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APPROXIMATE ANALYTICAL INVESTIGATION OF THE
ELASTIC-PLASTIC BEHAVIOUR OF FIBROUS (JONIPOSITLS.
I. THERMAL LOADING

KLAUS HERRMANN, IVAN MIHOVSKY

Kaayc Xepman, Hean Muzoecxu. TPUBJINKEHHOE AHAJIUTUYECKOE
UCCIHEIOBAHUE YIHPYIOUJACTUUYECKOT O ITIOBENEHUS BOJIOKHUC-
TbhIX KOMIO3UTOB. I. TEPMUAYECKOE HATPY/KEHUE.

- Ilpeanoxena matemMaTHko-MexaHMUecKas MOJEIb yNPYToNJIacTHUECKOTO HOBEXNe-
HHUA KJIACCa BOJOKHHCTHI¥ KOMIO3MTOB C NIacTUUecKolt MaTpuued M HapaJielbHBIME
YUPYTHUMH BOJOKHAMH ¢ HU3KNAM 06beMHbIM conepixanueM nocaemmx. Hapany ¢ ravec-
TBEHHBIMH 3aKJIIOYEHUAMM OTHOCHTENLHO HMEXaHU3MOB NJIACTHOUIIMPOBAHUA MATpPHIbI
TOJIyYeH DAL KOJMYECTBEHHBIX ONEHOK IOBeIeHMS KOMIIO3UTOB B YCJOBUAX TepMUuec-
KOTO M MeXxaHudueckoro Harpyxerua (vactu [ m I coorsetcrBenno).

Klaus Herrmann, Ivan Mihovsky. APPROXIMATE ANALYTICAL INVESTI-
GATION OF THE ELASTIC-PLASTIC BEHAVIOUR OF FIBROUS COMPOSITES
PART L THERMAL LOADING.

" A mechano-mathematical model of the elastic-plastic response of a class of fibrous’
composites is proposed. It concerns low fibre volume fraction composites with a ductile
matrix and parallel elastic fibres. Along with the qualitative-conclusions about the mecha-
nisms of matrix plastification a series of quantitative results is derived as well, concerning
the composites response under thermal and mechanical loading conditions (Parts I and
I1, respectively).



INTRODUCTION

Reinforcement of complaint materials by parallelly aligned continuous strong
fibres provides an essential increase in their strength and stiffness and makes the
fibrous composites thus obtained attractive for various load-bearing applications.
On the other hand such applications involve, as a rule, high fracture resistance
requirements. . Fibrous composites with ductile matrices prove to satisfy these re-
quirements sufficiently well.

Thus, matrix plasticity appears to be a desired property of the composites. It
reduces their sensitivity to a variety of typical structural defects which are etther
introduced by the fabrication processes or created artificially. The plasticity of the
matrix material improves the resistance of the composites to initiation of modes
of local fracture, associated with the stress concentration effects due to such struc-
tural defects. At the same time, matrix plasticity is known to change essentially the
overall thermomechanical response-of the composites and, in particular, .to reduce
consnderably their overall strength. In other words, matrix plasticity leads to an
‘overall behaviour of the composite material and to the development of modes of
failure, which are much less sensitive to the local structural defects. Therefore, this
phenomenon should be considered to be due to the very nature of the plastic de-
formation process developing within the matrix phase. The mechanisms, involved
in this process, change the entire pattern of fibre-matrix interactions and, corre-
spondingly, the basic features of the phenomena of load transfer and distribution,
respectively, developing within the composite structures. Thus, it is of definite

-interest to clear up the nature of these mechanisms and in addition the trends in
their development, their dependence on the structural parameters and the loading
status of the composites, and accordingly their influence on the overall thermome-
chanical response of the latter. An attempt in this regard is made in the present
study which concerns also the associated questions of how these mechanisms affect
the failure phenomena in the composites, and how and to what extent they reduce
theu‘ sensitivity to the typical structural defects.

~ A general approach to the problem is developed and an approximate analytical
version of this approach is realized. The approach concerns the class of unidirec-
tionally fibre reinforced composites of relatively low fibre volume fraction and with
continuous strong elastic fibres perfectly bonded to a matrix of a weaker ductile
material. Furthermore, the class of thermal and mechanical loading conditions is
considered under which axisymmetric stress-strain states develop within a compos-
ite unit cell consisting of a circular cylindrical fibre with a coaxial cylindrical matrix
coating. Numerous aspects of'the basic problem considered in the following have
been already successfully studied, for example, in the works of Hill [1], Spencer [2],
Mulhern et al. (3], Ebert et al. [4], Thomason [5], Dvorak & Rao [6], Strife & Prevo
[7], Min [8], Morley [9]. It should be immediately underlined that these references
exhaust by no means the large list of publications on the problem but, at the same
time, the present study aims neither at describing the state of the arts nor at re-
viewing the existing literature. Reference is made to these articles since they, even
in such a restricted amount, clearly indicate how different the approaches to the



problem may be and, in addition, how this variety of approaches is derivable from
practically the same adoptions about the composite structures as well as by means
of the same basic concepts of the plasticity theory. The distinguishing features of
these approaches concern, in fact, the ways in which they account for (or neglect)
the specific effects of the continuous fibre reinforcement, namely the strengthening
(including the stiffening), the stress concentration, and the shrinkage effect. From
the point of view of this distfﬁ:guishing criterion one may specify the approach be-
low as an attempt for a more rigorous account for each of these effects as well as
for the simultaneous account of all of them. The remaining adoptions and concepts
involved in the analysis do not differ in their nature from these of the works just
cited. ‘ :

In essence, the approach itself is a direct further development of the matrix
plastification model previously proposed by the authors in [10, 11]. This basically
qualitative model has proved to imply a series of useful conclusions concerning, for
example, the development of the matrix plastification process (existence of a maxi-
mum plastic zone size), the mechaiiisms and the modes of failure of the composites
- (plastic instability of the matrix), and, in addition, the fibre-matrix cracks inter-
actions phenomena (applicability of the Dugdale crack model, cf. {11, 12}). The
development of the model in the present study leads to further conclusions concern-
ing both the qualitative and the quantitative aspects of the considered problem.
When coupled with appropriate numerical methods the general approach allows to
achieve an improved accuracy of the results as well as an enlargement of the classes
of the considered composite structures and loading conditions without principal
changes in the structure of the governing equations. At the same time the object of
the present investigation is not to deliver*quantitative estimations of high accuracy
but rather to bring a sufficient understanding of the very nature of the processes
of matrix plastification and of their influence on the overall response of the com-
posites. To clear up these questions is the principal aim and to this respect the
general approach proves to be an effective tool even in its simplified approximate
analytical version. The latter simulates adequately enough the specific features and
trends of development of the matrix plastification process. The analysis predicts
an overall response which is consistent with the commonly adopted understanding
of the composites behaviour in the “rule of mixtures” sense.

Two model problems are considered in detail. These are the problems of
matrix cooling (a simplified version of the cooling of the entire composite structure)
and longitudinal extension. They simulate loading conditions which are typically
involved in the processes of fabrication of the composites (thermal treatment) and in
their load-bearing applications, respectively. The study is divided into two parts.
This is due to the fact ‘that the general approach reveals quite different specific
patterns of the elastic-plastic response of the composites when applied to each of
the two model problems considered. Each of these patterns proves to deserve due
attention from the point of view of the corresponding analysis, its predictions, and
the practical applications of the latter. The first part of the study deals with
the thermally induced elastic-plastic behaviour of the considered class of fibrous
composites.

-3



STATEMENT OF THE PROBLEM

The class of composites and the composite unit cell, considered in the following,
are as specified in the introduction. When referred to a cylhindrical coordinate
svstern {r, . =}, where the z-axis coincides with the axis of the fibre, the cross-
sections of the fibre and the matrix occupy the regions {0 S r <7y, 0 £ 60 < 27}
and {ry <7 <, 0 <0< 2}, respectively.

The fibre material is linearly elastic with Young’s modulus E;. Poisson’s ratio
v;. and linear thermal expansion coefficient a;. The material of the matrix is
elastic { Fm, Um. am) — perfectly plastic and obeys the von Mises yield condition.
The thermoelastic properties of the fibre and the matrix as well as the tensile yield
stress oy of the latter are considered as temnperature independent.

The thermal loading is specified as matrix cooling, that means as a process
of monotonous quasi- static decrease of the itself negative matrix temperature T,p,
which is measured from the temperature of the initially unstressed state of the
composite. The same scheme of loading has been considered in [11]. The genere-
lization of the analysis of this model scheme with respect to the process of cooling
of the entire cell, which is practically always involved in the fabrication of the
composites, as well as to other more realistic modes of thermal loading is almost
straightforward. No external loads are applied to the cell. Thus, the correspond-
ing thermally induced stress-strain state of the cell is axisymmetric and, due to
+ the assumed perfect fibre-matrix bond, allows to be treated by applying the plane
cross-sections hypothesis. Correspondingly, the normal stresses in both the fibre
and matrix phases are principal ones and depend upon the radial coordinate only.

THE MATRIX PLASTIFICATION MODEL

It was already mentioned that the analysis in the present investigation is based
upon the matrix plastification model, developed in previous works of the authors
[10, 11}. Thus, a brief general description of the model and of the associated basic

“concepts would be usefull both for the better understanding of the analysis and for
its concise presentation. As it should be expected, the basic concepts of the model
~oncern the principal features of the considered composites and, firstly, the main
effect of the fibre reinforcement, namely the strengthening one. In fact, due to the
associated decrease of the compliance of the composites connected with this effect,
the longitudinal strains ¢, in.the latters remain relatively small, iie. comparable
with the themselves small purely-eldstic strains in the stiff fibres. Then the elastic
£¢ and the plastic ef-components of the itself small total e,-strain in the plastified
matrix region are also small enough for a comparison, using relations like “much
larger” or "negligibly small”. Accordingly, the model states first of alltthat by
‘considering the matrix plastification process one should permanently account for
the current e¢-strain instead of negiecting it with respect to the €?-strain, as it is
the usual case in the common plasticity approaches. The way, in which the latter
account is carried out, is associated with another principal feature of the considered
composites, namely the limited elastic response of the matrix material. The natural -
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development of a given process of progressive plastification in a point, i.e. in an
elementary volume of such a material, involves, most generally speaking, trends of
progressive decrease and increase in the elastic and the plastic strain increments,
respectively. One may thus generally relate such a process with a certain specific
instant of its development upon which the elastic strains may be viewed as keeping
approximately constant values, since their further increments become small enough
to prevent (upon superposing) further substantial changes in the values which they
have achieved at this instant. In accordance with these mostly qualitative but
realistic considerations the model assumes the following. For a given composite
structure, given loading status, for a given elementary volume of the matrix phase,
a specific value Ee of the £{-strain exists such that upon a certain transitional regime
of plastification, at the end of which the £S-strain in this volume achleves the value

%€

€,, a second regime starts developing for which the relation ¢ = e holds true A

further simplifying assumption of the model concerns the dependence of the £ A -valne
on the location of the elementary volume, i.e. on the spesific and actually unknown
pattern of the transitional plastic stress redistribution which depends itself on this

€
location. The model actually deals with the same ¢,-value in the entire matrix

region, where the second regime has started developing. The quantity Ez may be
thus considered as an average overall measure of the limited elastic response of a
given composite under a given loading status. The determination of this quantity
is, of course, a part of the analysis of the elastic-plastic response of the composites. ,
When specified with respect to the considered composite unit cell these basic
concepts of the model imply the following qualitative description of the development
of the matrix plastification process for both the model problems mentioned. Due
" to the stress concentration effect of the fibre, plastic deformations appear in the
matrix at first at the fibre-matrix interface and a transitional regime of matrix
plastification starts developing. The plastic zone associated with this regime has,
due to the symmetry, the form of an annulus ry < r < re and spreads into the

*€
matrix phase. At the instant when €| =, = ez, l.e. when the £2-strain achieves
its limiting value (and this instant is first’ achieved at the ﬁbre-matnx interface),
the second regime starts developing with a plastic zone ry £ r £ R, R. S o,

within which the relation ¢ = ::Z holds true. The second plastic zone spreads
into the matrix phase as well having the first one, which occupies now the annulus
R. < r £ r.atits front r = R.. Thereby the transitional plastic.zone R, £ r S r,
is further considered as a thin layer, i.e. R, & r.. The latter plays the role of an
elastic-plastic boundary, to which a softened version of fulfiliment of the standard
elastic-plastic transitional conditions is applicable (cf. {10, 11]).

Finally, the following remark is due with respect to the thermal problem con-
sidered below. The elastic part ¢¢ of the total axial strain ¢, in this case involves -
itself a part £2*** due to the thermal stresses, and a patt £2*¢™?, due to the ther-
mal contraction. or expansion, respectively. When referred to the thermal problem
the considerations, made above with respect to the £¢-strain, should be now viewed
as concerning not the entire £;-strain but its 5’ "’-part only Moreover, the stram



g&temp is stress independent.

ELASTIC BEHAVIOUR AND ELASTIC-PLASTIC TRANSITION ,

" The assumptions, specifying the class of fibrous composites under considera-
tion, allow to treat the products and the powers of the ratios E,/E; and r¢/rm
as small quantities. Appropriate simplifications are carried out accordingly in the
following sections and the results derived are presented in forms, containing the
principal terms only. :

The linear-elastic solution of the considered problem is obtainable as a simple
generalization of the plane strain (¢, = 0)-solution of Herrmann [13]). The process
of matrix cooling implies the following elastic distribution of the stresses ¢*¢ and

ol¢, i=r, 0, z, in the matrix and in the fibre respectively:

o } = Im O 14:12'2),
, Oy L+ vy, 72
(1) o7 = Ep(e, —amTm) +vm(ol +07¢),
0'1f-€ = oge = U:ne'r=rfv
Uge = Efé‘z +2Vf0:m|,.=,.l,
where
(2) C = —riamTn(l+ vm).

In fact, eqn (2) represents the exact value of the principal term of C for a
composite with v, = vy. Generally, this term involves the multiplying factor
(1= (vm —vs)/(1 + vm)(1 + E.)] as well, where

3) E. = Efr?/E‘mrf"..
The latter factor is neglected in the following( analysis, since, as one may ac-
tually prove, it does not affect substantially the basic features of composite’s be-

haviour. Along with the self-equilibrium condition of the axial stresses o€, i = f,
_ m, the stress distribution from eqns (1) implies the relations

(4) £, = amTm/(1+ E.),

(5) €5 = —amTmEo/(1 + Ee),

where €3 = ¢, —e!¥™F is the part of the ¢,-strain, due to the stresses, and ef*™? =
amTy,. Eqns (4) and (5) are obviously approximations of the thermoelastic response

10



of the composite unit cell in the common “rule of mixtures” sense. Furthermore, in
accordance with the von Mises’ yield condition, the foregoing relations define the
temperature of initial matrix plastification T2 at the fibre-matrix interface as

(6) : T?! = 0, /V3am Em.

The.corresponding e?'- and 3¢P-values are
(7 e8! = —~ay /V3Em(1 + E.),

(8) e3P = gy E /[V3Em(1 + E.).

-ANALYSIS OF THE ELASTIC—PLASTIC BEHAVIOUR

According to the matrix plastification model described above the £9***-strain
at the fibre-matrix interface achieves upon a certain transitional regime the value
E:.- Its initial value is the value €3'*P' defined by eqn (8). At this instant the
second plastic zone r; < r < R, starts spreading into the matrix phase. The
relation €% = E‘Z holds true within this zone. In accordance with the generalized
thermoelastic Hooke’s law the stresses 677, i = r, 0, z, in the plastic zone satisfy
the relation

(9) o7P = EmEz + vm (o7 + 0"").

Eqn (9) allows a reduction of the von Mises’ yield criterion to the form

, E p - ’ .
(10) U;’.lp _U.:np ~+ U;"P+a.:np Emgz (1—21/'")2__ J!? =0
.2 2 1—2vm 3 3 7

The latter equation is identically satisfied by stresses of the form

. - €
omp Ene o ‘
11 |4 = Z + Y cos(w+
() og” } 1=2m ' \Bsind (£®)
where »
. . . 0§ — Op Oy
(}2 Sitlw = - /___’
) T

11



(13) tan® = (1 — 2v,,)/V3.

Due to the elastic restriction specified by eqn (9) the yield condition defines
an ellipse in the (oy, o, )-plane, eqn (10) or eqns (11), respectively. The points of
the yield ellipse have coordinates.(oj ¥, o7P) and are representative points in the
stress-space for the stress-states in the points of the plastified matrix phase. Thus,
a specific process of plastic stress redistribution in a point of the matrix phase
defines via the angle w, eqn (12), a specific law of motion along the yield ellipse of
a corresponding representative point. Thereby the angle w is easily seen to be a
function of the loading parameter, i.e. Tp,, as well as of the radial coordinate r and
is further depending on both the geometrical and the mechanical characteristics of
the-composite constituents. The r~dependence of the angle w is obtainable upon
integrating the equilibrium equation

o do™P  o™P — gT'P
14 r r ] =0
(14) dr t r

in the interval r; < r £ R. with the boundary condition

~ (15) w|r=r, = wg, = arccos [-Em;:z/ay(l +vm)).

The latter condition reflects the assumption (¢f. Herrmann & Mihovsky {10,
11}) that ¢2*** is the only non-negligible elastic strain in the second plastic zone
(where, as adopted, 8% = E:) and that the matrix material is plastically incom-
pressible. '

The result of the integration reads

(16) ; Eg— =

r?  sinwg,

it exp[(w — wr_)cotan @],

where the plastic zone radius R, is to be further determined as a function of the

loading parameter T,,.
With respect to the values of w at the fibre-matrix interface eqn (16) implies

' R?  sinw, S
(- 'T._zc =S L exp[(wr, — wr,)cotan ¥,
- f N

SiNWR,

where the notation is introduced

(18) ‘ wry = w(r)lr=r, -

 Itis clear from the very nature of the considered thermal loading process that
progressive matrix cooling should result in progressive shrinkage, i.e. in progressive

12



decrease of the itself negative radial stress acting over the fibre-matrix interface.
At the same time the shrinkage effect is limited itself in the sense that, as eqns (11)
prove, a maximum shrinkage, i.e. a minimum value of the latter stress is achievable
at the instant when w,, = 7 — ®. This specific instant for the composite unit
cell is shown in [10, 11] to correspond to a critical state of the cell when failure
modes start developing in the latter dué to the plastic instability of the matrix at
the fibre-matrix interface. Further, these considerations imply the conclusion that
with progressive thermal loading the angle w,, increases (cf. the structure of the

o7'P |, =y, -stress, eqns (11)), running actually within the interval

(19) . wr Sw, ST-0

The latter conclusion is meaningful if, of course, the angles wp_ and ® satisfy

the relation wgr, < m — ®. Since the quantity'gz should be expected to belong
actually to the interval [¢3'*?! g, /Ey,], then eqns (13) and (15) prove immediately
that the latter relation is valid if v, > 0.1, which is the practical case for the
commonly used matrix materials. Moreover, in accordance with this conclusion
eqn-(17) proves the existence of a maximum plastic zone size R} and defines the
latter as

5 sin®

(20 R = exp[(m — ® — wg,)cotan P].

sinwnp,

For reasons of simplicity the analysis below is restricted to cases for which
R? < rp,: From its quantitative side this analysis aims at the prediction of the ther-
mally induced elastic-plastic response of the unit cell, i.e. the €,(T},)-dependence.
This aim is achieved in the following in a step-wise way, which involves at first the
determination of the w,, (¢, )- and the R (¢, )-dependences.

The procedure of obtaining the wy, (¢, )-dependence involves the following basic -
steps. First, the condition of continuity of the radial displacements u?, i = f, m
at the fibre-matrix interface is constructed by the aid of the known axisymmetric
relations urI,:r, = rfaglr_r,, where €), i = f, m, are the cu‘cumferentlal strains
in the fibre and the matrix, respectively. Further, the strain rates &,i=f, m,
are obtained as derivatives of t.he strains £}, with respect to the loading parameter

. Thereby the elastic part £J*¢ of the £J*-strain rate at the interface r = ry is
neglected (cf. the text following eqn (15)). The strain rate &) is defined via the
generalized Hooke’s law and eqns (1), now with o"?|,—,, mstead of o7*¢|r=r, for
the stresses at the fibre-matrix interface, The.plastic part & of the &J*-strain
rate is defined in accordance with the associated flow rule concept along with the
yield function, used as a plastic potential (cf. [11]). Moreover, the thermal part
of the £J'-strain rate can be neglected without affecting the basic trends of the
wr,-behaviour. The u,-continuity coridition is thus reduced to the form

(21) : - Ade, = f(wr,)dw,,,

13



where the notations are introduced

Ef\/?;
"))

(22)

sin(w,, + ®) cos wr,

2 ’ ry) = - - .
(23) Flwry) sin(w,, + ®) — 2wy sin ® coswy,

Eqn (21) has to be sol\ed in the interval [wgr,, 7 <I>] with the approximate
boundary condmon

- e
(24) , €2l mim, = B = —E0/E..

This boundary condition results from the assumption that the behaviour of the
unit cell in the interval between the initial matrix plastification and the occurrence
of the second plastic zone, i.e. in the transitional reélme, is not substantially
affected by the only presence of the corresponding transitional plastic zone and

thus may be considered as followmg the linear-elastic dependence, glven by eqn (4)

or eqn (5) respectively. Such an assumption practically identifies the a and e"”p’

strains and further defines by means of eqns (6) and (8) (the latter with g2!*?! = E,
-now) the instant of occurrence of the second plastic zone (when w,, = wg,, cf. eqn
(24)), as corresponding to the values T?' and &' of T, and ¢’ respectively, which
are : :

~

(25) - TPl = —& (1 + E.)/anE:,

(26) @ =tE.

An approximate series expansion procedure for solving the boundary value-
problem, specified by eqns {21) and (24), is applied. It consists of the following
steps. Eqn (21) is first solved for values of wy,, close to 7 — @, upon an expansion
of the function f(wy,) into the powers of the small differences (7 — ® — w,,). The
solution thus obtained is then extrapolated over the entire interval [wg_, 7 — @] in
order to fit the boundary condition, eqn (24). Accordingly, the following form of
the desired approximate dependence is obtained '

B | | , . 2A 12
(27) wr,(Dg) =T —® - [(W—Q—wnc) +COS(DA€Z] ,
where

14



(28) b=2V3us(1 - 2um)/[3+ (1 — 2v,0)%),

(29) Ae, =¢, — .

The quantity A¢, is thus the part of the total axial strain ¢, which develops
upon the occurrence of the second plastic zone. The critical value Aé; of Ae, at
which the unit cell undergoes a transition to failure, folIows from eqn (27) with

wr,_w—d)tobe

5cos P

(30) . A€z = —(7(' - _ch) —Qb_A—

With the aid of a similar expansion technique one obtains upon introducing
wy, from eqn (27) into eqn (17) the R.(e,)-dependence in the form

) ' * r} AE‘;’ '
(31) ‘ R¥(Ae;) = RY? [1 ~ (1 - Ré) (1 - Ae;)}‘ .

It should be pointed out that -eqns (27) and (31) approximate the actual
wy,(€.)- and R.(e,)-dependences rather roughly but, at the same time, they keep
and clearly indicate the basic features of the latter, due to their simple analytical
forms.

Further, the determination of the ¢,(T},)-dependencé is a matter of 51mp]e
computations, based upon the condition of self-equilibrium of the axial stresses

R,
(32) r}of + (r2, — R})o™ + 2/0';""rdr =0.

ry

Thereby the stress af is to be defined from eqns (1) with' o™P|,._ =r, instead
of 0*|,=r, and with 6]"?|;~,, given by eqns (11) with w = w,, along with eqn
(27) for w,,(Aez) The axxal stress 0™ in the elastically deformed matrix region .
R.Sr f m is obtainable-from eqns (1) upon definition of a new C-value from the
"o,-continuity condition at the elastic-plastic boundary r = R.. The latter condi-
tion reflects the softened version of the fulfillment of the elastic-plastic transitional
conditions mentioned above (cf. [10, 11]). :

The axial stress ¢ in the plastic zone and the radius R, of the latter are
defined by eqns (9) and (31) respectively. '

Upon corresponding computations and appropriate simplifications eqn‘(32)
implies the relation
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. ~ R/,
. (33) ASZ = CYmAT m

and by introducing for R, from eqn (31} it is obtained

-1
- , E. R 7\ 1
7z = 0m m |1 ¢ mATy —— - ,
(34)  Ac; = oamAT, +1E + o T B (1 R;2> Ae;}

1

where the notation is used

(35) ATy, =T, — T

The explicite form of the ¢3**(T,,,)-dependence is obtainable straightforwardly
from eqn (35) and the relation Ae3'* = Ae, — amATn. ‘

The critical temperature of failure of the unit cell 7}, = T2 + ATy, follows from
eqns (25) and (34) (with Ae, = Ac} for AT};,) respectively. Both quantities Ae]
and AT} and therefore T};, are dependent on the specific value of E: for the unit
cell and thus for the composite structure also. Consequently, eqn (34) represents
the desired approximate analytical form of the thermally induced elastic-plastic
response of the composite unit cell in the cons1dered model problem of matrix
coo]mg -

| BASIC FEATURES OF THE COMPOSITE BEHAVIOUR

The basic features of the elastic-plastic response of the composite predicted by
the foregoing analysis will be briefly considered in this section. It should be men-
tioned, first of all, that with the aid of the obvious relation Aes** = Ae, ~am AT,
one’may immediately transform eqn (33) into the relation Ey(r2, — RZ)Act® +
Ey r}‘Aez = 0. Thereby the latter relation is nothing else but an explicite repre-
sentation of the predicted composite response in the “rule of mixtures” sense. In
accordance with this représentation the plastified matrix region influences the re-
distribution of the axial forces via its radius R, but does not explicity contribute
to this redistribution. Its own contribution appears to be just negligible within
the frame of the present approximate analysis. Furthermore, the following state-

ment should be made with respect to the structure of the.Ae, (AT, )-dependence
~ obtained above. The strain Ae, defined by eqn (34) is easily seen to decrease
monotonically as a concave negative function when the itself negative temperature
difference AT, decreases. The curve Ae,{(AT,,) proves to deviate smoothly from
the linear elastic ¢,(T),)-dependence defined by eqn (4). With the formal limit -
transition A7, — —oo the strain Ag, approaches asymptotically a limit value
Aé, which may be easily shown to satisfy the relation Aé, < Ae} (with Ae} < 0,
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cf. eqn (30)). The latter means that the composite cell achieves its critical state of
failure at finite values of AT}, and T, respectively.

A purely qualitative schematlc 1llustrat10n of the total elastic-plastic response,
derived above, is presented in Fig.1 where the straight line I describes the behaviour
of a homogeneous cylinder of the matrix material under the considered cooling
process. No thermal stresses develop in such a cylinder and its axial strain is due
to the thermal contraction only. The line 11 corresponds to purely elastic fibre and
matrix materials, eqn (4). Each of the series of the concave curves II1,; corresponds

x€ . .. .
to eqn (34) with an initially specified ¢, ;-value. Each of these lines coincides with
the line II over the corresponding interval {0, i’:’i] or [0, E’z"li], respectively (cf. eqns

Y A - ~pl
........ PEPIIIPRPENY EZ,i
(4
B AT e s ]
-y
4 ngpl
L / z,exp
: ¢"/ ‘ /
111”. . -‘—_—’ I/
Eqn{3s) -~ p

—" !

V,exp  11,Egnlb; e, T,
v

Fig. 1. Schematic qualitative illustration of the elastic-plastic response of
fibrous composites due to matrix cooling

(25) and (26)) and smoothly deviates from this line in the way, shown in the graph,
at the corresponding points (77, " “ g, l) The line IV is the assumed experimentally
obtained ¢,(T}, )-curve for the considered composite. As it is usually accepted in
the engineering practice, the linear part of this curve is constructed in accordance
with the linear-elastic “rule of mixture” approach. Thus it coincides over this part
with the straight line II. Let the line IV deviate from the line IT at the point (TP

m,exrp’
eP erp) where “exp” stays for the experimentally measured values of T2’ and erl,

Then, upon identifying these values with the TP’ and £?! values in eqns (25) and

(26), respectlvely, one defines a corresponding, say 62 exp~value of the quantity 6 LIt
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is this latter value of Ee to deal with when applying the foregoing general approach -
to a given composite structure.

A more sophisticated approach to the identification of the actual value of the
2:—stram involves a comparison between the actual Ae, (AT, )-curve and the series
of theoretical curves III,;. Upon introducing an appropriate best fitting criterion
and by means of a corresponding processing of these curves one may define the
theoretical curve which fits the expfrimental one in the best way with respect to
the chosen criterion. The value of Ez, to which this theoretical curve corresponds,
will then be the actual one for the considered composite. It should be mentioned
that the strain Ae3'® increases as a concave positive function when the negative
temperature difference AT, decreases. One may easily derive the basic features of
the Ael!*(AT,,)-dependence by the aid of the foregoing equations. Furthermore, in
some cases the linearization of the composite response in the elastic-plastic range
may be of interest. A simple linearized version of eqn (34) is presented, for example,
by the relation Ae,/Ac; = AT, /ATy, Such a linearization replaces the family of
concave curves III; in Fig.1 by a corresponding family of straight lines with the
same pomts of deviation from the line II. The approaches to the identification of
the actual ,-value, described above, apply to the lincarized case as well.

CONCLUDING REMARKS*

The results, obtained in the previous sections, represent in the whole an ap-
proximate analytical solution of the considered problem of thermal loading of a
composite structure. The general approach, developed in the study, involves a

specific parameter Ej for the composite structure as well as the loading status
and reveals the ways to its identification under the implicit assuption that the
real thermomechanical response of the composite corresponds to a concave strain-
temperature curve (cf. curve IV in Fig. 1). Whether this is the actual case or,
in other words, whether the predictions of the approach (the curve IIl,; in Fig. 1)
are at least in qualitative agreement with the real composite response is a principal
question. A positive answer to this question would not only support the valid-
ity of the approach in the whole but would obviously reveal further possibilities
for achieving a better quantitative fitting between the predicted and the actual
response. Thereby the following statement could be made with regard to this prob-
lem. To the authors’ knowledge there exist at present no experimental data which
could be used in a reliable way for a comparison with the prediction for the model
problem considered. At the same time the behaviour of the composite under ther-
mal loading with a concave ¢,(T}, )-curve is explainable in quite a natural way. The
progressivé matrix plastification results in a softening of the matrix in the sense
that the stresses in the itself expanding plastic zone remain limited. This implies a
corresponding relative increase in the strengthening effect of the fibre and thus of
the overall stiffness of the composite structure. The concave curves II1; and IV in
Fig. 1 reflect, in fact, exactly the latter effect. It is difficult to explain in a similar
way an imaginary behaviour of the composite to which a convex curve, such as
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curve V in Fig. 1, would correspond. It should be mentioned in addition that the
theoretically predicted response of the composite allows for a direct realistic inter-
pretation in the “rule of mixture” sense. This fact may be considered to confirm
to a further extent the potential of the developed approach for reliable predictions
of the elastic-plastic response of the-composites. Finally it should be noted that,
as Part 11 of the present study proves, when applied to the problem of longitudinal
extension of a fibrous composite the same approach predicts a stress-strain curve
which is in entire qualitative agreement with the typical experimental observations.
Certain additional aspects of the thermally induced response of the composites will
be considered and simultaneously compared with the corresponding aspects of the
behaviour of such composites under longitudinal extension in the closing section of
Part IT of the present study. These aspects concern basically the general features of
the matrix plastification processes and their mﬂuence on the fracture phenomena
in fibrous composites.
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ELASTIC-PLASTIC BEHAVIOUR OF FIBROUS COMPOSITES.
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KLAUS HERRMANN, IVAN MIHOVSKY

Knaaye Xepman, Hean Muroscxu. NTPUBJIUXKEHHOE AHAJIUTUYECKOE
HUCCJIENOBAHHUE YIIPYTOIIJIACTUYECKOTI'O IOBEIEHUA BOJIOKHUC-
ThIX KOMIIO3UTOB. IL BHEIIIHEE HATPYXKEHUE. :

Pa6GoTa NpoAoJ/KaeT UCC/AeIOBAaHHE KOMNO3UTOB, PACCMOTPEHHHX B YacTH I, noc-
Bﬁmeuuoﬁ X NMOBEIAEHUIO B YCJOBHMAX TEPMHUYECKOIO HArpyXeHHH. 3}I€CI> HCCJIeJOBaH
cnyqax‘i YHCTO MEXAHUYECKOro HAarpy’KeHHSI K TOYHe€ —— MNPOIOJBHOrO PaCTXKEHNA. .
Hoxa3aﬂo, 4qTO r[pe,zmoxcelmuﬁ B 4acTH | moAXOoHx BeleT K HaJeKHHM Ka‘leCTBéHHHM
¥ KOJNYEeCTBEHHBIM 3aKJIIOUYEHHAM M OUEHKaM OTHOCHTEJILHO NMOBENCHUA paCCMAaTpHBa-
€MBbIX KOMITO3UTOB.

Klaus Herrmann, Ivan Mihovsky. APPROXIMATE ANALYTICAL INVESTIGA-
TION OF THE ELASTIC-PLASTIC BEHAVIOUR OF FIBROUS COMPOSITES. I1.
EXTERNAL LOADING.

The paper continues the investigation of the composites specified in Part 1. While
the latter part is devoted to the thermally induced response the present one deals with the
purely mechanical problem of longitudinal extension. The approach developed in- Part I
is shown to lead to realistic (both qualitative and quantitative) predictions of the overall
response of the composites considered.. .

INTRODUCTION

The basic aspects of the influence of the matrix plasticity on the overall ther-
momechanical response of the fibrous composites are considered in sufficient detail
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in the introductory section of Part I of the present study along with the specific
features of the general approach developed in the latter.

In the present part the same class of fibrous composites is considered by the aid
of the same models of the composite unit cell and the process of matrix plastifica-
tion (Herrmann & Mihovsky [1, 2], cf. p. I). The loading is specified as longitudinal
extension, which is a typical operational loading for fibrous composites. Therefore
it is quite natural that their response in such load-bearing applications has been
intensively studied in the past and that a good understanding of the overall char-
acteristics of this response already exists nowadays.

Following Kelly (3] one may summarize that there are two stages in the be-
haviour of the considered composites. They reflect the initial purely elastic elon-
gation of the fibres and the matrix, respectively, as well as the following plastic
flow in the matrix. The transition to the second stage occurs when the matrix
material starts yielding. This process begins at a value of the axial strain which
is “a little less” than the yield strain of the matrix, and is complete at “a slightly
larger” strain. The contribution of the matrix to the stress-strain curve in the sec-
ond stage is negligible. The lower bound to this slope, as derived by Hill [4], is (in
the notation introduced in p. I) E¢r}/r2 .

This brief general description of the elastic-plastic response of the fibrous
composites clearly indicates that the entire matrix plastification is a sudden phe-
nomenon. Such an effect of a sudden entire matrix plastification is not involved
in the thermally induced composite response, considered in p. I. The plastic zone
size in the latter case has beenshown to increase monotonically with progressive
thermal loading. To clear up the response of the composites in the interval between
‘the initial and the complete matrix plastification, respectively, as well as the very
mechanism of the latter appears to be an interesting problem. In fact, this interval
corresponds to a very small change of the axial strain from “a little less” to “a
slightly larger” value, as stated by Kelly [3]. Thus, at fisrt sight, the details of the
composite behaviour in this short interval do not seem to be of essential signifi-
cance. But, from the view point of the influence of the matrix plasticity on the
response (including the failure) of the composites, it is important to get a better
understanding of this initial stage of matrix plastification. The real nature of this
stage indicates that it is governed by specific mechanisms. Accordingly, one should
expect that the latter may further contribute to the occurrence of specific trends
of the development of the plastic deformation process in the completely plastified
matrix. These trends are of interest with respect to the determination of the overall
response of the composites, especially for the occurrence and the development of
failure modes.

In this paper, the specific aspects of the matrix plastification process develop-
ing in a longitudinally extended fibrous composite are considered. Corresponding
conclusions of both qualitative and quantitative character are derived by means of
an approximate analytical version of the géneral approach already used in Part 1.
This version predicts an elastic-plastic response of the composite material which
is consistent with the lower bound estimation obtained by Hill [4]. Certain gen-
eral conclusions are derived in the closing section of the article with respect to the

22



distinguishing features of the composite response under thermal and mechanical
loading conditions. The specific influence of the matrix plasticity on the fracture
resistance of the composites for both loading schemes as well as the significance of
special structural defects are considered.

STATEMENT OF THE PROBLEM

The class of composites, the composite unit cell, and the mechanical propertles ,
of the fibre and the matrix materials, respectively, are the same as already specified
in p. L. The loading is specified as longitudinal extension of the composite and
therefore as axial extension of the unit cell. The lateral surface of the latter iS
traction free. Accordingly, the plane cross-sections hypothesis applies, the stress-
strain field in the cell is axisymmetric, and the normal stresses in both the fibre
and the matrix are principal ones and depend upon the radial coordinate r only-
" Further, the powers and the products of the ratios En/E;and ry/rmy, are considered
again as small quantities and, like in p. 1, the final results are presented in forms,
containing the principal terms only.

ELASTIC BEHAVIOUR AND ELASTIC-PLASTIC TRANSITION

In accordance with the known elastic solution of the problem (cf., for example;
Ebert et al. [5]) the stresses in the matrix and the fibre are of the same form as in
eqns (1), p. I, but with a new value of the constant C. This value reads
(1 ‘ ‘ C=g, AIIT?,

where the notation Ay means ‘

-

(2) Av = vy, —vy.

Moreover, the relation

(3) - Av >0

applies for the commonly used fibrous composites and is assumed to be valid in
the following considerations. It provides, in fact, the occurrence of compressive
radial stresses at, the fibre-matrix interface, i.e. the well-known shrinkage effect.
Further, by considering the equilibrium condition for the axial forces, the elastic
stress distribution from eqns (1), p. I, together with the new C—va]ue from eqn (1)
now implies the relation

(4) o=, En(l+E),
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where E. is the same as in eqn (3), p. I, while

(5) o = P/xr],

" is the axial composite stress, induced in the unit cell by the applied axial tensile
force P. Eqn (4) represents the well-known “rule of mixtures” approximation of

" the linear elastic response of a composite, ’

, Now, in accordance with the classical von Mises’ yield condition, the matrix
starts yielding at the fibre-matrix interface when the stress o7 and the axial strain

€,, respectively, achieve the values °

’ ' apl _ o _ 3 (AV)Z
(6) 7 gz‘l_ v(1+ E;) [1. 5—————(1+Vm)2]

T (A
™ =g [1- 35825

Due to the smallness of (Av)? one may really view the strain e£! of the initial
matrix plastification, given in eqn (7), as “a little less” than the matrix yield strain
€y = 0y/FEm, as stated by Kelly [3]. In addition, a simple comparison with the
thermal problem, considered in p. I, shows that in the present case the. initial
matrix plastification takes place at a much larger value of the ¢,-strain than it
was stated for the corresponding e3**-value (cf. p. I, eqn (8)). On the contrary,
the value of the radial stress at the fibre-matrix interface at the instant of initial
plastification is much smaller than the corresponding stress value in the thermal
problem. ' o .

It should be mentioned that in accordance with the sense of the quantity E,,
involved in the matrix plastification model, its actual value should be expected to
be close to the gf'-value or, respectively, to t.he value €' in the thermal problem
(cf. p. 1). Therefore the plastic behaviour of the matrix in the present case will be
associated with a yield ellipse, which is of the same geometry as that in the thermal
case (p. I, eqns (10), (11)) but with its center removed from the origin of the (o,
o,)-plane along the line o, = o4 over a distance which is “a little less” than the
length oy /(1 — 2vy,) of its larger principal half-axis. In the thermal case the center
of the yield ellipse almost coincides with the origin of the (gy, o, )-plane. In the
present problem it is its vertex w = = (p. I, eqn (12)) that almost coincides with
the same origin. These general observations will prove to be useful for the following
analysis.

ANALYSIS OF THE ELASTIC-PLASTIC BEHAVIOUR

In accordance with the basic adoptions of the matrix plastification model (cf.
p. I) one may immediately conclude that the series of equations given in p. I,
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namely eqns (9) — (18), should hold true in the present problem as well. Further,
when keeping the structure of the thermal problem analysis one should consider
as a next step the way, in which the shrinkage influences the behaviour of the
angle w,,, introduced in eqn (18), p. I. Generally speaking, the shrinkage is a
desired effect in the load-bearing applications of the fibrous composites, since it
prevents the occurrence of delamination phenomena in the latter. Practically, the
shrinkage in the present problem results from the larger cross-sectional contraction
of the matrix with respect to the fibre. Relation (3) simply proves the validity of
this conclusion in the elastic range. Furthermore, the usual assumption of plastic
incompressibility implies the natural conclusion that the progressive plastification
of the matrix will effectively result in a further increase of Poisson’s ratio in the
matrix phase. The latter increase will then contribute to the further increase of
the shrinkage as it is adopted in the matrix plastification model of Herrmann &
Mihovsky [1]. In addition, one should accordingly accept that as in the thermal
problem the progressive loading will cause monotonous increase of the angle w;,
- within the intérval defined by eqn (19), p. I. But by considering the u,-continuity
condition at the fibre-matrix interface (p. I, eqn (21)), it can be easily seen that
this foregoing adoption is not realistic. Because in the present case the function
f(wr,) has again negative values, whereas, in contrast to the thermal one, de, is
positive due to the elongation of the cell. Therefore, the equation cited predicts
negative dw,, -values, that means a decrease of w,, and thus of the shrinkage with
_progressive loading, i.e. with increasing ¢,-strain. To clear up the reason for this
inconsistency between the adoption mentioned above and the prediction of the u,-
continuity condition appears to be the first necessary step that distinguishes the
present analysis from that of the thermal problem.

It should be recalled in this regard that the u,-continuity condition, eqn (21)
p. I, as well as the boundary condition, eqn (15), p. I, are derived under the
assumption that the £"**- strain (i = r, 6) are neligible (cf the text following eqn
(15), p. I). One may sxmply prove that, in fact, it is this assumption that leads to -
the inconsistency mentioned just above. Actually, in the present case, the cross-
sectional elastic strain components in the plastic zone should not be neglected since,
due to the relatively small stress concentration effect of the fibre (cf. the remarks
following eqn (7)), the corresponding plastic strain components will be also small
enough. Finally, by means of the procedure, described in sec. 5, p. I, and with the
€g-strain introduced into the u,-continuity condition, the following relation holds
true ,

(8) : : © Aide, = fi(wr, )dwy,,

where

4oy(1+ vm)(1 + a)sin @’

(9) ' A=



. L3
sin (g - w,.,) Cos Wy,

(10) fl(w",) = sin(wr, + ®) — 2vysin @ cosw,, ’
(1+v)(1 — 2v)Em

11 =
(11) (0 +vm)Ey

Thereby eqn (8) is to be further coupled with a corresponding interval within which
the angle w,, changes, as well as with an appropriate boundary condition. It can
be proved that the angle wg,, as defined by eqn (15), p. I (with the elastic strain
neglected), will not apply to the present case. Thus, the account for the elastic
strain, involved in eqn (8), requires a more accurate determination of the initial
value of wy, i.e. of wr,. The latter represents itself the value of ., at the instant of
_ the occurence of the second plastic zone. As in the thermal case it can be assumed
that up to this instant the transitional matrix plastification process (cf. p. I) does
not affect substantially the linear elastic behaviour of the composite. In the present
case this behaviour allows to be considered as satisfying the condition

a2 (07 + 07 ez, = 0,

since the left-hand side of eqn (12) is proportional to r} 2/r2, and the terms of this
order of magnitude are, as adopted neglected in the present analysis.

Moreover, since the value e of the ¢,-strain, at which the second plastic zone
occurs, should not differ substantlally from the value of the eP'-straln (cf. eqn (7)),
one may further accept that '

x€

(13) . : g, =¢ebl.

" Regarding the yield ellipse (p. I, eqns (10), (11) now with E‘: from eqn (13))
eqns (12) and (13) simply prove that the stress state at the fibre-matrix interface,
at which the second plastic zone occurs, corresponds to the intersection point of
- this ellipse and of the straight line defined by eqn (12). Accordingly, the value wg,_,
which defines the position of this intersection point over the yield ellipse, can be
determined by using eqns (10), p. I, as well as eqns (7) and (13), respectively

3 (Av)? ]

(14) i ) ‘ WR, — arccos [ 1 + QW

Due to the smallness of (Av)? the value of wp_ is approximately 7. The same
statement is valid for the angle # — ® (cf. p. I, eqn (13)). Now, in the framework of
the model of the matrix plastification process (cf. p: I) the angle = — ® represents
the critical value of w,, at which failure of the composite takes place, whereas wp,
is the initial value of w,,. Therefore, the establishment of an accurate relationship
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between the angles m — & and wg_ is absolutely necessary. In fact, such a relation

follows immediately from eqns (13), p. I, and eqn (14), respectively, and reads
4 ) .

(15) ~ wp <7-9, if Av > (14 vy)(1 —2v,)/3,

(16) wr,>T—®, il Av < (L4 vp)(1 — 2vm)/3.

At this place some additional remarks should be made before proceeding with
the further analysis. First of all, it can be stated that the general approach devel-
oped in the present study, reduces the entire problem of the elastic-plastic response
of the considered fibrous composites to a’plane plasticity problem, which has a close
analogy to the well-known classical plane stress perfect plasticity problem (cf. for
example Kachanov [6]). The latter problem also involves a yield ellipse, for which

fofmally EZ = 0-and ¢ = 7/6 hold true.” By this analogy, the present problem can
be approached in the following way. It is in fact a matter of routine procedures to
prove that the yield ellipse from eqn (10), p. I, involves arcs of hyperbolicity and
ellipticity as well as points of parabolicity. In particular, the arcs d < w <7 — @
and 7 — ® < w £ 7 of the latter ellipse are arcs of hyperbolicity and ellipticity,
respectively, and the point w = 7 — ® is a point of parabolicity. As the mathemat-
ical plasticity theory shows (Kachanov [6]), the regime of plastic redistribution of
stresses, associated with these arcs and points, possess both overall and local spe-
cific features. Thus, one should necessarily distinguish between the latter regimes.
This general conclusion reveals itself the importance of the above derived relations .
(14) — (16). They clearly indicate that different regimes of plastic deformation
may develop in the matrix phase depending upon the value of the difference Av of
Poisson’s ratio. Thereby for large values of A the relations (14) and (15) predict
that a hyperbolic stress state will initially develop in the second plastic zone. In
the case of small Av-values (cf. relation (16)) there exists an elliptic state of stress
in the plastic zone. Furthermore, the analysis from p. I proves that the process of
matrix cooling induces a hyperbolic regime of plastic deformation in the matrix.

Thus in accordance with the foregoing considerations it would be reasonable
to separate the analysis of the cases, corresponding to the relations (15) and (16)
respectively. Thereby the terms “hyperbolic” and “elliptic” will be used in the
following just in order to distinguish between these cases. The analysis itself will
keep the structure of p. I. Certain general considerations, concerning the analogy
with the plane stress perfect plasticity problem, are to be found in the authors’
article Herrmann & Mihovsky [7].

HYPERBOLIC CASE

It is clear from the conclusxons derived above that in this case eqn (8) is to be
solved within the interval

(17) wr, Swr, ST1—-@
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along with the boundary condition

»€

(18) ezlw,!zw,,c =e,,

where wg, is defined by eqn (14) and satisfies relation (15), while the value 2:
follows from eqns (7), (13). In this case eqn (8) implies positive dw, -values, i.e.
the increasing loading, and thus the increasing axial strain ¢, leads to an increase
in the angle w,,. By applying the procedure from p. I the w,, (¢,)-dependence can
be obtained as an approximate solution of the problem, specified by eqns (8), (17),
(18), respectively. This solution reads (when the principal terms are considered

only)

(19) wr, = wp, +biAAc;,
where ‘
tan @
b =
(20) 1 2Vf 1= V]
(21) ‘ Ae, =€, — 2:

The axial strain difference Aez, at which failure of the unit cell takes place,
follows formally from eqn (19) with w,, = 7 — ® to be

2 A=

As it will be explained below, eqn (22) is a formal one. It assumes implicitly
- that the failure takes place before the entire plastification of the matrix, which is
not the actual case in the considered problem (in contrast to the thermal one).

Equations (16), (17); (20) from p. I for the plastic zone radius R, apply in the
present case as well with the new wg_-value from eqn (14). Therefore, by analogy
with the thermal case and with eqn (19) the R.(¢,)-dependence reads

V 2 2
1-{1- I 1—-AE‘) .
R“2 Ae?

Finally, the condition of equilibrium of the axial forces

(23) , R%(Ac,) = R:?

R,
(24) , r}a{ + (r,z,, -—'RZ)O'TC + 2/ ag"’rd}' = r,znoj

rs
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leads to the following forms of the 6¢(¢, )-dependence agam by the only considera-
tion of principal terms 7 .

o ' R2
(25) Aot = A¢,E (1 +E,. - —-) ,
. . : ) ] rm
or
En(1+ E;)

26 Ao = Aeg, .
(26) : 2 R?-riAe,

1
Y1TE T2 Ae

The function AoS(Ac,) is easily seen to be convex and to deviate smoothly
from the straight o,(¢.)-line defined by eqn (4). Further, the analysis of the com-
posite response, eqn (26), in the sense of that from p. I, is now performable straight-
forwardly. But in the present case such a detailed analysxs is actually not necessary
for the followmg reason. Eqn (26) reflects the response of the composite within the

short interval [ez, et P!], where €} P! stays for the value of the ¢,-strain at which
total (complete) matrix p]astlﬁcatlon takes place.
- Upon introducing

(27) Al = ¢hph _ ¢ |

it is clear that eqns (22), (26) would be of actual importance if the failure of the
composite takes place before the total plastification of the matrix, i.e. if Ae} <
Aet?!. Thus, the next specific question that needs to be cleared up is which of the
two latter phenomena takes place at first. This question concerns, first of all, the
determination of the €!?"-value.

In solving this question it should be firstly mentioned that in the present case
the plastification of the matrix will lead to a reduction of the cross-sectional stresses
in the remaining elastically deforming region. The plastic zone radius remains (in
contrast to the thermal case) always much smaller than r,, i.e. R} < ry,, which
is simply due to the smallness of the coefficient (r — ® — wg_) in'the exponent in
eqn (20), p. 1. Accordingly, the themselves small g*¢-stresses (i = r, 6), acting
in the elastic matrix region R, £ r < ry,, decrease further. This result allows
a consideration of the stress state in this region as approaching a state of pure

" axial tension with ¢™¢ = Ep,e,. Thus the plastification of this entire region takes
suddenly place “hen o7 = o,. This result defines the value e!?! as
tpl. _ . _ 9y
(28) e =gy = .

The foregoing equations allow to prove that the relation Ae} > Ael?! holds-
practically always true. This-is consistent with the typical observations of the
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behaviour of the fibrous composites. Thereby the occurrence of the stage of elastic-
plastic behaviour with a completely plastified matrix precedes the failure of the
- composite. Thus eqn (19) (respectively eqn (26)) is valid only in the interval [€z,
g''P"]. The quantity Ac, defined by eqn {22), is itself not a real characteristic of
the composite. Furthermore, the values of Ac’P" and of the corresponding stress
of total plastification 0"/ (respectively Aoﬁ*""") follow from eqn (7), (13), (25),
(27), (28) by considering principal terms only

: 3(AV)°
A’t pl. 0.’/
3(Av)?
etpl. _ _c,t.pl epl.
(30) . AJZ‘P _O'ZtP —O'Zp _o’y(1+Ec)m
Upon introducing the notations \
(31) Aez2=¢: - Ey,
(32) . Adf, =0 — oot /

and by applying the equilibrium condition of the axial forces the o£(c,)-dependence
for the considered stage can be given in the form

(33) Act 5 = EmE.Ac, 5.

Thereby eqn (33) is nothing else but the known lower bound estimation of the
elastic-plastic response of the considered class of fibrous composites, derived by Hill
[4]. The interpretation of eqn (33) in the “rule of mixture” sense with a negligible
contribution of the plastified matrix phase (cf. Kelly (3] and the introduction to p.
II) is straightforward.
' A qualitative purely schematic 1llustrat10n of the overall response of the con-
sidered composites, as predicted by the present analysis, is given in Fig. 1. Thereby
the straight lines I and III correspond to eqns (4) and (33), respectively, while the
straight line IT is the linear approximation of the dotted one, to which eqn (26)
corresponds. The strain €] = e!?" + Ae} , with ¢}?" defined by eqn (28), is the
strain at which the failure modes predlcted by the model of Herrmann & Mihovsky
[1], start actually developing in the composite cell. How these failure modes occur
upon the complete matrix plastification is a problem with the solution of which the -
analysis of the hiyperbolic case will be entirely closed. To this regard eqn (8) proves
that with further loading of the composite, i.e. upon oot the angle wy, further
increases and finally approaches the angle (7 — ®). In addition, it can be shown
that in accordance with the u,-continuity condition at r = R, i.e. at the boundary
between the two plastic zones, the angle wg_ increases as well but it remains, at

30



0f A0fAC;,
T |
] '
P
o
-
| h )
' : :
bl g !,
0-c,f,Dl ______ R J:___"’.
z - :,-, '
T G 7 1 R 14822
I : o: EAEZ
P P
' . !
' A J’J——-———
0 gg gir! €% €,

Fig: 1. Qualitative schematic illustration of the response of fibrous composites
under longitudinal extension

the same time, smaller than w,,. Thus, it is the latter angle that first achieves the
critical value (7 — @) to which the occurrence of the failure modes of the composites
at the fibre-matrix interface corresponds. ,

It should be pointed out that these conclusions result, in fact, from a relatively

complicated analysis. The latter involves a second yield ellipse (with 2: = &),
the &,-continuity condition at r = R,, as well as a jump in the og-stress at r =
R.. The occurrence of this jump results from the sudden change in the process
of plastic stress redistribution, caused by the sudden entire matrix plastification.
The stress state in the suddenly plastified matrix annulus R, < r < rp, with
o, & 0 & 0 corresponds to the vertex w = = of the second yield ellipse. This
vertex belongs to an arc of ellipticity of the latter. The necessity of introducing
this.ellipse reflects the fact that a'sudden plastification of the elastically deformed
matrix region corresponds to a value 2: of the axial strain in this region, which is
equal to €. '

Further, eqn (17), p. 1, with wg_ from eqn (14) now proves that with the
behaviour of wr, and wg, described above the plastic zone radius R, decreases with
progressive loading. This is a natural result since the large plastic zone R, S 7 &
should be really expected to reduce the stress concentration within the thin plastic
layer 7y < r £ R, surrounding the fibre, and to reduce in this -way its size R, as
well. i

When solved in the terms of Ae, » and Aw,,, = wy, — w:'f”"', (cf. eqns (19),
(29)) the u,-continuity condition, eqn (8), will imply with w,, = 7 — @ the actual
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critical Ag; ,-strain difference, respectively, the critical ¢-strain (cf. Fig. 1) at
which modes of failure of the composite will start developmg The determination
of this critical strain difference Ac} , is a matter of simple computations, and the

strain £} is equal to ¢!?" + A} , (cf. Fig. 1).

ELLIPTIC CASE

This case corresponds to relatively small values of Av, for which the inequality
(16) holds true. The stress concentration effect is smaller than in the foregoing case.
The initial value of w,,, i.e. wr,, belongs to the interval [ — @, 7]. The speciality
of this case is associated with the behaviour of the function fi (w,,) from eqn (8)
This function changes its sign when w,, runs through the value

(34) * Wy, = arctan[—(1 — 2v; ) tan }.

The angle @, obviously belongs to the interval [x — ®, x]. It is easy to prove at
the same time that irrespectively of whether the wg, -value is larger or smaller than
Wy, , the change in the sign of the function f;(w,,) at wr, = @,, guarantees that
upon the occurence of the second plastic zone the angle wy, in any case will achieve
the value @,,, and that further development of the matrix plastification process
will be possible with this constant value wr! of wy,. It is reasonable to accept
that the progressive loading causes again an increase of the plastic zone radius R..
Then, in accordance with eqn (17), p. I (with w,, = @,, now), this increase should
be due to the increase of the angle wg, in the interval [x — ®, x]. At the instant
when wg, = 7 the plastic zone radius R, becomes infinitely large, i.e. sudden total
matrix plastification takes place. Note, that the. point w = r belongs to an arc of
ellipticity of the yield ellipse (p. I, eqn (11)).

The effect of constancy of the angle w,, and of the sudden entire matrix plas-
tification can be explained in the following way. As eqn (8) shows, in this case
the angle w,, changes upon the occurrence of the second plastic zone r; < r < R.
between the themselves close values wg, and @,,. The plastic zone radius R, re-
mains small again, i.e. comparable with the fibre radius r; (p. I, eqn (17)). At the
same time the thinness of the plastic zone reflects the very low stress concentration
effect of the fibre. Since the plastification itself further reduces the latter effect,
it can be assumed that at a certain instant of the plastification process the radial
dependence of the stresses in the thin plastic zone becomes negligible. Then, due to
the o,-continuity condition at r = ry, the fibre and the thin plastic coating around
it could be considered at this instant just as forming an “elastic” core ry S r < R,
of the composite cell, which expands with an “increasing” Poisson’s ratio v.. The
core is “elastic” in the sense that the existing radial stress in it satisfies, as in the
homogeneous linearly elastic fibre material, the relation o, = o,|r=gr, (p. I, eqns
(1)). The “increase” of the v.-ratio is due to the plastic incompressibility of the
strain in the thin plastic coating as well as due to the expansion of the latter, i.e.
due to the increase of its volume fraction. With the concept of the core formation
the u.-continuity condition at r = ry, i.e. within the core now, may be considered

32



as identically satisfied irrespectively of the values of the angle w,,. The latter keeps
actually the value &,,. The core spreads into the matrix phase with the increasing
ve-value and thus reduces the stresses ¢*%, i = r, 8, in the remaining elastic region,
since the latter are proportional to the itself decreasing difference v,, — v,, cf. eqns
(1), p. T and egn (1), respectively. Obviously, this is the above considered stage of
deformation with increasing wg_-values (wg, — ). Thus the instant of complete
matrix plastification wg, = 7 corresponds to that one at which v. becomes equal
to Uy (cf. eqn (14) with Av = vy, — ve).

It should be mentioned without discussing the details that the analysis of the
unit cell behaviour upon the instant of complete matrix plastification follows the
same basic lines as in the foregoixig case. It predicts, as it should be expected, the
same response (cf. eqn (33)). The distinguishing feature between the two cases

concerns in fact the length of the transitional interval [*z, g!?!] (cf. Fig. 1). This
interval proves to be even shorter in the present case than the itself short interval
from the hyperbolic case. : /

The basic features of the development of the plastic deformation process, as
well as of its influence on the overall response of a fibrous composite, have been
considered above in sufficient detail and do not need to be additionally analyzed in
a separate section as in p. I. Nevertheless, it would be of interest to summarize both
the common and the specific features of the thermal and the mechanical response
of the considered class of composites from the view-point of the general approach
developed in this study. Such a summary is presented in the next section along
with a brief consideraton of these features, concerning the possible applications of
the general approach to some problems of the practice of the fibrous composites.

CONCLUDING REMARKS

The general approach, developed in the present study, predicts a realistic
elastic-plastic response of the consideréd class of fibrous composites under both
thermal and mechanical loading condition. Quantitatively, the predicted response
reflects both the geometrical and the mechanical properties of the composite struc- -
ture. It is consistent with the “rule of mixtures” description of the composites
behaviour commonly adopted in the engineering practice. The response itself is
derived as an overall quantitative estimation of the characteristics of the processes
of elastic and plastic deformation, respectively, developmg simultaneously within
the composite structure.

In accordance with the analysis of both the overall and these specific features
of these processes different regimes in the development of the matrix plastification
process may occur, depending upon the loading status or/and the properties of the
constituents. The response of a fibrous composite under the condition of matrix
cooling corresponds to a regime of monotonous increase of the plastic zone size.
Similar regimes develop initially under longitudinal extension as well. The latter
cover, as a rule, a short interval of axial strain changes and are followed by the phe-
nomenon of the sudden entire matrix plastification. The general approach allows to



draw a clear analogy between these regimes and the regimes developing in the clas-
sical plane stress perfect plasticity problem. From the point of view of this analogy
the phenomena of progressive increase of the plastic zone size and entire sudden
matrix plastification just reflect the essential properties of the corresponding set of
governing equations, if the latter are of the hyperbolic or elliptic type, respectively.
Further, the approach relates the change of the type of this set of equations to a
parabolic one with the occurrence of specific failure phenomena, connected with
the considered class fibrous composites.

The approach described above accounts in a special way for the mutually
conquering effects of the matrix ductility and the fibre stiffness. The quantity E
involved in this approach proves to be a reliable average measure of the mteractlons
between these effects. Its identification in the thermal problem is of importance.
To this regard corresponding practical procedures are proposed. '

As it was mentioned in the introduction to p. I, the basic effects of the matrix

plasticity concern its influence on the overall composite response and the improve-
ment of the fracture resistance of the composites to'existing structural defects.
Along with the clarification of the first of these effects the present approach allows
to derive definite conclusions with. respect to the second one as well. Thereby it
_ is clear to this regard that in the case of longitudinal extension the plasticity of
the matrix reduces the cross-sectional stresses. Accordingly, if defects are present
in the matrix phase, which are sensitive to these stresses, then one should account
for the possible growth of such defects only within the linear elastic stage of the
composite behaviour. The plasticity of the matrix really improves the resistance of
the composites to such defects. Typical defects of this type are, for example, the
relatively short cracks which, when reffered to the unit cell cross-section, may be
considered as radial cracks. Such cracks occur very often during the processes of
thermal treatment involved in the fabrication of the composites. :

The plasticity of the matrix does not reduce the sensitivity of the composites to
such cracks under the conditions of matrix cooling. In this case the circumferential
stress at the front r = R, of the plastic zone is relatively large. The enlargement

“of this zone results in a relative increase of this stress in the points, traversed by
the front. Therefore, if a radial crack exists in the elastic matrix region then with
progressive matrix cooling the elastic-plastic boundary will approach the crack tip
and imply larger stress concentration there. Such a crack, even if it was in equilib-
rium in the elastic stage of the composite behaviour, may start propagating due to
the progressive process of matrix plastification. Thus, in that case the plasticity of
the matrix does not improve the fracture resistance of a composite. Moreover, the
same relatively large circumnferential stress, carried by the propagating plastic zone
front, may be considered as the reason for the occurrence of such cracks during the
processes of thermal treatment involved in the fabrication of the composites.

Thereby, as it was mentioned, the problem of matrix cooling is considered as
modelling the real fabrication problem of cooling the entire composite structure. In
fact, the basic lines of the analysis from p. I apply to the latter problem as well if,
roughly speaking, the term ap, in the thermal analysis is replaced by Aa = ap—ay.
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One may then expect by analogy with the case of longitudinal extension that de-
pending upon the specific value of A different regimes of plastic deformation may
develop in the matrix phase during the fabrication process of cooling of the entire
composite structure. Accordingly, by using the present approach a development
of fabrication technologies should be possible which would at least reduce, if not
entirely prevent, the undesired radial cracking of the composites and therefore also
the propagation of existing radial cracks respectively. Similar applications of the
approach, based upon the suitable choice of the (Aa, Av)-combinations, may be of
importance in problems concerning both the load-bearing capacities and the crack
sensitivity of the considered composites at low temperatures.
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ON THE OPTIMAL THIRD-ORDER BOUNDS ON THE
EFFECTIVE ELASTIC MODULI OF RANDOM DISPERSIONS
- OF SPHERES

KONSTANTIN MARKOV, KRASSIMIR ZVYATKOV

Koncmanmun Mapxos, Kpacumup ITesmxos. OB OﬁTHMAHbeIX TPAHUIL
TPETLEIO IOPAIKA JIJIfl 38SEKTUBHBIX YIPYTUX MOLYJIEH CJ1Y-
YAWHEBIX CYCIEH3UH CQEP.

Mccneayercs Bompoc ONTHMAJBHOCTH BapMaUMOHHHX rpanun Bepana-Moumnme,
Makkos u Ap. ana 2pPEeKTHBHHX MOAYJed yNpyrocTu AByX¢asHmx cpen. Onrumain-
HOCTh MOHMMAETCHA B CMBIC/]E MOJyjYeHHMs HauboJiee y3KUX CPAHMI NIPH ydeTe TOJBKO
CTATHCTHYECKOH NHbopManuy, HeoBXxouMOH 114 NoACYeTa STUX IPaHMI, HMEHHO JBYX-
M TPEXTOYEYHHX KOppeJAUMOHHHX ¢yHkumii. Ha npumepe cayuaiinolt cycnensnu chep
. NOKa3aHO, YTO AHAJOTHUYHO CKAJIAPHOMY CJydalo, 3TH I'PaHHUN B OBNIeM ciydyae Heol-

" TuMaabHH. ONTHMAaIRHOCTD MMEET MeCTO JIMIb A0 NOPAIKE c°, Tae ¢ ofbeMHas KOH-
nenrpaupa coep. IJlaa cycmenwsuil rpamnust Bepana-Mosaune m Makkos moacudTaHul
ABHO [0 MOPAIKA ¢’ W MONYUEHHEE Pe3yMLTATH UCHONBIOBARE A MCCENOBANKS NPH-
MEHHMOCTH HEKOTOPHX BBPHCTUYECKMX METOJOB MEXaHHKH KOMIO3NTHHX MAaTePHAaJOB.

Konstantin Markov, Krassimir Zvyatkov. ON THE OPTIMAL THIRD-ORDER
BOUNDS ON THE EFFECTIVE ELASTIC MODULI OF RANDOM DISPERSIONS g
OF SPHERES. -

The problem of optimality of the variational bounds, due to Beran-Molyneux, McCoy,
et al., on the effective elastic moduli of two-phase random media is considered. Optimality
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is understood in the sense that bounds should be the tightest ones that use the statistical
information needed for their evaluation; for the said bounds these are the two- and three-
point correlation functions for the medium. For random dispersion of spheres it is shown
that the bounds are optimal to the order ¢ only, where c is the volume fraction of the
spheres. The Beran-Molyneux and McCoy bounds are then explicitly calculated to the
order c? for the dispersions and used for a study of applicability of some known schemes
of mechanics of composite media.

INTRODUCTION

The paper is devoted to the problem of variational bounding of the effective
elastic moduli of two-phase random media. Generalizing the scalar conductivity
" arguments of [1] we first rederive the Beran-Molyneux [2] and the McCoy [3] bounds
on the effective bulk and shear moduli of the media, respectively, as simple Ritz-type
approximation within the frame of the general variational procedure given in [4].
Then we pose the central for the paper problem of the optimality of the said bounds.
Optimality is understood here in the sense that they should be the tightest ones
that use the statistical information needed for their evalnation. For the said bounds
these are the two- and three- point correlation functions for the medium. Similarly
to the scalar conductivity case [1], it appears that the Beran-Molyneux and the
McCoy bounds are not optimal in general. For random dispersions of spheres,
however, they are optimal to the order c?, where ¢ denotes the volume fraction of
the spheres. We next calculate explicitly the said bounds to the order ¢. The
so-obtained c?-bounds represent, in particular, a rigorous basis for a comparison
with the predictions of some heuristi¢ models in mechanics of composite materials.
In this way certain conclusions (mostly negative), concerning the applicability of
some known formulas in elasticity of random dispersions, are finally reached.

THE BOUNDING PROCEDURE IN THE ELASTIC CASE

Consider a two-phase elastic random medium, which is statistically homoge-
neous and isotropic. For definiteness in this moment only we shall call constituents
filler and matrix. We assume the constituents isotropic, so that the fourth-rank
tensor of elastic moduli of the medium, L(=), is a random field of the form

(2.1a) - L(z) = 3k(z)J' + 2u(z)J",

where J' and J” are the basic isotropic fourth-rank tensors with the Cartesian
components ,

[N

1 1 -2 .
ik = 30 0u1, k= 3 <6ik6jl + budjr — '3‘61']'61:1) :

and
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(2.1b) k(z) = () + K (z), K(z)=[K]I'(=),
p(e)= () +p' (),  p(e) = [WI'(=),

(k] = kg — km, [#] = s — pm, k and p stand everywhere for the bulk and shear
modulus, respectively. Hereafter, all quantities, pertaining to the filler, are supplied
with the subscript “f” and those for the matrix — with “m”, the volume fraction
of the filler and matrix are respectively ¢ and 1 —¢. In (2. lb) I'(z) = I(z)—cis
the fluctuating part of the indicator function I{x) for the reglon occupied by the
filler constituent, i.e.

1, if z € filler,

0, if z € matrnix,

(2.2) I(:l:) = If(:t') = {

The Lame equations for the medium, at the absense of body forces, read

(2.3a) | V.o(e)=0, o(z)=L(z): (),

1 . .
where o denotes the stress tensor, ¢ = -(Vu + uV) is the small strain tensor

generated by the displacement field (), the colon denotes contraction with respect
to two pairs of indices. In the isotropic case under consideration we have

(2.4) | o(x) = k(=)0(x)I + 2p(z)d(z),

(2.5) Ce(a) = %0(m)1+ dz), O(z)=tre(=),

(cf. (2.1)) so that (2.5) is the decomposition of the strain tensor as a sum of its
. spherical and deviatoric parts, I stands here for the unit second-rank tensor.
We prescribe also t}ée average strain tensor E, imposed on the medium

(2.3b) (@) =

where E is a given symmetrical second-rank tensor, the brackets (-) hereafter denote
ensemble averaging. Eqns (2.3) represent the basic random problem (with respect’
to displacements) in elasticity of composite media. This is the elastic counterpart
of the scalar problem, considered in {1]. :

The random problem (2.3) is equivalent to the variational problem

26)  Wal() = (€(2): L(z) e()) — min.
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The functional W, is considered over the class of random fields u(z), which gener-
ate strain fields £(z) satisfying (2.3b). Moreover, minW,4 = E : L* : E, where L*
is the tensor of effective elastic moduli for the medium. In the statistically isotropic
case under consideration L* = 3k*J' + 2u*J", where k* and p* are the effective
bulk and shear modulus of the random medium respectively.

In order to obtain bounds on the effective properties of a random medium it
was proposed in [4] to employ certain truncated functional series as classes of trial
fields for the respective variational principles. For an elastic medium the class of
such trial fields, in the simplest nontrivial case of interest, is

@) KO = (u@)ue) = B2+ [T -0 @)}

Hereafter the integrals are over the whole R3, if the integration domain is not
explicity indicated. ’

The energy functional (2.6), when restricted over the class (2.7), becomes an
usual functional of the nonrandom kernel T'(z), namely

WalT()] = QOWr’E+2(u)E - E
+2 [{NY - T() + 204l E : def Tw)} Ma(w)ey
12 [ [ 2007 T () Ma(ws = o) + DI Malo, 92},
+2 / / def T(y;) : def T(y:){()Ma(y, — v3) + [WIMa(y,, y,)}d°y,d%y,,

where ‘def T(x) = -12—(VT(’-B) -’r T(z)V),

My(z) = (I'(0)]'(=)),  Ms(=,y) =(I'(0)'(z)]'(y))

are the two- and three-point moments of the indicator field I(z), defined in (2.2).
Hereafter the differentiation is with respect to z. '
The Euler-Lagrange equation for the functional W4[T(-)] reads

(2.8) E:[L) VMy(z) + / VMy(x — y) - Ly, : def T(y)dy
+‘/VM3(z‘, y)- [L]‘: def T'(y)d®y = 0.
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It could be shown, employing simple convexity argumerits, that the solution
of eqn (2.8) does exist and is unique. The solution, T(y), is to be inserted into
the second equation of (2.3a) which, upon averaging, will bring forth certain upper
bounds £®) and u® on the effective bulk and shear moduli of the medlum The
superscript “3” indicates that the evaluation of the bounds k(3 and u(® requires
knowledge of the r-point moments for the field I(z) up to r = 3. In this sense these
bounds are called third-order, similarly to the scalar conductivity case (1, 4]. More
important, it could be shown, extending the scalar conductivity arguments of [4],
that k() and u(® are the optimal third-order bounds in the sense that they are the
best ones which can be obtained, making use of the said statlstlcal information, i.e.
M, and M3 only.

The explicit solution of the mtegro—dxﬂ'erent)al equation (2.8) is very difficult
in general. That is why we introduce, after {5], a simpler procedure. Let T(z) be
a fixed kernel. Consider the set of trial fields

(29)  KV=(u@lue) =Bz +a [T - @) c kO,

where o € R’ is adjustable parameter. The functional Wy, when restricted on K (1)

becomes a quadratic function of &, whose monimization brings forth certain thlrd-
order bounds ¥® and 73 on the effective bulk and shear moduli. Sueh bounds,

due to obvious reasons, are called in [5] Ritz-type ones. Though not optimal in
general, the bounds ;(3) and fi® could be explicitly evaluated, if the kernel T'(z)
is skillfully chosen. As a matter of fact, Beran and Molineux [2] and McCoy [3} have
pointed out that such a choice of the kernel is supplied by the first-order terms in
the perturbation solution of the basic elastic problem (2.3). (A similar observation
in the scalar conductivity case is due again to Beran ([6].) In our terminology
the above mentioned authors have calculated the bounds £® and 73 for the said
choice of the kernel T'(x): Their derivations will be repeated below in the frame of
our scheme and then the problem of optimality of the respective bounds for random
dispersions of spheres will be addressed. But before this it is necessary that the
perturbation solution of the elastic problem (2.3) should be considered at some
length.

PERTURBATION SOLUTION OF THE BASIC ELASTIC PROBLEM (8.3)

Let the medium be weakly inhomogeneous, i.e. the ratios

. [k ()| ()|
3.1 bk = max , Su = max
@ >y Iy
are small, 6k, 6u < 1, noting, however, that §k, 6y may be small of different

orders of magnitude. Consider the perturbation series for the displacement field
that solves the problem (2.3)
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(3.2) u(z) = u(o,o)(z) +uO(z) + u(O,l)(z) + i u(p,q)(z)’
p,9=1

‘where u(®%(z) = E .=z and u(”*")(z) has the order of magnitude (8k)?(5u)9,
besides, (u»9(z)) =0,p,¢=0, 1,..., p?+¢* #0.
On introducing (3.2) into (2. 3a) we get straightforwardly

3tr E 1
3(k) + 4(p) dn|z — y|

(3.3) u(t)(z) = K (y)dy,

(3.4) u®D(z) = 51&—”)154 [ {Vﬁi—yl ® I +7VVV|z ~ y:} W (W)d,

' 1 . S . .
where E4 = E — -Itr E is the deviatoric average strain, hereafter all gradients are
with respect to 2, V= V., and

“

1 . 30k — 20
- 6(F) +2(n)’

(3.5) H=—

so that 7 is the Poisson ratio of a medium with elastic moduli (k) and (u). (Note
that 7 # (v).) The well-known Green tensor for the Lame equation in the isotropic
case is used in an obvious manner, when deriving (3.3) and (3. 4)

The reformulation of the problem (2.3) for the stress field is well- known (cf.

[7):
(3.6a) o(x)=V x‘fI>(z) x V,

(3.6b) \Y% X (M(z):0(z)) x V=0.

Here M (z) L~(z) is the fourth-rank compliance tensor field for the medium,
‘and ®(x) is the symmetrical second-rank “tensor potential” field for the stress —
the stress function of Maxwell and Morrera, which assures that the equilibrium
equation (2.3a) is identically satisfied. Slmllarly to (2.3b), we prescribe the mean
value, X, for the stress tensor

(3.6¢) (o(z)) =%. -
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Eqns (3.6) represent the basic random elastic problem, with respect to stress,
in elasticity of composite media. The variational formulation of this problem is the
principle of minimum complementary energy. Consider the functional

3.7 Wg[®(-)] = (o(z) : M() : o(x)) — min,

where the field o() is the birotor of <I>(z) cf. (3.6a), such that (3.6¢) holds. Then
the solution &*(z) of the problem (3.6) minimizes Wp, so that o(z) = Vx®*(z)xV
is the real stress field in the medium. Moreover,

(3.8) ' min Wg=X:M"*: 3,

where M* = L*~! is the effective compliance tensor of the medium.
In the isotropic case under study we have

69 wald()= g (zie@) + 5 o sete) 5a)),

1

(3.10) min Wp[®(: )] o5 tr22+ 2., 4,

where 8(z) = () = §I tr o(z) is the stress deviator and X, is the deviatoric part

of the macrostress tensor X.

The construction of the Ritz-type lower bounds, similar to the upper ones of
Beran and Molineux, needs the first-order perturbation terms in the solution of the
random problem (3.6), i.e. the counterparts of the fields u(1:%(z) and u(®V)(z),
given in (3.3) and (3.4) respectively . As noted by McCoy [3], the straightforward
construction of these terms is however lengthy and tedious. That is why .we shall
use another scheme of arguments, suggested and, as a matter of fact employed in
the same paper [3]. The scheme consists in the following.

Let us insert the perturbation solution (3.2) into the Hooke law

(3.11) : ‘ o(z) = L(z) : e(x)
= {(L) + I'(2)} : {E + Vai() + o(L))
= (L) : E + o1(2) + o(6L),

where -

(3.12a) o1(z) = L'(z): E + (L) : Vu(=),
0L = max N @N/L,  L? = (Lapys Lapys),
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L'(x) = L(z) — (L) being the fluctuating part of the field L(z). In the isotropic
case under consideration we have §L = max(ék, éu) and

(3.12b) - uy(z) = u{"(=) + u{"(2)..
On averaging (3.11) we get

(3.13) T =(L): E + o(§L),
so that the field o1 (z), to the order o(SL), has the form

(3.14) o1(z) = L'(z) : (L)™' : 2+ (L) : Vuy(=).
Since (o1(x)) = 0, we have in virtue of (3.12) that
o(z)= X +01(z) +0o(5L)

and thus o;(z) is the needed first-order term in the perturbation expansion of the
solution of the problem (3.6).
In the isotropic case

o1(z) = 0 (z) + 0O (2),

where 0(1.9)(z) and ¢(®1)(z) have the orders of magnitude 6k and 8y respectively.
Moreover ¢(19)(z) = 0 if y/(z) = 0, i.e. if the constituents have the same shear
modulus, and ¢(®)(z) = 0 if k'(x) = 0, i.e. if the bulk modulus is the same. The
analytic forms of o(1:%)(z) and o(®1)(z) easily follow from (3.7) and (3.8):

(3.15) o19(z) = 1’“(2))1& £ 2+ Z(3(F)  2u)IV w0
+Hp) (Va9 4 4OV),
(3.16) oV () = ﬁl@xd + l(3(15) — 2u))IV - u®)

(u)
( )(Vu(() 1) + ,u(D l)v)

The eventual form of these fields would be obtained, if the expressions (3.3)
and (3.4) for u":9)(z) and u(®!)(x) are inserted into (3.15) and (3.16) respectively,
and transition from E to L is made according to (3.13). Such explicit formulas are
not needed in what follows, however, because we can use the respective expressions
from the evaluation of the upper bounds, which involve contractions of tensors like
Va9 and Vul®D, Therefore the evaluation of the lower Ritz-type bounds can
be readily performed if the respective upper bounds are already calculated. In this
way the difficulties that appear, due to the presence of birotors in (3.6), are avoided.
That is why we shall give in the following the formulas for the lower bounds without
any comments. '
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BERAN — MOLINEUX (BM) BOUNDS ON THE EFFECTIVE BULK
MODULUS

We start with the construction of certain Ritz-type bounds on the effective
elastic moduli of the two-phase material, making use of the above constructed
first-order perturbation fields «(1:?) u(%1), 5(1.9) and ¢(%:1), The discussion of the
problem of their optimality, in the above explained sense, will be postponed till sec.
6.

. Let us consider, after Beran and Molineux [2], the class of tnal displacement
ﬁelds »

(4.1) u(z) = E -z + aull(z),

where E is spherical, u(1:9(z) is given in (3.3) and a is adjustable scalar parameter,
cf. (2.9). On inserting (4.1) into the energy functional (2.6) and minimizing the
result with respect to «, one gets the following upper bound on the effectlve bulk
modulus k*, obtained by the above authors:

(4.22) Sk, kb = (91— (¥9)/KL),
where
(4.3) L Ke={[() 420 )](k'2)+(A’k’2)+2J}(k) |

/ / '(0), k’(z)lc (w)) - I B l Id3zd3

. . . 2 . ’
is a certain statistical parameter and A = & ~ -y is the Lame constant. Hereafter

the prime denotes the fluctuating part of the respective random fields. Simple
analysis, based on the relations (2.2), shows that

(49) 7 = [kPA
where A is the dimensionless statistical parameter, introduced as follows
(4.5)

. 1 o1 5 | R
A://z(z, w)vv47rlrl .VVM'wld:’zdaw, i(z, w) = (I'(0, I'(2)I (w))

"The lower BM-bound is obtained when the functional (3.9) is minimized over
the class of trial stress fields

o(z) =X+ acb0(z), a € R,
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with a spherical T and ¢{*:?)(z), defined in (3.15). The ﬁnal result, in the original
Beran — Molyneux form, reads

(425) e SE K™ = () - 6K

’ k./2 3 k'2 9
K -2 1
=(F) -5

where J' is the statistical parameter

ae s <k'(z)(t>)(w)>w4w1|z; IV g P2
(1 o= () + i
oo (e

and-thus the upper and lower BM-bounds (4.2) depend on the same statistical
parameter A. This parameter appears also in the Beran bounds [6] on the effective
conductivity, as it could be easily shown. In turn, BM-bounds may be expressed
in & concise form [8] by means of the Milton parameters §; and {2, defined as

(4.8) ; 2=1-& | |
Pzd’w  S2(2)S>(w) |
T -—c) // 167r2|z|3|w|3 {53( "’)" —c—z} Pa(u),

1
where u = cos p,  being the angle between the vectors z and w, Pa(u) = 5(3u2—1)

is the Legendre polynomial of order two, and

(4.9) | Si(e) = (I0)I(z)),  Ss(z, y)= (I(O)(2)I(y))

are the so-called [9] two- and three-point functions réspectively. Let us recall that
the quantities Sp(x) and Ss(x, y) are, respectively, the probabilities of finding
" in the filler phase (phase “2” in our case) the end points O (the origin, chosen
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_arbitrarily) and O’ of the line segment OO0’ = z and the vertices of the triangle
00’'0", where 00 = z, 00" = y.
Note that the relation between the parameters £ and A is readily deducible
from their definitions, if one takes into account that

1 1 6Py (u) z-w
41 VV . = =
(4.10) el YV il © RPReP T Tl Tel
and 1t reads
1 3A
4.11 =1-¢==(4e+ ——-1).
(4.11) &2 & 2(c+c(1—c) )

' Let the medium have constant shear modulus, i.e. py = p,, and p'(z2) = 0,
so that the bulk modulus only varies in position. In this case the lower and the
upper BM-bounds coincide yielding the exact values of the effective bulk modulus,
namely .

(k) |
(k) + 5 () + (11— 20

(4.12) k* = (k) -

The same value of k* can be obtained from the Hashin-Shtrikman bounds [10] on
k*, which also coincide if gy = pm. Note that the exact value (4.12) of k* in the
case under consideration was first pointed out by Hill [11].

McCOY (MC) BOUNDS ON THE EFFECTIVE SHEAR MODULUS

The reasoning of McCoy [3] is fully similar to that in sec. 4, namely we assume
that tr- E =0, i.e. the macrostrain tensor is deviatoric, and then take the class of
trial displacement fields

u(z)=E -z + au®(z), a € RY,

for the energy functional (2.3). Minimization of the latter with respect to a yields
the upper MC-bound on the effective shear modulus of the medium, which we write
in the form

_ 44— 50y
15M, ’

My = 2(1 = 9)(4 = 55(u) (6 + 5(1 = Db D

(5.1a) B SByer  buc =)

+{u'®) {1,,%(1372 - 220+ 10)} ,

47



with the dimensionless statistical parameters, defined as follows

_ 1 /’ ’ Iw A 1 . 1 3z 3‘!1)
62) Ton = | [womem NV gy VY g

I, = 21{,2) + (7% — 107 + 1)IY,

_
1 1 1
Q) .~ u Vi dBzd3
I = <”13) //M3 (=, w)VV47r|zl V47r| | zd®w

P = E,?T_”" / / M (z, w)VVVV|z| e VUV VIw|d*zd w,

Where M}'{z, w) = (¢'(0)p'(2)p'(w)) is the. three-point correlation function for
the random field (=), and v is defined in (3.5). The bold-faced point in (5.2)
denotes full contraction, i.e. contraction with respect to all four pairs of indices.

The parameters I;,, and I,(‘l) obviously coincide, being proportional to the
“above introduced parameter A:

A
. (l)— [
(5.3a) 1“ Iepy d-ol=o

For the parameter I,(‘Z) we have

44
3b »-___ "2
(5:3b) , K e(1 = ¢)(1 - 2¢)
/where
(5.4) A= / / i(z, W)VVVV]2| e VYUV 0]d*2dw

is another statistical parameter for the medium, independent of A, i(z, w) =
{(I'(0)I'(z)I'w)). The parameter A; is introduced by Milton and Phan-Thien [12],
eqn (63). Milton (12, 13] has employed the statistical parameters n1, 72, similar to
- the ¢’s, defined in (4. 8):

(5.5) Mm=1l-m= %ﬁz ‘
150 Badw [, Sa(2)S2(w)
M) // 622 Plwp {53(” w) = f‘”?_*}P4(“)'
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the same notations being used here as those in (4 8), where Py(u) = -—(35u -

20u? + 3) is the Legendre polynomial of order four.
The relation between the parameters 7, 5 and A; is given in [12], eqn (29). It
reads .

_ 5 fc+44,-34 1—c
(5.6) "2‘1"’““6( i=e * 5)

and follows from the formula

72P4(U) _ zrw

5.7 VVVV|z|e VVVV|w| = ———, u= ,
(6.7) =l ! = RTwp T2 ool

similar to (4.10).
It is important to pomt out that both statistical parameters & and m (and
thus €5 and 7, as well) lie in the interval [0, 1]. Moreover, they satisfy the inequality

(58) 21n; — 582 2 0,

as it is shown by Milton and Phan-Thien [12], eqn (52). This inequality is a
consequence of the fact that the upper MC-bound should be always greater than
the lower one.

The lower MC-bound g, on the shear modulus p* of the medium is obtained
when minimizing the functional (3. 9) over the class of trial stress fields '

o(z) = T + ac®(), « € R,
with a deviatoric T and ¢(®1)(z), defined in (3.16). The final result reads

3

L . 1\ (7 50)2( /)2
1b e SHh o (o) =( =) -
(5 ) Bmc = H, . (lJ'MC) <l‘> 5M1 ’
M= 20477 (8Tueu — (100} + I,

+3(79 —10u+1)Jf,1)—(2u +47 =T\ (i [ ),

with the following statistical parameters

. #'(2) ’(w 1 1 5
5. = . d°zd
69 = [ () T s

(1) — W (@) w) \ I 1 3 33
I //< (0) VV47r|z| 'Vv47r|w|d zd°w,

L)
(2) — BZ)p 3, 73
Jy 607 //< 24(0) VVVV|z| ¢ VVVV|w|d*2d°w
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similar to (5 2).

Simple analysis, based on the relations of the type (4.7), shows that the lower
MC-bound (5.1) depends on the same statistical parameters as the upper one. They
may be chosen either as A and A, defined in (4.5) and (5.4) respectively, or as the
Milton parameters &; and 7, defined in (4.8) and (5.6) (cf. [8]).

THE CLUSTER BOUNDS FOR DISPERSIONS OF SPHERES

Let the medium be a random dispersion of equisized nonoverlapping spheres
of radius a and let #; be the set of random points that serve as centers of the
spheres. The random constitution of the dispersion is exhaustively described by
the Stratonovich random density function [1, 4]

(6.1) | b(@) =Y bz - z).

’fhen
(6.2) K@) =1 [ he - ¥ (@),

W@ = ) [ b o) @),

where ¢/(x) is the fluctuating part of ¥(2) and h(z) is the characteristic function
of a single sphere of radius a, located at the origin. On introducing (6.2) into (3.3)
and (3.4), we make, similarly to that in [1, 5], a transition from the basic random
field I(z) (cf. (2.2)) to the random densit," field ¢(z). The first-order perturbation
fields u(1.9(z) and u(®1)(z) then become

63) . ue)= ﬂ,c;‘i—t (B [T - u ),
64) ul®(z) = 2([ iEd / La(z - y)¢'(y)d’y,
Where

(05)T.(e) = Vola), Tla) = Vylz) O +XVTVx(a), %= —4—(—1-1_—5),
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1 1 .
and ¢ = h *+ ———, x = h* —]|z| are respectively the harmonic (Newtonian) and
4r|x| 4x -

the biharmonic potentials for a single sphere of radius a, located at the origin.

Obviously, the kernel T',(2) in (6.3) is proportional to the disturbance of the
displacement field in an unbounded elastic matrix (of moduli k,, and g,,), intro-
duced by a single spherical inhomogeneity (of moduli k; and p;), when the strain
tensor at infinity is spherical (cf. [14]). This means that in the latter case the
class of trial fields (4.1) is just the superposition of such disturbances, multiplied
by an adjustable scalar parameter, over the set of spheres in the dispersion. There-
fore the BM-bound (4.2a) on the butk modulus %*, which corresponds to the class
(4.1), coincides with the first-order cluster bound in the sense of Torquato [15] —
a conclusion fully similar to that, already reached in [5] for the scalar conductivity
case.

The situation with the displacement field u(®!(x) is a bit more involved.
Recalling again the Eshelby result [14], one can easily notice that u(®')(z) is pro-
portional to the disturbance of the displacement field in an unbounded matrix with
shear modulus u,, and the Poisson ratio 7, introduced by a single spherical inhomo-
geneity with elastic moduli k,, and g,,, when deviatoric strain is applied at infinity.
Thus the MC-bound (5.1a) represents a first-order cluster bound in the sense that
the field (3.4) is proportional to the distutbance, generated by a single spherical
inhomogeneity. Strictly speaking, however, it is not a cluster bound in the sense
of Torquato [15], because the field u(®')(z) is not the single-sphere disturbance,
generated in the matrix material with the moduli k., and py,, i.e. with the Poisson
ratio v,,. The reason is that ¥ # vy, and thus 3 # 3, as well. It could be easily
seen, however, that 7—v,, = O(¢) and thus 3 — s, = O(c) as well. That is why the
kernel E4 : Tg(z) in (6.4) is proportional, to the order O(c), to the single-sphere
disturbance in the matrix material. This fact, as we shall see in the following sec.
8, suffices to claim that the MC-bounds together with the BM-ones are optimal to
the order ¢? for the random dispersions under study.

A GENERALIZATION OF THE McCOY BOUNDS
The very form (3.4) of the field u{®!)(z) hints the following idea. Consider

the class of trial displacements

1

Amlx — y| o1

(7.1) » -u(z):Ed‘:r.—f-Ed:/{al-V

: 1
+agvvvalw - yl} I'(y)d°y,

where "E; is deviatoric and o, as are two adjustable scalar paraméters, The
minimization of the energy functional (2.6) with respect to ay and a3 brings forth a
certain upper bound fiprc on the'effective shear modulus p* of the random medium.
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This bound could be called generalized M C-bound. Obv1ously, the
latter coincides with the upper MC-bound, fisrc = pmc, if

alzmn

mln
Qg

(7.2) Amin = = 7,
where o™, a'z"i" are respectively the values of the parameters «; and a, that
minimize the functional (2.6) in the class (7.1), & is defined in (3.5).

As a matter of fact, the class of trial fields (7.1) has been introduced by Milton
and Phan-Thien [12], sec. 5a, who considered two-phase random media of periodic
internal constitution and.employed the Fourier transform of the fields from the class
(7.1).

Let the medium be a random dispersion of spheres. On making transition to
the random density field ¢(=), cf. (6.1), we recast the trial fields (7.1) as

(7.3) w(z)=Eq-2+Eq: / {Velz - y) O T

+mVVVX(z -y () dy.

Using once more the arguments from sec. 6, we note that fiprc resembles again
the cluster bound of Torquato, because the best kernel in the integral of (7.3) is
proportional to the field

(7.4) Ey: {Vo(x —y) © I+ Anin VVVx(z — )},

with Aqn, defined in (7.2). In turn, the field (7.4) is proportional to the single-
sphere disturbance with the deviatoric strain E 4, acting at infinity. However, this:
disturbance could exist in an elastic matrix material only if —0.5 < Apin £ —0.25,
because the Poisson ratio v € (0, 0.5).

A detailed study with many examples and figures, concerning the Beran-
Molyneux, McCoy, generalized McCoy and other new and more restrictive boupds
(of fourth-order) on the effective moduli of random elastic media is performed in the
above mentioned paper [12], to which we refer the reader for further information.
We shall turn now to the problem of optimality of the aforementioned bounds for
random dispersions of spheres and their explicit evaluation to the order c2.

THE OPTIMAL THIRD-ORDER BOUNDS ON THE ELASTIC MODULI

At mentioned in sec. 2, the optimal third-order bounds on the effective elastic
moduli could be obtained by solving the Euler-Lagrange equation (2.8). The fore-
going Ritz-type bounds will be optimal if the respective kernels satisfy eqn (2.8).
The scalar conductivity arguments, presented in [1], can be easily extended to the
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elastic case as well, so that we could claim that the Beran-Molyneux, the McCoy
and the generalized McCoy bounds are not the optimal third-order bounds.

To show however that the said bounds are optimal to the order ¢? for a disper-
sion of spheres, we shall use again the scheme of arguments of {1]. The arguments
for the moment hold for anisotropic constituents with tensors of elastic moduli Ly
(for the matrix) and L (for the filler particles). Let

(8.1) T(z) = T(x;n) = To(x) + nTi(x) + n*Ta(x) + -

be the virial expansion of the optimal kernel T'(z). We have to underline that it
depends on the number density of the spheres n.

Let us insert (8.1) into the functional (2.6), restricted over the class of trial
fields (2.7), and expand the result in powers of n:

(82) WIT() = E:(L): E+nWi([To()] + n*WalTo(), Ti()]+ ofn?).

The functionals W, and W> depend on the indicated’ virial coefficients as fol-
lows:

(8.3) )= [a0(@) Lol

+ [ h@)eo(z) + 2B) s (2] colaie;

(8.4) WQ[TO(‘_)y T1(:)] = WalTo(4)]

+2 /{eo(z) L, + h(z)[so(;) +E :[L]} Ce(2)d3x;

(8.5) Wo[To(-)] = Va/eo(z) ar :gotz)d:’z
- ] /50(‘c — 1) : Lo €0(® — y5) Ro(y, - yz)d_3yld3y2

- / / h(z - y1)Ro(y; — ¥2)[2E + 2e0(= ~ ;) +o(T — 3,))

(L) s eof® ~ yu)dy Py,
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When deriving (8.3) — (8.5), the well-known formulas for the moments of the
random density field (z), correct to the order n?, are used, namely

(¥(y)) = n, (W(y)¥(y2)) = né(y, ~— 1) + "290(!11 - yg) + 0("2),

(8.6) . (¢(y‘1)¢(y2)¢(y3)) =né(y, — ¥1)8(ys — ¥1)
+3n%{6(y, — ¥2)90(y3 — ya)}s + o(n?).

Here g is the zero-density limit of the two-point probability density function for
the random set z; of sphere centers, {-}, denotes symmetrization with respect to
all different combination of the indices in the braces, Ro(y) = 1 — go(y), f. [4, 16},

1 ,
also g;(z) = §(VT,- +T;V)fori=0,1,[L] = Ly — L.
The minimizing kernel satisfies the equation 6W = 0, so that we have in

particular §W,[To(-)] = 0, §W3[To(-), T1(-)} = 0. The first of these equations
yields straightforwardly

8.7) VAL + [EIR@)E + cof@)]} = 0,

~ which is just the equation for the disturbance in the displacement field in an un-
bounded matrix of moduli L,,, introduced by a single spherical inhomogeneity of
moduli Ly, when the strain at infinity is E. The functional W, is then independent
of T1(x) (see (8.5), (8.7)): '

. - WalTo(), T1(-)]) = Wa[To()].

This means that for the bounds to be optimal to the order c¢? it suffices the zero-
order coefficient T'o(2) in (8.1) to be proportional to the single-sphere disturbance
field — the solution of eqn (8.7). (Obviously, this conclusion holds also for dis-
persions of identical and identically oriented inclusions, randomly and nonoverlap-
pingly distributed in a matrix.) Since the first-order perturbation kernels in (6.3)
and (6.4) in the isotropic cise either coincide (T',(=)) or coincide to the order O(c)
(Ta(=)), with the spherical and deviatoric parts, respectively, of the single-sphere
disturbance field in the matrix material, we can claim that the BM- and MC-bounds
are c®-optimal. This fact implies, in turn, that the generalized MC-bound ji% (cf.
sec. 6) coincides to the order ¢ with the MC-bound p%,, given in (5.1a):

¥

8.7 - Byrc = pirc + o).

The reason is that when evaluating the bound Jiyrc we employ statistical informa-
tion, given by the two- and three-point moments and thus it cannot be better than
the optimtal third-order bound. The latter, however, coincides to the order ¢? with
the MC-bound g} -
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EVALUATION OF THE BERAN-MOLYNEUX AND THE McCOY BOUNDS
TO ORDER ¢?

In order to obtain the explicit forms of the BM- and the MC-bounds for a
dispersion of spheres to the order ¢?, it suffices to calculate the statistical parameters
A and A; to the same order of accuracy.

To the order n?, ie. ¢2, the three-point correlation function i(z, w) for the
field I(x), see (2.2), has the form

(9.1) i(z, w)=n / h(z)h(z — z)h(w — z)d’=x

, —n? / / h(z — z1)[h(w — z1)h(=x2) + h(w — &2)h(z2)
+h(w — ®3)h(z1)] Ro(x1 —#2)d?z P2y + 0(n?),

ecause I'(x) = z—y z)d°y. On insertin .1) mnto (4.5), we get
b I'(z) = [ h( )¢'()dy. On inserting (9.1) into (4.5)

(9.2a) A= (ag—aic)c+ 0(02),

where

1

(9.2b) ao = V/h(z)V.Vgo(z) : VVp(z)d?z = %,

(9.2¢) e = ———/Fo(:c VV<p(z) VVgo(z)d3
+V2 Ro(zl ~ 22)h(21)VV(x) : VVp(z2)dT1d°x2 = 3~ m,

making use of the well-known propertles of the Newtonian potential (z) for a
sphere. In (9.2¢)

Fy(z) = /h(z - y)Ro(y)d>y,

and

it /\2. .
(9.3) my = 2/ mgo(Aa)dA, A=r/a,
2 N
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is the statistical parameter for the dispersion, which appears in the Beran bounds
on the effective conductivity of the dispersion.
The relations (9.2) can be summarized as follows

(9.4) A= —;—[1 — (5 - 3ma)clc + o(c?),

and thus the first two coefﬁéients in the virial expansion of the statistical parameter
A, defined in (4.5), are calculated for the dispersion under study.
It is worth mentioning that if we insert (9.4) into (4.11), we shall obtain

(9.5) b= gmgc + of¢),

.so that the statistical parameter (9.3) appears to be proportional to the coefficient
of the leading c-term in the virial expansion of the Milton parameter (4.8) for the
dispersion. .

The c2-evaluation of the statistical parameter A, defined in (5.4), is similar.
We have

(9.6a) Ay = (bo — bic)e + o(c?).

On introducing (9.1) into (5.4), we get

1
4V,

(9.6b) b= / h(z)VVVVx(z) » VYV x(2)dPz = %

- availing of the well-known properties of the biharmonic potential A(z) for a sphere.
In turn, after simple algebra, we find

(9.6¢) by =

= 4—‘-/0—2 {/ Fo(2)VVVVx(z) e VVVVx(z)d’x

] .
+§;/Fo(z1 — T2)h(x1)VVVV|zs] oVVVVx(zl)dSzldsmz} = g - my,

where

~ 0 TFr)(a* 22 1
(97 , "'gzﬁ/ ol il A




is a new statistical parameter for the di'spersio_n, similar to ms.

Since the function Fj(z) depends linearly on go(r), the parameter m/, will be
also a linear functional of go(r). Its explicit form could be derived by using the
method of [4, sec. 11}, by means of which the relation (9.3) was reached The final
result reads

0/(/\a)d/\, A=r/a.

6 [ A2(5A8 — 30/\6+51/\4——4/\2+2)
/
(9-8) y = / —1)7

Note that in the so-calied well-stirred case, for which go(r) = g(r) = 1 if
r 2 2a, and vanishes otherwise, we have

(9.9) my = 15_8 - %1113 ~0.14045,  m} ~ 0.25016.

The relations (9.6) can be now summarized as follows
) 1 / 2
(9.10) Ay = -5—[1 — (7 = 5m3)cle + o(c ),

which is the counterpart of (5.3). In turn, for the second Milton parameter 7,
defined in (5.5), we obtain .’ :

(9.11) = §M26+ o(c), M, = 4m — 3ma,

as a consequence of (5.6) and (9.10). C
Note that the inequality (5.8) together with (9.5) and (9.11) yields

msa.

912) | - m

1A
-3 >

A simple inspection of the kernels in the integral ‘representaiions (9-3) and
(9.11) for the statistical parameters my and m) shows that the stronger inequality

(9.13) my

1AV
o o

ma

holds for dispersions of nonoverlapping spheres, since go(r) is nonnegative. More-
over, the inequality {9.13) is the best in the sense that the constant 6/5 cannet be
made bigger. This fact implies that the equality in (9.12) is never realizable for
dispersions, so that the équality in the Phan-Thien-Milton inequality (5.8) is never
attainable whatever be the random distribution of the spheres.
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Let

klt
km

be the virial expansion for the effective bulk modulus of the dispersion. Making
use of eqns (4.4), (4.5) and (9.3), we get as a consequence of the BM-bounds (4.2)

(914) = 1+alkc+a2kc2+...

[k} 3km

(915) a1 = E Om = m,

m + anlk}’

so that the upper and lower BM-bounds coincide to the order ¢ and for ‘the c-
coefficient the following inequalities hold

(9.16a) ay < aze < af,
(9.16b)  dy = apad {1 + 20, Al mg} ,
Bekm '

a;,k = amalk {1 + 2o, -l[cﬂmz}

where m; is the statistical parameter (9.3)..
" Let

(9.17) ‘ #' =1+a1,,c+a2,,c2;4—
B

be the virial expansion for the eﬁective shear modulus of the dispersion. Making
use of eqns (5.2), (5.3) and (9.10), we get as a consequence of the MC-bounds (5.1)

A _ 6(km +2pm)
(918) Hp = Hm + ﬂm [/1]’ ﬂm B 5(3km + 4/‘m),

so that the upper and lower MC-bounds, similarly to the BM-ones, coincide to the
order c. For the c?-coefficient as, we get the inequalities

(9.19a) . o abh, < ag, S af,,
where
(9.19b) —ﬁmal,‘{1\+f( )___[{cl my + x I[f‘f]},

ah, = amal, {1+ f(vm) [ ] 2t X,‘,D‘l,,]j}
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with the notations

3(1 = 2u,,)?

1= om)d =)’

3mh + (Tv? - 10v,, + V)my
A0 o)A —50m)

(9.19¢) f(vm) =

X = X(Vﬂh ma, m,2) =

“where v,, is the Poisson ratio of the matrix. : :
The c%-bounds (9.16) and (9.19) on the effective elastic moduli of a random
dispersion of spheres have been reported in [17], using slightly different notations.
In the case of an incompressible matrix, v, = 0.5, the bounds (9.19) are
significantly simplified

om () (o ).

o3 () (1+ )

The c-bounds on p* in this case depend on a single statistical parameter
M, = 4mj — 3my — the same that appeared in the c-term of the virial expansion
(9.11) of the second Milton parameter 7;. The situation is thus fully similar to that
.. for the c2-bounds on the effective conductivity, considered in detail in [4], with the
only difference that a new statistical parameter appears.

Let us assume that the spheres are rigid, so that u; = co as well. The upper
bound (9.19) then degenerates since M2 > 0, cf. (9.13), and thus

1
(9.21) ' | g (1 + 51\12) < g < 0, o

~We can conclude from (9.21) that the value 2.5 for ay, is never attainable for -
dispersions with incompressible constituents. For a well-stirred dlspersmn we get,
moreover, that 3.2241< as, < 00, in virtue of (9.9).

-

SOME IMPLICATIONS OF THE ¢*-BOUNDS

The foregoing c*-bounds (9.16) and (9.19) are third-order also in the sense that
they coincide for a weakly inhomogeneous dispersion to the order ([k]/km )P ([1]/1m)?,
p+ ¢ = 3. For instance, for the bounds (9.16) on the bulk modulus we have

(10.1) azk—amalk{l-k?am%m }+0((1[:1) l[:]:)
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In turn, the bounds (9.19) coincide to the order ([u]/um)3. These facts allow to
check on the applicability of the known theories in mechanics of composite media
for the case of random dispersions of spheres, making use of the method, proposed
in [4, p. II], when studying effective scalar conductivity. The basic idea of the
method is to consider the formulae for the effective propesties, predicted by some
of these theories, to the order ¢* and in the limiting case of a weakly inhomogeneous
medium, and to compare the results with the relations of the type of (10.1): In this
way the values of the statistical parameters m2 and m), which correspond to the
‘theory under examination, could be ‘obtained. To illustrate the method we shall
consider here only two examples: the well-known self-consistent theory of elastic
composites, due to Hill [18] and Budiansky [19], and the approximate c2-theory of
random elastic cispersion, due to Willis and Acton [20].

10.1. The self-consistent theory ot random dispersions is based on the
assumption that each sphere is embedded in an unboiinded matrix material that
possesses the unknown effective moduli &*, p*, see for more details [19, 20]. This
assumption eventually yields the following system for the moduli k* and p*: °

. [k]k*c
10.2a k* =km ’
( ﬂ) +k*+a*(kj—k*)
. (pp~e
K = lm + " " o
H A B (py - )
where
. 3k 6(k*+2”*)
10.2b A Y L
(10.2b) * T 5(3% + 4p7)
Let
k= ) .
(10.3) ‘ - =14 apc+ anc*+ -,
:j :1+al[lc+d2ﬂc2’+

~be the virial expansions of the solution k* = k*(c), u* = p*(c) of the system (10.2)
at ¢ < 1. It is easily seen that the c-coefficients ai; and gy in (10.3) coincide with
those,.given in (9.14) and (9.17) respectively. In the case of incompressible spheres,
ky = oc. we get the following expression for as;:- '

4 [p] }

(10.4) ‘ | Aop = (v ey, {l + -
th -5(Ymkm(ﬂm + ﬂm[/‘])

which meets the bounds (9.1()')tonly if
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(10.5) my =mi° ="

wl N

This value of ma may be also obtained by comparing (10.1) and (10.4) in the
weakly inhomogeneous case [u]/pm < 1. It is noteworthy that the same value (10.5)
for my has been found in [4] when analyzing the applicability of the self-consistent
theory of effective scalar conductivity for random dispersions.

Suppose that the matrix is also incompressible, k,, = 0o, so that k* = co as
well. The second equation (10.2a) then simplifies and one easily obtains

),

2
(106) 02" = 5111“ (1 + 3“m + 2“.{

= 2at, (14 20) + o(@asum®)

Having compared (10.6) and (9.18), and taking into account (10.5), we get the

value of the second statistical parameter m), corresponding to the self-consistent - -

theory, to be

10.7) | = =

However, the values (10.5) and (10.7) of the parameters m, and m/, respec-
tively do not satisfy the inequality (9.13), which should hold. for any dispersion
of nonoverlapping spheres. We therefore conclude that the predictions of the self-
consistent theory, eqns (10.2), are not applicable in general to such dispersions even
to the order ¢?, whatever be the random distribution of the spheres.

10.2. The approximate c>-theory of Willis and Acton. In the theory of
Willis and Acton [20] the effective elastic moduli of the dispersion are expressed in
terms of the solution of an integral equation for the so-called polarization
field. It is proposed that the equation be solved by iterations and the first
two such iterations are analytically found, yielding approximate formulas for the
¢2-coefficients a1 and ay, of the virial expansions (9.14) and (9.17) of the effective
moduli £* and p* respectively.

The formula for as; of the said authors, in our notations, reads (cf [20], eqn

(5. 20)):

o, (4] bm
(10.8) a2k = Amajy {1 + 5A Em m}

where
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: v T Aa
(10.9) A= 3/-""(“ Jax
2

is the statistical parameter introduced in [20, eqn (5.18)] and denoted there by A.
(In the well-stirred case A = 1/8.) The expression (10.8) meets the bounds (9.16)
only if

(1010) mg = =A.

A simple inspection of the kernels'in the integral representations (9.3) and
(10.9) for the parameters my and A, respectively, shows that

(10.11)  * my > %A,

since go(r) > 0. This means that the c2- approximation (10.8) for az; violates the
bounds (9.16) whatever be the function go(r).

For incompressible constituents, kn, = ky = oo, the approximate formula of
Willis and Acton for asg is (cf. [20], eqn (6.1)):

2, 4] ’ _ 5[
10.12 = - 15A ———
(10.12) - aze = 5a1" {1 i 3pm + 2py } Lo feT Spim + 3im + 205

When compared to (9.20), eqn (10.12) yields

(10.13) 6A = 4mn - 3m2,

which is violated for the well-stirred dispersion, cf. (9.9). Unlike the case of bulk
modulus there exist, however, random constitutions, i.e. functions go(r), for which

(10.13) holds.

CONCLUDING REMARKS

The method of truncated functional series [4] has been systematically applied
in this paper, in order to investigate certain third-order bounds on the effective
elastic’ properties of two-phase random media, i.e. bounds that employ statisti-
cal information, given by the two- and three-point correlation functions. In this
way we were, first, able to unify the existing bounding procedures, due to Beran
and Molyneux and McCoy, as certain Ritz-type procedures, corresponding to the
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choice of the respective perturbation kernels in the one-tuple term of the trun-
cated functional series. Second, and more important, we were led to the problem
of optimality of the bounds, due to the mentioned authors, in the sense whether
the bounds are the most respective ones under the statistical information, used in
their evaluation. The answer appears negative even. for the classical example of a
random dispersion of nonoverlapping spheres. However, the bounds in the latter
case are optimal to the order ¢?, similarly to the scalar conductivity case. The
explicit evaluation of the said bounds to the order ¢? leads to the appearance of
two statistical parameters, which linearly depend on the zero-density limit of the
radial distribution function for the random set of sphere centers. The parameters
are closely related to the coefficients of the leading c-terms of the Milton parameters
(2 and 7, for the dispersion. This fact indicates once more the importance of the
Milton parameters in the theory of two-phase random media. Similarly to [4], the
obtained ¢?-bounds allow to check on the applicability of certain heuristic theories
in elasticity of composite materials for random dispersions of spheres. The most
curious result of such a check here is that the well-known self-consistent theory,
due to Hill and Budiansky, is not applicable to random dispersion even to the order
¢, because its predictions violate the respective bounds whatever be the random
distribution of the spheres.
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NEWTONIAN AND EULERIAN DYNAMICAL AXIOMS
1Il. THE AXIOMS ‘

GEORGI CHOBANOGOV, IVAN CHOBANOV

Expressum facit cessare tacitum

Teopeu Yobanoe, Hean Yobanoe. INHAMNYECKNE AKCUOMBI HbBIOTO-
HA U SHJIEPA. IIl. AKCUOMBI. ‘

DTa pabora ABNAETCA TpeThel YACTBIO CePUM MCCAENOBAHMA NOA OBIMUM HaHMe-
HoBauueM Jlunamusecxue axcuomsl Hvromona u Dilaepa, nepsuie ABe YacTH KOTOpOH
onyGaukoBanst B 79-Tom ToMe sToro Eocezoonuxa 1985 r. (kuura 2 — Mezanuxa).
lleanio -aTol cepum ABAAeTCA MccAeNOBaNMEe POiM AMHAMHYECKMX akcuoMm HbloToHa
¥ Difdepa B Hpollecce JOTMYECKOi KOHCOJMAAIMHM MaTeMATHYECKUX OCHOB AMHAMUKH
MacCOBBIX TOYEK M TBEDABIX Tell, a Tak:ke TOUYHOIO MECTa, KOTOpOe 3TH (YHIAMEH-
TafibHbIe IMHaMHUYeCKHe NMOCTYHaThl 3aHMMAIOT B CHCTEME AHAIMTHUECKON MEXaHMKH.
B sToM cMbiciie BOnpocHas cepus NPeACTaBIAET NPUHOC K PELIEHHIO liecTol npobieme
I'manBepTa OTHOCHTENBHO aKCHOMATHYECKOTO NOCTPOEHUA aHAAMTHUECKOH MEXaHHKH.
Cuennansioe BHuManue oOpallleHO HOHATHIO HHEPUHAJLHOCTH TBEPAHIX CHUCTEM OTCYe-
Ta Kak coriacHo Hrpjorona, tax u Ditnepa (npeanoxenua 11 - 13), ocoBenHo B Cayuae
JUHAMUKM MACCOBBIX TOUYEK H TBepABIX Ted C NMPOMEHJHUBBHIMU MaCCaMH. "

Georgi Chobanov, Ivan Chobanov. NEWTONIAN AND EULERIAN DYNAMICAL
AXIOMS. III. THE AXIOMS.

This paper is the third part of a series of studies under the general title Newtonian and
Eulerian dynamical azioms, the first two parts of which have been published in the 79th
volume of this Annualfor 1985 (book 2 — Mechanics). The aim of the series is to examine
the role of the Newtonian and Eulerian dynamical axioms in the process of the logical
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consolidation of the mathematical foundations of mass-point and rigid body dynamics, as
well as the exact place these basic dynamical postulates take up in the edifice of the science
analytical mechanics. In such a sense the series in question represents a contribution to the
solution of Hilbert’s sixth problem concerning the axiomatical construction of analytical
mechanics. Special attention is paid to the notion of inertiality of rigid systems of reference
- according to both Newton and Euler (Pr 11 - Pr 13), particularly in the case of dynamics
of mass-points and rigid bodies with variable masses.

This paper is the third part of a series of studies under the general title New-
- tonian and Eulerian dynamical azioms, the first two parts of which have been
published in the 79th volume of this Annual for 1985 (book 2 — Mechanics). The
aim of the series is to examine the role the Newtonian and Eulerian dynamical
axioms play in the process of the logical consolidation of the mathematical founda-
tions of mass-point and rigid body dynamics, as well as the exact place these basic
dynamical postulates take up in the edifice of the science analytical mechanics.
This may be accomplished by a thorough analysis of all the aspects of Newtonian
and Eulerian dynamical axioms. In such a sense the series in question represents a
contribution to the solution of Hilbert’s sixth problem concerning the axiomatical
construction of analytical mechanics. -

The Newtonian and Eulerian dynamical axioms have a crucial role in the
historical development of analytical dynamics. As a matter of fact, the mass-
point dynamics has been borne in 1687 with the publication of Newton’s famous
Philosophiae Naturalis Principia Mathematice; and the rigid body dynamics — in
1775, when Euler wrote his Nova methodus motum corporum rigidorum determi-
nandi, a work unfortunately still obscure even among professional mechanicians.
That is why in the first part of the series a historical review has been proposed on
the meanders that analytical mechanics was destined to wandér about before the
laws or principles of momentum and of moment of momentum of mass-pomts and
rigid bodies have been discovered.

In the second part a review has been proposed on the manner these fundamen-
tal dynamical laws are represented (or sooner mlsrepresented) in the tra.dmonal
literary sources on analytical dynamics.

The present third part is dealing with the axioms themselves. It contains strict
mathematical formulations of these axioms along with several preliminary defini-
tions of mechanical entities, thérein involved; and some immediate but important
corollaries. .

Sch 1. For the sake of brevity the symbols Sgn, sgn:, Ax, Df, Pr, Dm, and Sch
replace the words notation, denotes by definttion, aziom, dcﬁmtzon proposilion,
proof, and scholium respectively, and the letters, R and C are reserved for the
fields of all real and all complex numbers respectively.”

" Sch 2. The bibliography of all three parts of the series has a umﬁed numera-
tion. .

Sch 3. Numbers in brevier refer to the Appendiz in the end of the article.

Sch 4. Quotations from the Appendir are made in the following manner: rela-
tion (17) and proposition 19 therein are cited simply as (17) and Pr 19 respectively
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in the Appendiz itself, but as App(17) and AppPr 19 reepectively elsewhere.

Sch 5. Similarly, relation (17) and proposition 19 from the main tezt of this
paper are cited simply as (17) and Pr 19 respectively in the main text itself, but
as M(17) and M Pr 19 respectively in the Appendiz.

The whole of mass-point dynamics is based upon, and is developed from, the
following two postulates.

Ax 1 N (fisrt Newlonian dynamical®arioms, alias law or principle of mo-
mentim of mass-poini). There exists such a rigid system of reference S that, all
derivatives being taken with respect to S, for any mass-point P and for any system
of forces F acting on P, the derivative with respect to the time of the momentum

of P equals the basis of F

Df 1 N. Any system of reference; satisfying Ax 1 N, is called inertial according
to Newton.

Ax 2 N (second Newtonian dynamical aziom, alias law or principle of moment
of momentum (kinetical moment) of a mass-point). If S i is an inertial according to
‘Newton system of reference and all derivatives are taken with respect to S, then
for any mass-point P and for any system of forces F acting on P, the derivative

with respect to the time of the moment of momentum of P equals the moment of
F both moments being taken with respect to the origin of S.

The whole of rigid body dynamics is based upon, and is developed from, the
following two postulates.

Ax 1 E (first Eulerian dynamicel aziom, alias law or principle of momentum
of rigid body). There exists such a rigid system of reference S that, all derivatives
- being taken with respect to S, for any rigid body B and for any system of forces
F acting on B, the denvatlve with respect to the time of the:momentum of B

equals the basis of F

Df 1 E. Any system of reference satisfying Ax 1 E is called mertml accordmg
to EuIer

Ax 2 E (second Eulerian dynamical ariom, alias law or principle of moment
of momentum (kinetical moment) of rigid body). If S is an inertial according to
Euler system of reference and all derivatives are taken with respect to S, then for
any rigid body B and for any system of forces F acting on B, the derivative with

respect to the time of the moment of momentum of B equals the moment of F

both moments being taken with respect to the origin of S.

Sch 6. These formulations of the Newtonian and Eulerian dynamical axioms
may be found nowhere in the current literature on analytical dynamics of mass-
points and rigid bodies. Instead, amorphous redactions of imitations of Ax 1 N
and possibly of Ax 1 E are proposed to the reader, the role of the inertial systems
of reference atcording to Newton, as well as to Euler, being as a rule completely
economized if not surpressed. As regards Ax 2 N'and Ax 2 E, in the traditional
literature on analytical dynamics these dynamical suppositions or hypotheses are
taken down from their logical pedestal of dynamical axioms to the unenviable level
of theorems, being labelled “the theorem of kinetical moment” of mass-points and of
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rigid bodies respectively. Moreover, even Ax 1 E is called, by some authors at least,
“the theorem of momentum” of rigid bodies, with the claim that it is derivable from
Ax 1 N. This is a most unpardonable logical error rooted in a deep ignorance of the
real state of affairs in analytical mechanics, at least as far as its logical foundations
are concerned. It is a topic we shall discuss at length subsequently.

Sch 7. For the time being we confine ourselves to the most categorical decla-
ration that Ax 1 N, Ax 2 N, as well as Ax 1 E, Ax 2 E, are unprovable mathematical
statements, as unprovable at least, as for instance Euclid’s fifth postulate or Pascal’s
principle of mathematical induction are.

Sch 8.-One of the aspects of these realities lies in the fact that the Newtonian
and the Eulerian axioms involve mechanical terms which are unsusceptible to ex-
* plicit mathematical definitions. Since this mathematical phenomenon is one of the
most important, let us sumbit it to a closer analysis.

The meaning of both Newtonian and Eulerian dynamical axioms is out of reach
unless and until the meaning of any term these verbal propositions involve is made
clear. These terms are: system of reference, rigid system of reference, derivative of
a vector function with respect to a system of reference, mass-point and rigid body,
momentum and moment of momentum (kinetical moment) of a mass-point and a
rigid body, system of forces, basts and moment of a system of forces with respect
to a given point (pole), origin of a system of reference, time, and acting (a system
of forces is “acting” on a mass-point and a rigid body). If all these terms were
susceptible to explicit mathematical definitions, then the Newtonian and Eulerian
dynamical axioms would turn out to be (true or false) mathematical theorems.

‘And if not?

The answer of this question, as regards more elementary mathematical theo-
ries than analytical mechanics (as, for instance, arithmetic and Euclidean geome-
tty), was known to nobody until the end of the last century'. According to the
proclaimed in 1899 Hilbert’s aziomatical principle, a system of axioms for a math-
ematical theory must unconditionally include a certain number of void of explicit
- definitions terms of this theory. Now all the terms, numbered above and involved in
Ax 1N, Ax2 N and Ax 1 E, Ax 2 E, are susceptible to strict explicit mathematical
definitions with the only exception of the last two ones, namely time and acting.
Those are primary notions of the mathematical theory called analytical mechanics,
and they are defined implicitly namely by the aid of Ax 1 N, Ax 2 N and Ax 1 E, Ax
2 E (along with other mechanical axioms which will not be formulated manifestly
here for the time being). At that, the term time is a primary notion-object® and
the term acting is a primary notion-relation®.

Sch 9. Ax 1 N.and Ax 1 E are ezistance statements. Any of them asserts that
there exists one at least system of reference with certain properties, and Df 1 N,
Df 1 E give special appelations of these kinds of systems of reference.

There is a definite lack of informationin Ax 1 N, Ax2 N and Ax1E, Ax2E,
however. Indeed, if a particular system of reference S is given, then neither Ax 1
N, Ax 2 N nor Ax 1 E, Ax 2 E give any passibility to decide whethet S is inertial
according to Newton or according to Euler respectively. This is a question that will
be discussed in detail below.
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Sch 10. There is also a lack of distinctness about the relation between iner-
tialities according to Newton and according to Euler. In other words, 6n the basis
of Ax 1 N, Ax 2 N and Ax 1 E, Ax 2 E only, one cannot answer the question
whether there exists one at least inertial according to Newton system of reference
which is, or is not, inertial according to Euler too. Alias, Ax 1 N, Ax 2 N and Ax
1 E, Ax 2 E are tolerant to any of these alternatives.

Sch 11. A mere glance at the Newtonian and Eulerian dynamlcal axioms
displays at once that the notions of mass-poini and of rigid body play a central role
among all other notions these axioms involve. Their role is comparable to that the
notion of integral plays in mathematical analysis. As well as it is impossible to
build-up a logically irreproachable mathematical analysis without a strict math-
ematical definition of the term intégral, it is not lesser impossible to construct a
logically unimpeachable analytical mechamcs without strict mathematlcal defini-
tions of the terms mass-point and rigid body® -

Sch 12. A last general remark concerning the Newtonian and Eulerian dy-
namical axioms affects the striking similitude, the complete analogy between Ax
1 N, Ax 2 N, on the one hand, and Ax 1 E, Ax 2 E respectively, on the other
hand. No great perspicacity is needed, indeed, to see that it is quite sufficient to
substitude the term rigid body for the term mass-point in Ax 1 N, Ax 2 N in order
to obtain automatically Ax 1 E, Ax 2 E respectively.

This formal resemblance between the Newtonian and the Eulerian dynamical
axioms quite naturally brings forward the question: was there as much marifet
needed, factually, as to ascribe Euler’s name to the laws of momentum and of
moment of momentum of rigid bodies? After all, once disposing with Ax 1 N and
Ax 2 N, is it not a trivial whim to substitute in them the word mass-point by rigid
body in order to obtain Ax 1 E and Ax 2 E respectively? Is there a great merit in
such a procedure jn order to perpetuate someone’s name?$

“Such an attitude toward the Eulerian dynamical axioms may be evinced only
by someone who is entirely ignorant of the very essence of rigid body dynamics.
Cum grano salis, to support such an outlook is as unwise as to uphold that a woman
may be created out of a man by a mere substitution of the pronoun she for he.

Sch 13. First of all, neither Newton nor Euler have had the slightest idea
of the above formulations of their dynamical laws?. Those are formulations that
only modern mathematics could propose: it is hardly accidental that, as already
underlined, they are nowhere to be seen even in the current mechanical literature.
Euler did not dispose of Ax 1 N and Ax 2 N in order to substitute in them rigid body
- for mass-point and to obtain, in such a parrot way, Ax 1 E and Ax 2 E respectively.

Sch 14. The most that Euler took from Newton’s Principia was Lex 1II.
Besides, Euler did never have the slighitest idea that Ax 1 E and Ax 2 E are beyond
proof. A son of his epoch, he believed he had proved them. He never understood
that his “demonstrationes” are, at the best, only plaustble inferences. The nature of
his reasonings is bordering on physical intuition. In his arguments, let us emphasize
that once more, Newton’s Lex II has played a most essential role.

All these circumstances being bien entendu, let us at last give a formal mathe-
matical redaction of the Newtonian and Eulerian dynamical axioms, together with

+
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some immediate corollaries.
V denoting the real standard vector space®, a mass-point P is defined as an
ordered pair (r, m) of a vector function®

8] o | ‘r:R-——>V

(the radius-vector of P) and a scalar function

@ | " m:R—R - . (0 <m{t), t€R)

(the mass of P). Under these notations it is written P(r, m).

Let Ozyz be a right-hand orientated orthonormal Cartesian system of reference*
and let %, j, k be the #nil vectors of the axes Oz, Oy, Oz respectively. If P(r,
m) is a mass-point, its radius-vector (1) being taken with respect to O, then the
derivative

Q

(3‘) v sgn: Z—: =r

of r with respect}! to Ozyz is called the velocity of P with respect to Ozyz.
The quantity

4 " ksgn: mv

¥

is called the momentum of P with respect to Ozyz, and the quantity

- (5) , Isgn: r x mv

is calléd the moment of momentum (kinetical moment) of P with respect to Ozy:.
Let now P be under the action of the system

(6) Esgn: {F.}=
of forces '
(N : : F,sgn: (F,, M,) C (v=1,..., n),

where by definition
(8) F,=M,=0 (1sv<n)

70



or otherwise

©) F,#0, F,M,=0, (1Svn),

all moments M, (v =1,..., n) being taken with respact to O.
For the sake of brevity let

n n
(10) F sgn : ZF,,, M sgn : ZM,,

v=1 v=1

be the basis and the moment (with respect to O) of (6) respectively.

If the system of reference Ozyz is, by hypothesis, inertial according to Newton,
then the mathematical expressions of Newton’s dynamical axioms Ax 1 N and Ax
2 N are .

(11) %(mv) =F
and \
(12) | - Edt—(r x mv) = M

respectively, the derivatives in the left-hand sides of (11) and (12) being taken with
respect to Ozyz.
Using the abbreviated notations (4), (5), instead of (11) and (12) one can write

(13) ‘ k-F=o0
and ‘ | |
a9 M=o
respectively.

While the notion of mass-point is a most simple one, the notion of rigid body
is, on the contrary, a most complicated one. We are,devoid of the opportunity of
entering here in any details in this connection and we are compelled to refer the
reader to the articles [44, 87 ~ 89]. Still some explications are impreventable with
a view to better comprehension of the exposition. .

Let B be a rigid body and P be any of its points. If » = OP, then (3) defines
the velocity of P with respect to Ozyz. The definition of B requires the prescription
of a function

(15) x: V—]0, co)

N
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(denstty of B at r). If di denotes an element of arc, area, or volume of B, according
to the dimensions of B (1-dimensional, 2-dimensional, or 3-dimensional rigid body
respectively!?), then the differential

(16) dm = se(r)dp

is called the element of mass (mass-element, elementary mass) of B at r.
Extremely important for rigid body dynamics are the following kinetical quan-
tities:

{17) m sgn : / dm

(mass of B),

(18) - _ TG Sgn : —l—/rdm
m

(radius-vector with reépect to O of the mass-center G of B),

19 : K sgn: /vdm

(momentum of B with respect to Ozyz), and

(20) Lsgn: /r x vdm

(moment of momentum, alias kinetical moment, of B with respect to Ozyz).

It is seen that while the mass of a rigid. body is invariant with respect to the
chosen system of reference, all the other three quantities (18) ~ (20) are not. At
that, all integrals in the right-hand sides of (17) — (20) are taken over the occupied
by the rigid body!? space.

, If the rigid body B is under the action of the system (6) of forces (7) with

(8), (9) and the notations (10) are accepted, and if the system of reference Ozyz
" is, by hypothesis, inertial according to Euler, then the mathematical expressions of
Euler’s dynamical axioms Ax 1 E and Ax 2 E are

dt



and

(22) %/rxvdm:M

respectively, the derivatives in the left-hand sides of (21) and (22) being taken with
respect to Ozyz.

Using the abbreviated notations (19), (20), instead of (21) and (22) one can
write

(23) K-F=0
and |

(24) _ - L-M=o0
respectively. ‘

Sch 15. The complete analogy between (23), (24), on the one hand, and (13),
(14) respectively, on the other hand, is obvious. This similitude is only formal
though, as a mere glance at the definitions (4), (5), on the one hand, and (19), (20) .
respectively, on the other hand, at once displays. This juxtaposition throws a new
light on the raised in Sch 12 — Sch 14 question concerning Euler’s, attributions in-
rigid body dynamics, which are now seen in its true colours. ;

The difference between the momenta and the moments of momenta of mass
points, on the one hand, and of rigid bodies, on the other hand, are tremendous
indeed. One should not be deceived by the fact that such radically different math-
ematical objects as (4) and (19), as well as (5) and (20), are called with the same
names. If, as underlined, the analogy between (13) and (23), as well as between
(14) and (24), is perfect, yet one is at a loss to see the nuclei, or the germs, or the
embrios of K and L in k and I respectively, to say nothing about some similarity
whatever. The blind Euler managed to see K and L through k and I respectively,
as well as (21) and (22) through (11) and (12). How did he succeed in doing so?

The only answer we can give is: Frankly, we don’t know.

We have our suspicions, though. They will be exposed somewhat later.

The following three propositions are almost obvious:
Pr 1 N. (11), (12)

(25) : F=0
imply
(26) M =0.

Dm. (11) implies

(27) T X %(mv) =rxF.
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On the other hand, obviously

(28) r X diit-(mv) = gt-(r X mv).

Now (27), (28) imply

d
(29) :E(r xmv)=rxF

and (12), (29), (25) imply (26).
Pr 2 N. (11), (12) imply

(30) FM

i
e

Dm. (12), (29) imply

(31) | o rxF=M
and (31) implies (30).
Pr 3 N. (11), (12) imply
(32) rM =0.
Dm. (31). |

Pr 4 N. If P is a mass-point and F is dsystem of forces acting on P, then

(33) rank F #1

and
(34) o rank F #3.

Dm. If a system of forces F is given, then it gives rise to a mapping

(35) p: V—YV
defined by ' |
-(36) ;1(1') = mom, F

where by definition
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37) mom, F sgn: M+ F xr

—_—

" is the moment of F with respect to v (the r-moment of F ), F and M being, as
until now, the bugand the moment (with respect to o)_c;i' F respectively. The
‘mapping (35), defined by (36), is called the momental field of F. Now the rank
of F (symbolically — rank F ) is defined as the maximal num-b_(;r of the linearly
ind::;endent elements of the ;nTage #(V) of V. According to the rank-theorem [90].

0 if F=0, M =0,
1 if F=0, M #0,
2 if F£0, FM#0,
3 if FM =0.

(38) rank F' =

Now (38), Pr 1 N, Pr 2 N imply (33), (34).
Sch 16. Pr 4 N is very instructive. It manifests prohibitions in mass-point
dynamics. According to it, a mass-point P and a system of forces F acting on P

being given, then necessarily rank F = 0 or rank F =2
Pr 5 N. P being a mass-point under the action of the system of forces F the

latter is equivalent to the zero-force or to a single non-zero force with a dlrectnx :
passing through P.

Dm. Pr 4 N, [90] Pr 2, (31).

Sch 17. A direct, though not purely mathematical, corollary from Pr4 N
consists in the conclusion that the rigid body dynamics cannot be derived from, or
be reduced to, the mass-point one. Indeed, as particular problems of rigid body
dynamics display at once, the systems of acting on rigid Bodies forces may be quite
arbitrary; in particular, their ranks may equal 1 or 3. In other words, the systems of
forces that are warrantable to competition as regards their actions on mass-points
form an inessential part of the set of all systems of admissible to actions on rlgld
bodies forces. Quod erat demonsirandum.

Let us analyse the possibilities of the following alternative for Ax2 N postulate.

Ax 2 N bis. If S is an inertial according to Newton system of reference, then -
for any mass-point P(r, m) and for any system of forces F (F M) acting on P,
the relation (31) holds, both » and M being taken with respect to the origin of S.

The following proposition is almost obvious.

Pr 6 N. The system of axioms Ax 1 N, Ax 2 N and Ax 1 N Ax 2 N bis are
equivalent.

Dm. Ax 1 N and Ax 2 N 1mply Ax 2 N bis (Pr 2 N). Inversely, Ax 1 N and
Ax 2 N bis, alias (11) and (31), imply (12), i.e. Ax 2 N by virtue of (28). -
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Sch 18. It has been mentioned in App 7 that Newton “thought wrongly that”
Ax 2 N “s an immediate corollary from Lex II”, i.e. from Ax 1 N. Now Pr 6 N
displays that this idea of Newton is a half-truth: Ax 2 N is a corollary from Ax 1
N and Ax 2 N bis contunctim rather than from Ax 1 N alone. It is clear that on
the logical background of that epoch Newton’s error is easy to be explained.

Sch 19. It must not be left unobserved that Ax 2 N bis, in its simplest form
at least, is a much 'more natural and intuitively clear proposition than Ax 2 N.
Indeed, Ax 2 N speaks nothing to the physical experience. On the contrary, if the
mass-point P(r, m) is acted on by a single non-zero force -

(39) - F = (F, M),

then Ax 2 N bis simply states that its directrix must unconditionally pass through
P. This supposition is as natural as to seem obvious. No wonder the authors of
text-books on analytical dynaimics never bothered to formulate it expllc1tly

Sch 20. The relation (31) is certainly satisfied in the case

- (40) | rxF, =M, w=1,..., n),

as it is immediately seen by virtue of (10). Since any of the relations (40) represents
(provxded the radius-vector » of P is fluent) the equation of the directrix of the force

F (v =1,..., n) respectively, these relations give expression to the reqmrement
that any of these directrices must pass through the mass-point P. This is what
all physicists bear in mind when asserting that there “would be but a single law
of motion”4. Although physically quite natural, mathematically this requirement
follows from no other hypothesis of mass-pomt dynamlcs and is, consequently, a
new dynamical supposition.’

Being unprovable, it may be raised to the rank of a new dynamlcal axiom,
namély:

Ax 2 N bis bis. Ifa system of forces is acting on a mass-point P, then P
lies on the directrix of any of these forces..

Sch 21. Naturally, it is possible to build a mass-point dynamics founded on
Ax 1 N and Ax 2 N bis bis instead of Ax 1 N and Ax 2 N. The range of action of
this hypothetical dynamics is, however, considerably narrower than the Newtonian
one. It is true that Ax 1 N and Ax 2 N bis bis imply Ax 2 N, but the inverse is not
true: Ax 1 N and Ax 2 N.may be satisfied while Ax 2 N bis bis may not.

Sch 22. In such a way we are faced with the alternative: on the one hand, to
develop the Newtonian mass-point dynamics on the basis of Ax 1 N, Ax 2 N; on
the other hand, to develop an entirely identical dynamics on the basis of Ax 1 N,
Ax 2 N bis. Both ways are completely equal in rights, as regards the Newtonian
mass-point dynamics solely. If, however, the last is regarded together with the
Fulerian rigid body dynamics, then the first way is preferable from an aesthetic
point of view at least. Indeed, as it has been mentioned above, there is a complete
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parallelism between Ax 1 N, Ax 2 N, on the one hand, and Ax 1 E, Ax 2E, on the
other hand. This parallelism, however, vanishes into thin air, if one chooses Ax 2
N bis instead of Ax 2 N, since Ax 2 E bis analogous to Ax 2 N bis simply does not
exist: in the Eulerian rigid body dynamics there is no true proposition (axiom or
theorem) similar to Ax 2 N bis.

In other words, in rigid body dynamical the analogue of Ax 2 N bis, if any,
is simply and purely false: whereas (31) implies (30), in rigid body dynamics, as
underlined in Sch 17, there is no obligatory relation connecting the basis and the
moment of a system of forces acting on a rigid body — both these quantities may
be absolutely arbitrary in a partiéular dynamical problem concerning rigid bodies.

Sch 23. Let us now display how “proofs” of the Eulerian dynamical axioms
Ax 1 E and Ax 2 E are fabricated by most authors of text-books, treatises and
monographs on analytical dynamics. To this end let P,(r,, m,) (v =1,..., n) be
mass-points on which the systems of forces F,,(F,, M,) (v = 1,..., n) respectively

are acting, the moments M v (v=1,..., n) being taken with respect to O. Then
Ax 1 N and Ax 2 N imply

d: A
(41) Et’(mvvvu) =F, (V = 12 ey n)
‘and
d
(42) —d_t-(rllxml/vl/)=MV (v=1,..., n)
respectively, provided v, = #, (¥ = 1,..., n), the derivatives being taken with

respect to the inertial according to Newton system of reference Ozyz. Adding (41)
and (42) together and adopting the notations (10) one obtains

d n

(43) - g > myp, =F

. v;l
A
and
. d no, .

(44) ' 5 }:r,, xm,v, =M

v=1 -

. respectively. The quantities

(45) k, sgn: Em,,v,,
’ v=1
and
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n

(46) ' 1, sgn : Zru X myv,

v=1

are by definition the momentum and the moment of momentum (kinetical moment)

respectively of the system S, of mass-points P, (v =1,..., n). Now (43) — (46)
imply .

(47) | , kn—F=0

and

(48) I,-M=0

respectively.!® ‘

The formal analogy between the laws (47), (48), on the one hand, and (23),
(24) respectively, on the other hand, is obvious. Not so obvious is the sinNitide
between the relations (43), (44), on the one hand, and (21), (22) respectively, on
the other hand. Some words in this connection are therefore not pointless.

Let us imagine, to this end, that a partition of a rigid body B is accomplished
by the aid of three series of mutually perpendicular planes into a system of paral-
lelepipeds, n = m3 in number, in such a manner that all dimensions of any of them
tend to zero with increasing m. Let p, denote the v-th of these parallelepipeds, m,
— its mass, and P, — any point inside of p, (v =1,..., n).

If now one condescends to follow the logical process of those authors of text-
books on analytical dynamics which are pretending to “prove” the Eulerian dy-
namical axioms Ax 1 E and Ax 2 E, then one could fancy that the rigid body
B'is “substituted” by a system of mass-points P,(r,, m,), provided r, = OP,
(v =1,..., n). According to these authors, this peculiar imitation of B is as much
more adequate as greater n is, with the tendency to transmute into a complete
identity with the infinitely increasing n. According to this current of thoughts the
discrete r,, v,, and m, (v = 1,..., n)in the right-hand sides of (45) and (46) are
transformed into the general, deprived of individuality, r, v, and dm respectively in

_the right-hand sides of (19) and (20) respectively. According to the same ideas, the
dynamical equations (43) and (44) are transmuted into the dynamical equatlons
(21) and (22) respectively: the Eulerian dynamical axioms are proved!

There are, however, two at least points-in connection with this Hokus Pokus
that badly need expllcatxons

First of all, let us remind the way the relations (43) and (44) have been ob-
tained. We arrived at them by adding together the equations (41) and (42) re-
spectively, ip other words the latter are jnescapable for our gains. If one does not

“dispose of (41) and (42) in any particular case, then one simply and purely has no
right, both logical and ethical, to appeal to (43) at all. Now in the above reasonings
one is entirely denuded of the possibility to write down (41) and (42), since there is
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no information about the forces in the right hand sides of these equations. In other
words, one knows nothing, but nothing indeed (nichts, rien de rien, nada, niente,
nuwmo) about both the bases F, and the moments M, of those hypothetical forces
(7) which are acting (in the heads of eminent authors at least) on the mass-points
P, of p, (v =1,..., n). All that is known is the system of forces acting on the
rigid body B itself. As far as the problem is concerned how are these latter forses
decomposed (mentally at least, if not actually, alias physically) or distributed in
order to act on those mass-points which, in their Mannigfalligkeit, are intended to
replace B in the above reasonings — its only answer is ignoramus et ignorabimus.

In such a manner, the whole mental procedure, described above, remains hang-
ing in the air. It is rotten through and through. In my end is my begining, the
proverb says. As regards the efforts to prove the Eulerian dynamical axioms, their
end is in their beginning. Reasonings of the sort just exposed should not be written
in black and white. The addle eggs must be cast out of the nest.

As regards the passage from m, (v =1,..., n) to dm, mentioned above, the
things stand topsyturvy. i

Physically the notion of density of a ngnd body. B at any of its points P is
defined as follows. Let

(49) | AL, Ag,y ... A,,...

be an infinite seqlllence of parts of B, any of which involves P and is deposited in
the preceding one, and let their dimensions in every direction tend to zero with in-
creasing n. Let v, and m, denote the volume and the mass ofA,, (v=12,..., n)
respectively. Then the fraction

‘(50) | = —— | v=1,2...)

is called the mean d;ensity of A,. Its limit ,

(51) ‘ - 3¢= Lim s,

V—r00 )
is called the density of B at P. (The physicists take for gospel truth the hypothesis
that s is a function of P only, independently of the particular sequence (49) by
means of which it is defined.)

Mathematically, however, the whole procedure is unrecognizably reversed. The
density of a rigid body B at any of its points P is a beforehand given function (15)
of the radius-vector r of P that takes part in the very definition of B. (Naturally,
certain additional conditions about this function must be hypothesized, in the first
place its integrability in a certain sense; in view of the definition (16) of the ele-
mentary mass dm and its participation in all the integrals (17) — (20), etc.) This
function being known, the mass of the part A, of B is defined by the integral
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(52) my.= A/ dm = A/ se(r)d

according to (17), taken over A, (v =1, 2,...), the meaning of du being explained
above. )

This analysis displays once more the complete bankruptcy of the mechanical
texts pretending to give “proofs” of the Eulerian dynamical laws of momentum and
. of kinetical moment. » _

Sch 24. And yet, this approach has been broadly useéd in mechanics in times’
gone by. So, for instance, the mass of a system S, of masspoints P,(r,, m,)
(v=1,..., n) is defined by

n
(53) ’ ‘m'sgn : Zm,,;
: v=1

the radius-vector r¢ of its mdss-centef G by

(54) TG sgn: .— Zmurm

u-'l

and its kinetic energy by

I,
(55) | T sgn : 3 Z m,v},
. v=1 ’
‘providedw, =7, (v =1,..., n). Completely similar to (53) — (55), the mass

and the mass-center of a r1g1d body B are, as already mentioned, deﬁned by (17)
and (18) respectlvely, and its kinetic energy by

(56) ngﬁ: %/vzdm.

Now, not a word could be said justly against the definitions (17), (18), and (56),
no matter that, treating the continual case, they are suggested by the definitions
(53) - (55) respectively, treating the discrete one. The role of (53) — (55) for the
formulation of the definitions (17), (18), and (56) respectively, however, is purely '
suggestive, inductive, heuristic, by no means logical. As regards the theorems, none
of them can be proved for continua on the basis of facts known in the dlscrete case
only, i.e. by analogy.
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Sch 25. The question, raised at the end of Sch 15, namely — how did Euler
arrive at the idea of his dynamical laws, may now be concretisized: did he use
the logical process described in Sch 23, — or in other words, did he attain to
Ax 1 E and Ax 2 E through (43) and (44) respectively? Although it is rather
tempting to answer this last question in the affirmative, the justice requires some
cautiousness. It is true that the equations (43), (44) are Euler’s discoveries. It is
-also true that the heuristic approaches, described in Sch 24, have been widely used

“in Euler’s days for definitional goals. At that, the associative abilities of Euler’s mind
were proverbial; as regards the formal analogies, he was a universally recognized
master (let us remind the established by him relation between the exponential and
the trigonometrical functions, or his summations of divergent series — to cite a
few examples out of a legion). At last, it is true that in the epoch immediately
foregoing the French revolution the mental picture of a rigid body as composed of
a large number of mass-points has been most popular. And yet, the mathematical
creation is a phenomenon that belongs to psychology rather than to mathematics
itself. Let us remind that someone had said: he, who states categorically something
that lies outside pure mathematics, is at least imprudent.

It has been underlined in Sch 9 that, S being a particular rigid system of
reference, neither Ax 1 N, Ax 2 N, nor Ax 1 E, Ax 2 E, give any possibility to
decide whether § is inertial or not according to Newton or to Euler respectively.
We are now in a position to subject this problem to a detailed analysis.

The following propositions play an auxiliary role in solving this problem.

Pr 7. If a and S are rigid systems of reference, the function

(57) | P R—V

is differentiable, and @W,p is the instantaneous angular velocity of 8 with respect to
a, then N

" dop _ dsp
(58) ‘E?‘——dt—'f‘ af X P ‘ -(iER).

" Dma. Let by definition

(59) ﬁ Sgn . {TV}izly

where » _

(60) . | _l;’u sgn (bu, Bu) (V =1, 2, 3),
(61) ‘ b: R—V (v=1, 2, 3),
(62) "B, R—V w=1,2 3),

81



(63) bu(t) x ba(t) - b(t) # 0 | (teR),

s

(64) bu(t)B.(t) + b, (1)B,(t) = 0 (,v=1,2 3 teR),

) | OB ) =0 . mv=123teR)

(Sch 10). Then @,y is defined as the only solution of the system of vector equations

. d.b,
(66) ‘:It =Wap X b, (v=1, 2, 3; t e R),
namely
: 1K L db
(67) . ap =5 ) b, x S (teR)
r=1

[91], the reciprocal vectors b, ! of b, (v = 1, 2, 3) being defined as in Sch 10.. It is
- proved that W,z satisfies also the system

doby' -1
0 - =Wap X b, (r=1, 2 3;163).

The definition App (17) implies

)

(69) | d”” Z ( 5 P ) . (t € R).

It is proved that if the functions

/
~

(70) : p,: R—V ‘ (v =A1, 2)

are differentiable, then for ahy rigid system: of reference o

(71) . d(p1p2) Olpl 2+ daPz (t € R)

dt . dt LT

The relati6n (71) implies

= dapb—l d b;l

. . a _l .

(72)
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(v=1, 2, 3), and (72), (68) imply

(73) dt(Pb = "pb"+p><wafa'7>:1 (te R)

(v=1, 2, 3). Now (69), (73) imply

ds « & _
) DE Z( 25 ) b+ (b xTop 8500,
i rv=1

(t € R), and (74), App (16)

(75) . dpp _ dap

dt - dt ;P XTap (teR)

whence (58). .
Pr 8. If a and § are rigid systems of reference and W, is the instantaneous
angular velocity of # with respect to «, then

| o | |
(76) SR (teR)

for any differentiable function (57) if, and only if,

(77) - Tap =0 (t € R).

Dm. Pr 7.

Sch 26. The relation (58) is usually called the connection between the local
derivatives of a vector function with respect to two sysiems of reference.

Sch 27. Let us note in passing that ‘

(78) Wpa = —Wap-

Indeed, Pr 7 impllies

: dﬁp d
(79) o d +Wﬂa Xp (teER). -
~ Now (58) and (79) imply
(80) (@ap +Wpa) X p = 0.
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Since (80) is satisfied for any differentiable function (57), it implies (78).

Pr 9. If o and S are rigid systems of reference with origins A and B respec-
tively, @,z is the instantaneous angular velocity of £ with respect to «, P is any
moving point and

(81) r=AP, rp=AB, 7=BP,

then
dor  dorg d
(82) =T T X P+ 5{’ (tER).

Dm. (81) and the obvious identity AP = AB + BP imply

(83) r=rp+7p,

whence (82). :
Sch 28. If ¢ is a rigid system of reference, n is a.natural number, and the
. function (57) is n + 1 times differentiable, then by definition

dotlp  dadyp
a8 T

The left-hand side of (84) is called the (n + 1)th derivative of p with respect to a
or the local (with respect to a) (n + 1)th derivative of p.

Sch 29. If » denotes the radius-vector of a moving point with respect to
the origin of the rigid system of reference a, then the first and the second local
derivatives of » with respect to a are usually called respectively the local velocity
and the local acceleration of P with respect to «. If there is no danger of collision
of notations, they are traditionally denoted by v and w respectively.

Pr 10. If « and 3 are rigid systems of reference with origins A and B respec-
tively, W, is the instantaneous angular velocity of 3 with respect to «,

(84)

(85) |  Eap Sgn : ng—ﬁ

is by definition the instantaneous angular 'accelerqtion of B with respect to o, P is
a mass-point with two-times differentiable mass

(86) m: ‘R — R

~ and (81) hold, then
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d

GO

mdar _do ( dorB +Eop X MP+ Tap X (Tap X MP)
at )" \" " a ap X TP T Wap X Wap X Mp)

_ dgp dﬁ(mp) m 8P '

Dm. (82) implies

(88) m% = md‘:;.B +WTap X mp+ mdgtp
(t € R), whence
da da‘l‘ _ da darB = —
— a(mp) dgp
+waﬁx dt + dt mm— (tGR)

in view of (85). On the other hand, Pr 7 implies

(90) | d"(drfp) = d"(;p) + Wap X mP (t € R),

d d dgp d
(91)’ d—;( Stp) (;—/;(m dt)+wa deLtp : (t € R).
Now (89) — (91) imply (87).

Sch 30. Now we are capable of proving some 1mportant propositions shedding
some light on the problem of inertiality according to Newton and Euler of rigid
systems of reference. With a view to a better comprehension of these propositions
they are somewhat dismembered.

- Pr 11 N. If a and 3 are inertial according to Newton systems of reference
with origins A and B respectively, @op is the instantaneous angular velocity of 3
with respect to a and 7 = AB, then

do daTB _ ‘
for any function (86) and ‘
(93) ‘ Wepg =0 ' (t€eR).
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Dm. o and  being mertlal accordmg to Newton by hypothesis, Df 1 N and
Ax 1N 1mply

(94). | l‘;—‘t’ (m%) _r (t€R),
(95) %9-( dgt’)' Fo (teR),

provided (81), m denoting the mass of any mass-point P and F — the basis of any
system of forces acting on P. Then (94), (95), and (87) imply

do dorp o — .
(96) T (mT) +Eap X MP + Wap X (@ap X MP)
4T dgp , dp(mp) - |

Since Ax'1 N holds for any mass-point and for any system of forces acting on
it, the corollary (96) from (94), (95) holds for any m and p. Let us first choose

(97) ’ P=o (t € R).
Then (96) implies (92), and (96), (92) imply

dgp  dp(mp) _
dt dt

(98)  Eap X MPp+Wap X (Wap X MP) +Tap X (m-—-—— +

(t € R). Thereupon let us choose

(99) - | m=1 t€R),

| s \
(100) \ 'Z‘p o ~ (teR).

Then (98) — (100) imply

(101) Eap X ﬁ-i-Uup X (Tap X P) = o . (t € R).

Scalar multiplication of (101) with 7 implies

86



(102) (@ap xP)> =0 (teR),
whence
(103) Tap XP=0 (t ER).

In particular , if one puts in (103) successively 7 = b; and p = bz, then one obtains
the system of vector equations

(104) " Tapxb,=o0 (v=1, 2, t€R):

Since by hypothesxs b1 x by # o according to (63), the system (104) has exactly
one solution, namely (93).

Pr 12 N. If « is an inertial accordmg to Newton system of reference and Bis a
rigid system of reference, with origins A and B respectively, rg = AB, Wap is the
instantaneous angular velocity of B with respect to «, then (92) for any function
(86) and (93) imply that 3 is inertial according to Newton too.

Dm. a being inertial according to Newton by hypothesis, Df 1 N and Ax 1 N
imply (94) provided (81), m denoting the mass of any mass-point P and F' — the
basis of any system of forces acting on P. Then (87), (92) — (94) imply (95), i.e.
3 is inertial according to Newton (Df 1 N, Ax 1 N).

Pr 13 N. If a and 3 are rigid systems of reference with origins A and B respec-
tively, rp = AB, Wqg is the instantaneous angular velocity of 8 with respect to «,
then necessary and sufficient conditions in order that a and 8 are simultaneously
inertial according to Newton are (92) for any function (86) and (93). .

: Dm. Pr11 N, Pr 12 N.

Sch 31. Before proceeding further, let us make some remarks in connection
with Pr 13 N. ,

In the formulation of the Newtonian dynamical axioms no hypotheses have
been made concerning the mathematical nature of the masses of the mass-points.
Following the Newtonian tradition, however, for a long period of time the classical
mechanics has worked under the acceptance (not explicity formulated, it is true)
that the masses are absolute constants, especially, that they are invariant with -
respect to the tjme. In any case, such has been the state of affairs in mass-point
and rigid body dynamics until the end of the last century.

- In 1904, however, the Russian nechanician Meshtcherski proposed the differ-
ential equation

m£=F+31+$2 ' ’ (tGR)

(105) =

for the motion of mass-points with variable masses. At that, by definition
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- dm

(106) . ®, sgn: dt”v,, v=1,2)

o . dm; .
are additional forces generated.by the alterations of the masses, where % is the

: d .. . :
rate of change of the outgo of m and _;nt_l — that of its income; v is the relative

velocity of the “particles separating from the mass-point” (according to Meshtch-
erski’s mechanical ideas) and v, the relative velocity of the “particles added to the
mass-point”; ®; is called the “reactive traction” and &, — the “arresting force”.
It is supposed that the equation (105) is related to an inertial according to Newton
system of reference. After Meshtcherski’s work a new branch of analytical dynamics
germinated: variable mass dynamics (although mainly mass-point problems have
been discussed).

Sch 32. As it will be shown soon, the necessary and sufficient conditions,
formulated in Pr 13 N, for the 51multaneous inertiality according to Newton of two
rigid systems of reference do not coincide in the cases of constant masses, on the
one hand, and of variable masses, on the other hand. In view of the importance
of this circumstance for the Newtonian mass-pomt dynamics in general, we shall
subject it to a close analysis.

To this end we shall formulate two additional dynamical hypotheses which are
mutually exclusive, i.e. inconsistent coniunctim. Afterwards we shall re-redact Pr
13 N separately for any of these cases.

Hpth NC. If m is the mass of any mass-point, then

dm _
dt

Hpth NV. There exists one at least mass-point, the mass of which satisfies

(107) (t € R).

d .
(108) : 40 S ~ (teR)
. , dt : .
Pr 14 NC. Under the conditions and notations of Pr 13 N, the supposition
Hpth NC implies that the relation (92) is equivalent with

2
dirp _

= (t € R).

(109)

Dm. Clear.
Pr 14 NV. Under the condltlons and notations of Pr 13 N, the supposition
Hpth NV implies that the relation (92) is equivalent with

(110) dots _ (t € R).

dt
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Dm. Since (92) must hold for any function (86), let (99) hold. Then (92)
implies (109). Now (86) is equivalent with

dm do,"FB d?,r B
@ dat T diE
and (111), (109), (108) imply (110).

Sch 33. If (109), (93) hold, then it is said that the motion of # with respect
to « is a rectilinear uniform translation. On the other hand, if (110), (93) hcld,
then obviously 8 is at rest with respect to a. Indeed, (110) implies that the origin
B of 8 does not move with respect to «, whereas (93) and (66) imply that the axis
vectors b, (v =1, 2, 3) of B do not move with respect to a.

 Using this terminology, we may re-redact Pr 13 N, splitting it into two propo-
sitions, the one corresponding to Hpth NC and the other — to Hpth NV.

Pr 15 NC. If there exists no mass-point with variable mass, then a necessary
and sufficient condition in order that two rigid systems of reference are simulta-
neously inertial according to Newton is that they move with a rectilinear uniform
translation with respect to each other. o

Dm. Pr 13 N, Pr 14 NC, Sch 33.

Pr 15 NV. If there exists one at least mass-point with a variable mass, then
a necessary and sufficient condition in order that two rigid systems of reference are
similtaneously inertial according to Newton is that they are at rest with respect to
each other. | : . '

Dm. Pr 13 N, Pr 14 NV, Sch 33.

Sch 34.  Let us note that the necessary and sufficient conditions of Pr 14
NV are obviously considerably more restrictive than those of Pr 14 NC. In such
a manner, as regards these two propositions, we are faced with a problem that,
- poetically at least, may be compared with the Gordian knot. ‘

Pr 14 NC represents a fundamental credo of the classical Newtonian mass-
point dynamics. Moreover, appropriate versions of this theorem belong to the
basic acceptance of the Eulerian rigid body dynamics too, as well as of the theory of
elasticity and of fluid mechanics, in other words, of the classical rational mechanics
as a whole. In the mathematical reference book [91], for instance, chosen at random
by the way, one reads:

“BecakanA cucTeMa oTcueTa, K-pad ABMXKeTcA oTHocureasHo U. c. o. mpa-
MoJuHedHO M paBHOMepHo, apagerca M. ¢. 0.”1% (p. 562). '

Now Pr 14 NV seems to destroy this dynamical credo. Indeed, according to it,
if « is an inertial according to Newton system of reference, then the rigid system 3
is inertial according to Newton if, and only if, it does not move with respect to o
(Pr 15 NV). -

Sch 35. Physical arguments are personae non grata in mathematics. And yet,
they may serve as a compass or, if one likes it better, as Ariadne’s thread, even for
pure mathematicians. For doubtlessly Newton and Euler have been striving at the
shaping of a rational mechanics, applicable in the real world they were living in. In

(111) =0 " 4eRm)
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this connection let us underline that Pr 14 NC has successfully sustained the trials
of practlcal examinations for two clear centuries.

Sch 36. Things standing as they ar, Pr 14 NV will persist in being anguts in
herba, a logical trap for analytical dynamics until its contradictions with Pr 14 NC
are abolished. It is obvious that in the eyes of a Newtonian purist the very idea.
that two rigid systems of reference are similtaneously inertial according to Newton
only in case of mutual rest would seem a little short of heresy. One must not forget,
however, that nothing in mathematics is heresy enough to be worthy of the name,
the greatest virtue of a genuine mathematician consisting in his only ideology to
have no ideology.

In its long adventuresome life mathematics has overlived quite a lot of mental
shocks in order to be impressed of any. The fiest one has been when mathematics
was in cunabula: /2 turned out to be no broken number! Then the collapse of
the hopes for trisecting angles, doubling cubes, and squaring circles. And the fifth
postulate — a far cry from what it has been imagined! To say nothing about tan-
gentless curves, Mengenlehre-antinomies, the choice axiom, or the crash of Hilbert’s
axiomatical expectations. .. There is hardly something on- God’s earth to disturb
mathematician’s peace of mind nowadays.

Exits out of the logical pitfall that Pr 14 NC has driven mass-point dynamics
in may be sought in several directions.

Sch 37. The first line of conduct may be capltulatory one: the avowal that the
acceptance of (110) and (93) in the capacity of necessary and sufficient conditions
of inertiality is OK. This is the easiest and at the same time the silliest solution.

In the second place, one could hypothesize the impossibility of (108) in the
_ frames of Ax 1 N and Ax 2 N. This.is equivalent to the acceptance of Hpth NC

along with Ax 1 N and Ax 2 N, alias with the postulate that no Newtonian mass-
. point dynamics with variable masses exists.

Third, and last as we can see, one could come at the idea that a slight refor-
mulation of Ax 1 N may render a helpful assistance. ’

Since there is an extremism in the air in the cases of the first two possibilities,
we shall fix our attention on the last of these alternatives.

Sch 38. Entre paranthéses, the second of the above three opportunities is not
as radical as it may seem at first glance. Indeed, the following questions may quite
naturally arise. Is up to now classical mechanics ta such an extent and so closely
intimate with variable mass-point problems — sensible at that, not concocted,
though the meaning of the last requirement is somewhat vague — that it could

. by no means divorce them? Is the classical example of Meshtchetski’s dynamical
equation (105) as blameless indeed, as it may seem at first sight? Is it not an
underhand constant mass-point problem disguised as variable, as a matter of faet?

For T does not take part in this equation, as it should, and nothing in it suggests

that m is variable with the time. Let us quote an excerpt from Ax 1 N: “for any
mass-point P and for any system of forces F , acting on it”. In other words, the

genuine mathematical equivalent of Ax 1 N in the variable mass-point, case should

be
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dm dv
(112) Wv-fm:i—{ =F,

the function (86) being prescribed for any partlcular mass-pomt problem and F

my
— involving all the forces acting on P. It is true that —— and —2 are at hand

dt dt

in (105), but m; and my have nothing to do with m. In the same time it is also
true that additional forces ®; and ®2 are supplemented to F in the right-hand
side of (105), unwarranted by (112). And so on, and so forth, etcetera... All
these questions badly need a thorough mathematical analysis. Instead of it, in the
mechanical literature one finds only texts written currente calamo.

Sch 39. In the constant mass-point case (107) the equation (112) reduces to

(113) mw = F,

provided w = v. In other words, if (107) holds, then (11) and (113) coincide.

The question now arises, whether Pr 14 NC could be saved in the variable
mass-point case (108) too if (113) is substituted for the first Newtonian axiom
(11)? In other words, let us try the possibilities of the following variant of Ax 1 N:

Ax 1 N bis. There exixts such a system of reference S that, all derivatives
being taken with respect to S, for any mass-point P and for any system of forces
F acting on P, the product of the mass and the acceleration of P equals the basis

ofF

It is easy to prove now that Ax 1 N bis implies a theorem analogous to Pr 15
NC, making, however, no use of the hypothesis Hpth NC. Beforehand the following
definition must be recognized.

Df 1 N bis. Any system of reference satisfying Ax 1 N bis is cdlled inertial
according to Newlon.

Pr 11 N bis. Ax 1 N bis being accepted, if a and 3 are inertial accordmg
to Newton systems of reference with origins A and B respectively, @Wqg is the
instantaneous velocity of 8 with respect to a and rp = AB, then (109) and (93)
hold.

Dm. The demonstration imitates that of Pr 11 N. The relation (82) implies

. d’i _dir
(114) 7l dtZB +Zap X P+ Wap X (Wap X P)
dgp  d%p
+MWap X —- Py dgz (t € R),
whence |
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d2 d’rp

(115) m—r = Mg dt’ + MEop X P+ Mwapg X (Tap X P)
d d2p
+ 2mTap X 5{’ +m—s (t € R).

The systems of reference « and 3 being by hypothesis inertial according to
Newton to the effect of Df 1 N bis, the latter together with Ax 1 N bis imply

(116) , mEl=F (t € R),

1y - mbL — (teR)
ptovided (81), m denoting the mass of any mass-point P and F — the basis of any
system of forces acting on P. Then (115) — (117) imply

d2

(118) dt2

+Eap XP+Wap x(“’aﬁ X p)

' d
+ Wap X - 4 £ (teR)

after canceling m.
Disposing of the equation (118) applying to any p, in the partlcular case (97)
it implies (109), and (109) and (118) imply

d>
(119) Eaﬂxﬁ+wapx(wapxﬁ)+2waﬁxd—dﬁt—px—ﬁ;_
(t € R). Thereupon (119) and the choice (100) imply (101). Afterwards (93) is
proved in the same way as in the proof of Pr 11 N. '
Pr 12 N bis. Ax 1 N bis being accepted, if « is an inertial according to
Newton system of reference and 3 is a rigid system of reference with origins A4
and B respectively, rg = AB, Wyg is the instantaneous angular velocity of 8 with
respect to ¢, then (109) and (93) imply that 8 is inertial according to Newton too.
Dm. « being inertial according to Newton by hypothesis, Df 1 N bis and Ax
1 N bis imply (116) provided (81), m denoting the mass of any mass-point P and
F — the basis of any system of forces acting on P. Then (115), (116), (109), (93)
imply (117), i.e. 8 is inertial accordlng to Newton (Df 1 N bis, Ax 1 N bis).
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Pr 13 N bis. Ax 1 N bis being accepted, if @ and @ are rigid systems of
reference with origins A and B respectively, rp = AB, W, is the instantaneous
angular velocity of 3 with respect to «, then necessary and sufficient conditions in
order that a and 3 are simultaneously inertial according to Newton are (109) and
(93).

Dm. Pr 11 N bis, Pr 12 N bis. :

Pr 15 N bis. Ax 1 N bis being accepted, a necessary and sufficient condition
in order that two rigid systems of reference are simultaneously inertial according
to Newton is that they move with a rectllmear uniform translation with respect to
each other.

Dm. Pr 13 N bis, Sch 33.

Sch 40. Coming back to the general case let us note that by virtue of Df 1
N the only criterion for the inertiality according to Newton of a rigid system of
reference is the answer to the question whether is satisfies Ax 1 N or not: if yes,
then it is inertial; if not, it isn’t. That is why no use of Ax 2 N has been made in
the proof of the formulated in Pr 13 N criterion.

And yet, a pending question remains in connection with Ax 2 N and it is: is the
axiom stable with respect to the established by Pr 13 N inertiality criterion? Since
the meaning of this formulation is somewhat vague, let us make it moré precise.

Suppose that a and 3 are rigid systems of reference for which the conditions
(92), (93) hold and let « be inertial according to Newton. Then « eo ipso satisfies
Ax 2 N. On the other hand 3 is inertial according to Newton in view of Pr 12 N,
hence it also must eo ipso satisfy Ax 2 N. Now the question arises: it must, but
does it indeed? :

In other words, if P(r, m) is any mass-point and F (F Mjis any system of

forces acting on it, then it is certain that

d dor\ .

(under the notations already repeatedly used) by virtue of Ax 2 N, o being inertial
according to Newton by hypothesis and M being taken with respect to the origin

“Aof a. On the other hand, Pr 12 N warrants that 3 is inertial according to Newton
too and, consequently, the equation

d d ‘
(121) dé; (,; x m_jtﬁ) Mg (teR)
(where
(122) MB=M+FXTB

is the moment of F with respect to the origin B of §) must also be satisfied by

virtue of Ax 2 N. The meaning of the question, brought up a.bove is: is it satisfed
indeed, in other words, can (121) be proved?
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It is obvious that this question must unconditionally be answered in the affir-
mative. .

Technically this problem is equivalent with the question: do (120), (92), (93),
(122) imply (121)7?

There are two ways leading to the answer.

The first of them is the direct one. Let (120), (92) hold for any function (86),
as well as (93) and (122). Because of (93) the identity (88) becomes

dor dorp @

and (123), (83) imply
dy - dg ~ dgp
(124) rxm—dt—r=(1'3+p)xm d:B+(rB+p)xm—5t£
(tER),ie.
dar _ dor  _ dsp
(125) rxm—Jt——erm—‘-it—-i—pxm-aT
S d dgp
+'ﬁxm‘:1:B+erm—§t£ (teR). .

On the other hand, (93) and Pr 8 imply (76) for any differentiable function

(57). _
The equation (125) therefore implies
dqy dur l_ da darB
(126) ) (_jt— (r X mw) = E rp X m———dt
dp _ dpﬁ kdpp dorB
i (" *ma )t a a

49 G2 (2 4 222 Py B (i)

(t € R). But obviously

; da darB _ da da"B
(127) rl (1'3 xm—p=)=rpx o \m——),
dpﬁ dorp darp dp'ﬁ _
(128) ki ek
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Cdp [ dsP
(129) 'E( dt) F

(t € R), the latter equation by virtue of Pr 13 N, i.e. (95). Now (126) — (129),
(92), (120) imply

_ds 8P
(130) M= Ft—(pxmdt)+r3xF (teR)
and (130), (122) imply (121).

The second way to the proof of (121) is extraordinary tricky. According to Pr
6, (120) may be written in the equivalent form

(131) rxF=M
and (131), (83), (122) imply

(132) pxF=Msp.

On the other hand, 8 is inertial according to Newton by virtue of Pr 13 N, hence
(95) holds. Now (132), (95) lmply

(133) 7 x ‘;‘: ( d"”) = Mg (t € R),
whence (121).

Sch 41. Acta est fabula. For the time being this is almost all one could say
apropos of inertiality according to Newlon. Now it is high time to proceed to the
discussing of analogous problems concerning tnertiality according to Euler.

Comparing (11), (12), on the one hand, with (21), (22) respectively, on the
other hand, one should observe that these latter problems promise to be consider-
ably harder. This is true. In the same time it is also true that up to now we have
accumulated a certain experience in such matters. '

Let the Cartesian system of reference Ozyz be inertial according to Euler and
let Q¢n¢ be a Cartesian system of reference invariably connected with the rigid
body B, its origin coinciding with the mass-center G of B. As it is well known
from rigid body kinematics, then the following identity takes place

(134) ‘ ' v=vg+WXP,
provided r = OP for any point P of B, rg = OG, v = 7, vg = rg,
(135) r=rg+p,
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@ denoting the instantaneous angular velocity of Q€n¢ with respect to Ozyz, all
derivatives being taken with respect to Ozy:z.
The identity (135) implies

(136) / dm = o

in view of the definition (18). Then (134), (136), (17) imply

(137) ’ /vdm = mvg
and (137), (21) imply

d

g(mve) = F | (teR),

(138)
F denoting the basis of any system of forces acting on B.

In other words, the equation (138) may be chosen in the capacity of a mathe-
matical formulation of Euler’s law of momentum, alias of Ax 1 E. It expresses the
famous theorem.of Euler according to which the mass-center of any rigid body is
moving like a mass-point with mass equal to the mass of the body and dcted on by
all forces acting on the body.

Sch 42. The reader should not let himself be misled by the resemblance
between (138) and (11). It is only formal. In other words, directly contrary to the
wide-spread belief of all physicists, mechanicians, and mathematicians, the mass-
center of a rigid body is no mass-point.

Indeed, if it was, then Ax 2 N would imply

J ‘ .
(139) @ (r¢ x mvg) =M (teR),
whence (30) by virtue of Pr 2 N, which is an absurdity.

By the way, another absurdity is obtainable in the following manner. First,
(134) and (135) imply

(140) /rxvdm:/(rg+'ﬁ)><(vg+wx pldm

="/1-vagdm+/rgx(w‘xp)dm:i-/ﬁxvgdm+/ﬁx(wxﬁ)dm
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(t € R). On the other hand, (17) and (136) imply

(141) /rc X vgdm =7rg X vc/dm =7r¢ X Mvg,
(142y /FG X (@xpdm=1rg x (@ x /ﬁdm) =o,
'(143) /ﬁxvcdm=/ﬁd7nxvc=o

(t € R) and (140) — (143) imply

(144) /rxvdm:rgxmvc+/7)x(wxﬁ)dm

(t € R). Now (144) and (22) imply

(145) d(ermvg)—}-;it/i;‘x(c‘Jxﬁ)dm:M

(t € R) and (145), (135) imply the absurdity

d

40 7

/px(wxp)dm—o (tE\R).

Sch 43. The analogy between (138) and Ax 1 N being entirely formal, it is
all the same enough for our goal, namely to use it in order 'to economize all the
reasoning and reconings spent in connection with Pr 11 N — Pr 15 N bis, to say
nothing about the enigmatical Hpth NC and Hpth NV. .

The reader has certainly become aware of the trade dodge, long ago notori-
ous as Steiner’s tea-kettle principle: reduce unknown to known. In our case it is
practicable in the following manner: Pr 11 N — Pr 15 N bis being demonstrable
on the basis of Ax 1 N only and (138) imitating Ax 1 N up to the least, to prove’
anew their rigid body analogies would certainly mean useless efforts and needless
time-wasting. The formal analogy between (138) and (11) secures the validity of
these theorems in the rigid body case too (with the obvious mutatis mutandis, of
course) without any specific proofs whatever.
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We shall save the reader the bitter cup of reiteration of all those formulations.
They are obvious and reducible to substitutions of the terms rigid body and snertial
according to Euler for the terms mass-point and inertial according to Newton re-
spectively in these propositions. Naturally, all the fuss in connection with variable
masses jumps out again and is settled in the same way. No, the rigid body case
deserves no special attention after the pains we have taken in connection with the
mass-point dynamics. Instead, we shall turn our interest to another topic.

Sch 44. The economy we have realized by avoiding explicit formulations of the
rigid body analogues of Pr 11 N — Pr 15 N bis imposes the following convention.
If some of them has to be quoted, we shall cite it under the same number as in the
corresponding mass-point case, substituting E for N. In such a manner Pr 14 NV,
say, becomes Pr 14 EV, etc.

Sch 45. Summing up we may now state that on the basis of the criteria of
Pr 11 N — Pr 15 N bis (Pr 11 E — Pr 15 E bis), it is enough and to spare to know
that a particular system of reference « is inertial according to Newton (Euler) in
_ order to decide, for any rigid system of reference 8, whether it is inertial according
to Newton (Euler) or not. The point now consists in this peculiar system a.

Physically the choice of an inertial (no matter whether according to Newton
or to Euler) system of reference is a matter of experiment. There are ‘quite a lot of
physical phenomena (declination toward east of a body falling freely in the northern
hemisphere, the effect of Ber!”, etc.) indicating that no invariably connected with
the Earth system of reference may be qualified as inertial. On the other hand, there
are not a few physically quite trustworthy grounds to state that any rigid system-
of reference, the origin of which coincides with the mass-center of the Sun while
its axes are directed toward immovable (far dlstant) stars, may be accepted in the
capacity of an inertial one.

Mathemadtically, however, o being any particular rigid system of reference,
there is no reason either to incriminate it as non-inertial or to make a fetish of it as
inertial. In other words, any such system may be qualified as inertial, as well as non-
inertial. Alias, all rigid systems of reference are allowed to competition as regards
the title “inertial”. Mathematically this qualification is a matter of definition, of
definition only, and of nothing but definition.

Nevertheless there is a but there. In mathematical affairs there is an author-
itative rule, the principle of economy. In other words, the most desirable case is
the-most simple one. But what in our case does actually most simple mean? The
answer is given in the following two propositions.

Pr 16. If »
(147) e, €V (v=1, 2),
1 =v
(148) e,e, = { (p’ X (u,v=1, 2),
0 (n#v) '
(149) e3sgn: e X ey,
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then -

- 1 =v
(150) e.e, = { (=) ‘ (n,v=1, 2, 3),
0 (n#v) :
(151) e; xey-e3>0.
Dm. Clear.

Pr 17. If(147)—(149)
(152) : - e, sgn: (e, 0) (v=1, 2, 3),

(153) esgn: {€u}y=t,

then ¢ is a rigid right-hand orientated orthonormal Cartesian system of reference
and o is its origin.

Dm. App (1) — (6), App (12) — (14), App (9), Pr 16.

We now manifest the following dynamical axiom.

Ax 3 N. The defined by (153) system of reference €, provided (147) —(149),
(152), is inertial according to Newton.

Sch 46. On the basis of Pr 11 N — Pr 15 N bis and Ax 3N one is capable
of determining, for any rigid system of reference, whether it is inertial accordmg to
Newton or not. Especially:

Pri18 N. If
(154) . a, €V  (v=1,23),
(155) - vayxXaz a3 #0,
(156) A€V | (v=1, 2, 3),
(157) 6,4, +a,A, =0 (v =1,2, 3),¢

App (1) — (2), then a is inertial according to Newt.on

Dm. Ax 3 N, Pr 14 NC, Pr 14 NV.

Sch 47. In such a way, the problem about inertiality according to Newton is
settled. As regards Euler, we are faced with the following alternative:

1. There exists no system of reference inertial according to both Newton and
Euler. :
2. There exists one at least system of reference inertial accordmg to both
Newton and Euler.

Tertium non datur.
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For the time being we are ignorant which of these two possibilities is true.. As
a matter of fact, any of them could be true, or could be untrue. Indeed, if o is
any particular ngxd system of reference, then we can de<:1de, on the basis of Ax
3 N, whether-it is inertial according- to Newton or not. As regards its inertiality
according to Euler, for the time being at least, we know as much as nothing. Before
-answering the question which of the above possibilities is true, let us make a little
thinking.

If the first situation is realized and Sn and Sg are systems of reference inertial
according to Newton and Euler respectively, then no proposition of the Newtonian
mass-point dynamics does hold in Sg and no proposition of the Eulerian rigid body
dynamics does hold in' Sy (under the supposition that these propositions are not
invariant with respect to the systems of reference). In other words, in the first case
there exist two entirely distinct dynamical theories which are completely alienate
from ohe another. In particular, no dynamical problem, simultaneously treating a
mass-point and a rigid body coniunctum, can be solved by the direct application
of both Ax 1 N, Ax 2 N and Ax 1 E; Ax 2 E (although there are indirect methods
to this end). It is obvious that such a perspective does not seem a very attractive
one. : : . ‘
Besides, in this first case a rather complicated problem arises in connection

with the time-notion. As already explained in Sch 8, this notion is incapable of
an explicit mathematical definition, being a primary notion-object of analytical
mechanics, definable implicitly by means of Ax 1 N,Ax2Nand Ax1E,Ax2E
namely.

As a matter of fact, there are two rather than one tlme-notlons the one de—
fined by the aid of Ax 1 N, Ax 2 N, and the other — by means of Ax 1 E, Ax
2 E. Correspondingly one should speak of Newtonian time and of Eulerian time
and nobody knows apriory do they have in general something in common at all.
This circumstance once again makes the first of the above possibilities entirely
unacceptable. A
. In the second case any rigid system of reference is either inertial or non-inertial
both according 'to Newton and Euler. Indeed, let the system. of reference S be
inertial both according to Newton and Euler and let the system I be inertial
according to Newton. Then by virtue of Pr 11 N — Pr 15 N bis, the motion of
*with respect to S is necessarily a rectilinear uniform translation or possibly a rest
respectively. This condition, however, is sufficient for the inertiality of X according
to Euler by virtue of the corresponding criterion among Pr 11 E — Pr 12 E bis.
And wvice versa, if ¥ is inertial according to Euler, then by virtue of Pr 11 E — Pr 15
E bis its motion with respect to S is necessarily a rectilinear uniform translation or
possibly a rest respectively. This condition is, however, sufficient for the inertiality
of £ according to Newton by virtue of the corresponding criterion among Pr 11
‘N — Pr 15 N bis. Hence, the Newtonian and Eulerian dynamical axioms hold for
exactly the same sets of rigid systems of reference. In other words, in the second of
the above cases there will exist a general dypamics, the Newton — . Eulerian mass-
pomt and rigid body dynamlcs . That is why this possnblhty is beyond comparison
more temptmg than the first one.
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These considerations justify the acceptance of the following axiom.

Ax 3 E. The defined by (153) system of reference ¢, provided (147) — (149),
(152}, is inertial according to Euler.

The following proposition is an immediate corollary from Ax 3 N, Ax 3 E and
from the argumentation-adduced above.

Pr 19 NE. Any system of reference which is inertial accordmg to Newton is
inertial according to Euler and vice versa.

Pr 19 NE and Pr 18 N imply:

Pr 18 E. If (154) — (157) and App (1) — (2), then the system of reference o
is inertial according to Euler.

Pr 19 NE justifies the advisability of the following definition:

Df 2 NE. A system of reference is called inertial if it is inertial according to
Newton.

Pr 20 E. A system of reference is mertral if, and only if, 1t 18 inertial accordmg
to Euler.

Dm. Pr 19 NE, Df 2 NE.

Sch 48. A question of intransient interest for analytical dynamics is the
formulation and use of both Newtonian and Eulerian dynamical axioms and of
their corollaries for non-inertial rigid and non-rigid systems.of reference. This is,
however, a topic we shall not discuss here.

Sch 49. A problem similar to that formulated and solved in Sch 40, comes into
bemg in rigid body dynamics too. Making a long story short, it may be formulated
in the following manner. If B is any rigid body and }i (F, M) is any system of

forces acting on it, then it is certain that

| do [ dor
= —_ = t
(158) = /r X — dm=M (‘E R)
(ﬁnder the notations already repeatedly used) by virtue of Ax 2 E, a being inertial
according to Euler by hypothesis and M being taken with respect to the origin A
of a. On the other hand, Pr 12 E warrants that if (92), (93) hold, then 8 is inertial
according to Euler and consequently the equation -

dp dgP | '
. - t
(159) = / px “eim= Mo (t € R),

provided (122), must hold. The problem mentioned above now is: does it hold
indeed.
In order to solve it let us note that because of (93) the ldentrty (82) implies

‘ o odar - da"B dpp yb .
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and (160), (83) imply

’ (‘161)‘ | / dardm /(r3+‘) X da B
+ /(1'3 +P) x ‘—%Ea’m o A('t € R),
l.e.
(162)- /r x.%dm:/rg;d2234m+/ﬁx -dg—tzdm‘
+/‘ﬁx dc:i:\Bdm.{-]rBX%—dT-n (t e.R).

On the other hand, (93) and Pr 8 imply (76) for any differentiable function
(57). :
The equatlon ( 162) therefore implies

‘ dy dor d, darp ,
i Bkl =2 d
(163) = /r x — dm 5 /1’3 X ——dm
dp dpp dpﬁ dorp
dt/px Fim @ < Tdt d

de [darp dorp  dgp / dp dpi)'
+/pxdt( d) /—dt“xdtdm-}- TBX o —d?-dm

(t € R). Obviously

da darB - da darB

(164) . (—1?/1'3 x al dm = rg X -(;t_ (m al 5
4P davp dovp  dsp, _

(165) | el dm+ TR —dm = o,
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(166) / ‘;‘t’ (d”” ) /d””d

(te Rj, the latter equation by virtue of Pr 13 E. Now (163) — (166), (92), (158)
imply

' dg f dgp . da da"'B..
=L [px =2 — d
(167) M dt/px T dm+erF+/pxdt 5 m

A

(t € R) and (167), (122) imply

dg dsp /_ do (dors ., \
(168) I/p dtdm Mg+ PX o —]—t—dm

(t € R). It is immediately seen that (168) would imply (159) if, and only if, the
relation

\ __4do (darp . )
= = te R).
(169) /pxdt(dt dm) o (te R).
Now (169) would surely hold if
d
(170) ‘ —(dm) =0 (teR),

ie. in the constant mass case. Indeed, then (17) implies (107) and (107), (92)
(170) imply

a \ " dl @™ (t€ R)

(171) da (Mﬁdm) _ dars
and (171), (109) imply (169).

In such a manner, the affirmative answer of this problem depends on the mass-
constancy problem. In view of the logical difficulties of the latter we leave things
here as they are.

Finally let us note again that the considerations in this article, as already
mentioned, are intended to revive the mathematician’s interest in Hilbert’s sixth
problemn concerning the axiomatical construction of rational mechanics in general, .
and of analytical mechanics in particular, as well as to constribute, humble as it is,
to its headway. In our mind, such efforts are not useless on the background of not a

few argumenta ad ignoraniiam, one has the chance to see printed in black and white
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in the literary sources on this domain. The maxim hoc volo; sic jubeo, sit pro ratione
. voluntas, often carried out in everyday life, sounds ridiculously in the mathematical
routine. Volens nolens, the mechanicians must become reconciled with the fact
that rational mechanics “in its relation to experience, intuition, abstraction, and
everyday life does not differ in essence from other branches of mathematics”!®, that
the axiomatical consolidation of its logical foundations is hence forthcoming.

APPENDIX

1. As a matter of fact, this problem has been looked on as a circulus vitiosus
or, more picturesquely, as a dog stri‘ving to bite its tail. Indeed, a geometrical
notion Z, for iustance, is defined by means of one or several geometrical notions
Y, X, etc. Going back, one arrives in the long run at several geometrical notions
A, B, C, etc., which are so fundamental, so elementar, and so simple, that there
are no other geometrical notions by means of which these A, B, C, etc. could be
defined explicitly. In such a manner, at first sight at least, the circuit seems to
close and the geometers’ honourable intentions for an irreproachable consolidation
of the logical foundations of their science seem to be a complete failure.

A way out of this dead-lock has been discovered by Hilbert. In his non-pareil
work [13] marking a new mathematical era simultaneously with the change of two
centuries, he proclaimed a new mathematical principle ordained to break up the an-
cient mental stereotypes as only the theory of relativity did. According to Hilbert’s
ariomatical principle, in the process of logical consolidation of the foundations
of any mathematical theory T certain primary notions-objects Ay, ..., A, and
certain primary notions-relations By, ..., By of T must be discovered, or se-
lected, or proclaimed, which are unsusceptible to explicit definitions by the aid of
any other notions of T. These primary notions of T must be defined implicitly
by the aid of a system of arioms of T, i.e. a set of statements Ax 1, ..., Ax
N, involving Ay, ..., Aq and By, ..., B, and stating elementary properties of
Aj, ..., A4, suggested by the intuition, or by the naive ideas primarily incarnated
in Ay, ..., A,, or on the basis of God knows what reasons. The question about
the authenticity, or reliability, or trustworthiness, etc. of Ax 1, ..., Ax N does
not come into being at all: according to the axiomatical principle of Hilbert this

> question is pointless, i.e. unsubstantiated, devoid of sense, empty of matter. The

Ax 1,..., Ax N of T are true by definition, or by hypothesis, or by decree, etc.,
inasmuch as two adamant conditions are satisfied. First, the system of statements
Ax 1, ..., Ax N must be unconditionally consistent, i.e. free from inner contra-

dictions. Second, its logical corollaries, must form a system identical to T rather
than to some of its far away cousins: any theorem of T' must be demonstrable on
the basis of Ax 1, ..., Ax N. (A system of axioms for the Euclidean geometry is
proposed in the Appendiz of the article [85, p. 160 — 161], while a system of axioms
for arithmetic of natural numbers is given ibidem, p. 161 - 162.)

2. As, for instance, the notion point, line, and plane in geometry.

3. Asfor instance, the notion incident (zusammengehort, liegt, see [85, p. 160])
‘in geometry. ' '
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4. The rigid body dynamics is the main subject in analytical mechanics. As it
is well known, traditionally the latter is divided into three parts: kinematics, statics
and dynamics. In their turn, any of them is divided into two parts: kinematics of
points and rigid bodies, statics of mass-points and rigid bodies, dynamics of mass-
points and rigid bodies. The first ones of all these, namely kinematics of points,
statics of mass-points, and dynamics of mass-points respectively, belong to the most
trivial parts of analytical mechanics.

On the other hand, statics of rigid bodies is a trivial part of analytical me-
chanics of rigid bodies too, having to deal, first, with the most restricted case when
the rank of the system of forces acting on the rigid body (both active and passive
forces, alias forces determined by the conditions of the particular statical problem
under consideration and reactions of the geometrical constraints imposed on the
rigid body respectively) is equal to zero, and, second, with algebraic mathemati-
cal conditions if equilibrium, rather than with systems of differential equations of
motion as in the dynamical case. - -

As regards. kinematics of rigid bodies, its role in the system of analytical me-
chanics may be assessed as an auxiliary one. Indeed, its predetermination is to
supply the analyticalamechanics with the necessary geometry. As a matter of fact,
rigid body kinematics could be qualified as the geometry of motion. Its main aim is
to define and describe such fundamental for analytical mechanics mathematical en-
tities, as for instance the notions of affine and rigid Cartesian systems of reference,
motion of such systems, local derivatives of vector functions with respect to these
systems, affine and rigid kinematical bodies along with their basic attributes, as
for instance partial and total instantaneous angular velocities, as well as the proofs
of Eulerian theorems concerning the relations between linear and angular velocities
and of Euler’s kinematical equations involving the Eulerian angles and their time-
derivatives, and so on, and so forth, etcetera, to say nothing about the definition
of the most important for the whole of rigid body dynamics nction of kinetical
rigid body, with its basic attributes: mass, mass-centcr momentum, and kinetical
moment. »

In such a manner, in the long run, analytical dynamics of l'lgld bodies remains
the specific part of analytical mechanics in general — its genuine core, as a matter
of fact.

" 5. Before proceeding farther, let us say some more words concerning the rigid\

body notion in its dynamical as well as kinematical aspect.

_ As already emphasized in the previous parts of this article, the rigid body con-

cept is traditionally looked upon by the authors of writings on analytical mechanics
"as'an apriori notion of this science. This attitude is due to the fact they have not
yet overcome the mentality of the puberty period in the history of mechanics, pre-
tending rational mechanics to be physics in its substance. It is not. The erroneaus
belief that it is resulted in the deplorable state of affairs as far as the axiomatical
consolidation of its logical fundaments are concerned-and has postponed the exe-
cution of Hilbert’s program towards its axiomatical construction [85, p. 158 — 159,
166] ad calendas graecas. -
Rational mechanics in general analytical mechanics in partlcular are mental,
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not experimental, as well as geometry is mental, not instrumental, “and in its
relations to experience, intuition, abstraction, and everyday life it does not differ
in essence from” [1, p. 336] the theory of numbers, say. “In this audience, I am
sure, mathematics itself needs no defence. It is unnecessary to persuade you that
mathematics is trying to be physics or trying to be engeneering. It should also be
unnecessary to point out that mathematics, however abstract and however precise,
is a science of experience, for experience is not confined to the gross senses: Also the
human mind can experience, and we need not be so naive as to see in an oscilloscope
an instrument more precise than the brain of a man” [ibid.].

Analytical mechanics is pure mathematics par ezcellence, and this is borne by
the fact that it is now, in our days, as much a deductive science — neither more nor
" less — as arithmetic and geometry for instance are. It is true that long ago, in its

embryonic inductive state, analytical mechanics belonged to physics. (One should
not forget that Newton christened his first-borne child namely Philosophiae Natu-
ralis Principta Mathematica, and that Philosophia Neturalis meant exactly physics
'in his days.) In the same time it is also true that the degree of this appurtenance,
of these affiliations, has not been higher than those of arithmetic and geometry.
For, once upon a time, there has been a period when anthmetnc and geometry were
parts of physics too: in their experimental and instrumental age respectively, when
“commutativity of multiplication has been established by check-ups, and volumes of
solids have been determinated by the aid of sand and water. Let us not forget the
historical truth that even Leibniz knew by a physical experlment rather than by
proof that 2 times 2 makes 4.

6. Such objections are not made up, or fabricated, or concocted. They corre- -
spond to, they reflect scientific reality. They have been not once nor twice brought
forward before us even by highly educated professional mathematicians who, how-
ever, as far as analytical mechanics is concerned, behave (a not infrequent phe-

" nomenon) as haughtily as only dilletanti could (improvising mechanics, as a matter
of fact, entirely forgetting that they have settled their accounts with rational me-
chanics as late as they have left their student’s desks).

7. Newton’s dynamical ideas culminated in his famous postulate:

Lex II. Mutationem motus proportionalem esse vi motrici impresse et fieri
secundum lineam rectam qua vis illa imprimitur (alias, the alteration of motion is
ever proportional to the motive force impressed, and is made in the direction of the
right line in which that force is impressed).

Now, a mere glance at Lex II and its modern version Ax-1 N at once displays
an essential flaw in Newton’s formulation: the total absence of the notion of system
of reference in it, to say nothing of derivatives with respect to such systems. But
Lex II is not unconditionally true: it is true for some systems of reference (inertial
according to Newton) and untrue for other ones. '

. As regards Ax 2 N, it is completely wanting among Newton’s aziomata sive
leges motus [30, p. 129]. Undoubtedly, Newton knew and used it. Nevertheless, he
thought wrongfully that it is an immediate corollary from Lex IIL. It is not. The
erroneous bglief that it is represents a prejudice shared even by modern authors of
text-books, treatises and wmonographs on analytical mechanics. Its analysis is put
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off until later.
8. For an axiomatical definition of V see, for instance, [86].

9. For the sake of simplicity the definitional domain of (1) is hypothes~zed

here to be R rather than some appropriate subset of R.

10. An affine Cartesian system of reference « is defined as the set

® C asg: {T
where ‘ ‘ |

@ T, sgn: (a,, A)
provided

3) | a,: R—YV

(4) ' A,: R—V

are given vector functions with

(5) ai(t) x ax(t) - as(t) £ 0

©® au(1) Ay (1) + 3, (1) Au(t) = 0

(v=1, 2 3),
(v=1, 2, 3),
(r=1, 2,3
(te R),
(teR)

(g,v = 1, 2, 3). The arrows (2) are called the azes of @ and the vectors a, are

called the azis vectors of @, (v =1, 2, 3) respectively.
By virtue of (5), (6) the system of vector equations

(7 ' axa, =A,

has exactly one solution

(8) : a: R—V,

namelyA
. I 3
: — -1
(9) 0_5‘;—1{1” X Ay,

provided

v=1 2 3)
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» - Ayl X Gyy2
10 ! , Al T Ted2 =1, 2, 3)
(10) @, sgn: = oo (r=1, )

with
(11) ' Q,338gR: Gy ‘ v=1,2)

are the recipr'ocdl vectors of the reper (3). The function (8), defined by (9), is called
the origin of . It is the intersecting point of the three axes of a.
The system of reference (1) is called rigid if

a2 @Wam=0 (teR)

(#,v =1, 2, 3). It is called orthonormal if

' N 1 (p=v)
13 au(t)a,(t) = ' w=1 23
( )v | (t)a.(?) {0 (14 ) (#_ )
(t € R) and right-hand oriented if
(14) , C a(t) x as(t) - as(t) > 0 (t € R).

11. The system of reference o being defined as above and the functions (3),
(4) being differentiable, let

(15) ' : p: R—V

be any differentiable function. Then

. S ’
(s p=3 (pa;")a

_ u‘:I
and the function

, 3 .
(17) ‘ (Z’—tp sgn : Z (%(pa',,’l))a,,

v=1

is called the derivative of p with respect to & or the local (with respect to &) derivative
of p. If the context permits no collision of notations, a simpler symbolics is used.
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. S . ' d
So for instance the derivatives with respect to Ozyz are usually denoted by T

. d
instead of d—: In the special case when ¢ represents time, dots are traditionally

used, for instance

. dp
(18) : p=—-

12. Examples of 1-dimensional rigid bodies are the so-called rings, wires, rods,
etc.; examples of 2-dimensional rigid bodies are the so-called discs, lamellae, plates,
slabs, etc.; with the exception of these extravagant samples, all “normal” rigid
bodies are 3-dimensional Naturally, the dimensions of rigid bodies are described
strictly in the mathematical definition of the rigid body concept in any particular
case. As regards this part of the exposmon an appeal is made to the reader’s own
experience in analytical mechanics. :

13. Over the whole space V, as a matter of fact, in the mathematical def-
inition-of the rigid body concept. At that, it is supposed that » = 0 outside
the “geometrical borders” or the “delineations” of the partlcular rigid body under
consideration. -

14. “It is clear enough that in statics the equ1hbr1um of moments is not insured
by the equilibrium of forces, nor vice versa. In dynamics, the principle of moment
of momentum developed late, and much of the earlier work concerning it gives the
impression that the two principles were somehow hoped to be equivalent, so that
there would be but a single law of motion. This illusion is fostered in the teaching
of mechanics by physicists today ... The law of moment of momentum is subtle,
often misunderstood even today” [1, p. 128 — 129].

15. Strange though it may seem, the simple corollaries (47) and (48) from Ax
1 N and Ax 2 N respectively concerning Sy, nowadays known as Newton’s laws of
momentum and of kinetical moment respectively for a system of finite number of
discrete mass-points, are nowhere to be found in Newton’s Principia. They have
been discovered by Euler about half a century after the publlcatron of Newton’s
work.

16. .Any system of reference, which is moving rectlhnearly and uniformly

" without rotation with respect to an mertlal system of reference 15 an inertial system
‘of reference itself.

17. Kapa Makcumoruu Bap (1792 — 1876), Russian natural scientist. In
1857 he explained the erosion of the right (left) banks of rivers flowing in the
directions of the meridians in the northetn (southern) hemlsphere by means of the
Earth revolution. _

18. We beg the reader’s pardon for citing for the second time this position of
Truesdell. We shall, however, never get tired in repeating it over and over again,
as long as some mechanician’s mental constitutions make it so timely and topical.
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XUAPOAUHAMUKA HA TBHPAM U TEUHU
'YACTUIU B 'PAIUEHTHUA TEYEHUA

3AIPAH 3AINPAHOB

3anpan 3anpanos. TUAPOINHAMUKA TBEPIBIX U IE®OPMUPYEMBIX
YACTHH B CABUT'OBBIX TEYEHUAX.

* B Hactosme#i paboTe nenaerca o630p HEKOTOPHX OCHOBHBIX Mpo6JeM B THApOMe-
XaHMKe TBEePIBIX M Ae(pOPMHPYEMBIX YAaCTHL (KalJM W Ny3HPpH), KOTOpble 06TeKaIOTCA
. CABMIOBBIM BA3KMM noTokoM. OOCYkAAIOTCA NOCTYNATENbHHE W DOTAUMOHHHIE IBU-
KEHMA TBepPABIX CHepUdecKuXx u HechepUUECKHX YACTHI, FMAPOIMHAMAYECKOE B3aUMO-
ZIe#CTBMe HaCTHI B MHOrO(a3HBIX CMCTEMaX, a Tak/ke PaBHOMepPHhie I HepaBHOMEPHREIE
OBTeKaHNA HeNeQOPMHUPYEMBIX H AeGopMUpyeMBIX YACTHL U T.A. B momoanenun npu-
BOJMTCA peliteHHe 3alajuM oBTekaHMs chepUdecKoN Kamiu OCECHMMETPUYHEIM IPaH- -
€HTHBIM BA3KMM moTokoM. B romiie paBoTht dopmyampyoTca Hexo'ropue HepelleHHbe
IO CHMX TOp 3alavy B 3’roﬁ objacru.

. Zapryan Zapryanov. FLUID MECHANICS OF RIGID OR FLUID PARTICLES IN
SHEAR FLOWS.

The main purpose of this paper is to survey some basic: probléms in the field of
fluid mechanics concerning rigid and fluid (drops and bubbles) particles in viscous shear
flows. We discuss translation and rotation of spherical and nonspherical rigid or fluid
particles, particle-particle interactions in multiphase systems, homogeneous and inhomo-
geneous shear flows, flow past undeformable and deformable fluid particles and so on. In
addition to that we provide the solution of the problem of a spherical drop suspended in
an axisvmmetric shear flow. At the end of the paper some unsettled problems in the field
of shear flows are pointed out.
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BakeH KJacC TeYeHHA, KOUTO ce M3CJAEABAT MHOI'O MHTEH3MBHO Npe3 Hoc-
neauute 15 — 20 roavuu, ca rpagueHTHUTe Qaynauu tedeHuda. OceeH ¢yH-
JaMEHTAJHO T€ WMAT M BAXKHO NPUJIOKHO 3HaueHue. ['paiveHTHH QiryHaHM
TEUeHUs1 B'b3HUKBAT B XMMM4YECKaTa M 6Mojornyeckara NPOMMIIIEHOCT IpPH
IBWKEHUETO Ha CTEHWTE Ha Da3iUYHH anapaTd BbB ¢ayuiHa cpeda. Ilpu-
MEDM 3a TAKMBA TEUYEHUA ca TeueHUeTo Ha Kyer Mexay ABe PaBHMHHM MM
chepUUHN CTEHH, eAHATA OT KOUTO Cce JBMKM YCIIOPEIHo Ha APYraTa; TeYeHW-
eto Ha Iloa3boii B mmanuapuyna Tpb6a, MOPOAEHO OT 3axajeH I'paldUeHT Ha
HaJIAraHeTO; TEYEHUETO OKOJO KPUTUUYHa TOYKa, KOETO Ce Cpelia HalpuUMep
npu n06aw>KaBaHETO HA YaCTULM A0 KOJIEKTODP; Pa3TArallMTe M yNbJDKaBa-
IUTe TeYeHUA NPpH NPON3BOACTBOTO Ha BJIAKHECTH WUIHN HUIOKOBU NMOAVIMEPHH
MaTepuau M Op.

PesysntaTuTe 0T M3cieIBaHMATA Ha IpajMeHTHUTe TEUEHUA ce M3IT0 I3y~
BAT NpH MoJeNUpaHe Ha pa3nnqim AUCTIEPCHH CHCTeMy (CYCIEH3NMH, eMYJICHM
M Ap.), ABWKEHHETO HA epPUTPOLMTUTE, ABVOKEHUETO Ha Tella B Cleam (3an
ApPYTH Tella) WK TPAHUYHU CJIOEBE U Ip.

Hpocrn’re rpaaMeHTHA TE€YEHHA C€ XapaKTePHU3HUPpaAT OT €JMH MaKPOCKO-
MUYeH napaMeTbp S, HapeueH KoedUIMEHT Ha M3MEHEHNe Ha poduia Ha CKO-
pocrta. CloXHMTE FPAIUEHTHV TEUYEHASA MOTAT Ja Ce ONpeJeNAT OT ABa, TPH
¥ 1. H. mapaMeTpy. KoedulmeHT»T Ha H3MeHEHHe Ha Npo¢ula Ha CKOPOCTTa
S npu npOCTuTé- CPaIUEHTHM TE€UEHMA MMa U3MepeHMe, PeHMIIpOYHO Ha Bpe-
mero. Tolf yuacTByBa B M3pa3a 3a unciaoro Ha PeliHosac

a’
Re = S,
v
KOeTo € OCHOBEH AMHAMMUYEH NMapaMeThp B XMAPOIMHAMMKATa Ha IpaldueHT-
HUTe TeyeHWA (a € XapaKTepeH pa3Mep Ha TEUEHHETO, a Y — KMHEMATHYHMAT
BHUCKO3UTeT Ha Qiynia).

IIbpBuTe dyHmaMeHTasHU Pe3yJTATH B W3CJEeABAHETO Ha rpalMeHTHUTe
TeueHUA ca Mojyuenu or A¥inmaiin [1], kofiTo npecMaTalikn edpexTUBHMA BUC-
KO3UTET Ha CYCIIeH3UA OT eaHakBu chepuuny vactmm (1906 u 1911 .r.), pema-
Ba 3a/laYaTa 3a ONpelelifHe Ha XHAPOAMHAMUYHOTO B3aMMoielcTBME Ha NpoC-
TO IpaAMeHTHO TedYeHMe M HeyTDAJHO CyCNeHAupaHa B Hero cdepuyHa YacTH-
na, T. €. 4acTHlla, Ha KOATO He AeliCTByBa CMJaTa Ha TeXeCTTa MU ApYyrm
BBHIIHK CHIN. B To3m cayua¥f Ha yacTuiaTa Bb3JelicTByBa caMoO I'paliMeH-
THOTO TeYeHMe, KOETO Cb3HaBa HeHYJEBM HAIIpEeXeHUA BbPXY HOBbPXHOCTTA
Teopuata Ha A¥iHmaitn 6e o6o6wena ot Ibxeppu [2] 3a cycneHsus or
€JTUIICOMJaJIHA YaCTHLM, PY KOMTO Ba)KHa POJIA UTPae OPHEHTaUUATa MM OT-
HOCHO paBHMHATa OT T'PaJUEeHTHOTO TeUeHHe, UMAIA CKOPOCT, paBHa Ha HY-.
na. Tlopaaw pa3MYHaTa reOMETpUA Ha eNMIICOMAA B CpaBHeHMe ChC chepaTa
nacsensanusta Ha JDbkedpu Hamepuxa NpUJIOXKEHNsA B PEOJIOTUATA Ha aHN30T-
POTHM JIMCEPCHU M TIONMMEPHU CMCTEMM, TEYHUTE KPUCTAIM, TEUEHUATa C
ABoOliHO MpeuynBaHe U Ip.

Uscneapannara na Hkedpyu ce OTHACAT 3a MPOCTO FPAMMEHTHO TedeHHe,
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3ajaneHo B paBuunata Oy cbe ckopoctm u = Sy, v = 0, w = 0. To# ycra-
HOBAIBA, Ye HaNpexeHWeTo, MHAYUMPAHO OT TEYEHMETO BbPXY IOBbPXHOCTTA
Ha POTAIMOHHUSA eNIUTICOMI, MOKe €KBUBAJIEHTHO la Ceé 3aMeHM C AelicTBMeTo
Ha AB€ ABOMIIM — eJHATa Ce CTPeMH Ja 3aCTaBU YACTHMIIATA A4 Ce€ YCTAHOBU B
IIOTOKR, TaKa ye oCTa M Ja 6bae ycnopenna Ha octa Oz, a Apyrata — ocra
M 1a nexxu B paBuuHaTa Ory.

AKO pOTALIMOHHMAT €JINMCOMJl MMa yDaBHEHHE -

232 y2 2.2

St tm=1
2 b2 c2? ’
KbAeTo b = ¢, TO nox nelfictBueTo Ha JBeTe ABOMIM BbPXOBeTe My OIMCBAT B
chepnunm koopauuaty (r, o, ) TPAEKTODHUHU C ypaBHEHMe

aZbh?

tg26 = .
gf k2(a? cos?  + b%sin ¢)

Tyxk k e kKoHcTaHTa, KOATO 3aBUCH OT OPHEHTALMATA HA YACTHUIIATA, KATO HpH
k = 0 ronamara oc a ce BbpT# B paBauHaTa Ozy, a npu k = 0o cbmaTa oc e
ycnopenna Ha Oz. 3a BcsAka Apyra MeXaWHHa CTOWHOCT Ha k pOTANMOHHUAT
€JIMTICOMA C€ BBbPTHU OKOJIO OCTAa @ C BrJIOBa CKOPOCT

w = Ecos0.

OT Ta3n popMmyna caemsa, ue npu k = 0 monyuaBame w = 0, a ipu k.= 00 —
W= 5 .

N3cnensannara Ha Ibkedpu, M3BBPUHIEHU MOCPEACTBOM yPaBHEHHMATA Ha
CToKC, MOKa3BaT, ue MPU 06TUUAHETO HA POTALMOHEH EJUIICOM] OT MPOCTO
rpafiMeHTHO TedeHWe ‘He ce 3abesifi3Ba TEHAEHIMA OCTa MY Ja Ce Pasiolio-
KM B HAKAKBO NPEANOYHATAHO MOJOKEHHE OTHOCHO HECMYTEHOTO ABWKEHUE Ha
¢aynna. ToBa e HeAOCTAT'HK Ha MoZena, ¢ Ko#to cu caysku Dredppm. Mo-
MEHT'bT HA eJIUICONAA, M3UUCIIEH B CTOK U0 NPpUBIMKeHne, € pPaBeH Ha HyJa
HEe3aBMCHMO OT ODMEHTALMATA My IO OTHOLIEHNWE Ha MOCOKATa Ha OOTHYAIMSA
noToK. [Tonoben HeAOCTATBK HA ypaBHemmTa Ha CToKC ce HaGioNaBa U IpU
€KCLIEHTPUUHO Pa3MoJOXKeHa BbTPE BB BePTUKaJeH KP'broB LMJIMHIABP Cde-
pYuYHa YacTHLA, KOATO Maja Moa AeCTBHeTo Ha TeraoTo cu. Ilpu ABMKeHHeTo
cu cdhepaTa He MINUTBA CHUIIA, KOATO Na A NPUHYAM HAPe] C ABWKEHHETO CH
HaJAOJy Aa MHUIPHpa B palMaliHO HANIpaBJIeHWEe, HO TOBA MPOTUBOPEUYM HA EK-
clepUMEHTAJJHNTe HabJio NeHn.

Mpes 1923 r.  dakcen [3, 4] pa3pa60TBa MeToJ 3a pelllaBdHe Ha 3aJa-
un oT obTwdane Ha cdepa, HaMMpalla ce MEXIY JABe YCIODENHW DABHUHM.
To# u3xoxna or (byHAaMeHTaJmOTo pelueHue Ha ypaBHenueTo Ha Jlamiac 3a
HAJIATaHeTo

KOE€TO UMa BNIa
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lIpencrapatiky ToBa pellleHMe B UHTEr PajIHA dopma, Tolt mosyuasa

dadﬂ

r

oL / / {exp [i(az + By) — k|2]]}

—00—0Q

KbAT10 i = v/—1, @ 1 § ca UHTerpailMOHHM NpOMeHJMBU M k = /a2 + §2.
PaxceH U3NON3YBa Ta3n GYyHKIUA ¥ HeHHNTE YACTHU NMPOU3BOIAHM OTHOCHO Je-
KapTOBMTE KOODIAMHATH 33 M3pa3fiBaHe Ha OOIIOTO pelleHWe HAa ypaBHEHMATA
Ha Crokc 3a chepa B 6e3kpaeH ¢daynn B ﬂexapTOBn KOOpAMHATH

u = % //{exp[’(ax'*'ﬂy)—:“ z|]} - {.a92+2zl

- z|+ 1)+ a—2z-g3} dadﬂ; .
v = / /{exp i(az + By)]}iB - { ksgl(k|z| +1)
-~ "zx }dadﬂ,

zia

w = %77{exp[l(a:c+5y) klzll} { ||92 kgl'

v gkl + l}dadﬂ; |

S
{

% 7 7{exp [i(az + By) —k|2|]} {_gl + Ti_lkga} dadg,.

- 00 == 00

KbAETO g1, g2, g3 ca mpousBoaHu pyuxumu Ha o U §. Tl kato PakceH usnon-
3yBa MeTOJa Ha OTPAKEHUETO, TOBA NMpPEACTaBAHE e yA0GHO 3a yA0oBAETBOPA-
BaHe Ha TPaHUYHUTE YCIOBUA MOOTAEIHO BBPXY c(bepa.ra U BBPXY paanm-lwre
Ot tax ce onpenenar GyHKUMUTE g1, g2, 93-

3a cbnpoTuBieHMeTo Ha cdepa ¢ paauyc a, ABIDKella ce ¢bC ckopoct U,
yCIIOpeAHO Ha €1Ha paBHMHA, BB BUCKO3€H QIYHA ClI€X BTOPOTO OTpayKeHHe
dakceH monyuasa ' ’

. —6mpal
i 34 T ] 5
w1310 ~m (1) -5 (7

Kkbjero | e pascToaHMeTo OT LeHTHpa Ha cdepaTa o paBHMHATA. AKo cde-
paTa MOMe Ja Ce BbPTH, BLJOBaTa M CKOpocT 1e 6bae

= () (1-37):

W, =
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CucTeMHM U3cneaABaHuA Ha 06THUaHETO Ha cpepa OT rPaIMEHTHO BUCKO3-~
HU TEYEHHA MeXIy ABE YCIOpelHW paBHUHM u3pbpuiBa Bakua [5, 6]. Ua-
noasysaiiku pasputua oT Pakcen MeTox, Bakua pasriexaa Asa caydas: a)
Teuenne Ha Iloasboli MeXAy 1Be HEMOABWXKHU paBHUHY; 6) TedeHme Ha Kyer,
TPH KOETO eAHaTa PABHMHA € HENOABWKHA, a Apyrara ce ABWKH.

Ha o3naunm ¢ 2L pascToaHHETO MeXIy JBeTe PaBHMHU U B ABaTa ciaydvas
U Aa TIpearnosioKNAM, Ue IIeHThP'bT Ha cepaTa € pas3moiodKeH Ha pa3CTOAHUE

| = —2- OT elIHaTa CTeHa. Bakusa B3eMa HAYAaJOTO HA KOOPpAMHATHATA CHUCTE-

Ma jAa CbBNAaJa C- LEHTbpa HA cdepaTa M pasriexAa TeUeHHE MEXKIY ABeTe
paBHHAHMA OT BUJA

Uoo.:U‘zgz'"L]'zzv © Voo = Weo =0,

3l 32

kbaeto U e cKopocTTa Ha ¢Jywaa BbpXy paBHuHaTa z = 0. 3a cuiaTa Ha
C'BIIPOTUBJIEHUETO YCIIOPEIHO Ha paBHUHUTe To¥ MoJjyvaBa

6mpall [1 - % (%)2]

1-0,6526% + 06,3160 (%)3 0,242 (%)4

W, =
i

a 3a MOMEHTa

8 2 a a 3
Ty = zmpa®lU - = |1+ 0,0758 (=) + 0,049 {
3 l { I
KbAETO a € paaMychT Ha cdeparTa.
Tlpeanonaraiiku, ye no-6iauskaTta A0 c¢depaTa paBHUHA € HEMOABIDKHA, a
Ino-najedHaTa ce ABWKHU C'bC CkopocT U, BbB BTOpUA cilyyail Bakusa pasriex-
Ia CAeIHOTC HECMYTEHO Te€UEHHE MEXKAY paBHUHHTE:

U U

uoo_ 41 voo:wo<',=0.‘

Karo H3ToJ3yBa KoopanHaTHa CVIC’I‘eMa, HeMOABWHO CBbpP3aHa CBC C(bepa,Ta,
3a C'bNPOTHUBJIEHUETO Toﬁ,nonyqasa

‘3/27r/1aU

B e (7) +0.4008 ()"~ 0,297 (%)

y

a 3a MoMeHTa —

T, = dmpa?t 062 ay?
1, = 4mpa®U ] [1+0,05061+0,033(1) ]

Uurepecin TeopeTHUHU U3ClieABAHUA HAa IPAJAMEHTHN TE€UEHHA M3B'bpI-
sa bBpexceprou {7}, Ko#To npuaara meTosa 3a cpacTBaHe Ha ACMMOTOTUYHUTE
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pa3naraHua 3a pellaBaHe Ha 3a/a4daTa 33 HeyTPaJHO CYyCHEeHAMpaHa UMJIMHI-
pUYHAa YaCTUHUa B NPOCTO rpaaneHTHo TeueHume. OcBeH ToBa Bpexepriu [8]
pasrjexkna ¥ APYrU YacTHIM C I10-CA0XKHA GOpPMa B rpadMeHTHN TeYeHUA U yC-
TaHOBABA ChlleCTBYBaHETO U HAa APYTM ABWKeHUA (MOaM) B AON'bIHEHHE K'bM
nsyyenute ot IDhxeppu n Pakrcen’ _

" H3acnensaHo e  BAMAHWETO Ha IMJIMHAPHYHA CTefa BbPXY JABMKEHMETO Ha
TBEPAM YACTUIM BBB BUCKO3eH ¢uyua. M36opbT Ha To3u BuA rpanuna (cre-
Ha) e CBbP3aH C TOBa, Ye LWIMHIPUYHATA MOB’bPXHMHA OBrPaxIa HAM'bJIHO
KaKTO YaCTHUIATR, TaKa M GAYUAHUA MOTOK. ‘

IIpes 1907 r. Jlageubypr [9] pasraexna 3afayvaTa 3a JBHKeHHE Ha TBBLP-
na cdepa ¢ mocToAHHA ckopocT U/ B HampaBjieHMe Ha OCTa Ha KpbhbroBa LU-
JuHApuYHa Tpb6a. KaTo mamonsyBa mpubiwkeH MeToa, Tod moiayyaBa 3a
CBIPOTUBJEHUETO, KOETO U3NUTBa chepaTa NP ABWKEHMETO U B Tp1bara,
. popmynaTa

w a
1 —=1+24—.
(1) 6rpall ro
Tyk a e pamnychT Ha YacTMHATa, a g — paAMyChT Ha CEYEHHMETO HAa KDPb-

roara Tpbba. ManonsyBaiikn Metoma cu, ®akcen [10] pemasa cbimaTta 3a-
Zaya ¥ MoJy4yaBa CbUIO, Ye YACTUNATA W3INUTBA [O-TOJAMO CHIPOTUBJIEHHE,
OTKQJIKOTO TIpM IBWKeHMETO M B HeopraHMYeH BUcko3deH ¢payun. C ToBa Tofi
NOTBBPXKAaBa U3BOJa, Hanpased oT JlazenGypr, 3a saxbpkaltoTo BIMAHME
Ha UMJMHADWUYHATA CTEHA B'bPXY IBIKEHMETO Ha dacTHuara. KaTo usnoJsy-
Ba MeTona Ha ®Pakcen, Bakua [11] pemaBa 3anauata 3a aBmKeHMe Ha cdepa
10 0CTa Ha KP'hroBa IMAMHAPUYHA TPpb6a, B KOATO MMa Pa3BUTO TedyeHHE HA
IMoasboif. 3a cpnpoTHBIeHNeTO, KOETO M3NMTBa chepaTa, ToH Noayyapa
. 1 2 a - ”
(2) W - 31‘0 l

6mpall

. 2"
1-2,1042 42,002 — 1,11 (i>
S To o o

3a cpaBHeHHe c pesynratuTe Ha Jlagenbypr To# pemaBa M 3agayaTa, KOFaTo
chepaTa’ce ABWEM N0 ocTa Ha Tpbbara c nocrosHHa ckopocT U ¥ mony4daBa
mno-To4yHara B cpaBHenue ¢ (1) popmyna

.

3) W 14912

6rpal To
M3sbpuIBaiikn eKCIIEpUMEHTH 3a GaBHO IBWXKeHME Ha TBbDAA chepuuna
YaCTUUA, HEYTPaHO (cBoGoaHO) cycneHmpaHa B Teuenue Ha [loa3boli B kpb-
ropa HMIMHApUUYHA Tpb6a, mpes 1961 n 1962 r. Cerpe u 3unbepbepr [12 13]
Habmo naBaT CTPAHMYHA MMUIPallMA Ha YacCTUUATA, yuiiTo HEHTHP Ce yCTaHO-
BABA B PABHOBECHO I0JIOXEHMe, oTAajledeHo Ha okojo 0,6 paauyca oT ocTa
Ha IWJIWHAbPA, HE3ABUCMMO OT HA4YaJHOTO M IOJOXKEHHE OTHOCHO OCTa. AKO
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YyacTMLATA € cycrneHAMpaHa 6IM30 A0 CTeHaTa, TA MHTCDUPA HaBBbTPe, & aKo €
cycneHIMpaHa 61130 X0 0CTa, TA MUTPHPa B NIOCOKA K'bM cTeHaTa. To3u edekt
Ha CTPaHWYHAa MUrpauMd Ge MOTBBPAEH M B U3CIEABAHUATA HA APYTLW ABTO-
pu [14, 15, 16] KOUTO YCTAHOBMXAa OTHOCHUTEJHO HErojfaMa YYBCTBUTEJIHOCT
KM rojieMMHaTa Ha YMcioTo Ha PeHfHonac (mpecmerHaTo, KaTo ce M3M0J3yBa
I'bJDKAHATa Ha AAaMeTbhpa Ha Tp’b6aTa) M OTHOLIEHWETO HA nname'_r'bpa Ha
Tpb6aTa 2r9 M AMaMeTbhpa Ha yacTULATa 2a. '

'Tipu aBwkenue na paspeneHa CYCHEH3NA 0T HEYTPAJIHO NIy Bl cq)epw{-
HM YacTUIM BBB QAyul B Kpbriaa - UMAuHApuuHa Tpbba Cerpe u 3unbepbepr
KOHCTATHMPAT HaAW4YMeTo Ha HalpeUHH CUIM, CTPEMSAIM C€ Ha NMPEeMECTAT Yac-
TUIINTE, KOMTO ca 6JM30 0 OCTa, KbM CTeHAaTa U OofpaTHO -— YACTHULIKATE,
'KOMTO ca [0 CTeHaTa — KbM LEHTbpa Ha TpbbaTta. B pesyanrar Ha aelicr-
BHETO Ha Te3M CHJM HE3ABUCMMO OT HAUAJHOTO CHM MOJIOXKEHME UYACTULIHUTE Ce
KOHUEHTPMPAT B NpbCTEHOBUIEH COH, KOWTO e pa3nosiokeH NMpUGIN3ATETHO
B cpelaTa MeXAy OCTa M CTeHaTa Ha Tpbhbata.

Onnture Ha Cerpe u 3uabepbepr ca mpoabmkedn or Cmon u Efxopn
[17], Me# n Tenern [18], dencbH n cbabTopy [19] u ap. 3a TBBLpAM yacTHuM,
KOMTO He Ca HEYTpaJIHO CYCIHEeHAMpaHM B TeueHHeTo Ha [loasnolf B kpbroba
Tpb6a, a UMAT MO-TOJIAMA WJIM NO-MAJjKa IUI'bTHOCT OT I'bTHOCTTA HA 3a0-
bukanauma ru ¢payna. Ot M3C/leIBAHMATA HA Te3W aBTOPM CJejBa, 4e aKo
II'bTHOCTTA Ha cpepuuHaTa yacTuna (Hamupalia ce B TeueHue Ha [loasnof,
HACOYEHO HaJO0Jy B'bB BePTHUKaliHa Kp'broBa Tpb6a) € 1o-rojiaMa oT MIbTHOCT-
Ta Ha 3ao06uKaaAmmMa A GAyul, MMaMe HaclarBaHe Ha CKOPOCTTa Ha cdeparTa,
npeau3BUKaHa OT CHMJIATa Ha TEXECTTAa M HOCEIATa CKOPOCT Ha TEUEHHETO
MUTpalMATa Ha yacTUUATa | KbM CTeHaTa Ha TPpb6aTa. AKQ IMUI'bTHOCTTA U €
Mo-MaJiKa OT IIBTHOCTTA Ha $uynna, ClIOMEeHAaTUTe ABe CKOPOCTHM MMaT Ipo-
THUBOMOJIOKHM [TOCOKM ¥ MHUTPalMATA Ha YacTUIaTa € KbM ocTa Ha Tpbbara.

TeopeTnuHoTo 06ACHEHWE Ha Pe3yJITATUTE OT T€3U €KCIIePDUMEHTH Cpella
roJjieMu 3aTpyaHenua. V3nonsyBafiku MeTona 3a cpacTBaHe Ha aCHMIITOTHY-
HUTe pasnaranus, Py6unos u Kenep [20] nokasBat, 4e ABMKeILaTa ce ¥ € JHOB-
PEMEHHO ¢ TOBa BBPTANIA ce chepa B HeMoABWKEH BUCKO3€H QIYUA M3NMUTBA
CUJIA, KOATO € NepleHIMKYJIApHa Ha NMOCOKaTa Ha ABWKEHME, T.e. M3IUTBA
noJIeMHa CcUJia

Fp = 7r‘a.3p§ x U[1 + O(Re)].
Tyk U e ckopocTTa Ha TPAHCJIALUMOHHOTO ABWKEHME, §} — BIIOBATa CKO-
“pocT, p — MI'BTHOCTTA Ha ¢uaynna u Re = g_l_]_g — umncjoro Ha PeMHoanc.
Kato usnossysar To3m pesyiarar, Py6unos nliienep NpagAT omuT ga obsac-
HAT TEOpeTUYIHO ekcriepuMenTuTe Ha Cerpe u 3unbepbepr, HO MojyyaBaT, ue
CTPaHWYHATA CHJa e HACOUEHa TaKa, dye cBo6oaHO CyCIleHApaHaTa B N0a3bo-
€BOTO TeyeHHMe CPepuyHa YacTHUAa BHHArW MHrpupa KbM ocTa Ha TpbbaTa.
o T03M HaYMH JOPM C NMPUBIAMYAHETO HA KOHBEKTUBHUTE UJIEHOBE B ypaBHe-
HUATA Ha ABWKEHMe He MOXKe [a ce ale 3aJOBOJIATEIHO TEOpeTHUHO obscHe-
HHe Ha nocoueHus edpext. BpemeprvH [8] Macaensa TeopeTuuno mMurpanuara
Ha pa3sAuyHM 1o $opma TBHPAM WacTHuM B Tevenua Ha [loaspoil n uskassa
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‘NIPeAoJIOKEeHUETO, Ue TOBA BJINAHNE € CB'LP3aHO C MHEPLMOHHUTE YIIEHOBE B
ypapuenuaTta Ha Hasme — Crokc. B excrnepumentute Ha Cerpe u 3unbep-
6epr (1961, 1962 r.) umcaoTo Ha PeHfHoNAC ¢ XapaKTepeH JNHMHeeH pa3Mep
/— nnaMmeTbpa Ha TpbbaTta — 2r¢, e okoso 30, Makap ue yucioro Ha Peii-
HOJIJAC, IpeCMeTHaTO Ype3 AMaMeTbpa Ha cPepHyYHATA HACTHUIA, € MO-MAJKO
ot emuunua. Ioaacmur m Meiichu [21] pasriexxaaT cBoGoaHO cycneHaupa-
HU chepuuHM yacTULM B TeueHue Ha I[loasnoif, koraTto uncinoro Ha Petinoanc

2rg - v
Re = ___p < 1, 1 ycTaHOBABAT €KCNEPUMEHTAJHO, Ye HAMA MUTpalisa MpH

2ro - vp

yncno Ha Pelinonac Re = , TI0-MaJiko oT emuHuua. Te He Habaonma-

BAT MHUTpalA ¥ NPHA. CBOGOAHO CyCNeHAMpaHM TBbPAM YACTULM C popMa Ha
JMCKOBE ¥ IIPTH C KPBLOBO CeYeHHe.

3a HAKOM YacTHLM C mo-ocobeHa popMa oﬁaqe BpenepTbH ycTaHOBABA,
ye u npu Re <« 1 cpinecrsysa CTPaHWYHA MUTDALMAA. Cobumar pesynrat
33 HaJM4YMe Ha MUTpalMA M B YCJOBUATA Ha 6aBHO BHMCKO3HO IBWKEHMUE Ha
AepOpPMUPAHM KANKU € MOoJydeH eKcnepuMmeHnTtatHo oT onmacmur u Melichu
[21]. Ananmsmpatixu kpuTHuHO 0GCHKAaHOTO aABneHne, Cadmbh [22] U3Ka3Ba
NPeAIooXKeHUe, e PN HAKOM YCJIOBHMA MOTraT Aa Ce OKAXKAT Ba)KHM HE CaMo
MHEPIMOHHUTE, HO ¥ HEHIOTOHOBHUTE €(EeKTH. o

" Karo usnonsysat 6nc¢epuqm{ koopauHaTH, ['onmman, Kokc u Bpenep
[23] monyuaBat TOUHO peleHMe 3a GaBHOTO TPaHCIALMOHHO [BIKEHNE Ha He-
YTpaiHO CycneHIMpaHa TBBPIA cpepuuna yacTHla B Tedenue Ha Kyer. Ha-

" MEpEeHOTO pellleHne e BAaJMIHO 3a MaJjK4 umcia Ha Peé#nonac u IPOU3BOJHO
OTHOUIEHWE Ha PAa3CTOAHMETO Ha cdepara fo pabmnunaTa (Ge3 cnywan wa Ao-
INMpaHe Ha YaCTHIATAa A0 PABHMHATA) U paauMyca M. '

TouHO pellieHne B CTOKCOBO MpUGIMKeHNe Ha 33]ayYaTa 3a o6TMYaHE OT
rpaJMeHTeH BUCKO3€H OTOK Ha cdepa, Jomupalla ce A0 PaBHUHA, € KaAEHO OT
Hua [24] npes 1968 r. O6o6wasaiiku Metoaa na uits u O’Hun [25),3a pema-
BaHe Ha MPOCTPAHCTBEHM 330a4M 33 06THUYaHe 0T PAaBHOMEDPEH BUCKO3€eH MOTOK
Ha cdepa 61M30 n0 paBHMHa UM aBe cpepy, Bakus [26] pemasa 3anauaTa 32
IBe cHepUYHM YacTHLM, CYCHEeHAMPAaHM B IDalMEHTEH BUCKO3€H MOTOK, Koii-
TO € HaCOYeH B HallpaBJjieHWe, NePNEHIMKY AAPHO Ha OCTa Ha LEHTPOBETE MM.
Toit xaro Bakua pasraexia camo yacTHUA caydall (0CTa Ha LlEHTpoBeTe Ha
cpepuTe NexHU B paBHUHATA HA TPAIMEHTHOTO TeUeHME M MMa CKOPOCT, paBHa
Ha HyJa), mpe3 1971 r. Ie#suc [27] pasrnexna o6mma cnyuait, npu koo
ocTa Ha ABeTe cdepH M PaBHMHATA C HYJIEBa CKOPOCT B TPAJAMEHTHOTO T€YEHUE
ca B obmo nonoxkeHue. AHaIM3 Ha TPAEKTOPMUTE 3a ABWKeHUWE Ha cdepH c

' PaBHM PalMyCM B TPaJMEHTHO BHUCKO3HO TedeHWe e HampaBeH oT Jluu m 1ap.
[28]. Tlo-cnommar cayuaif, koraTo Hapex C rpaJMeHTHHA NMOTOK Ha cepu-
Te AedCTBYBa M JONbJIHMTENHA CHJIa Ha NMPHUBIWYAaHe OT Tulla Ha JIoHIOH, €
pasraenal ot Kaprtuc u Hockunr [29].

CucreMHO M3cneABaHe Ha XMAPOIAMHAMUYHOTO B3aWMozelicTBMe Ha IBe
cBoGoaHO NBWKeMM ce ChepH B I'PaJUEHTEH BUCKO3€EH NOTOK € U3B'bPIIEHO OT
Betuenop u I'puiin [30]. Ot Texuure pesynraTu KaTo 4acTeH caydaif ce mony-
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uyaBaT pesyaratute Ha elisuc [27] u va JIun u ap. [28]. TouHo pemenue Ha
ypaBHeHuATa na CTOKC 3a 3aJayaTa 3a ABe JONMpallN ce Chepu, CyCTIeHaMpa-
HM B PAIMEHTHO BUCKO3HO TedeHMe, e MoaydeHo oT Bakmusa [31] mpe3s 1971 r. .
lBe roaunu mo-kbcHo Hup m Axpusoc [32] pasraexaat mo-obmma caydai,
KOTaTo JONMpaluTe ce chepu MMAT Pa3jMuHM paarycu. Te npecMATaT cuim-
Te ¥ MOMEHTHTe, AeHCTRYBanm Ha JABeTe YACTHLH, M M3N0J3yBaT TOJNYyYeHUTE
pe3yJjTaTi Mpy MOIEJMPAHETO Ha pa3pelleHH CYCIIeH3WM. ;

B [33] e pemena kiacuyeckaTa 3aiaua 3a oGTuaHe Ha cdepa oT pas-
HOMepeH BUCKO3€H TIOTOK NPU MaJKM M Kpalnu umcia Ha Pedinonzc. Tyx me
pasrnename 3ajadaTa 3a o6TMUaHe Ha chepa OT NMPOCT IPaAMEHTEH MOTOK B
CTOKCOBO MpuGwkenue. Ilpn nunca Ha BHHIAKM CUIM ypaBHernATa Ha CToke
B IEKapTOBU KOODAMHATH (I, y, Z) MMAT BUIa
(4) pAu=~a—1—)-, /.tAv;@, pAw:-a—I—).

Oz Ay 0z

Upes nmbepeuunpane Ha ypaBHEHMSATA (4)mn uanonsyBaHe Ha yPaBHeHUeTO Ha
HeIIpeKbCHATOCTTA

-

: du Ov Ow
5 gu 9 v _y
(%) CE S
nonylla,BaMe, ye,.HaJlAraeTo yﬂoBHeTBOpﬂBa ypaBHe}meTo
(6) ' Ap=0.

Torasa pelleHneTo p(:c ¥, 2) Ha (6) mMo¥e na ce 3anullle B pex IO ChepUIHHUTE
cbym(uvm Py ,

(7) . p:'ZPn,

KaTo OTAeNHUTE WiIeHOBE Ha ToBa pa3jlaraHe ca He3aBUCHMM. 3a la M3pasuM
KOMITOHEHTUTE Ha CKOPOCTTa U, v, W mocpeactsBom P,, monarame

o P, o ( P
— 2 n n
(8) u = Ar v +BZ+38$ (17-2,;—“),
0P, 0 P,
2 2n+3 n
vo= At BT S (;fm)
oP, nes O P
w = Ar? a +B2 +3az (r2n+1)!

kbaero r? = 22 4+ y? + 2%, a A u B ca xoncrautu. KoHcTaHTaTa A ce ompene-

nA Taka, 4e u3pa3bT Ar? a—- Aa yIoBJIeTBOPABa 'bPBOTO ypaBHEHHUE Ha (4)
L
Tov# rato .

.

A(ﬁm);ﬂACW)+4<6 0 . 0)\oP
“or )" % *5z. Y5y 757 ) Bz
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0P, 2 0P,
+ 3z A )f2(2n+1) 5
T0 3a A mony4yaBaMe
1
T 2(2n+1)p”

0P,
Y
2 0P,
u Ar 5, YAOBJETBOPABAT CLOTBETHO BTOPOTO M TPETOTO ypaBHEHMe Ha (4).
z

JlecHo ce mpoBepsBa, Ye NIpU To3u U360p Ha KOHCTaHTaTa A uapasure Ar?

Koncranrata B onpenename, kaTo 3amMecTuMm (8) B ypa,BHermeTo Ha HEMNpEeKbC-
HaTocTTa (5):

n .
T (n+1)@2n+ )20+ )’

O6morto pemenne Ha (4) n (5) ce monyuaBa, KaTo KbM 0BINOTO peilteHne
Ha XOMOT€HHATa CHCTEMA. '

(9) Au® =0, Av* =0, ' Awk =0,

Gul  Gvh  Ouwh
—+Z 4+ =0,
or

(10) 5+

npubaBUM elHO YACTHO pelleHMe Ha HeXoMoreHHaTa cuctema (4), (5).
Ot (9) cnemsa, ue pynkumure u®, v*, wh (amamormuno ma wansramero)

MoraT Ja Ce NMpeICTABAT BbB BUA Ha pexl nocpencraom chepuuru GyHKIMM,

Te
— h h _ h h h
ST A=Y wr=Yul
n n. n
h

“Tyk uﬁ, v, w,’} YAOBJIETBOPABAT yPaBHEHNETO Ha HemperkbcHaTocTTa (10) 32
BCAKO n, Thil KaTo ca JINHeliHO He3aBMCHUMMU.
Kato andepenimpame ypasHenuero

Oul 4 ovh ’+ owh
8z ' by 0z

:\0

OTHOCHO T M ro MpUBABUM K'bM I'bPBOTO ypaBHenue Ha (9), monyyaBame ypas-
HeHMe, KOeTO MOXKe J1a Ce 3alMilie BB BUAA

1) 9 (av,, _au,': _ 0 (0uh Qu}
, Oy\dz By ) 09z\0: 0z /)"
HO AHAJOI'NY€eH Ha‘-lﬁH nonyqaaame n ypaBHeHMﬂTa.
(12) : _f)_(@wﬁ _Ovh\ _ 9 (ovp  Ov} )
9z \ 8y 8z ) 08z \dz by
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s o (0w outy_ o (ot o)
0x \ 0z dr )~ Oy \ Oy 0z )’

PaBencrBata (11) — (13) noka3sart, Ye chbiuecTBYBa QYHKUMA n(Z, Y, z), 33
KOATO €a B CMJia paBeHCTBaTa ' '

(14) Oxn _ Ouwl vl - O, _ Oub 3 ouwk
8~ dy 0z’ dy ~ 8z Oz’
Ornn % _ Oul
6z 0Oz Oy
CaenoBartenso

8%, 0%, 0°x,

Ox? + oy? + 022 =0,

T.¢. QYHKIMATA x,(Z, y, z) e cbllo chepUyHa (GYHKIMA OT CTereH n.

JlecHo ce ycraHoBsBa, 4e u3pa3bT zul + yv! + 2wl e chepuuna dynxuma
ot (n + 1)-Ba ctenen. Ot (11) ~ (13) cnexsar
On yax,. _ xauﬁ + yE)ui‘1 n zau
Oy 0z oz Jy 0z

I
3>

(15) z

7
(et g+ )

U [Be IPYr¥ aHAJOTUYHM ypaBHEHUSA, KOUTO ce moayyuaBat oT (15) upes mmk-
nvuHa 3aMAHa Ha T, ¥, z W u’, v}, wh. Cnen nssectHn mpeo6pasysanus or
(9) - (10) monyuyaBame '

(16) A [zul + yoh + zwl] = 0.
Cre10BaTe/IHO MOXKe Ja 3allUIIeM ,
(17) zul +yo? + 20wl = 9,44,

kbaero ®,41 e chepuuna pynxuma ot (n+ 1)-sa crenen. Karo 3amectum (17)

B (16), 3a HeusBecTHaTa QyHKuMaA u} Hamupame

| 0% Oxn O
h n+1 n_ n
(18) (n+1)u, = iy Ve

Oz

Anajornuno 3a v? u w? nonyuasame

_ 6<I>,,+1 +Iax,, _ z@x,,
T8y 0z oz’

(19) (n+ 12

od O O,
h _. n+1 n n
(20) wn - 62 + y 6.’1,‘ I ay .
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Umatikun npeasun, ye uoM ¢yHximute Po41 M s, ca chepuyHM, TO U
(n+1)®,41, (n+ 1)3, cbmo ca chepuunm ¢yHKnMM, Moke Ge3 orpaHUUYeHHe
Ha obmHocTTa na m3octasum B (18), (19) MHOxHMTenn (n + 1). Taka nonyua-
BaMe, ue DellleHMATa Ha XoMoreHHaTa cucrema (9), (10) Morart ma ce 3anuuar
BbB BHJA

(0%,  Oxn O
h n no 1
(21) ‘u,, Z(@x +zay y@z)’
. od Osq O,
h n n n
On Z(ay tI, z@x)’
Z 8o, + O, izax,,
9z Yoz 0y ]

Kato B3emeMm npeasua v3pa3ute 3a A u B, 3a obmoTo peileHne Ha XOMOTEeH-
HaTa cuctema (4), (5) monyuyaBame

1 r2 0P, nr2nt3 o P, ].
(22) v = 2 Z [2(271 T 0z ¥ D@n+ )@n+3) 0z r2“+1]

(e )

1 2 (')P,, nr2nt3 o P, ]
(23) v = ;En: [2(2n+ 1) dy (n + 1)(2n + 1)(2n + 3) By r2"+1]

I

i

ad,
+}_:6

X (550,

' 2
(24) w'= lz[ r? 0P, +
l‘ n

22n+1) 92

0P, Oy,
Lt (v52 -

nr2n+3 0 Pn ]

(n+1)(2n + 1)(2n + 3) 8z r2ntl

_f’_ﬁ)
8y )’

Ot (21) - (24) canenBa, ye MONYYEHOTO pellleHNE 3a KOMIOHEHTMTE Ha CKO-
pocTTa ce M3pasdBa ype3s dyHkuuute P,, ®, u s»,. Tpure cymm B AsAchara
cTpaHa Ha ypaBHenuarta (21) — (24) xapakKTepusupaT CbOTBETHO BAMAHMETO
Ha paslpejieIeHUETO Ha HAJIAraHeTo, MOTEeHUMAaHNA U BUXPOBUA XapaKTep Ha
06THUaHETO Ha TRBbpAATA YacCTHMlla. BbB BEKTOpEH BMA ypaBHeHuaATa (21) —
" (24) ce 3anucBaT NO-KOMIAKTHO TaKa:

n+3

AL -
i D@nT3) Vo

(25) 7= i [(Vxn x 7) + V&, +

“EINERT 3)’P"] :
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3a na npuiaoky noaydyeHoTo obiuo peureHue (25) 3a pewasaHe Ha 3anda-
yata 3a oO6TuuaHe Ha TBbpAA cepa OT rpajueHTeH noToK, AMHmaln u36u-
pa KoOpAMHATHA cUcTeMa Taka, 4ye HauyaJoTO M [a CbBMNaAa C UEHTHpa Ha
YacTMIIaTa U ocTa T [Ja € HacodeHa B HaNpPaBJEeHHETO Ha CKOpocTTa () B
6e3kpalinoct. ToraBa rpaHMUHNTE YCAOBUA Ce 3alMCBAT TaKa:

(26) u=v=w=20 npu | r=a

U= U(ay, 0, 0) npu r — 00,

KbAETO a € paAUychT Ha chepaTa U & € eANHCTBEHATA HEHYJIeBa KOMIIOHEHTa
Ha TeH30Pa Ha CKOpoCTTa Ha AehopMallUATa 3a pasrjekAaHoTo Tedenue. Ilpu
To31 M360p Ha KoopAMHATHATA CHCTEMa 4YJICHOBETE B (25), cvabpxay ¢,
OTIAAAT, 32072 OCUTE M CHBMNAJAT C TJIaBHUTe oCcH Ha Jedopmaumara. Karto
OTUMTA TOBa, Cilex U3BecTHM npeobpasyBanusa AMmmaiin [1] mamupa, ye Ha
HyJla He ca paBHM caMoO (yHKLUUHKTE

22— y?

1 2 2 _— 5
(1)2 :»Za(l‘ -y ), ‘I)_.3 = B-3a 2

z y
P_3= ﬂA-s—'—rg—,

KbaeTo A_z n B_5 ca koncrantu. Chnen nsBecTHu npeobpasysanma ot (21) -
(24) cnensa

- 1 3 22—y [ 52, 5, 4, 2] az
(27) u = :?-A_;;q r—r5——~+B_3a [——4(1' -y)+ ol +-2—,
1 z’ 5y . 2 _ 2y _ 2|, oy
v = -2—A 3ay +B_3a [ F(z —y_)—ﬁ +—2-,
3 2’ y2 s[ 52, o o t
wo= A 3a"z _7—§_+ B_3a —;;{(1‘ -yl
Ot rpannunnte ycaosus (26) Hamupame . )
5 1 3
A_3 = —rz'a, B_3 = ——4-(]0 .

3amectBafky B (27), 3a KOMIOHEHTUTE HA CKOPOCTTa OKOHUATEJIHO Ce MOJy-
JaBa ‘ '

’ az [ 5(a® a*\z2?-y* a®
(28) _ u = —|[—-=|=—=5—-—= —-—l-——+1;
9 9\ 78 2 ) 2
ay[ 5/a® a®\ 2% —¢? . a’
v = —_= |~ = x5 | - N
2 2\ r? r? '
S5az fa* a3 2% - y? ‘
w = - —
4 r2 r3 r2
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HsBectHO €, ue cuaarta, AeficrByBama Ha cdepa, o6THYaHA OT paBHOMeE-
peH Ge3xkpaeH BUCKo3eH ¢ayua, ce gaBa oT dpopmynata Ha CTokc

(29) F = 6rpats,

KbAETO U = const. [Ipe3 1924 r. Pakcen [34] o6obmasa (29) 3a cayyasa Ha
TBbpAa chepa, 06THUAHA OT CTALMOHAPEH NPOCT PAJAUEHTEH BUCKO3EH MTOTOK.
Tol ycraHnoBsABa, 4e TeopeMaTa 3a CHJaTa, C KOATO AeHCTByBa CTALMOHAPEH:
BHUCKO3€H HepaBHOMepeH NOTOK B'bpXy TBBbpAa chepa, HamMupalla ce B Hero,
ce naBa C ¢popMmynaaTa

2

= 1 . _ - \S
(30) F= 67r/1a47ra /v(r)da = 6rpa(Te)”.

TyK oo(r) € ckopocTTa Ha HepaBHOMepPHHUA NMOTOK B Ge3kpaliHocT, S e moBbD-
XHOCTTa Ha cpepUYHATA YACTHULA, a

(31) (7o) = 1 / Foo(r)dor

4ra
s

€ cpeaHaTa CKOPOCT Ha HOBBPXHOCTTA S.

Ot (30) npu U (r) = const, T.e. npu paBHOMepHO o6THYake, ce MTOJy4YaBa
KaTo JyacTeH ciyda# popmynara Ha Crokc (29).

NoBenenneTo Ha Gpayuaaute yacTUIM (KAalk¥ M MEXYPH), CyCHeHIMPaHM
B I'PaAMEHTHHM TEeYeHUs, Ce pa3Nu4aBa MHOrLO OT MOBeleHWeTO UM B PaBHO-
MepHUTe B Ge3kpaliHocT Teuennsa. JlokaTo npu 6aBHM HerpaaMeHTHN TeUeHUA
(T.6. paBHOMEpHM TeUEHUA NpPU MaJKu uncia Ha PeliHonnc) chepuunnre Kam-
KM ¥ MeXypu 3ama3par GopMmaTa CH, aKO UMAT MAJKU pa3Mepu WM rojaMo
noajbpxrmcfﬂc; HallpeXKeHMe, TO NPU CUJTHO T'PaJMEHTHM TeUeHUA TOBa He e
raka. ®opmaTa Ha GAYNAHNTE YACTULM MPU BTOPUA BUIA T€YEHHA 3aBUCH He
.caMo oT obeMHNTe Ui Mexx Ay ¢a30BUTe cBolicTBa Ha QJyHAa, HO M OT Tpalu-
eHTa Ha Npopuna Ha ckopocTrTa S Ha TeueHHero. lIpm Maiku cToitHocTH Ha
S dopmara Ha dayuaHUTe yacTHM e Gau3ka go cepuyHaTa, a NMPU MHOI'O
rojieMu S HaCTbNBAT U3B'bHPEAHO CHJIHU AePOPMALM, IPK KOUTO GIyMIHATA
YacTHlla CTaBa HEYCTOWYMBA U Ce pa3liend Ha JBe eIHAKBM Kallk¥ MM HAKOJKO
[MO-MAJIKK CATEJMTHU KAIIKU.

Ille orGeneskuM, ye Makap ypaBHeHHATa Ha CTOKC U ChOTBETHUTE I'Da-
HUUYHM YCHOBUA Aa ca auHeiinn, 1Tb# kaTo dopmaTa Ha Kamkurte (Mexypure)
ce 3ammcBa ¢ HeJmHellHOTO ypaBHeHUe

f ot ’ -
f (f—a _!!I_, i') Cd) l_l') = 0)
a p

a a

_pasriexaaHuAT npobiem e HeamHeeH. VIMEHHO MOpalM Ta3u HeJMHeHHOCT Ha
npobaema 3a pa3iMKa OT o0TMYAHETO Ha TBBHPAW YACTULIM (C M3BECTHM I'pa-
HULM) OT TPRAMEHTEH BUCKO3€eH MOTOK NpH QIyNMAHMTE YaCTHIM AOCETA HE Ca
MoJiydyeHd TOUYHU pellleHWA B ciiydas, KoraTo ¢opMaTa MM He e cPepudHa.
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IILpBuTe QpyHaaMeHTANHN pe3yJITATH B M3C/elBaHe NOBEJIEHUETO Ha Kal-
Ka B rpagueHTHo TedeHMe Ha KyeT m xumepGoauuHo BUCKO3HO TedeHUe, KaTo
ce usnonsypar ypaBgenuaTa Ha Crtokc, uapbpmsa Tednop [35, 36] — cb-
oTBeTHO npe3 1932 n 1934 r. YnmoBieTBopABaffkM IpaHUYHHTE YCHOBMA 3a
HENMPEK'bCHATOCT Ha CKOPOCTTa M TAaHreHLUUAJTHOTO HalpeXKeHHe BbPXY 3ala-
leHa chepuuHa MeXAyPa3oBa rpaHUlla, To# MpecMATa CKOPOCTTAa U HOPMaJi-
HUTe HanpexxeHWA B oBjacrTa Ha TeueHuero. KaTo M3NonsyBa ypaBHEHHUETO
3a 6GaJslaHca Ha HOpMaJiHMTe HamnpeXeHusa, Teilmop HamMmpa ciexHaTa dopma

Ha QJAYMIHATA YACTUIA:
2D
r=al{l+ —zy},
a

KbaeTo D e napamersp Ha AedopMalMATa, 3a KOWTo MMame

L-B _ Sap19k +16
L+B o 16k+16

D=

Tyk B=a(l1-D), L=0a(14D), k= % (it ¥ pu ca BuUCKO3UTeTUTE Ha PiIynauTe

BBbTPE U BBH OT KallkaTa).

ITonyuenmar pesyaratr ot Teilnop mokasBa, Ue Mpu Majku Aedopmanmm
¢opMaTa Ha KankaTa oT cdepUuHa NMpeMmHaBa B ejaurncouana. Hal-ronsma-
ta oc L w mali-mankata oc B Ha eauncouna [33] nexar B pasamHaTa Ozy,
CKIIOuBaiiku Brba oT 45° ¢ ocure Ozr u Oy. Y IbibkeHuero Ha $popMaTa Ha
KallKkaTa € B M0COKa OT TPeTHA KbM I'bPBHA KBaJApPaHT, a CBUBAHETO — OT
BTODHA KbM 4eTBbpTHA. TpeTara oc Ha eauncomna dexu Ha octa Oz u e
paBHa Ha paJuyca g Ha I'bpBOHaudajJHaTa GopMa Ha KamkaTa. ToBa ypaBHe-
HHMe € eKCNepPUMEHTAJIHO NMOTBbPAEHO 3a TedyeHHe Ha KyeT u xunmepboanydoTo
rpaavenTHo Tedenue oT camua Tednop [36] 1 Pamuma u Melicen [37], a 3a
teuenue Ha [loasboif — ot Monacmut M Melicnr [38].

Y cTaHOBEHO €, ue NpH CTOWHOCTM Ha MaJIKUA napaMeTsp € > 0,2 3amou-
BAT Ja HACThHBAT 3HAYNTENHM OTKIOHEHMA OT MpEACKA3aHATa OT TEOPHMATa
emvriconana gopma. Hpu € = 0,5 BUCKO3HUTE CHIIM, KOUTO BOJAT AO TPOMAHA
Ha ¢opMaTa Ha KalkaTa, NPeBUIIABAT CUJMTE Ha MOBBPXHOCTHOTO HAlpeXe-
HMe, CTPeMAIM Ce [a 5 3aMa3AT, M TA ce paspyuasa, T.e. ry6u ycToiumnsocr.
Ipu Teau cTOMHOCTM Ha € 3aBUCMMOCTTa Ha (pOpMaTa Ha KalkaTa OoT HOBBP-
XHOCTHOTO HATIpEKeHMe CTaBa HejlMHeliHa u KakTo mocousat Pammua m Meii-
cbH [37], npeaw paspyliaBaHeTo TA MMa pa3AudeH BUA 33 Pa3iMYHATE BUAOBE
rpaAWeHTHN TeYEHHUA.

Te#inop [36] uscienBa ekcnepuMeHTaAHO Clyyas Ha CHIHO BUCKO3HM Kall-
"KM TIpM £ — oo(17‘l — 0). Koraro ¢ e roaamo, Telinop pasraexkzna B I'bPBO
npubawkenne popMaTa Ha KankaTa KaTo (YHKIMA CaMO Ha OTHOIIEHMETO Ha
BUCKO3UTETHUTE k M OTHOBO HAMMPa, Ye KallkaTa NpreMa GopMaTa Ha eJUNCOU]
C OCM, YCIOpeZH! Ha JMHMUTE Ha TOKAa Ha HeCMYTEHOTO JBWKEHUE Ha QJynaa.

KaTo ce mpoeKkTHpa B paBHMHATA, C’bI'bP)Kallla HepaBHOMepHATa 4YacT Ha
IPaINEeHTHOTO TedeHte, ypaBHEHHETO Ha HedopMHUpaHaATa NOBBPXHOCT Ha Kall-
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KaTa Robusa BMAA
T

T o142kt cos 20 + Oo(k™1),

a 4

KbAeTo ¥ € BIr'BABT HA I'PAJAMEHTa Ha CKOPOCTTA Ha TeUEHUETO U JIMHMMTE Ha
TOKa. ‘

KakTo noxasBaT ekcniepuMmenTuTe Ha Teltsop [36] m Pamuma u MeticoH
[37], mpu k > 5 kankaTa ce yab/pKaBa BbB BMA Ha XBJIra HUIIKA IIPU TeUeHUE
Ha Kyer » ce paspymasa npu xunepboanuto teuenne. CIOXHOCTTa Ha W3-
clleABAaHUA HeJIMHeeH NpobieM 3aTpyaHABa TOUHOTO NMpecMATaHe Ha popMaTa
Ha GJAYUAHUTE YaCTULM B FPAJMEHTHN Te4eHWUA, NOpaiM KoeTo Tolf Jocera He
e ‘pemen. [osiAM mpuHOC B ToBa HampaBieHMe e u3ciaeiBaHeTo Ha Kokc [38],
koliTo H3I10JI3yBa 3a MaJlI'bK NapaMe€Tbp BeJIUUUHATA ‘

1 pa$S

1
, niamn - ==
n o k

Toit nscaensa xunepboanIHO TeUeHHE, B KOETO UMITYJICUBHO OT MOKOH TpbrBa
¢nyuaHa kanka, uynATo ¢opma ce npubimwkapa KbM PaBHOBECHOTO CH MOJO-
JKeHMe TIPM HEOT PAaHMYEHO DacTeHe Ha BpeMeTo.

Axo HayaoTo Ha cpepuyHATA KOOpAMHATHa cucTeMa (r, , ¢) cbBHala
¢ LeHT'’bPa Ha KalKaTa, 3a ypaBHeHMeTo Ha popmaTa Ha $ayMAHaTa YacTULA
umame r = a[l + F(8, ¢)], kbaeto F ce pasnara nocpeacTsom cdepuyHuTe
¢yukumm F, BbB BUAa

F(8, ¢) =Y e"Fa(d, ¢).
n=1

Kokc Thpcy CKOPOCTTa ¥ HAJAraHETO B'bB BHA Ha pel [0 CTEMEHUTE Ha MaJIKMA
napameTbp

5(r, 0, ¢, €) =To(r, 8, @) +ebi(r, 0, p)+ 20T, 6, P)+...,

‘P(T, 0; <p) 5)=‘P0(7', 01 "4 )+€P1(r; 01 SO)+ 62})2(7', 0; ‘P)+

Ionyckaiiku, ue MpH MaJIKK AedopMalny chepUYHATA Kallka C paauyc a npu-
eMa ¢opMaTa Ha TPHOCEH eauricoun ¢ ocu B, L u @, 3a BeanuunaTa D Tolk
[I0JIyYyaBa ,

L-B _ 5(19k + 16)

“ILFB " a(n+ 1)\/(19F) + (207)?

Taen cunawmnpu > 1 n k= 0(1), umu npu k> 1 u n = O(1). Tyx ce
npeanoJiara, 4e Majkata oc (B) u rossmara oc (L) nexxar B paBHUHATa, OI-
pelensiia rpaiMeHTHOTO TeueHue, JOKaTo TpeTarTa oc (@) e nepneHIuKyIApHa
Ha TAX. :
" Ila uabepem ocute Oz un Oz Ha KEKapTOBATa KOOPAMHATHA CHCTEMa Ja Ca
yCHopeaHHU CbOTBETHO HA BMXPOBHMTE U TOKOBUTE JIMHMM Ha HECMYTEHOTO I'Da-
_ IMEHTHO TeveHWe M Hali-MankaTa ¥ Hali-ro;AMaTa oC Ha €JIMIICOMAA [a JEKaT

D
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B paBHMHata (Oyz. ToraBa opueHTaUMATAa Ha GAYHUAHATA YACTHIA OTHOCHO
rpaideHTHOTO TedeHMe Hie Oblle OnpefesieHa OT 'bI'BJ «, 3AKJIIOUYEH MEXIY
octa Oy u Half-ronAMata oc Ha eiauncouaa. 3a Manku ldepopmaimm Kokc

noJy4yaBa
_m L (19
*=3172% \am)-
aSa

i ;

Twit kaTo — = ——, or Tasu popMmyna ciensa, ye o = 45° mpu S — 0 n
7 o

KankKaTa € OpMeHTMpaHa Hol br'bJ 45° OTHOCHO JMHMMTE Ha TOKa, a a = 90°

npu S — 00 ¥ rojiAMaTa OC € HacOUYeHa B HallpaBJjleHUe Ha TOKOBUTE JIMHUMU Ha
HECMYTECHOTO TE€UYEHUE.

N3nonsysatikn Metona na Koke, Xercpouu u Xabep. [39, 40] uscneasar
AMHAMUWKaTa hd AepopMupyeMa Kalka, CyClNeHIMpaHa B HEOTPAHMYEHO 'pa-
AWEHTHO CTOKCOBO TedeHMe. Upe3 MeTona Ha oTpaskeHHeTo XeTCDOHHM M Ap.
[41] pemasaT npubawkeno 3ajaudaTa 3a aKCHaJIHO JBWKeHUe Ha ciabo gde-
dopMupyema Kanka B Kpbrosa Tph6a. Ako Ry e pammycsT Ha Tpbbata, b —
Pa3CTOAHMETO Ha KallKaTa JI0 0CTa Ha Tpb6aTa, @ — EKBUBAJEHTHHUAT PAAUYC
Ha QIyMIHATA YacTHLA, p U p — ILTbTHOCTMTE Ha (GJIyHAWTe B'BH U BBTPE B
HeA ¥ k — OTHOIIleHHeTO Ha BUCKO3UTETUTE 4 U I, 33 CKOPOCTTA Ha JABWKEHUE
Ha KamkaTa B TpbbaTa B HalpaBienme Ha tedeHueTo Ha [loaspoif aBTOpHMTE
Ha [42] nonyuaBaT

Uo— 2(p—p)ga® 1+k [ 243k a (_b_)}
B O 3+k 3(t+k)Ro” \ Ro
3

- b\? 2k a e\’
+ lo 1'(R_o) T (R_o>- +0(R_o) ]

b .
Kbaero f (—}T e ¢ynkumsa, Tabyaumpana ot Pamynapo [42, tabamua 1,
0

c. 309]. Xabep u Xercpoun [40] npecmarat B Teuenue Ha [loa3bol ckopocT-
Ta Ha MUTpaUMA Ha YacTUlIaTa B TpbbaTa M TpPaeKTOpUATA, KOATO ONMUCBA
tA. Crnopes Te3u pe3ysiTaTh HeyTpaJliHO CyCleHAMpaHa B TeyeHue Ha [loasboi
KalkKa Ie MMUTpHpa pajuajiHo HaB'bH B [MOCOKA K'bM CTEHATa, JHOKATO €KCIIEPU-
menTUTe Ha Fonacmut n MelicbH [21] nokassat, Ue TA ce ABWXKM PaaMaliHO
HaBbLTPe B MNOCOKa.KbM ocTa nHa 1pbbarta. ToBa HechboTBeTCTBHME Ha Teope-
TUYHUTE U €KCNePUMEHTAJIHUTE De3y/ITaTU Ce€ A'bJDKM Ha IOMyCHaTa FpelIKa
[pU NpecMATaHe Ha TPaeKToOpuuTe. AKO rpelllkaTa ce NONpaBH, PajvajHATA
NoCoKa- Ha IBUKeHWe Ha AehopmupaHaTa (IYWAHA YaCTULA Ce€ MPOMEHS, HO
rojieMuHaTa Ha nojiydyeHaTa DalMajlHA CKOPOCT CbIIECTBEHO C€ Pa3inNyaBa OT
noJjy4deHaTta €KCnepuMeHTaJHO. ’

[To-106po chBnajienne MexkAy TCOPETUUHHTE M €KCIEPUMEHTANHHUTE pe-

3yarati nojyuasat Yoi n Pabunos [43], kouTo uzcaensart no-obma sanaua,
OT KOATO KaTo YacTeH cliydai ce nojlyyaBa 3ajadaTta Ha Xabep u Xercponu
[40].
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ITa¢pu u ap. [44] uscaenBaT XUAPOAMHAMUUHOTO B3aUMOLEHCTBUE MEXK-
[y cTeHa ¥ 6aM3Ka 1o HeA Kamka. Te pasriiexaaT NpocTUA ciaydail, KoraTo
baymaHaTa yacTHLA e cyclleHIMpaHa 6JM30 0 orpaHWYaBanaTa TE€YEHUETO
Ha [loa3noli paBHMHHA cTeHa. ToBa TeueHue ce HobiKaBa IO TEUEeHMETO Ha
IToaswboif, B KoeTo pamuychT HA Tph6aTa e MoAAM M Kamnkata € 6IH30 A0 CTe-
nata. JlonycunaTtute rpemiku B [44] ca kopurMpanu oT c’hblMTe aBTOPHU B [45].
3a CKOpPOCTTa Ha MUTpalMATa HAa AedOpMUpAHATA KAallKa aBTopUTE Ha [44, 45]
MoJsiyyaBaT

o =50 (15) () 00

KbAeTo

(19k + 16)(9k? + 17k + 9
(k+1)3

flk) =

a pSa
dopmynarta (32) e mosydeHa npy yciaosue, Ue BeJIUUUHUTE P U —— ca MaJiKy,
o

a k e oT mopAxbKa Ha egunnua. PopMynara 3a kanka 6au30 10 paBHUHHA CTe-
Ha, orpanuvaBaina TedyeHneTo Ha [loaspoll, ekcriep¥MeHTaJIHO € MOTBBpAEHA
or Kapuue u ap. [14].

Mpes 1967 r. llladpu u Bpenep [46] paspaboTBaT MeToA 3a U3C/eaBaHe
C TOYHOCT 0 BTOPU NOPAABK Ha AedopMalMMTe Ha KallKa, CycHeHAMpaHa B
teuenne Ha KyeT. IlonyueH e MHTepeceH pe3ynTaT — KaTO ce OTYeETE BTOPO-
To npubimKeHUe IpU n3cneaBaHe nepopmalmure Ha KalkaTa, HeffHaTa dpopma
BeUe He € eJIMMCONAHA.

C uen na 0606umM pe3ynTaTUTe M 3a ABe GJIYMIAHM YACTULM B CpaaveH-
TeH noTok ['pubinieiin [47] pasriexia 3amavyata 3a 6aBHO IBWXKeHHe Ha IBe
chepHUUYHN KafKK, PA3NONOMKEHN CUMETPUUHO OTHOCHO OCTA Ha KPbroBa TPb-
6a. IlocokaTa Ha ABIKEeHUe HA YACTULINTE € MEpPNEHAVKYJIAPHA Ha MpaBaTa,
MHHaBallla Ipe3 HeHTPoBeTe UM, KOeTO YC/IOKHABA 3HAUMTEJIHO pelIeHNeTo Ha
3anavaTa. Ilpunaraiku MeTona Ha oTpaskeHMeTo, XeTcponu m Xabep [48]
C’hUIO U3CAeABAT XUAPOINHAMUYHOTO B3anMoAelcTBME MeXAy ABe COepUyHU
KallK{, NOTOMEHH B HeOrpAHUYEHO TPAaIUEHTHO TeUeHUe C MPOU3BOJHA CKO-
pocT. Tl KaTo mocokaTa Ha ABWKEHMe Ha IBeTe KalKM e B HAIpaBJeHHe,
NepIeHANKY IApHO Ha NpaBaTa, MMHaBallla TIpe3 HEHTPOBETe UM, 3ajayaTa €
MPOCTPAHCTBEHA U MOJYYEHOTO pElleHNe UMa CIIOXHA CTPYKTYpa.

Koratico u Tuszon [49] uscienBaT eKCriepUMEHTAIHO ¥ T€OPETUUHO M3ITLIY-
BaHEeTO Ha MeXyp B Tpbhba. 3a Manku cTofiHocTH Ha umcioto Ha PefHonnc

a
7 7 < 0,2 (a e pagycbT Ha Mexypa, a h — Hali-MaJIKOTO pa3CTOAHHUE OT

LHEeHTBPA Ha YacTULaTa A0 CTeHaTa Ha Tp'b6aTa,) T€ YCTaHOBABAT, Y€ MEXYDP'bT

a -
ocraBa nmoutu chepuyer. [Ipu — > 0,6 dayunHara uvacTMHa VMa UMIMHA-

h

puuHa GopMa, 3aBbpillBalla B ABaTa Kpad ¢ “yaabpoobpasna” dopma. Ilpnm

a
0,2< % < 0,6 MeXypbT UMa enUINcoMaHa GopMa.

Cmokman u ap. [50] pa3paborBaT aHAJIUTHKO-YMCIIEH KOJOKALMOHEH Me-
ToX, NPU KOWTO TPAHMYHUTE YCIOBUA ce yIAOBJIETBOPABAT CaMoO B olpenejeH
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HeroJiAM 6poll TOYKKW OT MNOBBPXHOCTTA HA YACTMLATA, KOATO ce o6Tuuya. H3-
nonsysadku To3m Merol, [anotoc u np. [51] uscaeasar aBwxkenueTo Ha Tpu
TB'bPAM YaCTUIM B HEOT PAHUYEHO MPOCTPAHCTBEHO Teyenne. I aBHMAT Mpo6-
JieM IPYA NPUJIAraHETO HAa TO3M MeTOJ € U360pbT Ha MOJIOKEHHETO Ha KOJIO-
KallMOHHUTe Touku. [aHoToc u ap. [52] npunarar To3u MeTox 3a M3CielBaHe
ABIKEHMETO HA TBBPIA chepa B MPOU3BOJIHA TOCOKA MEXAY ABE YCIODEIHH
paBaMHM. B'b3 ocHoBa Ha cbumsa Merond [laran m ap. [53] pemasaT 3axma-
yaTa 3a IBWXKEHUE Ha Tebpaa cPepuUuHa yacTUua GJM30 J0 CTeHa c KpaiiHa
AbJDKVHA. ' '

Mpes 1988 r. lllamupa u Xabep [54] nscnensat 6aBHO ABUKEHUE Ha fe-
dbopMupyema Kafka, ycnopesno Ha ase paBHMHM. Th# KaTo BHPXY (JyuIaHM-
Te YacTUIIM TOYKUTE Ha KOJIOKAIMA He MOorat Aa ce u3bepaT MpelBapUTENHO,
koraTo Te ca nepopmupyemu. lllanupa u Xabep npusiarat MeToaa Ha oTpa-
#enneto. CXOAMMOCTTA Ha pellleHMeTo obadue He e 106pa, KOraTo YacTUHATA
e GJin30 A0 elHA OT PABHUHUTE. S

Muoro GaBHUTe BUCKO3HM TeYeHUA MEKAY ABe YCNOPEAHW BEPTUKAJIHA
PABHMHYU Ce OMMCBAT OT ypaBHEHUATA

u _ Op | 8%v _Op.

ForE = ar Na—z‘z-—gg'*'ﬂg,

K'bAETO HAYaA0To HA KOOPJAMHATHATA CUCTEMa e B3eTo B cpelaTa MeXIy Ijac-
TUHUTe, ocTa Oy e HacoueHa BEPTUKaJHO, ocTa O — XOPU3OHTAJIHO ¥ JIeKU
B CpeJaTa MeXxIy ABeTe PaBHUHM, a octa Oz — NepHeHIuKy JAPHO Ha MOoCie -
nute. KoraTo Tesn paBHMHM ca MHOro 61M30 eaHa RO Apylra M B TEUEHUETO
MeXIy TAX Cce HaMHPa LWWIMHAPUYHO NPeNATCTBUE, upe3 ofpasyBamuTe yc-
NOpeaHu paBHMHM Te NOJyYaBaT T. Hap. KierTka Ha Xea-IHoy. ®aymmbr B
KJIeTKaTa ce ABWXKMU Mo AelicTBWMe Ha TpajMeHTa Ha HAJArAHETO, IPUJIOKEH B
asata 1 kpasa. HecmyreHoTo paBHuHHO TeuyeHue Ha [loasnoli ce 3anucBa BEB
BUAA

(33)

‘ 6 z .
(34) (w vy === (1= 2) (U, v),

KbaeTo b e pascToAHMeTo Mexaly paBHUHUTe. Ako ce 3amecty B (33), ce mo-
AY4YaBaT ypaBHEHUATA

12u dp 2p . Op

b2 U= “071 B2 - lgz_pgv

KOUTO Cca MACHTUYHMU II0 BN C YpaBHEHUATa, OMMCBAIIM ABU>KEHUETO B Nopec-

Ta cpela, T. €. ¢ ypaBHeHuATa Ha J[lapcu. 3aToBa kietkata Ha Xen-lloy
. . : )

(35)

Ce pa3rjexaa KaTo MoAeJ Ha NMOPU € NPONMYCKAUBOCT E U pelieHUATa Ha 3a-

HauuTe 3a NBKEHMe Ha BUCKO3HM (JIYMAM Ca NMPAKO CBbP3aHU C ABYMEDHUTE
punTpanmonnu reuenun. Ilpes 1898 r. Xes-Uloy [55] ycranossasa, ye npu
MOCTOAIHHM CTOWHOCTM Ha B paBHMHATa (&, y) ce noJiydyaBa ABYMEPHO CKO-
POCTHO MOJIe, KOETO e MOTEHUUANHO ¥ B'bPXY TBbDIAWTE CTEHU yAOBJIETBODABA
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€CaMoO yCJIOBMETO 3a HellpoTUYaHe. 3aTOBa JHHHUUTE Ha TOKA [IPU CTALMOHAPHO
o6TuuaHe Ha NpenATcTBUA B KieTkata Ha Xen-Illoy ca uaenTHunu no ¢opma
C TE€3U B XMIOTETUYHO ABYMEDPHO TeUeHMe Ha UAealieH GIYUA OKOJIO MpenATc-
TBUE OT C'hIUA BUA. To3M pe3ynTaT No3BOJNABA Aa Ce M3NOJI3YBa KJIeTKaTa Ha
Xen-llloy 3a meMOHCTPaUMOHHM BU3yaJW3aUMU Ha JUHMUUTE HA TOKA Ha uie-
aJIHW TIOTEHIMAJHN TeYEeHHA OKOJIO MPEeNnsTCTBUA ¢ pa3andyHa ¢opma, KaTo ce
B'bBEXK/Ia OllBeTABaHEe B HAKOJKO TOYKM HAa BXOJa Ha CbODPBHKEHHETO.

TouHM pelleHMA Ha 3aZadyaTa 33 CTALMOHADHO U3NJyBaHe HAa MeXYpH B
kierka Ha Xen-Uloy, ceabpikaina BuckoseH dayun, Hamupar Tednop u Cad-
maH [56]. Te noka3BaT, 4e OT TE€3U peLIEHUA YCTOMUMBO € OHOBA, KOETO Ce OT-
HACSA 32 MeXyp, YMATO MNUPHHA € IBa II'bTH N0-MaJjIKa OT Pa3CTOAHUETO MEXIY
aBere ycnopeanu pauuuy. WHTepecHn pesynrtaty 3a XMAPOAVMHAMUYHHU 11po6-
jeMH, CBLp3aHM c KjaeTkaTa Ha Xen-llloy, ce cbabpskat B paborute [57] -
[63].

II'bsen 0630p Ha uscnexpanuaTa no 1972 r. Ha XMAPOAMHAMUYHOTO B3au-
MoaelicTBYe MeKIy TBLpAM UK GAYMAHU YACTULUH M KP'BFOBHA TPHOU, CHABP-

YKallM BMCKO3eH (GAyuA, e AaleH oT Bpenep B [64, 65]. ¥YcnebpulencTByBaHe
Ha MeTtona Ha Kokc [38] m nomo6GpeHue Ha pe3synTaTUTe ca M3BBLPUIEHH OT
®pankba u Axpusoc [66] u Bapaec-Bucen n Axpusoc [67]. Teopernunure
pe3ynraTtu nobpe ce chriaacyBaT ¢ excnepumeﬂrannnTe pesynTa‘m na Topa3a,
Kokc u MeficbH [68].

Panucoh [69] M3BbpmBa KPUTUUEH aHAJIMU3 Ha MOJIyUYeHUTE PE3YJNTATH OT
HU3CNeABaAHUATA HA ABWKEHUETO HA QJIYUIHM YACTULM B IpaJVEHTHH TE€UEHUA.
W3non3yBaifku noaxoda, pazpaboTeH B TEOPUATA Ha THHKOTO KpHUio, TOR pas-
raexna roneMu AepopManuy Ha GIAYMIHN YACTHIM B rpaAMeHTEH NMOTOK. Pa-
mcbH U AkpuBoc [70] pa3paboTBaT YMCIEH MeTOA, KOWTO AaBa Bb3MOXHOCT
JAa ce mpecMATa (opMaTa Ha KankaTa (Mexypa) B CIydaWTe, B KOUTO ACHUMII-
TOTHYHATA TEOPUA € HEMPHUIIOKUMA.

B 0630pa cu or 1984 r. Panuchu [69] aHaauM3upa pa3nuyHM BUIOBE rpa-
AMEHTHH TEeUeHWdA, KaTo M3XOXKAa 0T Pa3ldelAHEeTO Ha HECMYyTEHaTa CKOPOCT ¥
Ha TIOTOKA Ha IBe KOMIOHEHTH: 1) CBbp3aHa C TeH30pa Ha AepopMalMATa €ij;
2) cpbp3aHa C TeH30pa Ha 3aBUXPAHETO wjj:

v~ Ca(e,-j +u.~j)§:',

Kkbpaeto Ca = Un € KalMJAAPHOTO uMcjo. B 3aBucuMocT oT BMAa Ha TEH30pU-
TE € U Wij, 3:m1ca.ﬂu B KEeKapTOBH KOOPAMHATH, Hali-npocTUTe rpalvMeHTHU
TeYeHUd, U3CJIe]BAaHU JoCera, ca: )

1. IlpocTo rpaanenTHO TeueHne

1 010 1 0 1 0
= z'f(Sy, 0, 0): €i; = 5 1 00 3 wij = 5 -1 0 0 ;
: 60 0 0 0 00
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2. PapHuMHHO xunep6oOJMYHO TeueHHe

. 1 0 0
U= U(S.’L', -Sy, 0), €ij = -2- 0 -1 0}; wij = 0,
: 0 0 0

NIpY KOETO HAMA 3aBMXPEHOCT Ha MOTOKa. To3M BMA rpaiMeHTHO TedeHHe ce
[10J1y4aBa HaIlpUMeEp TMPH YeTUPULIMJIMHIAPOBHA ypeld Ha Teﬁnop
3. OpTOroHaHO peoMeTpU4HO TeyeHue

1 610 1 0 1 -2
) e,~j=‘§ 1 00 ’ w,'jzi- -1 0 0 A‘;
0 0 O 2;c 0 0

ITapamMeTHpbT 3 € CBBbpP3aH C NPOMAHATA Ha OTHOCHTEIHATA OpPHUEHTAIMA Ha
BUXbpa CIPAMO FJIaBHUTE OCH Ha TEH30pa Ha ne(bopmauﬂﬁra
4. YucTo 0COCHUMETPHUYHO paa'mraﬂe

I I
7= v(Sz, —§Sy, —§Sz), ,

1 0 0
1 1 ,
€j = —2- 1 '—5 01 s wi; = 0.
0 - -
00
5. PaBHMHHM rpaJMeHTHH TeYeHUA
1 0190 1 0 10
e;j=§(l+x) 1 0 0}; w;,-=-2-(1—x) -1 0 0
0 00 0 0 0/
Tyk =1 £ % £ 1 e napamerbp, YNMTO CTOHHOCTHM mpMHamIexaT Ha [—1, 1].
Iipu » = 0 ce nonyana KaTo 4YacTeH ciydal npocroro rpamaenrno Teuenne,
a npu x = -1 — PaBHMHHOTO XMNEep6OJIMUHO TEeYEHHUE.,

N3yuaBaHeTo Ha cBolicTBaTa Ha KpbBTa NPH I'PAlMEHTHOTO W ABIWKeHHUE
€ B rojlAMa CTelleH CBbP3aH0 C U3CJeABaHe NoBEAEHHETO Ha GopMeHuTe I esle-
MEHTH — epPUTPOLIMTH, JIeBKOLMTH U TpoMbGoiwmT. Exna ot Hali-uscnensaunute
GuoMeM6paHHN CTPYKTYPH, ABHXKEILIM Ce B FPaJMEHTHUTE TeUeHUsA, Ca ePUTPO-

uMTHTe. B XMIApOoMexaHMKaTa Te ce MOAENMPAT KaTO TBHPAM YACTHULM, KallKu
i Mukpoxancyiau. KaTo TBbpau yacTMUM €PUTPOLMTHTE Ca M3ClieIBaHM
Hanpumep B [71] — [76] u xp. Ipe3 1969 r. IImuar-Iloubelin n Yenc [77]
npesiaraT ABWKeINNTE Ce B FPAJMEHTEH IOTOK €PUTPOLMTH Aa Ce MOJENUpaT
kaTo kanku. To3u Monen ponu HavwasnoTO CH OT M3CleaBaHMATa Ha [osacMuT
(78] Ha mopenenueTo Ha TEUHM KAMKW, HAMMPAILUM Ce B ABWXKell ce B KPbroBa
Tph6a Buckosed dayna. Ipes 1976 r. lNonacmut u Cxetinak [79] Habmonasat
AKCHana MUTPRIMA HA EPUTPOLUTHTE B KPBroBa Tpb6a U AehopMupaHeTo UM
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B eauncouaHa popma cbe cnabo uspaseH “qumnesa’. MoxeaupaHeTo Ha epUT-
POLMTUTE KAaTO GIYyUAHU YACTHIM € U3CIEABAHO U OT MHOrO APYTM aBTOPU —
[80] — [83] u ap. Ilpes 1967 r. Pocke [84] u T'osapa u Muunep [85] nacnen-
BaT ABUWKEHMETO Fa XOMOI'EHHM eJaCTUUYHM CHepUYHM YACTULM B TPAAMEHTHO
TeYyeHUe. '

ITo-peanucTuyen Moaesn Ha epUTPOIMTUATE Ce I0OJy4aBa, KATO Ce B3eMaT
NpeBUA TEXHWTE eJacTU4HM cBolictBa. ITpes 1968 r. Jladtxua [86] u npes
1969 r. Purwkepana [87], npunaraiiku TeopuATa Ha CMa3KUTe, OTPeNEJIAT
IBWKEHWETO Ha eJaCTUYHM chepy B KanMJIAPHU TPHOM.

Ilpes 1974 r. Puuapacs [88] pasriieXxia -eJUICOMIHN MHUKDOKAICY I,
CYCNeHIMpPaHU B TPAJMEHTHO TeueHUe, KaTO MOJeJ Ha ePUTPOLIMTUTE B KPbB-
ta. Coumna Moaen pasraexnaa npes 1980 r. Banec-Bucen [89], karo B3eMa
‘bopMaTa Ha MHMKpOKarncysiaTa 3a chepudna. JIBMyKeHMATA Ha BHHIUHUA CIIOH 1
HA TEYHOCTTA BbTPe B CHepUUHATA MUKDOKAIICYJIa Ce ONIUCBAT C ypaBHEHUATA
Ha CTokc. MaTepmasbT Ha MeMbBpaHaTa e NpUeT 3a HECBHUBAaeEM, €JIACTHYEH U
dusnueckn HedMHeeH oT Hal-o6m Bua:. Ilox melicTBHeTO HAa BUCKO3HUTE CUIN
Ha TEUYHOCTHTEe MeMBpaHaTa NpeThplABA OT ABETe CTPaHM KpaliHu HpeMecTBa-
HUs U Repopmanmu. 3a peuiaBaHe Ha Taka ¢opMyJMpaHaTa JMHeliHa 3azava
€ NpUIONKEH METOABLT Ha CMyIeHUATa {neprypbalmure) 3a MajKid OTKIAOHE-
_HHMA 0T cpepuunata gopma. Bpyu [90] pasraerkna cbio meprypbauum Ha
MaJiki chepUYHM MUKDOKAICYAM BB BUCKO3HO TeueHue.- [lamed oT epuTpo-
' IUTa TeYeHMETO ce MpPUeMa 32 XOMOTEHHO M 3aBUCello OT BpeMeTo. [lonyueHn
ca B fABEH BUI PEOJIOTMUHUTE ypaBHEHMA Ha pa3pelleHa CYCleH3uA B chepuu-
HM YaCTWIM B CJIyYaUTe, KOFaTO Te ca TB'bPAW, eNACTHMYHM MJIM MPEACTABIA-
B4T MMKPOKAIICYJ/IM, 3al'bJHEHd C BUCKO3eH HIOTOHoB ¢nywa. IIpe3 1985 r.
Banec-Bucen n Craitep [91] o6o6masat noiaydyenoro B [89] pewenue, xaTo
pasriieXk/iaT MUKPOKAIICYJIH, YMATO AepopMupyeMa MemGpaHa MMa BUCKO3HO-
e/lacCTUYHA PEeoJIOrMA, ChOTBETCTBYBalla Ha Mojena Ha Keasuu—®Poiixt. Te'
MIpUJIAraT UTePaIMOHHA U3UKCIUTENHA NTPolleAypa NPY MAJKU OTKJIOHEHUSA Ha
nehopmupyemaTa Membpana ot chepudna dpopma. B [91] aBTopuTe pasraex-
JAT M YACTHUTE Caydau Ha YMCTO eNlacTUYHA U YMCTO BMCKO3Ha MeMbpana.
Uscnensan e u crydadat, korato MemGpaHaTa ce MoJelnpa KaTo Geskpaiino
ThbHKa YepyNKa OT TPUMepeH eTacTUUeH MaTepual npn HAKOW YACTHU BHUAOBE
KOHCTUTY TUBHM YPaBHEHHA.

Kato nombiHenue Ha 0630pa Ha TPaIMeHTHN TeYeHUSA Ie oT6enexnM u
M3CjieABAHETO Ha KapTHHATA Ha TeUeHHETO M CUIUTE Ha XHUAPOAMHAMUIHOTO
B3auMoieficTBHe TIpU 06THYaHe Ha JBe TB'bPAM COEPUMHHM YACTULM OT OCOCHU-
MeTpUYEeH BUCKO3€eH IIOTOK ¢ NapaboanyeH npoduia Ha CKOPOCTTA, U3B'bPIIEHO
or Kanuuosa-Kypresa u 3anpsmos [92].

Kato u3nonsysat pesynrature oT [28] HNapabanep u Meiicou {93] npe-
CMATAT TPAEKTOPUUTE Ha [IBe YACTUIM TIpU o6TUYAHETO UM OT TPAAMEHTEH
norok. CpaBHABaHETO C E€KCIEePUMEHTAJIHUTE AAaHHU MoKa3Ba Ho6po cbBHa-
nenne. Te3u pesysiTaTv ca M3MOJ3YBaHWU OT APYTM ABTOPH NpH ONpeEleNAHe
Ha 'e(eKTMBHMA BUCKO3UTET HAa CYCMEH3MM OT CPepUUYHM YacTULM C obeMHa
Kornentpamma or 1 no 2%. Mpes 1977 r. He#isuc u O’Hua [94] pemasat
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3anavdaTa 3a of6TUUaHe Ha KpbroOB IMIMHIDLP OT TPAJUEHTEH BUCKO3€H MOTOK,
orpaHMyeH or paBHMHA. Korato pa3CTOAHMETO MEXIY HWINHABPA M PaBHU-
HaTa KJIOHM K'bM HyJa, OT JBeTe CTEHH 3al0o4BaT ajlTepPHATUBHO Ia Ce€ FeHepH-
pat Buxpu. Ta3m CTPYKTypa Ha TedeHUeTO NpeMMHaBa B Oe3kpaliHa peauia
OT BUXDH, KOTaTO LMIMHABLPHT MMa obila TOYKa C paBHMUHATA [95]. OBumm-
PeH Kiac oT rpalMeHTHM Teuenus padrieskiar ['open m O’Hua [96]. Mo-cne-
IMaJHO Te M3cieaBaT o6THUaHETO Ha TBbLpHA chepuyna yacTviia Giam3zo a0
paBHMHATa OT rpajMeHTeH nMoTox. B [97] ce pasriiek;a BUCKO3HMAT OTOK,
MHAYUMpaH OT ABWXKeHMeTo Ha Kp'broBa Tpbba, B KOATO Ce HaMHUpa TBBPJAA
cpepa. XuapoamHamMuunnrTe eGeKTH, AbIKAIIM CE Ha BIAMAHMETO Ha CTeHATa,
ce mpeHebperBaT, Thil KaTO ce MpeANoara, ye paaMychbT Ha cdhepaTa € MHO-
ro Mo-Mair'bK OT paauyca Ha TpbhbaTa. ToBa. AaBa FB3MOXKHOCT Ha aBTODHTE
Ia pasriexgaT o6TuuaHe Ha chepryHA YacCTUIA OT T. Hap. “HEOrpaHUYEHO
TeyeHue Ha [loassoit”. ‘ '

B eaun oT mbpBHTE MojeM Ha INBWKEHUETO Ha €PUTPOLUTHUTE B KPbB-
HaTa NJja3Ma B KalWJIAPDHUTE KPHBOHOCHM ChAOBE €PUTPOLUTUTE Ce MOJAEJHU-
paT KaTo TBLPAY YaCTMLM, KPbBHATa MJIa3Ma — KaTO BMCKO3HA Te4HOCT U
KP'bBOHOCHWUTE CbAOBE — KAaTO KP'brOBM IMIMHApPWMYHM TpBOM. Eana uwacr
OT M3CJIEABaHMUATA B TOBAa HAllpaBileHWe Cce OCHOBAaBAaT Ha o6IIOTO pellnenue,
nosydero or XaGepman n Caiipe [98]. B [99] — [100] ca pasraexanu u apy-
M Bb3MOXKHOCTM 3a MoJejiMpaHe Ha epPUTPOIMTUTE B KPpbBTa; KaTo ocobeHo
€ nmoaYepTall MOXe'bT, IPM KOWTO €pUTPOUUTHTE Ce MOJeJUPAT KaTo TEeUHHU
KallKi, TOKPUTHU C eNacTU4YHa MeMOpaHa.

Ila pasraemame ococuMeTpMUeH T'paJUeHTEH MTOTOK ChC CKOPOCT

(36) T = Aopzi, — 224,

KBIAETO ip M i, Ca €NMHHYHH BEKTOPH B LUMJIMHIAPWUYHA KOODAMHATHA CUCTEMa
(p, 2, p) M A e KoHcTaHTa. AKo neduHMpaMe GYHKIMA Ha TOKR Upe3 paBeHC-
TBaTa
. 10w . 16¥*
uUu = — s w = —-—-: 3
p Oz ~p Op

(37)
Clle; MHTerpUpaHe NoTyuaBaMe

, 1
(38) R §Agp2z2.

TeuyeHneTo, oIpeaeseHO OT Ta3U (GYHKIMA Ha TOKA, € 0COCMMETDUYHO TEUEHHE
OKOJIO KpMTHUYHA TouKa. Heka cdepuuHa kamnka c paauyc a ce HaMMpa B Te-
YEHMETO, TaKa Ye LEHTHPBT i A3 nexu Ha ocTa p = 0, u Ha pa3croanue h > a
ot paBHMHaTa z = 0 (¢ur. 1) dopmara i uie ce 3ama3pa.

Ila, npeacraBuM GYHKIMATA Ha Toka ¥ Ha CMYTEHOTO TeueHUe B'BLB BUAA
¥ = ¥ + ¥, kbaero ¥* e HeCMyTEHOTO TedeHME Jajied OT KamkaTta. Tlo-
rapa ¥, 1le yaosieTBopsBa ypaBHeHUeTo Ha (CTokc 3a 6aBHO IBIKEHHMe Ha
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dur. 1

BHUCKO3€eH daynn:

# 10 &
4y, = 2. _
(39)  Bus (a o 322)\1’1

TBH KaTo GYHKUMATA (38) ynonne'mopfma TOBa ypaBHEHMe.

Ila BbBeneM Ouchepuuna KOOpAMHATHA cUCTeMa, B KoaTo § = 0 na 61,11e
YPaBHeHMETO Ha PAaBHMHATA, a { = o — YPaBHEHHWETO Ha MOBBLPXHOCTTA Ha
kxankata. ToraBa 6e3pasmepHoTo paactosiiuMe h = cha ot xankara no paBHmM-
HaTa ONpelesifi eHO3HAUHON U QoKaJHOTO De3pa3MepHo pascTosnue ¢ = sha.
Axo o3mnauum ¢ ¥; pynsumaTa Ha ToKa BBTDE B KanKaTa, ypaBHenueTo (39)
Iie pemraBaMe NMpPU CJIEJHUTE FPAHUYHU YCIIOBUA:

1) Bupxy T8bpaata pasamHa § = 0:/

(40) _ ¥ =0, ¥ = ¥
: v 0¥, _ 8v*
“wo =" - a
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2) Bbpxy moBbpxHOCTTA Ha MekAyda3oBaTa rpanuua-§ = a:

(42) 9, =¥, =0
0w, 8%, o, 6%,
= = /\ ;
@ A R B
3) B Gesxpaitnoct, T.e. npu £2+ 17 — 0:
(44) ¥, — 0.

Tyx A = ’—‘., KBAETO I U }u ca AMHAMMYHMTE BUCKO3UTETH Ha Qayuamre
BLTpPE M BBH o"‘r KalKaTa. v

3a ococuMeTpUYHO TeyeHHe B GUCPEPUYHA KOOPAMHATHA CHCTEMA Onepa-
Toppr E? uva Buna :

ch£c2 { [( che — g)a£]+(1 ﬂ’)aﬁ [(ch£ ﬂ)aﬂ]

xbaeTo f = cosy).
Pemennero na ypasnennero (39) B 6nc¢epn‘mn KOODAMHATH B'bH ¥ BBTPE
B KalKaTa Ce 3alMCBa TaKa:

E?=

45) ‘ = B(ch¢ - )™%? Z Un(E)Va(8),

(46) ‘i’l = B(ch{ - ﬂ)—3/2 Z f/n(f)vn(ﬂ)a
n=1

KbaeTo

Va(B) = Pao1(B) = Patr(B)
(Pn(B) ca nomunomure Ha JInokananp),
Un(f) = AnChjnf + Bpshjn€ + CnChjng + Dyshk,g,
Un(€) = ane™ "€ 4 hre=¢,
3

. 1 ) 1
’]n_—:n—-2-, kn=n+-2-, B‘=§Aoc4.
Koeduumentare A,, B,, C,, D,, a, 1 b, ce olpenenaT YNCieHo OT rpa-

Huynute ycaosua (40) — (44), KaTo ce BaeMe NpemBU], Ye

I

2
¥ = lA c4sm 2 mpsh2¢

(chg — )
1 — —A()C (Chf ﬁ) 3/2 {2\/— E ﬂ2(:::-‘ ;') [jne—’Yns —~ kne—knf]
n=l
+ S_h_f_ [e—jni -knE]} Va (ﬁ)

ch¢
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Twii kato kKoepurmenture A,, B,, C,, D, namanaBar 6bp3o c yBean-
yaBaHeTO Ha n, 3a NpecMATaHeTO Ha (YHKIMUTE Ha TOKA Ha TeYeHNeTO B'bH
M BBTIPE B KalnKaTa € AOCTaThuyHO BB popmynure (45), (46) ma ce B3emar
‘15-16 unena. JIuuuuTe Ha TOKAa 3aBUCAT OT JABa mapamerbpa A u h. Ha ¢wur.
2 te ca noka3zany npM A = 0,5 u h = 1,8. Bwkaa ce, de 3an kankata 6imuso qo

dur. 2

CcTeHaTa ce NMoABABA BUXDBP. Ilpwn rosemMu pa3cToAnns Ha GIyuaHATa YacTHLA
OT paBHMHATA TO3Y BUXbp u34esBa. IIpu A =0,5 3a hyp ce monydapa h,z(p ~17
(ro-Touno 6,769 < hﬁp < 7,470). Opu A = 1,51 h = 1,6 cbmo MMa ABa BUXBPA
3aj] Kankata 6am3o mo crenarta (¢pur. 3), KOMTO ca CYMETPUUHO pPasIOIONkKe-

- HA oTHOCHO ocTta Oz. Ilpm A = 1,5 3a KPUTHYHOTO PaA3CTOAHWE NOJy4aBaMme:
h2, ~ 8 (mo-touno 7,473 < hZ, < 8,25). XHuIpOAMHAMUYHOTO CHIIOBO B3aMMO-
AefcTBUe MexAy $iayHAHATa JACTHLa M TBBPJAaTa CTEHa C€ XapaKTepU3npa’
CbC CUAaTa, C KOATO QAYMADBT AelcTBYBa BBLPXY KallkaTa HPM HaJU4YMe Ha
crenarta. Ilopaau ococMMeTpHYHOCTTA Ha 3ajavyaTa

-

F,=F,=0 n F, = 6xpAod® fy,

KbAETO

o0
fo= ——2;/§sh3 n+t 1B

~ m+3 "

3aBUCMMOCTTa Ha fo OT pa3cTofAHMeTo h 3a pa3jIMUHM CTOWHOCTM Ha A €
nanera Ha ¢ur. 4. IIpu ronemu crofiHocT Ha A (A — 00) dymaHaTa YacTHIlA
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Qur. 3

ce “BTBBPAABA” M 3aBUCHMMOCTTa Mexny fo ¥ h 3a kanka npeMuHaBa B Hale-
HaTa oT ['open u O’Hun [96] 3aBucumoct mexay fo m h 3a TBbpAa chepa.
CpaBHenneTo e jJaaeHo Ha Tabn. 1.

UscneasaHero Ha 06TMYaHETO Ha TBBDAY MM (GIYUAHM YACTHLIM OT Ipa-
IMEHTHH BUCKO3HM TEUEHMA € CPaBHUTENHO NO-TPYAHO OT M3CIeBaHEeTO Ha
CBIIMTE XWAPOANHAMMUUHM 3aJayM Npu o6TUyaHe ¢ paBHOMepeH NoTok. Kora-
TO YaCTHULUTE ca CBOGOMHO CyCHeHIMpPAaHU B IPaJMEHTHHA BHCKO3HM TeYeHUd,
T€ MOraT A2 ONUCBAT MHOTO CJIOXHM TpaekTopun. Hanpmumep B npocro rpa-
JMEHTHO Te4yeHHe ABe cHepUUHM YaCTHIM MOraT Ja ce BBPTAT Geskpalino (He-
OrpaHMYeHo) B 3aTBOPEHU TpaeKTopuM (OpbUTH), AOKATO NMPU YAbIDKABAIMUTE
(pa3rnramnre) TeYeHUA TEXHUTE TPAEKTOPUM Ca OTBOPEHM C U3KIIOUEHHe Ha
cly4as, KOraTo ABETEe YaCTHUIM ce JAONMUpaT. '

IIpocToTo HecMyTeHO TpaJMEeHTHO TeueHME € BMUXPOBO, a HEeCMyTEeHHUTe
OCOCHMETPHUYHM PAaBHMHHM yI'bJDKaBallM TeueHHA ca GespuxpoBu. Ilopamm
CBHIIECTBYBAIIMA IPaJNEHT Ha CKOPOCTTA NipU rpaAUEeHTHUTE TeUeHus cBoGol-
HO CYCTIeHIMpDaHUTe B TAX YaCTUIMA Ce JBIKAT C Pa3nMUHM TPAHCIALMOHHH
M POTANMOHHU CKOPOCTH, KOETO e NMPUUMHA 33 TAXHOTO HobamkaBaHe M JOPH
cbnbckBaHe. Bb3uukeaT Bhnpocu KaTo: 1) Moke nm ma ce nonyuu pasHOBe-
ceH pM3NUYeH KOHTAKT Me'x(}x'y ABe c6abckamm ce yactum? 2) Kak nelictByBat
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NN

dur. 4

Pa3jMYHUTE BMIOBE FPAJMEHTHH TeYEHUA BHPXY Pa3jUYHUTEe BUAOBe GoOpMM-
panu ce obpa3yBanus (arperatu) ot yactuum? 3) [loBeaenuero Ha arpera-
TUTE 3aBUCH JIM OT TOBA, JAJIM HECMYTEHOTO IPajMeHTHO TedeHde € BUXPOBO

nau He?

TaGamn n al
hla. fol96] - fo
51,0 2660,0 2659,87
10,0 112,80 112,78
5,0 32,090 32,0912
2,0 - 7,533 7,532
1,5 5,146 5,1452
1,1 3,575 3,5748
1,05 3,400 3,3949
1,01 3,263 3,2606

* 1,005 3,246 3,21
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B [93] e noka3aHO eKCIIEPUMEHTAJIHO, Ye B CYCNEH3UNTE OT CHEPUUHHU Yac-
THIM B NPOCTO TPAXMEHTHO TedeHHe eHOBPEMEHHOTO COI'bCKBaHE Ha n 4ac-
TiM (n 2 3) Moxe Ia JoBele KaKTo N0 o6pasyBaHe, Taka M. O pa3pyllaBaHe
Ha IBOWKM OT YacCTUIIM, KOMTO MMAT 3aTBOPEHM TPAEKTOPHUH.

IIpn npocToTo rpaamMeHTHO TeYeHMe pa3iajiedaBaHETO Ha YaCTMLUTE MJIM
obpa3yBaHeTo Ha Ayb6aeTn 3aBUCH OT TeXHUTE TPAEKTOPHH. OrBopennte Tpa-
€KTOPUM BOJIAT L0 Pa3fpbCKBaHE (,zmcneprupaﬂe) Ha YaCTHMLMTE, JOKATO 3aT-
BOPEeHUTe TPaeKTODUM He IMpHUTEXKaBaT ToBa CBOMCTBO.

Tb¥# kaTo TeopeTnuHo cepuUTe HE MOraT Aa YCTAHOBAT tbusuqen KOHTaKT
[102], 3akmouaBaMe, ye B rpaMeHTHUTE TeYeHUA € HEBL3MOXKHO arperupaHe
Ha YacTUIM Ge3 aelicTBMeTO Ha MPUMBJIMYAINM CUIM MeXIy TAX. B 3aBucumoct
OT BHJAa Ha FPajMeHTHOTO TeueHHe TO MOXKe Jla UMa WJIM HAMA JWCTIEPTUpAIIN
(pa3np'bcxaamn ) epeKTH BbpXy CHIIECTBYBAIM ar peraTu. OcocnMeTpHUHKTE
¥ PABHUHHUTE yIb/KaBallly TeYEHUA JIECHO AMCIEPTHpAT arperaTy OT MOYTH
Jonupaiuy ce chepuUIHH YACTHUIN.

"WnTtepecHo cBOWCTBO MpUTEKABAT CYCMEH3UUTE, YMMTO YACTHIM HMAT
Hecdepuuna popmMa — BMeCTO Aa C€ OPHEHTUPAT B €JHO HAaNpaBJlIcHUE, YACTH-
HHTeCeB$pTﬁTHepaBHOMepHOHOHepHOAMqHO3aTBOpeHﬂ0p6MTH Tak®B BUL
TPAaeKTOpHM ca GMiM mosydenu Hah-Hanmpen ot IDxedpu [2] [py M3cCJeBaHe
Ha CYCIEH3UM C YaCTHUIM, MMaIly GopMaTa Ha POTALMOHHU erxuncouan.  O606-
LIEHV Pe3YATATH OT U3B'bPIICHUTE €KCIePUMEHTAIHH N3CHeIBaAHUA Ha o6THya-
HETO Ha TBBPAM U QJIYMIOHN YACTHUM Ca AalleHy B Monorpadmnra Ha Kaundr,
Ipeiic ! BeGep [103] npe3 1978 r.

Hapen ¢ pemenute chiecTByBaT ¥ MHOrO HepellleHH npoGieMH oT Xni-
POAVHAMUYHOTO B3anMojaefcTBHE NIPH [paMEeHTHH queﬁuﬂ B CTOKCOBO NMpHO-
nmKenre Mexay AebopMupyeMn GJIYHIHM YaCTHIM, MEXKIY Kankd (Mexypw)
U TBBPAM Wi Mexaydaszoeu rpaHumm U iap. Haif-Hepa3paborenu ca socera
npoGiieMuTe 3a, onpenedHe Ha XUAPOAMHAMWUYHOTO B3auMoeficTBME NIPM rpa-
AUEHTHU TedeHNA MeXKAy ABE U TToBede TBBbP AU UM PIyHUIHU YaCTHIM, KOTaTO
Ce M3MO0J3YBAaT IILIHUTE yPpaBHeHUs Ha Hasue — Crokc.
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FLUID MECHANICS OF RIGID OR FLUID PARTICLES
IN SHEAR FLOWS

Z. Zapryanov

Summary

Beginning with the celebrated paper of Stokes® the theory of particle (rigid of fluid)
motions in quiescent fluids has a long and auspicious history. This initial work has been
extended in two main branches: uniform streaming flows and nonuniform {shear) flows.

In general, uniform flows are achieved by the action of an external force on the
particles or of some tethering force when the fluid stream past stationary particles. Shear
flows may arise because of the movement of apparatus boundaries as in the case of Coette
flow or the action of an external Pressure gradient as in Pmseullle flow through a circular
tube.

Shearing flows may be generated as well by the extension of a thread of viscous fluid
as in the polymer drawing processes or by the impaction of particles on collectors where
one obtains a stagnation flow.

During the past two-three decades considerable progress has been made in the devel-
opment of continuum theories of suspensions in which the suspended matter may consist
of rigid or fluid particles. The understanding of the flow behaviour of particulate suspen-
sions is important in many chemical technologies, sedimentation, engineering problems
concerning with nuclear reactor. cooling, performance of rigid-fuel rocket nozzles, aerosol
spraying and others. Sedimentation, wherein particles fall under the action of gravity
through a fluid, is commonly used in the petroleum mdustnes as a way of separating
particles from the fluid.

The hydrodynamic models of shear flows may be globally characterized by a shear
rate S in units of reciprocal time and Reynolds number

a2
Re = S,

14

*G. G.St ok es. — Trans. Cambr. Phil. Soc., 9, 1951, 8.
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where a is the radius of the particle and v is the kinematic viscosity of the fluid. For
small Reynolds numbers the velocity 7 and the pressure p must satisfy the Stokes and
continuity equations

(1) Wiy = %Vp, V=0,

where p is the density of the fluid.

The mathematical modelling of heterogeneous systems (suspensions, emulsions, slur-
ries etc.), as if it were homogeneous, has for many years been a challenge to both ex-
perimentalist and theoretician.. As a result numerious models have been developed to
show the link between the macroscopic behaviour of the system as a whole and the mi-
croscopic interactions between heterogeneities. Einstein [1] was the first' who calculated
the viscosity of a dilute suspension of rigid spheres in an incompressible Newtonian fluid.
He considered creeping shear flow past a single sphere and multiplied the result obtained
by the number of the spheres to give a total correction to indisturbed flow for a dilute
suspension of noninteracting spheres. In this way he obtained his classical formula

Bef =143 2
@ - =1+50+0(7),

where p.s is the effective viscosity of suspension, p is the viscosity of Newtonian fluid,
comprising the continuous phase, and ¢ is the volume fraction of spheres in suspension.
It is worth to note that a modern derivation of Einstein’s suspension viscosity has been
presented by Landau and Lifshitz".

In an oft-quoted paper Jeffery [2] studxed the behaviour of an ellipsoidal particle in
a shearing field on the basis of Stokes equation of motion. This work has since provided
the starting point for a multitude of theoretical investigations related to antisotropism in
laminar shear flows. He considered a suspension of neutrally buoyant ellipsoids of revo-
lution, dispersed in a Couette flow. The orientational distribution function is a periodic
function of time, the period being

27
7= (k+7):

in which k= =1 and e, aL are the lengths of the semiaxes of the symmetry and
ay
transverse axes respectively.

The axis of the ellipsoid of revolution moves in one of a family of closed perlodlc
orbits, the center of the particle moving with the velocity of the undisturbed fluid at that
point. Jeflery [2] found the time-average viscosity of the suspension by utilizing addi-
tional dissipation arguments and intergrating this instantaneous, orientation-dependent
quantity over one period. Accordingly, the energy dissipation depends upon the initial
particle orientation and cannot be regarded as an intrinsinc property of the fluid-particle
suspension. Since the concept of an infinitely dilute suspension is an idealized one, Mason
et al."" have perfomed a sequence of experiments and established that after a sufficient
number of individual particle rotations the distribution of orbital parameters approaches
a unique, steady-state distribution, which is apparently independent of the initial orien-
tational distribution. In this connection we shall note that two spheres approaching one

‘L.D.Landau. E.M. Lifshitz Fluid Mechanics, Addison-Wesley, 1959.
“*S.G.Mason, R.J. . Manley — PI;OC. Roy. Soc. (London), A 238, 1956, 117.
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another along two neighbouring streamlines, moving at different velocities, may either
“collide” to form an effectively permanent collision doublet or else they may merely ap-
proach to within some minimal separation distance before their receding. The existance
of closed streamlines furnishes a rational hydrodynamlc explanatxon of the existance of
permanent, two-sphere doublets.

Bretherton [7] considered the steady, two-dimensional motion at low Reynolds num-
ber of an incompressible viscous fluid past a circular cylinder, the velocity at large dis-
tance being described by a uniform simple shear. In 1962 Bretherton {8} extended Jeffery’s
analysis to bodies of more general shape and showed the existance of modes of motion,
incapable of being displayed by ellipsoidal particles. He showed that for some rigid parti-
cles of revolution there exists a definite “preferred” orientation and the rigid bodies do not "
undergo a periodic rotation of the Counette flow. He found that the “preffered” orientation
of the particles is such that their symmetry axe is directed along the streamlines. If

a—b

= R

a

then

(3) “,:‘ =1+mp,

where m = m(e) is a known function.

When one liquid is at rest in another liquid of the same density, it assumes the form
of a spherical drop. The physical and chemical conditions of emulsions of two fluids,
which do not mix, have been the subject of many studies, but very little seems to be
known about the mechanics of the stirring processes. In contrast to the rigid particles,
‘the principle physical characteristic of a fluid particle (a drop or a bubble) is its ability
to deform under the influence of shear. But if the drops (bubbles) are very small or the
surface tension is large then the shape of the fluid particles will tend to keep spherical.
However, in general, the fluid particle adopts a nonspherical shape and its precise shape,
when suspended in a fluid undergoing simple shear, is governed by the ratio of the viscous
shearing forces, uS, to the interfacial tension forces, = where o is the surface tension and

a — the radius of the underformed drop (bubble). The fluid partxcle shape is determined’
in part by the dimension parameter

(4

k=m

and in part by the viscosity ratio

o= continuous — phase viscosity _ p
" fluid particle viscosity  j’

It is important to note also that the droplet contour adopts a definite orientation, relative
to the principle axes of shear, though there exists an internal circulation within it.

In his two extraordinary papers G. I. Taylor [35, 36] found that the emulsmn behaves
hke a Newtoman fluid w1th a viscosity

51+ -
4 = 2
(4) et =p |14 3 TTa

el .

-
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For rigid particles & — 0 and one obtains Einstein’s formula (2) but for gas bubble o — o0
and

(5) Hef = I"(l + 9’)'

Not surprisingly, this viscosity is considerably less than that for rigid sphere suspension.’
If the viscosity of moderately concentrated suspensions is presented by the power
series expansion

5
(6) uef=ﬂ<l+-_;§9+k(,92+),

then the second-order coefficient is governed by “two-body” interactions. That is why the
investigation of the interaction of just two particles alone in a large expanse of fluid is of
special significance.

Problems, in which a viscowk fluid interacts with a deformable fluid particle and a
rigid wall, are of considerable interest in the study of liquids, such as blood,. polymer
solutions, and suspensions of liquid droplets. The understanding of the mechanics of the
interactions between the deformable fluid particle and the rigid wall is important both
for investigating phenomena of interest at the level of a single particle and for the bulk
rheology of the suspension. One problem of this type for examp]e, is the response of a red
blood cell to a viscous shear field.

In the theory of particle capture by filtration or scrubbing processes one must know
the hydrodynamic forces, exerted on particles suspended in the flow, and particularly the
extent of the influence of walls on these forces when the particles are mowing to the walls.
The normal force, exerted by axisymmetric stagnation flow on small rigid sphere touching
a 1igid plane was culculated by Goren*. A method for estimating the hydrodynamic force,
acting on a small particle of a dilute suspension in 4 slow streaming motion past a large
spherical obstacle, was presented by Goren and O’Neill [96].

The steady flow in and around a deformable drop, moving in an unbounded viscous
parabolic flow and subjected to an external body force, was calculated for creeping-flow
regime. It was found, in addition to the drag force that, the drop experiences a force
orthogonal to the undisturbed flow direction. Whol and Rubinov [43] also calculated
the trajectories for a drop in Poiseuille flow on the basis of their derived force. They
predicted that a neutrally buoyant drop would inove radially inwards to the cylmder axis,
in agreement with the observations of Goldsmith and Mason [21].

The radial migration of a single spherical particle across the streamlines of a Poiseuille
flow in a tube cannot be explained on the basis of Stokes’equations, even in the presence of
the bounding walls, i.e. a sphere experiences no transverse force at creeping flow regime.
A transverse force does exist if inertial forces are taken into account (Rubinov and Keller
[20]). In fact, the redial force producing axial migration of the deforming drops (and
flexible solid particles) arises from the interaction between the drop deformation and the
flow field around the drop, rather than from an inertial effect. In this way the transverse
force on a particle should be computable solely on the basis of the Stokes equations if the
particle is flexible.

Let us consider an axisymmetric shear flow that at infinity has the form

) o 7 = Ao(pzi, — 2°12),

*S. L. G or e n. — Fluid Mech., 41, 1970, 619.
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d ks . - . ' . 3 . .
where t,, 1, are unit vectors in cylindrical coordinates (p, 2), Ao is a constant and 7° is
the velocity at infinity. If a stream function ¥* is defined in the usual manner

. 189 ._ 10¥°
(8) ] u = ;‘37: w ——;Tp—'
then one has
9 | . . ¥ = %Aop222.

This indisturbed flow represents an axisymmetrical stagnation flow. Let us introduce a
spherical drop of radius a into this flow, so that its centre lies on the axis p = 0 and at
a distance from the plane z = 0. In this way the flow will be still symmetrical about the
axis p = 0 and the stream function may be written as

U=9" 40,

where ¥* is the flow at infinity and ¥ must satisfy the Stokes’ creeping flow equation

' . [ee 18 )%,
(10) EAW:{B_J_ZE-*@} ¥ =0,

since ¥* satisfies this equation.
In order to determine the solution of equation (10) we introduce bispherical coordi-
nates (£, 1) related to the cylindrical coordinates {p, z) by the relations

_ csing 2= ¢ shé
" ché ~ cosp’ ch¢ — cosyp’

where —00 < £ < 00 and 0 £ n £ 7 and ¢ is a positive constant. The coordinate surface
£ = o describes the drop surface and £ = 0 represents the rigid plane.

The boundary conditions are:
(i) on the rigid plane £ =0

(11) ¥=0, ¥ =-¥%

v o, au*
(12) ®=% & e
(ii) on the drop interface §{ = a
(13) =¥ =0,

¥, _ ol
W % T
8 THA £

(1) 2 ~ 2o
(iii) at infinity €2 + 5% — 0,
(16) ’ ‘I’] —_ 0,
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where A = %, p, 4{?) are the dynamic viscosities inside and outside of the drop,
u

respectively, and ¥, and ¥, are the corresponding stream functions.

We have solved the problem of a stagnation (shear) flow past a spherical drop in
proximity of a rigid wall at small Reynolds numbers (i.e. the problem (7) — (16)) and
have found the structure of the flow and the force, exerted by creeping flow on the drop.
Toshev and Zapryanov*® have investigated numerically the problem of a stagnation flow .
past a rigid sphere in proximaty of a rigid wall at moderate Reynolds numbers. The above
two problems are connected with the investigation of the interaction between the blood
erythrocites and the walls of artificial organs. In the same connection Kalitzova-Kurteva
and Zapryanov [92] have studjed steady axisymmetric motion at low Reynolds numbers of
an incompressible viscous fluid past two spherical particles, the velocity at large distance:
being described by an’unbounded Poiseuille flow. If the radii of the particles are not
smaller than thau of the containing circular tube, one has to consider hydrodinamic effects
due to the wall of the tube. They have obtained an exact solution for the flow fields of
the above mentioned problem by an extension of the well known procedure, developed by
Stimpson and Jeffery™* .

Finally we will mentlon briefly some problems in the field of shear flows which are
still not solved: /

1) The problem of shear creeping flow past two deformable drops or bubbles.

i) The problem of shear creeping flow past “two capsules” (two fluid drops, which
are enclosed by an elastic membrane). ‘

iii) The problem of shear flows past two particles (rigid or fluid), where inertia terms

_are included. .

*E.Toshev, Z.Zapryanov. In preparation for publication.
**M.Stimpson, G.B.Jeffery — Proc. Roy. Soc., London, 11, 1926, 110.
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O HET'OJIOHOMHBIX CUCTEMAX C HEJIMHERHBIMU
CBA3IMU

COHA AEHEBA

Cows [leneea. O HETOJIOHOMHBIX CUCTEMAX C HEJIMHEAHBIMU
CBA3AAMMU. B paboTe BHBeaeHH YPABHEHMA IBHU/KEHWS HeJMHEHHBIX HETOJOHOMHBIX
cucTeM. PaccMoTpennb ABa npuMepa NPMMEHEHWA 3THX YDaBHEHM.

Sonia Deneva. NONHOLONOMIC SYSTEMS WITH NONLINEAR CONNEC-
TIONS. In this paper new equations of motion for nonholonomic nonlinear sistems are
derived and two problems are solved as an illustration of the equations.

, . /
MexaHuKa HeMHENHBIX HETOJOHOMHBIX CHUCTeM BO3HMKJIA B Havalle XX Be-

Ka Gnaromapa paboram II. Amneas [1, 2, 3] u E. Hdenaccio [4, 5, 6], koToprle
noapobHO McciiegoBaan Takhe cucteMbl. [leppoie cBeaenna o HeJMHEeHHOU Me-
XaHuKe oTHocATcA K KoHIY XIX-oro Beka. Oana U3 MepBHIX U3BECTHHIX pabor
B 9ToM Hanpasjenuu — crathd M. B. Memepckoro [7}, B koTOpOIt OH HOKa3aM,
YTO B aHAJMTUYECKOH MeXaHUKe MOIyT pacCMaTPUBATHCA IBMKEHUA MaTepH-
aJIbHOW TOUKM NpH CYIeCTBOBaHMM KOHEUHBI CBA3EH, HO U AuddepeHImMaIbHbIX
cBA3ell NPOU3BOJIBHOTO OPALKA.

H. B. Memepckuii ouenb moapo6Ho paccMoTped nuq)(bepeﬂmdanbmﬂe CB#HA-
34 IEePBOT0 MOpALKA, CUATaA, UTO OHM MOTYT OCYIIECTBJIATHLCA C MOMOUILIO
cpelnbl, Bo3elicTByollleil Ha TOUKY, HaXxoAAmyoocs B Heil. OH BbIBea ypas-
HEHUA ABWKEHUSA MaTepHajlbHOU TOUYKM C TaKoil CBA3BIO M Jaj ABa IIPUMepa,
B KOTOPKIX CBA3M OCYIIECTBAAIOTCA NPH MOMOUIM LIEPOXOBATON [IOBEPXHOCTH,
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a peakUMAMM CBA3eil ABAAIOTCA cuin Tpenusa. B 1911 romy npumepn mexa-
HAYECKUX CUCTEM C HEJIMHEUHBLIMM HEroJIOHOMHEIMM CBA3AMM Obiam maxHbI I1.
Annenvem [1] u E. Henaccio [4]. B 1936 rony A. Beaumosuu [8] paccmor-
peJl MPUHLUMIIAANBLHO HOBBI NpuMep HeJIMHEAHBIX HETOJIOHOMHBIX CHCTEM, OC-
HOBaHHBIA Ha aBTOMATUYECKOM PEryMpOBAHUM CKODOCTH MaTepHaIbHOMN Tou-
k1. B nocienHee BpeMs B CBA3M C Pa3BUTHEM aBTOMATUKU NMPOABJAETCA BCE
6oJbUIMIA MHTEpeC K HeJMHeHHOW HeroJioHoMHON MexaHuke. MHorme aBTOpHI
kak L. Castaddi [9], I. C. IToracos [10], A. Melis [11], B. HoBocenos [12] na-
IOT NIPUMeEPEI TAKUX CUCTEM, KOTOPhIe uMeloT 6ojlee MeTONOJIOTUMECKOe, YeM
npakTuveckoe sHaueHne. Ho MokeM GbITh yBepeHHBIMM, UTO B yIPaBJ/AEMBIX
cucTeMaxX, B TEOPUM aBTOMATUYECKOTO PEryJMpOBaHUA M B APYTHMX Bolpocax
conpemeﬂﬂoﬁ TEXHMKHW -MeXaHUKa HeJWHelHbIX HEroJIOHOMHBIX CBA3el Haﬁne'r
mmpokoe npuMetenue [13]. Ormerum, uTo 0coBoe pa3BUTHE TEOPUM HEJIHU-
HeifHBIX HEeTOJIOHOMHBIX 3aj4ay noJjyuuiaa B paborax U. Ilexosoii [14, 15] u b.
Honamuuesa [16].

B nactosmeit pabore caenaH KOpoTKuii 0630p HekoTopwXx aupdepeHun-
aJbLHLIX ypaBHEHUMN ABIKEHMSA HeJIMHEHHBIX HEroJIOHOMHEIX cucTeM. PaccMmor-
peHbl ypaBHenusa PayTa [12] ans HeronoHOMHEIX HENMHENHBIX CUCTEM nepBoro
u BToporo nopsaaka. Ha ocHoe npunuunoB sRypaena u I'aycca B He3aBm-
CUMBIX BapUallMAX BhIBEAEHL] ypaBHEHMA ABIWKeHUA Ge3 MHoxkuTenelk Jlarpan-
*ka. DTU ypaBHEHUsA COBNAJAIOT C YPaBHEeHMAMM Tvna JaniabirMHa, JaHHBIMM
B [15], Ho uMeloT Gojiee MpocTyio ANA NpUMeHeHUA popmy. BrimeynomanyTeie
ypaBHeHUA NMPUMEHEHH K ABYMsA NpUMepaM M CBelleHH! K KBajgpatypaM. Ilpu
BTOM K NepBOMY NpUMepy NpUMeHEHb! Kak ypaBHeHns PayTa, Tak ¥ ypaBHeHMA
6e3 MHOkUTedel Jlarpamka. ,

1. ¥Ypasuenuna PayTa 4i1s1 HEMOJIOHOMHBIX HENVHEHHBIX CUCTEM NEPBOro M
. BTOPOro NMOpAIKA.

TlycTh mBM:KeHMe MeXaHWYECKOW CHUCTeMHI onpenensaercd | mapameTpamy,

T. €.

(1 ! rJ':rJ'(f" q:) v (l'zl-,.‘.,l;j:l,,,,,n)_
Mexay napaMeTpaMy CHMCTE€MbI CYIIECTBYIOT CBA3M
(2) folt, qin @) =0 ‘ (p=1,..., d),

KOTophle BoobIe roBopa HeauHeitnoivu. Kak cieactsus us (2) npm Bapbupo-
‘BaHUM TOJIbLKO 0BOGIIEHHBIX CKOPOCTeH NoJyuYuM

(3) | Ea—fiféq'i = (p=1,..., d).

Jlns BHIBO1a Y paBHEHUS ABVIXKEHUA MCXOAMM U3 NpuHUMNa JKypaeHa, coryiiacHo
KOTOPOMY

n

(4) 3 (~tms; + Fy)ors =0,

i=1
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rae F; cunml, aelicTytomme Ha cuctemy. OTmeTuM, uyto npuHmmMn (4) 3amican
B NIPEANOJIOMEHMN, UTO

(5) | 3 Ryt =0,
ji=1

T..e. cpA3n (2) maeanuw no oTHomenuro npuxHimna sKypaena. Ilaa KoH-
KPeTHBIX NPUMEPOB MoKa)xkeM, UTO peakuuu cBAseit (2) yaosnaersopsior (5).
N3 (1) umeem

87‘] Brj

OTKyIa, BAPEMPYA CKOPOCTH, TONydaeM

| b,
7 6 =y —L6¢;.
( ) i J ; aq‘ '
MoacraBnaa (6) B (4), 6yaem nMern

i i
(8 3 Z(—m]r,gr F‘é”) 8G; = 0.

i=l | j=1

Iloka3zaHo, uro [14]

N oi; 8T 4T
mifj == ) myfjt = — —2—,
32_:1 0q; ,; ¢  Oqi
rae
’ n r’njr}’
(9) T=) —5

i=1

KHHeTWJYecKaa sHeprusA cucremel. O1ciona (7) npuHnMaeT BHI

I .
oT oT .
(10) ;{—5‘;+2a—qi+Qi}5Qi:
rae
(11) | Q=Y 5
. ’ i=1 ]aq'
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06006ileHHble CUIBI, AeiicTByomMe Ha cucteMmy. Ilociennuvie mMoskHO ompene-
JIATH KaK Koo dUIMeHTh! Tepea BapHamuAMy 060061MeHHBEIX KOOPAUHAT B BhIpa-
KEHUM AJA BUPTYaibHoi paborel. UMeem

n i n
(12) 5A:ZFj3Tj-:Z ZF]‘Z—Z- 5q,—.

j=1 i=l \j=1

W3 cpaBuenns (11) u (12) cieayeT BomueynoMAHyToe yTBep:kieHne. Ecan
CHJIB!, JEACTBYIOIIME HA TOUKM CHCTeM Fj, KOHCEPBATHBHEI, TO BBINOJHAIOTCA
COOTHOUIEHUA )

. ; ouU
13 =
(13) 9=
roe U — cunoBas diyﬂxuuﬁ. YMHo¥kaa (3) HA MHOXMUTENB — Ap, CYMMHUPYA

no p v npubapaaa k (10), noiayuaem

i
(14) Z{—gj T+Q,+Z/\ af"}aqi:o.

i=1 i

W3 (3) Buano, uro d Bapuanun 8¢; 3aBUCUMBI U COOTBETHO | — d HE3ABYCHUMBI.
Bri6upaeM MHOXKUTENN A, TaK, 4ToGHl KoaddummenTh B (14) nepea 3aBUCUMBI-

My Bapuaumamu koopaunat 8¢;(i = d+1,..., 1) o6patunuce B Hyau. Torna,

TaK KaK ocTanbHble Bapuammn 8¢;(i = 1,..., d) uesasucumsl, u3 (14) naxomam
6T af,, .

(15) a0 —Q,+Z,\ (i=1,..., )

Ypasuenus (15) B [14] suiBeaens: B dopme Hunbcona. Jlerko nokasars Ha
ocHoge (9), uyTo UMeem

or 9T _ d (8T) _or
dq; 9 dt \0¢:) 94i’

oTKyZa ypaBHeHus (15) npUHMMAIOT B

d (9T 9T _ af,, _
(16) ’E<071.l_> % Q,+ZA =l D,

'K ypabuenuam (16) nobapasem (2), Tak uto umeeM ! +d ypasuenns c [+d He-
M3BECTHLIMM ¢;, A,. DTU ypaBHEHUS OMEBUAHO MMEIOT MECTO ISl HeXMHeHHbIX
cBsizeil MepBoro MopsLxa.

PaccMoTpum U HesluHelHble HETOJIOHOMHbIE CBA3M BTOporo mopsika. B
TOM cjlydae OyAeM UMeTb 3aBUCUMOCTH BUJIA

(17) folts 4y @iy §i) =0 (p=1,...,di=1,..., ).



Baprupya Toasko oGobmennsie yckopenus, n3 {17) nonyuaem

(18) Z%&I}:O (p=1,..., d).

i=1 i
Ina BriBona ypaBHEHUA ABVDKeHMA BhIXoauM M3 npunimna laycca

(19) D (—m;i#; + F3)é = 0
j=1 ’

B NIpeANONIOXKEHHH, UTO
- N n
(20) ) ‘ Z Rj&i;j =0,
: o j=1

rae R; peakuusa ceaseii (17). MHpIMM ciioBaM#, fpelllojlaraeM, YTO CBA3M
(17) naeanbust Mo orHomenuio k npuHumny aycca. U3 (6) nonydaem

: ; i :
. orj ..
(21) ' 7’j:§:5'j'Qi+"'y-

rie MHOTOTOUMEe O3HAayaeT UJEHBl, He conepmamue ¢i- W3 (21) Bapempysa
TOJILKO YCKODEHUS, MoJIydyaeM

. . Or;
(22) E 57 = 5 9% 6.

HoacraBnsem (22) B (19), oTkyna maxoanm

1 n
(23) 3 Z( rjg" +Fg ) 8G: = 0.
i=1 | j=t
U3 [14] umeem :
d J AT A
Toraa (23) npunumaer Bua |

! 18T oT
(24) Z( 53+ 3 +Q)6ij,-=0.

i=1

Onepnﬁyﬂ c papuaimamu (18), kak ¥ Bhime, mosyyaem u3 (24) ypabHenus

- 10T 30T _ af,, .
(25) 306 20g Q;+Z/\ (i=1,..., 1.
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OueBnano (25) — pacmnpeﬂue ypasHenwuii IlenoBa nnsa Henuueﬁmﬂx HeroJIo-
HOMHBIX CBA3eit BToporo nopsaxa. He Tpyano nokasats, uro

19T 30T _ d aT)_a'T
2 04; 26(]_,‘ Todt 0g; d¢;’

otkyaa (25) NPUHUMAET .Harbamxeamﬁ B
d [-0T oT (?f,, .
(26) %(5&:) t?q Q:+Z/\ (i=1,..., .

K (26) Ao6aBnsieM ypaBHEHUA (17) # NoAy4YaeM CPICTeMy u3 I+d ypaBHe-
Huit ¢ | + d HeM3BeCTHBIMY.

OTMeTHM, UTO YPABHEHUS C MHOMKUTEIAMM JIarpamxa B q)opme Annens
NaHHBI B [15], a umeHHO

-Q,+ZA 6f”

rae S aHeprua YCKOpEHHUS.

2. YpaBHenus 6e3 mHoxutesneit Jlarpamxa AnA HeJlUHeHHBIX HeroJo-
HOMHBIX CHCTEM NepBOro ¥ BTOPOro MOPAIKa.

IlycTb Kak ¥ Bhllle ABMXKEHME MeXaHUUYeCKOil CHCTeMEI onpeledserca | na-
pamerpamu. Ilpeanonaraercs, yro cucrema (2) pa3peumma OTHOCHTEJLHO
yacT¥ 060BUIEHHBIX CKOPOCTEH, T. €. UMeeM

(27) 4y = Fu(t—qi, ¢r) (=k+1,..., L r=1,..., k),

rae k = [ — d uncno HezaBUCHMMEIX cKopocTeil. Ecau orpaHMunMIbCA 33BH-
cuMocTAMM (2), To Kak BBIJIO MOKa3aHO BhIIe, MOXKHO, UCXOAA U3 NPUHIMIA
Kypaena, noayunts ypasuenusa PayTa Ans HelWHeHHBIX HETOJIOHOMHEIX CBA-
3eif. DTN ypaBHeHMA, OHAKO, COldepKaT MHOKUTenu Jlarpawka, T.e. 4UCiIO
HeM3BeCTHLIX GOoJbIle, YeM YMCiI0o MapaMeTpoB. 3JeCh NOAb3YACh CBA3AMM
(27), BbIBeseM ypaBHEHHA IBWXEHUA B HE3ABUCHMBIX CKOPOCTAX. Bynem uc-
XOAMT U3 npudMia sKypaena (4), u npeanonoxennit (5). Ucnonwp3sysa 3aHopo
_ 3aBUCHMMOCTD

; 9T\ or
- i=1,..., 1),
.z:lm.? J aqt <6q1> Bq; (l ’ ‘ )
npnaeneM OpUHIUI rhyp,ueﬂa K BUAy
! . .
' d (0T ar .
(28) Z{—-(E (éz) +£+Q;}6q;:0

=1
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Bappupys (27) orHocuTenbHO 0606LIEHHBIX CKOPOCTEX, MOJIyYaeM 3aBUCHMOC-
™

’ » v ) L OFu . ' ' |
(29) SGu= 3, 84y (p=Fk+1,..., D),

r=1

re §¢, He3aBUCUMEIE Bapuaumu. JamiceiBaem (28) B Bune

“ [ 4 [dT\ , oT .
o {0 (5) oo

r=1

i
d (8T, OT

E —— [ = — bq, = 0.

+u=k+1{ di (3‘ju>+aqu+Qu} =0

Buaocum (29) B (30), nocse yero moaydaem

(31) - { (aq,> Q}éqr "

k I .
3T 0F,
21 2 { (f%) 5!1# 84, Q“ 34, } 5 (=0 |

r=1 »u.:k+l
r= veon, k=1~d).
W33a Toro, uto 8§, 3aBMCHMEIE BApHAIIMM, M3 (31) ClIeAYI0T ypaBHEHUA
. .
d (0T . d (8T \ 8F,. 4T
(32) : — (-—) + ) -(——-) -
dt \ 9¢, e dt \ 9q, qui dqr
© _
0T OF,
- Z o
u=k+1 Bq,, qu p=k+1 6
i (r=1,..., k).

Y pasuenus (32) u (27), unucao xoTophix I, OTIPEAENOT BIIOJHE ABIKEHHE CHC-
TeMBl. 3/lecb OTMETHUM 3aHOBO, YTO ypaBHeHMA, mofobunie (32), manum [15],
rie Ha3BaHbl ypaBHeHMAMHM Tuna YamaurmHa. B stoit pabore ncnonbsyercsa
BEIpaXkKeHWe A KOHeTHYeCKoi aHeprum T', koTopoe moaydaerca w3 T mocie
3aMeHBI 3aBMCHUMBIX CKopocTeli. B oT1oM empicie (32) mMoxHO TpeTMpoBaTth
KaK HOBYIO opMy ypaBHeHWH aHaauTvYecKoit MEXaHMKN JJA HEroJOHOMHEIX
HeJIMHeHHbIX CHUCTEM.

. AHaJIOTMYHO IJIfi HEJIMHEMHKIX HETOJIOHOMHBIX CUCTEM BTOPOro MOPAMIKa,
Ha KOTOpPBle HAJIOXKEHbI CBA3N BUAA /

(33) du = Fu(t, ¢, ¢, §r) (y=k+l,...,l;'r='1,...,k)‘
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IIpumensas npunimna lMaycca ana naeaybHBIX CBA3eM, HMOJdydaeM ypaBHEHUA

. d(aT : <6T) 8F, OT
34 =)+ -
(34) dt <6qr> zk;l 04y /) 04r Oqgr
!
oT 9F,
> Q. 2%x (r=1,..., I-d).
psk+1 8‘1“ 6‘1’ ' uzk;-l : 6q

Y papuenns (34) coBMmectHo ¢ (33) onpeneNAOT ABWKEHNE CHCTEMEHI.
B uacTHOM ciyvyae HeJVHEWHEIX HETrOJIOHOMHBIX CHCTEM MepPBOro MOpPAX-
' Ka, JJIA KOTOPEIX uMeeM (27), nonyvaercs ycaosue [lmeGopckoro — Kouunoit
[17), [18) ana Bapuaumit KOOPAMHAT

JF,

(35) 6q# - 6

"6q, : (p=k+1,..., 0.

OTMeTUM, YTO UCIOJb3yHA (35),M0>§<H0 noJy4YuTh ypaBHeHua (32) misa Hean-
HeMHLIX HErOJIOHOMHBIX CUCTEM M C momowbio npuHummna JlanamBepa — Jlar-
pamwka. : _
3. Ilpumep cucTeMnl ¢ HeJIMHEHHLIMH HETOJIOHOMHBLIMU CEA3AMHU NEPBOTO
MOpAIKA. ’ :

" Teso (HanmpuMep KocMMUYecKUil anmapaT) ABWAKeTCA NOA AefiCTBMEM CMJIEI
TAXECTH ¥ ynpasisomeil cuibe R Tak, 4To HEHTp Macc Tela MMeeT MOCTOAH-
HYIO TT0 BEJIMYUHE CKOPOCTh v. B KauecTBe NapaMeTpoB ABWKEHHA BHIGHpaeM
KOOpAMHATHI Z, Y, z leHTpa Macc G Tena ¥ yrasul Ditnepa ¢, 8, ¥ ajna koopau-
HaTHOM CHCTeMbl, HeM3MeHHO cBf3aHHOH ¢ Tesom. CoryacHo Teopeme Kennra
AJIA KAHETHUYECKOMH BHEPrUM MMeeM 4

(36). = %(:&2+{/2 + %)+ —;—(Aiaz + Bg® + Cr?),

. rae A, B, C rnaBHble MOMeHTH MHEPLUMHM Tella U ero Macca. CooTBeTCTBEHHO
P, ¢, T — KOMITOHEHTHI YIi10BOH CKOPOCTH CHEPUYECKOrO ABMKEHNS Tella BOK-
pyr ero nentp macc. CorsacHo yciaoBuio i ckopoct G UMeeM cllefyolyIo
HeJINHEWHYI0 CBA3b .

(37)“ , : (.’n + 9 +z2) 1;- =0,

rje v MocToiHHAA CKOPOCTh. -
Bueumsas cuna P = mg koHCEpBATHBHA W MMeET CUIOBYIO @ymmmo

(38) . , V =-mgz.

N
~

Hpumensn ypasuenus Payta (16) n umesd's suay (36), (37) u (38), monyuaem

(39) F=Ad, §= Ay, P=—g+As
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i(&T)_éT_’__O' i(aT) o _, i(BT)_BT_O
dt \o9g) 99 o) o 86) 98

3mech A — muoxutesn Jlarpamska, COOTBeTCTByloumﬁ (37) Ha ocHoBe xu-
HeMaTHYecKux Gopmyan

p = 1Z:sin0sinq5+écos¢,
g = 1jl;sin0cos¢—0.sin¢,
r = tcosf+¢

He TPYAHO NojiyuuTh u3 (39) siisiepoBble AMHAMMYECKMe ypaBHEHHA
(40) Ap — (B=C)gr=0

Cr - (A-B)pg=0.
Ouesnano (40) coorBeTcTBYIOT cayuaio Sﬁnepé IBWKEHUA TBEPIOTO TeJa
BOKPYT HEMOIBWXHoW Toukd. B cnydae, koria HayaJibHble yrioOBEE CKOPOC-
TH ¢g, Yo, 0o Hymu, ypaHenus (40) HomyckaroT TOJNBKO HyJI€eBo€ pellleHHe
p=gq¢g=1r=0, 1. €. Tefio cOBEpUIaeT TPAaHCJIAUMOHHOE ABMkeHHe. B npoTus-

HoM cayyae (40) MMelOT M3BECTHOE DelIeHNE B BJIIMITHYECKUX QYHKIMAX.

Cornacuo (‘37) u (39) ABIKeHMe Tejla onpelenfeTca U3 ypaBHEeHMIA
(41) i = Az, §=Xy, i=-g+)Az 4y +52 =02

Ipu ycnosun, uto £ # 0, § # 0, uz (41) Haxommum

(42) =Y
) Ty
N3 (42) cneayior 3aBucumMocT#t
(43) §=Cis, y=Ciz+0y,

rae C;, C; — uHTerpauuMoHHbIE KOHCTAHTEI, 3aBUCAIIME OT HAYaJbLHBLIX yCJIO-
Buit. U3 (41) un (43) caenyer

(44) iz fer-(C24 1),

ree e =*1. 3aBUCUMOCTH OT 20> 0 mmm 20 < 0. Us (44) cnenyer
_ e(C? + )2z
VT = (CT+ D&

HoncraBnsas (45) u (44) B TpeTheM ypaBHeHuu (41), moayuaem

(45) ‘

Vi

(46) B sy
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Mocne unrerpuposanuda (46) HaxoauMm

_ 2C3ve= ¥
1+ C2+ C2e

(47)

C3 — mHTerpaumoHHaa KoHcTtanta. VIHTerpupys ewe pa3 (47), noayvaem

—(1!

g\/__i \/_——7

(8) 2(t) = Cs -

U3 (43) n (48) caenyer
26'0201

PV

W3 (44) n (47) nociie COOTBETCTBYIOWIErO uHTerpnpoaa}mx HaXO0 UM

(49) W)= a4 CiCs -

1 (50) z(t)—Cs+£vt+——ln[1+Cl+ 2—3’-].

Us (bopMyn (48) — (50) BBITEKAET, YTO [P AOCTATOUHO GOJIBIINX 3HAUEHUAX
t u nipu Zp > 0 ueHTp Macc coBepuiaeT NpUBIIHKEHHO NPaBo/MHeHOe paBHO-
MepHOe ABWXKEHMEe BAOJb ocu z. B obuleMm ciydae HEHTP MacC ABWKETCA C
MOCTOSIHHOM 10 BeJIWUMHE CKOPOCTBIO.

Onpeaenum HeoGxommmylo ynpasisiomylo cuny R. Ha ocHoBanuu Teo-
peMBbl 0 ABWKEHUH HEHTPa Macc MMeeM

(51) mwg =mg+ R.

IIpoextupysa (51) mo ocsM KOOpAMHATHONH CUCTEMBI, HENIOABIKHOM IO OTHOIE-
HUIO K 3eMiie, MojlyyaeM

(52) mi = R, my = Ry, mz=-mg+ R,.
W3 (42) un (47) caeayer

eg 1+Cf{+C3e =t
v o14C%+ Cge—,‘it

(53) o /\(i)
Pagenctba (52) u (53) onpenensaoT 3akon uaMeHenus peakumu. M3 (52) ciue-
ayert, uto R koliMHeapHa CKOPOCTHM v UeHTpa Macc G Tela, T. e.

(54) | R = mlvg.

C nomousio (54) snerko mpoBeputhb, uTo yciaoBue (H) MAEABHOCTH CBA3M
BrinoJiHeHo. HelicTBuTennHo (5) UMeeT B oTOM cilyyae BUA

(55) : R - 67 = mAv . év = mAvév =0,
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TakK KaK M3 3a Toro, 4YTo v = const cieayeT dv = 0 M, caezosBaTenbHo, (55)
BBHIMTOJTHEHO.

K sTOoMy npumepy npumenum ypaBHeHUA (32) Ges Mﬂomm‘enei& Jlarpan-
x*a. B a2Tom cnyyae U3 ypasuenwnit (27) nosnyuaem

(56)

-

e -
v? — 22 — g2,

T.e. £ 1N J HE3aBUCUMEIe cKopocTH. Toria ypasHerus (32) uMeloT Bua

- d (0T (a:r) 9; 9T 09T o: OU oU 0z

37 )5 9z 9:0: 0z ' ;0%

d (0T d(BT)Bz‘_B_T_QZQ~§E+QIi%
dt \ 8y dt \d: )8y 08y 0z98y Oy 9z 0y’

rae U onpeneneno u3 (38), a T u3s (36). Ienana cooTBeTCTBYIOMME BhIKITANKN
B (H7), nonydaeM

- z gz
58 -7z = ,
(58) \/v2 -2 \/vz —z2 -2
i Yy _ 9y

—3 = .
' \/vz_i.z_yz _\/vz_:,':2_y2
Kak cneacrsua u3 (58) 6yaem uMethb

T. e. (42), orkyna caenyet (43). [locrasasa B (58), HaxoauM

‘U2.'£

A=crene

T. e. 3aHOBO noay4daem (46), oTKyZa cneayoT Texke KBaApaTypHl.
4. Hpmwep CHCTEeMBI C HeJIMHEAHbIMM HETOJIOHOMHBIMU CBA3AAMM BTOPOro
' HopAdKa. : ,
PaceMoTpum mBwxenne TBEPJOTO TeNa BOprP Heno,zusuxmoﬁ TOYKH, AJA
KOTOPOI'0 BBITIOJIHEHO ycaoBHe oGobimennoit npenecuu I'puosm [14]:

(59) pi —gp +r(p* + ¢*) — u(p? + ¢*)*? =0,

3L€Ch CHOBA P, ¢, T KOMIIOHEHTHI YTJIOBOH CKOPOCTH w, §t — nocrosunad. Or-
MeTHM, YTO IJIA OBGHLIKHOBEHHON npeneccuu, T. e. Korjaa och COoBCTBEHHOro
BpallleHUA Tella ¥ BepTHKaJb 06pa3yioT NocTosHHMM yron 0, ycaosue (59)
BHINOJIHAETCA TOXKAECTBEHHO IpPH ;t = ctgf. Ho ana oBoburenHoit mpeuneccum
OHO BEZIET K 3aBUCHMOCTH

(60) ' f=40 sinf — f4sin 0 + 262 cos @
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+4y2sin? Bcos — p(4sin? 6 + 62)3/% = 0.

K;\meTW—lecxaﬂ aHépruﬂ Tejia, KAK M3BEeCTHO, NMeeT BUA
1 .
(61) T= -(Ap2+Bq2+Cr2),

rae A, B, C — rnaBHblE MOMEHTHI MHepLMHU tena. CunoBas (bynxuvm npuio-
YKEeHHOM CHIJIBI TAKeCTH Gyner

(62) = U= -—mgzg = —mg(§osinbsin¢ + nosin b cos ¢ + (o cos b),

rae &, Mo, (o KOOpIMHATHI IleHTpa Macc G Tena M0 OTHOIWEHUIO ocelf cBA3aHHBI
¢ Tenom. IlnA paccMaTpuUBaeMol CMCTeMH NpUMeHUM ypabHeHusa Payta (26)
c yrnamu Disepa ¢, ¥, B KauyecTBe He3aBUCHUMBIX 11apaMeTpOB, T.€.

: d (0T or ou of
63 —_—— - —_— = — 4 ,\-—‘.,.7
) (56) - % =5 5
Ly
o W v oy’
d 8T> _ _31 ou + A@f
dt\ag) 06 00  "5¢
Ha ocuose (61) u kuHeMaTudecknx popmys Diinepa GydeM UMeTh
' : . 0T 0T
64 — =, —— = (A - B)pg,
(64) =" sa=A-Bm
or PN .
‘ E/)- = Apsinfsiné + Bgsinfcos ¢ + Crcosb,
.2—520, %?—:Apcos:ﬁ—quinqS,
or : . - .
5'5 = Apy cos @ sin ¢ + Bq1p cos b cos ¢ — Cripsinf.
' I/I3'(>62) u (60) nonyuaem
ou C .
(65) 9 = mg(no sin 6 sin ¢ — & sinf cos @),
ou | ov ' . .
0_1[1 =0, = —mg(&q cos @ sin ¢ + 170 cos § cos ¢ — (g sin b)),
g—g =0, 6;2 fsin 6, —g% = —gbsme

IToacraBnas (64) n (65) B (63), nonyuaem
(66) - C7 — (A — B)pg = mg(no sinf sin @ — &g sin @ cos ¢),
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Apsinfsin ¢ + Bgsinf cos ¢ + Crcos 8 + Ap(cos fsin #0
+sin § cos 68) + Bq(cosf cos ¢f — sin #sin ¢¢) — Crsin66 = Msin#,
Apcos ¢ — Bgsin¢ + Ap(—sin ¢¢; - 1,Z;cos05in é)
+Bg(—¢cos ¢ — 4 cos 0 cos ¢) + Cripsin @
= mg(—Eo cos P sin ¢ — g cos B cos ¢ + o sin f) — A sin 6.

Hckmiouas M3 BTOPOro u TpeThbero ypaBHeHmit (66) momyumm Kak ciencTeue
MHTerpaJ sHEPTHM Tella

(67) Ap* + B¢ +C? + mg(&o sin 0sin @ + nosinf cos ¢ + (o cos @) = h,.

CienoBaTeNbHO CUCTeMa ypaBHeHUH cPepUYEecKOTo JABVIKEHUA NPUA HAJIMUUMN
oBobmenHo# npeueccun I'pronu uMeer BUA

(68) Cr — (A — B)pg = mg(nosin fsin ¢ — &y sin d cos ¢),
Ap® + Bg® + Cr? + mg(€o sin G sin ¢ + nosin 0 cos ¢ + (o cos §) = hy,
1110 sin 6 — 64)sin 6 + 2(/.)0.2 cosf
+4°sin? 0 cos 0 — p(4h? sin® § + %)% = 0.

Kak yacTHbIif ciy4dait nisa ypasHenus (68) paccMoTpyuM ABMKeHUe €AHODOAHO-
ro mapa ¢ HEMoABWKHBEIM reOMeTPUUYECKUM HEHTPOM. B aTOM caydae mepsbie
nBa ypasHeHus (68) nosnyyaem B BUIe

(69) r=Cy, p°+¢>=¥*sin’9 4 6% = h,
rae h u C) noctoanHsle nHTerpupoBannsa. M3 (69) nonyuaem

Vh—6?

sin 6

(70) =

Ioacrasassa (71) B nocnenHee ypaBHenue (68) n aenad usBecTHole npeobpa-
30BaHMA, NIOJydaeM

(71) fsinf — cosf(h — %) + pVh\/ h — 62 sin6 = 0.

ITocne 3aMeHbI

(72) u=1/h-—6?
3anuueM ypasHenue (71) B Buze

du

pT] + ctgfu = p\/ﬁ.

(73)
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O6uee pemtenne (73) umeer B

v = Cz—yﬁcosﬂ

(74) sin @

I

rae C; nocrosnHas unrerpupoBanna. Ha ocuose (72) u (74) nonyuyaem
/ sin 6d0
\/hsin2 0 — (C2 — pvh cos §)2

(75) t+Cs3=

OueBnano (75) MOXKHO NOBECTH [0 BJIEMEHTAPHLIX KBAIAPATYp.
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