-
tracted after the input of wordform, as it is shown in the first example in Fig. 1.
In Natural Language Generation the system should find the wordform by process-
ing input of a stem and some grammatical information. The professional linguist
should be able to extract all wordforms (or stems, endings...) which satisfy a cer-
tain constraint. On the one hand, there should be no limitations on the contents
of a query constraint. But, on the other hand, many of the queries are inconsistent
with the grammatical knowledge. For example, there are no items in the knowledge
base, which satisfy the following FS:

lexeme info [gradability gradable]

grammeme info {tense imperfect]

That is because only adjectives and adverbs are gradable and they do not allow a
tense characterization. It is meaningless to process a query which we can a priori

! For a clearer presentation, in the example we are noting the unbound anonymous variables
explicitly with ‘..
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Input FS (Query) Output FSs
[wordform ‘BOEHHA’] [ wordform ‘BOEHHA’ |
stem ‘BOEHER’
lexeme info part of speech  adjective ]
|gradability ungradable
[degree positive
) gender feminine
grammeme info .
number singular
| definiteness indefinite
ending ‘A’
from ‘E’
alternation < to ¢ >
pos 2
stem ‘CTABA’ [ wordform ‘CTABA’ | f'wordform ‘CTABAT’
. [tense present] stem ‘CTABA’ stem ‘CTABA’
grammeme info
person 3

lexeme info

grammeme info

-

"tense
person 3
number

part. of speech verb]

present

singular

lexeme info

grammeme info

part of speech verb]

[tense present
person 3
number plural

Fig. 1. Examples of the kernel functioning




Feature-value Corresponding basic constraint
part of speech — noun wordform - ]

stem -

ending -
-part of speech noun )
noun type -
animateness =
humanness -

lexeme info gender -
verb type not defined
gradable not defined
transitivity not defined
numeral type not defined
‘mumber i
definiteness _
article form _

grammeme info |tense not defined
person not defined
case not defined

non-finite form — participle [wordform " E

stem -

ending =
[part of speech verb i
verb type -
noun type not defined

lexeme info gradable not defined
transitivity not defined
numeral type not defined
finiteness non-finite |
non-finite form participle
number -

grammeme info |[tense =
definiteness not defined
case not defined
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consider as inconsistent. That is why we have to implement a more sofisticated
query building algorithm.

We think that the best way is to build the query incrementally. That means
that the user should be able to specify the query step by step, selecting a feature-
value pair. The purpose is to receive information which feature-value pairs are
acceptable (do not lead to an inconsistent query) after each step. If we switch those
feature-values as unacceptable, the user would not be able to build an inconsistent
query. Moreover, the user will receive general grammatical information about the
consistency of some constraint combinations.

Another advantage of the system would be if the algorithm automatically se-
lects some feature-value pairs which are derivable from the existing query spec-
ification. For example, if the user selects ‘part of speech — verb’ and ‘gender -
masculine’, then the ‘finiteness’ has to be ‘non-finite’.

To achieve the above mentioned requirements for the query building procedure,
a deduction procedure has to be implemented. This procedure should check on each
step the consistence of every feature-value pair with the query and should select
the feature-values which are deducible from the specification of the query.

3. THE QUERY BUILDING ALGORITHM

The simplest way to fulfil the above algorithm specification is to generate a list
of all possible combinations of feature-values. Unfortunately, there are thousands
of possible combinations of grammatical feature-values in the system. That is why
an algorithm based on this information would be very inefficient. Our algorithm is
based on the basic constraints corresponding to feature-values which are only about
150 in the system. Those constraints are already defined in the system, because
the kernel program is producing the result via their unification.

The FSs used in our application are of the classic type. That means that
they are not sorted and we do not allow negation and disjunction inside the FSs.
The generalization of the algorithm in order to use disjunctive FSs is not a serious
problem, but if we want to use negation inside the FSs, the algorithm should be
generally revised. Using negation, we loose the nice classic semantic about FS’s
— the interpretation that a F'S represents partial knowledge. For a comprehensive
study of FS semantics see [2].

Some notion preliminaries: when we write a feature-value pair, in fact we mean
a pair of feature path and value, where the feature path is a list of features. In
our application we are interested only in features carrying grammatical information
(other features like ‘stem’, ‘wordform’, etc. could not be classificated). That is why
we note only the last feature in the path and the value and call this a feature-value
pair. In the application there are about 60 features (feature paths) carrying gram-
matical information. All feature-value pairs are about 150. This is a rather small
number, hence the algorithm based on this information will be comparable effec-
tive. Bellow we present our algorithm which satisfies all requirements mentioned
above.
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Algorithm 1. The Query Building Algorithm.

Step 1. Set the initial query FS to the empty FS.
Set all Feature-value pairs to ‘acceptable’.
Step 2. Wait the user to select a (‘acceptable’) feature-value pair.
Step 3. Unify the query FS with the basic constraint corresponding to
the selected feature-value pair and mark it as ‘sellected’.
Step 4. For every ‘acceptable’ basic constraint
check the unifiability with the query
if the basic constraint does not satisfy the query,
then set it to ‘unacceptable’.
Step 5. For every feature check
if exactly one value for this feature is acceptable, then
select this feature-value and go to Step 3.
Step 6. If there are no more acceptable pairs or the user has finished,
then go to Step 7, else go to Step 2.
Step 7. Call the kernel program with the query as input.

This algorithm is almost self-explaining. In Step 1 the initialization is made.
Step 2 and Step 3 build the query by unification of the basic constraint correspond-
ing to the selected feature-value pair. Step 4 checks all other basic constraints for
consistence with the query and switches all feature-values which are inconsistent
with the query to an ‘unacceptable’ state. Step 5 is responsible for the automatic
deduction of feature-values. Step 6 and Step 7 close the loop and invoke the kernel
program respectively. We omit a detailed proof about the correctness of this algo-
rithm, which in our point of view, is rather obvious. Maybe the only non trivial
problem is the termination. The next lemma is concerned about that.

Lemma 1. Algorithm 1 is always terminating.

Proof. The two loops are always passing through Step 3, where a feature-value
pair is set to ‘selected’. There are only a finite number of pairs. Hence, after a finite
number of iterations there will be no more ‘acceptable’ pairs, which guarantees the
termination of the algorithm.

It has to be noted also that in the Algorithm is essentially used the ‘Closed
World Assumption’. In Step 5 we assume that there are no other values possible
for the feature. In our application, where the general grammatical knowledge is
fixed, this assumption is generally true. In fact, exactly this step is responsible for
the automatic feature-value selection, when the value of a feature can be deduced
from the information already specified by the query. Without the ‘Closed World
Assumption’ we could not deduce anything new in our system.

4. IMPLEMENTATION

We have created a prototype version in Sicstus Prolog with Tcl/Tk on Windows
environment, which is able to extract about 20 FS per second. The system is

146



supplied with a very friendly user interface. The query is created using the Windows
Graphical User Interface. By clicking on a feature in the list box, another list box
is displayed, where the acceptable values for this feature are listed. By selecting a
value, the unification with the corresponding constraint is invoked. If some feature
or value is disabled, then the corresponding entry in the list box will be switched
‘gray’ (unacceptable). There are several options for the output format. The user
can choose between the output of the whole FSs or only the values of some features
(e.g. wordform, stem, etc.).

A more faster version will be created using C/C++ language soon. This im-
plementation will provide a retrieval speed of about 200 FS per second. There
will be no other differences between the C/C++ and the Prolog version. We hope
that this system will be widely used for Bulgarian language education and research
purposes.

Also, there is a World Wide Web version planned. The idea is to specify the
query using the form options in HTML. Then the query will be passed to the
knowledge retrieval system using a CGl-script. In this way the resources will be
accessible through INTERNET.

5. CONCLUSION

The most interesting part of the algorithm, in our opinion, is the untraditional
deduction procedure. It is clear that the application is very simple. That is why
in fact the loop Step 3 — Step 5 will not make new changes to the acceptability
of feature-value pairs. We think that this deduction procedure could be classified
as a new approach to certain problems. It leads to a very elegant and effective
algorithm for deduction in domains with complex classifications. In current version
only classic feature structure interpretation and unification in empty theory are
applied. At the moment we are working on the generalization of this approach to
allow more powerful constraint based technics.
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without which this work could not exist.
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A MOTION OF A FAST SPINNING RIGID BODY
ABOUT A FIXED POINT IN A SINGULAR CASE

ABDEL ISMAIL

In this paper the problem of motion of a rigid body about a fixed point under the
action of a Newtonian force field is studied for a singular value of the natural frequency
(w = 1/3). This singularity deals with different bodies being classified according to the
moments of inertia. Using Poincaré's small parameter method, the periodic solutions —
with non-zero basic amplitudes — of the quasi-linear autonomous system are obtained
in the form of power series expansions, up to the third approximation, containing
assumed small parameter. Also, the quasi-linear autonomous system is integrated
numerically using any of the numerical integration methods, such as the fourth order
Runge - Kutta method. At the end, a comparison between the analytical and the
numerical solutions is given aiming to get a small deviation between them.

Keywords: rigid body motion, small parameter method, periodic solutions
1991/95 Math. Subject Classification: 70E05

1. INTRODUCTION

In [1] the motion of a fast spinning rigid body about a fixed point in a cen-
tral Newtonian force field is considered. The nonlinear differential equations of
motion have been reduced to a quasi-linear autonomous system having one first
integral. In the case of the rational value of the natural frequency w (except
w=1/2, 1, 2, 1/3, 3) the periodic solutions of the initial system are obtained.
Here, the analytical and the numerical solutions for the case when w = 1/3 are
constructed. Let us consider a rigid body of mass (M) with one fixed point (O),
whose ellipsoid of inertia is arbitrary, and acted upon by a central Newtonian force
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field arising from attracting centre being located on a vertical downwards axis (Z2)
passing through the fixed point. Let us assume (OXYZ) to be the fixed frame in
space and (Ozyz) to be the moving frame (fixed of the body). It is taken into
consideration that the principal axis (2) of the ellipsoid of inertia makes an angle
0, # mm/2 (m = 0,1,2,...) with Z-axis and that the body spins about z-axis
with a high angular velocity r,. Without a loss of generality we select the positive
branches of the z-axis and of the z-axis do not make an obtuse angle with the
direction of the Z-axis. According to the restriction on 6, and the selection of the
co-ordinate system one gets

% >0, 0<v)<1,

the limiting case v/ ~ 0 has been studied in [2]. The following system of equations
of motion and its first integral can be deduced:

1

52'}' §p2=ﬂ2F(p2,}')2,‘)'2,‘);2,/J,), 72+72 =#2¢(P2,I.72,72,');2,I1), (1)

Y02 o 1 = y2 4+ 42 4 2u(vpaya + vapava + s21) + 1P [szf’% — 292(e247 12

—1. 1. 14— 1
AT Basar + ghasu — 05T ATY) 4+ v7p 4 o+ 2(sm - gou )| +4°(-), (2)

where

F = Fo+4upFz+---, ® =0+ pubs+ -,

F, = fa- gvemz, Py =¢2+ gv(e + e172);
F3 = fs—ei¢2— gVel(e + e172), Pz =¢3—-vfo+ §V261P2,
fo = A lzlsy - épzsu + C1AT 'pap3 — yoa™ ' p272

+ai,paya — 24a” ' p2 — Yo AT (AL + a7 V) 12p2
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¢2 = —7v2511 + (14 By)p2sar — (1 = C1) A7 'papaya + €72 = yh1272
—z5b™ ys + 2Lb™ — AT yaph + K(C173 — Bi)re,
fa = CiA7'paleps + erv2p2 — 2p2(vha™" — eage)] — %(6811 + e172511 + 2p2s12)

'~ e292)] — vha~ [Ya(e + e172) + vapapo)
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1 ;
+2A1p2521 + [ = — A1) 72522 + Ar(e + e172)(1 — 13)|,
9
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¢t = M—C‘?{, p= - r:"’,, 2o =102, Yo=4y,, 2,=1L2),

2 = 224y 22 A1 B, =—%, e=9z,Ab7!, v= §(1+Bl),
By = g[k(Al - é) + 20 (Ab~1 = a7, ex =6y +a'z, — kA,

v, = v-A7l, k= Nv"/c?, N = 3g/R, g = AR (7)

here X is the constant of gravity of the attracting centre, R is the distance from
the fixed point to such centre, (p,, ¢, 7o) and (7., 7,, 7, ) are the initial values of
projections of the angular veloc1ty vector (p, ¢, r) of the body on the principal axes
of inertia and the direction cosines (v, %', ") of Z-axis, respectively, A, B and C
are the principal moments of inertia and z,, y, and 2, are the co-ordinates of the
centre of mass in the moving co-ordinate system.

2. PROPOSED METHOD

In this section Poincaré’s small parameter method is applied to investigate the
non-zero basic amplitude periodic solutions of system (1). The generating system

(r=0)of (1)is

1 .
i +gre =0 2O+ =0, (8)
which admits periodic solutions in the forms
1
( ) = = M, cos§T+M2sm;T 7.5,0) = MszcosT (9)

with period T, = 67, and M;, M3 and M3 are constants which have to be deter-
mined. Since the system (1) is autonomous, the condition

12(0,p) =0 (10)
does not restrict the generality of the required solutions [3].

Applying Poincaré’s method, the periodic solutions for system (1) are consid-
ered in the forms [4]

- 1 - 1 0
pa(T,p) = Mycosot+ Mysin o7+ pu*Gi(r),
g 3 k=2
72(T)ﬂ) - M3COST+Z[1ka(T) (11)
k=2

with period T' = 67 + a(u) and initial conditions

~ ) 1~ ~ :
PZ(OaN) - Ml: pZ(O:#) = §M2y 72(0)#) == M3; 72(0)l“) — 0) (12)
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where a(u) = 0 at £ = 0 and “~” denotes the result of substitution
M;—’M;zM,'+ﬁ,' (i=1,2,3), (13)

1 . . .
here 5, gﬂg and 3 denote the deviations of the initial values of ps, po and 7, of

system (1) from their initial values of the generating system (8), these deviations
are functions of y and equal zero when g = 0. Let us define the functions Gi(r)
and Hy(7) by the operator [5]

Ju 3u 1 0%u U=Gy He }
_ 8 ) . (14
U U+6Mlﬁ1 6M2ﬂ ﬂ3+26M2,81 { Uzgk,hk ( )
The functions gi(7) and hk(‘r) take the forms
h 1
ge(t) = B/Féo)(tl)sin g(r—tl)dtl,
he(t) = /ng)(tl)sin(‘r —t1)dty, k=23. (15)
0
The solutions (9) are written as follows:
( ) = Ecos (%r - e) , 7g0) = MszcosT, (16)

where E = /M2 + M2, M, = Ecos¢ and M, = Esine.

Substituting (16) into (6), one obtains

9 = s (W0, 57,980,47), ii=12 (17)

Making use of (16), (17) and (3), the functions F,So) and @io) are obtained, then

using (15), one gets gx (67), hx(67), g (67) and hi(67). Substituting the initial con-
ditions (12) into the integral (2), evaluated at 7 = 0, the quantity M3 is determined
as follows:

= (Y)Y (1 =42 — pa My —9p*v3 M} [2M3 - 31y, vaMa [a Ay M +- - -, (18)

where v, = 96/(9 — 8b) and 0 < b < 1 or b > 9/8. The independent conditions (6]
for periodicity of the solutions pa(7, 1), p2(7, ), 72(7, 1) and J2(7, i) are reduced
to the forms

(Lo = 58 ) ity = —utty{(Eas = g ar) = ¥ [2Las
+%N33A713‘1(A7If - 31\?3)] } +on,

(b= )i = i (1~ ) + Bt -
_%N33M1( P 3M)M |} 4 (19)
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a(u) = p Mz [Ho(67) + pHs(6m) + - -], (20)

where

. -2

L= gNn = ay(M} + M3) = [ag + kas(2Mafs + B2)),
s 1= -

L3 — §N31 = asMMj,

o = (a—1)(a+b-2)/2b,
@ = #(ab)~[3(a+b)~ 2A2ab+ 1)+ k(1 - (a+b)+ 3oM],

az = %b, a4 = %[200 b gb—l o alc(b - 1)(320 e 41)]
o = -%Msng-l(b— 1)=(86 - 9)" (b - §)(b- %) (s- g)
—%k!%(b — 1)(8b = 9)7*{(2b - 3)[(0 - 48) + (85 — 15)(86 — 9)"]
+%(4b — 3)(4b— 5)(9 - Te)(b — 1)~ (86— 9)"'},
Nas = 4l{%A;‘[u(A;l % OO+ wiall = Cy)] = -g-u(%bAi'z ~a)
-1+ Bl)(ua + %bAl_lllg) } (21)

Equating to zero the terms of zero power of u for equations (19), one gets two equa-
tions for determining M; and M2 Solving the resulting equations, when M; M, = 0,
we obtain

(l) Ml = M2=0,

(i) Mi = 0,  My=#,/-2,
a
(i) My = % %’f My =0. (22)

If MyM; # 0, subtracting from the first equation of (19), multiplied by M;, the
second equation, multiplied by Ma, and dividing by u, we get a new form for the
periodicity conditions

" 1 -~
M2 - M3 +ul1=0,  In-sNu+ul-)=0. (23)
The equations of the basic amplitudes of (23) are
3MZ - M2 =0, ay(ME+ M?) —ay =0, (24)

the following solutions for M; and M, are obtained:

_ 1 as
My =25/, Mz—:l:———-‘/al (25)
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where M; and M, are real under the condition
a; > 0; (26)

this condition can be satisfied by choice of M3, while a; > 0 is satisfied at all, since
the initial fast spin r, is assumed to be given about the major or the minor axis of
the ellipsoid of inertia (a > 1, 5> 1 or a < 1, b < 1). For this case 8, and 3, are
assumed in the forms

3 3

B = pte + 0, Bo =y prmi + O(4Y). (27)

k=1 k=1

Considering (27), (23) and the substitution (13), one gets

¢, = -—aazkM;/4a,, my = 34, M, /M-,
& = %M{‘ (=468 + kaza7 ' (a® M} — IM3v3)]
T %M;1(6M1e2+3ef-m¥),

—ay 'azk(aMsly + IMavimy + 3M2y:,V2a‘1A1")] \
9 -
mg = M2_1 [aai’laaMlk(afl + §U22M22M3_1) - a, lCl:;k,((llzjwa <+ 9V22m1 M2
+3y:,u2M2a‘1Al’l) —-—mpmqg — 3122 - M1£3]. (28)

The equations (14) and (15) give the functions G¢(7) and Hi(7), then the periodic
solutions (11) are obtained up to the third approximation of u. Making use of (4)
and (5), we get the required periodic solutions as follows:

1 1
p = ¢ 7,’,’{M1cos%1'+Mgsin%r+u(e+£1cos§1'+m1sm§‘r+e1M3cosr

7 . .
i ;(X“ cos %‘r + X}, sin %1‘)

7 ; .
+p3 [;(Yu coS %r + Yl'j sin %‘r) + Yo cos3‘r} + - -}, &t £ 6,

1 :
g = c\/’y;’{%A;l (Ml sin %T — M3 cos 51’) + pA7? [yﬁ,a'1 +eaMzsinT
7 : .
1 .3
—% (81 sin %r 4+ m; cos 51’)] =+ ”2 E (Xg,- cos %1’ + X3; sin §T)
- i=0
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7 : .
3 [Z (ng cos %r+ Yy; sin %T) + Y4 sin 31'] + . -}, i # 6,

=
Il

ro{ Ez 2[23:()(3, oS 'T+X3,sm3r)+X36 cos?r]
i=0

™

1l
=}

3 [ (Y;;j cos

J

%’r+ Y;,'J- sin%r) + Y36 cos21'] +-o-}, t£1,

Yy = 7;'{M3cosr+pa[(M1cos%r-f—Mgsin%r)~M1cosr]

- 6 : :

+#2 .izzg (X4,- cos %r + Xj; sin %r) + X49 cOS 31'1
< j j

48 (Y,,,- cos -?;r + Y‘,’j sin §T) + Y/, sin 37] B 2 .}, i# 2,4,
.j:O

1 1 1 :
¥ = 7:,’{—M38inT+p[—§u2(M1 sin §T—M2cos§r)+aM1 smr]

“r 4 X¢; sin %r) + X3gsin 31']

(Xs.- cos 3

)

-,
- IIMm
o

+ [JX(:)(Y;,J cos 31' + Yg; sin ‘;T) + Yeo sm31'] .}, it # 2,4,

7' = 73’{1+#M3 [GCOS€+ (bA' )(cosccosgr—sinesin—g-r)

_l(lefl + a) (cosecos 37’ + sinesin ET)]

2\3 3 3
4
[Z (XS; CcOS -T + XG! sin ;T) —+ XGS cOS 27-]
i=0
+p3[i(Ystos%T+Yéjsin%7)]+...}’ i#l, ]#9’ (29)
j=0

the correction of the period a(u) becomes

a(p) = %ﬁ{ @MZ zg)-4M2.M%b 1_w+a&}

8
~9-a€1 + k(MgCl - Bl) - <0M1£1 + §bA;2M2m1)

1 .
—(lel + mle) [-gAfz(l - b) + aBl] - 22:,b~1 -+ -gael

+2M3z, +
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2
—2aMe + §M2yf,(u2 +ba" AT?) + aMy M3[e (1 + By) — 22671
-—20M1M3(61 + Z:, -+ ak — k’) -+ akM1M3[aA1(l + Bl) s 231 - 2C1]

1
—kB, + —AﬁMa—l(Ml2 - 3M22) [aAl—l(Al—l 40l )i~ 8“('1'("41_2 _ a)
36 9
+A1—1V2(1—Cl)—(l-I-Bl)(gaz-}-bAi'luz)]} + .- (30)

where the constants X’s, X”’s, Y’s and Y’’s are determined in terms of the rigid
body motion parameters and are written in about twenty pages. The symbol (- )
means terms of order higher than O(u3).

3. GEOMETRIC INTERPRETATION OF MOTION

In this section the motion of the rigid body is investigated by introducing
Euler’s angles @, ¥ and ¢, which can be determined through the obtained periodic
solutions. Since the initial system is autonomous, then the periodic solutions still
remain such if () is replaced by (¢t +1,), where (%,) is an arbitrary interval of time.
Euler’s angles, in terms of time (), take the forms [7]

py+qv

0:cos"l-y", 1&: = qﬁ:r-—zﬁcosﬂ,
bo=tan 2 iz (31)
o

Assuming the initial instant of time corresponds to the instant t = {,, substituting
the solutions (29) into the equations (31), one gets

bo ‘g+roto+---, 0, = tan~! M3,

0 = 0,—pE[0(t+1o) — 0:1(t,)] — n? cot 8,[02(t + t,) — 62(t,))
—pa[ga(t + to) - 93(‘0)] + - )

1
Y = 1/)o+Mg£C'lr;1cosec0.,(§el+vocot200)t

1
+§,urocosec Oo(U1(t +to) — ¥1(to)]
4121, cot Oycosec 260, [Ya(t + o) — Ya(to)] + - -,
¢ = ¢+ {ro - %elMgIC'lrgl(cotﬁo + aEr; ccos ey/cosb,)

%Mng"lr;"EZXgo cos B, — v \/cosb,[r, + ackE cosetan b,/ cosd,

1
+MglC r;1 Xg, cos 0,) — %EMgZC‘l\/cos 6, [-12— (gbAl'l — a)(X5,2 COS €

+

+X7y8ine) — (le-bA,-1 + a) (X 74 cos € — X748in f)] }t
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+%/‘\/ c0s 0 (@1(2 + to) — d1(to)] + 1?[B2(t + to) — Ga(to)] + - -, (32)

where 11 5 5
6,(t) = acose+ 3 (gbAl_l — a) (cose cos -jrot — sin€sin §rot)
1 4 .. 4
) (36A1 -+ a) (cosccos grot + sin € sin §rot),
4
Bo(t) = Z(Xs. cos -3—rot + X¢; sin 31'0 ) + Xegcos2rot, 1# 1,
1—0 t 1
0s(t) = Z(Ysi cos §rot + Yg; sin -3-rot), 1 #£9,
i=0
- i i
_ _ i ) :
i(t) = ;(X—z, cos 31'0! + X7; sin 3rot), 3,
- i i
Po(t) = Z(Y'" cos grot + Yy, sin grot), 1 #5,7,
1=2
= i i
#(t) = ;(Xs,- cos grot + X§; sin grot), i3,
2 i i
da(t) = Z(Yg,‘ oS -3-1'01 + Ysli sin grot), $1£35,7,
1=2
Wy = .. 1[et.an29 - —l-u (ME+ M2)
] = 2 o 6 2 1 2
1
+-E(a + b)(M; cos € + M3 sin c)],
vy = MglC'r;%v,cosec b, cot?d,, (33)

the constants Y’s, Y'’s, X’s and X'’s are determined in terms of the motion pa-
rameters and are written in about three pages. The formula (32) shows that the
expressions of Eulerian angles depend on four arbitrary constants 6,, ¥,, ¢, and
ro (sufficiently large).

4. ANALYTICAL AND NUMERICAL SOLUTIONS

This section i1s devoted to ascertain the accuracy of the obtained analytical
solutions of the previous sections. That is the quasi-linear system (1) is integrated
numerically using fourth order Runge — Kutta method (8] and the obtained results
are compared with the analytical ones.

4.]1. THE ANALYTICAL SOLUTIONS

In this case the analytical solutions ps, 72 and their derivatives with respect
to (t) are written in the following forms:
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hy 9, , h
5] + 54 [2Lzo+nocos§

2h . 2h
3 + iy sin — 3 +z3cosh+1ssmh+z4cosi’1

3 3
5h 5h Th 7h]

h . h h
p2 = Mlcos§+Mgsm—-+p[£1cos§+mlsin

4 .
+1;,S1N = + 13 cOS —

4h
+z4sm—:-3— +15cos-3— + 15 sin — 3 +16cos? +zesm?
dpg h

. h h h

r = d—tleosm3+M20cos-— p[mlcosg—t’lsms]-f- [ cos§

. . B ., . 2h 2h . . o 4h
—11,8IN 3 ~ 20 sin 3 + 15, cOs 3~ i sin h + i5, cos h — i4, 8in -

: 4h . 7h
Hiao 08 5 — dsosin - Bl 3 3

h . h

M3 cos h — paM, cos h + p? [N2o+ U1t cos§ + v}, sin 3 + (vlz — a¥;

__u§M2 My ) cos h + vi,sin b + vy3 cos 2k + vigsin 2h + vy4 cos %

o . .
+ 15, COS — — ig, SiN — + 15, COS —

I

Y2

+v]4sin % + vy5 COs Sh] ,
dys h : h)

, , 1
= S —M3sinh + paM, Smh'*'#z[g(vln s 3~ V11 8In 3

- (v12 - af) - guzMz M3 ) sin h + v}, cos h — 2v13sin 2h 4 2v}5 cos 2h

2
) . 5h 5 S5h .
—-51)14 sin '?3- + 51)’14 cos ? - 3”15 sin 3h] ) (34)

where
= 1T/300 for i = 0 to 300 step 5 and T" =max value of ¢-variable.

Let us assume

A=P=19 OC=18 =z,=5 yp=6
20=7, R=1500, A=.6, M =300,
Y'=5, r,=1100, T =18.78775142. (35)

In this case the following parameters are determined:

Ay =-B; =w=.3333333, C;=0, £=10.48809,
= 4767313, y, = 5720776, z, = .6674238,

g = 2.66667E — 07, c = 2.28999E — 02, pu = 1.47206E — 05,

a=b=.75, k=508513E—07, e=1906925,

e) = —.667424, e; = 222474, v =75 v, =—2.25. (36)

Consider that paa, 724, - .. denote the analytical solutions p2, 72, ..., the graphical
representations and the corresponding phase plane diagrams for these solutions are
given in figures 1, 4, 7, 10, 13 and 16.
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4.2. THE NUMERICAL SOLUTIONS

For this case the system of differential equations can be rewritten as follows:

%Ptgzx, %2% %?=—%P2+#2f1, %=—72+#291’ (37)
where
fi = cnaysy + Pz(cnaz = %Sn ~ Yhya~! + Cl-'CzAl-l)
+7v2(cnasz + cnagzy + cnassy ) + z Y,
g1 = cnby + 72(cnby — 5311 + cnbsy® + cnbaz? — yy)
+z' y? + pa(enbssay + cnbszy). (38)

The constants cna; — cnas and cnb; — cnbg are determined by the correspondence
between the above system and the system (1). Assuming the same data (35) and
(36) with the initial values of the analytical solutions, the numerical solutions are
obtained by using the fourth order Runge - Kutta method. Supposing p2n, v2n, - - -,
denote the numerical solutions p,, 72, ..., and using the computer, the numerical
solutions and their phase trajectories are obtained in figures 2, 5, 8, 11, 14 and 17.

The comparison between the analytical and the numerical solutions is given in
figures 3, 6, 9, 12, 15 and 18. This comparison shows that the deviation between
the analytical and the numerical solutions is very small and can be neglected, that
is the numerical solutions are in full agreement with the analytical ones.

5. CONCLUSIONS

Poincaré’s small parameter method is applied to investigate the periodic solu-
tions, with non-zero basic amplitudes, for the singular case of the natural frequency
(w = 1/3). This problem deals with the following bodies being classified according
to the moments of inertia:

1. U3 A> B, B<§C, A>%C;

4
3 3
2. 0> B> A, A<ZC’ B> ZC;

3. A=B= %C, which represents rapidly spinning Lagrange’s gyroscope

about the axis of symmetry (z! = y, = 0);

4. A=B= gC, another Lagrange’s gyroscope;
9 3 3

. §C<B<A, A>-2—C, B<§C,
9 3 3

6. ~8-C<A<B, B>§C, A<§C.
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This problem is a generalization of the corresponding one in the uniform gravity
field, that is the solution of the latter problem is deduced from the solution of
the considered one by putting & = 0. The geometric interpretation of motion is
considered to describe the orientation of the body at any instant (t) of time. A
computer program is carried out to obtain the graphical representations for the
analytical solutions. Starting the initial values of the analytical solutions, the
autonomous system is solved, using the fourth order Runge ~ Kutta method, to
obtain the numerical solutions through another program. The obtained analytical
and numerical solutions are represented graphically, using the computer, to show
the difference between them. The deviations between both solutions are very small,
which give powerful agreement of the obtained solutions.
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The paper presents a description of KAM — a knowledge-based tool for building com-
puter algebra systems developed at the Faculty of Mathematics and Informatics, Sofia
University. The main features of KAM are analyzed. The architecture of KAM and
the knowledge representation formalisms supported by the tool transformation rules,
frames, rewrite rules, generalized rules, are briefly described. A presentation of the
experimental computer algebra system STRAMS being under development as an ap-
plication of KAM is given.
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1. INTRODUCTION

In the last 2-3 decades Computer Algebra Systems (CAS) have been success-
fully used in many fields of science and engineering. These systems can help in the
solution of different types of problems connected with the execution of complicated
and labour-consuming transformations of mathematical expressions. “Classical”
CAS like Reduce, Macsyma, Maple, Mathematica etc. provide thousands of so-
phisticated algebraic algorithms, but sometimes they are difficult for use. On the
one hand, it is often hard to select the appropriate algorithm from the amount of
available algorithms. On the other hand, the interpretation of the solution some-
times needs significant efforts, because the system does not give any information
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about the solution steps. In other words, the user does not receive any explanation
or information about the problem solving process (for instance, how the solution
of the problem is found, or why the output is the solution of the given problem).
Moreover, the extension of the functional facilities of most of the “classical” CAS
is a hard job that usually needs a great amount of programming efforts.

The problem here is that “classical” CAS have no mathematical knowledge
about the properties of the functions and the problem solving methods represented
in an explicit, declarative way. Their mathematical knowledge is embedded implic-
itly in the algorithms and is inaccessible to the user.

For that reason a series of successful attempts has been made to integrate the
classical methods for developing CAS with Artificial Intelligence methods and tools.
These attempts have been made in different directions.

On the one hand, many famous large CAS have been supplied with intelligent
user interfaces. For example, the Praxis {5] system is implemented as a rule-based
expert system for the computer algebra system Macsyma.

On the other hand, several systems like AXIOM [6] and MAGMA [1] are
aimed at the integration of means for description of algebraic structures (and, more
general, of database and deductive facilities) with computer algebra algorithms.

In the systems of the type of LP [11], APS (7, 8] etc. the emphasis basically falls
on the representation of knowledge about the methods for mathematical problem
solving.

The hybrid knowledge representation system MANTRA [2, 3] is a next step of
such integration. It combines different formalisms for specification of mathematical
domains and provides a computational environment for solving problems combining
the strong mathematical algorithms with heuristic search for solutions.

Thus the term “intelligent CAS” becomes quite popular in the last years. In
general, intelligent CAS are systems that are capable to manipulate different types
of mathematical knowledge and use a large set of Artificial Intelligence methods

and techniques.
A set of projects aimed at the investigation of different aspects of building

intelligent CAS has been under development at the Faculty of Mathematics and
Informatics, Sofia University. An approach to building CAS has been developed
with the purpose of creating flexible, “open” CAS that:

— can easily be integrated with other software packages and can be used in
the development of CAD systems, intelligent tutoring systems etc.;

— solve in a satisfactory way the problems discussed above, in particular, are
able to do some kind of learning and explanation generation.

'This approach is based on the representation of knowledge about the properties
of the functions and the methods for mathematical problem solving defined by these
properties.

The knowledge-based tool KAM described in this paper has been developed
with a mainly experimental purpose. It is a software system supporting our ap-
proach to building CAS. KAM has been used as a tool for performing experiments
with the suggestions presented in this paper and in [9], and as an instrument for
building CAS that could have concrete applications. The Common Lisp interpreter
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from the integrated environment POPLOG, version 14.5, has been used for its
implementation [12].

2. MAIN CHARACTERISTICS OF THE APPROACH TO BUILDING CAS
SUPPORTED BY KAM

The suggested approach is based on the conception for the knowledge repre-
sentation in CAS discussed in Section 2.1. This conception can be considered as a
modification and further development of some ideas and mechanisms suggested by
B. Silver in [11}].

2.1. KNOWLEDGE REPRESENTATION

The formalism we suggest for the representation of mathematical knowledge
in CAS is a hybrid one. It includes several levels of representation.

The knowledge about the properties of the functions manipulated in the cor-
responding CAS can be described using a special type of rules called rewrite rules.
The structure of each rewrite rule contains a description of a correct transformation
of a definite class of mathematical expressions and a formulation of some general
preconditions for its performance (if there are any).

The description of the methods for transformation of expressions and equations
in the corresponding definition domain can be realized by the so-called generalized
rules (methods). Each generalized rule describes a sequence of transformations
of the given expression (equation) aimed at its conversion into a particular form.
Usually, generalized rules contain sequences of properly grouped rewrite rules. De-
pending on their contents and application mode, they are classified as declarative,
procedural and hybrid. Another classification criterion of the generalized rules is
the role they play in the problem solving process of a given, relatively complex task
(equation solving, symbolic integration etc.). In this sense they are classified as key
and non-key ones. The key generalized rules play a significant role in the control
of the search in the state graph of the corresponding problem.

The knowledge about the problem solving methods for the included types of
tasks can be described either directly by proper generalized rules or using specific
constructions called schemata. A schema is a sequence of non-key generalized rules.
It describes a definite step in the problem solving process of a relatively complex
task. Schemata are a natural generalization of methods (generalized rules). The
precondition of a schema is the applicability of its first generalized rule. The goal
is to solve the problem or to be able to apply a key generalized rule after the
application of the schema.

During its working cycle each particular CAS realizes a search in the state
space of the user’s problem. In the role of operators it uses the schemata and
generalized rules available at the current moment. Some additional search control
knowledge is used with the purpose of avoiding the possible cycles and focusing the
attention of the system on certain situations.
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2.2. LEARNING FACILITIES

The formalism for the knowledge representation in CAS described in Section
2.1 is a good basis for the realization of some mechanisms for unsupervised learn-
ing that could considerably increase the effectiveness of these systems. In general,
the unsupervised learning in the discussed type of CAS is based on the capability
for discovering and memorizing the schemata used in the problem solving process
of some complex tasks (such as factorization, equation solving or symbolic inte-
gration). These new schemata could be directly used in solving further problems.
More precisely, the suggested unsupervised learning mechanism can be summarized
as follows. Before the first run of the corresponding CAS the set of schemata in-
cluded in its knowledge base is empty. During its working cycle the system uses
the schemata and generalized rules available in the knowledge base at the moment
and the built-in search control knowledge. The discovering and the application of a
proper schema can considerably speed up the problem solving process. Whenever
a given problem is successfully solved, the system can analyze the used sequence
of generalized rules, construct the new schemata candidates and merge them with
the set of existing schemata. In this way the CAS can perform some kind of self-
perfection, 1.e. some type of unsupervised learning.

2.3. EXPLANATION GENERATION

It is advisable for an intelligent CAS to be able to generate various kinds of
explanations. The minimal requirement in this respect is the capability to explain
the mode in which a given problem is solved. To ensure this capability, a CAS of
the discussed type can keep in a special record the history of the current session.
The history of a given session may contain the sequence of problems solved at the
time of this session and the main steps of their problem solving process. These steps
correspond to the methods (generalized rules) used by the system. The processing
of a given explanation request can be performed in two steps: extracting the corre-
sponding information from the record and generating the text of the explanation.
This text ought to be in a natural language and to contain a description of the
consequent steps of the problem solving process.

2.4. COMPARISON WITH SILVER'S APPROACH

As it was mentioned above, the approach to building knowledge-based CAS
supported by KAM is a modification and further development of the ideas of the
so-called Precondition Analysis suggested by B. Silver and realized in his system
LP [11]. The main differences between our approach and Silver’s one can be briefly
brought to the following:

— our approach is intended for the development of general-purpose CAS with
varied functional facilities (while LP is a special-purpose CAS for symbolic equation
solving). Therefore our generalized rule mechanism is considerably more compli-
cated;
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— schemata in our formalism realize the separate steps in the problem solving
process of the given mathematical task (but, in contrast with LP schemata, they do
not realize the entire problem solving process of the given task from the beginning
to the end). Thus our knowledge representation formalism is more flexible and
relevant to the human problem solving process;

— our approach is aimed at the development of means for unsupervised learn-
ing while the learning process in LP is a supervised one.

3. ARCHITECTURE OF KAM

The final version of KAM will include the following functional components:

— a mathematical problem solving engine;

— an explanation module;

-— a rule editor;

— an interface module.

The mathematical problem solving engine consists of two modules: an infer-
ence engine and a learning module realizing respectively the problem solving and
unsupervised learning mechanisms discussed in Section 2.

From the implementation point of view the structure of the inference engine
of KAM seems as follows:

GENERALIZED RULES

REWRITE RULES

TRANSFORMATION
RULES

FRAMES

COMMON LISP

Transformation rules are a declarative formalism intended for the description
of list transformations. The transformation rule and the frame manipulation mech-
anisms have been used in the implementation of the rewrite rule interpreter. The
generalized rule interpreter uses some basic means provided by the frame interpreter
and the rewrite rule interpreter. The control block realizes the search process in
the state space of the given problem. In particular, the search for proper schemata
and generalized rules and their application are realized by the control block using
the generalized rule interpreter. When a problem is successfully solved, the learn-
ing module can be activated. It discovers the new schemata used by the inference
engine (if there are any) and adds them to the set of known schemata.

The explanation module realizes the explanation generation mechanisms de-
scribed in Section 2.3.

The develpoment of the rule editor and the interface module of KAM is still
at the designing phase.
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The rule editor will be a tool assisting the users of KAM in building the knowl-
edge bases of the concrete CAS they intend to create. It will suggest means for
convenient input and editing of rewrite rules and generalized rules and procedures
for automatical translation of these rules into the internal form that is “understand-
able” for the corresponding interpreter.

The interface module will be the component of KAM the typical users will be
in touch with. It will enable the user to choose from a special menu the variuos
functions of KAM relevant to the development of concrete CAS: using the rule editor
(i.e. building or modification of the knowledge base of a given CAS), building the
functional modules (the inference engine, the learning module or the explanation
module) of a new CAS by adjustment of copies of the corresponding modules of
KAM or their proper subsets, designing the interface module of a CAS etc.

As it was mentioned above, the current version of KAM includes working pro-
totypes of the mathematical problem solving engine and the explanation module
only. Nowadays the rule editor and the interface module are still at the designing
phase of development. Therefore the current version of KAM is intended for users
with good skills in Common Lisp programming. The completion of proper working
versions of the interface module and the rule editor will help mathematicians, engi-
neers, teachers and other subject specialists with no Lisp programming experience
to work conveniently and successfully with KAM.

The knowledge representation formalisms supported by the inference engine of
KAM are briefly described in Sections 4-7.

4. TRANSFORMATION RULES

Transformation rules are a formalism for description of list transformations.
Each transformation rule consists of two parts — a left-hand part and a right-hand
one. The left-hand part describes the class of lists the rule can be applied to. It
is called the pattern. The right-hand part describes the method for the new list
construction. It is called the constructor. The rule is applied to a list called the
object list (the object). The application of a given transformation rule to a given
object list is accomplished in the following way:

— an attempt for matching the object list and the pattern is made;

— if the matching succeeds, some elements of the object list are extracted in
order to be used in the new list construction. Then the result list is constructed in
a way described by the constructor;

— if the matching fails, the rule is not applicable to the given object. In this
case nil is returned as a result.

Hence the transformation rule interpreter performs two main operations: pat-
tern matching and construction of the result list.

Pattern matching is an operation in which each element of the pattern matches
one or several elements of the object list in accordance with a definite set of rules.
The pattern consists of two types of elements — ordinary elements and special
ones. An ordinary element of the pattern matches only an equal to it element of
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the object list. Special elements of the pattern match the corresponding elements of
the object list using specific rules. Examples of admissible types of special elements:

(? {var)).

If the variable (var) is not bound, this special element successfully matches
the corresponding element of the object list and this element of the object list is
assigned to (var). In the other case, the matching succeeds if the value of {var) is
equal to the corresponding element of the object.

(? (var) (predicate-name)).

Here (predicate-name) is a name of a Common Lisp function. This special
element is interpreted as the previous one with one additional condition for the
success of the matching: the evaluation of the function (predicate-name) with an
argument equal to the corresponding element of the object must be different from
nal.

The construction of the result list is an evaluation of some of the constructor
elements. In other words, the result list can be obtained from the constructor by
an evaluation of some of its elements and a substitution of these elements with the
corresponding values.

5. FRAMES

As a module of KAM a frame system called FS is developed. FS gives a set of
standard frame manipulation means that can be divided into the following groups:
frame definition, creation of a frame instance, providing an access to the slots of a
frame instance.

To define a frame, one has to determine the name of the frame and to create
a description of the structure of this frame. The names of the frames and the
slots are Lisp symbols. The possible facet names in FS are the following: value,
defaull, if-needed, if-added, if-removed. The semantics of these facets is identical
to the conventional one. The values associated to them are Lisp expressions (in
particular, Common Lisp functions can be used).

A Common Lisp function called a service procedure or a method can be used
as a slot value as well. Slots supplied with method values have no facets. Methods
are performed by sending messages to them. A special type of methods are the
so-called auto-methods. Auto-methods contain calls to the slots of the frame they
belong to.

FS provides some means for inheritance of properties that is reduced to the
possibility of appending a given subset of the slots and facets of the parent frame
to the structure of the inheritor frame.

As it was mentioned above, the frame manipulation mechanisms in KAM have
been used in the implementation of the rewrite rule interpreter and the generalized
rule interpreter. Each particular rule of these two types has been described as an
instance of a frame with proper structure and methods.
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6. REWRITE RULES

Rewrite rules have been used to describe the properties of the functions that
can be manipulated in the corresponding CAS. Each rewrite rule includes a de-
scription of a correct transformation of a given class of mathematical expressions
and, if necessary, a general precondition for its performance. Examples:

c1a+ c2a = (¢; + ¢3)a,

eaeb s ea+b’

tga +tgb (2k + 1)m
1-tgatgh 2 '

The implementation of the means for rewrite rule description and application
uses mainly the mechanisms provided by the frame and the transformation rule
formalisms. A possibility for procedural implementation of some rewrite rules aimed
at reaching better effectiveness is provided as well.

tg(a+b) = with precondition a, b, a+ b different from

7. GENERALIZED RULES

The generalized rule formalism has been used for the description of the trans-
formation methods applicable to the types of expressions and equations the corre-
sponding CAS can manipulate. A generalized rule can be considered as a descrip-
tion of a sequence of transformations of the given expression aimed at its conversion
into a definite form. In this sense, most often generalized rules are sets of prop-
erly grouped rewrite rules. According to the contents of their description and the
method of their application generalized rules can be classified as declarative, pro-
cedural and hybrid (combined).

Each generalized rule consists of two parts — a precondition and a body.
The precondition is a predicate whose satisfaction is a necessary condition for the
application of the generalized rule and for achieving its purpose. The evaluation of
the precondition of a given generalized rule is the first step of its application. If the
precondition is true, then the body of the generalized rule is performed. Depending
on its type, the body of a generalized rule may contain:

— 1n the case of a declarative rule: a sequence of rewrite rules. Each of them
can include some additional control information about the correct direction(s) of
its application;

— in the case of a procedural rule: the code of a procedure realizing the
application of this rule;

— 1in the case of a hybrid rule: a set of pairs (pattern, procedure). When the
examined expression matches one of the patterns, the corresponding procedure is
executed.

Most often declarative generalized rules have been used in building CAS. The
body of such a rule consists of a sequence of rewrite rules that can be divided in
three groups: pre-rules, basic rules, post-rules.
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The pre-rules are intended to prepare the given expression for the performance
of the basic rules. The post-rules are used to remove some “defects” remaining after
the performance of the basic rules.

There are three basic types of declarative generalized rules according to the
mode of application of their bodies: normal, cyclic and recursive. The body of
a normal generalized rule is performed in the following way: First the pre-rules
are consecutively applied to the given expression. Each of them is executed on
the result returned by the previous one. Then the basic rules are applied in the
same way on the result of the execution of the pre-rules. At last the post-rules are
applied in the described way.

The body of a cyclic generalized rule contains only one basic rule. It is per-
formed in the following way: First the pre-rules are executed as in the case of a
normal rule. Then the basic rule is executed. If it has not changed its argument,
the execution of the body of the generalized rule stops and the current result is
returned. In the other case, the corresponding post-rules are performed and then
a cyclic execution of the described sequence of steps is carried out until the basic
rule returns its argument unchanged.

The body of a recursive generalized rule is first executed on the subexpressions
of the given expression and then it is applied to the obtained new argument.

It is possible to construct some combinations between the basic types of declar-
ative generalized rules. For example, very attractive are the so-called cyclic recur-
sive generalized rules that can be used as a proper mean for the description of some
methods for expression simplification.

8. ONE APPLICATION OF KAM:
THE STRAMS COMPUTER ALGEBRA SYSTEM

An experimental CAS named STRAMS [9, 10] has been under development
at the Faculty of Mathematics and Informatics, Sofia University, using the current
version of KAM. STRAMS is a knowledge-based system for symbolic manipulations
of expressions that may contain numbers, symbols and the functions: +, —, *, /,
power function, exponential, logarithmic and trigonometric functions. It is intended
for solving the following main problem types:

— expression simplification;

— symbolic equation solving;

— symbolic differentiation;

— symbolic integration.

The formalism discussed in Section 2 is used for the knowledge representation
in STRAMS. The knowledge of STRAMS about the properties of the manipulated
functions is described by rewrite rules. Examples of such rules can be found in
Section 6.

The description of the methods for transformation of expressions and equations
in STRAMS is realized by a set of generalized rules. Here we give several examples
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of generalized rules (generalized rules are called methods in STRAMS) used in the
symbolic equation solving subsystem of STRAMS.

Example 1. Isolation.

Let an equation eq : expr; = expry be given and let f be the outermost
function in expr;. The method consists in the application of the inverse of f to
expr; and expry. The precondition of the method is: the unknown occurs in only
one of the arguments of f and ezpr, does not contain the unknown. The goal is in
the left-hand side of eg to remain only the argument containing the unknown.

The method is a key one and is implemented procedurally due to effectiveness
considerations.

Example 2. Collection.

The goal of this method is to reduce the number of occurrences of the unknown.
Collection is a non-key method with no explicit precondition. STRAMS applies it
only if none of the key methods can be applied. So the precondition of Collection
(and of all non-key methods) is: there is no key method with satisfied preconditions.

The method is declarative, normal. One of its rewrite rules is

AB + AC = A(B + C) with precondition A must contain the unknown.

Example 3. Attraction.

Attraction is a non-key method with no explicit precondition. The goal here
is to move the occurrences of the unknown “closer” together in hope that another
method (for example Collection) will then be applicable. One of the rewrite rules
of Attraction is

AC + BC = (A+ B)C.

In this rule the expressions A and B are attracted, so they must contain the
unknown.

The problem solving process of some complex tasks (such as equation solving or
symbolic integration) consists of a series of steps realized by the STRAMS schemata.
According to the ideology of KAM a schema is a sequence of non-key generalized
rules (methods) whose application directs to a definite aim in the problem solving
process.

STRAMS has some means for unsupervised learning and explanation gener-
ation that entirely correspond to the ideas and mechanisms described in Section
2

The mathematical problem solving engine and the explanation module of KAM
were used without any effort for the implementation of STRAMS. The knowledge
base of STRAMS was built by direct recording of the corresponding rewrite rules
and generalized rules in internal form. The interface module of STRAMS that
analyzes the user requests and realizes the general control of the system’s work was
developed especially for the purpose.
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9. CONCLUSION

Our experience in developing and using STRAMS demonstrates that the cur-
rent version of KAM and the approach to building CAS supported by it do really
work. Our current activities are oriented to the development of working versions
of the rule editor and the interface module of KAM.

At the same time some research activities have been carried out with the
purpose of extending our approach to building CAS supported by KAM in the
following directions:

— including some mechanisms for supervised learning. It is useful at that to
provide means for learning both new schemata and new generalized rules;

— improvement of the explanation generation mechanisms. It is necessary to
extend the range of explanations that can be generated by the discussed type of
CAS and to develop some means for generating explanations with different degrees
of circumstantiality;

— including some proper formalisms for problem solving and learning by anal-
ogy. Our hypothesis is that the methodology suggested by J. Carbonell in [4] can
be used for this purpose.
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A numerical investigation of the two-dimensional flow around a circular cylinder is
performed using a primitive-variable approach. Steady (but unstable) solutions have
been calculated up to Re = 200. The imbedding system is solved numerically by a
difference scheme of splitting type. A staggered non-uniform grid is used. The obtained
results are in good agreement with the available data.
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1. INTRODUCTION

The numerical treatment of high-Reynolds number viscous flows is of consider-
able interest for the applications because of the fact that the predominant part of the
practically important flows take place either in large scales and high speeds or with
small viscosity. Classical examples of such a kind are, above all, geophysical flows
and flows around vehicles and vessels. The steady-state solution to Navier-Stokes
(N-S) equations for high Reynolds numbers is unstable and cannot be treated as an
initial value problem for the unsteady N-S equations. At the same time, the above
mentioned problem is of crucial fundamental importance in the sense of answering
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the question of which is the limiting pattern for the solution of N-S equations when
the coefficient Re™! of the highest-order derivatives approaches zero.

The problem of steady-state viscous incompressible flow past bluff bodies has
over a long time received much attention, both theoretically and numerically. The
circular cylinder is the simplest two-dimensional bluff body shape and the flow past
it has been the subject of considerable experimental and numerical study. The flow
round this shape has the attraction of being the source of intriguing transitions.
Many of the numerical treatments are concerned with low Reynolds number flows.
In spite of the many numerical calculations on flow past a circular cylinder, accurate
results have been obtained only for Reynolds number (Re = Uyd/v) up to about
700, see Fornberg {14, 15]. The Reynolds number Re is the governing dimensionless
parameter. The cylinder diameter d = 2a is the characteristic length; velocity
at infinity U is the characteristic velocity; and v is the kinematic coefficient of
viscosity. Fornberg has found that the wake bubble (region of recirculating flow) has
eddy length L « Re, width W o« v/Re up to Re = 300, and W « Re beyond that.
Smith [18] has developed an asymptotic theory which agrees with Fornberg’s results
up to Re & 300 only. Smith [20] and Peregrine [17) have performed theoretical
work which gives a fresh interpretation of Fornberg’s results. There are several
differences between the theories of Smith and Peregrine, some of which are a matter
of interpretation. These are unlikely to be resolved without further analysis and
computational work.

The problem of viscous steady-state flow past a circular cylinder at high
Reynolds numbers represents one of the classical problems in fluid mechanics. Al-
though some agreement between theoretical, numerical and experimental results
exists, there is a need for further work in all these aspects of this fundamental and
classical problem. In the present paper the steady-state Navier-Stokes equations
are solved using the so-called Method of Variational Imbedding.

2. BASIC EQUATIONS AND METHOD OF SOLUTION

The N-S equations are given in dimensionless form, corresponding to a cylinder
of radius 7 = 1 in an uniform stream of unit magnitude with direction along the
positive axis of z. Polar co-ordinates (7, ¢) are used. The N-S equations governing
the steady-state motion then read

Ouy, up,Ou, upu,  10p 1 [ 2 Ou,
“’FF“LTago T = ;690-*.?1.6_: Du‘p-*“ﬁ&p ’ 2
Ou, = uy, Our ui dp 1 2 Ou
. £ —Fm— L Dy — 2] 2.2
u0r+r690 r 6r+R£ ¢ r26<p] (22)
Our +1—‘1+-1.%=0, (2.3)
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where ur = u(r, ) and u, = v(r, ¢) are the velocity components parallel respec-
tively to the polar axes r and ¢; p = p(r, ¢) is the pressure. Respectively,

2 2
p= P 1o 1 18
r2 " rdr 12 r29p?
is the so-called Stokesian.
In terms of dimensionless variables, the cylinder surface is represented by r = 1,
while the velocity at infinity — by unity.
The boundary conditions reflect the non-slipping at the cylinder surface

ur(1,9) = up(l, ) =0, (2.4)

on the one hand, and the asymptotic matching with the uniform outer flow at
infinity, on the other. Numerically one has to pose the asymptotic condition at a
certain large enough value of the radial co-ordinate, called “actual infinity,” say,
Teo. Then the dimensionless boundary conditions read

U (Too, ) = €OS P,  UL(Too,p) = —sin . (2.5)-

Due to the obvious flow symmetry with respect to the line ¢ = 0, 7w, the com-
putational domain may be reduced to 0 < ¢ < 7, » > 1 and additional boundary
conditions on the lines ¢ = 0 and ¢ = 7 are added to acknowledge the mentioned
symmetry, namely:

_ Ou,

dp

Uy =0 for =0, (2.6)

2.1. APPLYING THE METHOD OF VARIATIONAL IMBEDDING
For tackling inverse and incorrect problems, Christov [4 - 6] has developed
the already mentioned Method of Variational Imbedding (MVI) which is a special

implementation of the Least Square Method to ODE and PDE.
Consider the imbedding functional

T -_~//(<I>2 + Q% + X?) rdrdyp, (2.7)
01

where

Ou, = uy,Ou,  upu, 10p 1( 2 Bur)
~67.*-7(9904_ r +r6<p Re Due ’
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As far as the boundary value problem for the N-S equations possesses a solu-
tion, then the global minimum of the functional (2.7) is equal to zero, which is the
value the functional assumes on the solutions of N-S. This allows us to seek a local
minimum of the functional J and to check afterwards whether this is the global
minimum.

The necessary conditions for minimizing of a functional are the Euler-Lagrange
equations (see [8]). After some simplification these equations of Euler-Lagrange for
the velocity components and pressure take the form of a conjugated system for @,
Uy, 2, u, and p:

1 2 0Q 0® u, 0% 2u,Q 10X Ou, QO0u
wis | i) . i ¥ .4 T e e e
Re( ¢+r2350)+<ur3r+racp+ r +r3<p)+¢5r r Oy 0

2 Ou, Oup Uy Ouy  upu, 1 Bp) B
Re (Du‘p rzago) ( "B T 8<p+ r +;5~<; +e=0,
2 09 o0 u, 00 u,® 0X Ou, Our
_( r26cp) (ur6r+r6<p— T +6r)-q)

1 2 Ju, Ou, u,0u, u: Op 3
Re(Dur-ﬂ&p) (u'8r+r6<p_7+;?_r +2=0,

du, Ou,  Ou, du, duy, Bur>
Ap——(&p or or a¢+u¢7+ur or

All five equations above are of elliptic type and of second order on each bound-
ary point. Therefore, five boundary conditions are needed. We already posed two
of them when formulating the problem, see Egs. (2.4) — (2.6). The remaining
three are the natural conditions for minimization of the functional (2.7), which are
nothing else but ® = Q@ = X = 0. From the continuity equation X = 0 we have
Adu,/dr = 0 at the boundaries r = 1 and r = ro,. Respectively, the symmetry con-
ditions at the lines of symmetry ¢ = 0, 7 are dp/d¢ = 0, which is equivalent to
the condition on the function u,(r,¢) at the same lines, namely —d%u,,/8¢* = 0.
Thus we have a correctly posed boundary problem for the set of functions we are
looking for.

It is clear that if we find a solution of the imbedding system for which ® and
Q are equal to zero, then uy, u, and p form the solution of the original problem.

Here we consider the same problem that was outlined in [8]. The difference
is that we treat the Imbedding system differently. In (8] the autors have solved
numerically the Imbedding system of Euler-Lagrange equations for functions u,,
u, which are of forth order, and pressure equation for p of second order. This system
looks apparently much more complicated (together with boundary conditions) than
the system of five equations for ®, u,, Q, u, and p.
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2.2. THE VECTORIAL FORM OF THE EQUATIONS. FICTITIOUS TIME

We introduce the notations (E is the unitary operator)

moooo

Q Ou,
r ¢

-Q

o F® E 0 0 0
. Uy . Fte 0 E 0 0
b= Q |, Fl=| F® |, I=|1 0 0 E 0
Uy Fx 0 0 0 F
p F? 0 0 0 O
where
2 00 0 u,dd 2u,0 10X du
® — t Up— + £ 2 - d— —
F Re-rzatp-*-u or v Jp r r6<p+ ar
Py = 2  Ou, B ( 6u«, &‘,.BuW u‘,,u,)
Re-r2 9y Or v g r )’
2 09 0 u, 00 u,® X Ou
Q _ O Sl i . -4 . _ Y
= Re-r20<p+ur6r+r3<p r T Br (1)81'
e 2 Juy, up  u, Ou, Ul
Fr= g dyp (u'6r+ rdp r [’
2 (Ouy, Ou, Ouy, Ou Ou Ou
p o 2 f Sp Wl OUpOls . Nlp . 9}
d (a¢ Br Br Dp g T ar)
1 (18 0 1 1 0? 0
Arr = (-;-6—;7‘61' 1'2> y QY = Re- 7‘2 W, Ar E)
10 0 1 62
Pl e 2.2 lp) — —
Al = 3 B’ A 77 53
Upon denoting by
Arr O 0 0 0
3E Ay 0 0 0
A = 0 0 A, O 0
0 0 1E A —A,
0 0 0 0 AP
and
Agp O 0 0 0
0 0 3E Ay O
o 0o 0 0 A

Ou,
or’

]
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we render the equations for @, u,, Q, u, and p to the following vectorial form for -

(A1 + A2)d + Fé = 0. (2.8)
Upon adding derivatives with respect to a fictitios time ¢, we get

o6 S

5 = (A +A2)0 + F* (2.9)
Note that in the physically unsteady case the time derivatives are present only

in the equations for the velocity components (the original system is not of Cauchy-

Covalewska type).

2.3. THE SPLITTING SCHEME

The system under consideration is non-linear. It can be solved by means of
an iterational process in which at each stage the equations are linearized. In the
present work we make use of the iterative procedure based on the co-ordinate-
splitting method because of its computational efficiency. We employ the method of
fractional steps, namely the second scheme of Douglas and Rachford [12], sometimes
called the scheme of “stabilizing correction” [22]. The stabilizing correction scheme
reads (7 is the increment of the fictitious time)

gnts — gn o . . gn+l _ gn+i
— n [’}
T =AM 0"F 7+ A + FY -

= A7 — A0,

or, which is the same,
(I —7A)G+E = (14 7A.)0" + 7FO" (I = rA,)0"+ = 7+ — £ A, 07,

The approximation with respect to fictitious time can be assessed after excluding
the half time-step variable §"*5. After some obvious manipulations, we obtain the

equation
é‘n-{»l _ é‘n

(I 4+ 72A,A) = (A1 + Ag)f" ! + FP". (2.10)

The splitting scheme is implicit for the linear terms and explicit for the non-linear
convective terms.

2.4. GRID PATTERN AND APPROXIMATIONS

The flow field shows a mixture of different scales for high Re. There is a
thin boundary layer close to the body, which separates and extends downstream.
Neither Cartesian nor polar co-ordinate systems are adequate enough for describing
the topology of the flow when the separation takes place. These problems are
aggravated with the increase of the Reynolds number. The usual polar co-ordinate
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Fig. 1. Grid pattern

system, dense enough to resolve the wake far out, will be very wasteful in other
directions. For this reason our mesh labelled by ‘o’ is chosen to be non-uniform.
The spacings are given by

R-1 T
e = N, -1’ = N, —1"
where N, stands for the number of points in the direction r and N, — in the
direction ¢, respectively. The mesh is staggered for p in direction ¢. For u, and Q2
it is staggered in both directions. In Fig. 1 the mesh is depicted, where the thick
lines represent the borders of the region of computations. The co-ordinates of a
point of the mesh are defined as follows:

ri = exp[(i— 1)h,], ¢; = %[(j-— 1)h,)?, whereé=1,...,Np; § = 1,...,N,.

The points in Fig. 1, which are labelled by ‘o’, are those where the functions u,
and ® are calculated. The pressure is calculated in the points labelled by ‘4’, and
functions u, and § are calculated in the grid point labelled by ‘e’.

We employ the following two-point and three-point approximations for the first
and second derivatives (equivalent to the central differences scheme on uniform
mesh). The derivatives are approximated as

Ou U; — Ui
i N —
Oz '-__%_ h,‘_l
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where u stands for @, u,, Q, u, or p and z stands for r or ¢. Respectively, h;_,
and h; are the values of the spacing on the left or on the right from the reference
point (Fig. 2).

Uj—1,

i—1 i 141
*— *— = J
hl—l hi

Fig. 2. A point of the non-uniform mesh

The staggered mesh allows to use second order approximations for the bound-
ary conditions. All boundary conditions are imposed implicitly.

2.5. IMPLEMENTATION OF THE SCHEME

The algebraic problem is coupled with the difference approximations of the
boundary conditions. The boundary conditions for the pressure equation stem
from the additional condition on function u, from the continuity equation. The
idea consists in treating the system for different half-time steps as conjugated (see
[19, 2]). On the first half-time step (the operators with derivatives with respect
to r) we solve the equations for the “vector” {®,u,}. Respectively, the equations
for the “vector” {Q, u,,p} are solved simultaneously. On the second half-time step
(derivatives with respect to ) the respective equations for the vectors {p, u,, ®}
and {u,,Q} are solved. The arguments for selecting the “pairs” and “triplets” of
equations are obvious: ® enters the equation for u,, while Q enters the equation
for u,. The resulting systems are either five- or seven-diagonal and can be treated
by the solver described in [7]. The method of the so-called non-monotonous pro-
gonka is a kind of Gaussian elimination with pivoting and it is highly efficient for
multidiagonal cases. The solution algorithm allows for complete coupling of the
boundary conditions.

We solve the system governing the functions ®(r, @), uy,(r, ), Q(r, @), u,(r, 9)
and p(r, @) in the following iterational manner:

i) The initial conditions ®°, 42, Q° u?, p° for small Reynolds numbers (Re =~
("4 r
2 =+ 4) are defined as

ri — 1 ri — 1
cos g5, Qlij = 0, urls = -

sing;, plij = 0.

®i; =0, upli,j =

For larger values of Reynolds number the solution for the closest smaller Re
is used as the initial condition for the iterations for the current Re.

The counter of time steps is set n = 0;
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(1) On the first half-step for the line ¢ = ; we solve two systems for the un-

1
knowns ®"+%, uy T3 Ot o) "% and p"t% — with a seven-diagonal matrix
for {Q, u,,p} and a five—dlagonal matrix for {®,u,};

(ii1) Similarly, for the vectors ®"+!, ul*1 Q»+1 u2+! and p"+1, we solve for the
lines r = r; on the second half-step two systems — with a five-diagonal matrix
for {©2,u,} and a seven—diagonal matrix for {®, u,, p};

(iv) The norm of the difference between two consecutive iterations (n+1) and (n)
(time steps with respect to fictitious time)

max |§"*! — 6|
1]
is calculated. If this norm is lesser than a prior prescribed value, then the
calculations are terminated. Otherwise the index of iterations is stepped up
n:=n+ 1 and the algorithm is returned to step (ii).

3. RESULTS AND DISCUSSION

In order to assess the approximation of the proposed scheme and the perfor-
mance of the algorithm, a number of numerical experiments have been conducted.

The accuracy of the developed here difference scheme and algorithm is checked
with the mandatory tests involving different increments of the fictitious time 7 and
mesh parameters: Ny, N, and rq.

First of all, we check that the approximation of the steady-state solution does
not depend of the fictitious time increment of the splitting scheme. Theoretically,
it follows from equation (2.10) and provides a good check for the correctness of the
algorithm if it is respected in practice. We have calculated the flow with Re = 40
with three different fictitious-time increments: 7 = 0.1, 0.01, 0.001. We have found
that the iterative solution of the steady-state problem does not depend on the
magnitude of the time increment 7.

The second important verification is the spatial approximation of the scheme.
We have conducted a number of calculations with different values of mesh parame-
ters and verified the practical convergence and the approximation of the difference
scheme. In Table 1 and Table 2 we present the obtained numerical results for some
parameters like positions of separation point psep from the rear stagnation point,
difference between the pressure at front and at rear of stagnation point. The values
of the drag coefficient Cp are computed from

n T
Cp = -2 /p(l,(p)cos<pd<p-— 4 a—uﬁ
or
0

inpdp.
e sin p dep
0

r=1
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The first term on the right gives the pressure drag coefficient and the second —
the friction drag coefficient. In these tests Re = 100, ro, & 53. For N, = 125 and
Ny = 195 the difference between the present results for psep and p(1, ) —p(1,0) is
indistinguishable within the accuracy of calculations with ordinary precision. But
for N, = 126 and N, = 161 the flow picture changes significantly. These calcula-
tions illustrate the convergence of the difference approximation to the solution of
the differential problem under study.

TABLE 1. Results of calculation for
different N,, Re = 100, Ny = 126 and

TABLE 2. Results of calculation for
different Ny, Re = 100, N, = 126 and

Too ~ 53 Too = 53
Ne | wsep Cp p(1,7) - p(1,0) Nr | ysep Cp p(1,7) ~ p(1,0)
100 1.013 | 0.89820 0.56900 126 | 1.031 0.89289 0.59805
125 1.031 0.89289 0.59805 161 1.049 | 0.94539 0.63609
195 1.031 0.89081 0.59805 199 1.065 0.96055 0.64400

The values of r, are obtained as the results of experience (13, 11].

We have successful calculations for 2 < Re < 200. The numbers of grid points
N, and N, cannot be very large (although it is desired) due to computer limitations.
The tests have shown that for Re < 100 the mesh size with N, = 150, N, = 251,
roo ~ 88 is probably safe. The calculations at Re = 200 presented bellow are
carried out by using the mesh size N, = 125, N, = 199, ro, = 80.

Some of our results along with the results of other authors are given in Table
3 for comparison. The values of Cp, L and p(1, 7) — p(1,0) for Re = 20, 40, 50, 100
are in good agreement with those of Fornberg [13] and reasonably agree with those
of Takami and Keller [21] and Dennis and Chang [11].

TABLE 3. Calculated values for Cp, L and p(1, ) — p(1,0)

Ref. Re | Cp L | p(1,7) - p(1,0)
[21] 20 | 2.003 | 2.87
40 1.536 5.65
50 1.418 7.10
[11] 20 | 2.045 | 2.88 0.9290
40 1.522 5.69 0.8265
100 | 1.056 | 14.11 0.7265
(13] 20 | 2.000 | 2.82 0.910
40 1.498 5.48 0.801
100 | 1.060 { 13.20 0.693
200 | 0.831 26.20 0.589
Present work | 20 | 2.0095 | 2.84 0.9215
40 | 1.4877 | 5.47 0.8163
50 | 1.3470 | 6.61 0.7843
100 | 1.0052 | 13.33 0.6956
200 | 0.6769 | 17.81 0.4740
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Fig. 3. Streamlines and vorticity fields
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Fig. 4. The separation angle
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Streamlines and vorticity isolines of the flow for Reynolds numbers 50, 100
and 200 are shown in Fig. 3. For the stream function the contour values, starting
from the top, are {0.4, 0.3, 0.2, 0.1, 0.05}; enclosed streamlines, starting from
the centre, are {—0.1, —0.05, 0}, and for the vorticity the contour values are
{0.1, 0, —0.2, —-0.4, —0.6, —1, -3, ...}. Fig. 4 gives the calculated values of Psep
measured from the rear stagnation point. They are in good agreement with the
calculations of Fornberg [13] and of Dennis and Chang [11]. Theory based on the
Helmholtz-Kirchhoff model predicts that as Re goes to infinity [1], the separation
point may move forward to an angle of 125°. In [10] this angle is ¢ = 1.815(104°).
Our results and this possible limit are shown in Fig. 4.
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