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ON THE TRANSFORMATIONS OF THE
LOGARITHMIC SERIES

NIKOLA NAIDENOV

In this paper we consider transformations of the series

l(x) =

∞∑
n=1

xn

n
and L(z) =

∞∑
n=0

z2n+1

2n+ 1

in the forms: (A) l(x) =
∑∞
n=1

Anx
n

1−αnx
, (B) L(z) =

∑∞
n=0

Bn
1−bnz2

(
z

1−βnz2

)4n+1

and (C) l(x) =
∑∞
n=1

Cnx
n

(1−γ1x)···(1−γnx)
. Minimization of the coefficients in (A)

and (B), under the restrictions |αn|, |βn| ≤ 1, is explored numerically. The resulting
hypothesis is that we can accelerate the convergence like a geometric progression. We

prove that the unique lacunary series l(x) =
∑∞
i=0

Aix
2i+1

1−αix
and L(z) =

∑∞
i=0

Biz
4i+1

1−biz2
diverge for x 6= 0 and z 6= 0. Assuming |γn| ≤ 1 we prove lower and upper bounds for

the optimal rate of convergence of (C). A similar upper bound for (A) is proved. Also,

some new accelerated series for the logarithmic and other transcendental functions are
obtained.

Keywords: Logarithm, Series acceleration, Recurrences, Rational approximation.

2010 Math. Subject Classification: Primary: 65B10; Secondary: 41A25,41A20.

1. INTRODUCTION

In this study we consider some rational transformations of the series

f(x) := a1x+ a2x
2 + a3x

3 + · · · , (1)
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which is assumed to have radius of convergence equal to 1. Mainly, we restrict

our attention to representations of l(x) := ln
( 1

1− x

)
, i.e. with an =

1

n
, and other

related functions of the forms

f(x) ≈ A1x

1− α1x
+

A2x
2

1− α2x
+

A3x
3

1− α3x
+ · · · (2)

and

f(x) ≈ C1x

1− γ1x
+

C2x
2

(1− γ1x)(1− γ2x)
+

C3x
3

(1− γ1x)(1− γ2x)(1− γ3x)
+ · · · . (3)

The symbol ”≈” can be considered as coincidence of formal power series, or as
asymptotic expansion for x → 0. The goal is to obtain series that converge faster
than the initial one and that coincide with the corresponding function in a neigh-
borhood of x = 0. The form (2) is a sum of geometric series, while (3) is similar
to a Newton series and having the same computational efficiency as (2) it allows
much easier treatment.

Everywhere in this paper, if the area of validity of an equality involving series
is not specified, then it can be considered as certain neighborhood of the origin or
more specifically, the disk {w ∈ C : |w| < |p1|}, where p1 is the closest to 0 non-zero
singular point (sometimes 0 will be a removable singularity).

As there are extremely fast methods for computing the logarithmic function
(see e.g. [4, Ch.1.3]), transformations (2) and (3) of (1) do not bring something new
in this area. Actually, l(x) serves as a model function in studying the possibilities
of the forms like (2) and (3) for acceleration of power series. Such transformations
can occur in calculating other transcendental functions like Lik(x) or the Euler
digamma function. Another aim of the study is to point out to some interesting
and difficult analytical problems which appear meanwhile.

Note that for the transformation of (1) in the form (2) (similarly for (3)) the
convergence of the series does not matter. Given {an}, if we fix the series {αn},
then the numbers {An} in (2) are obtained easily by the recursive formulas

A1α
n−1
1 +A2α

n−2
2 + · · ·+An−1αn−1 +An = an. (4)

Conversely, if we choose in advance {An}, then the numbers {αn} are obtained by
the same formulas, provided no division by zero is encountered. Formally, it is an
easy task to rewrite the series (1) in the form (2) with coefficients {An} that tend
arbitrarily fast to 0. However, the requirement the series in (2) to converge to f(x)
in a neighborhood of x = 0 poses the restriction on the poles {1/αn} to be distinct
from zero, that is, the sequence of parameters {αn} to be bounded.

What we have is a coding of the power series (1) by using twice as much
parameters {An, αn} (or {Cn, γn}). From this point of view we arrive at an extremal
problem of optimizing over the extra parameters according to certain minimization
criterion. We shall try to formulate simple criteria in order to decompose the

4 Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 3–44.



minimization of the overall series {An} ({Cn}) by greedy type algorithms, which
determine the series step by step. Also, we study numerically other rational forms
generalizing (2).

Finally, lacunary series are of great interest. We shall prove that the unique
transformation of l(x) in the type (2) with A2k = 0, k = 1, 2, . . . is divergent. In
contrast, it is easy to obtain lacunary representations of l(x) in the type (3) that

converge. Actually, the well known series for ln
(1 + z

1− z

)
, |z| < 1, can be written as

l(x) = 2
(
z +

z3

3
+
z5

5
+
z7

7
+ · · ·

)
=: 2L(z), z =

x

2− x
, (5)

which is of type (3) with parameters sequences {γn} =
{

1
2 ,

1
2 ,

1
2 , . . .

}
and {Cn} ={

1
1 , 0,

1
3

(
1
2

)2

, 0, 1
5

(
1
2

)4

, 0, . . . ,
}

. Also, this example shows that there is a choice of

a bounded sequence {γn} in (3) for l(x), having rate of convergence of {Cn} as a
geometric series with ratio 1

2 .

The paper is organized as follows. In Section 2 some classical methods for
accelerating series are applied to l(x) and L(z). In Section 3 we describe numerical
experiments for optimization of the representations of l(x) and zL(z) in the form

(2) and the lacunary form f(x) ≈
∑
i

Bi
1−bix

x2i+1

(1−βix)ki
. Using different algorithms

we found parameter sequences such that |αi|(|βi−1|) ≤ 1 and |Ai|(|Bi−1|) ≤ qi−1,
i = 1, . . . , i1 (q < 1). The above representation with βi = p is of particular interest.
This special case is partially investigated for convergence in Section 4. As a result,
the following theorem is proved there:

Theorem 1. The unique lacunary representations

a) l(x) ≈
∞∑
i=0

Aix
2i+1

1− aix
and b) L(z) ≈

∞∑
i=0

Biz
4i+1

1− biz2

are divergent for every nonzero value of the argument.

In Section 5 we consider the representation (3) for l(x) and prove the following

Theorem 2. Let {Cn} and {γn} be the parameters in (3) for f(x) = l(x).
Then, for every ε ∈ (0, 1],

a) there exists a choice of {γn} such that γn ∈ [0, 1] and the corresponding
coefficients satisfy |Cn| < M(4− ε)−n for every n ∈ N with some M = M(ε).

b) there is no choice of {γn} such that γn ∈ [0, 1] and |Cn| < M(8 + ε)−n for
every n ∈ N with some M = M(ε).

As a consequence of this we obtain

Theorem 3. Let f(x) = l(x) and the parameters {αn}∞1 , {γn}∞1 satisfy the
restrictions |αn|, |γn| ≤ 1. Then for the sequences {An}∞1 and {Cn}∞1 determined
by (2) and (3) correspondingly, there is no positive number M such that

|An| ≤M · 31−n for every n ∈ N or |Cn| ≤M · 25−n for every n ∈ N.

Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 3–44. 5



Also, in this section some concrete series with periodic {γn} are obtained and a
comparison of the series (3) with continued fraction representation for l(x) is done.
Finally, in Section 6 we consider some accelerated series for other transcendental
functions, including Li2(x) and ψ(x).

We finish the introductory section with presenting another point of view.
The form (2) can be considered as a power series with varying coefficients, i.e.,
f(x) ≈

∑∞
n=0 Fn(x).xn, where {Fn(x)} are functions of a specific class (in (2),

Fn(x) = An
1−αnx ). Obviously, the simplest choice Fn(x) = An + Bnx brings noth-

ing for the acceleration of (1). The next natural choice actually is the complete
linear fractional transformation Fn(x) = An+Bnx

Cn+Dnx
. This form perhaps deserves

more attention than (2) because of the following property, which is preserved by
the form (3), but not by (2). Namely, if the first n poles {γ−1

i }ni=1 in (3) inter-
change their order, then the residual (and the n-th partial sum) do not change.
Similarly, in the above generalization of (2), we can change the order of two
poles, with an appropriate change of the other parameters, so that the residual

of the series remains the same. Indeed, let S =
αn + βnx

1− γnx
xn +

αn+1 + βn+1x

1− γn+1x
xn+1

be the sum of two consecutive terms. Then, if γn+1 6= 0, we have the identity

S =
ᾱn + β̄nx

1− γn+1x
xn +

ᾱn+1 + β̄n+1x

1− γnx
xn+1, where ᾱn = αn, β̄n = αn+1 − αnγn+1 +

βn+1

γn+1
, ᾱn+1 = αnγn + βn − βn+1

γn+1
and β̄n+1 = γn

βn+1

γn+1
. In the exceptional case

γn+1 = 0 we have S =
αn + αn+1x

1− 0.x
xn +

αnγn + βn
1− γnx

xn+1 + βn+1x
n+2 and the last

summand can be joined to the next term in the series.

2. SOME SIMPLE EXAMPLES

Let us consider the case αn = 1, n = 1, 2, 3, . . .. Then it is easily verified that

l(x) =
1

1− x

(
x− x2

1.2
− x3

2.3
− x4

3.4
− · · ·

)
.

This is a Kummer type acceleration but also it can be explained as follows. l(x) has
a singularity at x = 1 which have logaritmic order divergence. Then (1− x)l(x) is
“more regular”, having at least finite limit when x→ 1. This explains why the later
function has smaller Maclaurin series than l(x). Following this line of reasoning,
for every r ∈ N, we can write the acceleration formula:

1

r!

(
1− 1

x

)r
l(x) = Pr−1

( 1

x

)
+

∞∑
n=1

xn

n(n+ 1) . . . (n+ r)
,

where Pr−1(z) is a polynomial of degree r − 1. The proof easily follows if we

substitute in the infinite sum 1
n(n+1)...(n+r) = (−1)r

r! ∆r 1
n by 1

r!

∑r
k=0

(
r
k

) (−1)k

n+k . For

6 Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 3–44.



example, when r = 2 it follows that ([3, 1.513])(
1− 1

x

)2

l(x) =
1

x
− 3

2
+ 2

∞∑
n=1

xn

n(n+ 1)(n+ 2)
.

Since it is not easy to improve formula (5) for l(x), by the end of this section
we are going to accelerate L(z). Similarly as above we get(1

z
− z
)
L(z) = 1− 2z

( z

1.3
+
z3

3.5
+
z5

5.7
+
z7

7.9
+ · · ·

)
and (1

z
− z
)2

L(z) =
1

z
− 5

3
z + 8

( z3

1.3.5
+

z5

3.5.7
+

z7

5.7.9
+ · · ·

)
.

For another type acceleration let us consider the changes of the variables

L(z) = z

∞∑
n=0

z2n

2n+ 1
= z

∞∑
n=0

tn

2n+ 1
= z

∞∑
n=0

Cn

( t

1− pt

)n
=: zf(τ),

where t = z2, τ =
t

1− pt
and p is a real parameter. We shall see that the best

choice for p, when the sequence {Cn} decreases in the fastest way, is p = 1
2 . Indeed,

since the change τ = t
1−pt and its inverse t = τ

1+pτ are regular in a neighborhood

of the origin, the same is true for the function f(τ). The radius of convergence of
f(τ) depends on its smallest singular point. For real τ we have

f(τ) =


1

2
√
t
ln 1+

√
t

1−
√
t
, for t ∈ (0, 1)

1
2
√
−tarctan

√
−t, for t ∈ [−1, 0)

1, for t = 0

, t =
τ

1 + pτ
.

It is quite clear from this expression that the singular points of any analytic continu-
ation of f(τ) are τ = − 1

p and τ = 1
1−p , when t = 1. (Note that τ = 0 is a removable

singular point.) Then the radius of convergence of f is R(p) = min{ 1
|p| ,

1
|1−p|} and

it is easy to verify that maxp∈RR(p) = R(1/2) = 2. As a result we conclude that
the optimal acceleration of L(z) by this transformation gives coefficients {Cn} that
tend to 0 like a geometric series with ratio 1

2 . Next, with p = 1
2 , it is easy to check

out the identity f(τ) + τ(2 + τ)f ′(τ) = 1+τ/2
1−τ/2 from where we find the recurrence

formula

(2n+ 1)Cn + (n− 1)Cn−1 = 21−n, n = 1, 2, 3, . . . (C0 = 1).

Thus, the transformed series starts as follows

L(z) = z

[
1 +

1

3
τ +

1

2.5!!
τ2 +

11

4.7!!
τ3 +

39

8.9!!
τ4 +

633

16.11!!
τ5 + · · ·

]
, τ =

z2

1−z2/2
.

Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 3–44. 7



An acceleration of the same order but with more explicit coefficients can be
obtained using Euler transform applied in certain succession. If F (x) =

∑∞
n=0 anx

n

then the Euler transform is defined by the identity
1

1 + t
F
( t

1 + t

)
=

∞∑
n=0

(∆na0)tn,

where ∆ai = ai+1 − ai and ∆nai = ∆(∆n−1ai). Sometimes by Euler transform it
is understood the particular case for x = −1, i.e. when t = − 1

2 , which converts an
alternating numerical series usually into a faster converging one. For an = 1

2n+1 ,

n = 0, 1, 2, . . . it is easy to find that ∆na0 = (−1)n (2n)!!
(2n+1)!! . Then, the Euler

transform leads to

L(z) =
z

1− z2

∞∑
n=0

(2n)!!

(2n+ 1)!!
(−y)n, y =

z2

1− z2
, (6)

which is the well known series ([3, 1.515])

ln(
√
y +
√

1 + y)
√

1 + y
=

∞∑
n=0

(−1)n
(2n)!!

(2n+ 1)!!
(
√
y)2n+1.

Note that the series (6) has approximately the same rate of convergence as (5), and
if we apply the Euler transform to (6), then we return exactly at (5). Actually, the
idempotence is a general property of the Euler transform after the change y = −t
(see [5]). The key observation for accelerating L(z) in this way is that an application
of the Euler transform from a larger index is more effective. So, leaving the first
term in (5) unchanged and applying Euler transform to the residual we get

L(z) = z

{
1 +

z2

1− z2

[1

3
− 2!!

5!!
y +

4!!

7!!
y2 − 6!!

9!!
y3 +− · · ·

]}
, y =

z2

1− z2
.

Again leaving the first term in the square brackets and applying the Euler transform
to the residual (with argument −y) we obtain

L(z) = z

{
1 +

1

3
y − z2y

[ 2

3.5
+

2

5.7
z2 +

2

7.9
z4 +

2

9.11
z6 + · · ·

]}
.

Continuing in the same way we find

L(z) = z

{
1 +

1

3
y − 2

3.5
yz2 − 3y2z2

[2!!

7!!
− 4!!

9!!
y +

6!!

11!!
y2 − · · ·

]}
= z

{
1 +

1

3
y − 2!

5!!
yz2 − 3!

7!!
y2z2 + y2z4

[ 4!!

5.7.9
+

4!!

7.9.11
z2 +

4!!

9.11.13
z4 + · · ·

]}

= z

{
1 +

1

3
y − 2!

5!!
yz2 − 3!

7!!
y2z2 +

4!

9!!
y2z4 + 5!!y3z4

[ 4!!

11!!
− 6!!

13!!
y +

8!!

15!!
y2 − · · ·

]}
and so on to arrive at the series

L(z) = z

{
1 +

1!

3!!
y − 2!

5!!
yz2 − 3!

7!!
y2z2 +

4!

9!!
y2z4 +

5!

11!!
y3z4 − 6!

13!!
y3z6−· · ·

}
. (7)

8 Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 3–44.



The same result can be obtained more directly. Namely, starting from (6) and using
the identities 1

1−z2 = 1 + y and y2 = yz2(1 + y) we can transform L(z) as follows:

L(z) = z

{
1 +

1

3
y − y2

[2!!

5!!
− 4!!

7!!
y +

6!!

9!!
y2 − 8!!

11!!
y3 + · · ·

]}
= z

{
1 +

1

3
y − yz2

[ 2!

5!!
+

3!

7!!
y − 3.4!!

9!!
y2 +

3.6!!

11!!
y3 − 3.8!!

13!!
y4 +− · · ·

]}
= z

{
1 +

1

3
y − 2!

5!!
yz2 − 3!

7!!
y2z2 + 3y3z2

[4!!

9!!
− 6!!

11!!
y +

8!!

13!!
y2 −+ · · ·

]}
=z

{
1+

1

3
y− 2!

5!!
yz2− 3!

7!!
y2z2+3y2z4

[4!!

9!!
+

5.4!!

11!!
y− 5.6!!

13!!
y2+

5.8!!

15!!
y3−· · ·

]}
=z

{
1+

1

3
y− 2!

5!!
yz2− 3!

7!!
y2z2+

4!

9!!
y2z4+

5!

11!!
y3z4−5!!y4z4

[ 6!!

13!!
− 8!!

15!!
y+· · ·

]}
=z

{
1+

1

3
y− 2!

5!!
yz2− 3!

7!!
y2z2+

4!

9!!
y2z4+

5!

11!!
y3z4−5!!y3z6

[ 6!!

13!!
+

7.6!!

15!!
y−· · ·

]}
and so on. Finally, let us remark that formula (7) is of type (3) with z2 = x.

3. SOME COMPUTER EXPERIMENTS

1. We start with the choice of the parameters {αn}∞n=1 in the form (2) of f(x) =
l(x), suggested by the simplest greedy algorithm. Namely, we choose every next
αn such that |An+1| to be minimal. Thus we arrive at a lacunary representation
of l(x). Let us explain the derivation of the first four coefficients. Clearly A1 = 1
and the requirement A2 = 0 leads, by (4), to the equation A1α1 + 0 = 1

2 , i.e.
to α1 = 1

2 . As a result of A2 = 0, we have no control on A3 and the relation
A1α

2
1 +A2α2 +A3 = 1

3 gives A3 = 1
12 . Next, the choice A4 = 0 is possible because

the equation A1α
3
1 + 0 + A3α3 + 0 = 1

4 has a solution α3 = 3
2 . Continuing in this

way we obtain

{αn} = { 1
2 , ∗,

3
2 , ∗,

35
12 , ∗,

35077
6324 , ∗,

167344077283
15930229780 = 10.504..., ∗, 19.899..., ∗, . . .};

{An} = {1, 0, 1
12 , 0,−

1
20 , 0,

527
4032 , 0,−

1511407
1214208 , 0, 42.385..., 0,−5174.4..., . . .},

where ”*” means an arbitrary number. It is seen that the obtained series diverge
rapidly and we shall prove this in the next section. An heuristic explanation is from
the type of the recurrence relations (4). Once an |αn| larger than 1 occurs, then
larger and larger numbers will appear in (4), which most likely will draw {|An|} to
infinity. A similar behavior is observed in the following lacunary representation

L(z) ≈ z

1− 1
3z

2
+

4
45z

5

1− 25
21z

2
−

4
147z

9

1− 1609
693 z

2
+

0.043699... z13

1− 4.4448... z2
− 0.26698... z17

1− 8.4284... z2
· · · .

Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 3–44. 9



2. In view of the above observations, in the next two examples we pose the
requirement for the summands to be regular in the open unit disk, i.e. |αn| ≤ 1.
We have that

l(x) ≈ x

1− 0.2x
+

0.3x2

1− 0.8x
+
x3/18.75

1− x
− x4/300

1 + 0.4x
− x5/101.35...

1− 0.8x
− x6/694.44...

1− x

− x7/767.54...

1− 0.x
− x8/2425.6...

1 + x
− x9/9582.6...

1− α9 x
± · · · ,

where the coefficients satisfy |An| ≤ 31−n, n = 1, ..., 9. For the method used for
obtaining this series see the next example. Now we formulate the following

Hypothesis 1. There is a choice of {αn} ⊂ R with |αn| ≤ 1 such that the
coefficients in the form (2) of l(x) satisfy |An| ≤M qn for some M > 0 and q < 1.

For the function L we found that

L(z)≈ z

1− 51
350 z

2
+
z3/5.329...

1− 1009
1400 z

2
+
z5/22.96...

1− z2
− z7/806.9...

1 + 59
100 z

2
− z9/259.3...

1− z2

+
z11/1039.7...

1− 1567
2100 z

2
− z13/4274.2...

1 + z2
+
z15/16697.9...

1 + z2
− z17/73749.6...

1− α9 z2
...,

(8)

where the n-th coefficient is less than 41−n for n ≤ 9. The method is the following
branch and bound algorithm. Fix an integer m and consider k nested cycles for
αn, n = 1, ...., k ranging from −1 to 1 with step 2/m. The bound is An+1 ≤ 4−n

and if this is not fulfilled, the corresponding cycle continues with the next iteration,
avoiding going into deeper levels. The algorithm works successfully up to k = 7.
For (8), a modification was used to justify the coefficients to k = 8.

3. Consider the following lacunary representation

L(z) ≈
∞∑
k=0

Bk

( z

1− βkz2

)4k+1

. (9)

The parameters in (9) are uniquely determined, with the first several of them given
by:

B0 = 1, β0 =
1

3
; B1 =

4

45
=

1

11.25
, β1 =

5

21
= 0.23809...;

B2 =
92

632
=

1

43.14...
, β2 =

163

759
= 0.21475...;

B3 =
22458728

3015483471
=

1

134.2...
, β3 =

4150546877

20339185545
= 0.20406...;

B4 =
1

378.6...
, β4 = 0.197876...;

B5 =
1

1007.8...
, β5 = 0.193803...;
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Thus, we can formulate the following

Hypothesis 2. The representation (9) of L(z) converges when z belongs to a
certain disk centered at the origin.

Note that the analogous representation for l(x) leads exactly to (5).

4. Let us consider the following combination of (2) and the above form:

L(z) ≈ B0

1− b0z2

( z

1− β0z2

)
+

B1

1− b1z2

( z

1− β1z2

)5

+
B2

1− b2z2

( z

1− β2z2

)9

+ · · · .

(10)
In this form, keeping the lacunary property, we have a series of extra parameters in
order to optimize the coefficients. Say if we choose {βn}, the parameters {Bn} and
{bn} are uniquely determined, provided it does not appear division by zero. The
following choice satisfy: |βn|, |bn| ≤ 1 for n = 0, ..., 3; |Bn| ≤ 20−n for n = 0, ..., 4;
and provide a possibility for arbitrary small |B5| with |β4| ≤ 1:
{βn}30 = {0.4254, 0.1427, 0.0238, 0.411};
{bn}30 = {−0.092066..., 0.889557..., 0.925184...,−0.478074...};
{Bn}40 = {1, 1/20.1111...,−1/521.310..., 1/19118.7..., 1/161497.8...}.

The method is by considering the graphs of two consecutive Bn and Bn+1

with respect to βn−1 and βn in order to choose βn−1. The graph of Bn(βn−1) is a
parabola and we introduce the notion balanced choice of the previous parameters
if the graph intersects the abscissa for βn−1 ∈ [−1, 1], that is if we can make |Bn|
arbitrarily small. But if we take Bn = 0 then Bn+1 becomes undefined because of
division by zero. This is clearly seen from the second graph of Bn+1(βn−1, βn) which
has infinite branches, at the places where Bn = 0. So, it is good to choose βn−1

close to these vertical asymptotes (the zeros of Bn(βn−1)) so that the corresponding
section of the 3D graph (which is the planar graph for the next step) crosses the
zero level. Actually, considering the 3D graphs is an auxiliary process, and we can
avoid this. We can try several specific values of βn−1 close to the zeros of Bn(βn−1)
so that |Bn| is small and the next graph of Bn+1(βn), βn ∈ [−1, 1] has zeros, i.e.
the choice of βn−1 to be balanced. If, say, Bn(βn−1) has two zeros in [−1, 1], then
it can happen to exist four appropriate areas for choosing βn−1, on the both sides
of the two zeros. An additional reasoning which helps the choice is the goal to
keep the parameters {bn} in [−1, 1]. Then, the choice of βn−1 has to be such that
|bn−1| ≤ 1 and since the function bn(βn) = A(βn−1)βn + B(βn−1) is linear, it is
easy to estimate in advance the range of bn when βn ∈ [−1, 1].

A natural question is if there exists a balanced choice of {βn−1} for every
n ∈ N.

Revisiting example (9) considered as a particular case of (10) we make the
following observations. The choice of {βi}n−1

i=0 is balanced up to n = 30, as the
graphs of Bn+1(βn) (with specified previous {βi}) have two roots in [−1, 1] and the
specific value for βn in (9) is between the middle of them and the second root. It
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seems that the series {βn} has a limit around 0.17 and the ratios Bn+1/Bn belong
to (0, 1/2).

Other interesting choice is to specify βn at the extreme point of the parabola
y = Bn+1(βn). On the basis of calculations made up to n = 30, the situation
appears to be very similar to the one described above, but now βn is exactly the
middle of the two roots of Bn+1(βn). Surprisingly, we observe that bn = βn and
seemingly this series tends to the same limit as above.

Clearly, there is much subjectivity in the approach described above, but it
is not easy to avoid it. For example, if we use the least squares criterion Mn =
λnB

2
n + (1 − λn)B2

n+1 → min then the subjectivity transfers to the choice of the
λ-s. The function Mn(βn−1, βn) usually has several local extrema and a decent
optimization of the sequence {Bn}k1 needs considering of a tree of possibilities.
Note that the attempt to manage the parameters by minimizing of the three term
sums λnB

2
n +µnB

2
n+1 + νnB

2
n+2 was not successful because of the complicatedness

of this three variable function.

4. CONVERGENCE CONSIDERATIONS

Let us consider the representation (10) with equal parameters βn = p, n =
0, 1, 2, .... This form is motivated as a simple generalization of the lacunary variant
of (2) (for zL(z), x = z2), which hopefully will converge for certain p. We start the
study of the series {Bn(p)} and {bn(p)} with some particular examples. For p = 0
we have the second lacunary example from 3.1, while for p = 1

4 we have

{Bn} = {1, 1.0972...10−1, 2.1442...10−2, 4.5910...10−3, 8.9862...10−4,−7.5297...10−5,

3.0626...10−3,−3.8502...10−2, 3.4662...,−1.2595...103, 1.6502...106, . . .};
{bn} = {1/12,−0.15898...,−0.25539...,−0.20173..., 0.17256...,−6.7384...,−8.4293...,

− 17.216...,−33.759...,−64.545...,−122.64..., . . .}.

The behavior of this sequence is typical: For common values of p, in the begin-
ning |Bn| decreases like a geometric series, later on the decreasing slows down and
changes to increasing and finally we observe again a rapid divergence to∞. Slightly
before the turning of {Bn} it is preceded by breaking the restriction |bn| ≤ 1. Espe-
cially, for p = 0.17 the decreasing lasts up to n = 336, when B336 = 9.1654...10−119,
and after that again |Bn| goes to ∞. A natural question is whether there exist real
values of p for which {Bn(p)}∞0 is bounded. However, a numerical search for such
values encounters some difficulties. For example, the above number was obtained
by using long arithmetics and a precision of 200 decimal digits was not sufficient.

Usually we get the limit behavior bn ≈ A.qn and Bn ≈ (−1)nB.qn
2−αn with

q > 1. While A, B and α in the above empirical formulas depend on p, it is
interesting that q ≈ 1.894 is an absolute constant. Indeed, assume that the above
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relations hold as asymptotic equivalences ”∼” and |q| > 1. By (10) with βn = p we
obtain the following system for the coefficients Bn and bn:

B0

2n∑
i=0

pib2n−i0 +B1

2n−2∑
i=0

(
4+i
i

)
pib2n−2−i

1 +B2

2n−4∑
i=0

(
8+i
i

)
pib2n−4−i

2 + · · ·+Bn =
1

4n+ 1
,

B0

2n+1∑
i=0

pib2n+1−i
0 +B1

2n−1∑
i=0

(
4+i
i

)
pib2n−1−i

1 +B2

2n−3∑
i=0

(
8+i
i

)
pib2n−3−i

2 + · · · (11)

+Bn(bn + (4n+ 1)p) =
1

4n+ 3
.

We observe that, for a sufficiently large n the back terms in (11) are significant,
while the first terms are relatively small (we assume that |p| < 1). Also, the first
summands b2j+δn−j , δ ∈ {0, 1} in the rear sums (for i = 0) are equivalent to the whole
sums. For example, next to the last term in the left hand side of the first equation
is Bn−1(b2n−1 +(4n−3)pbn−1 +(2n−1)(4n−3)p2) ∼ Bn−1b

2
n−1 for n→∞. That’s

why the terms containing p are negligible for n→∞ according to the assumption.
Thus, for a sufficiently large n we come to the limit system

Bn.1 +Bn−1.b
2
n−1 +Bn−2.b

4
n−2 + · · ·+B0.b

2n
0 = o

(
Bn
)
,

Bn.bn +Bn−1.b
3
n−1 +Bn−2.b

5
n−2 + · · ·+B0.b

2n+1
0 = o

(
Bn
)
.

Substituting here the asymptotic relations for bn and Bn we see that A2n and qαn

are combined. Then, with u = A2qα, letting n → ∞ we come to the following
system

1− uq−12

+ u2.q−22

− u3.q−32

+ · · · = 0,

1− uq−1.2 + u2.q−2.3 − u3.q−3.4 + · · · = 0.

We did not investigate this system for all real solutions, but considering truncated
systems, which are algebraic, we found a series of real solutions that stabilizes to
(q, u) = (1.8947..., 6.1450...).

In order to understand better the behavior of the series {Bn} and {bn} we
consider first the truncated recurrence system

Bn +Bn−1

[
b2n−1 +

(
4n−3

1

)
pbn−1 +

(
4n−2

2

)
p2
]

=
1

4n+ 1
(12)

Bn
(
bn+(4n+1)p

)
+Bn−1

[
b3n−1+

(
4n−3

1

)
pb2n−1+

(
4n−2

2

)
p2bn−1+

(
4n−1

3

)
p3
]

=
1

4n+3
.

and its specification (with p = 0)

Bn +Bn−1b
2
n−1 =

1

4n+ 1

Bnbn +Bn−1b
3
n−1 =

1

4n+ 3
.

(13)
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The system (13) appears to have a similar behavior as (11) in qualitative sense,
but in quantitative sense it is weaker. Depending on B0 and b0, in the general case
the series fluctuates in the beginning and from some place on stabilizes to the
asymptotic formulas bn → ρ, |ρ| > 1 and Bn ∼ C(−ρ2)n. It is possible that the
series terminates if some Bk vanishes and consequently bk = c/0. We shall prove
a ”divergence criterion” which imply the asymptotic formulas (if they hold) for a
concrete initial pair (B0, b0).

Consider first the case when Bk = ε for a sufficiently small |ε|. Then, bk = c/ε
and let us assume that |c| is not very small, say ε = o(c) for ε(B0, b0) → 0 and
B0 = const. For the next terms, we find from (13)

Bk+1 =
1

4k + 5
− c2

ε
= −

( c
ε

)2

Bk

(
1 +O(ε)

)
bk+1 =

( 1

4k + 7
− c3

ε2

)
/Bk+1 = bk

(
1 +O(ε)

)
.

Similarly, Bk+j =
(
− c2

ε2

)j
Bk

(
1 +O(ε)

)
and bk+j = bk

(
1 +O(ε)

)
for every fixed

j ∈ N. Thus, if Bk happens to be very close to 0, then the asymptotic formulas
take place immediately after k with a large ρ.

Proposition 1. Let {(Bn, bn)} satisfy (13) and for a fixed k the conditions

|bk−1| ≥ r > 1 and |Bk−1b
2
k−1| ≥

Q

4k + 1
with Q > 3 hold true. Then

|bk| ≥ r −
1 + r

Q− 1
and |Bkb2k| ≥

r2(Q− 3)2

(4k + 5)(Q− 1)
.

Proof. From (13) it follows |Bk| ≥ |Bk−1b
2
k−1|− 1

4k+1 and Bk
bk
bk−1

+
(

1
4k+1−Bk

)
= 1/bk−1

4k+3 . Therefore, |Bk| ≥ Q−1
4k+1 and |Bk| ·

∣∣∣ bk
bk−1

− 1
∣∣∣ ≤ 1

4k+1 + 1/r
4k+3 ≤

1+1/r
4k+1 . As

a consequence we have
∣∣∣ bk
bk−1
− 1
∣∣∣ ≤ 1+1/r

Q−1 . Hence, bk
bk−1

≥ 1− 1+1/r
Q−1 , and since the

latter number is positive (Q > 3), we obtain that

|bk| ≥ |bk−1|
(

1− 1 + 1/r

Q− 1

)
≥ r
(

1− 1 + 1/r

Q− 1

)
= r − 1 + r

Q− 1

and

|Bkb2k| ≥
Q− 1

4k + 1

(rQ− 2r − 1

Q− 1

)2

>
r2(Q− 3)2

(4k + 5)(Q− 1)
.

�

The following assertion (which is a divergence criterion) makes use of the fact
that for a sufficiently large Q, the estimates from Proposition 1 essentially repeat
recursively and imply that {Bn} increases at least as a geometric sequence.
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Corollary 1. Let {(Bn, bn)} satisfy (13) and for a given k the estimates |bk| ≥
q + ε and |Bkb2k| ≥

Q
4k+5 hold true, where q > 1, ε > 0 and Q > 3. If in addition

ε(Q− 3) ≥ q2

q−1 , then for every j ∈ N0 we have

|bk+j | ≥ q, |Bk+jb
2
k+j | ≥

(Q− 3)q2j

4(k + j) + 5
and |Bk+j+1| ≥

(Q− 3)q2j − 1

4(k + j) + 5
.

Before proving Corollary 1, we will prove a technical lemma.

Lemma 1. For given q > 1, ε > 0 and Q > 3 let us define the sequences
{εj}∞0 and {Qj}∞0 by ε0 = ε, (q + εj+1) = (q + εj) − 1+(q+εj)

Qj−1 and Q0 = Q,

Qj+1 = (q + εj)
2 (Qj−3)2

(Qj−1) . If in addition ε(Q− 3) ≥ q2

q−1 , then for every j ∈ N0 the

inequalities εj ≥ q2

(q−1)(Qj−3) > 0 and (Qj − 3) ≥ (Q− 3)q2j > 0 hold true.

Proof. Clearly, it is enough to prove the assertion only for j = 1, as for larger
j it follows inductively. For brevity, set Q̄ := Q− 3.

We start with the proof of inequality (Q1 − 3) ≥ (Q− 3)q2. It is equivalent to

(q + ε)2Q̄2 ≥ (Q̄q2 + 3)(Q̄+ 2).

In view of the additional assumption for ε, the above will follow from

q2Q̄2 +
2q3

q − 1
Q̄+

q4

(q − 1)2
≥ (Q̄q2 + 3)(Q̄+ 2),

which is
2q3

q − 1
Q̄+

q4

(q − 1)2
≥ (2q2 + 3)Q̄+ 6 and easily follows by termwise com-

parison of the summands in the left- and right-hand sides, taking into account that
q > 1.

The inequality ε1 ≥
q2

(q − 1)(Q1 − 3)
, by the definitions and the just proved

Q1 > 3, is equivalent to[
ε
(Q− 2

Q− 1

)
− 1 + q

Q− 1

]
·
[
(q + ε)2 (Q− 3)2

Q− 1
− 3
]
≥ q2

q − 1
.

It is not difficult one to verify that the first factor in the left-hand side is positive,

as it is positive for ε replaced with its lower bound q2

(q−1)(Q−3) . Therefore, the above

inequality will hold true if it is true with ε = q2

(q−1)(Q−3) , which is

[ q2

q − 1
· Q− 2

(Q− 1)(Q− 3)
− 1 + q

Q− 1

]
·
[(
q +

q2

(q − 1)(Q− 3)

)2 (Q− 3)2

Q− 1
− 3
]
≥ q2

q − 1
.

The latter is equivalent to the inequality[
q2 + Q̄

]
·
[
q2(q−1)2Q̄2 +2q3(q−1)Q̄+q4−3(q−1)2(Q̄+2)

]
≥ q2(q−1)2(Q̄+2)2Q̄
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which after simplification takes the form AQ̄2 + B Q̄ + C ≥ 0 with coefficients
A = (q − 1)

(
2q3 + (q − 1)(q4 − 4q2 − 3)

)
, B = q4 + 2(q − 1)q5 − (q − 1)2(7q2 + 6)

and C = q2(q4 − 6(q − 1)2).

It is easy to verify that polynomials A, B and C are positive for q > 1. The
positivity C follows from q4−6(q−1)2 = (q−1)4+4(q−1)3+4(q−1)+1 > 0. To check
that A > 0 we write 2q3 + (q − 1)(q4 − 4q2 − 3) = 2q3 − 7(q − 1) + (q − 1)(q2 − 2)2

and 2q3 − 7(q − 1) = 2(q − 1)3 + 6(q − 1)2 − (q − 1) + 1 > 0 since q − 1 is
majorized either by (q − 1)2 or by 1. Finally, to verify that B > 0 we rewrite it
as
(
q4 − 6(q − 1)2

)
+ q2(q − 1)

(
2q3 − 7(q − 1)

)
, where the positivity of the both

summands was already shown. The lemma is proved. �

Proof of Corollary 1. Define the sequences {εj}∞0 and {Qj}∞0 as in Lemma 1.
The definitions are coherent with Proposition 1 so that (by induction) |bk+j | ≥ q+εj
and |Bk+jb

2
k+j | ≥

Qj
4(k+j)+5 for j ≥ 0. The conditions of Proposition 1, q + εj > 1

and Qj > 3, are ensured by Lemma 1 on the basis of the additional condition for ε
and Q. Furthermore, the estimates from Lemma 1, εj ≥ 0 and (Qj−3) ≥ (Q−3)q2j ,
imply the first two claimed estimates in the corollary. The third inequality is an
elementary consequence from the second one and the first row of (13). �

The next assertion claims that, essentially, the above lower estimates describe
the asymptotical behavior of the series generated by (13).

Corollary 2. Under the conditions of Corollary 1 the asymptotic relations
bn → ρ, |ρ| > 1 and Bn ∼ C (−ρ2)n hold for n → ∞, where ρ = ρ(B0, b0) and
C = C(B0, b0).

Proof. Denote Bnb
2
n by Mn. Increasing if necessary the index k in Corollary 1,

we may assume that Q > 6, hence (4(k + j) + 5)Mk+j > 3 for every j > 0. Using

(13) we obtain Bk+j+1 = −Mk+j

(
1− 1

(4(k+j)+5)Mk+j

)
and

bk+j+1 =
−Mk+jbk+j + 1

4(k+j)+7

Bk+j+1
=
bk+j − 1

(4(k+j)+7)Mk+j

1− 1
(4(k+j)+5)Mk+j

=: bk+j

(
1 + τk+j

)
.

Then we have

|τk+j | =

∣∣∣∣∣
1

(4(k+j)+5)Mk+j
− 1

(4(k+j)+7)bk+jMk+j

1− 1
(4(k+j)+5)Mk+j

∣∣∣∣∣ ≤
(

1
4(k+j)+5 + q

4(k+j)+7

)
1

|Mk+j |

1− 1
(4(k+j)+5)|Mk+j |

≤ 2

(4(k + j) + 5)|Mk+j |
1

1− 1/3
≤ 3

(Q− 3)q2j
≤ 1/2

q2j
.

Therefore, for every natural n ≥ k and j the inequalities

bn+j

bn
=

j−1∏
i=0

(1 + τn+i) ≥
j−1∏
i=0

(1− |τn+i|) ≥
∞∏
i=0

(1− |τn+i|) ≥ 1−
∞∑
i=0

|τn+i|
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and

bn+j

bn
=

j−1∏
i=0

(1 + τn+i) ≤
j−1∏
i=0

(1 + |τn+i|) ≤
∞∏
i=0

(1 + |τn+i|) ≤ exp
( ∞∑
i=0

|τn+i|
)

hold true. As a consequence, in view of the estimates for τm, we obtain

− (1/2)

q2(n−k)(1− q−2)
≤ bn+j

bn
− 1 ≤ exp

( (1/2)

q2(n−k)(1− q−2)

)
− 1.

Since these bounds can be arbitrarily close to 0 for a sufficiently large n and {|bm|}
is bounded (by the same inequalities with n = k), we conclude that the sequence
{bm} is fundamental, and hence convergent to a limit ρ with |ρ| ≥ q > 1.

In addition, letting j to infinity, we find the estimates

− 1/2

q2(n−k)(1− q−2)
≤ ρ

bn
− 1 ≤ exp

( 1/2

q2(n−k)(1− q−2)

)
− 1, n ≥ k.

Or, we can simplify these to∣∣∣ ρ
bn
− 1
∣∣∣ ≤ c(q)

q2(n−k)
, n ≥ k,

where c(q) = maxx∈[0,1]
1
x

[
exp

(
x/2

1−q−2

)
− 1
]
. Then, with bn =: ρ/(1 + θn), the

bound |θn| ≤ c(q)q2(k−n) holds for n ≥ k. Next, by the first equation in (13) it
follows that

Bn+1

Bn
= −b2n

(
1− 1

b2n(4n+ 5)Bn

)
=

−ρ2

(1 + θn)2

(
1− 1

(4n+ 5)Mn

)
.

Thus, for n ≥ k we have

Bn = Bk(−ρ2)n−k
n−k−1∏
j=0

(
1 + θk+j

)−2
(

1− 1

(4(k + j) + 5)Mk+j

)
.

Finally, the estimates |θk+j | ≤ c(q)q−2j and 1
(4(k+j)+5)|Mk+j | ≤

1
(Q−3)q2j ensure the

convergence of the infinite product P :=
∏∞
j=0

(
1 + θk+j

)−2
(

1 − 1
(4(k+j)+5)Mk+j

)
.

(In view of Corollary 1 we have Bn 6= 0 and the all factors in P do not vanish.)
Therefore, the partial product is asymptotically equivalent to its limit and we obtain
Bn ∼ BkP (−ρ2)n−k = C(−ρ2)n. The proof is complete. �

Let us consider an example for application of Corollary 1. Let B0 = 1 and
b0 = 0. By (13) we obtain: B1 = 1/5, b1 = 5/7; B2 = 4/441, b2 = 153/77;
B3 = 0.04111..., b3 = −0.10924...; B4 = 0.05833..., b4 = 0.90318...; B5 = 3.4754...×
10−5, b5 = 14.4152...; B6 = 0.03277..., b6 = −2.04617...; B7 = −0.10275..., b7 =
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−3.04678...; B8 = 0.98415..., b8 = −2.92393...; B9 = −8.38692..., b9 = −2.93641...;
etc. It can be verified that the assumptions of Corollary 1 hold for k = 7 with
q = 2.8, ε = 0.2 and Q = 31. Then, this particular sequence tends to infinity like

a geometrical series and the lower bounds |bn| ≥ 2.8 and |Bn+1| ≥ 28(2.8)2n−14−1
4n+5

hold for all n ≥ 7.

Remark 1. It seems that there are bounded solutions of (13) even with
B0 = 1. We have not a strict proof but there is a particular candidate - the
sequence with B0 = 1 and b0 = b∗, where b∗ ∈ (0.9512609, 0.9512610).

Let us turn our attention to the system (12). For p 6= 0 the usual limit
behavior of the sequences defined by (12) is Bn ∼ C(p, b0, B0)(−4p2)nn![(n− 1)!]3

and bn ∼ −2pn2. A divergence criterion is given by the following

Proposition 2. Let {(Bn, bn)} satisfy (12) and for certain k ≥ 1
2|p| there holds

|Bk| ≥ 1. Then the sequence {|Bn|} tends to infinity faster than any geometrical
series.

Proof. Let us set Ln := b2n + (4n + 1)pbn +
(

4n+2
2

)
p2. It is easily verified that

Ln ≥ p2

4 (4n+ 1)(4n+ 3). Then by (12) and |Bk| ≥ 1 we have

|Bk+1| =
∣∣∣ 1

4k + 5
−BkLk

∣∣∣ ≥ (Lk − 1

(4k + 5)|Bk|

)
|Bk|

≥
(
Lk −

1

(4k + 5)

)
|Bk| ≥

(p2

4
(4k + 1)(4k + 3)− 1

(4k + 5)

)
|Bk|.

(14)

Now, the condition k ≥ 1
2|p| imply that (4k + 1)2 > 4

p2 and by (14), |Bk+1| > |Bk|.
It follows inductively that |Bn+1| > |Bn| ≥ 1 for every n ≥ k. Now, take an
arbitrary q > 1. In view of the last inequality for Bn, we may assume that k is

sufficiently large so that ρk := p2

4 (4k + 1)(4k + 3) − 1
(4k+5) ≥ q. Then (14) yields

|Bk+1| ≥ q|Bk|. Since ρk is increasing, we can prove by induction using (14) that
|Bn+1| ≥ q|Bn| for every n ≥ k. �

Now we will prove that in the general case (except eventually for some special
values of p) there is a choice of (B0, b0), such that the sequence {Bn} is bounded.

The basic observation is that the asymptotic formulasBn ∼ 6|ȳ|
(4n)3p2 and bn ∼ ȳ(4np)

are compatible with the system (12) if ȳ ≈ −0.62654 is the unique real solution of
the equation y3 + y2 + 1

2 y+ 1
6 = 0. The next assertion states the existence of such

type solutions of (12).

Proposition 3. For every nonzero real number p there exist k ∈ N0 and
Bk, bk ∈ R such that the sequences {Bn} and {bn} determined by (12) for n ≥ k
satisfy Bn = O(n−3) and bn = O(n) as n→∞.
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For the proof of this proposition we need the following auxiliary result.

Lemma 2. Let (α, β) belongs to the domain D = {(α, β) ∈ R2 : |α|, |β| ≤ 1
10}.

Then the equation y3 + y2 + 1+α
2 y + 1+β

6 = 0 has a unique real solution y(α, β) ∈
(−0.75,−0.5] which is a Lipschitz function in D. Moreover, if (αi, βi) ∈ D, i = 1, 2,
then |y(α2, β2)− y(α1, β1)| ≤ 15

8 |α2 − α1|+ 5
6 |β2 − β1|.

Proof. Let f(y) = y3 + y2 + 1+α
2 y + 1+β

6 . Then f ′(y) = 3y2 + 2y + 1+α
2

has a negative discriminant when |α| ≤ 1
10 and hence f ′(y) > 0 for every y ∈ R.

Consequently, for (α, β) ∈ D the equation f(y) = 0 has one real solution, which is

denoted by y(α, β). Next, since f(− 3
4 ) ≤

(
− 3

4

)3
+
(
− 3

4

)2
+ 0.9

2

(
− 3

4

)
+ 1.1

6 < 0

and f(− 1
2 ) ≥

(
− 1

2

)3
+
(
− 1

2

)2
+ 1.1

2

(
− 1

2

)
+ 0.9

6 = 0, then y(α, β) ∈ (−0.75,−0.5]
provided (α, β) ∈ D.

For (α0, β0) = (0, 0) and fixed (α1, β1), (α2, β2) ∈ D let us set yi := y(αi, βi)
and fi(y) := y3 + y2 + 1+αi

2 y + 1+βi
6 , i = 0, 1, 2. Then

0 = f2(y2)− f1(y1) = f0(y2)− f0(y1) +
α2y2

2
+
β2

6
− α1y1

2
− β1

6

= f ′0(η)(y2 − y1) +
α2

2
(y2 − y1) +

α2 − α1

2
y1 +

β2 − β1

6

with some η ∈ [y1, y2] (or [y2, y1]). Therefore,

|y2 − y1| ≤
( |α2 − α1|

2
|y1|+

|β2 − β1|
6

)/∣∣∣f ′0(η) +
α2

2

∣∣∣.
Using that η ∈ [− 3

4 ,−
1
2 ] we obtain

f ′0(η) +
α2

2
= 3η2 + 2η +

1 + α2

2
≥ 3η2 + 2η + 0.45 ≥ 0.2,

hence

|y2 − y1| ≤
(0.75

2
|α2 − α1|+

1

6
|β2 − β1|

)
× 5 =

15

8
|α2 − α1|+

5

6
|β2 − β1|.

The lemma is proved. �

Proof of Proposition 3. Let us define the sequences {(bn,i, Bn,i)}∞n=k, for i =
0, 1, 2, . . . and k ∈ N, which will be specified later, by the recurrence formulas:

bn,0 := (4n+ 1)pȳ, Bn,0 :=
6|ȳ|

(4n+ 1)2(4n+ 5)p2
;

bn,i : Bn,i−1

[
b3n,i +

(
4n+1

1

)
pb2n,i +

(
4n+2

2

)
p2bn,i +

(
4n+3

3

)
p3
]

=
1

4n+ 7
−Bn+1,i−1

(
bn+1,i−1 + (4n+ 5)p

)
,

Bn,i : Bn,i

[
b2n,i +

(
4n+1

1

)
pbn,i +

(
4n+2

2

)
p2
]

=
1

4n+ 5
−Bn+1,i−1.
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Set bn,i := (1 + δn,i)bn,i−1 and Bn,i := (1 + ∆n,i)Bn,i−1. We shall show that the
relative distances δn,i and ∆n,i decay (with i) like a geometrical series, from where
it will follow that (bn,i, Bn,i) converge to a certain limit as i→∞.

We estimate separately δn,1 and ∆n,1. The ratio X = Xn := bn,1
/

((4n+1)p) is

a solution of the equation X3+X2+ 1
2

(
1+ 1

4n+1

)
X+ 1

6

(
1+ 1

4n+1

)(
1+ 2

4n+1

)
= A0,

where A0 :=
[

1
4n+7 − Bn+1,0

(
bn+1,0 + (4n + 5)p

)]/[
(4n + 1)3p3Bn,0

]
. Let us set

α = 1
4n+1 and β = βn,1 = 3

4n+1 + 2
(4n+1)2 − 6A0. In view of the definitions of bn,0

and Bn,0 we have

|β| ≤ 3

4n+ 1
+

2

(4n+ 1)2
+

4n+ 5

4n+ 7
· 1

(4n+ 1)|pȳ|
+

6(1 + ȳ)

(4n+ 1)(4n+ 9)p2

≤ 3 + 1.6/|p|
4n+ 1

+
2 + 2.25/p2

(4n+ 1)2
=: β̄n.

Now, choose k such that β̄n ≤ 1
20 for n ≥ k. Thus, |β| ≤ 1

20 and 3
4n+1 ≤

1
20 ,

i.e. |α| ≤ 1
60 . Then, an application of Lemma 2 gives

|X − ȳ| = |y(α, β)− y(0, 0)| ≤ 15

8
α+

5

6
|β| ≤ 15/8

60
+

5/6

20
≤ 0.073 .

Therefore, X ∈ (−0.7,−0.553) and |δn,1| =
∣∣bn,1/bn,0 − 1

∣∣ =
∣∣X/ȳ − 1

∣∣ < 0.118.

Before estimating ∆n,1 we estimate

Ln,1 = b2n,1+(4n+1)pbn,1+
1

2

(
1+

1

4n+1

)
(4n+1)2p2 = (4n+1)2p2

(
X2+X+

1+α

2

)
.

Since X ∈ (−0.7,−0.5) and α ∈
(
0, 1

60

)
, then Ln,1

/
(4n+ 1)2p2 ∈ (0.25, 0.3). This,

in view of

Bn,1 =
( 1

4n+5
−Bn+1,0

)/
Ln,1 = Bn,0

( 1

6|ȳ|
− 1/p2

(4n+5)(4n+9)

)/[
Ln,1

/
(4n+1)2p2

]
and 1/|p|

4n+1 < 0.03 (a consequence of β̄n ≤ 1
20 ) implies that Bn,1/Bn,0 ∈ (0.883, 1.065)

(the numerator belongs to (0.265, 0.2661)). Therefore, |∆n,1| ≤ 0.117.

Our goal is to prove by induction that |δn,i|, |∆n,i| ≤ 7−i. The above estimates
prove this assertion for i = 1, and we assume that i ≥ 2 by the end of the proof.
Next, with Yi = Yn,i := bn,i

/
(4n+ 1)p, we have

Y 3
i + Y 2

i +
1

2

(
1 +

1

4n+ 1

)
Yi +

1

6

(
1 +

1

4n+ 1

)(
1 +

2

4n+ 1

)
= Ai−1,

where Ai−1 :=
[

1
4n+7 −Bn+1,i−1

(
bn+1,i−1 + (4n+ 5)p

)]/[
(4n+ 1)3p3Bn,i−1

]
. As
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above, we set α = 1
4n+1 and β = βn,i = 3

4n+1 + 2
(4n+1)2 − 6Ai−1. Then

βn,i − βn,i−1 =
−6/p2

(4n+ 1)3

[
1/p

4n+ 7

( 1

Bn,i−1
− 1

Bn,i−2

)
−
(bn+1,i−1

p
+ 4n+ 5

)Bn+1,i−1

Bn,i−1
+
(bn+1,i−2

p
+ 4n+ 5

)Bn+1,i−2

Bn,i−2

]
.

Consequently,

|βn,i−βn,i−1| ≤
6/p2

(4n+1)3

[ (
1/|p|

)
|K|

(4n+7)Bn,i−2
+
|bn+1,i−2/p+4n+5|Bn+1,i−2|M |

Bn,i−2

]
, (15)

where K = 1− Bn,i−2

Bn,i−1
and M = 1− bn+1,i−1/p+4n+5

bn+1,i−2/p+4n+5 ·
Bn+1,i−1

Bn+1,i−2
· Bn,i−2

Bn,i−1
. By induction,

the following estimate for K holds true:

|K| =
∣∣∣1− 1

1 + ∆n,i−1

∣∣∣ =
|∆n,i−1|

1 + ∆n,i−1
≤ 49

48
· 71−i .

Here we have used |∆n,i−1| ≤ 1
49 for i ≥ 3 and |∆n,1| ≤ 0.117 for i = 2. Now, we

estimate the factor M . By induction,

Bn+1,i−1

Bn+1,i−2
· Bn,i−2

Bn,i−1
=

1 + ∆n+1,i−1

1 + ∆n,i−1
∈
[1− 71−i

1 + 71−i ,
1 + 71−i

1− 71−i

]
and let

bn+1,i−1/p+ 4n+ 5

bn+1,i−2/p+ 4n+ 5
= 1 +

bn+1,i−1 − bn+1,i−2

bn+1,i−2 + (4n+ 5)p
=: 1 + ε .

Then |ε| = |δn+1,i−1|
/∣∣∣1 + (4n+5)p

bn+1,i−2

∣∣∣ and we need to estimate the denominator. For

i = 2, by definition it is |1 + 1/ȳ| ≈ 0.5961 (hence |ε| < 0.2), while for i ≥ 3 we
have (see above)

Y −1
n+1,i−2 =

(4n+5)p

bn+1,i−2
=
bn+1,i−3

bn+1,i−2

bn+1,i−4

bn+1,i−3
· · · bn+1,1

bn+1,2

(4n+5)p

bn+1,1
=
[
X

i−2∏
j=2

(1+δn+1,j)
]−1

.

By induction we conclude that

Y −1
n+1,i−2 ∈

([
X

∞∏
j=2

(1− 7−j)
]−1

,
[
X

∞∏
j=2

(1 + 7−j)
]−1)

⊂
(
− 1.853,−1.395

)
,

where we have used X = Xn+1 ∈ (−0.7,−0.553) and
∏∞
j=2(1 + 7−j) ≈ 1.02388,∏∞

j=2(1− 7−j) ≈ 0.97626. Hence, |ε| ≤ 2.54× 71−i.

It follows from the above estimates that

M ∈
[
1− 1 + 71−i

1− 71−i

(
1 + 2.54× 71−i

)
, 1− 1− 71−i

1 + 71−i

(
1− 2.54× 71−i

)]
.
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As a consequence, |M | ≤ 4.54+2.54×71−i

1−71−i 71−i ≤ 5.72× 71−i (i ≥ 2).

The remaining factors in (15) we estimate by the induction. For j = 0, 1 we
have

Bn+j,i−2

Bn+j,0
= (1 + ∆n+j,1) · · · (1 + ∆n+j,i−2) ∈

{
(0.883, 1.065), for i = 3

(0.862, 1.091), for i > 3
.

From Y −1
n+1,i−2 = (4n+5)p

bn+1,i−2
∈
(
−1.853,−1.395

)
we infer (bn+1,i−2/p+4n+5)/(4n+5) ∈

(0.283, 0.461), and the latter inclusion holds for i = 2 as well. Then (15) implies

|βn,i − βn,i−1| ≤
6/p2

(4n+1)3 × 0.862Bn,0

[ 1/|p|
(4n+7)

× 49

48
× 71−i+0.461(4n+5)× 1.091Bn+1,0× 5.72×71−i

]
≤ 71−i

0.862(4n+ 1)

[ 1

|pȳ| ·
49

48
+

2.877× 6

(4n+ 9)p2

]
≤
[13.24/|p|

4n+ 1
+

140.2/p2

(4n+ 1)2

]
× 7−i.

Hence, from 1/|p|
4n+1 < 0.03 we get |βn,i − βn,i−1| ≤ 0.524× 7−i (i ≥ 2).

Inductively, similar inequalities hold for all {βn,j}i−1
j=2 and we conclude that

|βn,i| ≤ |βn,1|+
i∑

j=2

|βn,j − βn,j−1| <
0.524× 7−2

1− 7−1
+

1

20
<

1

10
.

Therefore, we can apply Lemma 2 to find for i ≥ 2

|Yi − Yi−1| = |y(α, βn,i)− y(α, βn,i−1)| ≤ 15

8
×0 +

5

6
|βn,i − βn,i−1| < 0.437× 7−i .

Also, Lemma 2 gives the estimate Yi−1 ∈ (−0.75,−0.5] and we obtain

|δn,i| =
∣∣Yi/Yi−1 − 1

∣∣ =
∣∣Yi − Yi−1

∣∣/|Yi−1| ≤ 0.874× 7−i, i ≥ 2.

In order to estimate ∆n,i for i ≥ 2 we use the identity

∆n,i =
Bn,i
Bn,i−1

− 1 =
1/(4n+ 5)−Bn+1,i−1

Ln,i

Ln,i−1

1/(4n+ 5)−Bn+1,i−2
− 1 ,

where Ln,i := b2n,i +
(

4n+1
1

)
pbn,i +

(
4n+2

2

)
p2. Clearly,

|Ln,i − Ln,i−1| = |bn,i − bn,i−1| × |bn,i + bn,i−1 + (4n+ 1)p|
= |bn,i−1 δn,i| × (4n+ 1)|p| × |Yi + Yi−1 + 1|.

Recalling that Y0 = ȳ and Y1 =X ∈ (−0.7,−0.553) we can refine the estimate Yi ∈
(−0.75,−0.5] by |Yi| ≤ |X|+|Y1−Y2|+· · ·+|Yi−1−Yi| < 0.7+ 0.437×7−2

1−7−1 < 0.711, i.e.
Yi ∈ (−0.711,−0.5]. The same holds for Yi−1 as well. Hence, |Yi+Yi−1 +1| < 0.422
and we get∣∣∣ Ln,i
Ln,i−1

− 1
∣∣∣ ≤ 0.369× 7−i

|bn,i−1(4n+ 1)p|
|b2n,i−1 + (4n+ 1)pbn,i−1 +

(
4n+2

2

)
p2|

<
0.369× 7−i|z|
z2 + z + 1/2

,
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where z =
bn,i−1

(4n+1)p = Yi−1. The last expression we estimate by

|z|
z2 + z + 1/2

=
1

|z| − 1 + 1
2|z|

=:
1

g(|z|)
≤ 1

mint>0 g(t)
=
√

2 + 1 .

Therefore,
∣∣∣ Ln,i
Ln,i−1

− 1
∣∣∣ < 0.891× 7−i. Next, let

N :=
1/(4n+5)−Bn+1,i−1

1/(4n+5)−Bn+1,i−2
= 1− Bn+1,i−1 −Bn+1,i−2

1/(4n+5)−Bn+1,i−2
= 1− Bn+1,i−2 ∆n+1,i−1

1/(4n+5)−Bn+1,i−2
.

We found above
Bn+1,i−2

Bn+1,0
∈ (0.862, 1.091), hence (4n+ 5)Bn+1,i−2 ≤ 1.091×6|ȳ|

(4n+5)(4n+9)p2

< 4.102× 0.032 < 0.0037. As a consequence,
Bn+1,i−2

1/(4n+5)−Bn+1,i−2
< 0.004. Therefore,

|1−N | < 0.004× 71−i = 0.028× 7−i and, finally,

|∆n,i| =
∣∣∣ N

Ln,i
/
Ln,i−1

− 1
∣∣∣ ≤ (0.028 + 0.891)7−i

1− 0.891× 7−i
≤ 0.937× 7−i, i ≥ 2.

The claimed estimates |δn,i|, |∆n,i| ≤ 7−i are proved.

These estimates imply that the sequences

bn,i = bn,0

i∏
j=1

(1 + δn,j) , Bn,i = Bn,0

i∏
j=1

(1 + ∆n,j)

converge as i → ∞ to certain limits b∗n and B∗n, n ≥ k. By the definitions of
{(bn,i, Bn,i)}∞n=k it follows that the limit sequences satisfy (12). In addition, b∗n/bn,0
and B∗n/Bn,0 are bounded, i.e. b∗n = O(np) and B∗n = O(1/n3p2). �

Thus we proved the existence of a solution {(Bn, bn)} of (12) with bounded
Bn and bn = O(n) starting from a certain index k(p). It is easily seen that (12)
considered as a system for (Bn−1, bn−1) is solvable in R2 provided 1

4n+1 −Bn 6= 0.
Then, with the exception of some very special values for p, we can complete the
obtained bounded sequence to the starting values (B∗0(p), b∗0(p)). For example, when
p = 1

2 , the condition βk ≤ 1
20 is fulfilled for k = 32 and the values (B∗32, b

∗
32) =

(6.7280929...× 10−6,−40.023137...) allow to complete uniquely the sequence up to
(B∗0 , b

∗
0) = (0.28687201..., 0.34268557...) (b∗n < 0, n ≥ 1). Note that in contrast

to the backward calculations, which are stable, in order to get the above values
for (B∗32, b

∗
32) starting from (B∗0 , b

∗
0), the latter have to be given with at least 100

decimal digits.

Remark 2. In the special case B0 = 1, b0 = 1
3 − p, which is of interest for us

(see (11)), it seems that there is no real p which determines a bounded sequence
{Bn} satisfying (12). This claim is based on exhaustive computer experiments.
For example: when |p| ≥ 5

4 , |B1| = | 15 − [( 1
3 − p)

2 + p( 1
3 − p) + p2]| > 1 and by
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Proposition 2, |Bn| → ∞; when p ∈ [0.04277, 0.0428], the graph of log |B23(p)| is
clearly positive and Proposition 2 implies |Bn| → ∞ in this case, too.

In view of the above results it is reasonable to consider lacunary transforma-
tions of L(z) depending on two parameters. We formulate the following

Hypothesis 3. There is a choice of the real parameters p and q such that the
representation

L(z) ≈ qt+

∞∑
n=0

Bnt
4n+1

1− bnz2
, t =

z

1− pz2

has coefficients satisfying Bn = O(ρn) for some ρ > 0.

There is even some reason to expect the validity of Hypothesis 3 for p = 0,
i.e. when t = z. This is because Bn is a rational function of q, whose numerator
is an odd degree polynomial, and hence for every n there are values of q producing
arbitrarily small Bn.

Of course, the magnitude of bn is also important for the convergence of the
series. If {Bn} is bounded, but {bn} is not, then still it is enough bn to be negative
for n ≥ n0 and the convergence will hold in a real neighborhood of z = 0.

For the system (11) we will consider theoretically only the case p = 0. We can
prove the following divergence criterion.

Proposition 4. Assume that the sequences {Bn}∞0 and {bn}∞0 satisfy the
system

Bn +Bn−1b
2
n−1 +Bn−2b

4
n−2 + · · ·+B0b

2n
0 = d(0)

n

Bnbn +Bn−1b
3
n−1 +Bn−2b

5
n−2 + · · ·+B0b

2n+1
0 = d(1)

n ,
(16)

where |d(j)
n | ≤ 1 for j = 0, 1. Let us denote Yn := bn/bn−1, Zn := −Bn/(Bn−1b

2
n−1),

Xn := YnZn and (Z̃∗, X̃∗) := (0.30834705, 0.58425448). Then the conditions

|Zk−i − Z̃∗|, |Xk−i − X̃∗| ≤ r, i = 0, 1, 2, 3 ;

|Zk−4 − Z̃∗|, |Xk−4 − X̃∗| ≤ 5× 10−5 ; (17)(
1 +

k−6∑
i=0

∣∣Bib2(k+1−i)+j
i

∣∣)/∣∣Bkb2+j
k

∣∣ ≤ 10−8, j = 0, 1 ;

|bk−1| = max
i≤k−1

|bi| ≥ 1,

for a given k ≥ 5 and r = 10−6 imply that |Bn| tends to infinity faster than any
geometrical series and |bn| → ∞.

Proof. We first change the variables and introduce vector notations. It is not
difficult to verify that (16) is equivalent to

1− 1/Zn + 1/(ZnZn−1Y
2
n−1)− 1/(ZnZn−1Zn−2Y

2
n−1Y

4
n−2) + · · · = d(0)

n /Bn

1−1/(ZnYn) + 1/(ZnZn−1YnY
3
n−1)− 1/(ZnZn−1Zn−2YnY

3
n−1Y

5
n−2) + · · · = d(1)

n /Bnbn,
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which is

Zn = 1− Zn−1

X2
n−1

+
Zn−1Z

3
n−2

X2
n−1X

4
n−2

−
Zn−1Z

3
n−2Z

5
n−3

X2
n−1X

4
n−2X

6
n−3

+ · · · − d
(0)
n

Bn−1b2n−1

Xn = 1−
Z2
n−1

X3
n−1

+
Z2
n−1Z

4
n−2

X3
n−1X

5
n−2

−
Z2
n−1Z

4
n−2Z

6
n−3

X3
n−1X

5
n−2X

7
n−3

+ · · · − d
(1)
n

Bn−1b3n−1

,

(18)

where the sums are expanded to Z1 and X1, respectively. In this way we reduce
the problem to the proof that the stationary point near (Z̃∗, X̃∗) is stable. Indeed,
then it will follow that, for n → ∞, bn ≈ A.(Y ∗)n, where Y ∗ ≈ X̃∗/Z̃∗ ≈ 1.8948
and |Bn+1/Bn| ≈ Z̃∗b2n →∞.

To prove the stability of the stationary point (Z∗, X∗) of (18) we use the
approach based on fixed point theorems (see e.g. [8] and the references therein).
Note that, formally, we will not use the existence of (Z∗, X∗).

In what follows we care mainly for the impact of the first four summands in
(18) (excluding 1) while the remainder we estimate with less precision. So, let us
denote V n := (Zn, Xn, Zn−1, Xn−1, Zn−2, Xn−2, Zn−3, Xn−3)T , then (18) becomes
V n = f̄(V n−1) + θ̄n, or more precisely,

V n(1) = ϕ(V n−1) + εn
V n(2) = ψ(V n−1) + δn
V n(i) = V n−1(i− 2), i = 3, . . . , 8,

where

ϕ(z1, x1, . . . , z4, x4) := ã∗ +

4∑
i=1

(−1)iz1 . . . z
2i−1
i /(x2

1 . . . x
2i
i ),

ψ(z1, x1, . . . , z4, x4) := b̃∗ +

4∑
i=1

(−1)iz2
1 . . . z

2i
i /(x

3
1 . . . x

2i+1
i ).

Here,

ã∗ = 1 +

∞∑
i=5

(−1)i(Z̃∗)i
2

/(X̃∗)i(i+1) and b̃∗ = 1 +

∞∑
i=5

(−1)i(Z̃∗)i(i+1)/(X̃∗)i(i+2)

are approximations of the remainders of the sums in (18) when (Zn, Xn) approaches
the stationary point (Z∗, X∗). Assuming convergence of {(Zn, Xn)}, the residuals
εn and δn will become very small, but do not tend exactly to 0, because of the
difference between (Z̃∗, X̃∗) and (Z∗, X∗).

Our next step is to prove that conditions (17), but with k = n and r = 2×10−5,
imply the representation

(V n+1 − Ṽ ∗) = J̃ .(V n − Ṽ ∗) + εn, (19)
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where Ṽ ∗ = (Z̃∗, X̃∗, . . . , Z̃∗, X̃∗) ∈ R8, J̃ is a given approximation of the Jacobi

matrix J̃∗ = D(f̄)

D(V )
calculated at Ṽ ∗ and ||εn||∞ ≤ ε := 10−7.

Before doing this, we adopt the convention (for this proof only) that || · || :=
|| · ||∞ and α ≈ β will mean that β is the rounded value of α to the corresponding
decimal digit. For example α ≈ −1.230×10−5 means |α+1.23×10−5| ≤ 1

2 ×10−8.

The Jacobian D(ϕ,ψ, v1, ..., v6)/D(v1, ..., v8), v̄ = (z1, ..., x4), at the point Ṽ ∗,
is calculated to be J̃∗ ≈ J̃ := (g1, g2, e1, e2, e3, e4, e5, e6)T , where

g1 = (−2.2431, 2.3676, 2.0593,−1.4491,−0.2532, 0.1604, 0.0071,−0.0043),

g2 = (−2.6966, 2.1347, 0.7911,−0.5219,−0.0451, 0.0278, 0.0006,−0.0004),

and ej is the unit row vector in R8 whose j-th component equals 1.

It is important that the spectral radius ρ(J̃) ≈ 0.2539 is less than 1. This
means that the iterations of (19) will remain bounded provided the perturbation is
sufficiently small. Now we start with the estimation of εn.

We have V n+1 = f̄(V n) + θ̄n+1 and set ε1:= θ̄n+1 = (εn+1, δn+1, 0, ..., 0)T.

Next we justify the approximation f̄(Ṽ ∗) ≈ Ṽ ∗ by introducing ε2 = f̄(Ṽ ∗)−Ṽ ∗,
hence (V n+1 − Ṽ ∗) = f̄(V n)− f̄(Ṽ ∗) + ε1 + ε2.

Applying Taylor’s formula to the second order around Ṽ ∗ we get

f̄(V n) = f̄(Ṽ ∗) + J̃∗.(V n − Ṽ ∗) +
1

2
Q̄(V n − Ṽ ∗),

where Q̄(V ) is a vector whose components are quadratic forms of V and more pre-

cisely Q̄1(V ) =
∑
i,j

∂2ϕ
∂vi∂vj

(η̄1)ViVj , η̄1 ∈ [Ṽ ∗, V n], Q̄2(V ) =
∑
i,j

∂2ψ
∂vi∂vj

(η̄2)ViVj ,

η̄2 ∈ [Ṽ ∗, V n] and Q̄i(V ) = 0 for i = 3, . . . , 8. We denote 1
2 Q̄(V n − Ṽ ∗) by ε3 and

then (V n+1 − Ṽ ∗) = J̃∗.(V n − Ṽ ∗) +
∑3
i=1 ε

i.

Finally, the Jacobian J̃∗ is calculated approximately, hence with ∆J̃ := J̃∗− J̃
and ε4 := ∆J̃ .(V n − Ṽ ∗) we arrive at

(V n+1 − Ṽ ∗) = J̃ .(V n − Ṽ ∗) +

4∑
i=1

εi.

The estimation of ε4 is easy: we have

||ε4|| ≤ ||∆J̃ ||.||V n − Ṽ ∗|| ≤ 8 · 1

2
× 10−4r = 8× 10−9.

In order to estimate ||ε3|| = 1

2
max
i=1,2

|Q̄i(V n − Ṽ ∗)| ≤ max
i=1,2

||Q̄i|| · r2/2 we use

the obvious inequality: ||
∑
i,j

ai jvivj ||∞ := max
||v̄||=1

∣∣∣∑
i,j

ai jvivj

∣∣∣ ≤∑
i,j

|ai j |.

26 Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 3–44.



The quadratic form Q̄1 has coefficients ∂2ϕ
∂vi∂vj

(η̄1) =
∑4
k=1(−1)k ∂2ϕk

∂vi∂vj
(η̄1),

where ϕk(v̄) := ϕk(z1, x1, ..., z4, x4) = z1...z
2k−1
k /(x2

1...x
2k
k ) (for k ≤ 4). Since ϕk

(and ψk below) has the form zα1
1 ...zαkk x−β1

1 ...x−βkk , αi, βi ∈ N we can use the general
estimate

∑
i,j

∣∣∣ ∂2ϕk
∂vi∂vj

(η̄1)
∣∣∣ ≤ 2 z

∑
αi

+ x
−

∑
βi

−

[∑
i<j αiαj +

∑
i
αi(αi−1)

2

z2
+

+

∑
i<j βiβj +

∑
i
βi(βi+1)

2

x2
−

+

∑
i,j αiβj

z+x−

]

= z
∑
αi

+ x
−

∑
βi

−

[(∑αi
z+

+

∑
βi

x−

)2

−
∑
αi

z2
+

+

∑
βi

x2
−

]
,

where z+(x−) is an upper(a lower) bound of the odd(even) components of η̄1. Then,
from η̄1 ∈ [Ṽ ∗, V n] and ||V n − Ṽ ∗|| ≤ r it follows that ||η̄1 − Ṽ ∗|| ≤ r. Hence, we
can take z+ = 0.3084 > Z̃∗ + r and x− = 0.5842 < X̃∗ − r. So, for k = 1, 2, 3, 4 we
have
ᾱ = (1), β̄ = (2)⇒

∑
i,j

∣∣∣ ∂2ϕ1

∂vi∂vj
(η̄1)

∣∣∣ ≤ z+
x2
−

[
6
x2
−

+ 4
z+x−

]
< 36;

ᾱ = (1, 3), β̄ = (2, 4)⇒
∑
i,j

∣∣∣ ∂2ϕ2

∂vi∂vj
(η̄1)

∣∣∣ ≤ z4+
x6
−

[(
4
z+

+ 6
x−

)2

− 4
z2+

+ 6
x2
−

]
< 117.4;

ᾱ = (1, 3, 5), β̄ = (2, 4, 6)⇒
∑
i,j

∣∣∣ ∂2ϕ3

∂vi∂vj
(η̄1)

∣∣∣ ≤ z9+
x12
−

[(
9
z+

+ 12
x−

)2

− 9
z2+

+ 12
x2
−

]
< 39;

ᾱ = (1, 3, 5, 7), β̄ = (2, 4, 6, 8)⇒
∑
i,j

∣∣∣ ∂2ϕ4

∂vi∂vj
(η̄1)

∣∣∣≤ z16+
x20
−

[(
16
z+

+ 20
x−

)2

− 16
z2+

+ 20
x2
−

]
<2.3.

As a consequence, ||Q̄1|| ≤
∑
i,j

∣∣∣ ∂2ϕ
∂vi∂vj

(η̄1)
∣∣∣ ≤ 195.

Analogously, Q̄2 has coefficients ∂2ψ
∂vi∂vj

(η̄2) =
∑4
k=1(−1)k ∂2ψk

∂vi∂vj
(η̄2), where

ψk(v̄) := ψk(z1, x1, ..., z4, x4) = z2
1 ...z

2k
k /(x

3
1...x

2k+1
k ) and hence ||Q̄2|| is estimated

by the sum of∑
i,j

∣∣∣ ∂2ψ1

∂vi∂vj
(η̄2)

∣∣∣<59;
∑
i,j

∣∣∣ ∂2ψ2

∂vi∂vj
(η̄2)

∣∣∣<68;
∑
i,j

∣∣∣ ∂2ψ3

∂vi∂vj
(η̄2)

∣∣∣<10;
∑
i,j

∣∣∣ ∂2ψ4

∂vi∂vj
(η̄2)

∣∣∣<1.

Thus, ||Q̄2|| < 138 and therefore ||ε3|| ≤ max
(
||Q̄1||, ||Q̄2||

)
r2/2 < 4× 10−8.

Next, we have

ε2 =
(
ϕ(Ṽ ∗)− Z̃∗, ψ(Ṽ ∗)− X̃∗, 0, ..., 0

)T
=
( ∞∑
i=0

(−1)i
(Z̃∗)i

2

(X̃∗)i(i+1)
− Z̃∗,

∞∑
i=0

(−1)i
(Z̃∗)i(i+1)

(X̃∗)i(i+2)
− X̃∗, 0, ..., 0

)T
≈
(
− 8.0× 10−9,−8.1× 10−9, 0, ..., 0

)T
,

and the Leibnitz type series are easy to estimate, yielding ||ε2|| < 10−8.
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For an estimate of ε1 = (εn+1, δn+1, 0, ..., 0)T we write

εn+1 = −
ZnZ

3
n−1Z

5
n−2Z

7
n−3Z

9
n−4

X2
nX

4
n−1X

6
n−2X

8
n−3X

10
n−4

+− · · · (to X1)−
d

(0)
n+1

Bnb2n
−
∞∑
i=5

(−1)i
(Z̃∗)i

2

(X̃∗)i(i+1)

=
[
− ϕ5(Zn, . . . , Xn−4) +

(Z̃∗)25

(X̃∗)30

]
+
[
· · ·
]
−
∞∑
i=6

(−1)i
(Z̃∗)i

2

(X̃∗)i(i+1)

=: A+B + C.

|A| =
∣∣ϕ5(Zn, ..., Xn−4)− (Z̃∗)25

(X̃∗)30

∣∣ ≤ max
{∣∣ (z+)25

(x−)30
− (Z̃∗)25

(X̃∗)30

∣∣, ∣∣ (z−)25

(x+)30
− (Z̃∗)25

(X̃∗)30

∣∣},
where z+ and x− are as above while z− := 0.30829 and x+ := 0.58431. Note that
Z̃∗±5×10−5 ∈ [z−, z+] and X̃∗±5×10−5 ∈ [x−, x+], so in view of (17), {Zn−i}4i=0

and {Xn−i}4i=0 belong to these intervals, too. Thus, we find |A| < 1.3× 10−8.

For the estimate of |B| we return to the initial variables and use (17):

|B| ≤
( n−6∑
i=0

∣∣Bib2(n+1−i)
i

∣∣+ |d(0)
n+1|

)/
|Bnb2n| < 10−8.

We also easily find |C| < (Z̃∗)36/(X̃∗)42 < (z+)36/(x−)42 < 3 × 10−9. As a
result we have |εn+1| < 3× 10−8. In a very similar way we estimate

δn+1 = −
Z2
nZ

4
n−1Z

6
n−2Z

8
n−3Z

10
n−4

X3
nX

5
n−1X

7
n−2X

9
n−3X

11
n−4

+− · · · (to X1) +
d

(1)
n+1

Bnb3n
−
∞∑
i=5

(−1)i
(Z̃∗)i(i+1)

(X̃∗)i(i+2)

=
[
− ψ5(Zn, . . . , Xn−4) +

(Z̃∗)30

(X̃∗)35

]
+
[
· · ·
]
−
∞∑
i=6

(−1)i
(Z̃∗)i(i+1)

(X̃∗)i(i+2)

=: A1 +B1 + C1,

whence |δn+1| ≤ |A1|+ |B1|+ |C1| < 7× 10−10 + 10−8 + 6× 10−11 < 2× 10−8.

Thus we obtain ||ε1|| < 3× 10−8 and hence ||εn|| ≤
∑4
i=1 ||ε

i|| < 9× 10−8 < ε.
The relation (19) is proved under the corresponding conditions.

Now we will prove the following

Claim. Let conditions (17) are fulfilled with r = 2 × 10−5 and assume that
|Zk+i− Z̃∗|, |Xk+i− X̃∗| ≤ r, i = 1, . . . , 6. Then ||V n− Ṽ ∗|| ≤ r ∀n ≥ k, i.e. the
above inequalities hold for all i ≥ 0.

First note that from (17) with any positive r ≤ 2 × 10−5 they follow all but
the first two similar inequalities with k + 1 in place of k. Indeed, the relations
|Zk+1−i − Z̃∗|, |Xk+1−i − X̃∗| ≤ r, i = 1, 2, 3 are contained in (17) and the
inequalities |Zk+1−4 − Z̃∗|, |Xk+1−4 − X̃∗| ≤ 5 × 10−5 are obvious consequences.
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The last condition follows from |bk| = |Ykbk−1| > x−
z+
|bk−1| > 1.894|bk−1|. It

remains to estimate for j = 0, 1

R(j) :=
(

1 +

k−5∑
i=0

∣∣Bib2(k+2−i)+j
i

∣∣)/∣∣Bk+1b
2+j
k+1

∣∣
≤
(

1 + b2+j
k−1

k−6∑
i=0

∣∣Bib2(k+1−i)
i

∣∣+
∣∣Bk−5b

14+j
k−5

∣∣)/∣∣Bkb2k∣∣ · ∣∣∣ Bkb
2
k

Bk+1b
2+j
k+1

∣∣∣
≤ b2+j

k−1

(
1 +

k−6∑
i=0

∣∣Bib2(k+1−i)
i

∣∣+
(bk−5

bk−1

)2+j∣∣Bk−5b
12
k−5

∣∣)/∣∣Bkb2k∣∣ · ∣∣∣ 1

Zk+1b
2+j
k+1

∣∣∣
≤ 1∣∣Zk+1(Yk+1Yk)2+j

∣∣[10−8 +
(
Yk−1...Yk−4

)−2−j |ϕ5(Zk, ..., Xk−4)|
]

≤ Zk+1Z
2
k∣∣X2

k+1X
2
k(Yk+1Yk)j

∣∣ [10−8 + (x−/z+)−8−4jz25
+ /x30

−
]
,

where we have used Yn = Xn/Zn and Zk−i < z+, Xk−i > x− for i = 0, . . . , 4. Now,
by (19) we conclude that ||V k+1 − Ṽ ∗|| ≤ ||J̃ ||r + ε < 8.54r + ε < 2× 10−4, which
implies Zk+1 < 0.3086, Xk+1 > 0.5840 and Yk+1 > 1. Therefore, in view of Yk > 1,
we get R(j) < 0.2522

[
10−8 + z33

+ /x38
−
]
< 10−8, j = 0, 1.

From this and the conditions of the claim we conclude that (17) and (19) are
fulfilled for n = k, . . . , k + 6. Therefore we have

||V k+7 − Ṽ ∗|| =
∥∥J̃ .(V k+6 − Ṽ ∗) + εk+6

∥∥ = · · · =
∥∥J̃7.(V k − Ṽ ∗) +

6∑
i=0

J̃ iεk+6−i
∥∥

≤
∥∥J̃7

∥∥.r +

6∑
i=0

∥∥J̃ i∥∥.ε .
We calculated

∥∥J̃∥∥ ≈ 8.53,
∥∥J̃2

∥∥ ≈ 11.13,
∥∥J̃3

∥∥ ≈ 11.13,
∥∥J̃4

∥∥ ≈ 11.13,∥∥J̃5
∥∥ ≈ 11.13,

∥∥J̃6
∥∥ ≈ 2.38 and

∥∥J̃7
∥∥ ≈ 0.274. Thus we obtain

||V k+7 − Ṽ ∗|| < 0.275r + 56.5ε < 1.2× 10−5 < r ,

and the claim follows by induction.

To accomplish the proof of Proposition 4 it remains to show that conditions
(17) with r = 10−6 imply the conditions of the claim. Indeed, it follows from the
claim that bn/bn−1 = Yn > x−/z+ > 1.894 for n ≥ k, and hence |Bn/Bn−1| =
Znb

2
n−1 > (z−)b2n−1 →∞.

Let (17) be fulfilled with r = 10−6 and for a j ∈ {1, . . . , 6}, ‖V k+i − Ṽ ∗‖ ≤
2× 10−5, i = 1, . . . , j − 1. Then (19) holds for n = k, . . . , k + j − 1 and

‖V k+j − Ṽ ∗‖ =
∥∥J̃j .(V k − Ṽ ∗) + J̃j−1.εk + · · ·+ J̃0.εk+j−1

∥∥
≤ 11.14 r + 54.1 ε < 2× 10−5.

Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 3–44. 29



This observation inductively implies the conditions of the claim and completes
the proof of the stability of (Z∗, X∗), i.e. the proof of Proposition 4. �

Proof of Theorem 1. We apply Proposition 4 to the series a) for l(x) with

Bn = An, bn = an and d
(j)
n = 1

2n+1+j , j = 0, 1. It is calculated that for k = 13 the
conditions of the proposition are fulfilled. Namely,
{Zn − Z̃∗}13

n=9 ≈
{

1× 10−6, 9× 10−8,−6× 10−8,−1× 10−8,−1× 10−9
}

;

{Xn − X̃∗}13
n=9 ≈

{
2× 10−6, 7× 10−8,−9× 10−8,−1× 10−8, 7× 10−9

}
;(

1 +
∑k−6
i=0

∣∣Aia2(k+1−i)+j
i

∣∣)/∣∣Aka2+j
k

∣∣ ≈ 3× 10−9, 6× 10−11 for j = 0, 1;

ak−1 = maxi≤k−1 |ai| ≈ 1744.92 ≥ 1.

Then, by Proposition 4, |An| tends to ∞ faster than any geometrical series,
while an in the denominator behave as C.(Y ∗)n. Therefore, the common term in
the sum of a) does not tend to 0 (unless for x = 0) and the series diverges.

A very similar argument holds for the series b). Now, d
(j)
n = 1

4n+1+2j , j = 0, 1
and again for k = 13 the conditions of Proposition 4 are fulfilled:
{Zn − Z̃∗}13

n=9 ≈
{

1× 10−6, 5× 10−7,−3× 10−8,−3× 10−8,−5× 10−9
}

;

{Xn − X̃∗}13
n=9 ≈

{
3× 10−6, 7× 10−7,−7× 10−8,−4× 10−8, 2× 10−9

}
;(

1 +
∑k−6
i=0

∣∣Bib2(k+1−i)+j
i

∣∣)/∣∣Bkb2+j
k

∣∣ ≈ 3× 10−9, 6× 10−11 for j = 0, 1;

bk−1 = maxi≤k−1 |bi| ≈ 1399.65 ≥ 1.

Then, Proposition 4 implies the divergence of b) for z 6= 0. Theorem 1 is
proved. �

5. BOUNDS FOR THE RATE OF CONVERGENCE OF (2) AND (3).

We first note an useful formula connecting the coefficients in the representation

A0

1− α0x
+

A1x

(1− α0x)(1− α1x)
+

A2x
2

(1− α0x)(1− α1x)(1− α2x)
+ · · · ≈

∞∑
n=0

anx
n.

Namely,

A0 = a0; A1 = a1 − α0a0;

A2 = a2 − (α0 + α1)a1 + (α0α1)a0;

A3 = a3 − (α0 + α1 + α2)a2 + (α0α1 + α1α2 + α2α0)a1 − (α0α1α2)a0; (20)

A4 = a4−σ1(α0, ..., α3)a3+σ2(α0, ..., α3)a2−σ3(α0, ..., α3)a1+σ4(α0, ..., α3)a0;

...

where σk(α0, . . . , αn) =
∑

0≤i1<···<ik≤n

αi1 . . . αik . Formulas (20) easily follow by in-

duction. Indeed, the relations for A0 and A1 are easily verified. Let the formula
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holds for Ak with a fixed k ≥ 1 and arbitrary parameters {αi} and {ai} . Then,
removing the denominator 1− α0x, subtracting A0 and dividing by x we obtain

A1

(1− α1x)
+

A2x

(1− α1x)(1− α2x)
+ · · · ≈

∞∑
n=0

an+1x
n − α0

∞∑
n=0

anx
n.

So, by the induction and the linearity, for the coefficient of xk
/∏k+1

i=1 (1− αix)
we find

Ak+1 =
[
ak+1 − σ1(α1, ..., αk)ak + σ2(α1, ..., αk)ak−1 − · · ·+ (−1)kσk(α1, ..., αk)a1

]
− α0

[
ak − σ1(α1, ..., αk)ak−1 + · · ·+ (−1)kσk(α1, ..., αk)a0

]
=ak+1 − σ1(α0, ..., αk)ak +

(
σ2(α1, ..., αk) + α0σ1(α1, ..., αk)

)
ak−1 −+ · · ·

+ (−1)k
(
σk(α1, ..., αk) + α0σk−1(α1, ..., αk)

)
a1 + (−1)k+1α0α1...αk · a0 ,

as for k = 1 the middle terms in the brackets do not appear. For k ≥ 2 the
induction step follows by the properties of the combinatorial sums {σi}.

In the particular case a0 = α0 = 0 and an = 1
n , n ≥ 1, we arrive at the formula

l(x) ≈ C1x

1− γ1x
+

C2x
2

(1− γ1x)(1− γ2x)
+

C3x
3

(1− γ1x)(1− γ2x)(1− γ3x)
+ · · · ,

where

Ck =
1

k
− σ1(γ1, ..., γk−1)

1

k−1
+ σ2(γ1, ..., γk−1)

1

k−2
− · · ·+ (−1)k−1(γ1 · · · γk−1)

=

∫ 1

0

(x− γ1)...(x− γk−1)d x. (21)

Let us consider some concrete representations of l(x) with periodic {γi}. As
was mentioned before, the choice {γi}∞1 = { 1

2}
∞
1 leads to the series (5). Let now

{γi}∞1 = {0, a, b, a, b, ...}. We take γ1 = 0 in order to write the series in the form

l(x) = D0x+ (B1 +D1x)u+ (B2 +D2x)u2 + (B3 +D3x)u3 + · · · , (22)

where u =
x2

(1− ax)(1− bx)
. Then D0 = 1 while for n ≥ 1, from (21) and

(Bn +Dnx)un =
Bnx

2n

(1− 0.x)(1− ax)n(1− bx)n−1
+

(bBn +Dn)x2n+1

(1− 0.x)(1− ax)n(1− bx)n
,

it follows thatBn =
∫ 1

0
x
[
(x−a)(x−b)

]n−1
d x, Dn+bBn =

∫ 1

0
x(x−a)n(x−b)n−1d x,

hence Dn =
∫ 1

0
x2
[
(x− a)(x− b)

]n−1
d x− sBn, where s = a+ b.

Introducing An =
∫ 1

0

[
(x− a)(x− b)

]n−1
d x, Cn =

∫ 1

0
x2
[
(x− a)(x− b)

]n−1
d x

and a′ = 1− a, b′ = 1− b, one can easily verify the recurrence relations

Bn =
(a′b′)n − (ab)n

2n
+
s

2
An; Cn =

(a′b′)n + (n+ 1)sBn − abAn
2n+ 1

;

Dn = Cn − sBn; An+1 = Dn + abAn.
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To minimize the asymptotics of the coefficients in (22) we choose (x−a)(x−b) =
x2−x+ 1

8 , which is the Chebyshev polynomial of the first kind T ∗2 (x), transformed
to the interval [0, 1]. Recall that the polynomials T ∗k (x) = xk + · · · associated
with the interval [α, β] provide the minimal uniform norm on [α, β] amongst all

polynomials of the form xk +
∑k−1
i=0 aix

i and the value of this minimal norm is
(β−α)k

22k−1 ([4, Ch.2.2.3]). In the our case, ‖T ∗2 ‖C[0,1] = −T ∗2 (1/2) = 1
8 which yields

that the above integrals are asymptotic to const√
n

(
− 1

8

)n
for n→∞. For this choice

we have s = a+ b = 1 and the recurrence relations simplify to

An+1 =
1

2n+ 1

[ 1

8n
− n

4
An
]
; Bn =

1

2
An; Dn = An+1 −

1

8
An.

It is convenient to substitute An =
(

1
8

)n−1

αn, where αn+1 =
1− 2nαn

2n+ 1
. Then,

the rate of convergence of this special case of (22), considered as a series of type
(3), i.e. with each summand counted twice, is like a geometrical series with ratio√
u

2
√

2
∼ x

2
√

2
(x → 0). In addition we can rewrite the series in a lacunary form.

Namely, by the recurrence formulas and D0 = A1 = 1 we get

l(x) = A1x+
(1

2
A1 +

(
A2 −

1

8
A1

)
x
)
u+

(1

2
A2 +

(
A3 −

1

8
A2

)
x
)
u2 + · · ·

=
[
x+

(1

2
− x

8

)
u
] [
A1 +A2u+A3u

2 + · · ·
]
,

(23)

where An satisfies the above formulas and u = x2

1−x+x2/8 . (The second factor is

lacunary, considered as a series of the form (3).)

Remark 3. Although the series (23) converges faster than (5), and is lacunary
as well, it is still less effective. This is because the coefficients are more complicated.
Indeed, let us count only multiplications and divisions as the most costly arithmetic
operations with equal cost. Then every next term in (5) needs two operations
(z2n+1 = z2n−1 × z2 and z2n+1/(2n + 1)), while every next term in (23) needs
three operations (αn+1 = (1 + αn)/(2n+ 1)− αn, (u/8)n = (u/8)n−1 × (u/8) and
αn+1 × (u/8)n). Actually, even the example below hardly improves (5).

Remark 4. We see that the first factor in (23) vanishes for x = 0 and x = 2.
In fact, l(0) = 0 but l(2) = log(−1) 6= 0. Recall our adoption that when the region
of validity of some identity is not specified, it is certain neighborhood of 0. In
particular, (23) converges for |x| < 1 and represents l(x) in the open unit disc. On
the other hand, a continuation of (23) for x outside the unit disc is questionable
because of l(1) =∞.

Consider now ”periodic” representations

l(x) = b0x+ c0x
2 +

∞∑
n=1

(an + bnx+ cnx
2)vn, v =

x3

(1− ax)(1− bx)(1− cx)
,
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i.e. of the form (3) with {γi}∞1 = {0, 0, a, b, c, a, b, c, ...}. Transforming (3) in the
above form, in view of (21), we find the following integral formulas for n ≥ 1:

an =

∫ 1

0

t2
[
(t− a)(t− b)(t− c)

]n−1
dt;

bn =

∫ 1

0

t2(t− a− b− c)
[
(t− a)(t− b)(t− c)

]n−1
dt;

cn =

∫ 1

0

t2
(
t2 − (a+ b+ c)t+ ab+ bc+ ca

)[
(t− a)(t− b)(t− c)

]n−1
dt.

For simplicity let us assume that the points a, b and c are symmetrically placed
in [0, 1], or more precisely let a + b = 1 and c = 1/2. Then, with the notations

In :=
∫ 1

0
[P (t)]ndt and Jn :=

∫ 1

0
t[P (t)]ndt where P (t)= (t − a)(t − b)(t − c), we

easily get I2m−1 = 0 and J2m = 1
2I2m. Next, using P (t)=

(
1
3P
′(t) + 4ab−1

6

)(
t− 1

2

)
we calculate

In =
n/2

3n+ 1

[
(4ab− 1)

(
Jn−1 −

1

2
In−1

)
+

1− (−1)n

n

(ab
2

)n]
;

Jn =
n/2

3n+ 2

[ 1

n
In + (2ab− 1

2 )
(
Jn−1 −

2ab+1

3
In−1

)
+
(ab

2

)n( 1

n
+ (4ab−1)

1−(−1)n

3n

)]
;

an =Jn−1 −
2ab+ 1

6
In−1 +

1− (−1)n

3n

(ab
2

)n
;

bn =In −
(
ab+

1

2

)
Jn−1 +

ab

2
In−1;

cn =Jn +
ab

2
Jn−1.

In particular, a nice formula is obtained if we take a = 0 and b = 1. Then

Jn =

{
− 1

12
n

3n+2Jn−1 for odd n > 0

− 1
4

n
3n+1Jn−1 for even n > 0 ,

an + bnx+ cnx
2 =

{(
2
3 −

x
2

)
Jn−1 + x2Jn for odd n(

1− x
2

)
Jn−1 + (x2 + 2x)Jn for even n .

The starting value is J0 = 1
2 and even the second formula holds for n = 0 with

J−1 := 0. Therefore, with v = x3

(1−x/2)(1−x) ,

l(x) =
(
x+

x2

2
+
(1

3
− x

4

)
v
)[

1 +
1

48

2!v2

5.7
+

1

482

4!v4

5.7.11.13
+

1

483

6!v6

5.7.11.13.17.19
+ · · ·

]
− 1

24

(
x2 +

(
1− x

2

)
v
)[1!v

5
+

1

48

3!v3

5.7.11
+

1

482

5!v5

5.7.11.13.17
+ · · ·

]
. (24)
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The both parts of (24), considered together and as a series of type (3), converge

like a geometric series with ratio 6

√
1

48·9x ≈
x

2.75 (x→ 0).

Proof of Theorem 2. To prove a), we denote by 0 < x1 < x2 < · · · < xk < 1
the zeros of the Chebyshev polynomial T ∗k (x) for the interval [0, 1] and take the
periodic sequence {γi}∞1 = {x1, . . . , xk, x1, . . . , xk, . . .}. Then, by (21) we have

|Cn+1| ≤
∫ 1

0

|T ∗k (t)|m |(t− γkm+1)...(t− γn)|d t ≤
(
2−2k+1

)m
< 2(−2k+1)(n/k−1),

where n = km+ r, r ∈ {0, . . . , k − 1}. Hence,

lim sup
n→∞

|Cn+1|1/n ≤ 4−1+1/2k =: q(k).

Therefore, with a fixed ε ∈ (0, 1], the inequality q(k) < 1
4−ε holds true, provided k

is sufficiently large. With such a k, the sequence {γi} above satisfies a).

To prove b) we shall exploit some properties of the Legendre polynomials
Pn(x) = 1

2nn! [(x
2 − 1)n](n). Let pn(x) = Pn(2x − 1) be the normalized Legen-

dre polynomials for the interval [0, 1]. It follows from
∫ 1

−1
Pn(x)Qm(x)d x = 0 for

every polynomial Qm(x) of degree m < n that
∫ 1

0
pn(x)qm(x)d x = 0 provided

deg(qm) = m < n. In addition,
∫ 1

−1
P 2
n(x)d x = 2

2n+1 implies
∫ 1

0
p2
n(x)d x = 1

2n+1 .

Now consider a representation of l(x) in the form (3) with γi ∈ [0, 1]. By

(21) Cn+1 =
∫ 1

0
øn(t)d t, where øn(x) :=

∏n
i=1(x − γi). Given a fixed n ∈ N, let

us represent pn(x) by the Newton interpolation formula at the points {γi}2n+1
i=n+1,

namely

pn(x) =

n∑
k=0

pn[γn+1, ..., γn+k+1](x− γn+1)...(x− γn+k)

=

n∑
k=0

p
(k)
n (ηk)

k!
(x− γn+1) . . . (x− γn+k),

where ηk ∈ [0, 1], k = 0, . . . , n. Now we will use the relation Pn(x) = P

(
1
2

)
n (x)

and the following properties (see [7, Ch.4.7,7.33]) of the ultraspherical polynomi-

als P
(λ)
n (x) (note that here λ represents a parameter, and not derivative order):

d

dx

{
P (λ)
m (x)

}
= 2λP

(λ+1)
m−1 (x); P

(λ)
m (1) =

(
m+2λ−1

m

)
and max

−1≤x≤1
|P (λ)
m (x)| = P (λ)

m (1),

for λ > 0. Then, with λ = k + 1
2 , we have P

(k)
n (x) = (2k − 1)!!P

(λ)
n−k(x) and hence,

for k = 0, . . . , n,

|p(k)
n (ηk)| = 2k|P (k)

n (2ηk − 1)| ≤ 2k‖P (k)
n ‖C[−1,1] = 2kP (k)

n (1) =
(n+ k)!

k!(n− k)!
.
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In particular, for k = n we find that the leading coefficient of pn(x) is qn =
(

2n
n

)
.

Thus, from the above representation of pn(x) and (21) we obtain

In :=

∫ 1

0

øn(x)pn(x)d x =

n∑
k=0

p
(k)
n (ηk)

k!
Cn+k+1. (25)

On the other hand

In = q−1
n

∫ 1

0

(
(qnøn(x)− pn(x)) + pn(x)

)
pn(x)d x = q−1

n

∫ 1

0

p2
n(x)d x =

(n!)2

(2n+ 1)!
.

Therefore, for at least one summand in (25) we have that

(n!)2

(n+ 1)(2n+ 1)!
≤ p

(k)
n (ηk)

k!
Cn+k+1

≤ (n+ k)!

(k!)2(n− k)!
|Cn+k+1| =

(
n+k
2k

)(
2k
k

)
|Cn+k+1| < 2n+3k|Cn+k+1|,

i.e. |Cn+k+1| > 2−n−3k · (n!)2

(n+1)(2n+1)! = 2−n−3k

(n+1)(2n+1)(2n
n )

> 1
(n+1)(2n+1)

(
1
8

)n+k
. As

a consequence, the inequalities |Cj | ≤ M
(8+ε)j ∀j ∈ N can not hold true for any

positive M and ε. Hence part b) and the theorem are proved. �

Proof of Theorem 3. First we shall prove the assertion for {Cn}. We can apply
the same reasoning as in the proof of part b) of Theorem 2 to the estimation

(n!)2

(n+ 1)(2n+ 1)!
≤ p

(k)
n (ηk)

k!
Cn+k+1, (26)

for some k ∈ {0, . . . , n}, but now the restriction is |ηk| ≤ 1. So, we need of an

upper bound for |p(k)
n (ηk)|. In view of the monotonicity of |P (k)

n (x)| for |x| ≥ 1 we
have

|p(k)
n (ηk)| = 2k|P (k)

n (2ηk − 1)| ≤ 2k|P (k)
n (−3)| = 2k|P (k)

n (3)|
= 2kQn,k(32 − x2

1,k)(32 − x2
2,k) . . . ≤ 2kQn,k 3n−k,

where Qn,k and {±xi,k} are the leading coefficient and the zeros of P
(k)
n , re-

spectively. From the definition of Pn(x) (by the Rodrigues’ formula) we find

Qn,k = (2n)!
2nn!(n−k)! from where |p(k)

n (ηk)| ≤ (2n)!
n!(n−k)!

(
3
2

)n−k
. Hence, taking mod-

ulus in (26), we can write

(n+ 1)(2n+ 1)|Cn+k+1| ≥
(n!)2

(2n)!
· k!

|p(k)
n (ηk)|

≥
[(2n

n

)2(
n

k

)(3

2

)n−k]−1

>
[
42n

(
n

k

)
1k
(3a

2

)n−k
ak−n

]−1

>
[
42n
(

1 +
3a

2

)n
ak−n

]−1

=
[(16

a
+ 24

)n
ak
]−1

.
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Now, if we choose a = 12 +
√

160 < 25, that is, the positive root of the equation
z = 16/z+24, then for any fixed M > 0 we obtain |Cn+k+1| > 1

(n+1)(2n+1)a
−n−k >

M · 25−(n+k+1), provided n is sufficiently large. The assertion for {Cn} is proved.

In order to prove the impossibility of the bounds for {An} in the theorem, let
us assume that for some M > 0, q < 1 and {αn} such that |αn| ≤ 1, the estimates
|An| ≤Mqn, n = 1, 2, . . . hold true. Then for |x| < 1 we have

l(x2) = l(x) + l(−x) =

∞∑
m=1

2A2m−1α2m−1x
2m

1− α2
2m−1x

2
+

2A2mx
2m

1− α2
2mx

2
.

That is, a representation l(u) =

∞∑
n=1

Bnu
b(n+1)/2c

1− βnu
holds true for |u| < 1, where

βn ∈ [0, 1] and |Bn| ≤ 2Mqn. We shall show that this series can be written in the
form (3) with parameters {γi} = {β1, β2, 0, β3, β4, 0, β5, β6, . . .}. This will follow
from the possibility of the representations

um

1− βnu
=

k∑
j=1

aj,nu
j

(1− γ1u) . . . (1− γju)
=:

k∑
j=1

aj,ncj(u), (27)

where m = bn+1
2 c and k = n + m − 1 = b 3n−1

2 c, i.e γk = βn. Note that {γi}k1
contains m− 1 zeros. Then, with v = 1/u we have cj(u) = 1

(v−γ1)...(v−γj) and (for

v 6= 0, γ1, . . . , γk) equality (27) is equivalent to

gn−1(v) := (v − β1) . . . (v − βn−1) =

k−1∑
i=0

ak−i,n(v − γk) . . . (v − γk−i+1),

where the indices of {γj} decrease, so the first product in the sum is assumed
equal to 1. Thus, we have a representation of gn−1(x) by the Newton interpolating
formula at the points γk, . . . , γ1, hence (k ≥ n) the representation exists and aj,n =

gn−1[γk, . . . , γj ], j = 1, . . . , k. As a consequence, ak−i,n =
g
(i)
n−1(ξi)

i! , where ξi ∈ [0, 1]
since {γj} ⊂ [0, 1]. The last equality implies that a1,n = · · · = am−1,n = 0 and

|ak−i,n| =
(
n− 1

i

)
|(ξi − x(i)

1 ) . . . (ξi − x(i)
n−1−i)| ≤

(
n− 1

i

)
, i = 0, . . . , n− 1,

where {x(i)
j } are the zeros of g

(i)
n−1(x). Using these estimates and (27) we obtain

l(u) =

∞∑
n=1

Bnu
m

1− βnu
=

∞∑
n=1

Bn
∑

n
2≤j≤

3n−1
2

aj,ncj(u) =

∞∑
j=1

cj(u)
∑

2j+1
3 ≤n≤2j

Bnaj,n

=:

∞∑
j=1

Cjcj(u).
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Thus we have written l(u) in the form (3) with coefficients that satisfy

|Cj | ≤
∑

2j+1
3 ≤n≤2j

2Mqn
(
n− 1

k − j

)
≤ 2M

∑
2j+1

3 ≤n≤2j

qn
(

2j − 1

b 3n−1
2 c − j

)
.

The numbers ln(j) := b 3n−1
2 c− j, n = d 2j+1

3 e, . . . , 2j belong to {0, . . . , 2j− 1} and
are distinct. So, in view of 3n

2 > b 3n−1
2 c = ln(j) + j,

|Cj | < 2M

2j−1∑
l=0

q
2
3 (l+j)

(
2j − 1

l

)
= 2Mq

2
3 j
[
1 + q2/3

]2j−1
= M1

[
q1/3 + q

]2j
.

Therefore, the assumption q ≤ 1
31 leads to |Cj | < M1

(
1
8

)j
which is a contradiction

to Theorem 2 since γj ∈ [0, 1]. Theorem 3 is proved. �

Now we shall make a comparison between the form (3) and the method of
continued fractions (see e.g. [1, Ch.4] for the used results). The similarity of the
two approaches is obvious – in both cases the n-th partial sum of the Maclaurin
series is recovered. We mean the usual representation of a function by a continued
fraction

f(z) = b0 +
a1z

b1 +

a2z

b2 +

a3z

b3 +
· · · =: b0 + K∞i=1(aiz/bi). (28)

But there are also some essential differences. Only seemingly the form (28) depends
on two sequences {ai} and {bi}. In fact, a nonsingular continued fraction (28), i.e.
with ai, bi 6= 0, i ≥ 1, elementary can be transformed into an equivalent form, say
with ai = 1 or with bi = 1. For example, the fraction

log(1 + z) =
z

1 +

12z

2 +

12z

3 +

22z

4 +

22z

5 +
· · · +

n2z

2n +

n2z

2n+ 1 +
· · · (29)

is transformed (by dividing the numerator and the denominator of the 2n-th and
2n+ 1-th terms to n

√
z) into

log(1 + z) =

√
z

(1/
√
z) +

1

(2/
√
z) +

1

(3/1
√
z) +

2/1

(2/
√
z) +

1

(5/2
√
z) +

· · ·

+
n/(n− 1)

(2/
√
z) +

1

((2n+ 1)/n
√
z) +

· · ·

This form has the advantage to (29) that it is close to a continued fraction F =
K∞i=1(1/bi) (with unit numerators). The convergence of such a fraction is very easy
to realize in view of the Seidel’s theorem which states that when the elements {bi}∞1
are positive, then F is convergent iff the series

∑∞
1 bi is divergent. Moreover, for

”relatively large” elements (say |bi| ≥ 3, i ≥ n0) the fraction converges approxi-
mately like [b1b2 . . . bn]−2. In the case of log(1 + z), and equivalently of l(x), this
rule gives an approximate rate of convergence like [(2/

√
z)n]−2 = (z/4)n (z → 0).
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The above arguments can be done precise using the formulas

K∞i=1(ai/bi) =
a1

b1
+

∞∑
i=2

(−1)i−1

BiBi−1

i∏
j=1

aj ,

where An/Bn = b0 + Kn
i=1(ai/bi) is the n-th convergent of the fraction, and

Ai = biAi−1 + aiAi−2, A0 = b0, A−1 = 1;

Bi = biBi−1 + aiBi−2, B0 = 1, B−1 = 0.

In particular, for a fraction with ai = 1 the remainder is

Rn := K∞i=1(1/bi)−Kn
i=1(1/bi) =

∞∑
i=n+1

(−1)i−1

BiBi−1
.

Then, for ”relatively large” |bi|, the relation Bi = biBi−1 + Bi−2 usually implies
Bi ≈ biBi−1 and Bi → ∞ for i → ∞, which in turn yields the approximate rule
|Rn| ≈ 1/|BnBn+1| ≈ B−2

n . It has to be mentioned however, that there are some
special cases for the data {bi} when the principal asymptotic behaviour of {Bi}
as a solution of the above three term recurrence relation is suppressed and the
magnitude of the sequence is not the usual one. This corresponds to a fraction of
value 1/0 =∞ and, in our case of interest, for l(x) with |x| < 1, such situations do
not appear.

Now, the question is which is the right correspondence for comparing the two
methods for accelerating power series? We argue that the most natural way is to
compare the n-th partial sum of (3) with the n-th convergent of (28). The calcu-
lation of both approximations can be organized in different ways, say backward,
and the formal counting of the the cost of arithmetic operations then gives the
same result (2n). Indeed, the coefficients in the continued fraction for l(x) are
much simpler, but (as we have seen) taking {γi} at the zeros of Tk(x) and grouping
summands we obtain rational parameters in the series, too.

Let us summarize the above comments. Both methods transform a series with
rate of convergence like zn into a series (sequence) converging approximately as
(z/4)n. This accelerating factor (1/4)n appears often in the continued fraction
expansions, for example in

L(z) = arcth(z) =
z

1 −
12z2

3 −
22z2

5 −
· · · − n2z2

2n+ 1 −
· · · .

Thus, in many cases the both methods have approximately the same efficiency.
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6. ACCELERATION OF SERIES FOR OTHER FUNCTIONS

First we consider the function

f = fα(x) :=
1

α
+

x

1 + α
+

x2

2 + α
+

x3

3 + α
+ · · · ,

which contains l(x) and L(
√
x) as particular cases. We describe some transfor-

mations of fα allowing its effective computation. Let us change the variable by
t = x

1−x/2 . An explicit formula for the coefficients in f =
∑∞
n=0 ant

n =: S0(t) can
be written using the Euler transform, but it is not convenient for computation and
estimation of {an}. More important is the recursive rule, which follows from the
differential equation

df

dt
= − 2α

t(2 + t)
f +

1

t(1− t/2)
,

a consequence of f = 1
xα

∫ x
0
zα−1

1−z dz = (1+t/2)α

tα

∫ t
1+t/2

0
zα−1

1−z dz. We have

an+1 =
( 1

2n
− n

2
an

)/
(n+ 1 + α), a0 =

1

α
. (30)

When α > 0, it is easily seen from (30) that an ∈ (0, 21−n), n > 0, hence the
transformation gives an acceleration of fα(x), for x→ 0, like 2−n.

An interesting consequence is obtained when we replace the coefficients in
f =

∑∞
n=0 ant

n from (30), namely(
1 +

t

2

)
fα
( t

1 + t/2

)
+

1

α
= 2fα

( t
2

)
+

1 + α

2tα

∫ t

0

zαfα
( z

1 + z/2

)
dz, α > −1.

By differentiating the identityf̄α(x) =
∑∞
n=1 an(α)tn, where f̄α := fα− 1

α , with
respect to α at α = 0, we obtain another interesting result. Note that f̄0 = l(x) and

the above transformation leads to (5):
{
an(0)

}∞
1

=
{

1
1 , 0,

1
3

(
1
2

)2

, 0, 1
5

(
1
2

)4

, 0, . . .
}

.

Also, by (30) it follows (n + 1)a′n+1(0) + an+1(0) = −na′n(0)/2 and one easily
represents {na′n(0)2n} as certain sums. With z = t/2 = x

2−x , this gives

Li2(x) =
x

12
+
x2

22
+
x3

32
+
x4

42
+ · · ·

= 2
[1

1

(z1

1
− z2

2

)
+
(1

1
+

1

3

)(z3

3
− z4

4

)
+
(1

1
+

1

3
+

1

5

)(z5

5
− z6

6

)
+ · · ·

]
,

and using that arctan2(z) =
(

1
1

)
z2− 1

2

(
1
1 + 1

3

)
z4 + 1

3

(
1
1 + 1

3 + 1
5

)
z6−+ · · · we arrive

at

Li2(x) = 2
[1

1

z1

1
+
(1

1
+

1

3

)z3

3
+
(1

1
+

1

3
+

1

5

)z5

5
+ · · ·

]
− L2(z). (31)

The explicit formula fα(x) =
∑∞
n=0

n!
(α)n+1

(−x)n

(1−x)n+1 =: S1(x), which follows

from the Euler transform and (α)k := α(α + 1) . . . (α + k − 1), is also of certain
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interest. This identity gives an acceleration for f if x < 0 and especially when
x ≈ −1. Note that the larger is α, the smaller are the terms in the series. Therefore,
it makes sense to shift the parameter to the right according to the formula fα(x) :=∑k−1
i=0

xi

i+α + xkfα+k(x).

Similarly to l(x), fα(x) has an analytic continuation in Df = C \ [1,∞). From
now on fα(z) will mean this continuation of the series fα(z). Then, let us justify
the domains where the above identities take place. Note that some series repre-
sentation S(z) of fα(z) coincide with the function in this connected component of
the intersection of the definition domains, which contains z = 0. Since the domain
of convergence of S1(z) is

∣∣ −z
1−z
∣∣ < 1 and a part of the boundary, depending on α,

then S1(z) represents fα(z) in the half-plane Re(z) < 1/2. Similarly, the domain
of convergence of S0( z

1−z/2 ) is included in Df , then this series can be used for cal-

culation of fα(z) in the half-plane Re(z) < 1. The remaining part of Df can be
covered by the following two formulas which are consequences from the relation

αfα(z) = F (1, α; 1 + α; z). (32)

For the properties of the hypergeometric function F (a, b; c; z) see [2] and the
multiple labels below refer to this book. Now, applying the identity 2.1(17) (which
is 2.9(34)) we obtain

fα(z) =
1

z
f1−α(z−1) +

π(−z)−α

sinπα
,

where yβ := eβ log0(y). According to the above note this relation holds for z ∈
C \ [0,∞) and α 6∈ Z. (When α is an integer, then fα(z) reduces to l(z) and its
analytic continuation is clear.) Another easy consequence of this formula is that
when the variable z crosses the segment (1,+∞) at z0 in positive direction, then
the value of fα(z) jumps by 2πiz−α0 .

The next transformation changes the argument to 1− z and is very useful for
z ≈ 1. Notice however that fα belongs to the set of the so-called degenerate cases
of the hypergeometric function and many known identities can not be used directly
but after a limit passage. Thus, from 2.9(33), applied for F (1, α; 1 + α+ ε; z) with
ε→ 0, or directly by 2.3(2) with l = 0, we get

fα(z) =

∞∑
n=1

(1

1
− 1

α
+

1

2
− 1

α+ 1
+ · · ·+ 1

n
− 1

α+ n− 1

) (α)n
n!

(1− z)n

−
(
ψ(α) + C + log(1− z)

) ∞∑
n=0

(α)n
n!

(1− z)n,
(33)

where ψ(α) is the digamma function and C is the Euler-Mascheroni constant. The
relation (33) holds in the domain {|z − 1| < 1} \ [1, 2).

Some other consequences of (32) are:

fα(x) =

∫ 1

0

tα−1

1− xt
dt, Re(α) > 0, x 6∈ [1,∞),
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which follows from the Euler integral 2.1.3;

fα(x) =
1

α −
α2x

α+ 1 −
12x

α+ 2 −
(α+ 1)2x

α+ 3 −
22x

α+ 4 −
(α+ 2)2x

α+ 5 −
· · · ,

see 2.5.4; next, the forth equality at the definition of u1 in 2.9 gives

fα(x) = (1− x)−α
∞∑
n=0

(α)n
n!

yn

α+ n
, y =

−x
1− x

;

and again there, from the second equality, by a limit pass with respect to any
parameter of F (a, b; c;x), it follows

l(x)fα(x) =

∞∑
n=1

(
hn +

1

α
+

1

α+ 1
+ · · ·+ 1

α+ n− 1

) xn

α+ n
.

Another interesting identity is obtained from the relation fν(z)=Φ(z, 1, ν). Namely,
the formula 1.11(9) (which holds for m = 1 as well), in view of 1.10(11), gives

fν(z) = z−ν

{
−
∞∑
n=1

Bn(ν)

n
· (log z)n

n!
+
[
ψ(1)− ψ(ν)− log log

1

z

]}
, (34)

where Bn(ν) are the Bernoulli polynomials and | log z| < 2π.

Finally, we consider the digamma function, because it is closely connected
with fα(z). Indeed, if in place of the divergent series fα(1) =

∑∞
n=0

1
α+n we take

ψ̄(α) :=
∑∞
n=1

(
1
n −

1
α+n

)
, then ψ̄(α) = ψ(α) + C + 1

α . As effective methods for

calculation of ψ(α) (and ψ̄(α)) one can use (33) or (34). Also, the formula 1.7(30):

ψ(a+ z) = ψ(a) +
z

a
− 1

2

z(z − 1)

a(a+ 1)
+

1

3

z(z − 1)(z − 2)

a(a+ 1)(a+ 2)
−+ · · ·

can serve for this purpose. Namely, assume that x = O(1) and the value ψ(x) is
needed with accuracy 27−k. Then, with a = k and z = x + k take 2k summands
of the formula. The terms at that place are approximately (k!)3/(3k)! and decay
as const/3n. So, eventually taking several additional summands we stop when the
last one becomes less than the required accuracy. Also, the shift formulas 1.7(9):

ψ(k) = hk−1 − C and 1.7(10): ψ(x + 2k) = ψ(x) +
∑2k−1
j=0

1
x+j are needed for the

calculation, and they require 3k additional divisions.

We refer to [6] for more recent methods for computation of ψ(z) (and Γ(z)).

Actually, the series ψ(α) easily can be transformed into a series that converges
like 1/n!, but the problem is that there appear infinitely many unknown constants.
For example, such a rearrangement is given by the following formula of type (3)

ψ̄(α) =
c1α

1 + α
+

c2α
2

(1 + α)(2 + α)
+

c3α
3

(1 + α)(2 + α)(3 + α)
+ · · · ,

Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 3–44. 41



where c1 =
∑∞
n=1

1
n2 = π2

6 , c2 = 2
∑∞
n=2

n−1
n3 = 0.8857... , c3 = 3

∑∞
n=3

(n−1)(n−2)
n4 =

0.6102... , c4 = 4
∑∞
n=4

(n−1)(n−2)(n−3)
n5 = 0.4663... , etc. The above series is a

consequence of the more general relation

α

x1(α+ x1)
+

α

x2(α+ x2)
+

α

x3(α+ x3)
+ · · · = c1α

α+ x1
+

c2α
2

(α+ x1)(α+ x2)
+ · · · ,

with c1
x1

=
∑∞
n=1

1
x2
n

, c2
x2

=
∑∞
n=2

xn−x1

x3
n

, c3
x3

=
∑∞
n=3

(xn−x1)(xn−x2)
x4
n

, ..., provided

the series are convergent. If we set xk+1 = xk+2 = · · · = ∞, then the relation
becomes a polynomial identity, which is not difficult to verify.

Other interesting series are obtained by expanding ψ̄(α) on rational terms
containing α(n) := α(α− 1)...(α− n+ 1), for example

ψ̄(α) = 2

{
1

1
· α

α+ 1
+

1

2
· α(α− 1)

(α+ 1)(α+ 2)
+

1

3
· α(α− 1)(α− 2)

(α+ 1)(α+ 2)(α+ 3)
+ · · ·

}
=

∞∑
k=1

α(α2 − 12)...(α2 − (k − 1)2)

(1 + α)2k
· (8k − 3)α+ k(10k − 3)

(2k − 1)(2k)

= α
( 1

α+ 1
+

1

2.1

)
− α(α− 1)

2.3

( 1

α+ 2
+

1

2.2

)
+
α(3)

(3)3

( 1

α+ 3
+

1

2.3

)
− α(4)

(4)4

( 1

α+ 4
+

1

2.4

)
+− · · · .

Note that the last two series converge like a geometrical series with ratio 1
4 .

We shall prove in details only the first identity. We start by proving the formula

α

α+ k
=

k∑
j=1

cj(k)
α(j)

(α+ 1)j
, where cj(k) = 2j

(k − 1)(j−1)

(k + 1)j
, k = 1, 2, 3, . . . (35)

To prove the existence of such a representation with certain coefficients we remove
the denominators and divide by α arriving to an equality between polynomials
of degree k − 1. Now, choosing the coefficients {cj}k1 successively by substituting
α = 1, . . . , k, the equality follows by the uniqueness of the interpolating polynomial.
In order to verify the formula for the coefficients we multiply the identity by (α+1)j
and obtain

α

α+ k
(α+ 1)j = αPj−1(α) + (α+ 1)j

k∑
i=j+1

ci(k)
α(i)

(α+ 1)i
,

where Pj−1(α) is a polynomial of degree j − 1. Rewriting the last equality as

(1 + α)j − (1− k)j
α+ k

+
(1− k)j
α+ k

= Pj−1(α) + (α+ 1)j

k∑
i=j+1

ci(k)
(α− 1)(i−1)

(α+ 1)i
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and noticing that the second term on the right-hand side vanishes for α = 1, . . . , j,
we conclude that Pj−1(α)− (1+α)j−(1−k)j

α+k is the interpolating polynomial for
(1−k)j
α+k .

In particular the leading coefficient equals

c1(k) + · · ·+ cj(k)− 1 =
(1− k)j
α+ k

[
1, 2, . . . , j

]
=

(k − 1)(j)

(k + 1)j
,

which easily implies the formula for cj(k).

Now, we substitute α
α+k from (35) into ψ̄(α) =

∑∞
k=1

α
k(α+k) and rearrange

the summation with respect to the basis
{

α(j)

(α+1)j

}
, which is admissible since the

double sum has positive terms. Then for the coefficients we get

∞∑
k=j

cj(k)

k
= 2j

∞∑
k=j

(k − 1)(j−1)

(k)j+1
=

2j!

(j)j+1
F (j, j; 2j − 1; 1) =

2

j
,

where we used that F (a, b; c; 1) = Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) . The first formula for ψ̄(α) is proved.

For the proof of the second relation one can use the identity

α

α+ n
=

dn/2e∑
j=1

(α+ j − 1)(2j−1)

(α+ 1)2j

(
ej(n)α+ dj(n)

)
, n = 1, 2, 3, . . . ,

where ej(1)α+ dj(1) = α+ 1 and

ej(n)α+dj(n) =
n(2j−1)

(n− j)2j+1

(
(4j− 1)(nα− j2)− j(5j− 2)(α−n)

)
, n = 2, 3, . . . ,

while the third one is a consequence of

α

α+ n
=

n−1∑
j=1

(−1)j−1

(n+ 1)j
· α(j) +

(−1)n−1

(n+ 1)n−1
· α

(n)

α+ n
.
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1. INTRODUCTION

The investigation of the reducibilities between sequences of sets of natural
numbers is initiated by Soskov. In the work [8] he introduces the ω-enumeration
reducibility ≤ω, which compares the informational content of sequences of sets in
a way that generalizes the Selman characterizing theorem for the enumeration re-
ducibility1. As a preorder, the reducibility ≤ω induces a degree structure – the
structure Dω of the ω-enumeration degrees. Again in [8] it is given a definition of a
jump operation ′ over the ω-enumeration degrees. In [9] Soskov and Ganchev con-
tinue the studying of the structure Dω. They derive that Dω is a proper extension of
the structure De of the enumeration degrees whose group Aut(D′ω) of the jump pre-
serving automorphisms is isomorphic to the automorphism group Aut(De) of De.
Recently Ganchev and Sariev show that in Dω the jump operation is first-order
definable in the language of the structure order. In this way each automorphism of
Dω is jump preserving, so the structures of enumeration and ω-enumeration degrees
have isomorphic automorphism groups: Aut(De)∼= Aut(Dω).

1The Selman Theorem states that A ≤e B ⇐⇒ (∀X ⊆ ω)[B ≤c.e. X → A ≤c.e. X]
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The ω-Turing reducibility ≤T,ω arises as a ‘Turing’ analogue of ≤ω and just like
the ω-enumeration reducibility compares the informational content of the sequences
of sets of natural numbers. In this computational framework the informational
content of a sequence is uniquely determined by the set of the Turing degrees of
the sets that code the sequence. We say that a set codes a sequence iff uniformly
in k, it can compute the k-th element of the considered sequence in its k-th Turing
jump:

X ⊆ ω codes {Ak}k<ω ⇐⇒ Ak ≤T X(k) uniformly in k.

Having this, we shall say that the sequence A is ω-Turing reducible to the sequence
B iff each set that codes B also codes A:

A ≤T,ω B ⇐⇒ (∀X ⊆ ω)[X codes B ⇒ X codes A].

This reducibility is introduced in [6], where its basic properties are explored.
The relation≤T,ω is a preorder on the set of the sequences of sets of natural numbers
and in the standard way induces a degree structure – the upper semi-lattice DT,ω

of the ω-Turing degrees.
Again in [6] is defined a jump operation on sequences, which induces a cor-

responding jump operation in the degree structure. Namely the jump A′ of the
sequence A is defined in such a way that:

X codes A′ ⇐⇒ (∃Y )[X ≡T Y ′ & Y codes A].

How DT,ω can be seen as an extension of the structure DT of the Turing
degrees? By the uniform properties of the Turing jump, it is well known that for
all A,X ⊆ ω:

A ≤T X ⇐⇒ A(k) ≤T X(k) uniformly in k.

Thus, the informational content of the set A, described in the Turing universe by
the set of the degrees of the sets that decides A, is the same as the content of the
sequence {A(k)}k<ω in the context of the ω-Turing reducibility. This observation
allows us to define a very natural embedding of the Turing degrees into the ω-
Turing:

degT (A) 7−→ deg
T,ω

({A(k)}k<ω).

This embedding preserves the order, the least upper bound operation and even the
jump. In this way we may assume the Turing degrees as a proper substructure of
DT,ω. But there are much more strong connections between the both structures. In
[6] it is shown that DT is definable in DT,ω by a first-order formula in the language
of the structure order and the jump operation. Also it is proved that the group
Aut(DT ) of the automorphisms of the Turing degrees is isomorphic to a subgroup of
the automorphism group Aut(DT,ω) of DT,ω – namely to the subgroup Aut(D′T,ω)
of the jump preserving automorphisms of the ω-Turing degrees.

The purpose of this paper is to show that in order to prove that the jump
operator is first-order definable in the ω-Turing degrees it is sufficient to prove
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that the jump 0T,ω
′ of the least element is definable by a first-order formula in the

language of the structure order. We also show that the definability of 0T,ω
′ implies

the definability of DT only in the language of the structure order.

2. PRELIMINARIES

2.1. BASIC NOTIONS

We shall denote the set of natural numbers by ω. If not stated otherwise, a, b,
c, . . . shall stand for natural numbers, A, B, C, . . . for sets of natural numbers, a,
b, c, . . . for degrees and A, B, C, . . . for sequences of sets of natural numbers. We
shall further follow the following convention: whenever a sequence is denoted by a
calligraphic Latin letter, then we shall use the Roman style of the same Latin letter,
indexed with a natural number, say k, to denote the k-th element of the sequence
(we always start counting from 0). Thus, if not stated otherwise, A = {Ak}k<ω,
B = {Bk}k<ω, C = {Ck}k<ω, etc. We shall denote the set of all sequences (of length
ω) of sets of natural numbers by Sω.

As usual A⊕B shall stand for the set {2x | x ∈ A}∪ {2x+ 1 | x ∈ B}. By A+

we shall denote the set A⊕ (ω \A).
We assume that the reader is familiar with the notion of Turing reducibility,

≤T , and with the structure of the Turing degrees DT (for a survey of basic results
on the Turing degree structure we refer the reader to [2, 3, 4].

The relation ≤T is a preorder on the powerset 2ω of the natural numbers and
induces a nontrivial equivalence relation ≡T . The equivalence classes under ≡T are
called Tuirng degrees. The Tuirng degree which contains the set A is denoted by
degT (A). The set of all Turing degrees is denoted by DT . The Tuirng reducibility
between sets induces a partial order ≤T on DT by

degT (A) ≤T degT (B) ⇐⇒ A ≤T B.

We denote by DT the partially ordered set (DT ,≤T ). The least element of DT

is the Turing degree 0T of ∅. Also, the degree of A⊕B is the least upper bound of
the degrees of A and B. Therefore DT is an upper semi-lattice with least element.

The (Turing) jump A′ of A ⊆ ω is defined as the halting problem for machines
with an oracle A,

A′ = {e | the e-th Turing machine with oracle A halts on input e}.

The jump operation preserves the Turing reducibility, so we can define degT (A)′ =
degT (A′). Since A <T A′, then we have a <T a′ for every Turing degree a. The
jump operator is uniform, i.e. there exists a recursive function j such that for every
sets A and B, if A ≤T B via the Turing operator with index e, then A′ ≤T B′ via
the operator with index j(e).
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2.2. THE ω-TURING DEGREES

The ω-Turing reducibility and the corresponding degree structure DT,ω are
introduced by Sariev and Ganchev in [6]. An equivalent, but more approachable
definition in the terms of the uniform Turing reducibility is derived again in the
same paper. Here we shall present only on the latter definition. According to it,
the sequence A is ω-Turing reducible to the sequence B, denoted by A ≤T,ω B, iff
for every n < ω,

An ≤T Pn(B) uniformly in n.

Here, for each X ∈ Sω, P(X ) is the so-called jump sequence of X and it is defined as
the sequence {Pk(X )}k<ω such that: P0(X ) = X0 and for each k < ω, Pk+1(X ) =
(Pk(X ))′⊕Xk+1.

Clearly ≤T,ω is a reflexive and transitive relation, and the relation ≡T,ω defined
by

A ≡T,ω B ⇐⇒ A ≤T,ω B and B ≤T,ω A

is an equivalence relation. The equivalence classes under this relation are called
ω-Turing degrees. In particular the equivalence class deg

T,ω
(A) = {B | A ≡T,ω B}

is called the ω-Tuirng degree of A. The relation ≤T,ω defined by

a ≤T,ω b ⇐⇒ ∃A ∈ a∃B ∈ b(A ≤T,ω B)

is a partial order on the set of all ω-Turing degrees DT,ω. By DT,ω we shall denote
the structure (DT,ω,≤T,ω). The ω-Turing degree 0T,ω of the sequence ∅ω = {∅}k<ω

is the least element in DT,ω. Further, the ω-Turing degree of the sequence A⊕B =
{Ak ⊕Bk}k<ω is the least upper bound a ∨ b of the pair of degrees a = deg

T,ω
(A)

and b = deg
T,ω

(B). Thus DT,ω is an upper semi-lattice with least element.
It is not difficult to notice that each sequence and its jump sequence belong to

the same ω-Turing degree, i.e. for all A ∈ Sω,

A ≡T,ω P(A). (2.1)

In this way, P(A) is an equivalent to A sequence, whose members are monotone
with respect to≤T and each its member decides the halting problems of the previous
members.

Given a set A ⊆ ω, denote by A ↑ ω the sequence (A, ∅, ∅, . . . , ∅, . . .). The
definition of ≤T,ω and the uniformity of the jump operation imply that for all sets
of natural numbers A and B,

A ↑ ω ≤T,ω B ↑ ω ⇐⇒ A ≤T B. (2.2)

The latter equivalence means that the mapping κ : DT → DT,ω, defined by

κ(degT (X)) = deg
T,ω

(X ↑ ω),

is an embedding of DT into DT,ω. Further, the so defined embedding κ preserves
the order, the least element and the binary least upper bound operation.
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We shall refer to κ as the natural embedding of the Turing degrees into the
ω-Turing degrees. The range of κ shall be denoted by D1 and shall be called the
natural copy of the Turing degrees.

The following theorem makes the connection between the original definition of
the ω-Turing reducibility and this one we took here.

Theorem 1 Let a ∈ DT,ω be a ω-Turing degree and C ⊆ DT,ω be at most
countable set of ω-Turing degrees. Let for each x ∈ C, x �T,ω a. Then there exists
f ∈ D1 such that a ≤T,ω f and for each x ∈ C, x �T,ω f .

A full proof2 of this result can be found in the PhD thesis of the first author, [5].
From the above property easily follows that each ω-Turing degree is uniquely

determined by the set of the degrees in D1, which bound it,

a ≤T,ω b ⇐⇒ (∀x ∈ De)[b ≤T,ω κ(x)→ a ≤T,ω κ(x)], (2.3)

and hence, as one can see, D1 is an automorphism base of DT,ω.

2.3. THE JUMP OPERATOR

Following the lines of Sariev and Ganchev [6], the ω-Turing jump A′ of A ∈ Sω
is defined as the sequence A′ = (P1(A), A2, A3, . . . , Ak, . . .).

Note, that A′ ≡T,ω {Pk+1(A)}k<ω, because for each k, Pk(A′) = P1+k(A).
The jump operator is strictly monotone, i.e. A �

T,ω
A′ and A ≤T,ω B ⇒

A′ ≤T,ω B′. This allows to define a jump operation on the ω-Turing degrees by
setting

deg
T,ω

(A)′ = deg
T,ω

(A′).

Clearly for all a,b ∈ DT,ω, a <
T,ω

a′ and a ≤T,ω b⇒ a′ ≤T,ω b′.
Also the jump operation on ω-Turing degrees agrees with the jump operation

on the Turing degrees, i.e. we have

κ(x′) = κ(x)′, for all x ∈ DT .

We shall denote by A(n) the n-the iteration of the jump operator on A. Let
us note that

A(n) = (Pn(A), An+1, An+2, . . .) ≡T,ω {Pn+k(A)}k<ω. (2.4)

2here we present only a sketch of the proof: the idea is to use a similar result for the ω-
enumeration degrees. First note that there is an embedding ι : DT → De of the Turing degrees
into the enumeration degrees such that a ≤T b⇔ ι(a) ≤e ι(b). Similarly, there is an embedding
ιω : DT,ω → Dω of the ω-Turing degrees into the ω-enumeration degrees such that a ≤T,ω b ⇔
ιω(a) ≤ω ιω(b). And finally, there is an embedding κe : De → Dω of the enumeration degrees
into the ω-enumeration degrees such that a ≤e b ⇔ κe(a) ≤ω κe(b). More precisely these
mappings are described, for example, in [6]. The property we use in the proof is that for each
a ∈ DT , ιω(κ(a)) = κe(ι(a)). The last part of the proof is the counterpart result of Theorem 1
concerning the ω-enumeration degrees. The main difference in it is that the degree f is not only
in κe[De], but additionally is in κe ◦ ι[DT ]. The proof of this result can be found in [10].
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It is clear that if A ∈ a, then A(n) ∈ a(n), where a(n) denotes the n-th iteration of
the jump operation on the degree a.

In [6] it is proved that the range of the jump operator is exactly the upper
cone over the first jump 0T,ω

′ of the least element. Again in the same paper, it
is shown even a stronger jump inversion property, which do not posses neither the
Turing degrees, nor the enumeration degrees. Namely, for each natural number n
if b is above a(n), then there is a least ω-Turing degree x above a with x(n) = b.
We shall denote this degree by Ina(b). An explicit representative of Ina(b) can be
given by setting

InA(B) = (A0, A1, . . . , An−1, B0, B1, . . . , Bk, . . .), (2.5)

where each A ∈ a and B ∈ b are arbitrary.
In the case when a = 0T,ω and n = 1, for the sake of simplicity, we shall use

the notation I instead of I10T,ω
. Sariev and Ganchev [6] show that the operation I

is monotone,
0T,ω

′ ≤T,ω x ≤T,ω y⇒ I(x) ≤T,ω I(y).

3. THE TURING DEGREES GENERATE DT,ω

Our goal in this section is to prove that the isomorphic copy D1 of the Turing
degrees under the natural embedding κ generates DT,ω under the greatest lower
bound operation ∧. More specifically, we will prove that for every ω-Turing degree
a there exist degrees g and f from D1 such that a = g ∧ f . We begin with the
simple observation that each ω-Turing degree is bounded by a degree in D1.

Lemma 2 Let a ∈ DT,ω. Then there is a degree g ∈ D1 such that a ≤T,ω g.

Proof. Recall that a �T,ω a′. Then by Theorem 1 applied for C = {a′}, there
is g ∈ D1, such that a ≤T,ω g, but a′ �T,ω g. So g is a degree from D1, which
bounds a. �

Lemma 3 Let a,g ∈ DT,ω and a ≤T,ω g. Then there is a degree f ∈ D1 such
that a = g ∧ f .

Proof. Let a ≤T,ω g. Consider the set C = {x ∈ DT,ω | x ≤T,ω g & x �T,ω a}.
Clearly C is countable and, hence, by Theorem 1, there exists a degree f in D1

such that a ≤T,ω f and for every x ∈ C, x �T,ω f .
Finally, let b ≤T,ω g, f . Then b 6∈ C and so b ≤T,ω a. Thus a = g ∧ f . �

Combining the above lemmas, we have the following.

Theorem 4 Let a∈DT,ω. Then there are degrees g, f ∈D1 such that a=g∧f .
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As a corollary we also have that (the isomorphic copy of) the Turing degrees
form an automorphism base for the ω-Turing degrees.

Note that for each degree a = g ∧ f with g, f ∈ D1, the jump a′ can be
expressed as the greatest lower bound of two degrees g1 and f1 from D1. The next
lemma shows that g′ and f ′ are such a pair.

Lemma 5 Let a,g and f are ω-Turing degrees such that a = g ∧ f . Then
a′ = g′ ∧ f ′.

Proof. Let a = g ∧ f . Then a ≤T,ω g, f and by the monotonicity of the jump,
a′ ≤T,ω g′, f ′.

Now let b is a lower bound of g′ and f ′. Let b1 = b ∨ 0T,ω
′. Then b ≤T,ω

b1 ≤T,ω g′, f ′ and 0T,ω
′ ≤T,ω b1. Let c = I(b1). Since the jump inversion operation

is monotone, we have that c = I(b1) ≤T,ω I(g′) ≤T,ω g and c = I(b1) ≤T,ω

I(f ′) ≤T,ω f . But a = g ∧ f , so c ≤T,ω a. Thus b ≤T,ω b1 = c′ ≤T,ω a′ by the
monotonicity of the jump. �

4. A PROPERTY OF THE LEAST TURING DEGREE

The aim of this section is to provide a characterizing property of the least
Turing degree 0T , which shall help us later to find a definition of D1 in the terms
of 0T,ω

′. We start by showing that 0T is the only degree x in DT , such that for
each Turing degree b, if x ∨ b ≥T 0′T then necessary b ≥T 0′T . In order to do so,
we first need the following notion of minimal complementation.

Definition 6 We shall say that the (Turing) degree d >T 0T satisfies the
minimal complementation property (MCP) if for every degree 0T <T a <T d there
exists a minimal degree m <T d such that a ∨m = d (and therefore a ∧m = 0T ):

MCP(d) 
 (∀a < d)[a 6= 0T → (∃m)[m is minimal & a ∨m = d]].

In [1] Lewis proves that every degree d ≥T 0′T satisfies the minimal comple-
mentation property.

From here, one can easily derive that if x is a nonzero Turing degree, then
there is a degree y such that x ∨ y ≥T 0′T , but y is not above 0′T . Indeed, let
x ∈ DT be a nonzero. Then x′ ≥T 0′T , and hence MCP(x′). Since 0T <T x <T x′

we have a minimal degree y <T x′ such that x ∨ y = x′. But y is not above 0′T
because it is minimal. Thus 0′T �T y.

Note also, that the formula: ϕ(x) 
 (∀y)[x∨y ≥T 0′T → y ≥T 0′T ] is satisfied
by the Turing degree 0T of the recursive sets. Thus, we have proven the following
proposition.

Lemma 7 The least element 0T is the only Turing degree x such that

(∀y)[x ∨ y ≥T 0′T → y ≥T 0′T ].
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As an end of this section we move to the structure of the ω-Turing degrees,
where we shall investigate the degrees defined by the formula ϕ. Namely, we shall
describe all the ω-Turing degrees x such that

(∀y)[x ∨ y ≥T,ω 0T,ω
′ → y ≥T,ω 0T,ω

′].

First let us consider a sequence X = {Xk}k<ω such that DT,ω |= ϕ(deg
T,ω

(X )).

In other words, X is such that for each sequence Y = {Yk}k<ω if ∅ω ′ ≤T,ω X ⊕Y
then ∅ω ′ ≤T,ω Y. Noting that for each sequence A = {Ak}k<ω, ∅ω ′ ≤T,ω A is
equivalent to ∅′ ≤T A0, and then using Lemma 7, we conclude that X0 ≡T ∅.

Now, let X = {Xk}k<ω be such that X0 ≡T ∅ and the sequence Y = {Yk}k<ω

be such that ∅ω ′ ≤T,ω X ⊕Y. Then we have that ∅′ ≤T X0⊕Y0 ≡T Y0, and hence
∅ω ′ ≤T,ω Y.

Thus, the degrees in DT,ω, which satisfy the formula ϕ, are exactly these that
contain a sequences whose zeroth element is the empty set. Further we shall denote
the set of all these degrees by D̃1,

D̃1 = {x ∈ DT,ω | (∃{Ak}k<ω ∈ x)[ A0 = ∅ ]}.

5. DEFINABILITY IN THE ω-TURING DEGREES

In [6] Sariev and Ganchev show the first-order definability of the natural copy
D1 of the Turing degrees in DT,ω in the terms of the structure order and the jump
operation. In this section we shall improve this result by showing that only in the
language of structure order and using 0T,ω

′ as a parameter, we can define D1 in
DT,ω. As a consequence, we derive that the definability of 0T,ω

′ implies this one of
the whole jump operator.

Theorem 8 The following are equivalent:

1. the jump operator is first-order definable in DT,ω;

2. the jump 0T,ω
′ of the least element is first-order definable in DT,ω;

3. the isomorphic copy D1 of the Turing degrees is first-order definable in DT,ω

Proof. (1)⇒ (2): obvious;
(2)⇒ (3): Note that the first-order definability of 0T,ω

′ implies the first-order

definability of the set D̃1, defined in the previous section. But using the set D̃1 a
simple definition of D1 can be derived. Indeed, for each a ∈ DT,ω, denote by µ(a)

the least (ω-Turing) degree x, for which exists degree y ∈ D̃1 such that x ∨ y = a.
It is not difficult to see that the operation µ is correctly defined. Moreover, for
each a, if {Ak}k<ω ∈ a then µ(a) contains the sequence (A0, ∅, . . . , ∅, . . .). In order
to prove this, first note that

(A0, ∅, . . . , ∅, . . .)⊕(∅, A1, A2, . . . , An, . . .) ≡T,ω {Ak}k<ω.
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Thus the degree of (A0, ∅, . . . , ∅, . . .) is such that there is a degree in D̃1 which cups it

to a. Suppose now that x and y ∈ D̃1 are such that x∨y = a. Let us fix sequences
{Xk}k<ω ∈ x and {Yk}k<ω ∈ y with Y0 = ∅. Then {Xk}k<ω ⊕{Yk}k<ω ≡T,ω

{Ak}k<ω. In particular, X0⊕Y0 ≡T X0 ≡T A0. Therefore,

(A0, ∅, . . . , ∅, . . .) ≤T,ω (X0, ∅, . . . , ∅, . . .) ≤T,ω {Xk}k<ω.

Hence, the range of µ is exactly the copy D1 of the Turing degrees under the
embedding κ:

D1 = {µ(a) | a ∈ DT,ω}.

Thus the Turing degrees are first-order definable in the structure DT,ω of the
ω-Turing degrees.

(3)⇒ (1): By Theorem 4 and Lemma 5, for each ω-Turing degree a there are
ω-Turing degrees g, f ∈ D1, such that

a = g ∧ f and a′ = g′ ∧ f ′, (5.1)

and if there is another pair of degrees, whose greatest lower bound exists and is
equal to a, then the greatest lower bound of their jumps also exists and is equal
exactly to a′.

As we stated in the preliminaries, D1 is closed under the jump and the ω-
Turing jump agrees with the Turing jump. Also, by Shore and Slaman [7], the
jump operator is definable in the structure DT of the Turing degrees. Hence the
restriction of the ω-Turing jump operator over D1 is definable in the structure
(D1,≤T,ω,∨). Thus, by (5.1), we conclude that the definability of D1 implies this
of the jump. �

The definability of 0T,ω
′, alas, still remains an open question.

Question 9 Is the jump 0T,ω
′ of the least element first-order definable in

DT,ω?

One of the main consequences of the definability of the jump operator will be
that each automorphism of DT,ω is jump preserving3, i.e. Aut(D′T,ω)=Aut(DT,ω).
This combined with the previously mentioned result by Sariev and Ganchev [6]
stating the isomorphicity of the groups of the automorphism of the Turing degrees
and of the jump preserving automorphism of the ω-Turing degrees, implies that
the groups Aut(DT ) and Aut(DT,ω) are isomorphic.

3a mapping π : DT,ω → DT,ω is said to be jump preserving, if for each degree a ∈ DT,ω ,
π(a′) = π(a)′.
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1. A CHARACTERIZATION OF THE RATE OF APPROXIMATION OF THE
BERNSTEIN-DURRMEYER OPERATOR

For x = (x1, . . . , xd) ∈ Rd we set |x| :=
∑d
i=1 |xi|. Let S be the standard

simplex in Rd given by

S := {(x1, . . . , xd) ∈ Rd : xi ≥ 0, i = 1, . . . , d, |x| ≤ 1}.

The Jacobi weights on S are defined by

wα(x) := xα1
1 · · ·x

αd
d (1− |x|)αd+1 , αi > −1, i = 1, . . . , d+ 1. (1.1)
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We have set α := (α1, . . . , αd+1). For p ∈ [1,∞) and a Jacobi weight wα we consider
the space Lp,wα(S) of Lebesgue measurable functions f defined on S such that

‖f‖p,wα :=

(∫
S

|f(x)|pwα(x) dx

)1/p

<∞.

Let, as usual, L∞(S) denote the space of the essentially bounded Lebesgue mea-
surable functions on S, equipped with the sup-norm on S. For brevity we set
L∞,wα(S) := L∞(S) and ‖f‖∞,wα := ess supx∈S |f(x)|.

We proceed to the definition of the multivariate Bernstein-Durrmeyer operators
with Jacobi weights given by Ditzian [13]. For n ∈ N0 and k = (k1, . . . , kd) ∈ Nd0
with |k| ≤ n we define the polynomials

pn,k(x) :=
n!

k1! · · · kd!(n− |k|)!

d∏
i=1

xkii (1− |x|)n−|k|.

The Jacobi-weighted Bernstein-Durrmeyer operators on Lp,wα(S) are defined by

Mn,αf(x) :=
∑
|k|≤n

pn,k(x)

(∫
S

pn,k(y)wα(y) dy

)−1 ∫
S

f(y) pn,k(y)wα(y) dy.

These operators in the univariate case and with no weight, i.e. wα = 1, were
introduced independently by Durrmeyer [16] and Lupaş [19]; their multivariate
generalization was given by Derriennic [11]; and their univariate weighted form was
considered by Berens and Xu [2, 3]. These operators were extensively studied by
many authors and it is very difficult to summarize all the results. That is why we
shall restrict our attention only to those which are directly and most closely related
to the subject of the present paper. In the next section we shall recall several of
their basic properties. They were proved by Ditzian [13] in the general case, and
earlier by Derriennic [11] and Berens and Xu [2, 3] respectively in the multivariate
unweighted case and the univariate weighted case.

Ditzian [13] introduced the K-functional

Kα(f, t)p := inf
g∈C2(S)

{‖f − g‖p,wα + t ‖Pα(D)g‖p,wα}

in order to characterize the rate of approximation of the Bernstein-Durrmeyer op-
erator in Lp,wα(S). Here Pα(D) is the differential operator that is naturally asso-
ciated to the multivariate Bernstein-Durrmeyer operators with the weight wα. It
is defined by

Pα(D) :=
∑
ξ∈ES

wα(x)−1
∂

∂ξ
d̃(ξ, x)wα(x)

∂

∂ξ
,

where ES is the set of the directions parallel to the edges of S and d̃(ξ, x) is the
distance introduced by Ditzian [12]

d̃(ξ, x) := sup
λ≥0

x+λξ∈S

d(x, x+ λξ) sup
λ≥0

x−λξ∈S

d(x, x− λξ),
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as d(x, y) is the Euclidean distance.
Ditzian [13] proved that there exist positive constants c1 and c2 such that for

all f ∈ Lp(wα)(S) and all n ∈ N there holds

c1Kα(f, n−1)p ≤ ‖Mn,αf − f‖p,wα ≤ c2Kα(f, n−1)p. (1.2)

The direct estimate, i.e. the right-hand side inequality, was established with
c2 = 2 independently by Chen and Ditzian [6] (see also [7, p. 38]) and by Berens,
Schmid and Xu [1, Theorem 2] in the unweighted case, and by Berens and Xu
[2, Theorem 3] in the univariate weighted case. A closer look at the proof of [13,
Theorem 3.3] shows that we can take c2 independent of the dimension d and the
weight wα. Actually, a slight modification of this argument shows that the direct
estimate holds with c2 = 2 in the general case. More precisely, we have

‖Mn,αf − f‖p,wα ≤ 2Kα(f, n−1)p. (1.3)

For the sake of completeness we give its proof in Section 3.
As for the converse estimate, that is, the left inequality in (1.2), Chen, Ditzian

and Ivanov [7, Theorems 6.1 and 6.3] established it in the unweighted case for all
d if 1 < p < ∞ and for d ≤ 3 if p = 1,∞ (a little bit weaker result was verified in
the larger dimensions). Then Knoop and Zhou [18, Theorem 3.1] proved it for all d
and 1 ≤ p ≤ ∞ in the unweighted case. Both proofs give constants c1 that decrease
to 0 when d increases. Heilmann and M. Wagner [17, Theorem 1] improved c1
for d ≤ 3. Ditzian’s proof of the general weighted case also yields a constant c1
that decreases to 0 when d or maxi |αi| increase. All these treatments are based
on the quite general and efficient method developed by Ditzian and Ivanov [14]. It
enables us to derive converse inequalities like the one on the left-hand side of (1.2)
by means of Voronovskaya and Bernstein-type inequalities. These inequalities are
important in themselves but their consecutive application leads to decreasing c1.

The main purpose of this paper is to demonstrate that by means of the mul-
tiplier theory we can derive strong converse inequalities with better absolute con-
stants than the methods previously used. Moreover, the arguments are very short.
The first result we state contains a strong converse inequality of a form that is a
combination of types B and C (according to the terminology introduced in [14]).
Quite similar results were previously established by Berens and Xu [2, Theorem 3]
(see also [2, Theorem 2]).

Set ρ := d+
∑d+1
i=1 αi.

Theorem 1.1. Let d ∈ N, 1 ≤ p ≤ ∞ and wα be given by (1.1) with αi > −1,
i = 1, . . . , d+ 1. Then for all f ∈ Lp(wα)(S) and all n ∈ N there hold

Kα(f, n−1)p ≤
(

4 +
2ρ

n

)(
‖Mn,αf − f‖p,wα + ‖M2n,αf − f‖p,wα

)
+

4

n

2n∑
k=n+1

‖Mk,αf − f‖p,wα .
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Remark 1.2. Let us explicitly note that the constant on the right-hand side
above is asymptotically independent of any parameters unlike the strong converse
inequalities obtained in [7], [13], [18]. More precisely, if n ≥ |ρ|, then

Kα(f, n−1)p ≤ 6
(
‖Mn,αf − f‖p,wα + ‖M2n,αf − f‖p,wα

)
+

4

n

2n∑
k=n+1

‖Mk,αf − f‖p,wα .

However, the inequalities established in [7, 13, 18] are of a stronger type than the
one above.

Let us mention that the K-functional Kα(f, t)p was characterized by a simpler
one in [8] for 1 < p <∞ (see also the references cited there).

It seems quite plausible that the strong converse inequality in (1.2) also holds
with c1, which is independent of p, d and wα. We were not able to show that.
However, a short multiplier argument yields a strong converse inequality of that
type in a special case. It is based on a result due to H. Pollard. Let d = 1 and
wα = 1. Let Snf be the n-th partial sum of the Fourier-Legendre series of f .
Pollard [20] proved that if 4/3 < p < 4, then the operators Sn : Lp[0, 1]→ Lp[0, 1]
are uniformly bounded on n, that is, there exists a constant ς ≥ 1 such that

‖Snf‖p ≤ ς‖f‖p, f ∈ Lp[0, 1], n ∈ N.

Here ‖ ◦ ‖p denotes the standard Lp-norm on the interval [0, 1]. We will omit
the subscript α in the notation of the K-functional and the Bernstein-Durrmeyer
operator when wα = 1.

We will establish the following result.

Proposition 1.3. Let 4/3 < p < 4. Then for all f ∈ Lp[0, 1] and all n ∈ N
there holds

K(f, n−1)p ≤ (1 + 2ς) ‖Mnf − f‖p.

The contents of the paper are organized as follows. In the next section we col-
lect the basic properties of Bernstein-Durrmeyer operator that we will use. Section
3 contains the proofs of the theorems and the proposition stated above. In the last
section we discuss how the same multiplier method can be applied in the general
case of weights wα with αi ≥ −1/2 for all i. This proof is not shorter than the ones
previously used; but it has the advantage of using elementary calculus and being
invariant in its technical part on the dimension—it depends only on that how large
ρ is.
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2. BASIC PROPERTIES OF THE BERNSTEIN-DURRMEYER OPERATOR

Here we shall recall the properties of the Jacobi-weighted Bernstein-Durrmeyer
operator that we need (see [13]).

First of all, it is a contraction on the space Lp,wα(S), that is,

‖Mn,αf‖p,wα ≤ ‖f‖p,wα . (2.1)

Mn,α is a self-adjoint linear operator w.r.t. the inner product

〈f, g〉wα :=

∫
S

f(x)g(x)wα(x) dx.

Its eigenvalues are

µn,` :=
n!

(n− `)!
Γ(n+ ρ+ 1)

Γ(n+ `+ ρ+ 1)
, ` = 0, . . . , n, (2.2)

where Γ denotes the gamma function and, to recall, we have set ρ := d+
∑d+1
i=1 αi.

For each `, to µn,` corresponds the same eigenspace for all n. We denote it by V`.
For ` ≥ 1 the space V` consists of those algebraic polynomials of x1, . . . , xd and total
degree ` that are orthogonal w.r.t. the above inner product to the polynomials of
degree `−1. The eigenspace V0, corresponding to µn,0 = 1, consists of all constants.
Now, if we denote the projections on V` by P`, then Mn,α can be represented in
the form

Mn,α =

n∑
`=0

µn,`P`. (2.3)

The operator Pα(D) is also self-adjoint and its eigenspaces coincide with those
of Mn,α. More precisely, there holds

Pα(D)P = −`(`+ ρ)P, P ∈ V`, ` ∈ N0. (2.4)

Finally, let us recall that Mn,α and Pα(D) commute on C2(S):

Mn,αPα(D)f = Pα(D)Mn,αf, f ∈ C2(S). (2.5)

3. PROOFS OF THE MAIN RESULTS

First, we will prove the direct estimate stated in (1.3) for the sake of complete-
ness of the exposition.

Proof of (1.3). Z. Ditzian’s proof of the direct estimate in (1.2), is based on
the elegant formula (see [13, (3.3)])

Mn,αf − f =

∞∑
`=n+1

1

`(`+ ρ)
Pα(D)M`,αf, (3.1)
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valid for all f ∈ Lp,wα(S). Using that Mn,α is a contraction (see (2.1)), we get

‖Mn,αf − f‖p,wα ≤ 2 ‖f − g‖p,wα + ‖Mn,αg − g‖p,wα (3.2)

for any g ∈ C2(S). Next, we apply (2.1), (2.5) and (3.1) to estimate the second
term on the right. Thus we get

‖Mn,αg − g‖p,wα ≤
∞∑

`=n+1

1

`(`+ ρ)
‖Pα(D)g‖p,wα . (3.3)

It is quite straightforward, to see that

∞∑
`=n+1

1

`(`+ ρ)
≤ 1

n
.

Now, substituting (3.3) in (3.2) and taking an infimum on g ∈ C2(S), we arrive at

‖Mn,αf − f‖p,wα ≤ 2Kα(f, n−1)p.

Thus the first inequality in (1.3) is verified; the second one is trivial. �

Proof of Theorem 1.1. The proof is a modification of a very short argument
due to Berens and Xu (see [2, Theorem 3]). Set

gn :=
1

tn

2n∑
k=n+1

Mk,αf

k(k + ρ)
, tn :=

2n∑
k=n+1

1

k(k + ρ)
.

Clearly, gn ∈ C2(S) for all n ∈ N and then

Kα(f, n−1)p ≤ ‖f − gn‖p,wα +
1

n
‖Pα(D)gn‖p,wα . (3.4)

We estimate the first term on the right above by means of

‖f − gn‖p,wα =

∥∥∥∥∥f − 1

tn

2n∑
k=n+1

Mk,αf

k(k + ρ)

∥∥∥∥∥
p,wα

≤ 1

tn

2n∑
k=n+1

‖Mk,αf − f‖p,wα
k(k + ρ)

≤ 4

n

2n∑
k=n+1

‖Mk,αf − f‖p,wα .

(3.5)

In order to estimate the second term on the right in (3.4), we apply (2.3) and (2.4)
to get the representation

Pα(D)gn = − 1

tn

2n∑
k=n+1

k∑
`=0

`(`+ ρ)

k(k + ρ)
µk,`P`.
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Next, we take into account the remarkable property of the multipliers µn,`

µk,` − µk−1,` =
`(`+ ρ)

k(k + ρ)
µk,`

to arrive at the formula

Pα(D)gn =
1

tn

2n∑
k=n+1

(Mk−1,αf −Mk,αf)

=
1

tn
(Mn,αf −M2n,αf).

Consequently,

1

n
‖Pα(D)gn‖p,wα ≤

(
4 +

2ρ

n

)(
‖Mn,αf − f‖p,wα + ‖M2n,αf − f‖p,wα

)
. (3.6)

Combining (3.4)-(3.6), we complete the proof of the theorem. �

Let us proceed to the proof of the converse inequality in Proposition 1.3. The
method we use is quite straightforward. It is based entirely on standard techniques
in the multiplier theory and orthogonal series expansions. We will present it in the
general case of the multivariate Bernstein-Durrmeyer operator on the simplex. The
method is based on constructing a family of uniformly bounded operators Qn such
that

1

n
Pα(D)Mm

n,αf = Qn(Mn,αf − f)

with some fixed m ∈ N. Then the strong one-term converse inequality in (1.2)
easily follows from

Kα(f, n−1)p ≤ ‖Mm
n,αf − f‖p,wα +

1

n
‖Pα(D)Mm

n,αf‖p,wα
= ‖(Mm−1

n,α +Mm−2
n,α + · · ·+ I)(Mn,αf − f)‖p,wα + ‖Qn(Mn,αf − f)‖p,wα

≤ (m+ q) ‖Mn,αf − f‖p,wα ,

where I denotes the identity and q > 0 is such that ‖QnF‖p,wα ≤ q‖F‖p,wα for all
F ∈ Lp,wα(S) and n ∈ N.

That approach to converse inequalities has been applied before (see e.g. [14,
(2.13)], and also cf. [p. 32][2]). The proof of the direct inequality, we recalled above,
was realized in a similar way (see (3.1)). There is a general comparison principle
that underlies this technique. It was formulated independently, in two different
settings, by Shapiro [21] (see also [22, Section 9.4]) and Trigub [24, § 4] and [25, § 4]
(see also [27, Chapter 7] and [26, p. 4]. The author tried to present systematically
that method of verifying direct and converse estimates in terms of K-functionals
in [15] (see also the references cited there).

The earlier proofs of the converse inequality of the type given in (1.2) for the
Bernstein-Durrmeyer operator also employed orthogonal expansions, but in a lesser
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degree and within the framework in [14]. Berens and Xu [2] also extensively used
multiplier techniques (see also [2, Theorem 2]).

Proof of Proposition 1.3. Let us begin with several observations valid in the
general multivariate weighted case. They will be useful for our discussion in the
next section.

We first note that (2.3) and (2.4) yield

Pα(D)Mn,αf = −
n∑
`=1

`(`+ ρ)µn,`P`f.

We introduce the linear operator on Lp,wα(S)

Qnf :=

n∑
`=1

νn,`P`f,

where

νn,` :=
`(`+ ρ)µn,`
n(1− µn,`)

. (3.7)

Note that µn,` < 1 for ` = 1, 2, . . . , n. With that operator we have

1

n
Pα(D)Mn,αf = Qn(Mn,αf − f).

Thus to establish a one-term strong converse inequality, it is enough to show that

‖Qnf‖p,wα ≤ c ‖f‖p,wα
for all f ∈ Lp,wα(S) and n ∈ N.

After this general remark, we proceed to the proof of the proposition. Now,
Snf coincide with the nth partial sum of the orthogonal expansion of f on P`, that
is,

Snf :=

n∑
`=0

P`f.

We use the representation

Qnf =

n−1∑
`=1

(νn,` − νn,`+1)S`f + νn,nSnf − νn,1S0f.

In Lemma 3.4 below we will show that νn,`−νn,`+1 > 0 for all `. Then, taking also
into account that the ν’s are positive and νn,1 = 1, we deduce the estimate

‖Qnf‖p,wα ≤ ς

(
n−1∑
`=1

(νn,` − νn,`+1) + νn,n + νn,1

)
‖f‖p,wα

≤ 2ςνn,1‖f‖p,wα = 2ς ‖f‖p,wα ;

hence the assertion of the proposition follows. �
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Lemma 3.4. Let ρ > −1. For νn,` defined in (3.7) there holds

νn,` > νn,`+1, ` = 1, . . . , n− 1, n = 2, 3, . . . . (3.8)

Proof. Relation (3.8) is equivalent to

1− µn,`
`(`+ ρ)µn,`

<
1− µn,`+1

(`+ 1)(`+ ρ+ 1)µn,`+1
,

which can be written in the form

1

`(`+ ρ)µn,`
− 1

`(`+ ρ)
<

1

(`+ 1)(`+ ρ+ 1)µn,`+1
− 1

(`+ 1)(`+ ρ+ 1)
.

We group the terms with µ’s on the left-hand side and those without on the right-
hand side, and substitute the value of the µ’s given in (2.2). After straightforward
calculations, using that ρ > −1 and

Γ(n+ `+ ρ+ 2) = (n+ `+ ρ+ 1)Γ(n+ `+ ρ+ 1), (3.9)

which follows from Γ(z + 1) = z Γ(z), z > 0, we deduce that (3.8) is equivalent to

(n− `− 1)! Γ(n+ `+ ρ+ 1)[n− `(`+ ρ+ 1)] < n! Γ(n+ ρ+ 1)

for ` = 1, . . . , n− 1, n = 2, 3, . . . . To verify this inequality, we shall show that the
quantity on the left-hand side is decreasing on ` and it is valid for ` = 1. The latter
is a matter of a direct check—it reduces to (ρ+ 1)(ρ+ 2) > 0. To verify the former,
we set

ξn,` := (n− `− 1)! Γ(n+ `+ ρ+ 1)[n− `(`+ ρ+ 1)].

To see that
ξn,` > ξn,`+1, ` = 1, 2, . . . , n− 2, n = 3, 4, . . . , (3.10)

we again apply (3.9) to deduce that (3.10) is equivalent to

(n− `− 1)[n− `(`+ ρ+ 1)] > (n+ `+ ρ+ 1)[n− (`+ 1)(`+ ρ+ 2)].

Now, direct computations yield

(n− `− 1)[n− `(`+ ρ+ 1)]− (n+ `+ ρ+ 1)[n− (`+ 1)(`+ ρ+ 2)]

= (`+ 1)(`+ ρ+ 1)(2`+ ρ+ 2) > 0,

which verifes (3.10) and completes the proof of the lemma. �
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4. AN EXTENSION

In this section we will demonstrate that the multiplier method can be used to
verify the one-term converse inequality in (1.2) in a more general situation than
the one considered in Proposition 1.3.

To this end, we represent Qn as a linear combination of the Cesàro means of
the partial sums of the orthogonal expansion of f on P` (see [4, Theorem 3.2]). We
set

S̃nf :=
1

n+ 1

n∑
k=0

Skf,

where

Skf :=

k∑
`=0

P`f.

Then we have

Qnf =

n−2∑
`=1

(`+ 1)(νn,`+2 − 2νn,`+1 + νn,`)S̃`f

+ n(νn,n−1 − 2νn)S̃n−1f + (n+ 1)νn,nS̃nf + (νn,2 − 2νn,1)S̃0f. (4.1)

As usually, if the range of summation is empty, we set the sum to be equal to zero.
Dai and Xu [9, Theorem 2.8 with δ = 1] (or see [10, Theorem 13.4.4], as we

also apply the Riesz-Thorin interpolation theorem) showed that if 1 ≤ p ≤ ∞,
αi ≥ −1/2, i = 0, . . . , d + 1, and ρ − mini αi < 3/2, then the Cesàro means are
uniformly bounded on n, i.e. there exists a constant κ such that

‖S̃nf‖p,wα ≤ κ ‖f‖p,wα , f ∈ Lp(wα)(S), n ∈ N. (4.2)

Lemma 3.4 yields νn,2 ≤ νn,1 = 1. Then we have by (4.1) and (4.2)

‖Qnf‖p,wα ≤ κ

(
n−2∑
`=1

(`+ 1)|νn,`+2 − 2νn,`+1 + νn,`|

+ (4n+ 1)νn,n−1 + 3

)
‖f‖p,wα .

We will prove that

n−2∑
`=1

(`+ 1)|νn,`+2 − 2νn,`+1 + νn,`| ≤ c

and
n νn,n−1 ≤ c.
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Above and henceforward, c denotes a positive constant, not necessarily the same
at each occurrence, whose value is independent of n.

Thus we will have shown that if 1 ≤ p ≤ ∞, αi ≥ −1/2, i = 1, . . . , d+ 1, and

d+

d+1∑
i=1

αi − min
1≤i≤d+1

αi <
3

2
,

then for all f ∈ Lp(wα)(S) and all n ∈ N there holds

Kα(f, n−1)p ≤ c ‖Mn,αf − f‖p,wα .

In order to treat the general case, we can still apply the same method but use
Cesàro means of higher order (see [5, Theorem 7.1] or [23, Theorem 3.3]). Their
uniform boundedness was established by Dai and Xu [9] (or see [10, Theorems
13.2.7 and 13.4.6]).

We proceed to establishing the auxiliary results.
We set for τ ∈ (0, n]

µn(τ) :=
Γ(n+ 1)Γ(n+ ρ+ 1)

Γ(n− τ + 1)Γ(n+ τ + ρ+ 1)
, νn(τ) :=

τ(τ + ρ)µn(τ)

n(1− µn(τ))
.

We will make use of the following formula of the derivative of the gamma function

Γ′(z) = Γ(z)ψ(z),

where ψ(z) is the digamma function, defined as the logarithmic derivative of the
gamma function

ψ(z) :=
Γ′(z)

Γ(z)
.

We have
µ′n(τ) = −µn(τ)Cn(τ), (4.3)

where
Cn(τ) := ψ(n+ τ + ρ+ 1)− ψ(n− τ + 1).

We will use the following estimates.

Lemma 4.5. Let ρ ≥ 0. Then:

Cn(τ) ≤ 2τ + ρ

n− τ
, τ ∈ (0, n); (4.4)

Cn(τ) ≥ 2τ + ρ

2(n− τ + 1)
, τ ∈ (0, (n− ρ)/3), n > ρ; (4.5)

C ′n(τ) ≤ 2n+ ρ

(n+ τ + ρ)(n− τ)
, τ ∈ (0, n); (4.6)

C ′n(τ) ≥ 2n+ ρ+ 2

(n+ τ + ρ+ 1)(n− τ + 1)
, τ ∈ (0, n); (4.7)

C ′′n(τ) ≥ 2(2τ + ρ− 1)(2n+ ρ+ 1)

(n+ τ + ρ)2(n− τ + 1)2
, τ ∈ (0, n). (4.8)
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Proof. As is known,

ψ(x) = −γ − 1

x
+

∞∑
k=1

x

k(k + x)
, x > 0, (4.9)

where γ is Euler’s constant. Therefore

Cn(τ) = (2τ + ρ)

∞∑
k=1

1

(n− τ + k)(n+ τ + ρ+ k)
. (4.10)

Interpreting the sum above as a Darboux sum, we arrive at the estimates

log

(
1 +

2τ + ρ

n− τ + 1

)
≤ Cn(τ) ≤ log

(
1 +

2τ + ρ

n− τ

)
. (4.11)

To complete the proof of the first two estimates, it remains to take into account
the inequalities

log(1 + x) ≤ x, x ∈ R,

log(1 + x) ≥ x− x2

2
≥ x

2
, x ∈ [0, 1].

In order to estimate the derivatives of Cn, we use that for m ≥ 1 we have

ψ(m)(x) = (−1)m+1m!

∞∑
k=0

1

(x+ k)m+1
, x > 0.

Therefore

1

x
≤ ψ′(x) ≤ 1

x− 1
; (4.12)

− 2

(x− 1)2
≤ ψ′′(x) ≤ − 2

x2
; (4.13)

(4.14)

for x > 1. These inequalities directly yield (4.6)-(4.8). �

Lemma 4.6. Let ρ ≥ 0, b > 0 and 0 < δ ≤ 1. Let also n ∈ N be such that
n ≥ 3 and 1 ≤

√
bn ≤ n− 1. Then

n2νn,` ≤ c, δn ≤ ` ≤ n, (4.15)

τ |ν′n(τ)| ≤ c, τ ∈ [1, n− 1], (4.16)

and

τ2|ν′′n(τ)| ≤ c, τ ∈ [1,
√
bn], (4.17)

where the constant c is independent of n.
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Proof. First, we estimate from below the difference 1− µn,`.
By means of the property Γ(z + 1) = zΓ(z), z > 0, we represent µn,` in the

form

µn,` =
n(n− 1) · · · (n− `+ 1)

(n+ ρ+ 1)(n+ ρ+ 2) · · · (n+ ρ+ `)
.

Consequently,

1− µn,` ≥
(n+ ρ+ 1)(n+ ρ+ 2) · · · (n+ ρ+ `)− n`

(n+ ρ+ 1)(n+ ρ+ 2) · · · (n+ ρ+ `)
.

We expand the numerator, take into account that ρ ≥ 0, and use the well-known
formulas for sums of powers of consecutive positive integers, to arrive at the estimate

(n+ ρ+ 1)(n+ ρ+ 2) · · · (n+ ρ+ `)− n` ≥ c(`2n`−1 + `6n`−3).

Hence we get the inequalities

1− µn,` ≥
c `2n`−1

(n+ ρ+ 1)(n+ ρ+ 2) · · · (n+ ρ+ `)
(4.18)

and

1− µn,` ≥
c `6n`−3

(n+ ρ+ 1)(n+ ρ+ 2) · · · (n+ ρ+ `)
(4.19)

for 3 ≤ ` ≤ n.
Inequality (4.15) for ` ≥ 3 follows directly from (4.19) and ` ≥ δn:

n2νn,` ≤ c
n`+2

`4n`−2
≤ c.

For ` = 1, 2 (4.15) is trivial.
We proceed to the second assertion of the lemma. Making use of (4.3), we

arrive at

τν′n(τ) =
τ(2τ + ρ)µn(τ)

n(1− µn(τ))
− τ2(τ + ρ)µn(τ)Cn(τ)

n(1− µn(τ))2
. (4.20)

The function µn(τ) is monotone decreasing on τ for each fixed n. For the rest
of the proof let ` ∈ {1, . . . , n− 2} be such that ` ≤ τ ≤ `+ 1. Then

µn(τ) ≤ µn,`, (4.21)

1− µn(τ) ≥ 1− µn,`. (4.22)

These two inequalities, the property Γ(z + 1) = zΓ(z), z > 0, and (4.18) imply the
following estimate of the first term on the right in (4.20)

0 ≤ τ(2τ + ρ)µn(τ)

n(1− µn(τ))
≤ (`+ 1)(2`+ ρ+ 2)µn,`

n(1− µn,`)

≤ c (`+ 1)(2`+ ρ+ 2)

`2
n!

n`(n− `)!
≤ c, τ ∈ [1, n− 1].

(4.23)

Ann. Sofia Univ., Fac. Math and Inf., 105, 2018, 55–73. 67



To estimate the second term we argue in a similar way, as we also use (4.4).
We have

τ2(τ + ρ)µn(τ)nCn(τ)

(n(1− µn(τ)))2
≤ c (`+ 1)2(`+ ρ+ 1)(2`+ ρ+ 2)

`4

× n! (n+ ρ+ 1) · · · (n+ ρ+ `)

n2`−1(n− `)! (n− `− 1)

≤ c
(

1− 1

n

)
· · ·
(

1− `− 2

n

)(
1 +

ρ+ 1

n

)
· · ·
(

1 +
ρ+ `

n

)
≤ c

`−2∏
i=1

(
1− i

n

)(
1 +

i+ ρ

n

)
.

As usually, we set an empty product to be equal to 1.
Next, we take into account that(

1− i

n

)(
1 +

i+ ρ

n

)
= 1− i2

n2
+
ρ

n

(
1− i

n

)
≤ 1 +

ρ

n
(4.24)

and the inequality (1 + ρ/n)n ≤ eρ to deduce

0 ≤ τ2(τ + ρ)µn(τ)Cn(τ)

n(1− µn(τ))2
≤ c, τ ∈ [1, n− 1]. (4.25)

Relations (4.20), (4.23) and (4.25) imply the second inequality in the lemma.
In order two prove the last assertion of the lemma, we use the representation

ν′′(τ) =
2µn(τ)

n(1− µn(τ))
− 2(2τ + ρ)µn(τ)Cn(τ)

n(1− µn(τ))2

− τ(τ + ρ)µn(τ)C ′n(τ)

n(1− µn(τ))2
+
τ(τ + ρ)(1 + µn(τ))µn(τ)Cn(τ)2

n(1− µn(τ))3
. (4.26)

Just similarly to (4.23) and (4.25), we establish

0 ≤ τ2µn(τ)

n(1− µn(τ))
≤ c, (4.27)

0 ≤ τ2(2τ + ρ)µn(τ)nCn(τ)

(n(1− µn(τ)))2
≤ c (4.28)

for τ ∈ [1, n− 1].
Again, similarly to the proof of (4.25), but this time using (4.6), we get

τ3(τ + ρ)µn(τ)C ′n(τ)

n(1− µn(τ))2
≤ c (`+ 1)3(`+ ρ+ 1)

`4

× (2n+ ρ)n! (n+ ρ+ 1) · · · (n+ ρ+ `− 1)

n2`−1(n− `)! (n− `− 1)

≤ c
`−2∏
i=1

(
1− i

n

)(
1 +

i+ ρ

n

)
≤ c.
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Consequently,

0 ≤ τ3(τ + ρ)µn(τ)C ′n(τ)

n(1− µn(τ))2
≤ c, τ ∈ [1, n− 1]. (4.29)

In order to estimate the last term in the representation of ν′′n we use (4.4) and
µn,` ≤ 1 to deduce

τ3(τ + ρ)(1 + µn(τ))µn(τ)Cn(τ)2

n(1− µn(τ))3
≤ c (`+ 1)3(`+ ρ+ 1)(2`+ ρ+ 2)2

`6

× n! (n+ ρ+ 1)2 · · · (n+ ρ+ `)2

n3`−2(n− `)! (n− `− 1)2

≤ c
`−3∏
i=1

(
1− i

n

)(
1 +

i+ ρ

n

)2

.

It remains to observe that, by virtue of (4.24) and the inequality (1 + ρ/n)n ≤ eρ,
we have

`−3∏
i=1

(
1− i

n

)(
1 +

i+ ρ

n

)2

≤ c
[(

1 +
`+ ρ

n

)n]`/n
≤ c e`

2/n ≤ c.

�

Lemma 4.7. Let ρ ≥ 0. There holds

`(νn,` − νn,`+1) ≤ c, ` = 1, . . . , n− 1,

where the constant c is independent of n.

Proof. The inequality follows readily from (4.15) for ` = n− 1. Let ` ≤ n− 2.
Then, by virtue of (4.16), we have

`(νn,` − νn,`+1) = −`
∫ `+1

`

ν′n(τ) dτ

≤ sup
1≤τ≤n−1

|τν′n(τ)| ≤ c.

�

Lemma 4.8. Let ρ ≥ 0. There holds

n−2∑
`=1

(`+ 1)|νn,`+2 − 2νn,`+1 + νn,`| ≤ c,

where the constant c is independent of n.
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Proof. Clearly, it is sufficient to verify the lemma for large n. Its assertion for
n ≤ n0, where n0 ∈ N is fixed, is trivial.

We split the sum into four parts:

1 ≤ ` ≤
√
an− 2,

√
an− 2 < ` ≤

√
bn,

√
bn < ` ≤ n

4
,

n

4
< ` ≤ n− 2,

where 0 < a < b will be fixed in appropriate way to be indicated in the course of
the proof. We denote these parts with Σi, i = 1, . . . , 4, respectively.

As is known

νn,`+2 − 2νn,`+1 + νn,` =

∫ `+2

`

M(τ − `)ν′′n(τ) dτ, ` = 1, . . . , n− 2,

where

M(τ) :=

{
τ, 0 ≤ τ ≤ 1,

2− τ, 1 ≤ τ ≤ 2.

By virtue of (4.17), we have

Σ2 :=
∑

√
an−2<`≤

√
bn

(`+ 1)|νn,`+2 − 2νn,`+1 + νn,`|

≤ c
∫ √bn+2

√
an−2

τ |ν′′n(τ)| dτ ≤ c.

Let mn be the integer part of n/4. We apply (4.15) to get

Σ4 :=
∑

n/4<`≤n−2

(`+ 1)|νn,`+2 − 2νn,`+1 + νn,`| ≤ c n2νn,mn ≤ c.

We proceed to estimating Σ3. Let
√
bn ≤ τ ≤ n/4 + 2. Let n be so large that

we have n/4 + 2 ≤ (n − ρ)/3. We will show that if b is fixed large enough, then
ν′′n(τ) > 0 for all large n. Hence νn,`+2 − 2νn,`+1 + νn,` ≥ 0 if

√
bn < ` ≤ n/4− 2.

Let `n be the smallest integer greater than
√
bn. Then, by virtue also of Lemmas

3.4 and 4.7, we deduce that

Σ3 :=
∑

√
bn<`≤n/4

(`+ 1)|νn,`+2 − 2νn,`+1 + νn,`|

= `n(νn,`n − νn,`n+1) + νn,`n − (mn + 1)νn,mn +mnνn,mn+1

≤ c.
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Thus, to complete the proof of the estimate of Σ3 it remains to show that
νn,`+2 − 2νn,`+1 + νn,` ≥ 0 if

√
bn ≤ ` ≤ n/4 − 2 for all n large enough an

appropriately fixed b. By (4.26) we have

ν′′n(τ) =
µn(τ)

n(1− µn(τ))3
N(τ),

where we have set

N(τ) := 2(1− µn(τ))2 − 2(2τ + ρ)Cn(τ)(1− µn(τ))

− τ(τ + ρ)C ′n(τ)(1− µn(τ)) + τ(τ + ρ)C2
n(τ)(1 + µn(τ)).

By virtue of Lemma 4.5, we arrive at the estimate

N(τ) ≥ µn(τ)

(
2(2τ + ρ)2

n− τ
+

τ(τ + ρ)(2n+ ρ)

(n+ τ + ρ)(n− τ)
+
τ(τ + ρ)(2τ + ρ)2

4(n− τ + 1)2

)
− 2(2τ + ρ)2

n− τ
− τ(τ + ρ)(2n+ ρ)

(n+ τ + ρ)(n− τ)
+
τ(τ + ρ)(2τ + ρ)2

4(n− τ + 1)2
. (4.30)

In order to show that N(τ) > 0 it is enough to prove that the quantity on the
right-hand side of the last relation is positive. Using that n − τ + 1 < n + τ + ρ,
we see that this follows from

µn(τ)[8(2τ+ρ)2(n+τ+ρ)2+4τ(τ+ρ)(2n+ρ)(n+τ+ρ)+τ(τ+ρ)(2τ+ρ)2(n−τ)]

> 8(2τ +ρ)2(n+τ +ρ)2 +4τ(τ +ρ)(2n+ρ)(n+τ +ρ)−τ(τ +ρ)(2τ +ρ)2(n−τ).

To complete the proof it remains to observe that if b is fixed large enough, then the
quantity on the right-hand side of the inequality above is negative for large n. To
see this, we observe that the sum of the terms in the polynomial on the variables
τ and n on the right-hand side that determine its sign for large τ and n is

40n2τ2 + 72nτ3 − 8ρnτ3 − 4nτ4 + 4τ5.

Since

40n2τ2 + 72nτ3 − 8ρnτ3 − 4nτ4 + 4τ5 ≤ 4τ2(10n2 + 18nτ − nτ2 + τ3),

to complete the proof it is sufficient to show that

10n2 + 18nτ − nτ2 + τ3 < 0

if
√
bn ≤ τ ≤ n/4 with an appropriately fixed b. But this readily becomes clear

from the estimate

10n2 + 18nτ − nτ2 + τ3 ≤ 10n2 +
9

2
n2 − nτ2 +

1

4
nτ2

≤ 29

2
n2 − 3b

4
n2.
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To estimate Σ1 we use similar but more lengthy considerations than those for
Σ3. They are based on the inequalities stated in Lemma 4.5 as we have to use
instead of (4.5) its refinement that follows from log(1 + x) ≥ x − x2/2. This time
we show that there exists a ∈ (0, 1) such that N ′(τ) < 0 at least for large n if
1 ≤ τ ≤

√
an; hence N(τ) ≤ N(1) < 0. Consequently, νn,`+2 − 2νn,`+1 + νn,` ≤ 0

if 1 ≤ ` ≤
√
an− 2 and n is large. �
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1. INTRODUCTION

In order to approximate unbounded functions in uniform norm in [0, 1), Meyer-
König and Zeller (see [15]) introduced a new operator by the formula

Mn(f ;x) =

∞∑
k=0

mn,k(x)f
( k

n+ k

)
, (1.1)

where

mn,k(x) =

(
n+ k

k

)
xk(1− x)n+1. (1.2)

But this operator cannot be used to approximate functions in Lp-norm because
it is not bounded operator in Lp. Some kind of modification is needed. In this paper
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we investigate the weighted approximation of functions in Lp-norm by Kantorovich
modifications of the classical Meyer-König and Zeller (MKZ) operator.

In 1930, Kantorovich [13] suggested a modification of the classical Bernstein
operator, replacing the function values by mean values. Analogously, Totik [16]
introduced Kantorovich type modification of MKZ operator:

M̃∗n(f ;x) =

∞∑
k=0

mn,k(x)
(n+ k)(n+ k + 1)

n

∫ k+1
n+k+1

k
n+k

f(u) du,

and proved direct and converse theorems of weak type in terminology of Ditzian
and Ivanov [4] for it. Although this definition looks as the most natural one, the
operator M̃∗n is not a contraction, hence it is not very suitable for approximating
functions in Lp-norm for p <∞.

In [14] Müller defined a Kantorovich modification of MKZ operator in a slightly
different way, so that the resulting operator is a contraction:

M̃n(f ;x) = M̃nf(x) =

∞∑
k=0

mn,k(x)
(n+ k + 1)(n+ k + 2)

n+ 1

∫ k+1
n+k+2

k
n+k+1

f(u) du. (1.3)

Recently, in [11] by introducing an appropriate K-functional the first author
proved a direct theorem for the operators M̃n(f ;x). Our goal in this paper is to
extend this result for the case of weighted approximation of functions in Lp-norm
by M̃n(f ;x) operator.

Let us introduce some notations. For the sake of simplicity and brevity of our
presentation we set

γn,k =
(n+ k + 1)(n+ k + 2)

n+ 1
, ∆n,k =

[ k

n+ k + 1
,

k + 1

n+ k + 2

]
. (1.4)

Then, the Kantorovich modification of MKZ operator (1.3) takes the form

M̃n(f ;x) =

∞∑
k=0

γn,kmn,k(x)

∫
∆n,k

f(u) du.

The weights under consideration in our survey are

w(x) = (1− x)α, α ∈ R. (1.5)

By ϕ(x) = x(1 − x)2 we denote the weight which is naturally related to the
second derivative of MKZ operator. The usual first derivative operator is denoted
by D = d

dx . Thus, Dg(x) = g′(x) and Dkg(x) = g(k)(x) for every k ∈ N.

We define a differential operator D̃ by the formula

D̃ =
d

dx

(
ϕ(x)

d

dx

)
= DϕD.
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The space ACloc(0, 1) consists of the functions which are absolutely continuous
in [a, b] for every [a, b] ⊂ (0, 1). For 1 ≤ p ≤ ∞ and weight function w(x) as in (1.5)
we set

Lp(w) = {f : wf ∈ Lp[0, 1)},

Wp(w)=


{
f : f,Df ∈ACloc(0, 1), wD̃f ∈Lp[0, 1), lim

x→0+,1−
ϕ(x)Df(x) = 0

}
, α<0,{

f : f,Df ∈ACloc(0, 1), wD̃f ∈Lp[0, 1), lim
x→0+

ϕ(x)Df(x) = 0
}
, α≥0,

Lp(w) +Wp(w) =
{
f : f = f1 + f2, f1 ∈ Lp(w), f2 ∈Wp(w)

}
.

Also, we define a K-functional K̃w(f, t)p for t > 0 by

K̃w(f, t)p = inf
{
‖w(f − g)‖p + t‖wD̃g‖p : f − g ∈ Lp(w), g ∈Wp(w)

}
. (1.6)

Our main result is the following theorem.

Theorem 1. For 1 ≤ p ≤ ∞, w defined by (1.5), M̃n defined by (1.3), and the
K-functional given by (1.6) there exists a positive constant C such that for every
n > |α|, n ∈ N, and for all functions f ∈ Lp(w) +Wp(w) there holds

‖w(M̃nf − f)‖p ≤ CK̃w

(
f,

1

n

)
p
. (1.7)

Remark 1. Converse theorem remains an open problem even for the non-
weighted case, i.e., for w(x) = 1 in (1.5).

Problems on characterization of weighted K-functionals by moduli of smooth-
ness were considered by Draganov and Ivanov in [6, 7, 9]. Particularly, they char-
acterized the K-functional

Kw(f, t)p =

inf
{
‖w(f−g)‖p+t‖wϕD2g‖p : g,Dg ∈ACloc(0, 1), f−g, ϕD2g ∈Lp(w)

}
. (1.8)

In this paper we also show that the same moduli of smoothness can be used
for computing the K-functional K̃w(f, t)p. So, we prove the next statement.

Theorem 2. For 1 < p < ∞ and w, K̃w(f, t)p, Kw(f, t)p, defined by (1.5),
(1.6) and (1.8), respectively, there exists a positive constant C such that for all
f ∈ Lp(w) +Wp(w) there holds

K̃w(f, t)p ≤ C
(
Kw (f, t)p + tE0(f)

)
, (1.9)

where E0(f) = infc∈R ‖w(f − c)‖p is the best weighted approximation to f by a
constant.

Remark 2. For p = 1 and p = ∞ new moduli are needed. Also, a problem
on characterization of the K-functional K̃w(f, t)p arises, but it is not the subject of
our survey here.
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Henceforth, the constant C will always be an absolute positive constant, which
means it does not depend on f and n. Also, it may be different on each occur-
rence. The relation θ1(f, t) ∼ θ2(f, t) means that there exists a constant c ≥ 1,
independent of f and t, such that

c−1θ1(f, t) ≤ θ2(f, t) ≤ c θ1(f, t).

2. AUXILIARY RESULTS

In this section we present some properties of the operators Mn, M̃n, basis
functions mn,k (see [1, 10, 12]), and prove auxiliary lemmas that we need further.

The operators Mn and M̃n are linear positive operators with ‖Mnf‖∞ ≤ ‖f‖∞
and ‖M̃n‖1 = 1. Moreover,

‖M̃n‖p ≤ 1, 1 ≤ p ≤ ∞, (2.1)

Mn(1;x) = 1, Mn(t− x;x) = 0, (2.2)

M̃n(1;x) = 1. (2.3)

A direct integration yields the identity:∫ 1

0

mn,k(x)dx =
1

γn,k
. (2.4)

We shall need the next three properties of the functions {mn,k}∞k=0, defined by
(1.2) (for proofs, see e.g., [11]).

Lemma 1. If n ∈ N, then

1

1− x
=

1

n+ 1

∞∑
k=0

(n+ k + 1)mn,k(x), x ∈ [0, 1). (2.5)

Lemma 2. If n ∈ N, then

n∑
k=1

(1− x)k

k
=

∞∑
k=0

mn,k(x)

n∑
j=1

1

k + j
, x ∈ [0, 1). (2.6)

Lemma 3. There exists an absolute constant C such that for every n ∈ N the
following inequality holds true:

∣∣∣ ln(1− x) +

∞∑
k=0

mn,k(x)

k+1∑
j=1

1

n+ j

∣∣∣ ≤ C

n
, x ∈ [0, 1). (2.7)
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In [16, Lemma 3] Totik proved that for 1 ≤ p <∞,

‖(1− x)Df(x)‖p ≤ C
(
‖f‖p + ‖ϕD2f‖p

)
. (2.8)

In order to prove our main results we need a few additional lemmas.

Lemma 4. For every integer ν there exists a constant C = C(ν), such that

∞∑
k=0

(
1− k

n+ k + 1

)ν
mn,k(x) ≤ C(1− x)ν , x ∈ [0, 1), (2.9)

for all n > |ν|, n ∈ N.

Proof. We have

∞∑
k=0

(
1− k

n+ k + 1

)ν
mn,k(x)

=

∞∑
k=0

( n+ 1

n+ k + 1

)ν(n+ k

k

)
xk(1− x)n+1

= (1− x)ν
∞∑
k=0

(n+ 1)ν (n+ k − ν + 1) · · · (n+ k)

(n− ν + 1) · · ·n (n+ k + 1)ν
mn−ν,k(x)

≤ (1− x)ν
∞∑
k=0

C(ν)mn−ν,k(x)

= C(ν)(1− x)ν . �

Lemma 5. For every α ∈ R there exists a constant C = C(α), such that the
following inequality is satisfied:

∞∑
k=0

(
1− k

n+ k + 1

)α
mn,k(x) ≤ C(1− x)α, x ∈ [0, 1), (2.10)

for all n > |α|, n ∈ N.

Proof. Let ν be the smallest positive integer such that ν ≥ |α|. Then, by
Hölder’s inequality it follows that

∞∑
k=0

(
1− k

n+ k + 1

)α
mn,k(x)

≤

( ∞∑
k=0

(
1− k

n+ k + 1

)ν sign (α)

mn,k(x)

)|α|/ν ( ∞∑
k=0

mn,k(x)

)1−|α|/ν

.
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Applying Lemma 4 we obtain( ∞∑
k=0

(
1− k

n+k+1

)ν sign(α)

mn,k(x)

)|α|/ν
≤
(
C(1−x)ν sign(α)

)|α|/ν
= C(α)(1−x)α.

Therefore,
∞∑
k=0

(
1− k

n+ k + 1

)α
mn,k(x) ≤ C(α)(1− x)α

and the lemma is proved. �

The next lemma is a weighted variant of (2.1).

Lemma 6. Let 1 ≤ p ≤ ∞ and α ∈ R. Then, there exists an absolute constant
C such that for all n > |α|, n ∈ N, and f ∈ Lp(w), we have

‖wM̃nf‖p ≤ C‖wf‖p. (2.11)

Proof. First we prove (2.11) for p = 1 and p = ∞. Then, by applying Riesz-
Thorin theorem we obtain the estimation for every 1 < p <∞.

The case p = 1. We have

‖wM̃nf‖1 =

∫ 1

0

w(x)

∣∣∣∣∣
∞∑
k=0

γn,kmn,k(x)

∫
∆n,k

f(t) dt

∣∣∣∣∣ dx
≤
∫ 1

0

w(x)

[ ∞∑
k=0

γn,kmn,k(x)

∫
∆n,k

|(wf)(t)|
w(t)

dt

]
dx

≤ C
∫ 1

0

[ ∞∑
k=0

γn,k
w(x)

w
(

k
n+k+1

) mn,k(x)

∫
∆n,k

|(wf)(t)| dt

]
dx

= C

∫ 1

0

∞∑
k=0

(
1− x

1− k
n+k+1

)α
an,kmn,k(x) dx,

where we set

an,k = γn,k

∫
∆n,k

|(wf)(t)| dt.

Let ν = d|α|e be the smallest positive integer such that ν ≥ |α|. Applying
Hölder’s inequality twice we obtain

∞∑
k=0

(
1− x

1− k
n+k+1

)α
an,kmn,k(x)

≤

[ ∞∑
k=0

(
1− x

1− k
n+k+1

)ν sign(α)

an,kmn,k(x)

]|α|/ν [ ∞∑
k=0

an,kmn,k(x)

]1−|α|/ν

,
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thus

‖wM̃nf‖1 ≤ C

∥∥∥∥∥
∞∑
k=0

(
1− x

1− k
n+k+1

)ν sign(α)

an,kmn,k(x)

∥∥∥∥∥
|α|/ν

1

×

∥∥∥∥∥
∞∑
k=0

an,kmn,k(x)

∥∥∥∥∥
1−|α|/ν

1

. (2.12)

Now, we estimate the first nonconstant multiplier in the right-hand side of
inequality (2.12). Let ` = ν sign(α). For every integer number ` we have(

1− x
1− k

n+k+1

)̀
mn,k(x) =

(n+ k + 1)` (n+ 1) · · · (n+ `)

(n+ k + 1) · · · (n+ k + `) (n+ 1)`
mn+`,k(x)

≤ C(`)mn+`,k(x),

hence

∞∑
k=0

(
1− x

1− k
n+k+1

)̀
an,kmn,k(x) ≤ C(`)

∞∑
k=0

an,kmn+`,k(x).

Then, by (2.4),∥∥∥∥∥
∞∑
k=0

(
1− x

1− k
n+k+1

)̀
an,kmn,k(x)

∥∥∥∥∥
1

≤ C

∥∥∥∥∥
∞∑
k=0

an,kmn+`,k(x)

∥∥∥∥∥
1

≤ C
∞∑
k=0

an,k‖mn+`,k(x)‖1 = C

∞∑
k=0

an,k
γn+`,k

= C

∞∑
k=0

γn,k
γn+`,k

∫
∆n,k

|(wf)(t)| dt

≤ C
∞∑
k=0

∫
∆n,k

|(wf)(t)| dt = C‖wf‖1.

Since
∑∞
k=0 an,kmn,k(x) = M̃n(wf ;x) and ‖M̃n(wf)‖1 ≤ ‖wf‖1 by (2.1), then

for the last multiplier in the right-hand side of (2.12) we obtain the inequality
‖
∑∞
k=0 an,kmn,k‖1 ≤ ‖wf‖1. Therefore,

‖wM̃nf‖1 ≤ C‖wf‖|α|/ν1 ‖wf‖1−|α|/ν1 = C‖wf‖1

and the proof of the estimate (2.11) for p = 1 is complete.
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The case p =∞. We obtain∣∣∣∣∣w(x)

∞∑
k=0

γn,kmn,k(x)

∫
∆n,k

f(t) dt

∣∣∣∣∣≤ w(x)

∞∑
k=0

γn,kmn,k(x)

∫
∆n,k

|(wf)(t)|
w(t)

dt

≤ Cw(x)

∞∑
k=0

γn,kmn,k(x)

w
(

k
n+k+1

) ∫
∆n,k

|(wf)(t)| dt

≤ Cw(x)

∞∑
k=0

mn,k(x)
‖wf‖∞
w
(

k
n+k+1

)
= Cw(x)‖wf‖∞

∞∑
k=0

(
1− k

n+ k + 1

)−α
mn,k(x).

Now, by Lemma 5 we have

∞∑
k=0

(
1− k

n+ k + 1

)−α
mn,k(x) ≤ C(1− x)−α.

Hence,
‖wM̃nf‖∞ ≤ Cw(x)‖wf‖∞(1− x)−α = C‖wf‖∞,

which proves (2.11) in the case p =∞.

Finally, the inequality (2.11) follows for all 1 ≤ p ≤ ∞ by the Riesz-Thorin
interpolation theorem. �

The crucial result in our investigation is the following Jackson type inequality.

Lemma 7. Let 1 ≤ p ≤ ∞ and α ∈ R. Then there exists an absolute constant
C, such that for all n > |α|, n ∈ N, and f ∈ Wp(w), the following estimate holds
true: ∥∥w(M̃nf − f)

∥∥
p
≤ C

n

∥∥wD̃f∥∥
p
. (2.13)

(Let us note that the lemma implies that M̃nf − f ∈ Lp(w) for f ∈Wp(w).)

Proof. Let us set

φ(x) = ln
x

1− x
+

1

1− x
, x ∈ (0, 1),

with φ′(x) = 1
x(1−x)2 = 1

ϕ(x) > 0, i.e., φ(x) is an increasing function. Then we have

f(t) = f(x) + ϕ(x)[φ(t)− φ(x)]Df(x) +

∫ t

x

[φ(t)− φ(u)]D̃f(u) du, t ∈ (0, 1).
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Applying the operator M̃n to both sides of the latter equality and multiplying by
w(x) we obtain

w(x)
(
M̃nf(x)− f(x)

)
= w(x)ϕ(x)Df(x)[M̃nφ(x)− φ(x)]

+ w(x)M̃n

(∫ (·)

x

[φ(·)− φ(u)]D̃f(u) du;x

)
. (2.14)

First we prove the lemma for p = 1 and p = ∞. Then we apply the Riesz-
Thorin theorem to obtain (2.13) for every 1 < p <∞.

The case p = 1. In order to prove that∥∥wϕDf [M̃nφ− φ]
∥∥

1
≤ C

n
‖wD̃f‖1 (2.15)

for all weights (1.5), we shall make use of the estimate∥∥M̃nφ− φ
∥∥

1
≤ C

n
(2.16)

(see [11, Proof of Theorem 1] for a complete proof).

Let α > 0 be fixed. Then, for all n > α and f ∈W1(w) we have

ϕ(x)Df(x) =

∫ x

0

(ϕDf)′(u) du =

∫ x

0

D̃f(u) du, x ∈ (0, 1).

Hence,

|w(x)ϕ(x)Df(x)| ≤ w(x)

∫ x

0

|D̃f(u)| du ≤
∫ x

0

|(wD̃f)(u)| du ≤
∫ 1

0

|(wD̃f)(u)| du,

i.e.,
|w(x)ϕ(x)Df(x)| ≤ ‖wD̃f‖1, x ∈ (0, 1).

Thus, ∥∥wϕDf [M̃nφ− φ]
∥∥

1
≤ ‖wD̃f‖1

∥∥M̃nφ− φ
∥∥

1

and (2.15) follows from (2.16).

Similarly, let α < 0 be fixed. Then, for all n > −α we have −n < α < 0 and
for f ∈W1(w), we consecutively obtain

ϕ(x)Df(x) =

∫ 1

x

(ϕDf)′(u) du =

∫ 1

x

D̃f(u) du, x ∈ (0, 1),

|w(x)ϕ(x)Df(x)| ≤ w(x)

∫ 1

x

|D̃f(u)| du ≤
∫ 1

x

|(wD̃f)(u)| du ≤
∫ 1

0

|(wD̃f)(u)| du,

i.e.,
|w(x)ϕ(x)Df(x)| ≤ ‖wD̃f‖1, x ∈ (0, 1).
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Hence, (2.16) yields (2.15).

Therefore, for arbitrary α ∈ R \ {0} and f ∈ W1(w) the estimate (2.15) holds
true for n > |α|. The case α = 0 was considered by the first author in [11].

Now, we estimate the L1-norm of the second summand in the right-hand side
of (2.14). More precisely, we will prove∥∥∥∥w(x)M̃n

(∫ (·)

x

[φ(·)− φ(u)]D̃f(u) du ;x

)∥∥∥∥
1

≤ C

n
‖wD̃f‖1. (2.17)

Having in mind (1.4), for x ∈ (0, 1) we have∣∣∣w(x)M̃n

(∫ (·)

x

[φ(·)− φ(u)]D̃f(u) du ;x

)∣∣∣
≤ w(x)

∞∑
k=0

γn,kmn,k(x)

∫
∆n,k

(∫ t

x

[φ(t)− φ(u)]
|(wD̃f)(u)|

w(u)
du

)
dt

≤ Cw(x)

∞∑
k=0

γn,kmn,k(x)

×

(
1

w
(

k
n+k+1

) +
1

w(x)

)∫
∆n,k

(∫ t

x

[φ(t)− φ(u)]|(wD̃f)(u)|du
)
dt

≤ C
∞∑
k=0

(
w(x)

w
(

k
n+k+1

) + 1

)
bn,kmn,k(x),

where

bn,k = γn,k

∫
∆n,k

(∫ t

x

[φ(t)− φ(u)]|(wD̃f)(u)|du
)
dt.

Let ν be the smallest positive integer such that ν ≥ |α|. Applying twice
Hölder’s inequality we obtain

∞∑
k=0

w(x)

w
(

k
n+k+1

) bn,kmn,k(x) ≤

[ ∞∑
k=0

(
w(x)

w
(

k
n+k+1

))ν/|α| bn,kmn,k(x)

]|α|/ν

×

[ ∞∑
k=0

bn,kmn,k(x)

]1−|α|/ν
,

thus∥∥∥w(x)M̃n

(∫ (·)

x

[φ(·)− φ(u)]D̃f(u) du ;

)∥∥∥
1

≤ C

∥∥∥∥∥
∞∑
k=0

(
w(x)

w
(

k
n+k+1

))ν/|α| bn,kmn,k

∥∥∥∥∥
|α|/ν

1

∥∥∥∥∥
∞∑
k=0

bn,kmn,k

∥∥∥∥∥
1−|α|/ν

1

. (2.18)
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For estimation of the last factor in (2.18) we apply the estimate from [11] (see Proof
of Theorem 1, Case 1, therein), by simply replacing D̃f with wD̃f . So, we obtain∥∥∥∥∥

∞∑
k=0

bn,kmn,k

∥∥∥∥∥
1

≤ C

n
‖wD̃f‖1. (2.19)

Next, we focus on the estimating of the other multiplier in (2.18). Clearly,

∞∑
k=0

(
w(x)

w
(

k
n+k+1

))ν/|α| bn,kmn,k(x) =

∞∑
k=0

( (1− x)(n+ k + 1)

n+ 1

)ν sign(α)

bn,kmn,k(x).

Let us set for simplicity ` = ν sign(α) = d|α|e sign(α). We have( (1− x)(n+ k + 1)

n+ 1

)`
mn,k(x) =

(n+ k + 1)` (n+ 1) · · · (n+ `)

(n+ k + 1) · · · (n+ k + `) (n+ 1)`
mn+`,k(x)

≤ C(`)mn+`,k(x)

≤ C(`)
γn+`,k

γn,k
mn+`,k(x).

Observe that the constant C(`) depends only on α.

We shall make use of the following operator defined by

M̃n,α(f ;x) =

∞∑
k=0

γn+`,kmn+`,k(x)

∫
∆n,k

f(u) du. (2.20)

Then,

∞∑
k=0

(
w(x)

w
(

k
n+k+1

))ν/|α| bn,kmn,k(x) ≤ CM̃n,α

(∫ (·)

x

[φ(·)− φ(u)]|(wD̃f)(u)| du; x

)
.

(2.21)

In order to estimate the L1-norm of the right-hand side in (2.21) we follow
an approach applied, e.g., in [2, pp. 41–43]. The proof in our case is much more
complicated, because the operator M̃n,α does not preserve the constant functions.
More precisely, it has the properties

‖M̃n,α‖1 = 1, M̃n,α(1;x) =

∞∑
k=0

γn+`,k

γn,k
mn+`,k(x).

Let us write the operator M̃n,α from (2.20) in the form

M̃n,α(f ;x) =

∫ 1

0

Kn(x, t)f(t) dt,
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where Kn(·, ·) is the related kernel. Introducing the functions

φ1(x) = lnx, φ2(x) = − ln(1− x), φ3(x) =
1

1− x
,

we have φ(x) = φ1(x) + φ2(x) + φ3(x) and for j = 1, 2, 3,

M̃n,α

(∫ (·)

x

[φj(·)− φj(u)]|(wD̃f)(u)| du;x

)
=

∫ x

0

Kn(x, t)

∫ t

x

[φj(t)− φj(u)]|(wD̃f)(u)| du dt

+

∫ 1

x

Kn(x, t)

∫ t

x

[φj(t)− φj(u)]|(wD̃f)(u)| du dt.

Then, by Fubini’s theorem we obtain:∥∥∥M̃n,α

∫ (·)

x

[φ(·)− φ(u)]|(wD̃f)(u)| du
∥∥∥

1

=

∫ 1

0

|(wD̃f)(u)|
3∑
j=1

(∫ 1

u

M̃n,α

(
[φj(u)− φj(·)]+ ;x

)
dx

+

∫ u

0

M̃n,α

(
[φj(·)− φj(u)]+ ;x

)
dx

)
du. (2.22)

To estimate the right-hand side of (2.22) we need estimations for the expres-
sions in the sum for each of the functions φj , j = 1, 2, 3.

First, for φ1, using∫ 1

0

M̃n,α

(
[φ1(u)− φ1(·)]+ ;x

)
dx = ‖M̃n,α

(
[φ1(u)− φ1(·)]+ ;x

)
‖1

≤ ‖[φ1(u)− φ1(x)]+‖1

=

∫ u

0

(φ1(u)− φ1(x)) dx,

we have∫ 1

u

M̃n,α

(
[φ1(u)− φ1(·)]+ ;x

)
dx+

∫ u

0

M̃n,α

(
[φ1(·)− φ1(u)]+ ;x

)
dx

=

∫ 1

0

M̃n,α

(
[φ1(u)− φ1(·)]+ ;x

)
dx−

∫ u

0

M̃n,α

(
[φ1(u)− φ1(·)]+ ;x

)
dx

+

∫ u

0

M̃n,α

(
[φ1(·)− φ1(u)]+ ;x

)
dx
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≤
∫ u

0

(φ1(u)− φ1(x)) dx+

∫ u

0

M̃n,α

(
[φ1(·)− φ1(u)]+ − [φ1(u)− φ1(·)]+ ;x

)
dx

= uφ1(u)−
∫ u

0

φ1(x) dx+

∫ u

0

M̃n,α(φ1;x) dx− φ1(u)

∫ u

0

M̃n,α(1;x) dx

=

∫ u

0

(
M̃n,α(φ1;x)− φ1(x)

)
dx− φ1(u)

∫ u

0

(
M̃n,α(1;x)− 1

)
dx. (2.23)

Analogously, for φj , j = 2, 3, we obtain∫ 1

u

M̃n,α

(
[φj(u)− φj(·)]+ ;x

)
dx+

∫ u

0

M̃n,α

(
[φj(·)− φj(u)]+ ;x

)
dx

≤
∫ 1

u

(
M̃n,α(φj ;x)− φj(x)

)
dx− φj(u)

∫ 1

u

(
M̃n,α(1;x)− 1

)
dx. (2.24)

Since for x, u ∈ (0, 1),

|M̃n,α(1;x)− 1| =
∣∣∣ ∞∑
k=0

γn+`,k

γn,k
mn+`,k(x)− 1

∣∣∣ ≤ C

n
,

|uφ1(u)| ≤ C, |(1− u)φ2(u)| ≤ C, |(1− u)φ3(u)| ≤ C,

then ∣∣∣φ1(u)

∫ u

0

(
M̃n,α(1;x)− 1

)
dx
∣∣∣ ≤ C

n
,∣∣∣φj(u)

∫ 1

u

(
M̃n,α(1;x)− 1

)
dx
∣∣∣ ≤ C

n
, j = 2, 3.

(2.25)

1. Estimation of
∣∣ ∫ u

0

(
M̃n,α(φ1;x)− φ1(x)

)
dx
∣∣. We have∫

∆n,k

φ1(t) dt =
k + 1

n+ k + 2
ln

k + 1

n+ k + 2
− k

n+ k + 1
ln

k

n+ k + 1
− 1

γn,k
,

and for x ∈ (0, 1),

φ1(x) = −
n+∑̀
k=1

(1− x)k

k
−

∞∑
k=n+`+1

(1− x)k

k
.

By Lemma 2,
n+∑̀
k=1

(1− x)k

k
=

∞∑
k=0

mn+`,k(x)

n+∑̀
i=1

1

k + i
,
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and therefore∣∣∣ ∫ u

0

(
M̃n,α(φ1;x)− φ1(x)

)
dx
∣∣∣

=
∣∣∣ ∫ u

0

∞∑
k=0

mn+`,k(x)
[
γn+`,k

∫
∆n,k

φ1(t) dt+

n+∑̀
i=1

1

k + i

]
dx+

∫ u

0

∞∑
k=n+̀+1

(1− x)k

k
dx
∣∣∣

≤
∣∣∣ ∫ u

0

∞∑
k=0

mn+`,k(x)
[
γn+`,k

∫
∆n,k

φ1(t) dt+

n+∑̀
i=1

1

k + i

]
dx
∣∣∣+

C

n
.

For k ≥ 1,

ln
k + 1

n+ k + 2
= − ln

n+1∏
i=1

k + i+ 1

k + i
= −

n+1∑
i=1

ln
(

1 +
1

k + i

)
= −

n+1∑
i=1

[ 1

k + i
− 1

2(k + i)2
+O

( 1

(k + i)3

)]
,

and

n+1∑
i=1

1

(k + i)2
=

n+1∑
i=1

[ 1

(k + i)(k + i+ 1)
+O

( 1

(k + i)3

)]
=

n+ 1

(k + 1)(n+ k + 2)
+

n+1∑
i=1

O
( 1

(k + i)3

)
,

hence

ln
k + 1

n+ k + 2
= −

n+1∑
i=1

1

k + i
+

n+ 1

2(k + 1)(n+ k + 2)
+O

( 1

k2

)
.

Since
k + 1

n+ k + 2
O
( 1

k2

)
= O

( 1

k2

)
,

then

k + 1

n+ k + 2
ln

k + 1

n+ k + 2
= − k + 1

n+ k + 2

n+1∑
i=1

1

k + i
+

n+ 1

2(n+ k + 2)2
+O

( 1

k2

)
.

Similarly,

k

n+ k + 1
ln

k

n+ k + 1
= − k

n+ k + 1

n∑
i=0

1

k + i
+

n+ 1

2(n+ k + 1)2
+O

( 1

k2

)
.
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Therefore,∫
∆n,k

φ1(t) dt =
k

n+ k + 1

n∑
i=0

1

k + i
− k + 1

n+ k + 2

n+1∑
i=1

1

k + i

− n+ 1

2

[ 1

(n+ k + 1)2
− 1

(n+ k + 2)2

]
+O

( 1

k2

)
− 1

γn,k

= − 1

γn,k

n∑
i=0

1

k + i
+O

( 1

k2

)
.

Now, we have

∣∣M̃n,α(φ1;x)− φ1(x)
∣∣ ≤ mn+`,0(x)

∣∣∣ ln(n+ 2) + 1−
n+∑̀
i=1

1

i

∣∣∣
+

∞∑
k=1

mn+`,k(x)
∣∣∣γn+`,k

γn,k

n∑
i=1

1

k + i
−
n+∑̀
i=1

1

k + i

∣∣∣+
C

n
.

From ∣∣∣ ln(n+ 2) + 1−
n+∑̀
i=1

1

i

∣∣∣ ≤ C, ‖mn+`,0‖1 ≤
C

n
,

it follows ∥∥∥mn+`,0(x)
∣∣∣ ln(n+ 2) + 1−

n+∑̀
i=1

1

i

∣∣∣ ∥∥∥
1
≤ C

n
.

Moreover,

∞∑
k=1

mn+`,k(x)
∣∣∣γn+`,k

γn,k

n∑
i=1

1

k + i
−
n+∑̀
i=1

1

k + i

∣∣∣
≤
∞∑
k=1

mn+`,k(x)
∣∣∣γn+`,k

γn,k
− 1
∣∣∣ n∑
i=1

1

k + i
+

∞∑
k=1

mn+`,k(x)

n+∑̀
i=n+1

1

k + i
.

Now, the inequalities

∣∣∣γn+`,k

γn,k
− 1
∣∣∣ ≤ C

n
,

∞∑
k=1

mn+`,k(x)

n+∑̀
i=n+1

1

k + i
≤ C

n

∞∑
k=1

mn+`,k(x) ≤ C

n
,

yield

∞∑
k=1

mn+`,k(x)
∣∣∣γn+`,k

γn,k

n∑
i=1

1

k + i
−
n+∑̀
i=1

1

k + i

∣∣∣ ≤ C

n

∞∑
k=1

mn+`,k(x)

n∑
i=1

1

k + i
+
C

n
.
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By Lemma 2 we obtain

∞∑
k=1

mn+`,k(x)

n∑
i=1

1

k + i
≤
∞∑
k=1

mn+`,k(x)

n+∑̀
i=1

1

k + i
≤ | lnx|.

Therefore,∣∣∣∣∣
∫ u

0

∞∑
k=1

mn+`,k(x)

n∑
i=1

1

k + i
dx

∣∣∣∣∣ ≤
∣∣∣∣∫ u

0

lnx dx

∣∣∣∣ ≤ ∣∣∣∣∫ 1

0

lnx dx

∣∣∣∣ ≤ C,
and we conclude that ∣∣∣ ∫ u

0

(
M̃n,α(φ1;x)− φ1(x)

)
dx
∣∣∣ ≤ C

n
. (2.26)

2. Estimation of
∣∣ ∫ 1

u

(
M̃n,α(φ2;x)− φ2(x)

)
dx
∣∣. We have∫

∆n,k

φ2(t) dt =
n+ 1

n+ k + 2
ln

n+ 1

n+ k + 2
− n+ 1

n+ k + 1
ln

n+ 1

n+ k + 1
+

1

γn,k
,

γn,k

∫
∆n,k

φ2(t) dt = 1− (n+ k + 1) ln
(

1 +
1

n+ k + 1

)
− ln

n+ 1

n+ k + 1

= ln
n+ k + 1

n+ 1
+O

( 1

n+ k

)
,

hence,

Mn,α(φ2;x) =

∞∑
k=0

mn+`,k(x)
γn+`,k

γn,k

[
ln
n+ k + 1

n+ 1
+O

( 1

n+ k

)]
.

Applying Lemma 3 we obtain

∣∣∣φ2(x)−
∞∑
k=0

mn+`,k(x)

k+1∑
i=1

1

n+ `+ i

∣∣∣ ≤ C

n
,

and then

∣∣M̃n,α(φ2;x)− φ2(x)
∣∣ ≤ ∞∑

k=0

mn+`,k(x)
∣∣∣γn+`,k

γn,k
ln
n+ k + 1

n+ 1
−
k+1∑
i=1

1

n+ `+ i

∣∣∣+
C

n
.

Taking into account that

ln
n+ k + 1

n+ 1
=

k∑
i=1

ln
(

1 +
1

n+ i

)
=

k∑
i=1

1

n+ i
+

k∑
i=1

O
( 1

(n+ i)2

)
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and
k∑
i=1

1

(n+ i)2
≤ C

n
,

we estimate

∣∣M̃n,α(φ2;x)− φ2(x)
∣∣ ≤ ∞∑

k=0

mn+`,k(x)
∣∣∣γn+`,k

γn,k

k∑
i=1

1

n+ i
−
k+1∑
i=1

1

n+ `+ i

∣∣∣+
C

n

≤
∞∑
k=0

mn+`,k(x)
∣∣∣γn+`,k

γn,k
− 1
∣∣∣ k∑
i=1

1

n+ i

+

∞∑
k=0

mn+`,k(x)
∣∣∣ k∑
i=1

1

n+ i
−
k+1∑
i=1

1

n+ `+ i

∣∣∣+
C

n
.

Since ∣∣∣γn+`,k

γn,k
− 1
∣∣∣ ≤ C

n
,

it follows that

∞∑
k=0

mn+`,k(x)
∣∣∣γn+`,k

γn,k
− 1
∣∣∣ k∑
i=1

1

n+ i
≤ C

n

∞∑
k=0

mn+`,k(x)

k∑
i=1

1

n+ i

≤ C

n

∞∑
k=0

mn+`,k(x)
∣∣∣ k∑
i=1

1

n+ i
−
k+1∑
i=1

1

n+ `+ i

∣∣∣+
C

n

∞∑
k=0

mn+`,k(x)

k+1∑
i=1

1

n+ `+ i
.

Observe that

∞∑
k=0

mn+`,k(x)
∣∣∣ k∑
i=1

1

n+ i
−
k+1∑
i=1

1

n+ `+ i

∣∣∣ ≤ ∞∑
k=0

mn+`,k(x)
∑̀
i=1

1

n+ i
≤ C

n
.

We recall that ` = d|α|esign (α) and C = C(α), i.e. C is an absolute constant for a
fixed α. Then, by Lemma 3 we obtain

∞∑
k=0

mn+`,k(x)
∣∣∣γn+`,k

γn,k
− 1
∣∣∣ k∑
i=1

1

n+ i

≤ C

n2
+
C

n

∣∣∣ ln(1− x) +

∞∑
k=0

mn+`,k(x)

k+1∑
i=1

1

n+ `+ i

∣∣∣+
C

n
| ln(1− x)|

≤ C

n2
+
C

n2
+
C

n
| ln(1− x)|.

Therefore,∣∣∣ ∫ 1

u

(
M̃n,α(φ2;x)− φ2(x)

)
dx
∣∣∣ ≤ C

n

∫ 1

0

(2− ln(1− x)) dx ≤ C

n
. (2.27)
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3. Estimation of
∣∣ ∫ 1

u

(
M̃n,α(φ3;x)− φ3(x)

)
dx
∣∣. The last estimation we need

concerns the function φ3(x) = 1
1−x . We have∫

∆n,k

φ3(t) dt = ln
(

1 +
1

n+ k + 1

)
=

1

n+ k + 1
+O

( 1

(n+ k)2

)
,

γn,k

∫
∆n,k

φ3(t) dt =
n+ k + 2

n+ 1
+O

( 1

n

)
.

By Lemma 1,

φ3(x) =
1

n+ `+ 1

∞∑
k=0

(n+ `+ k + 1)mn+`,k(x),

hence∣∣M̃n,α(φ3;x)−φ3(x)
∣∣ ≤ ∞∑

k=0

mn+`,k(x)
n+ k + `+ 1

n+ `+ 1

(n+ k + `+ 2

n+ k + 1
− 1
)

+O
( 1

n

)
=

∞∑
k=0

mn+`,k(x)
n+ k + `+ 1

n+ `+ 1
· `+ 1

n+ k + 1
+O

( 1

n

)
= O

( 1

n

)
.

Then ∣∣∣ ∫ 1

u

(
M̃n,α(φ3;x)− φ3(x)

)
dx
∣∣∣ ≤ C

n

∫ 1

u

dx ≤ C

n
. (2.28)

Now, from inequalities (2.22)–(2.28) it follows that∥∥∥M̃n,α

∫ (·)

x

[φ(·)− φ(u)]|(wD̃f)(u)| du
∥∥∥

1
≤ C

n
. (2.29)

The estimate (2.17) is a consequence of (2.18), (2.19), (2.21), and (2.29).

Finally, the estimate (2.13) for the case p = 1 follows from (2.14), (2.15) and
(2.17).

The case p =∞.

We proceed similarly to the case p = 1: applying Holder’s inequality for the
smallest integer ≥ α, considering again the operator M̃n,α and using the following
estimation

M̃n,α

(∫ (·)

x

[φ(·)− φ(u)]|(wD̃f)(u)| du;x

)
≤ ‖wD̃f‖∞ M̃n,α

(∫ (·)

x

[φ(·)− φ(u)] du;x

)
≤ x

∣∣M̃n,α(ln t;x)− lnx
∣∣‖wD̃f‖∞ + (1− x)

∣∣∣M̃n,α

( 1

1−t
;x
)
− 1

1−x

∣∣∣‖wD̃f‖∞
+ x
∣∣M̃n,α(ln(1− t);x)− ln(1− x)

∣∣‖wD̃f‖∞. �

For the proof of Theorem 2 we need a weighted variant of (2.8).
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Lemma 8. Let 1 < p < ∞. Then, for all functions f ∈ Lp(w) such that
ϕD2f ∈ Lp(w), there exists a constant C such that the next inequality is true

‖wDϕDf‖p ≤ C
(
‖wf‖p + ‖wϕD2f‖p

)
.

Proof. The proof is analogous to the proof of [16, Lemma 3], using the obvious

|Dϕ(x)| = |(1− x)(1− 3x)| < 2(1− x), 0 ≤ x < 1,

and w(x) ∼ w(1− 2−k) for x ∈ (1− 2−k, 1− 2−k−1). �

3. PROOFS OF THEOREM 1 AND THEOREM 2

Proof of Theorem 1. We establish the direct inequality by means of a standard
argument.

Let 1 ≤ p ≤ ∞. For any g ∈ Wp(w) such that f − g ∈ Lp(w) we have, by
virtue of (2.11) and Lemma 7,

‖w(f − M̃nf)‖p ≤ ‖w(f − g)‖p + ‖w(g − M̃ng)‖p + ‖wM̃n(f − g)‖p

≤ 2‖w(f − g)‖p +
C

n
‖wD̃g‖p

≤ C
(
‖w(f − g)‖p +

1

n
‖wD̃g‖p

)
.

Taking the infimum on g we obtain the inequality (1.7) in the theorem. �

Proof of Theorem 2. For every c ∈ R, by virtue of Lemma 8, we have

‖wDϕDg‖p = ‖wDϕD(g − c)‖p
≤ C

(
‖wϕD2(g − c)‖p + ‖w(g − c)‖p

)
= C

(
‖wϕD2g‖p + ‖w(g − c)‖p

)
.

Using the latter inequality and the obvious

‖wD̃g‖p ≤ ‖wDϕDg‖p + ‖wϕD2g‖p

we have for t > 0

‖w(f − g)‖p + t‖wD̃g‖p
≤ ‖w(f − g)‖p + t‖wDϕDg‖p + t‖wϕD2g‖p
= ‖w(f − g)‖p + Ct

(
‖wϕD2g‖p + ‖w(g − c)‖p

)
+ t‖wϕD2g‖p

= C
(
‖w(f − g)‖p + t‖wϕD2g‖p

)
+ Ct‖w(g − f + f − c)‖p

≤ C
(
‖w(f − g)‖p + t‖wϕD2g‖p

)
+ Ct‖w(g − f)‖p + Ct‖w(f − c)‖p

≤ C
(
‖w(f − g)‖p + t‖wϕD2g‖p + t‖w(f − c)‖p

)
.
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By taking infimum over all functions g ∈Wp(w) and all real constants c we obtain
the inequality

K̃w(f, t)p ≤ C inf
{
‖w(f − g)‖p + t‖wϕD2g‖p : f − g ∈ Lp(w), g ∈Wp(w)

}
+ CtE0(f).

To complete the proof in the case α ≥ 0, it remains to take into consideration
that in the definition of Kw(f, t)p we can, equivalently, assume that g is in C2 in a
neighbourhood of 0 if f ∈ Lp(w) (see [3, p. 110]).

To complete the proof for α < 0, we will show that if g,Dg ∈ ACloc(0, 1) and
wg,wϕD2g ∈ Lp[0, 1), then

lim
x→1−

ϕ(x)Dg(x) = 0.

To this end, we first apply [5, Lemma 1] to get (1− x)α+1Dg(x) ∈ Lp[1/2, 1).

Next, we use [8, Lemma 3.1(a)], transformed for a singularity at x = 1, with
G = ϕDg and γ = α− 1 < −1 to derive

lim
x→1−

G(x) = lim
x→1−

ϕ(x)Dg(x) = 0. �
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