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FOIUIIHUK HA CO®UNCKUA YHUBEPCUTET “CB. KIMMEHT OXPUICKHU”

SAKYJATET 1O MATEMATHKA 1 UH®OPMATHKA
Kuura 1 — MaTtemaTuka
Tom 82, 1988

ANNUAIRE DE L'UNIVERSITE DE SOFIA “ST. KLIMENT OHRIDSKI”

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Livre 1 — Mathématiques
Tome 82, 1988

B'BbPXY IIPABOMEPHOCTTA HA METOIUTE C
JIUPEPEHIIMAJIHA U IUSPEPEHUHU METOIU 3A
V3CJIEIBAHE HA YCTOUYUBOCTTA HA
BE3HACTABOB PEJICOB II'bT

ATAHAC CMHUJIAHOB, UIBETAH MUTPOB

Amanac Cumuasnoe, Lleeman Mumpos. O IPABOMEPHOCTH METOJOB C OHU-
SEPEHIHAAJNIBHBIMHA U IN®EPEHYHBIMHU YPABHEHUAMU AJA UCCIIEOO-
BAHUA BEBHACTABHOI'O PEJIBCOBOI'O ITYTH. 3anaua uccnenoBaHusa ycToHYM-
1'0CTU PeNbCOBOro NYTH CyUleCTBYeT oueHb nasHo. H3ssecTunl Gosnee 100 TeopeTuueckHx
MeTonoB. B paboTe NpoBOAMTCA CPaBHEHHME MEXAY AMPEPEHUMANHLIMU U AU PEeDEHUHBIMHU
MeTOoAaMH.

Atanas Smilijanow, Zvetan Mitrov. ON THE CORRECTNESS OF DIFFERENTIAL AND
DIFFERENCE METHODS FOR ANALYSIS OF THE STABILITY OF CONTINUOUS RAIL
WAYS. The problem of the rail ways stability exists for a long time and there are about 100
theoretical methods to solve it. In this paper the connection between differential and difference
methods is discussed.

3azavaTa 3a M3CjA¢IBaHe Ha YCTOMYMBOCTTa Ha Oe3HACTaBOBHA PENCOB
II'bT € M3BECTHA OTAABHA B XKEJe30['bTHATA NMpakKTUKa. (Cb3AaleHHTE MeTOoau
3a peIIaBaHETO M Ce OCHOBAaBaT Ha Pa3AMYHU M3XOAHM NpemniocTraBku. ToBa
npefonpeneisa roJiAMOTO pa3Hoob6pa3ve OT (QU3MYECKM NMOCTAHOBKHA M MeXa-
HoMaTeMaTHdeckn molesm [1]. Tosemuar Gpoit chmecTByBamm MeToaM 3a
TeoneTHUHO pemeHue — Haja 100, no3posABa Aa Ce MpPaBH CBHIOCTABUTEIHO
M3cie[BaHe C Lel KIaCUOUKALMA U [IPOTHO3MpaHe Ha HANPABJIEHUATA, B KOM-
TO GM MOIJIO Aa Ce 0YaKBa I0ABa Ha HOBM TEOPETHYHM Mogenw [1].

Cpen HaMepuauTe NPUOKEHUE B NpaKTUKaTa ocobeH uHTepec MpeaAcTa-
BJISIBAT METOAUTE, CBEXKIAIM (U3MYECKATa NMOCTAHOBKAa Ha 3ajadvaTa IO 3a-



MeHAHe Ha peJjiCOTpaBepcoBaTa CKapa ¢ GeakpaitHo aAbabr npbT (3aMecTBallia
rpena). XapakTepHOTO €, Ye M3XOAHMTE MPEANOCTABKMA NPEANoJaraT Mpy eX-
HaKBM HATOBApPBAaHWA C peallHuA caydalt 3aMecTBamaTa rpesia Aa XaBa C’bIIMTE
JePopMalmi (3aPbPTaHNA M MPEMECTBAHMA), KAKTO M M3CjeABaHATa pPeJICOT-
pasepcopa pemeTka. O6nKHOBEHO B3aMMOAEHCTBUETO MEXIY PeJCHUTe U TPa-
BEPCHUTE C€ OTUYMTAa 4Ype3 CHIPOTHUBIEHMETO CPelly B3aMMHOTO 3aBDbpTaHe Ha
TpaBepcaTa CIPAMO pejicaTa B-AajeH Bb3ejl. Ilpu ToBa MoMeHTHTE BBB Bb3-
AMTe Ce MPHEMAT 32 NPONMOPHMOHAJHM Ha 3aB'bPTaHETO, a AelcTBUETO UM (BB
B'b3JIATE) Ce pPasNpenciia o UANATa. IbJPKMHA Ha IPUETATa 3aMeCTBaIla rpela
(121, [31, [4]  xp.). .

Tunmyen m MHOTO TMONYJAAPEH NMpeACTaBHUTE N € MOJLeaAbT, pa3dpaboren or
JleBu [5]. Cexxknma ce mo pellenMe Ha audpepeHNMaHO ypaBHEeHHME OT THUIIA

(1) vV + Ay +Cy=0

C TPaHMYHH YCJIOBUA cbriacHo (2):

¥(0)=0; y()=0,
@ y'(0)=0; y"()=0.

HfKoM MO-HOBM M3C/IeIBaHUA OCIOPBAT KOPEKTHOCTTa Ha (U3MYECKATa
[OCTaHOBKa, BoAella 0 MaTeMAaTUYECKU MOJENM OT THNa Ha ypasBHenus (1) u
(2). M3BecTnn ca MoJenu, KOWTO MOA3BAT PA3NUYEH M0 CIAOKHOCT MATEMATH-
YeCKM alapaT 3a OTHMTAHE PAMKOBMAHOTO AECTBME Ha PeJICOTPABEPCOBATa
CKapa M PeaKTHBHOTO Bb3XelicTBue Ha GajacToBoTo Jerno. Tunuuen B ToBa
oTHomenme e paspaborennar B BIXK Meron [6]. Toii oTAaBa M3KIMOUNTENHO
roJiAMo 3HaYeHUe Ha U3XOIHWUTE NPEANOCTABKMA C OTJIe[ MAKCHMAJHO Bb3MOXK-
HO ,I[OGHH)K&B&HC_ Ha MeXaHoOMaTeMaTHUYEeCKHA Mohe)l N0 pealiHaTa dmanecxa.
3afava. Te3u 0CHOBHM MpEANIOCTABKH Ca:

— KeNEe3HUAT BT Ce pasriexia KaTo Ge3kpaiiHo Abara paMka ¢ aedop-
MMpPYEMHM B'b3/M, MOJOXKEHa B eJacTM4YHa cpefa. CuauTe oT Tasm cpexa ce
NpeAaBaT BbPXY PAMKaTa CaMoO Ype3 TPaBepPCHTE;

— BCAIKa TPaBepca NMpH Or'bBaHETO CH Ceé TPeTHpa KaTo rpefa BBPXY
€JIACTHYHA OCHOBA;

— OpW HallpeyHUTe NPEeMeCTBaHUA Ha CKapaTa CHIMTe oT GallacTOBOTO
JIErJI0 Ce MPHUEMAT KAaTO C'bCPENIOTOYEHU BbPXY YesaTa Ha TPABEPCHTE,;

— eJIACTMYHATa CHUCTEMA, C KOATO Ce 3aMeHA I'bTAT M I'bPBOHAYAJHO €
NOAJIOKEHa CaMO Ha AeHCTBHETO Ha HAJJIBHKHUTE HATUCKOBM CHIM B PEJICUTE,
ce pasriexza B PaBHOBeCHe NPHU TaKoBa AepOPMMPAHO CCTOAHME, KOETO Ce
OTAMYaBa OT N'bPBOHAYAJIHOTO C HaJW4Me Ha Ge3kpaiiHo Majku dedopMaimu
OT HOB BHUZ;

— CHJINTe, Bb3AEHCTBALIM Ha PeJICOTPaBepcoBaTa CKapa, Ce Bb3IpueMaT
Mo cxemaTa Ha ¢Mr. 1, a pa3pesHMTe yCHIMA, MOAAbPNKAIIM CHCTEMATa B
paBHOBecHe — IO CXeMaTa Ha ¢ur. 2.

Ot ycnopuara 3a:

-— B3aMMHOTO 3aBbpTaHe MEXKIY PeJNCcoBUA MBT m — 1,m u TpaBepcaTa
m, m;

— B3aMMHOTO 3aB'bpTaHe MeXJy PeJICOBUA MbT m — l,m u TpaBepcara
m-—1 m-1; ‘
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— paBHOBecHe Ha MOMEHTHTE B'bB B'b3eJ m;

— paBHOBeCHMe Ha HAIIpeYHUTE CHJM BLB Bb3ej m;
Ce U3BEeXAa MATEMATHUECKUAT MO e Ha pa3BUTHA B [6] meTon. Toii ce cBexxaa
0 CHCTeMaTa OT HM({EepEeHYHM YpaBHEHMUA

foMm-1+ fiMm + foMpmy1 + Y1 — Y1 =0
Mpoy — Mpp1 + goY¥m—1— 1¥m + QOYm+1 =0,

3) |

KBIETO.

v —sinv
fo = kfv(l—cosv);
£ = £V(2k;'p —1)siny — 2(kipr® + 1) cosv + 2
= ipV2(1 — cosv) ’
_ v(l—cosv)
o = kfsinv
G = v(2vt, — %g)(l + cosv) + B€sinv
r = ;

kéip 12 sinv

M,, — MOMEHTBT B ceueHWe m Ha CKapaTa;
Y, — npeMecTrBaHe B ceueHMe m Ha CKapaTa;

_ Epl,
B = =
2

2 oo FE
EPIP

Ep, Ip, Exp, Iyp — MoaymH Ha eaCTUYHOCT M MHEPLIMOHEH MOMEHT Ha pell-
caTa M TpaBepcaTa CHPAMO BePTMKaJHATa OC;

K,
Binp

K= + ﬁ;

7 — B3aMMHOTO 3aB’bPTaHe MEXAY peJjicaTa M TpaBepcaTa, MIPUYUHEHO OT
MOMEHT, YHUCJEHO paBE€H Ha C€INHMHHIA H ,neﬁc*rBa,m B CKapaTa Ha MACTOTO Ha
CB'bP3BaHETO Ha peJicaTa C TPABEPCATa;

s ETPITP .
1T]) e .......e_T.;—’
Kl = - — (shwfyp, — sinwly ch®w? + cos? wf) [(shwlyp — sinwf;r
lrp P p P P

X (shwlchwl — sinwf coswf) + (chwéyp — cos wlTp)(chszTp + cos? wlrp)] = :

C -
4ETPITP ’

W =



C — koedHUIMeHT Ha CHIPOTUBJIEHUE Ha GaNacTOBOTO JIEryI0 Cpemly M3-
MeCTBaHe Ha TPaBepPCHUTE HaAI'bXKHO Ha YKeJIe3HUA I'bT.

MoaensT ¢ mupepeHuyHr ypaBHeHHMs oT [6] e Ge3ycioBHO eawH BpBX B
pa3BUTUETO Ha TEOPHATa Ha YCTONUYMBOCTTa Ha 6e3HACTaBOBMA PeJCOB I'BT.
Toli naBa MHTepecHO, a OT TEXHMYECKa I'JleZHa TOYKa JODPH eleraHTHO pelle-
nue. [lonydeHuTe pe3yiTaTH ca ¢ TOYHOCT, 3aJ0BOJIABAINA U3MCKBAHUATA HA
npakTMkaTa. He ciydaiiHo BbpXY Hero € OCHOBaHa LAJNIATA NMPAKTUYECKa OpP-
raHM3alMsa Ha [0oJaraHeTo U NOoANbPXKaHeTo Ha 6e3HacCTaBOB PeJicoB LT Y HAC
- HOpPMM, MHCTPYKIMM U nip. Ho pa3paBoTeHMAT MeTon MMa M HAKOM caabu
crpauy. Hanpumep 3azoBonsABaiiaTa M3UCKBAHMATA Ha NMPAKTHKATa TOUYHOCT
Ha TEOPeTWYHOTO pemieHMe M 06OCHOBaBaHMTE BHPXY HEro HOPMHM B XPOHO-
JIOTHUYEH MOPANBK Ca Cb3AalM YCIOBMA Ha TAX Aa Ce riela KaTo Ha mpelen
Ha TeOPETUUHUTE B'b3MoXkHocTH. [lopaau ToBa rOAMHM Hapel He ca T'bPCEHH
HOBM, MO-MOIUHM TeopeTWyHu pemenun. Hemo nmoseuye, Ha paboraTa B Ta-
3 TIOCOKa Ce TJieda KaTo Ha MKOHOMWYECKM M NMPAKTUYECKH HUKOMY HEHYMKHO
3aabiaboyaBaHe B TEOpUATA, T.€. KATO Ha CBOeOOpa3Ha EKIEKTHKA.

B cBUIOTO BpeMe, MOMJIOKEHO Ha CTPOr CHIOCTABATENEH aHAJMU3 CIHPAMO
ApPYT¥ TeOpeTHYHM MOJe/M, pelneHdero oT [6] He M3aBpxa Ha mocoueHMTe
npereriu. ToBa e TakKa, 3alll0TO, OT €lHa CTpaHa, TO € OCHOBaHO Ha CpaB-
HUTEJIHO CNOMKEH MaTeMaTHYeCKM alapaT M, OT Apyra CTpaHa, NpeTeHUUUTe
My 3a MO-TOJIAMa TOYHOCT Ha pE3yJTaTUTE MOTAT Aa ObAAT MOCTABEHM IO
cbMHeHue. ToBa TBBpAeHME ce JOKAa3Ba Upe3 B'b3MOXKHOCTTA MOAENBT 0T [3]
Ja ce npeobpa3yBa no MaTeMATWUYEH I'bT°B MOJEN, C’bCTOAN Ceé 0T eaHo aude-
PEHLMAJHO YPaBHEHHME OT BUA ¥ Pell, MUACHTHYHMA C BUIA U pella Ha ypaBHEHHE
(1).

3a uesUTe Ha JOKA3ATEICTBOTO C€ Pa3ChKAaBa M0 CHEJHUA HAUMH:

Ionycka ce, ye:

— KOODAMHATATA Z C€ MEHM IO I'bJDKMHATA Ha PeJICOBOTpPaBepCcoBaTa CKa~
pa. Torasa Toukure m; oT Mozena no [6], moﬁpaaen ¢ ¢ur.1 u ¢ur.2, morar
J1a C€ 03HAYABAT C ZTm,(Tm—1,Zm,Zm+1;--

— cpmecTByBaT ¢yHxkumure M(z) n Y(:r:) C KOMTO MOraT Ja ce U3pa-
3AT MOMEHTHTE U NPEMECTBAHMATA B PEJCOTPABEPCOBATA CKapa M KOMTO Ca
Hali-MaJIKO YEeTUPHU I'bTH IUdepeHuMpy eMH.

Torasa Moxe na ce BbBelle 03HAYECHHUETO

M(zm) = M,
Y(en)=Ya

$ynximuTe (4) Morar aa ce pa3ioxaT no ¢opmyiara Ha Teitnop a0 BTO-
PH pel B TOUKATA Tyy:

M(z)=M(zm) + (z—z2m)M'(zm) ,
+ el MY(e,) + O [(z - 2m)?]
Y(z)=Y(z) + (2=—2,)Y(zn) '
+ E=22ly(z,) 40 [(z - 2m)]

(4)

(5)

KBIETO:




(©) Olz ~2m)’] = a(z~2m)(z ~ 2m)?

U oz—2m) — 0 opu z - z,,.

Axo X 3aeMe croiiHocTHTEe X/p—1 M Xy, Ce ONyYaBa CHLOTBETHO:

Mezg,_ )= M(2m) + (Zm-1—2zZm)M'(zm)
4 Cmmcmm)l M(2,) + O [(Emot — 2m)?]

Mezeps) = M(zm) + (Tm+1— Zm)M'(zm)
- + Emacta) ML)+ O [(Zmer — 2m)?]

Yemem-)=Y(Em) + (Zm-1—2m)Y'(2m)
+ Eanzzaly iz, ) 40 [(2mat — 2m)?]

+ (Tm+1 —2Zm)Y'(2m)

+ Emticgalyuz )4 0 [(Emes — 2m)?] -

Yiezsmir) = Y(2m)

KaTto ce oTuere, ue £ e HacoueHa ABJDKUHA, T.€.

(8) —f=2Zm-1~2m H  +el=2zn4 + 2w,

M Clel YMHOXXaBaHe Ha N'bPBMTe ABe ypaBHeHuA oT (7) ¢ fo m fi, KakTO M
clle]l M3BhpIIBaHe Ha U3BECTHU MaTeMaTUuyecku npeobpasysauus ot (3) u (7)
ce roayyasa

(9) fol? M (zn) + M(2m)(2fo + f1) — 20Y"(2m) + O(£%) = 0.
Ananoruuso ot ypasueHus (3) u (7) ce mony4aBa BTOpo ypaBHEHHE
(10) 9of?Y"(2m) + Y (2m)(290 — 91) — 20M'(2mm) + O(£?) = 0.

o Ypasuenus (9) u (10) o6pasypar cucremara

£g0Y "(2m) — 2UM'(zm) + ¥ (2m)(200 — 91) + O(€2) = 0
B foM"(2m) — 2Y"(2m) + M(2m)(2f0 + F) + O(€?) = 0.

AKo ce BBbBeZie HOBa IIpOMEHJINBA

(11)

(12) . s =t

M Ce NpONmyCHe OCTATBKBT, 0T6enasan ¢ O(f?) kaTo HAMAII CHINECTBEHO BIM-
fAHWe BBbPXY TOYHOCTTAa Ha KpaliHMA pe3ysTar, MoXKe Ja Ce IPMCTBIU KbM
pasriexiaHe Ha CUCTeMaTa A¥(epeHIMaI A ypaBHEHUA

Y"(z)g0 — 2M'(2) + (290 — 91)Y () = 0

(13) M"(2)fo — 2Y'(2) + (2fo + f1)M(2) = 0.

10 -



AKo mbpBoTO ypaBHeHMe oT cucTeMaTa (13) ce mupepenuvpa aBa MbTH,
a BTOPOTO - €IMH II'bT, MOJYYABAT Ce YPABHEHHUATA

(14) 90Y "V (2) + (290 — ¢1)Y"(2) — 2M"(2) = 0,
(15) foM"(z) = 2Y"(2) + (2fo + 1)M'(2) = 0.

Ot (15) Moxke na ce uspasu M'(z) u na ce samectu B (14). Ilonyuasa
ce HOBO ypaBHeHHe. Y CJIOBHO MOXe >5§a ce orbenexu ¢ £. AKo OT MbpBOTO
ypaBHeHMe Ha cuctemaTa (13) ce uspazp M’(z) u ce 3amectu B F, noayuyaba
ce C'bB’bPUIEHO HOBO ypaBHEHME

(16) YV +aY" +bY =0,

KBbJIETO:

_ 4gofo + gof1 — fog1 — 4 (290 — 91)(2fo + 1)
a = =
fogo fogo

Y paBuenne (16) no Bua u pexa ce naearuduumpa c ypassenue (1). C To-
Ba B'b3MOXHOCTTA 3a Mpexod OT MoJes ¢ nupepeHYHH yPaBHEHMA KbM MoJel
¢ AMpepeHUMAIHX ypaBHeHHMA e noka3aHa. [lo aHajJoruyeH nmb»T Moxe zHa ce
M3BbPIUM U OBDATHHUAT Mpexon - OT MoJeN ¢ AWpepeHUMATHM ypaBHEHUA OT
tuna (1) kbM Mozden ¢ audepeHYHM ypaBHEHMA oT TUma (3).

OT npureneHoTo JOKAa3aTEJICTBO MOraT [a Ce HaNMpaBAT Pa3jvyHU U3BOIH.
Haii-chulecinennTe OT TAX Ce CBEXKAAT IO:

— Mouaenute, ocHoBanM Ha AudepeHilajHU YpaBHEHUA, ChABbPHKAT B ce-
6e cu MoaenuTe ¢ AMdepeHuHmn ypaBHeHus. [locnemHuTre ca camo yacTeH cay-
Yyaif oT peuleHUeTO ¢ AUdepeHLHATHA Y PABHEHUA. ‘

— [lo-¢bBBbpLIeHa NOCTAHOBKA HAa (U3UYECKUA MOJeJ Ha pelllaBaHaTa 3a-
Jaya € C OrpaHUUYMTENIHM FPAHUYHU ycioBuA. ToBa e Taka, 3aui0TO 3a Ja ce
pely 3agavara, € Heo6xoaumo He3HACTaBOBMAT pesicoB I'bT Ja Ce€ TpeTUpa
KaTO KpaiHa 1o pa3Mepu cKapa C HAKAKBA AbJKMHA { ¥ WM3BBH TO3U KpaeH
pa3Mep CbCTOAHUETO HA MbTA U NPOMEHUTE B TEMIiEpPATypaTa He BIMAAT Ha
YCTOWUYMBOCTTA B pa3rileKJaHMA ydyacTbK. B KOHTekcTa Ha ToBa Halpumep
PU3MYECKHAT CMUC'HLJI OT B'bBEXKIAHETO HAa FPAHMYHUTE YycioBus (2) 3a Mo-
aena (1) ¢ Haii-rpy6o npubanskenue e, ye NPeMECTBAHETO U. YCKODEHMETO B
HAy4yaJIoOTO M KpPafd HA y4acTbKa € HyJla. :

— WM3noxkeHOTO B rOPHATE M3BOAM WM MPUBEAEHOTO MATEMATUUYECKO JOKa-
3aTeJICTBO 3a NMpexol Ha Modena (3) B (1) no3BonsaBar Aa ce oyakBa C’b3JaBaHe
Ha NPUHUMIIHO HOBO TeopeTW4Ho peuienve. Morke na ce (porsosmpa, ue To 6u
obeaununo mueosoruaTa Ha Monena (1) - uscnensane Ha riaobanHoro IoBe-
Aehive Ha 6e3nacTaBoBMA MbT NpH 3aryba Ha yCTOMUMBOCT, € B'b3MOKHOCTHUTE
Ha Mozeda (3) - vndopmaumsa 3a JTOKAJIHOTO TNOBeAeHUe Ha Ge3HaCTaBOBATa
KOHCTPYKUMA B OTAeJHM Bb3AU. ToBa HOBO pelieHMe O CHUYETAJIO NIPEMAMCT-
BaTa U Ha ABaTa MeTola M OM N0O3BOJMIIO N10JI3yBaHe Ha C'bBPEMEHHHW YMUCJIEHU
METOAM U elleKTPOHHOU3UUCIIUTENHA TEeXHUKA.

W Hakpas eunH M3BOJ C Mo-AbAGOKO METONONOrMYECKO 3HAUEHHE: -

. [IpuBeneHoTO A0Ka3aTEACTBO He OTpPUYA AOCTOMHCTBATA Ha pa3dpaboTeuusn
B [6] Metoa. To obaue noTebpxaaBa, MaKap ¥ Mo KOCBeH HAUKil, M3BECTHATA

(17) , b

11



MaKCHMa, Y€ aBTOPHUTapHHUTE MHEHMA B HayKaTa MOratr Hal-mHoro Ja 33aAbp-
aT, HO HE MOTaT Ja crnpaT Bboblle pa3BUTHMEeTO Ha HOBH, IO-CbBbPLICHH U
NO-C'hbBPEMEHHU pelleHuA. 3a KOHKpeTHUA NpUMep TOBa Ce OKa3Ba BAPHO JOPH
¥ 33 CJayd4aii, IpY KOITO IIPAKIMKATA € yAOBJIETBOPEHA OT NOCTUCHATOTO PaB-
HUIe Ha TeOpHUATA K He CTUMYJIUpa T'bpCeHe M C’b3J1aBaHe Ha HOBY TeOpEeTUYHN
pellieHu .
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II'bJIHUX CUCTEMHU OT $YHKIIUU HA
BEBEP — EPMHUT

IIETBP PYCEB

Hemsp Pyceé. NOJIHBIE CUCTEMbI ®YHKIMY BEBEPA — DPMUTA. IlycTs
{Dv(2)},ec obo3nauaer cucremy ¢ynxunii Bebepa — Dpmura. JokasniBaeTcs, UTO CHC-
Tema

(%) _ {eXP (—t2/4) Dwn+a(*)}:°=0

nonua B npoctpaHcTBe La(—00,+00), ecnn 0 < w < 4/3 u Res > —1/2. Tloanora pyukumii
EpMmunra

(%) {exp ("t2/2) Hn(t)}:io

B TOM K€ HPOCTPAHCTBE ABJAETCA YACTHHM caydaem (w =1, ¢ = 0).

Peter Rusev. COMPLETE SYSTEMS OF WEBER — HERMITE FUNCTIONS. Let
{D.(2)},ec be the system of Weber — Hermite functions. It is proved that the system (x)
is complete in the space Ly(—c0, +0), if 0 < w < 4/3 and Reo > —1/2. The completeness of
Hermite functions (*x) in the same space is a particular case (w =1, ¢ = 0).

1. YHKIIMHU HA BEBEP — EPMUT

Bceako (aHanMTHYHO) pelieHne Ha AU(epeHUMATHOTO ypaBHEHUE

- 1 2 -
Yy Hlvto-r)v=0, veg

ce Hapu4a QYHKUMA Ha Napabo/MUHMA LWMAMHABD WAM olle PyHKUMA Ha Be-
6ep-Epmur. TakaBa e Hanpumep dynkumara D,, nedpunupana ypes
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D,(z) = 25exp(_f) ra) “(_V %fzi)

" LP(‘T‘)Q(I—v 3 22
\/51-1 (;2;;_) . 2 b 2) 2 3
kbaero ®(a,c;z) € elHa OT CTAHIAPTHUTE M3POJAEHN XMIEPreoMeTPUIHU PyH-
ximu ([1], II, 8.2, (4)). B yacTHOCT, ako ¥ = n e L/I0 HEOTPUIIATENIHO YUCJIO,

2 : o
exp (tz) D.ty=2"%H, (%) , n=0,12,...,

kbaero H, e n-tuar noaunom Ha Epmut ([1], II, 8.2, (9)).
OT ropHoTO C’hbOTHOILEHUE TIOJyYaBaMe, Ye

12 t 3 i#
exp (—3 Ha —\7_5 =27 exp -7 D, (1), B LE. ..,

| ‘ =
1 ako -Aepunupame H;(t) =272 H, (7%)’ HBaMe [0 PaBEHCTBOTO

t2

1) exp (--2-) H,'(t) = exp (-3;) Da(t), n=012...

KakTo He e TpyaHo na ce ybeaum, mbJHOTATa Ha CUCTeMaTa

for (-5) m0}_

B NPOCTPAHCTBOTO Ly(—00,+00) e eKBMBAJIEHTHA C I'bJHOTATA Ha CUCTEMAaTa
oynkumu Ha Epmur

o ()0}

B CBIIOTO NpocTpaHcTBo. ToBa, HAKPATKO Ka3aHO, € CIEelNCTBUE oT 06CTosA-
TEJICTBOTO, 4e Beaka oT cuctemute {Hp(t)} oo u {Hi(t)} o, € AuHelHO He3a-
BUCHMa, Thil KaTo degH, = degH = n 3a Bcsiko n = 0,1,2,... 1 crenopaTenHo
e 6a31iC Ha MPOCTPAHCTBOTO Ha [MOJAMHOMMTE.

B cuna e unrerpasnoro npeacrassane ([1],II, 8.3, (4))

oQ

w # ok W T

3 €XP (_Z) Dty = [exp (—-—2—) u” cos (tu - v—2-) du,
0

KOETO € BaJUIHO, ako Rev > —1. -
Ia nepuuupame 3at € (—oo,+), z€CuoceC

T #
We(z,t) = Sexp | —7 D,44(2).
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ToraBa nony4yaBamMe MHTErPAJHOTO IIpeACTaBAHE
.

o0 -
2
0

KoeTo e BaauaHo 3a Rez > —1 — Res. Ot Hero canespa, ue

(3) Wa(;‘:,t) = cos -W—(f—;-gan(z,t)+sin -T-r(z—;glva(z,t),
KbIETO
(4) Usizt) = /exp (-—%-) w17 costudu,
0
. 7 2
(5) Volz,t) = jexp (—%) a*17 sintu du.
0

KakBoTo 1 na e xg > —1 — Reo, Bceku ot uHTerpasure B (4) u (5) e pas-
HOMepHO cxonau B uBuiuaTa —1 — Reoc < Rez < z¢. CnemoBatenio Bcekn ot
TAX AePUHMpPa KOMILIEKCHa QYHKIMA, KOATO € XoJIoMOp(dHa B I0Jiy pABHUHATA
Rez > —1 —Reo. Crraacuo (3) cbmoTo Baku 1 3a pyHrumara W,(z,1), pasr-
JAeaaHa KaTo QYHKIMA Ha KOMIJIEKCHATA [IPOMEHNUBA 2 B Ta3u I10J1y paBHUHA.

dyuxkummte (4) 1 (5) Morar ma ce uspasaT upes ¢ynkumusara ¥(a,c;z), a
MMeHHO B cuia ca mpeacraeanuara ([2], cTp.509, 3.952, 7., 8.)

(6) =Sy ) = F (M) o ("’—“L—"ﬂ 1--32-) |

2 2 ‘9 3
2
-Esl = _Z__—}_—(T__-I—E Eﬂ_ﬁ .%_.L
(7) VG = (TS )e (TS 5-5 ).
OT acMMITOTHYHATA dopmyna ([1], I, cTp.286, 6.13) -
R F(c) (-a) -1
®(a,c;z) = (e - a)(—z) (1+0(lz|™Y), Rez — —o0

U ot npencrasaauAra (6) u (7) caeasa Torasa, 4e 3a BCAKO z = Z + iy C
z > —1 — Reo:

Us(2,8)] = O(lt|7>Re7=1), || — +oo,
Vo(z,t)] = O(ftf™*~R71),  [t| - +oo.

OT ropHMTE CHLOTHOILIEHMA CllelBa, Ye KaKBOTO U fa € z ¢ Rez > —:i,— —Reo,
BcAKa oT pynkumnte U, (z,t) u V,(z,t) e ot npoctpancTBoTo La(—00,+00). Ot
(3) cmensa, ye cbmo'ro Baxku U 8a W, (z,t) KaTo GyHKIMA Ha ¢ 3a BCAKO PUK-
cupaHo z ¢ Rez > —1 — Reo.
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2. IOMOIIHU TB'bPAEHUS

Jlema 1. Kaksutro u na ca @ > 0 u § > 0, cbmlecTByBa KOHCTaHTa
A = A(a, ), TakaBa, 4ye 3a BcAKO z =2 + iy ¢ £ 2 0 e U3M'bJIHEHO HEpaBEHCT-

-

BOTO
MNaz+ o
—ref D)< dexp ()
: IT (az+ 8+ 3)] 2
Zoxasameacmeo. Crypriaacuo popmynara Ha CTupaumr 3a |argz| < 7 e B

CHJia, HpEACTABAHETO

T(z)= \/2_1rexp{(z - -;—) Inz - z} 11 +42)}-

- IIpu ToBa KakBoTO M Ha € 0 < € < 7, lim ¥(z) = 0, wom |argz|
Z=—+00 :

CaenoBarento cbmectByBa 0 < r < 400, TakoBa, 4e % < |14 v(2)|
ycaosue, ye Rez 2 0 u |z| 2 r. ToraBa, ako 2 20unaz+ 4 2 r,

T(az+p8) = 3£exp{(az+ﬂ—%) ln(a:B-i-ﬁ)—aI—ﬁ}

L= &

A WA

3
5 npu

< 3 %exp{(a;c-}-ﬁ)ln(ax-}-ﬁ)-—aa:--ﬁ}.

Hedunupame I(a, f) upes
| I{az + B)

o, 8) = Dlélf‘ér exp {(az + ) In(az + f) — az — B}

¥ o3HauaBame L(a,f}) = max {31 /%,l(a,ﬂ)}. Torasa 3a Bcako z 2 0 e u3-

I'bJIHEHO HEPABEHCTBOTO
I'(az + B) £ L(a, f)exp {(az + B) In(az + B) — az — 8} .

Cepmo Taka 3a £ = Rez 20 u [2| 2 r e B ciia HepaBEHCTBOTO

N

1 :
az+ﬂ+§ —-ayarg(az-}-ﬁ-i—%) -—ammﬂ—%}

> \/gexp{(axw)ln

ZI \/gexp {(aa: + B)In(az + B) — (w%) ly] = ax; - ,6} "

-

HIN BCE €IHO Hepa»BéHCTBOTO
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-1
II‘ (az+ﬂ+ %)l < \/gexp{-—(az-{:ﬁ)ln(azﬁ-ﬂ)+%czlyl-{-am-l-ﬁ}.

. [lepuHUpaMe
m(a, §)
- r(as4p+3)| exw{(er+ Hin(en+0)~ Floi~az )
_!zlgrrr’ngzgo oz + +2 exp 4§ (aT n(az 5 v :

n osnauaBame M(a,f) = max{,/%f,m(a,ﬁ)}. ToraBa 3a BCAKO 2z = T+ 1y C
z 2 0 e U3NBIIHEHO HEPABEHCTBOTO

]r (az+ B+ %)F < M(a,B)exp {~(az + B)In (~az + ) + -y + oz + B}

OcraBa na nedpunnpame A(w,B) = L(a, f)/M(«, ).
JJema 2. Ako a > 0, A>0,6>—"12'H0<}1<2/\, cHCTeMaTa

{exp (—at?) ¢ 40} 7

e I'bJIHA B MPOCTPAHCTBOTO Lo(0,400).
1
Joxasameacmso. 3a Rez > -6—';—3- ¥ g € Ly(0,+00) nepunmnpame

o0

(8) Q) = ] exp(—at?)t#*+q(t) dt.

0

§+1
®ynkimaTa (J(z) e xonoMopdHa B mosypaBHUHaTa Rez > ——iﬂl. ToBa

€ CJeACTBHE OT (a.ﬁcomo'mo) paBHOME€pHATa CXOIJHMMOCT Ha HHTErpaJja OT-

g X
nscHo Ha (8) BBB BCAKa MBMIA OT BHAA —iul < Rez < zy, roAaTo OT cBoA

CTpaHa cjeaBa OT HepaBeHCTBoTo Ha IIlBapu m momyckaHero, Ye QYHKUMATA
g € L2(0,+00).

®ynrumara Q*(z), nepunupana upes Q*(z) = Q("—;is-), e XxolxoMopdHa B
noaypasHuHaTa Rez > —% Y B Ta3u NOJypaBHYHA € BAJUAHO UHTEr PaJIHOTO

npencraBsaHe

o0

Q' (z) = / exp(~zu)q" () du,

—0Q

KBbAETOC

L7



g (u) = exp {—aexp(—Au) — u} ¢ (exp(—u)) .
Ila o3naunm '
T= max exp {—a exp(—Au) — E} .
- * u€(=00,+00) 2
ITonexe 3a BCAKO 4 € (—600,+0Q) € M3N'BJIHEHO HEPABEHCTBOTO

. [ U
lg*(ul} £ T|‘I(CXP("‘“))| exp (— -2-)
dyunxkumara ¢*(u) e ot npoc*rpancmoro La(—00,+00). Torasa or ¢opmynara
Ha ITapceBas 3a npeoGpasypanuero Ha Jlaniac Ha QpyHKUMMTE OT TOBA IPOC-
tpaHcTBo ([6], c.252, (2)) cnenBa, ue

o0 00
1 ; s
© 5 [ @l du= [ 1@°Gl av
-0 -0 )
3a z =z + 1y c z 2 0 nosyyaBame, 4e

o0

Q)1 < ] exp(—~2at Jt2H=+9) gy [ la(t)|2dt
4]

0

o
1 2 ~3usto)p (2, 201
’\flq(t)| dt | (2a) r(%s+=2).
0

lepunmpame 3a z ¢ Rez > -—9-'{‘5- byuxumara Q(z) upes
O(z) = —(203*0QE)
- 1
{r(%z+ 2 +3)1°

Ot nema 1 caensa Torasa, ue 3a z = Z+ ¢y ¢ 22 0 e U3MbJHEHO Hepa-
BEHCTBO OT BHIA :

Q) £ Kexp (Zh1ul) -

Ia monychem, 4e Q(n) = 0 3a n = 0,1,2,... Torasa u Q(n) = 0 3a n =
0,1,2,... u Toit kaTo 3§ < 7, oT Teopemara Ha Kapicon ([3], c. 195, 5.8.1)
- : 1
ciemBa, ye Q = 0, te.. @ = 0 B monypasuu"ara Rez > -—5‘—';—1. Ho Torasa

Q" =0 B nonypaBunHarta Rez > —% u ot (9) nmoayvasame, ue

o0

[ 1o wPau =o.

— 00
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Tosa Bom o m3Boda, ye pynxumara ¢* ~ 0 (T.e. e nouTH HaBCAKDBAE
paBHa Ha HyJja B MHTepBaJa (—00,+400), a caenoBaTesHO U ¢ ~ 0 B MHTepBaJa

(0, 400).
3abenexEKa. TB‘Lp}IeHHeTO na. jeMa 2 e Ba.J’IHJ{HO # 3a no-obimara
cucTeMa OT (QYHKUMH {E(t)t“"”} (0 >0, 6§ > —1) npu yciosue, ue E e

usMepuMa u cbmectsyBatr A > 0, a > 0 1 A > 2u, TakuBa ue -

|E()] £ Aexp (—at*)

3at € (0, +oo) u ocsen ToBa E(t) # 0 mouru HaBcAKbAe B MHTEpBaJA (0, +00).
3. IlIznmoTa B La(—00,+00) HA cucTemaTa

(10) {Wo(wn, 1)}

Teop eMa. Cucremara (10) e I'bJIHA B NpocTpancTBoTO Lo(—00,+00),
ako 0 <w < 3 3 uReO'>-—1-
Loxaszameacmao. HeKa KoMILJJeKCHaTa PyHKImMA h € La(—o0,+00). Iledpn-

HHUpame 3a z c Rez > —- — Reo ¢pyHrmmATa

Bol#) = / W, (=, t)h(2) dt.

Ot (3) cruensa, ue

H,(z) = cos Z(z;—_cr) /U,,(z,t)go(t) dt + sin EE—;-Q b/VZ,(z,t)rﬁ(t) dt,

kbvaeto ¢(t) = h(t) + h(—t) u ¥(t) = h(t) — h(—t). OueBuaHo BCAKAa OT PYHK-
IMUATE @ U ¥ € oT mpocTpaHcTBOTO Lo(0,+00).

Ot TeopunaTa Ha npeo6pa3ysannero Ha Pypue B npocrpancTBoTo L2(0, 400
M B YaCTHOCT OT C'hOTBeTHaTa Teopema Ha llnanwepen ([4], c. 64-65, Teope-
Ma 2.3) cieaBa cbliecTBYBaHeTo Ha GyHKIMM f ¥ ¢ OT TOBA IPOCTPAHCTBO,
TaKUBa 4e

o0

A
: w )2
AET&/ fu) — \/;/costugo(t) dt| du=0,
0

0

o0

A
: 2 f .
)«EI-II-]OO / g(u) — }-[S}ntudl(t) dt| du=20,
0 ,

0 .

C'bIU.O TaKa Ca M3II'bJJHECHU U paBE€HCTBaTa

o0 5 A , 2
(11) )«ETOQ p(t) — \/;/ costu f(u)du| dt =0,
0 0 ‘
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2
(12) lim dt = 0.

1%
A— 400
0

Y(t) — @jsin tu g(u)du
0

Iedpuuupame 3a z ¢ Rez > —% — Reo ¢ynxnuara I?a 4ype3

Ho(z) = g {cos —7[(—2—'-2——}-—1)- /exp (—E;) u?t? f(u) du
: 0

3 2
+sin Z(i—;—-ﬂ /exp (—22—) w7 g(u) du} .
0

daktuuecku H, = H,. 3a 1a ce y6eauM B ToBa, nepunupame 3a 0 < A <
+0o pyskmmara H, , ypes

A
H;\(2) = [ We(z,t)h(t)dt
/

A A
= cos 1(——3—;1-1 / Us(z,t)p(t) dt + sin ﬂ-(—z;i)- /Va(z,t)w(t) dt.
0 0

Ako o3HaunM

: A
flw) = \/g/costwp(t) dt,
0

A
ga(u) = \/g/sin tuy(t) dt,

ciel pa3MsHa Ha pela Ha MHTEIDMPaHUATA NoJiydyaBame, 4de’

Hazx(z) = er' {cos‘ f(—z—Q_t—g—-)-/exp (;%i)'u"’*"’f;(u) du
0 ,

= 2
+ sin E;—U)- /exp (-—%) u*t7g, (u) du} :
0

Torasa

H,(z) - Ha,A(Z)l
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07 exp ("u;) W (f) = faw) du

}

7exp (—3) u* (g(u) — g2 (u)) du
0 .

2

.,7 o (‘yz") Wt (f(u) — fa(u)) du

< jexp (--2—) LS dujwu) — f(w)du,

2

Zexp (—{) (o) () do

0 Y o
< /exp (_,22_) y2(z+Re0) du/ lg(u) — ga(u)|*du.
0 0

- CnenosaTteiHo 32 z ¢ Rez > -—%—Rea € U3II'bJIHEHO ,\lilf Hy 5(2) = Hyfz).
—+ 400

Ho, ot apyra crpaHa, J\lil_il_l H,1(z) = H,(z) n cnenoBaremHo
~+ 400

Hy(z) = cos Z@-/exp (-—P-;) w7 f(u) du
0

i 2
+sin£(i2-tt—7)/exp (—%) uw'Tg(u) du.
0

OT ropHoTo mpeAcTaBsHe MoXe Ja Ce 3aKiwouyd, ve PpyHKumuATa H,(z) e
xosoMopdHa B nosypasuuHata Rez > —1 — Rec u ocBen ToBa, Ye B MoJIypaB-
HuHaTa Rez 2 0 e B cusa HepaBeHCTBO OT Braa (L =const)

i

(13) - |Ho(2)| S L {F (-’B + Reo + %) }2 exp (W—I;!—I)

Hanctuna cpuectByBa koHcTaHTa B = B(o) > 0, TakaBa 4e 3a BCAKO
2 = z + 1y ca M3'bJHEHU HepaBEeHCTBATa
mz+0o Ty

cos
2
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in.’i?%'_l < Bexp (fgﬂ)

HepaBencreoTo Ha IlIBapi 3a 2z ¢ Rez 2 0 maBa

]Oexp (—%2) uw*t? f(u)du

0 %

< / o5 (-3‘;) u2e+Re) gy / |f(w)du = 3T (z +Reo + %) / 1 (w)Pdu
0 0 0

U aHaJOI'4YHO

s

2

2

? 2
/exp (—-?2—) w7 g(u)du
0

o0

< %I‘ (a: + Reo + %) /lg(u)|2du.
0

Axo nedpunmpame L upes

& 0 %. o 2 3
L= ;Zsmax ( oj If(u)lzdu) ( Dj l9(w)| du)

nojiyuyasaMe HepaBeHcTBOTO (13).
DHedunupame pynkumara H) B nonypasuunata Rez > —2 — Reo upes

H,(2) .
{T'(z + Reo + 1)}

Ot nema 1 ToraBa cienBa, ue ako w > 0, B nonypaBHuHata Rez 2 0 e
1
M3II'bJIHEHO HepaBeHCTBOTO (M = LA?)

Hy(z2) =

. " 3rw
(14) 5w S Mexp (Z520)
Ila pomycHemM, e w < § K ue
/ W fwn, Bh{t) i =0

3a Bcako n = 0,1,2,... ToBa Boqm a0 Hy(wn) =03an=20,1,2,... O (14) u
oT TeopemaTa Ha Kapicon caensa, yue H; =0, a Torasa u H, = 0 B noxypas-
HuHata Rez > -—% — Reo.
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KaxBoTto m na e n = 0,1,2,..., ToukaTa 2n — ¢ € OT Ta3M MOJIypPaBHHHA,
Tbit KaTo 2n > —1 3a Beako n =0,1,2,... Or H,(2n—0)=03an=0,1,2,...
clenBa, de

(15) - ]Gexp (—-2;-) w? f(u)du =0
0

san=01,2... ucbraacHo nema 2 pyHkumaAra f ~ 0 B MHYepBaa (0,400).
AHnanoruaso p&BeHCTB&T&j_H&(?(TL-}- %)— o) =0(n=01,2,...) nam Bce
€HO C

e .
2 o
(16) /exp (—92—) W Hg(u)du=0, n=0,1,2,...,
) | |

BOJAT A0 3akmoudeHuero, de g ~ 0 B (0,+00). Ho ToraBa ciensa, ye BCAKa OT
GYHKIMMTE ¢ U Y € NOUTH HaBCAKDbAE paBHa Ha Hyda B uHTepBaJa (0,+00),
bt kKaTo (11) u (12) BonAT N0 paBeHCTBaTA

lp(t)2dt = [ [9(e)[2dt = 0.
Ll

Ot pasenctBaTa 2h(t) = @(t) + ¥(t) m 2h(—t) = ¢(t) — ¥(¢), kouro ca
M3IIbJIHeHU 3a Beako t € (0, +00), ciensa, ye h ~ 0 B nHTepBasa (—00,+00). -

YacTHuAT caydail w = 1 m ¢ = 0 BOAM A0 MBbAHOTaTa B MPOCTPAHCT-
BoTo La(~00,400) Ha cucTemara (1), 0T KOATO, KaKTO Beye Gellle M3THKHATO,
cle[Ba 'bJHOTATA B C'hbIIOTO IPOCTPAHCTBO Ha cucTeMaTa GyHKIMH Ha Epmur
(2).

Oppw=1uec=k (k=1,2,3,...) nonyuaBame, Ue cucTeMaTa

{GXP ("22‘2') H;+k(t)}:0 )

HJIN BCE€ €AHO CUCTEMaATa

{ow (-5) Hnﬂ(%)};,

€ C’bINO IT'bJIHA B NPOCTPAHCTBOTO Lo(—00,+00). To3u nocienen usso e Moxe
6u HeoyaKBaH, Thil KATO KakBoTo M na e k =1,2,3,..., cuctemaTa

{eXP (-g) Hn+k(t)}::0

He € ImMbJHA B Ly(—00,+00) - TA € UCTUHCKA YACT OT CHUCTEMATa QYyHKLMU Ha
Epmur. ;

3a6enexka Ilpu goKazaTelcTBOTO Ha ILJIHQTATA HAa CUCTEMATA
(10) B npocTpancTBoTO Lo(—00,400) BCHIIHOCT 65X U3MOI3BAHM B3 YACTHU
cilyyas Ha JleMa 2, CbriacHo KouTo oT paseHcrsata (15), pecn. (16) cnea-

Ba, ue f ~ 0, pecn. g ~ 0 B uaTepBana (0,+00). Ilocneaunre 3akmoueHus
MoraT Aa 6baaT HanpaBeHM M 6e3 Ia ce NPUBIUYA JIeMa 2, a UMEHHO KaTo Ce
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npuberHe Ao TeopeMaTa 3a €IMHCTBEHOCT Ha KJIACMYECKOTO Ipeobpa3zyBaHue
Ha ®ypHe, KAKTO HaIpUMEp NPH JOKA3aTEJICTBOTO Ha TBbpIeHMeTo oT ¢. 431

a L5T lle natbkHEM obaue, ye dema 2 u30610 HE MOXe Aa Gbae Inoxa3aHa
no “MaHMepa” Ha AOKA3aTEJCTBOTO Ha TOKY-IIO CIIOMEHATOTO TBbPAEHWE U B

YaCTHOCT TOBa € TaKa, KOTaTo % < 1.
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TOIUIIHUK HA CO®UNCKUA YHUBEPCUTET “CB. KIMMEHT OXPUICKW”

@AKYJITET Mo MATEMATUKA U HHPOPMATUEKA
Knura 1 — MaTemaTuka
Tom 82, 1988

ANNUAII T NE L'UNIVERSITE DE SOFIA “ST. KLIMEN". OHRIDSKI”

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Livre 1 — Mathématiques
Tome 82, 1988

O MAKCUMYME KOJINYECTBA PEBEP T'PA®A

HUKOJAN XAIXKUVBAHOB

Huxoae® Xedawcuusanoe. O MAKCHMMYME KOJIMYECTBA PEBEP I'PA®A. Ha-
XOOWTCA MAKCHMYM KojuuecTBa pebep n-BepIIMHHHIX rpagoB, He co,uépma.mnx NOJHLIX
(s+1)-Bepumuamx noarpagon K 41, HO 3aTO UMEIOUIMX AU3I'LIOHKTHYIO PAMUNMIO, COCTOA-
LLYIO M3 T aHTUKAMNK A; ¢ |[A;| 2> o, rae o; — Hanepen 3aAaHHble UNC/a, yROBIETBOPAIOUIME
HepaBenCTBaM a; > [Z].

Nikolay Khadzhiivanov. ON THE MAXIMAL NUMBER OF EDGES IN A GRAPH. The-
maximal number of edges in an n-graph without K 3+1 and with disjoint family of independent
sets A;(t =1, 2, ..., r), such that |4;| 2 2 oy, where a; 2 [ ], is found.

~

BBEIEHUWE

Mycte G = (V,E) — obnixHoBennbii rpad. O603HaUMM KonMdecTBa Bep-
muH 4 pebep rpapa G uepes v(G) u e(G), a cTeneHb BepUIMHEI ¥ — 4e-
pe3 dg(v). MHoxecTBO M3 k MONapHO CMEXHHIX (HECMEXKHBIX) BEPHIMH rpa-
$pa G HasmBaerca k-kamkou (k-aHTMKIMKON). MakcMMajbHOE YMCJIO NOMapPHO
CMEXHBIX (HECMEXHEIX) BEPIIMH Ha3HBAaeTCA KIMKOBHIM (aHIMKIMKOBBIM) 4MC--
noM 1 o6o3navaerca uepes c(G)(a(G)). "Ecan BepIIMHA ¥ CMeXHa BepluuHe
u, MHOTAa 6yeM rOBOPHUTH, UTO v ABJIAETCA COCEJOM BEDIIMHEI U.

G = (V,E) — nonunii xpomaTndeckuit rpad, ecan mobasd ero BepUIMHA
CMeXHa XOTH OBl ONHOMY KOHIly MpoM3BoJbHOro pebGpa, T.e. Korla HECMeX-
HOCTh BEPHIMH €CTh OTHOLUEHME PKBUBAJEHTHOCTH B MHOXKECTBE BCeX BeDIIMH
V. Kaacce »KBMBAJEHTHOCTH (XpOMATHYECKHE KIACCHl) ABAAIOTCA aHTHMKIM-
KaMM, BEPIIMHEI U3 pa3HBIX KJIacCOB CMeXHbl. Takum 06pa3oM MOJHBIA Xpo-
MaTH4YeCcKuii rpad BIOJHe ompeneieH Habopom umcen hy, ha, ..., hy, ABna-
OIIMXCA KOJMYECTBAMM BEPUMH B XpoMaTHU4ecKux Kaaccax H,, Hs, ..., Hy,
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M MO®TOMY BIOJHE yMecCTHo ymorpebnsemoe obosnauenue K(hy, hy, ..., h).
BrnpoueM, pacmmMpuM onipenesieHMe ®TOro CMMBOJA €CTECTBEHHLIM 006pa3oM,
yCAaBJIMBAAChL He o6pamaTh BHMMaHUA Ha HYJeBble apryMeHTHI, MHbIMU CJIO-
BaMM, JONyCKas HaluuMe M NYyCTHIX KiaaccoB; K npumepy, K(0,hy, ho, k3) =
K(hy,ha, h3).

DIEMEHTAPHEBIA CUMMETpUYECKUiA MHOTOUJIeH cTeneHd 2 06o3HayuM depes

;2
{15 8950005 BR) = Z{:c,'lel Li<j Sk}
Ouesuaso,
C(I{(hl) h2’ R hk)) > J(hly h‘2: #3 %7y hk)
M
0'(2!1 -1, 2941, 23,...,21) = 0’(231, Lo, X3, ..., .’L‘k) + 2z —x2 — 1.
CnenoBarensHO, '

0'(3?1—-1, zo+1, ..., a,‘k) > g(zl’ To, ..., Q’k),

ecnu T > z2 + 1, T.e.

(1) 8(1{(’11 = 1, hg -+ 1, }13, 345§ hk)) > C(Kv(hl, hg, h.3, a5 hk)),
ecau hy —hgy > 1.

HYCTB n U § — HAaTypajbHBlEe UMCHa, a Ay, hs, ..., hy, — uenwvte, u hy +
hy + -+ h, =-n. M3 (1) caenyer, uro e(K(hy, ..., h,)) uMeer MakcumyMm

TOJIBKO TOTAa, Koraa |h; — h; ] < 1 gna moboit napw 7,7. B Takom ciyuae h;
ompenesiedbl C TOYHOCTHIO N0 MOPAJKA, K HpuMepy h; = [&‘-‘—]

-I'pad K(hy, ha,..., hy) ch; = ["—‘t';—] Ha3pBaeTcA epagom Typana u 0603-
Hauydercsa yepe3 T,(n).

I/ITax T,(n) nMeeT MaKCHMaJIbHOE KOJIUYECTBO pebep Cpeau n-BepIIMHHBIX
noJHuX xpomaTtudeckux rpados G ¢ cl(G) £ s. Typan [1941] moxazan, yTo
B 9TOM YTBEPXKIACHAM MOXKHO OTKa3aThCA OT TPeGoOBAHUA MOJHON XpoMaTHy-
HocTH, T.e. T,(n) uMeeT MaKCHMaJbHOE KOJIMYecTBO pebep U B ropasno Goiee
IIMPOKOM KJIacce TeX n-BepIMHHBIX rpadosB G, ana kotopuix cl(G) < s.

O6nagana momonHuTenbHoM MHGopMmaimeit ansa G, ciaenyer oxuaarTh 6o-
jiee TOYHYIO OLEHKY IJIA BONPOCHOr0 MaKCHMMyMa. OTY HOINOJIHUTENLHYIO WH-
dopmaumio BBOIMM B BuIe TpeboBamma, uTob6ul rpa¢ G o6namal IU3BHIOHK-
THOM cucTeMol a.m:nxnux, moGaa u3 Ko'ropmx uMMeeT XoTf Obl |2[ Bepmmn
([z] = max{n|n € N,n £ z},]2[= min{n|n € N,n 2 z}). OcranoBumcs nonpo6-
HEE Ha BTOM.

Mycts n 2 s 2 r. n-pepumnansiit rpad K(hy, ..., hy, hryy, ..., hy), B KoTO-
POM Bce h; c 1 > r, OTIMYAIOTCA MeXay coboii He 6onee yeM Ha 1, 06o3HaAUUM
yepes T,(n; hy, hy, ..., hy). B cayyae r = 0 onpenesneHnnii ToAbKO 4TO rpad
cosmazaer ¢ T,(n).

OCHOBHHIM yTBEpPXIECHUEM B HACTOALIEH CTaThe ABAACTCA CAEAyIONIas

T eopewma. Ilycts n,5,03,03,...,¢, (r 2 0) — HATYpaJIbHEIE UKCTIA,
npuueM 2 s 2 r,ay+az+ -+ a, Sn, o 2)2 [[i=1,2,...,r. Hycts G —
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n-sepmmuHENs rpad ¢ cl(G) £ s, B KoTOpoM UMeeTCs AU3BIOHKTHAA CHCTEMa
*aHTUKIMK Aj, As,...,Ar u [Ai| 2 a4, i=1,2,...,r. Toraa

C(G) é e(T,(n; ), &25..., a!_‘)):

IpUYeM PABEHCTBO JOCTMraeTca eauHcTBeHHO Korza G = Ty(n;ay, a2, ...,ar),
a MHOXKecTBa A; ABIAIOTCA XpOMATHYECKMMM Kiaccamu oToro rpada, |A4;| =
@i, i=1,2,...,r

3aMeuanne 1. Bcayvae r = 0 yTBepKIeHMe cOBNafaeT C TeopeMoit
Typana.

3aMeuanue 2. B cayuvaer =1 yreBepxkaenaue chopmyampoBalo
6osee 10 neTr ToMy Ha3al B COBMECTHOM OOCY>XIZEHMH C MOMM JUMJIOMaHTOM
Ba. HuxndopoBum.

OTMmeTHM M cleayoulee NpeajioXKenne, KOTopoe TPHUBUAJNbLHHEIM 06pa3oM
BBITEKAET U3 TEOPEMEI:

Cnencrtsue Iyers n,s ,01,a2,...,a, (r 2 1) — BaTypaJbHEIE
ugcna, n 2 § 2 1 oyt g+ -+ o S 0oy 2] i =1,2,...,r. Ilyc
G = (V,E) — n-Bepumunniit rpad ¢ (G) £ s ¥ B V uMeeTca M3 BIOBKTHAA
cucTeMa MHOXKeCTB Aj, Aa, ..., A, co cienylommmu cpoitictBamu: 1) |A;| 2 ay;
:=1,2,...,r; 2) B A; ecTb BepuMHa a;, KOTOpasA HecMexHa Moboit BgpmmHe
v u3 A; mdg(a;) 2 dg(v) (141 r). Torma

e(G) S e(Ty(n; ay, ay, ..., ar)),

gpMYEM DAaBEHCTBO AOCTUraeTCA eIMHCTBeHHo midA rpada G = T,(n; a1, ay,
..., Gy) ¥ MHOXeCTBa A; ABAMOTCA XPOMATUYECKMMH KllacCaMU 3TOTO rpada,
[A,‘l =a;, 1t = 1, 2, »aey o

SBameuarnue 3. Teopemy (a 3HAUNT M cleAcTBHE) MOXHO 0606-
IMTh, 3aMeHAA KonmdecTBo pebep konmuectBom p-kmuk. flovasarembcTBo,
0oOHaKO, He TpebyeT HOBHIX MAel, XOTA U CONEPKUT AOMOJIHNTENbHEIE TEXHH-
yeckue TpyaunocTu. IlosToMy 3mech ero npuBoauMTh He OyneM.

2. TPA® T,(n;hy, ha, ..., hy)

I'pad Ty(n;h1,he,...,h.), raen 2 s 2rwhy+---+h, £ n, 66a on-
penenex B n.1 xak n-sepmmunblt rpad K(hi,..., he, hryq, ..., hy), Taxol, uro
K("H—l:---;"a)=Ts-—r("_h1—""'hr)' :

B cnayvae hy + -+ h, = n unmm s = r, ouepumuo, Ty(n;hy,... k) =
K(hy;:=-,he)-

I'pa¢ T,(n;hq,...,h,) — enuHCTBEHHREIR, UMeIOIMYE MaKCHMAJIbHOE KOJIM-
4yecTBO' pebep cpean n-sBepmmuHHIX rpados tuma K(hy,...,hr, hes1,..., k).
IlelicTBuTebHO, KaK 3HaeM M3 1.1, MakcuMMaJibHOe KoamdecTBo pebep cpemm
(n—hy—---—h,)-BepIIMHHBIX IOJHBIX XpoMaTHUeckux rpados G c cl(G) £ s—r
(a K(hry1,...,h,) ABAAETCA MMEHHO TaKNUM rpadoM) UMeeT eTMHCTBEHHO rpad
Ty—¢(n—hy —---—h), a, c apyroi cropousl, e(K(h1,...,he,hey1,...,h,)) =
e(K(hy, ..., b))+ (ha+ -+ he)(n—hy — - = h. )+ e(K(hryy,-- ., hy)).

ITocne aToro 3ameyaHus HUKaKoro Tpylda He COCTABMT IOKAa3aTEN]bCTBO
CIEAYIOLIEro MpeNONKEHUA:
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Jemma l. I'ch'rb n, 8,0y, 0. ..,0.(r 2 0') ~— HaTypallbHble UMCHA, Nt 2
s2ray+oz+--+a, Sn; o 22, i=1,2,...,r. Tpad T,(n;o1,as, ... a,.)
— emMHCTBEHHEA rpad ¢ MakKCMMalbHKIM YMCIOM pebep cpemu Bcex n-Bep-
mmumI x rpa.q)on tvma K(hy,... Ry hey1,-.. hs), ANA KOTOPHIX h; 2 oy, © =

2

,Zlaxasamea&cmao. Corzacso pacCykneHUAM, NpeAuecTBYOmMM GopMy-

JIMPOBKE JIEMMEI, NOCTATOYHO IOKa3aTh, UTO '

e(Ty(n; hy, ks, ..., k) S e(Te(n; @y, az,...,a;))
M YTO PaBEHCTBO MMEETCHA TOJLKO TOr/a, KOTAa
Ty(n;hy, by, ... he) = Ti(ns a1, @2, ., ).
DTo yTBEepHAEHNE HEMOCPEACTBEHHO CeayeT U3 HepaBeHCTBa
(2) e(Ts(n; hy,ha, ... kb)) < e(Ty(n;hy —1,hs, .. . he))
npu h; > o;.

YGe,zmmcg, YTO OHO Ha CaMOM Je€Jie BRIIIOJHEHO.
CoraacHo OIpcheJIeHNIO,

T,(n;hl, . .,hr) = K(hl, ...,h;,hr+1,...,h,),

rae K(h,..;.l,...,h ) =Tyer(n—hy—---—h,).

Tax fak h; 2 o; 212[i=1,2,...,ru by > o, T0o by +--- + hy > r]3[. Cae-
ZNOBATENbHO, hr+1+ “thy=n— hl—---—h <n-r]% [<n-—r-—(s r)2 <
(s — I3

ByneM cuuTaTh, uTo hy, = min(hy41,...,h,). Torma

(5= )y Sheys+-o+hy < (s= ]2,

tak ut0 h, <]2( u, sHauur, hy — h, > 1. Ouennmmo,
K(hes1,.. . hs + ) =Ty r(n—(hy —1)—ha—---—h,)
M TI0BTOMY |
Ty(n;hy = 1,hg, ... he) = K(hi=1, ... hpy ... by +1).
Taxum 06pa3om HepaBeHCTBO (2) cieayeT w3 Hepasenctsa (1).
Iloka3aTeNbCTBO JIEMMEl 3aBEpIIeHo.
3. YIIOOOBJNEHHE

[Iyers @ — BepumHa rpaga G, a B — MHOXKeCTBO Bepmmx sToro rpada
¥ BCe BEPHIMHH M3 B HecMe)XHH BepIIMHE a.

Yaanum n3 G Bce pebpa, HHIMAEHTHRIE MHOXKECTBY B, a 3aTeM BBeleM B
G HoBule peGpa, coeMHAIONME BCE BEPIIMHLI U3 B ¢ TeMu BepmimHaMy rpada
G, KOTOpHIe CMEeXHBI B HeM BepiiuHe a. [loayuenuniit rpad o6o3naumMm uepes
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G® u 6ynem rosopuTts, dTo oH noxyuen ynonoﬁ.uermeu BepmMH M3 B BepmmuHe
a.

Hrak, rpadp G2 onpeaesieH TOJNLKO B TOM ciydae, Korja mobas Bepimm-
Ha u3 B Hecmexna Bepumte a. Ecau B cOCTOMT M3 0AHOr0O-€ IMHCTBEHHOIO
onementa b, BMecro G5 6yaem rimcats G

Otlemumo {a}UB ABAACTCA SHTHKIHMKOM B GE u dge(b) = dGs(a) dg(a)
ans mo6o# sepmmust b € B. flcuo, yro GB =G, ecan {a} UB — aHTHKIMKa
B G M BCe te BePIMHH HMEIOT ONHM M Te ke cocem B G.

‘IIpn nepexone u3 G k GZ MeHAIOTCA 9BEHTYANLHO CMEXKHOCTH MM HéC-
MEKHOCTb TONbLKO No oTHomenmio k sepumHaM b € B\{a}. Kak nerko coobpa-
3UTE, BEPHO CileAylOmee yTREPKIeHMe: ' ‘

Jdemma 2. c(GF) < d(G).

Jloxazameascmao. Tycrs K — p-xmuka rpada GB. Ecom K nB\ {a} = ¢,
rorana K ects p-ximmxa u 8 G. IIycrs K N B\{a} # ¢ Celtuac nepeceuenue
KnN{BU{a}) umeer €JMHCTBEHHYIO BEPIIMHY b,b # a, noroMy uro K — KiaMKa,
a B4 {a} — antuknuxa B GZ. MuoxecTBo K\{b} — kauka ¥ B G, npuiem
BepIIMHA a cMexHa B G nepnnma.u BTOr0 MHOXeCTBa, IOTOMY 4TO a M b MMe-
10T B G ommm u Te xe cocemm, a cocemm a 8 G2 u B G ommmaxosu. Takum
oﬁpa.aom Mul y6eammuce, uto (K\{b})U{a} — kauxa B G, KoTOpasAs COREPXKMUT
POBHO p BEepIIMH.

Iloka3aTenpCcTBO IEMME 3aBEPIIEHO.

Ecan B — muoxecTBo BepumH rpada G, yepea dg(B) o6o3HaumM. YHCIO
Tex pebep rpada (G, KOTOphle MHIMAECHTHR MHOXecTBY B. Taxmm o6Gpasom
dg(B) ects cyMma AByX claraeMeix: mepBoe — uMcio peGep ¢ AByMs KOH-
namMu B B, a BTropoe — umciio peGep ¢ poBHo oaHeIM Konuom B B. fcHo,

gTo
dg(B) £ Y {da(b)lb € B}

H PaBE€HCTBO MMeEeTCA Torxa M TOJBKO TOrnaa, KOPJI& B asnaerca aHTHKIMKOM

B G. OueBnamo, ,
¢(Gg) = ¢(G) - dg(B) + |Bldg(a).

CanenoBaTesbHO,
3)  e(G2) 2 ¢(G) - Y {da(®)lb € B) + |Blda(a)

M DABEHCTBO MMEET MECTO TOTJA M TOJLKO TOrAa, Koraa B ABAAeTCA aHTHKIM-
kot B G. Tenepsb yxe serko NokasaTh cleAyoliee MpeAIOKEHNE:

Jemma 3. Ecm dg(a) 2 dg(b) ana moGolt pepumn b n3 B, Toraa
e(GP) 2 ¢(G), npruem paBeHCTBO MMeeT MeCTO TOr[a M TOMBKO TOTA&, KOTAS
B — antnkmmka B G u dg(b) = dg(a) ana moGoit Bepumsm b € B.

Zoxasamesscmeo. U3 (3) caenyer

. e(GB)2e(G)+ Y {do(a) - do®)|b € B} 2 (G).

PaBeHCTBO MMeeTcs JIMIIL TOTZA, KOTAA, € oaHOM cTopon, dg(b) = dg(a)
ana moGoit Bepmmenl b € B, a ¢  Apyro#t — KorZa (3) Toxe ecTh paBeHCTBO,
T.6. B — anTnkauxa B G. :

Iloka3aTenbCTBO 1EMMEl 3aBEpPIIEHO.



Crenylomee npeznioxxenue Toxe jrerdye XOKa3aTb, YeM CHopMYIHPOBATE.
Tem He MeHee, OHO KOMKHO CHITpaTh BaXHYIO POJL B JalbHelmeM.

Jlemma 4. Eciu A — adTuxkimka B G, Bce‘nepnmm KOTOpOM MMeIoT
ONHM M Te e cocems B G, Torna A — anTMKAMKa ¥ B GB. IlpuroMm, ecan
AN B = ¢, Torna Bce BepmMHE ¥3 A UMEIOT OIHU U Te e cocemd u-B G2

Loxazamesscmeo. MuokectBo A\B, O4YEeBMAHO, €CTh AHTHKIMKA B G‘B
Ilyctb v € ANRB. Tak Kak v € B, BepIIMHE @ U ¥ — HeCMeXHH B G. Ho
v € A U, 3HAYNT ba HecMmexxna B G Bcem pepmnam u3 A. Tax xkak v € B, 1o
v Hecmexxna B G, Bcem BepummHaM u3 A. CienoBaTe/bHO, A — aHTHK/INKA B
GB. NlepBan uacTh neMMBI TOKa3aHa.

A Teneps, nyctb AN B = ¢. Hyxno m0oKa3aTh, 4YTO BCe BeplMHH M3 A
HMEIOT OZHM M Te Xe cocem B G2 -

IIycte v — BepmmBa, cMexHan B GP mexoropoit BepIMHe U M3 A. Ecan
v € B, coraacHo onpenedeRnio rpada Gg, BEPIIMHA G ctMeXHa B G BepIIMHE U
U3 A. Torzxa a cMexHa B G BceM BepmmHaM U3 A ¥, CJI€0OBATENbHC, ¥ CMEXHA
B G2 pcem pepmumam us A.

Oc'ra.nocxa PaccMOTpeTh caydvait, korma v € B. Vimesa Beuny, utro ANB =
¢, OueBHAHO, UTO ¥ M 4 cMexHH M B G. ClienoBaTesbHO, v cMeXHa B G BceM
pepommuam w3 A. Tak kak ANB = ¢ u v € B, pepuHa v cMexHa u B G2 Bcem
BepmmHaAM M3 A.

Iloka3aTeNbCTBO AEMMEl 3aBEPIIEHO.

3amMeuvanue 1. Muoxecrso A BoBce He o5a3aH0 GHITL AHTHUKIM-
KO# B Gf B CJAydYae OTKa3a oT TpeboBaumsa, 4yToOnl Bce BEPIIMHE M3 A MMenu
omHM MU Te Xe coceq B G. Brpouem, 2To TpeGoBaHMe MOXKHO 3aMEHMTH Ha
Gonee cnaboe: 4ToOhl B A He CyIeCTBOBAJIO BEPUIMHEI ¥ K ¥, OJHA U3 KOTOPLIX
CMEeXHa, a Apyrad HeCMeKHA BepmuHe a B G, TpUYeM NOKa3aTeNbCTBO, YTO A
— ammukauka u B G2, o xe camoe. Cnenyer oTMeTHTE, YTO €C/M HOHAYANY
ANB = ¢, Toraa 6e3 BCAKNX XONOJHUTEMLHLIX TpeboBanmii AnA aHTHKAMKM A
B G MOXHO yTBepXIaTh, YTO A ABJIAETCA aHTMKIMKOM u B G2 | ommako Takoe
YTBEepKIeHAE He NOCTATOYHO JAJNA HOKa3aTeAbCTBAa TEOPEMHI.

" 3amMeuanme 2. Ecim ANB # ¢, Torna o'rmoma He cJieayeT, YTo
BCE BEPIIMHH M3 A MMeIOT onHM M Te ke cocem B G2 mecmoTpsa Ha To, uTO
BCe BEepIIMHH U3 A MMeIoT oM U Te ke cocem B G.

BamMmeudanu‘e 3. Jlemma 2 u 3 B ToM cilydae, KOora MHOMXECTBO
B He Gonee yeM ABYTOUYEYHO, COAEPXKATCA B cTaThe 3nikoBa [1949]. Jlemma 4
aHaJIOTOB B BTOH cTaTrbe HE MMeeT.

IOKA3ATEJIBCTBO TEOPEMBI TYPAHA.

ChenaeM omHO oTKIOHeHMEe — HOKaxkeM TeopeMy Typana. IlpuBenem on-
Hy Mo MMKaIIO 0PUTHHAILHOTO A0Ka3aTenbcTBa TypaHa, KOTOpas BEILOIHO
OTJMYAETCHA OT HEro TeM, UTO OHa Kopoue. DTa MoAM(PUKAIMA NPUHAAMEKAT
3uxoBy [1949]. Bnpoqu B paboTe 3HKOBa HET HUKAKMX CCHUIOK Ha CTATBIO
TypaHa, ¥ T08TOMY MOXKHO MPEANONOKUTE, UTO OH JOMIEN 10 $OpPMYIMPOBKU
M HOKa3aTelbCTBAa CAMOCTOATENLHO.

tvlepi_s:?, S 0603HaUMM MHOXKECTBO BCeX n-BepIIMHHEX rpadoB G c cl(G) £ s

a vepes S - NOIMHOMXKECTBO TE€X M3 HHMX, KOTOphEI€e MME€IOT MaKCHMAaJbHOE KO-
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audecTBo pebep. Mm nomxHm aokasath, uro Tpad Typauna T,(n) sBaserca

eIMHCTBEHHIM BJIEMEHTOM MHOMXKeCTBa S.
Iycrs G € S.
IoxakeM cHayaJa CleAylollee yTBepKACHUE:

(4) Ecnu a 1 b — necMeskunle Bepmmninl B G, Torna dg(a) = dg(b).

Homyctum, uyro (4) He Bepro. H3-3a CUMMETPHM MOXKHO CUMTATh, utoO
dg(a) > dg(b). Us nemmmu 2 cneayer, uro G} € S.” U3 nemmmu 3 caexyer, uto
e(G?) > a(G), uro neBoaMONHO.

Mvnaukaima (4) nokazana. C ee moMomplo HETPYAHO yCTAHOBMTb, YTO
G — moJaHHIA XpoMmaTHiecKuiA rpad.

Iycrs a — Bepmmna, a [b,c¢] — pebpo rpada G. Hyxno noka3aTsk, 4To a:
cMexHa XoTH Gut oguok u3 Bepmun b, ¢. JlomycTum, uro aTo He Tak. Toraa us
(4) cnenyer, uro dg(b) = dg(a) = dg(c). M3 nemMm 2 caenyer, uTo ¢ e 5,
a M3 NeMMul 3 — 4To € (Gﬁbc}) > e(G), noTomy uro {b,c} He ecTh aHTUKIMKA

B G. llonydenHoe npoTMBOpeUMe 3aBepItaeT AOKA3aTENLCTBO.

HArak, G — noanuii xpomaTuueckuit rpa¢d. Tak xak Bce NoJHEIe XpoMa-
THYeCKHE I'PadHl ¢ KJIMKOBLIM YHMCIOM S § TOXKe NMPUHAJJIEKAT MHOXKECTBY S,
1o G MMeeT MaKCMMaJbHOE KOJIMYECTBO peﬁep cpeay HUX U (CM. ompejeieHne
rpada T,(n) B n.1), 3nauur, G = T,(n).

llokasaTemcTBO T€OPEME! 3aBepIIEHO.

5. IOKA3ATEJILCTBO OCHOBHOM TEOPEMEI

B crarhe XamxmusatoBa [1976] 6E0 M3M0XKEHO OOHO NOKA3aTeNbbCT-
Bo TeopeMH Typana, KoTopoe 6iyke K OPUTMHAJILHOMY HNOKa3aTeNbCTBY IO
CPaBHEHMIO C JOKa3aTeNbCTBOM 3hikoBa. OMHaKO ero jierdye ycoBepmIEeHCTBO-
BaTh TaKUM 06pa3oM, UTo6H TpaHCHOPMHUDPOBATE B JOKA3aTEAbCTBO OCHOBHOM
TeopeMHl (cM. ee popMyampoBKy B n. 1). Tem He MeHee, TOMY MBI IpeIOY-
TeM Apyro# nyTh. TakuM o6pa3oM MH NpeJOCTaBUM BO3MOXKHOCTh YMTATEIIO
caMOMY CYJUTh O CXOACTBaX M OTIAMYMAX KOKA3aTEJbCTBA OCHOBHOM TEOpPEMEI,
KOTOpOE 31eCh U3JIOKHM, 110 CPABHEHMIO C JOKa3aTEeJIECTBOM TEOPEMH Typa.Ha
yKe M3JI0KeHHOM B 1I. 4

Uenes S 0603HaUMM MHOKECTBO BCeX rpadoB, yAOBJIETBOPAIOIMX TpeGo-

BaHMAM TSOPEMBI, a 4Yepe3 S — MOAMHOXKECTBO Tex rpadoB u3 S, KOTOpHIe

MMEIOT MaKCcuMaJibHOoe KolnmdecTBo peGep. HykHo Aokasars, uto S comepkuT
eAUHCTBeHHRIA aiieMeHT M aTo rpad T,(n; oy, an, ..., ap ).

IIycte G € S un Ay, Ay, ..., A, — Te anTHKIMKK B G, CymeCTBOBaHME KO-
TOPHIX 06ecneuynBaeTCA YCIAOBHMEM TEOPEMEL.

B anTukauke A, BuGepem BepmMHY @; ¢ MakcMMaJbHOMi cTemensio B G
cpelM BepIIMH MHOXeCTBa Aj. Onpe.nemm rpap G, = G4 Cornacho nem-
me 2, cd(G,y) £ s. Ouebumno, A;, Ay, ..., A, — BHTHKIMKHA uB G,. Coraacno

nemMme 3, e(Gl) > (¢(G) w, 3naumt, G; € S. s
| Bce pepmmmun M3 A; nMmetoT B G ONHM M Te e cocezm

Ty e camyio onepaumio mponeiiaeM ¥ ¢ rpa¢oM G, Ha BTOT pa3 Io

OTHOIIEHMIO K €ro aHTHKIMKe Aj: BhiGepeM B Hell BEPIIMHY ¢ MaKCHMMAaJbHONK
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cTenenpio B (G; cpemu Bcex BepiuMH U3 A; M BBEAEM B pacCMOTpeHMe I'pad
= (Gl)j:;. Pasymeercs, maoxkecTBa A; ABAMOTCH aHTMKIMKamu 4 B Ga U

cHOBa uMeeM Gy € S. Bee BepIIMHEI U3 A, uMeloT B G5 OJHM M Te Ke COCeH.
Cnenyer, oAHAKO, OTMETHThH YTO ®TO MMEET MECTO M [0 OTHONIEHMIO K Bep-
IIMHAM M3 MHOXeCTBa A;, KOTopoe aTUM CBolcTBOM ob6aaznaio B Gi. Ytobu
ybenuThcA B ®TOM, AOCTATOYHO HPUMEHHUTH JieMMy 4, He 3a0miBasd, 41O A u
A2 — AW3DBIOHKTMBHEIE AaHTHUKIMUKMA B ().

Hrak, B rpade G2 u3 S MHOMecTBa A, A, ..., A, ABAAIOTCA aHTUKIMKA-
MM, IpUYEM BCe BepIMHEI M3 A;, i = 1,2, uMeloT B Gy OJHU U TE€ XKe COCEIH.

Teneps YK€ COBCeM fICHO, 4TO, NOBTOPAA NPOJeIaHHyI0 HaMU [IBa Pasa

Onepauyio, B r LIarax onpeneamM rpad G, npMHALIeXaIMii MnomeCTBy S uk

TOMY K€ MHOXecTBa A1, As, ..., Ay ABAAIOTCA aHTUKIUKAMHK B G pU4YeM Bce
BEpPHIMHBI U3 om{oro n Toro ke A;, 1 = 1,2,...,r, umeloT B G oauu M Te xKe
cocemm.

Y crasoBuM, uto G — NOJHENA XpOMATUYECKHiA rpad.
IlokaxkeM cHavaJa Cleayollee yTBEPKICHNE:

(5) Ecan a u b — HecMmekHbie BepuuHEL B (G, TO da(a) =da(b).

Honyctum, uro (5) He BepHo. Be3 orpaHndyeHHs o6GMWHOCTH MOMKHO CUU-
TaTh, uro dg(a) > dz(b). Cornacuo semme 2, cl(G%) £ s. CormacHo neMme
4, Ay, Ay, ..., A, sBasioTCA anTHMKIuMKamu B (. CrenosaTteibKo, Gg €S5. Us

nemmsl 3 ciexyer, uto e(G%) > e(G), a 210 HeBo3MONHO.
Hmnaukammsa (5) goxasaHa.

U3 (5) monmas xpomatuunocTs rpada G cienyer nenmocpencrsenno. Ilycts
a — BepummHa, a [b,c] — pe6po rpada G. HyxHo n0oKa3aTh, UTO @ CMEXHA B
G xora 61 oaHOW M3 pepivH b,¢. IlomycTvM, uTO 9TO He Tak. W3 deMMBl
2 BHITEKaeT cl(G.{,b'c}) < 5. U3 nemme 4 crenyer, uto Ay, As, ..., A, SBIAIOT-
CA AHTHMKJIMKaMH B G, CaenoBarennHo, Gl es. us (5) cnényeT, YTO
ds(b) = da(a) = dg(c). Tak xak {b,c} He ects anTuKIUKa B G, TO U3 NTeMMEL 3
CleNyeT, UTo e(éib’c}) > e(G).

Ilonyyennoe NpoTUEOpeUNe MOKa3kBaeT, YTo G — MOJHBIA XpoMaTHdec-
KMl rpad, NpMHaAJEKAUMI MHOXKECTBY S. O6o3naunm vepes Hy, Hy, ..., H,
ero XpoMaTHdeckue KIacchl ¥ nonoxum h; = |H;|, Takuto G = K(hy, h, ..., h,).

MHoxecTBa A; ABAAIOTCA aHTHKIAMKaMM B (7, ¥ mosToMy n1060€e U3 HUX co-
nepuTcA B HekoTopoM H;. IlokaxxeM, 4yTo pa3Hble A; comepKaTcA B Pa3HBIX

H;.
HomnycTuM, YTO 8TO He TaK M MycTh, Hanpumep, A; C Hy D As:. Toraa
MOKHO CUMTATh, YTO
AjUAU...UA, CHUHU...UH,_;.

B T&ROM_ CJiyJa€ BBIIIOJIHEHBI HEPABECHCTBA

hq a1+a2,h1+ +h,1>a1+ag+ +Ct',-_._ ]—[.
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Monoxum h, = miu(h,, hryq, ..., he). Tor,na.
(s—r+1)h, £ hp+--+hy =n—h;— co—hpy Sn— r] [‘< (s-—»r) < (s-r+1)] [

u, clenoBaTenbHo, by <]%[. Tak kak a; 2]2[> h,, 10

Bsenem rpag , . ,
= K(hl = a‘i;hZ) . ‘sha +'C¥2)

OueBumno, G' € S, tak kak c(G') .£ s u B &' uMeeTcd IM3BIOHKT-
Hafd CHCTeMa aHTUKIMK, KOJIWYECTBA BEPIIMH KOTOPHIX COOTBETCTBEHHO PAaBHEI

|A1], |A2l, ..., |Ar|. Hokaxem, uto e(G’) > e(G). DleficTBUTENBHO,
e(G') — e(G) = a(hy — az, by, ... by + a2) — o(h1, ..., hy) = ag(hy — by — a3),

a, KakK GBIJIO YCTaHOBIIEHO TOJBKO uUTO, hy ~ hy — as > 0. o
Urak, G' € S u e(G') > e(G), a »To mpotuBopeunt Brmovenmo G € S.
TakuMm o6pa3oM HOKa3aHo, q’ro'paannqnme A; comepXkaTci B Pa3IMYHBIX

H;. IlosToMy MOXHO cumraTh, uTo hy 2 |Ai] 2 @, i =1, ..., r. Teneps yxe c

MOMOIILIO JIeEMMEI 1 3aKII0UaeM, UTo é= T,(n;ay, .. a,.)

IlokaxxeM, 4TO aHTHKIUKY Al, ...,A; COBAIAIOT C r M3 CaMBIX 60rbumx
XpPOMAaTUYECKAX KIAaccoB rpada ’If,(n,al, ...,ap). Herpynso coobpasuth, 4yto
33 MCKJIIOUEHMEM MEPBBLIX T XPOMATHUYECKMX KJIAaccoB aToro rpada, mwoboit us
ocTajbHLIX MMeeT He Gonbme |2[ snementos. CienoBaTesbHO, CyMMa KOJHU-
YeCTB BEPLIMH NPOU3BOJBLHBIX I XPOMATUYECKUX KJIaCCOB HE MPEBOCXOAUT UMC-
nma o+ -+ ar S A1l 4+ |A-]. losTomy |A;l =a;; i=1,2,...,r

Urak, G = Ty(n;ay,...,q,), npudeM A; - XpOMAaTHUYECKAE KIACChI BTOTO
rpadia; w Al =6 t=1,2, . F

B nponecce IIOFTPOGHMH rpaga G CMeXHOCTb MM HECMEXKHOCTH TeX Map
BepIIWH, KOTOpHIe exkaT BHe A;U. . UA,, coxpansercs. Yo Kacaercsa Tex nap
BEPIIMH, KOTOPHIE UMEIOT XOTA OBl OAHY BePIIMHY B 06beaunenun A U.. . UA,,
TO TaM MOTYT Mpou30iTi mamenenusa. OAHako Takue Mapbl, KOTOPHIE, pa3y-
MeeTCs, He CoZleparcd B OMHOM U ToM e A;, cMexusl B G. Takum oGpa3oM
oKa3blBaeTcd, uTo G - noarpad rpada G. Ecum AOMYCTUTh, YTO G+# G' TOr-

na e(G) < e(G), uto npotnBopeunt npunamIexHocT G k S. ClenoBaTelbHo,

G=0G.

OkonuaTenpHo, AoKa3aHo, uto G = T, (n a1, ..., Gr) M MHOXKECTBA A1, A,

, Ay ABNSIOTCA XPOMATUYECKAMMU KJIaccaMy 8Toro rpacpa npuueMm |A;| = a;;
= 1 2,.

IIO}ca3aTeJIbCTBo TE€OPEMBI 3aBEPIIEHO. o

6. l_[OHASATEJIbCTBO CJIEOCTBUA

HNonowum Gy = G&,Gy = (Gy)dz,. = (G,;-1)27. MmuoxecTsa
Ay, Ag,..., A, ABIMOTCA aHTUKIMKaMU B G, u cornacno nemme 3, e(G,) 2

E=]
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¢(G), npuyueM paBeHCTBO BiledeT, uto A; — anTukuku B G. Taxkkak cl(G,) £ s
(cM. memmy 2), To G, yIoBieTEOpseT BceM TpeGoBaHMAM TeopeMbl M, CAEH0-
BaTensHo, e(G,) £ e(Ts(n; a1, a2, .. .,a,)). Takum ob6pa3zom

e(G) S e(Ti(n; .. ., ar)).

Ecnu B ®TOM HepaBEeHCTBE MMEET MECTO 3Ha.1< paBeHCTBa, TOrZa e(G)
e(G,) u, sHaumt, Ay, Ay,...,A, — antukineu B G. Toraa MoXkHO NpMMEHWTD
TeopeMy M 3aKmounTh, uto G = Ty(n;ay,..., o).

Caencreue A0Ka3aHO.

7. OBCYXKIEHUE TEOPEMBI

B nemme 1 MOXKHO OCTaGUTh. Npenmooxkerue a; 2|5[, 3amenus ero Hepa-
BeHCTBOM ¢; 2 [2]. DTo BHOCHT, onHaKO, HEKOTOpbIE MUHMMAabHBIE OCIOMK-
HEHHA B ee AOKa3aTelbcTBe. Tak, HamprMep, HEDABEHCTBO (2) MOXKET W He
BLIMOJHATbCA, eciM &1 = [2] m hy = [2]+ 1. Heno B TOM, 4YTo ceifuac Hesb-
3 YTBEpPKAaTh, 4TO h, —fz > 1, a Tombko, uto h; — h, 2 1, Kak HeTpyaHO
y6emnthca. Ecim hy — h, = 1, Te. h, = [’j, TOr Za BMECTO (2) UMeeT Mec-
TO paBeHCTBO. TeM He MeHee, BCe B NOPAJKE, IMOTOMY YTO B 3TOM Clyvae
Te(n;hy — 1,hg,...,h) =T,(n; hy,..., h,), KaK 8TO HETPYAHO yCTAaHOBUTD.

Wrak, nemMa 1 BepHa mpu Gojlee ciaboM orpaHMvenmmM o; = (2], 1 =
1,...,r. C He3HaUMTENLHEIMM OCJIOKHEHMSAMM B HOKa3aTEJLCTBE TEOPEME
MOXHO YCTAHOBHUTL, UTO OHA TOXKE OCTAETCH BEPHOM IIpU MeHee OUPaHUYU-
TeJLHBIX TIpearnonoxenuax o; 2 [2], 4 = 1,2,...,r. To ke camoe oTHOCHTCA,
KOHEYHO, ¥ K CJeICTBHIO.

Hepo3amoxkHO nanbHeiiinee ocnabienre B 2TOM AyXe MpPeIONOKEHUHA Te-
opemel. Tak, eme npu r = 1 Hesb3A yTBepXKIaTh, uTo ecam ay < [2], rpad
Ts(n;a1) MMeeT MaKCMMaJbLHOE KONWYecTBO pebep cpemu rpados G, ANA Ko-
topaix v(G) = n,c(G) £ 5,a(G) 2 a;. 910 npocto HepepHo. IlelicTBUTENBHO,
rpad T,;(n) B aToM ciyuae yAOBIEeTBOPAET BCEM NepeUUCIeHHEM TpeboBaHu-
aM, omHako e(Ty(n)) > e(Ts(n;1)). Yrobel oxBatuTh M cayuail a; < [2],
GopMyIMpOBKY TeopeMsl (pH r = 1) HYXHO BHAOM3MEHHUTH CHEAYIOMMM 006-
pa3oM: '

Cpemu rpados G, Anf KOTODHIX v(G) n,cl(Q) £ 5, 0(G) 2 ay, Makcu-
MaJIbHOE KOJIMYECTBO peﬁep npu o) 2 [2] umeer TonpKo rpa¢ T,(n;a1), a npu
a) < [2] — Tonbko rpad Ty(n).

AH&HOFH‘!HHM 06pa3oM MOKHO 0606IMTE OCHOBHYIO TEOpeMy.
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ON THE MAXIMAL NUMBER OF EDGES IN A GRAPH

Nikolay G. Khadzhitvanov

(Summary)

Let K(hy, hs, ..., h;) be the complete s-partite graph with h; vertices in
i-th class. For n 2 s 2 r we denote by Ty(n;hy, ha, ..., hy) the n-graph
K(hy, b, ... hy) with |h; — h;] £ 1 for each pair i,j : r < i < j £ s. When
r =0 this is the Turan’s graplx ! 1 (n)

- The number of edges of a graph G is denoted by e(G).

Main t heorem Let n,s,a1,a3,...,0, (r 2 0) be natural numbers and
n2s2r a;+ay+- +a,$n a,g[';],z—lﬂ ,7. Let G be an n-graph
w1th0ut Ix,+1, having dls_]omt family of independent vertex sets A1, As,..., Ay,
|4 204 6= L,2,...,r Then

e(G) L e(Ty(nsay, a9, ..., 0;))
and the equality holds iff
G =T,(n;01,a,...,a.) and |A;| = a;; i=1,2,...,7

For r = 0 this is equivalent to the Turan s theorem [3]. For 7 = 1 it was stated
together with V. Nikiforov more than 10 years ago.

Coro l lary Letn,s a),ay,. » (r 2 1) be natural numbers,n 2 s 2 r,
ay+ar+ -+ a, Sn,o; 2 [%], f = 1 2,...,r. Let G be an n-vertex gra.ph
without Ix,+1 and having disjoint family of vertex sets Ay, As,...,A, with the
following properties: 1) |4;| 2 a; and 2) in A4; there is a vertex a; such that each
of the vertices in A; has at most the degree of a; and 1s non-adjacent to a;. Then

e(G) L e(Ts(n;0q, @2, ...,0ax))

alnd the equality holds iff G = Ty{n;ay, ay, ..., a,) and the sets A; are its chromatic
classes.

The asssumption a; 2 [2] is essential in the above two propositions. So, for
r = 1 it is not true that if @) < [%] then the graph T;(n, ;) has maximal number
of edges among the n-graphs without K s+1 and having an independent set A; with
at least ay vertices. Only the Turan’s graph T (n) has maxirmal number of edges
in this class of graphs.

ITocTynuna 1. 1. 1989 r.
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O MAKCHUMYME KOJIMUYECTBA TPEYTOJILHUKOB C
- OBIIIAM PEEPOM

HUKOJIAW XAIXKVBAHOB
>

Huxonad Xadancuusanoa. O MAKCHM)’ME KOJMYECTBA TPEYTOJIbHUKOB
C OBLUMUM PEBPOM. HccnenyeTca MakcuMyM i UMC/ia TPeYroNbHKKOB ¢ o6muM pebpom
B rpadax, NPHHALNEHKAL{MX HEKOTOPHM €CTECTBEHELIM ¥ BAXKHEIM KJiaccaM rpadoB, B uac-

2
THOCTH, KJAacCy n-rpadoB ¢ xoTa 6 [ﬂ—] pebpaMu u uMelomux Tpeyronbuuk. O6cyxna-

erca craTea (2], B xoTopoii pemena npobnema Dpaewa o i, U BHBOAATCA HOBHE CIEICTBUS

M3 ocHOBHOM TeopemH ®Toit ctatbu. Iloxasara onna runoresa DABapAca, CHOPMYIIMUPO-

BaHHAA B JONOJIHNTENLHOM 3aMeUYaHUH Kk ero pabore (3], u noapobro obcy)knaeTca oTa ero
>

CTaThA.

Nikolay Khadzhiivanov. ON THE MAXIMAL NUMBER OF TRIANGLES WITH A COM-
MON EDGE. The maximal number { of triangles with a common edge in graphs of some natural

. . - . 2
and important classes (in particular the class of n-graphs with at least one triangle and ["—]

edges) is investigated. Paper [2], where a problem of P. Erdds about t is solved; is discussed and
some new consequences of the main theorem, proved in {2], are deduced. The Edwards’ conJectu.re
is proved and his paper [3] is analysed in details.

1. ONIPEAEJNEHUA, BCIOMOTATEJIBHBIE COOTHOIIEHUA
N ITEPBAA TEOPEMA

PaccMaTpuBaeM Toabko o6nikHOBeHHEIE rpadul. Ecim G — rpad, mHOXKeC-
TBa €ro BepUIMH, pebep ¥ TpeyrosbunkoB o6o3HauuM yepes V, E u T, a yucina
UX 27ieMEHTOB — 4epe3 n, € M t. Yucao TeTpasxpos rpada obo3HaunmM uepes
q. Ecim v — BepumHa rpada, a A(v) ~ MHOXKeCTBO BCEX CMEXKHEIX €it BepIuMH,
torna d(v) = |A(v)| — crenens aroii Bepumnn. Yucna
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* tlu,v] = |A(u) NA®W)| 1 tu,v] = [V\ (A(u) U A(v))|

B TOM cllyyae, Korza [u,v] € E, SBIsI0TCA COOTBEICTBEHHO KOJIUYECTBOM Tpe-
YroJBHAKOB CO CTOPOoHOM [u,v] M KOJMYeCTBOM BepIIMH, OQHOBPEMEHHO He-
cMexHBIX u ¥ ¥, fcHo, 4To

(1) 3t=")_{t{u,v]|[u,v] € E},
(2) E=) {f[u,v)llu,*] € E},

€CTb YMCJO TeX 3-BEPUIMHHBIX MHOMKECTB, J060e M3 KOTOPHIX MMeeT POBHO
OMHY Napy CMEXHBIX BEPIIUH. :

IHonoxum
tlu,v,w] = tlu,v] +tfu,w] + t{w,u],
fu,v,w] = tu,v] + v, w] + tw, u),
glu,v,w] = [A(w)NA(v) NA(w)],
glu,v,w] = |V\(A(u) U A(v) U A(w))| .

~ Ecau [u,v,w] € T, To ¢[u, v, w] — 44ca0 BCeX TETPadAPOB, MMEIOWMX B Ka-
YecTBe TPaHU TPEYTOJbHUK [u,v,w)], a §u,v,w] ~ uncilo Tex BepIIUH, KOTODbIE
0JIHOBPEMEHHO HECMEXHBI BEPIIMHAM 4, v, w. SICHO, 4TO

3) 4= Y {a(u, v, w)l[u,v,u] € T)

a

(4) i= S {d(u, v, w)llu, v, u] € T}

€CTh KOJIMYECTBO TeX 4-BePIIMHHLIX MHOXeCTB, N060e M3 KOTOPHIX COCTOMT
M3 TPEeYroJibHUKa M OQHOU BepIIMHBI, HECMEKHON BCeM BepIIMHAM 3TOI'0 Tpe-
YrOJIbHHKA.

Jlerko cooBpa3nTs BEPHOCTh CIAEAYIONMX HBYX PaBEHCTB:

(5) > {d(w) +d(v)|[u,0] € E} = ) {d*(v)lv € V},
(6) Z{f[u,v,w]l[u,v,w] €T} = Z{f[u,v]t[u, v]|[u,v] € E}.

IleiictBuTesmbHO, B sieBoit cymme (5) d(vg) BcTpeuyaeTca BO BCeX ciara-
eMbIX, MU KOTOPHIX [u,v) € E, T.e. d(vo) pa3s, a B nesoit cymme (6) t{ug, vo)
BCTpeYaeTCA BO BCEX CJaraeMblX, A KOTOPHIX [ug,vg,w] € T, T.e. t{ug, vg)
pas.

Ecau [u,v,w] € T, t[u,v] — g[u,v,w] ecTs uncio Bcex BepIUMH, CMEXKHBIX
BEpIIMHAM U, v, ONHAKO HeCMEXKHEIX BepumHe w. IloaTomy t[u,v, w]| — 3¢{u, v, w}
— YHMCIIO TeX BepUMH, N00ad U3 KOTOPHLIX CMEXHA DOBHO IABYM M3 BepIIMH
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tTpeyronbuuka [u, v, w]. IpucoeuHsA K HUM BepLIMHEI, KOTOPHIE 0HOBpPEMEH-
HO CMEXHEI BCEM BepIIMHAM TPEyrojibHuKa [u,v, w)], a ux umucio — ¢fu,v,w], B
pe3ynbTaTe NOJYYMM, 4To & = t[u,v, w] — 2¢[u,v,w] ecTh uucao Tex BepmmH
rpada, mobas¥3 KOTOPHIX CMeXHa XOTA 6Bl AByM BepIIMHAM TPEYroOJbHMKA
[u, v, w]. :
AHasoryuro, § = t[u,v, w] — 2q[u, v, w] — amcao Tex pepumH, mobanx U3
KOTODHIX HECMEXXHa XOTH Gt ZBYM BepIIMHAM TPeyTONbHUKA [u,v, w)].
Pa3ymeerca, mobasa BepumHa rpaga cMexxkHa MM HeCMeXHa XOTA Ohl
ABYM BE€pIIMHAM TpPeyroJbHUKA [u v, w] W, 3HayuT, o+ f = n. TaxuMm o6pasom
IoKa3aHo, uTo ecau [u,v,w) € T, Torma

M tuv, ]+, w] = n+ 2qu,v, w) + 24y, v, u).

IIpocymmuposas modseHHO (7) 110 BCEBO3MOMXKHBIM TPEYToJbHUKAM [u, v, w)
€T, nonyuum (cMm.(3), (4), (6)):

(8) E{t[u, v, w]|[u,v,w] € T} + Z{f[u,v]t[u,v]l.[u,v] € EF} =nt+8q+ 2q.

Yepes t 0603HAUMM MaKCUMYM YKMCJa TPEYTOJLHHKOB ¢ obllell cTOpOHOiA,

T.e.

(9) £ = max{t[u, v)|[u, v] € E}.
OueBuaHo,

(10) tlu,v,w] £ 3, ecrmt [u,v,w] €T.
CaenoBaTenbHoO,

(11) Z{t[u,v, w]|[u,v, w] € T} £ 3ti.

PasenctBo B (11) uMeeT MecTo Toraa ¥ TOJBKO TOrAa, KOTAa €CTh PABEH-
ctBo B (10) ana mwoboro {u,v,w] € T, T.e. Korja BepHa UMILIMKAIIAA:
(*) Ecau {u,v] € E u t[u,v] > 0, Toraa tfu,v] =t.

N3 (6) caeayet

(12) Z{f[u, v, w|[u,v, w] € T} < .

Yol yGeanThca B 910M, AOCTATOUHO NPHHATHL BBUAY (2) M (9).
Papenctso B (12) MMeeT MeCcTO TOrZa M TOABKO TOTJAa, KOrJa BepHa UM-
NJIMKaLMA:

(%) Ecaw [u,v] € E u 1[u,v] > 0, Toraa t{u,v] = ¢.
A3 (8), (11) u (12) cneayer
(13) (3t + 1)t 2 nt + 8¢ + 24.
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K ToMy ke sAcHO, uTo paBeHcTso B (13) MMeeT MecTo TOI'Zia M TOJBKO TOLHA,
KOTJIa BEDHBI MMIIIMKaIMM (%) M (%*)
Teopema 1. Ilna moGoro rpadpa G BHIIOIHEHO HEPABEHCTBO

(14) (3t +7)i = nt,

IpHUYEM PaBEHCTBO AOCTUraercd TOrZa M TOJBKO TOrJa, koraa ¢ = ¢ = 0 u,
KpoMe TOro, AJs Bcex [u,v] € E, ana xotopwix t[u,v] + t{u,v] > 0, uncno t[u,v]
OJHO M TO XE. .

Hepasencrso (14) oueBmmno BeiTexaeT u3 (13). Ilna pasencrsa B (14)
HeoBXoauMO ¥ KocTaTouHo ¢ = § = 0 m paseHcTBO B (13), T.e. uTOGH () M
"(**) 0HOBpEMEHHO BEIIOJIHAINCE, & BTO O3HAYAET: eCIM [u,v] € E u X0oTA Oul
omHo u3 uucen t[u,v] u f[i, v] nonoxurensHo, Toraa tlu,v]'= 1.

Hepasencrso (14) moxazano HeMHoro uxaue B [2].

MocTponm npa skcTpeMaibHble rpada AIA TEOPEMH 1, T.e. Takue-TpadH,
IULsi KoTophIX B (14) MMeeT MeCTO pPaBEHCTBO.

IMMpumep 1. IlycTh a; —~ BepuMHLI TPEyTrOJbHOMU NMPU3MEI, N = O(mod 6)

v A; - AW3DBIOHKTHBlE MHOXecCTBa ¢ |4 = §F, 1 <i£6. Moaoxum V' = U A;.
i=l

Yepes E' 0603HAUUM COBOKYIHOCTh BCEX OBYXDJEMEHTHBIX NOIMHOXKECTB [, v]
MmHOXKecTBa V', 1A KoTopeix u € A; u v € A;, rze [a;, a_,] pebpo NMpu3MBEI.
HOna rpadpa G' = (V' E'), kak HETPYIHO IPOBEPHTE C IIOMOMIBIO TEOPEMEI, B

(14) »MeeT MeCcTO PaBEHCTBO M € = '; s BikEs B

Il pumep 2 BosnMmeMm Tpu TpeyroabHuKa [ai,as,as), [as,as,as],
[a7, as, ag] n mM06LIe ABEe M3 9 BepIIMH a;, MHAEKCH KOTOPHIX CPaBHUMBI 110 MO-
Aynbio 3, coeaunmM pebpom. Ilonyuennriit rpa¢ I’ 6yner umers 9 BepuuH u
18 pebep — Bce pebGpa HaHHBIX TpPeX TPEYTrOJbHHUKOB U, K TOMY Ke, Bce pebpa
TPeyYroJILHUKOB (a1, a4, a7], [as,as,ae], [as, as, ag]. Ilycts n = (mod 9) m A;

~ A€BATH AM3BIOHKTHHIX MHOXeCTB ¢ |A;| = 5. Ionowum V" = U A;, a E”

OTIpeIeNINM KaK COBOKYITHOCTb BCEX IBYX®IEMEHTHBIX HOI[MHO}KCCTB [u v] MHO-
xectBa V", nna xoTopeix u € A; ¥ v € Aj, rxe [ai,a;] - pebpo rpadpa I'. Ilna

rpada G" = (V”, E"), xak HeTpyZHO yCTAHOBUTEL C IOMOMILIO TeopeMel, B (14)

eCTh PAaBEHCTBO U € = 2'9‘ ,at=2.

- I'pa¢ G’ umeer pebpa, KOTOpEIE He ABJIAIOTCH CTOPOHAMH TPEYTOILHAKOB,
a G" Takux pebep He uMeer.
Hopaxays u CreloapT [8] ycranosuau, uto

(15) 3t=) {d(v)lv €V} - ne+t.

BripoueM, 2T0 MHTepecHOe PaBEHCTBO MOXKHO JAOKa3aTh HeTpyaHo. Jleii-
CTBHUTEABLHO,

(16) [A(u) U A(v)| = [A(u)] + |A(v)] — |A(u) N A(v)].

B cayuae, xorna [u,v] € E, pasefictso (16) MoxHO nepenmcats B clenyomeit
dopme:

(17) tlu,v] = d(u) + d(v) — n + t{u,v],[u,v] € E,
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noromy uro tu,v] = [A(s) N A®)], d(v) = [AW)], d(v) = |A@W)], du,v] = n -
|A(u) U A(v)].
CknaaniBas MOYJIEHHO BCEBO3MOXHble paBeHCTBa (17), moayuum

>_{t[u, v]l[v,v] € E} = 3 {d(w) + d(v)|[u, 9] € E}

—ne + 3 _{[u, v)|[u,v] € E}.
YTob6hl y6eanThcA B ToM, uto paBeHcrBo (18) cosnaaaer c (15), nocrarouHo
npuHATL BBUAY paseHctsa (1), (5) u (2).

C nomownio pasenctsa (15) HEPaBEHCTBY (14) MoXkHO NPUARTEH CHERyIO-
IIyI0 BKBUBAJIEHTHYIO GopMy:

(19) (st +ne—Y {d*(w)v e V}) {2 nt.

Orcioaa BeIBEIEM ClieAyloUMe ABa CleACTBMA.
CnegctBue 1. Ecan

(18)

(20) S {d()lv € V} > ne,
TOor aa
(21) i> %._

JloKka3aTenbCTBO 3TOrO yTBEPKAEHUA MOMeHTalbHO caeayeT u3 (19), Tak

Kak, corsacHo (15), 3t > 1 u, snauur, t > 0 (pa3symeercs, u t>0).
Caneactsue 2. Ecout>0mn

(22) Y {d*(v)lv €V} Z ne
TOrAa '
- o
2 t=—.
(23) > 2
Hepapencro (23) caexyer m3 (19) u (22), Tak xak t > 0. Ilocnennee

TpeboBanue 0653aTeNbHO, IOTOMY 4TO, ecim t =1 = 0, Toraa, cormnacHo (15),
(22) BemonneHo, oaHako, (23) HeT.

2. MIOJIHBIE XPOMATHUYECKHWE I'PA®SEl 1 BTOPAA TEOPEMA.
NPOBJIEMA SPIENIA ¥ PEIIEHUE

G = (V, E) - nonHelit XxpoMaTHyecKkuil rpadp TouHO Toraa, xorxa mobas
ero BepIIMHA CMeXHa XO0TA OLl oAHOMY M3 KOHLOB Aloboro pebpa, T.e. ecau
i ={.

Ouesugno, G = (V, E) — uoanblit XxpoMaTH4ecKuii rpag Toraa, Koria 0THO-
LIeHHMe HECMEXKHOCTH BeDIUMH ABJIAETCA 3KBUBAJIEHTHOCTLIO B V' KJIaCChl 9KBU-
BaJIeHTHOCTU HA3LIBAIOTCA XPOMATUYECKUMH KiaccamMu. B ciayuae, Kornma ux
KOJIMUECTBO PaBHAEICA r, rpa( Ha3bIBAETCA MOJHEIM r-XPOMATUYECKUM rpa-
dpom. ITlonnrii r-xpomaTHueckuit rpad MMeeT noNHbIE T-BePIIMHHEIE nom‘pa,(bm
K, onHako He UMeeT MOMHEIX NOArpadoB K,ii.
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G Ha3bIBaeM MOYTH perysapHuIM rpadom, ecau |d(u)—d(v)| £ 1 ana noboit
IIaphl BEPIIMH U,V ¥ PETYJAPHHIM — €CJiM CTElEHU BCEX €ro BepHIMH paBHBIL.

CucTema UeNBIX YUCEN Z1,Z,...,Z, ONpelelieHa ONHO3HAYHO, €CIM Ij 2
222 ...2%, L1+ %2+ -+ 2, =su |2; — ;| £ 1 nna m060i mapel HHAEKCOB
1.5

IelicrBuTeNbHO, TOAOKUM 2z, = z. Toraa z; £ z+1 u ecan v — KOAUYECT-
BO TeX i, JJIA KOTOpLIX &; = 2+1, Tozy ==z, =z+luz, =--- =z, =2,
al0fv<r Tormv(z+l)+(r—v)z=s1e. s=rz+v, rane0Sv<r.
Taxum obpaszoMm T = f] — YacCTHOe, a V — OCTATOK OT Je/IeHMA § Ha T.

DI dIeMeHTapHBIE PACCYXKIACHUA MOKA3bIBAIOT, UTO AJA JIOOEIX n U 7,
r £ n, MMeEeTCA €JMHCTBEHHBLIA MOYTH peryiAApHbIA IOJHBLIA XpOoMaTUYIECKUiA
rpad c n BepuIMHaMu ¥ 7 Kjaccamu; oBosnayaeM ero yepes T,(n) u Ha3biBaeM
rpadom TypaHa.

Ouesnano, ¢(T,(n)) = 5=2n?, ecom r|n (1.e. xorma rpad Tr(n) peryius-
pet), a e(T,(n)) £ 5tn? ans moboro r (r S n, Ho He oGA3aTensHo rin), cm.
[1]

Typan [9] mokasai, 4To eAUMHCTBEHHEINH rpad ¢ MAKCUMAJAbLHBIM KOJUYEC-
tBOM pebep cpeau n-BepuiuHHBEIX rpadoB 6e3 K,y asaserca rpad T (n).
Mlpouyee, 3amoiro a0 Hero Manteds [7] ycTaHOBUA TO 'Ke caMoe, OJHAKO
TOJILKO B YAaCTHOM ciiyyae r = 2.
U3 (1) u (9) caeayer

(24) te > 3t.

Pasenctso B (24) mocTuraercs ToJNbKO TOTAA, Koraa t{u,v] oaHo ¥ To ke midA
nwo6oro pebpa [u,v].
JlemMa 1. BoinonHeHo HepaBeHCTBO

(25) et 2 {d*(v)|v € V} - ne. :

PaBeHCcTBO MMeeT MecTo TOJIBKO Torja, kKorjga G - MOJIHBIA r-XpOMaTHYeCKuit
rpad), KOTODPHIA K TOMY /Ke M peryJiapeH, eciu r 2 3.

Hepagencrso (25) cieayer u3 (15) u (24). PaBeHcTBO HocTUraeTca TOMb-
Ko Torna, korzal = 0, r.e. G — MOJHLIA T-XpOMATUUYECKHii rpad U, KpOMe TOro,
t[u,v] = mocToanno. Ilocnennee He ABIAAETCA orpaHMdeHreM npu 7 < 2| Tak Kak
Torxa t[u,v] = 0, oanako npu 7 2 3 o3HayaeT, yto rpad perynapen. [eidcTBu-
TeJbHO, €CiH [u,v] € E, Toraa u ¥ v NPUHAIEKAT Pa3HLIM XPOMATUYECKUM
knaccaM ¥ t[u,v] — KonMYeCTBO BepIMH B 06'beIMHEHMN OCTAILHBEIX XPOMATH-
YecKux kijaccoB. MTak, o6beanHenve mobbix r — 2-XpoMaTHUECKUX KIaCCOB B
G MMeeT NOCTOAHHOE KOJIMUECTBO DIIEMEHTOB, & 3TO 03HAYAET, YTO BCE XPOMa-
TUYeCKHe KJacChl UMEIOT 0AMHAKOBOE YMCIIO BEPIUMH M, CJIENOBATENbHO, Ipad
peryiapeH.

Jlemma 2. ViMeer MecTo HEPaBEHCTBO

(26) ' fE.o .y

M OHO MepexoauT B PaBEHCTBO TOJIbKO Toraa, Korjaa G - peryispHbIA MoaHbIA
r-XpoMaTU4ecKuid rpad u r 2 2,
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IeiicTBuTenbHO, eciv e = 0, (26) BrITO/HEHO 10 TPUBMAJILHLIM cO06pake-
HUAM M K TOMY »Ke oHo cTporo. Eciam e > 0, oHo caenyer u3 (25) n oueBMAHOrO
HePaBEHCTBA -

@n Y {PO)vev)z= (Z{d (W)v € V})

PapenctBo B (26) AocTMraercs TOILKO OJHOBPEMEHHO C PABEHCTBAMM B
(25) u (27). PaBenctBo B (27) MMeeT MecTd TONBKO IUIA PEryAAPHHIX Fpados.
[Ipumenaa nemmy 1, 3akaroyaeMm, 4To paBeHCTBbD B (26) mocTuraercsa Toib-
Ko Toraa, korma G — perynﬂpnmﬁ IOJIHBIA r-XpoMaTudecKuii rpad u r 2 2
(moToMy uto e > 0).

3aMeuanue Joka3zaTenbCTBa 3TUX ABYX JEMM U3JIAraloTcA 34eCh
MICKJIIOYMTENBHO IJIA NONHOTE!. Jle/o B TOM, YTO OHM IO CYIHIECTBY M3BECTHEI
eme u3 crarbu Hopaxaysa u Creioapra [8]. B 8TOM CTaThe UMCHo f He yyacT-
BY€T, OJXHAKO BMECTO HEPABEHCTB (25) " (‘)6) TaM BCcTpevaloTca Goliee TOUHBIE
HEPpaBE€HCTBa&

(28) 323 {d(v)lveV}—ne,
(29) Jdt2e (4{ - n)

HepaBsenciBo (28) caeayer u3 (15), a (29) — u3 (28) u (27). Cayuvais
paBeHcTBa B (28) mim (29) Toxe paccMmorper B [8]. Hepasencrsa (25) u
(26) caenyor u3 (28) m (29) ¢ moMowBIO TPUBMAJILHOTO HepaBeHCTBa (24).
Onu mpuBoaaTca B [3], Kak 270 HM cTpaHHO, 6e3 BcAKo# ccbliku Ha [8).
Hpurom B [3] ecTh HomoONHWTENLHOE M COBEpIIEHHO JAMIIHEE MPeNoJIoMKeHue
¥ {d2(v)l € V} 2 me.

Ecau e > tn?, torza e > e(Ty(n)) u, cornacuo Teopeme Typana, B G

umeercs Kry1, Tak yto t 2 r — 1. 3HaunTennHo Gojiee CUIIbHOE yTBEPXKIOEHUE
IIPX TOM K€ CaMOM IPENTIOJIONKEHNU COAEPKUTCA B Clle IYIOUIEM NP eNI0MKEHHHN !
Teopema 2. Ecm

(30) i W
= 2r
TOr' & 2
(31) izl "%,
T

npuyeM paBeHCTBO B (31) mocTuraerca TOraa M TOJNbKO TOrAa, Korga 2 S rln
u G =T.(n).

Hepasenctso (31) cnenyer us (26) u (30). Pasencrso B (31) umeercs
TOJILKO OMHOBPEMEHHO ¢ paBeHcTBaMu B (26) u (30), T.e. (cM. nemmy 2) kor-
na G = Tp(n), rae 2 < pjn, m e = Sin?. Ho B a10oM cayuae e = %’;71-112 u,
CHIE€IOBATENBHO, P =

Jloka3aTenbcTBo 3aBEpILEHO.

OTa 9JleMEHTapHAA TeopeMa Npy r = 2 NPUHMMAET CHeAyIOWMA BUA: ec-

2 ~ -~
m e 2 % tormat 2 0 ut=0 TouHo Toraa, korga n — yerno u G = To(n).
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2 -
Pasymeerca, ecom e > 1‘4-, toraa t > 0. DOprem [4] moxazai 3HAYMTEIHLHO

2
GoJbllle: CyIIECTBYeT Takas KoHCTaHTa ¢ > 0, uTo ecam e > 2 L-, Torma > cn
Heckombko mner CnycTs Dphell yCTaHOBMJI, YTO 3X€Ch MOXKHO B3fTh € = 30-18

B [4] u [5] Dpaem Bricka3an CMIOTE3y: €Ciau € > 2, Torza t = 2 + O(1). B
[6] rumoTesa npuruMaeT Gosee ',EO‘-IHyIO q)opmy

IIpo5.neJua Spdewa. Ecim e > &~ Torma t 2
B [2] ery nmpoGaemy mml penmnu HOJIHOCTBIO COBMECTHO C MOUM JHMIINIO-
maHToM B. HukmpopoBriM. YTobrl ¥ 3IXeck pacckasarh o0 2TOM pelIeHMH,
HaM [OHAJOOUTCA caeAyomad
JIemma 3. Ilycrtb n — HaTypaibHOE, a § — IeJloe YUCJIO. PYyHKIMA

n

f(z1,...,2n) = 3z} uenouMCIEHHHIX APTYMEHTOB Zy,...,Z,; YAOBIETBODA-
i=1

IOIMX YCJOBMIO ) &; = §, IPHHUMAET CBOE MMHMMAJbHOE 3HaYEeHHE TOJBLKO
i=1

Torza, Koraa |z; — z;| £ 1 ana M106BIX ABYX MHIEKCOB i U J.

BrickazaHHOe yTBepKACHUE, OUEBMAHO, CJEAyeT NMPUUMCIATh K MaTeMa-
TUUYECKOMY (OJBKIOPY, HO MBI JOKa)KeM €ro 316Ch IJIA MOJHOTHI M3JI0KEHNA,
tTeM 6oJjlee YTO Ha 9TO NOHAAOBGATCA BCETO HECKOJLKO CTDOK.

®yukuma f, oueBUAHO, JOCTHUraeT CBOH MMHUMYM, U NYCTb 3TO IPOU3-
xoauT Hampumep B (Zi,...,Z,). Hazmo mokasare, uto |&; — Z;| £ 1, 4,5 =
1,2,...,n. Jonyctum npotuBHoe. Toraa Ge3 orpaﬂuqenuﬂ O0OIMHOCTHA MOXKHO
canaTb uTo &1 > Zp+1. Umeem (21 —1)2+(22+1)2 = 22 +22-2(21- 22— 1) <
xl + % u, ciemopaTesbHO,

f(a—:l _lij2+13z—3,"'?50)< f(flaa—:za"':in))

YTO ABAAETCA NPOTUBOPEUHEM.
JlemMMa noka3zana. BriBedem u3 Hee 0HO BayKHOe IJIA HAC CJeACTBUE:
JlemMmma 4. Ecm

2
2 5 | B
TOr A3

(33) Z {d*(v)lv €V} 2 ne

npuueM, eciy HepaBeHCTBO (32) cTporoe, To u HepaBeHcrBo (33) sABiAercs
TaKOBBIM. )
Eciu nepasencrso (32) crporoe, Toraa e > % m u3 (27) caeayer, uro

. 2
BBINIOJIHEHO CTporoe HepaBeHCTBO (33). Ecim e = [’-‘4—] U n — HeTHO, TOT KA He-

2
paBeHCTBO (33) caeayer cHoBa u3 (27), noToMy uro celivac e = %-. Hakorer,

~
-

NYCTh € = [1‘4—] ¥ n - HeyeTHo, n = 2k + 1.

Urak, nano nokasaTh, uro eciu n =2k +1ue=k(k+1), 10

(34) Y {d*(w)|lve V} 2 (2k + 1)k(k + 1).

3ameTuM, 4To
> {d(v)lv € V} = 2e = 2k(k + 1)
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n monoxkuMm s = 2k(k + 1). CormacHo nemme 3, dyHkuma f npuHUMaeT CBoe
MHMHAMaJIbHOE 3HAUeHNe TOJBKO TOTAa, Korda |z; —z;| £ 1. Oxxako, Kak 6ulI0
yCTaHOBJIEHO B HayaJle IYHKTA, B TOM Cjy4dae YUcCla I; ONpeliesIeHbl O0QHO3-
HAYHO C TOYHOCTBHI OO NOpAAKa. Temepb [;’;} = k ¥ OCTATOK V OT JAEJIEHHUA §
Ha N ToXe paBHAETCA k, ¥ = k, TaK 4To k M3 uMceJ Z; paBHEI £+ 1, a ocTanb-
Hble k + 1 paBHEl k. DTO MOKa3LIBAET, UTO BOIIPOCHBIA MUHUMYM paBEH YMCIY
k(k + 1)2 4+ (k+ Dk = (2k + Dk(k + 1).

Takum o6pa3zom HepaBeHcTBO (34), a 3a0QHO C HUM M JieMMa 4 ZOKa3aHBI.

N3 cneacteua 1 u nemMMbl 4 nonydaeMm

2 ~
Cnencreue 3. Ecnne>[%—],rorﬂat>

ol

W3 cnenctBusa 2 ¥ JeMMbl 4 MoJiydaeM
2 =
CnencrBue 4. Ecame 2 [24—] ut>0,r0tZ g.

Cnencreusa 3 1 4 MoaTBep:K/AaI0T ¢ U3GEITKOM FMIIOTE3Y Dpaema. B To ke
BpeMsA ciencTeusa 1 um 2 npencrasidawT 6oliee cunbHble yreepxaeua. Jleno
B ToM, uTo U3 (33) He cienyer (32), BKmouYMTENBHO U TOrAa, Korza t > 0. B
8TOM y6eaMMCsA Ha CJIeAyIOlleM IpuMepe.

Mpumep 3. Ilycrs rpadp G" mMeer BepUIMHH vy,Vs,...,Un, U pebpa
[v1, va], [v1,v;] ¥ [Us,v;], THEE=3,...,n. '

OueBunno, t >0, e =2n—-3 e < %}, ecti n > 6 C Apyroi CTOpPOHSHI,

7 T
Sd(v) =2n?2 —6u Y d(v;)? > ne.
i=1 i=1

Hano 3ameTuth TOXE, 4TO B ciiefacTBuM 4 TpeboBanne t > () Heab3A 0TCTA-
BMTL, TaK KakK AJs J1000ro MOJHOrO 2-XpoMaTH4ecKoro rpada MMeoT MecTo

paBeHCTBa Z{(!Q(U)Iv €V} =neut=0,anurpapa Ta(n) - e = [%z] »
i =0

Honoxkun

t(n) = min{ﬂe > [7—24;],1 > 0} ;

Urak, t(n) ~ munumansdoe {(G), rane G — n-BepIMHHBIA rpad, 4IA KOTO-
poro e(() 2 [%] ut(G)>0.

Huan moboro BELIECTBEHHOI'O YHCJa T ITOJIOXKHM

Jz[= min{klk € N,k = z}.

EcrecTBeHHBIM JOIONHEHUEM K CIEACTBUIO 4 ABAAETCSA ClEAyIOLlee
CaencrBue 5 Iaa moboro HarypanpHoro uncia n (n 2 4)

. n
(35) i(n) = ] i [
6
[Tonneiit 2-xpomarudeckmit rpad ¢ YMCTaMK BEPIIUH B KJlaccax p ¥ ¢ U306-
pakeH CUMBOJIMYHO Ha $ur. 1. KoTopas JaeT NOACHEHHE K MOHUMAHUIO Cleay-
- ~
jommx ¢uryp. Pur. 2-T — npuMeprl rpados ¢ e = [”T], t>0ui=]2[ Ipu

MIOMOILM 9THX TIPUMEDOB U CIeACTBUA 4 cupaBedAUBOCTb paBeHcTBa (35) mpu
n 2 6 ycraHaBiIMBAEICs TPUBUAJILHO.
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CnencTBue 5 NOKa3LIBaEeT, YTO CIEACTBHe 4 He momiexuT ycuiaermuio. To
’Ke camoe BEpHO M 110 OTHOLIEHHIO K cleAcTBHIo 3. Urobm yGeamTcsa B 2TOM,

: 2
AOCTATOYHO MocMOoTpeTh Ha ¢ur. 8, rie msobpaxkeH rpad ¢ e = ["'—4-} +1mn
=12
i=]%l

$ur. 1

s+1

s+

Pur. 7 Pur. 8 P, 9

2 ~
'pad, maobpaxennniit Ka ¢ur. 9, umeer e = - —1unt = ]%[, YTO IO-

2
Ka3bIBaeT, YTO TpﬁﬁOB&.HHQ € g [nT] OTHIOAb HE HBOGKO,EPIMO JJisA BBIIIOJTHEHUA

-
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HepaBeHCTBa t 2 %

3. O CTATBE 2IBAPICA 1 TEOPEMA 3

KBaapaTHBIf TpexdieH
@(z) = 2ez? — (Gt + 232) z + nt

MMeeT KOPHM £; = & M zy = 3;
Dloxaskem, uto ecam t 2 %, Torzma go(f) >0.
IleiicrBuTensHO, cornacHo (24), { 2 z,, Tak YTo ecau T, = I;, TOTAR,
oueBumHo, ¢(f) 2 0, a eci z; 2 T, TOraa HEPABEHCTBO 1 2 2 = z; CHOBa
nokasuiBaer, uro (i) 2 0.

TakuM 06pa3oM IoKa3aHa Cleaylomad
MJemma 5. ECJth';,Tor,ua.

(36) 6t + ne — n?t < 2t + gne.

~ Ilna nwoboro rpada G, cormacho teopeme 1 (cMm. u (19)), umeer MecTo
HEPaBEHCTBO

: ni
(37) Z{dz(v)]v €V} S6t+ne— -

- C nomoubio (36) u (37) TpMBHAIBHO MOJyYaeM:
Teopema 3. ECJII/ItZ 3, TOrAa

(38), iz = Yide)vevi-5.

EctectBenHo, HepaBeHCcTBO (38) mpeacTaBisier MHTEpeC TOJBKO TOTAA,

- XOTJla ero mpasaf yacth > 2, re. 3 {d*(v)jv €V} 2 en. C mpyroii cTo-

POHBI, €CJIM IOCJ/IejHee HEPABEHCTBO BhIMOJHEHO U ¢ > 0, cOraIacHO CeACTBUIO
2 6ynem umeth t 2 2 u, 3HaumT, (38) uMeeT Mecro.
Wrak, MBI ‘I0Ka3a# ciledylollee IpeaIoKeHune:

Cnencreue 6. Ecm ) {d?(v)jveV} 2 neut >0, roraa

cripaBeNBO HepaBeHCTBO (38).
2 2
Ecmm e 2 %{} ut >0, cornacHo ciencTBuIo 4 UMeeM t 2 § U, 3HAYMT,

(38) BrImONHEHO. .
WUtak, DoKa3aHo cienyIollee NpeioKeHHE:

. 2
Cmencrsne T. Ecnueg[%—]Ht>0,TornaumeeTMeCTo

HepaBeHCTBO (38).

PopMynupoBKa cieacTBUA 7 onyGIMKOBaHa B Ka4eCTBE AONOJIHUTENLHOTO
3aMeuaHuA K cTaThe DaBapica [3], oanako ero mokasarTenbcTBo He 6bLIO Omy6-
TMKOBaHO 1o cux nop. Kak Mm y6emunuch, 8To GblI0 OBl JMIIHKAM, IOTOMY
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4TO C HOMOMBIO Hallel TeopeMul 1 0HO BHIBOIMTCA B KayecTBE MMPOCTOTO Clel-
CTBHA M3 CHPaBeMBOCTH TMIOTe3n DpJema, AoKa3aHHad, Kak M Teopema 1,
eme B [2]:

B camoit craTne [3] ee aBTOp aHOHCKPOBAJ 5 TeopeM M HECKOJBKO JAPYTrHX
pe3yIbTaTOB, HAMepeBadCh OMy0IUKOBATH MX HOKa3aTelbCTBA BIOCJIEACTBHH,
4yTO He npousomgo B npoumenime 10 ner. Bce pesyabTaTh 0THOCATCA K CHIO-
Te3e Dpaeina, 0AHAKO, HECMOTPA Ha 5TO, HET HUKAKOrO CABMIa K €€ pPELIeHHIO.

ABTOD CUMTaeT OCHOBHOW CBOIO MATYIO TeopeMy. PopmynpoBKy ee 34eCh
NpUBOAMUTH He OyneM, IOTOMY YTO ee NpeAlooKeHua abcy paHbl: MexX Ay HUMM
3HAYMTCA U OTpHLAHUE TUIOTE3H DPpaema. '

Ero nepsas Teopema raacut: Ecau [u,v] € E u d(u) + d(v) 2 En, Toraa
{22 ‘
6Ta. TCOpCM& TPUBHAJILHO ClleflyeT W3 OYEBWJHOTO HepaBeHCTBa (CM.

(17))
t[u, v] 2 d(u) + d(v) — n.

TeopeMy 2 31ech NPUBOAUTH He ByzieM, MOTOMY YTO OHa TPUMBHAJLHO M3-
BJIEKAETCA M3 TOJBLKO UYTO YNOMAHYTON Teopemsr 1.
W3 oueBMAHOTO paBEeHCTBA

|A(u).U A(v) U A(w)] = |A(w)| + [A®)] + [A(w)
—JA(u) N A(v)| - |A(v) N A(w)] ~ [A() N Aw)] + [Aw) N Av) N1 A(w)]

cieayeT TPMBHUAJIBHO, YTO

(39) 3t 2 t[u,v, w] 2 d(u) + d(‘v) + d(w) — n>, ecim [u,v,w] € T.

Iocnennee HepaBeHCTBO C M3BLITKOM CONEPHKUT TeopeMbl 3 M 4 DaBapi-
ca. K npumepy paccmoTpum Teopemy 4, 0 KOTOPOM Mbl YIIOMAHYNU U B [2] 1
KOTOpas TPHUBHAJLHO clleAyeT U3 HepaBeHCTBa (39): ecim perynsapHeiil rpad
cTemeHn d CONEPXUT XOTA Obl OJMH TPEYroJbHUK, Toraa i = d — 3. B uact-
HocTH, ecm d 2 5, 0t 2 &

Takum o6pa3om saKOHUeH pa36op Teopem u3 [3]. B [3] BmBomArca u
IBE CHeNCTBHA U3 TeopeMbl 5. MEI y»Ke OTMeTHIH, UTO 3Ta TeOpeMa JMILEHa
CMBICJIa, TaK YTO UX Ha CaMOM Jiejle Hellb3A BHIBECTHM M3 Hee.

CHGI[CTBHC 1 rmacur: Ecimn

4e
10 A .
e n T 9462
TOT oa
(41) f;max(%,%-n).

Ha camom nesne nocTaTO4HO NOKa3aTh, uTo t 2 Z, TaK KaK HEPaBEHCTBO

t 2 % — n BrmouHeHo Ana mo6oro rpada (cM. nemMMmy 2). A anA noKasaTenb-

CTBa HEPaBeHCTBa t 2 % COBEPIIEHHO M3JIMIIHE NIPEANOaraTh, YTO BbIIOJHEHO

HepaBencTBo (40), a Tosbko uTo £ —n > 0 (cm. cneacteue 3 w3 m.2).
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Caencrue 2 raacutr: Ecim

4e n
42 I< ——n<< ——,
(42) n " 9+ 6v2
TOr Ja y
-~ n +V
(43) t> "8— 16 (I - n) .

W3 nepoit uactu (42) cienyer HepapeHcTBo { > % (cM. ciemcieue 3 u3
n.2), a

9_+3+\/7_4 n
8 16 9+6v2 .

TaK YTO HepaBeHCTBO (43) AelicTBUTENLHO MMeeT MecTo, HO ABHO He MHTEpec-
HO. ~

>

>3
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ON THE MAXIMAL NUMBER OF TRIANGLES WITH A COMMON EDGE

Nikolay Khadzhiivanov

(Summary)

§1. Let G = (V,E) be a graph, [V| = n, |E| = e, T is the set of triangles in
G, |T| =t, and g is the number of tetrahedrons in G. For a vertex v we denote by
A(v) the set of its neighbours, so that d(v) = |A(v)] is the degree of v. Put
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t[u,v] = [A(W) N A(v)], Tfu,0] = [V\(A@) UAW)], i= Y u,v).

[u,v]EE

Put also

glu, v, w] | = |A(u) N A(v) N A(w)],
qlu,v,w] = |[V\(A(x) U A(v) U A(w))],

§ = Y glu,v,w, {=max{tfy,v]|[v,v] € E}.
Theorem 1. For any graph G we have the inequality

(15) (3t + 8)t 2 nt

and the equality holds iff ¢ = § = 0 and t¢[u, v] is the same for all [u,v] € E, such

that t{u, v] + t{u,v] > 0. '
There is another proof of (14) in [2]. For n = 0(mod 6) and n = 0(mod 9) two

extremal graphs (i.e. graphs for which the equality in (14) holds) are constructed.
The following two consequences are deduced from (14): ’
Corollary 1. If

(20) 7 Z d*(v) > ne,
' veV

then

(21) : | i g—

Corollary 2. Ift>0and

(22) Y d(v) 2 ne,
veV

then _

23 . fzl

23 22

§2. Lemma 1. The inequality -
(25) - e 2 Z d*(v) — ne
veV !

is true and the equality holds iff G is a complete f;partite graph and G is regular
in addition for r 2 3. '
Lemma 2. The inequality

—-n

(26) i

v

de
is true and the equality holds iff G is a regular complete r-partite graph with r 2 2.
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By applying Lemmas 1 and 2 the following Theorem is provod:
Theorem 2. If

‘r—1
e :
(30) = 2r . _’} ’
then 9
i T —
(31) t2 —=n
and the equality holds in (31) iff 2 £ r|n and G is a regular complete r-partite
graph. ;
Lemma 4. If
n?]
2 o L
(32) e [ 4] ‘
then
(33) > d(v) 2 ne

veV

and if (32) is strict, then (33) is strict also.
From Corollary 1 and Lemma 4 we obtain:

Corollary 3. Ife> [ ] thent>
This corollary is obtained in [2]. It gives a positive solution on the following

Erdos’ conjecture. Ife>-4: then £ 2 2.

Closely connected with Corollary 3 is the followmg assertion, proved in [2],
-which is immediately deduced from.Corollary 2 and Lemma 4.

Corollary 4. Ife2 [{] andt >0, then{ 2 %.
Put

. . n? "
{(n) = min {t(G)ie_(G) > [T]’ t(G) > 0} .

The conclusion in Corollary 4 cannot be improved under the assumiption of
this corollary, since from it and by using appropriate examples we obtain:
Corollary 5. Foreachn (n 24 g’weha\'re

(35) f(n) = ] 5 [

Note. ]TL min{k|k €N,k 2 z}.
§3. From Theorem 1 we obtain:
Theorem 3. If{2 %, then

% 1 : n
>_§:2 P
(38) t2 % ”evd (v) 3

From Corollary 2 and Theorem 3 we obtain:
Corollary 6. If E d*(v) 2 neand t > 0, then(38)holda

Froin Corollary 4 and Corollar 6 we obtain:
Corollary 7. He2 [-';—’Tandwo, then (38) holds.



Corollary 7 confirms an Edwards’ conjecture, given in added note of [3]. Since
Corollary 7 is easily deduced from Theorem 3, we can say that the Edwards’ conjec-
ture is a consequence of Erdos’ one. The contrary is also true since if the assump-

tions of Corollary 7 are satisfied, then by Lemma 4 we have Y d?(v) 2 ne and
veV

(38) implies £ > %- Finally, the Erdos’ and Edwards’ conjectures are équivalent.

In §3 a detailed analysis of Edwards’ paper [3] is done also. It is shown that the
essential assertions in this paper are trivial consequences of the inclusion-exclusion
principle for two or three sets and have nothing to do with the solution of Erdos’
conjecture. -

ITocrynuna 1.11.1989 r.
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THE CREATION OF WEAK SINGULARITIES IN REFLECTING
SEMILINEAR WAVES *

MARK WILLIAMS **

Mapx Yuasme 3APOKIAEHHUE CIIABBIX OCOBEHHOCTEM AJ1A OTPAYKEH-

HbIX TTONYJIUHENHNUX BOJIH. PaccMaTpuBaeTca CMemIaHHAR 3aiaya JUIA MOJY M-
HeiiHoro BonHoBoro ypasBuenua. JlaeTrca onucanme mpouecca 3apoXKAEHHA HOBHIX ocobeH-
HocTe. CTapaTcA HOBHE NpobneMul.

Mark Williams. THE CREATION OF WEAK SINGULARITIES IN REFLECTING SEMI-
LINEAR WAVES. The process of creation of new singularities in mixed problems for semilinear
wave equation is described. Some open problems are stated.

INTRODUCTION

For solutions to nonlinear hyperbolic equations, it is well-known thai inter-
actions between singularity-bearing rays can lead to the appearance of “anomalous”
singularities, that is, singalarities not present in the solutions to corresponding lin-
ear problems. The mechanisms by which this happens, crossing and self-spreading,
have been understood for some time in the case when interactions occur in free
space (e.g., [1], [2], [7]). Here we shall describe how anomalous singularities are
produced in mixed problems for semilinear wave equations [Ju = f(u) on the half-
space RQ'H, due to crossing and self—spreadlng at boundary points. Several new
phenomena connected to the boundary appear. For example we will show that the
analogue of Beals’ “Js-theorem” fails for reflection in second-order mixed problems.
Complete proofs of the results presented here may be found in [4], [8], [9].

*Invited lecture given on Sep. 25th 1987 at Varna conference on nonlinear PDE.
**Partially supported by NSF Grant DMS-8701654.
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Forn>2letR+"—{(zy) z >0}, 2 = (—00,+00) x R}, Qp = (-T,T) x
R and bQ2r = Qr Nz = 0}. We state the following problems for a function
u(t z,y) € HY (Qr), 8> 2+2, which satisfies

(1) Ou = (D? — A)u = B(®)f(u), ulpa, € C,

where f(t) € Cg° and suppf C {|t| < 6} for some § < T. Here z = (¢,z,y) and
¢=(r¢n) denotes the dual variables.

Problem I (Crossing). Let T; = {(zl(t) ¢1)}, T2 = {(226t),¢{2)} be
incoming null bicharacteristics such that {z;(t)}, {z2(¢)} strike bQy transversally
when ¢ = 0 and cross there (i.e., z;(0) = z2(0) € bQr, {; # £(2). Suppose that
WF ultc—s5 = Ti1lic—s UT2|t<—s (where I'y|:<—5 Mmeans {1(z.-(t),r(.-) ir>0,t<
—6)}. Determine the location and strength of the anomalous singularities that may
arise.

Problem II (Self-spreading). Let Ty = {(z(¢),£()} be incoming null
bicharacteristics such that {z(¢)} strikes b7 transversally when ¢t = 0. Suppose
that WF u|ic-5 = Cy|t<c—6 UT_|t<—s. Determine the location and strength of the
anomalous singularities that may arise.

From [4; Theorem 1.3] it is known that for u as in (1), microlocal H" regularity
for r <~ 2s — 3 propagates along generalized bicharacteristics. Thus, anomalous
singularities in Problems I and II can have strength at most ~ 2s — 3. But can
singularities of this strength actually appear? When there is no bounéa.ry, Beals’
3s-theorem ([2], [3]) implies that a solution v € H_. to Ou = Bf(u) can have
anomalous singularities of strength at most ~ 3s — n. When the domain is a half-
space, Theorem 1 below shows that for certain chojces of 8(t), f(u), and incoming
singularities, new singularities of strength ~ 25 — 5 do actually appear at the
moment of reflection. So for u as in (1), although microlocal H"-regularity for :
r <~ 3s — n propagates along null bicharacteristics in free space, for r>~2-3

it does not in general reflect (see Flg 2).

MAIN RESULTS

Choose §(t) as above, but now also such that B>0and ﬂ((}) > 0, and consxder
the mixed problem on (}p '

(2) Ou = Bu?, ulpa, € C°, tli=et = wo, Utli=—1 =wy,

where wp, w; are the Cauchy data of a function w(t,z,y) € Hi . (R"*!) defined as
follows.

Fixing p > 1 and setting (§,n) = (1 + |£,1)|2)§, for any w € S”~1 we denote
by f.(z,y) a function in H*(R™) such that

a) WFf, ={(0,r,):r>0}

b) 0< ful€,9) < Cle,m)=CHE+alN,
(3) where a(p) > 0 and a(p) = O(p — 1);

c¢) For (&,n) such that

16,m) = I, mlwl < 16,017, Jul€,m) 2 C{g, n)~G+E+ele),
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(Such functions are constructed in [1].) Now define fi, fo,9 € H*(R") by taking
w in (3) equal to w; = (713, %,O), wy = (;}3, %,0), and @ = (1, 0) respectively.
We shall consider three possibilities for w: _\

a) wrtEm) = MONf(E )+ fE )
(4) b) wh(t,&m) = eMOnf(En) + e M (¢, —n);

) wh(t,E1n) = eMnlGE,n) + e~ Hnlg(—g, —).

Hence Ow = 0 and WF w in the three cases is, respectively,

a) U {@, —tw;,r,re;): teR, r> 0}
1=1,2

b) {(t) —tW1, r, 1‘0)1,) : t€ R, r> 0}
U{(tr —ily, — ¥, *?Ug) :teR, r> 0};
c) {(t, ~to,r,rd): t€R, r € R\0}.

(5)

We proceed to define the sets that will carry anomalous singularities. For
w € S™~! let K¢ be the rays through +(1,w) in R**!\0((r,£, n)-space) and set

a) Bwmws = K+ K3? ( closure in R**1\0);
6 b Baw = KSR,
c) B“ = { tangent plane to 72 = |{,9|? at +(1,&)}.

With =(7,€,1) = (7, 7) set
a) C1 = wB“»“2[{r® 2|’} = nBu+*2;
(7) b) C» = aB“»~ ({7 >[n*};
) C3 = wB*{r*2>nl’}={r*2>nl}.

\° it
. \, #
\\
" =
\\
n -
rd
Vd
7
s/
v A= N
Ve / —N
G}C1 b)cz c)C’;
Fig. 1
Next, for 1 = 1,2,3 we define
. " o
(8) M =fA= o0 7:60.: 130, [, 2,9) € Qr;
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and A lies on the outgoing (%’; > 0) null bicharacteristic that passes over o, (r, 1)), for

some (7,71) € C:}-

Assuming T is small enough so that a solution u € H* (Qr) of (2) exists, we
can now state ,

Theorem 1. Fixg> 0.

i) (Crossing) Define wq, w) in (2) as the Cauchy data at t = —7" of w as in (4a)
(resp. (4b)). Then if p in (3) is chosen close enough to 1, u g H2*—3+2+¢())
for all A € A; (resp. Ap) (Fig.2a and 2b); '

1) (Self-sprcadiny)"l‘he statement is the same, eexept w as in 4¢ is used and As
1s substituted for A;, A, (Fig. 2¢).

The fact that u is C* in the regions indicated in Fig. 2a and 2b is a conse-
quence of Theorem 1.7 of [8]. This theorem shows that for solutions u € H*(Q7)

whose incoming singularities are confined to proper cones in 1"« SO)T UT b, it
is possible to propagate microlocal H o't/ regularity, for s’ < 2s + % and arbitrarily
large t', outside an appropriate outgoing family of proper cones. This enables one
to identify regions into which singularities arising from interactions at the boundary
cannot spread. 4

For semilinear wave equations in free space, anomalous singular support is
never produced by the interaction of fewer than three bicharacteristics, unless self-
spreading occurs [1]. Part i) of Theorem 1 shows that when a boundary is involved,
two crossing rays suffice.

Fig. 2

In the shaded areas u ¢ H25—n/2+2+¢

SKETCH OF THE PROOF OF THEOREM 1.

The proof is based on an idea like that used by Beals [1, 2] in his studies of
spreading in free space. We write u = v + RfAu? where v € H{, () satisfies

9) Ov =0, vjpa € C®°, v)i=—1 = wo, Vt|i=—T = Wy, -
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and R is the forward solution operator such that for any U with support in ¢ > —§,
RU satisfies (in Q) -

(10) . ORU =U, RU|lpa=0, RU=0int < —4.

Rewriting v as u = v + Rﬂv -+ Rﬂ(u - vz) we see that it will suffice to find
singularities of strength 2s — 2 + 2+ ¢ in RpBv? on A;, as long as any singularities
of Rﬁ(u — vz) on A; can be shown to be strictly weaker. So we proceed to stydy

Rfv? in the case where w as in (4a) is used to define wp, w;.

We can write

(11) Rpv* = (Eﬁvz)l;1 — C((EBv®)lba),

where E is the solution operator in R"®*! such that for any U with support in
t>-—6

(12) OFEU =U and EU =01int < -6, |
and C is such that, for any V on b2 with support in t > —6, C'V satisfies (in 2)
(13) OCV =0, (CV)la=V, CV =0int< -6

The term (Eﬁvz)la contributes nothing anomalous to RBv?. To see this note

first that v is simply the restriction to z > 0 of the function in H (R"*!), which
-we will also call v, given by

(14) v = v, — vy, where v2(t,€,1) = w(t,€,n) and vj (¢,£, 1) = w™(t, =€, 7).

Observe that the singularities of v, and v, lie on incoming ( < 0) and out-

going (5F > 0) rays, respectively. Recalling (4a), we may write v, = 'vg1 + Va2,
vp = Up1 + vy, Where

(14’y vh = eitlf.nlﬁ(f’ 1) and vfy = eitlf,nlﬁ(_ﬁ’ 7).

The assertion about EBv? follows immediately from the fact that since (with
7I'2(t,\.’b', Y, 7, §s 77) = (Ta 6: n))

(15) 1o WFv? N char( = 7y WFv N charJ,

v? provides nothing new for E to propagate. To verify (15) just note that
mWF 2, = K}*; myWF vav.s C B“»“2 (which satisfies B¥*%2 N char( =
K{* U K7?), and similarly for the remaining terms constituting v2. So we have
reduced to considering C((EBv?)lba). It is worth noting that the above argument
indicates the main reason why smgulantles of strength ~ 2s — 5 never appear in
solutions ta E]u = f(u) due to interactions in free space.

Writing v? = (v2 — vavs) + (v2 — vav3), we examine first

(16) -~ C((EBv)lba) — C((EBvavs)lba). -
After expanding (16) in terms of the v,;, vp;, one must consider differences like
(17) C((EBvaivaz)lba) — C((EBvarvs2)|bn)
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We claim that each term in (17) has singularities of strength ~ 25 — 2 on A;.
This illustrates an interesting feature of spreading at the boundary. Anoma.lous
singularities of strength ~ 28 — 2 arise at the boundary from three sources: in-
teractions of incoming rays with incoming rays, incoming rays with outgoing (or
reflected) rays, and outgoing rays with outgoing rays. We will see that the sin-
gularities produced by the incoming-outgoing interactions (represented in (17) by
the secortd term) are strictly weaker than the other two types, so although some
cancellations occur, singularities of stfength ~ 2s — 3 remain.

- Return now to the first term in (17). It is not hard to show that fva; Va2 and

therefore also Efvs1v4.2 have smgulantles of strength ~ 28— & throughout B“’““”
over (t z,y) = 0. Consequently, (EBv,1v42)|bn has singularities of strength ~ 25 —

2 on C1 = 7B“**2 over 0 € bQ2. Since C; C {7? > |n}?}, all of these singularities
are propagated by the operator C. Hence C((Eﬂvalv.,g)lm) has srngula.ntxes of
strength' ~ 25 — 3 throughout A;. Since ToWFfvgvp2 = B“"""2 where w3 =
( 5%, ;}%, 0), and wB“’"“’g also equals C}, the same argument shows that the second

term in (17) also has singularities of strength ~ 28— 2 throughout A;. We will now
show that these latter singularities are weaker by a ?actor strictly less than one.
Let us focus attention on v4(0,(7, 7)), the outgoing null bicharacteristic pass-
ing over a fixed point (0, (7, 7)) € T+bQ\0 with (7,7) € C1 (s0 7+(0, (%, ) C Ai).
Setting 71 = (7,7), without loss of generality we may take 7 = (1,0). Our start-
ing point is the observation that for the purpose of studying the singularities on
v4(0,7%) of either term in (17), the ra.ther ‘awkward operator E can be replaced by

a simple multiplier.
Lemma .1. Let H (7, f,q) be the characteristic function of a small conic

neighborhood of 4 = (1, J5,0) = §(L,w1) + §(1,ws) € B+2, and set U(r,£, 1) =

FTE), Bva1va2. Then WF[C((Eﬁvalvaz)lbn) - C(Ua)lN1+(0, ) = ¢
Proof. Set V = Efva1vaz ~ C((EBva1vas2)|ba) and V=U- C(Ulwn). Thus
V =V satisfies (in Q)

(18 = OV-V)=(1- H(b))ﬂv..m,,, (V=V)ba =0,

V-VeC®int< -4
Now ﬂv:;.,g is rapidly decreasing outside B“'%3_ Thus the fact that H = 1
near A implies WF(1— H(D))Bva1va20N[7-(0, #)U74 (O,ii')] = ¢ (where v~ denotes
the incoming bicharacteristic) and (0,%) ¢ WFyu(1 — H(D))Bva1vaz. Classical

results on reflection of WFy, (e.g. [5]) then imply WF(V —V)N7,(0,%) = ¢, since
this clearly holds for .. Because Efva1v42 and U have no singularities on v, the
~lemma follows.

Of course an analogous result holds for C((Eﬁv,lvag)lm), where now one,

takes H(r,£,7) to be the characteristic function of a small conic neighborhood of

= (1,0,0) € B“*“5 (recall, w? = (571 ;‘7%,0)) and sets U —}ﬁ%ﬁ;ﬂvalmz. In
Flg 3 we have drawn the crosssection of 72 = |I;',11|2 at 7 = 1, indicating A, B,
B¥1%a B“1@; and the singular directions of the v, vy;.
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Fig. 3

In view of Lemma 1 it suffices to compare C(U lba) with C(T|bq). Now Ulbn =

[ ?J‘:[e_,,r!‘ﬁ”alvﬂ d¢ while U |bg ¥ ;!:]E—,,p'ﬁ”alvbz d¢. Since suppH lies closer to

72 = |¢, n|? than supp H does, it follows that for (7, € ,n) € suppH(7,&',n) € suppH,
and (r,7n) sufficiently large, we have

(19) (2= ¢, n?)" < e(r? = |6, nf?)" foran € < 1.

A comparison of the above two integrals using (19) yields easily that
singularities of C(U|bn) on 74+(0,7) are strictly weaker than those of C(U lbn)
([9], Lemma 3.18), so the difference still has singularities of strength ~ 25 — 3
on v4+. Since the same argument applies to the terms like G((EBvsivs2)lbn) —
C((EBva1vs2)lbn) in RpBv?, we can summarize the above as follows:

(20) The anomalous singularities on a fixed ray in A; produced by interactions of incom-

ing rays with incoming rays (va,va) , or by interactions of outgoing rays with out-

© going rays (vs, vs) , are strictly stronger than those produced by incoming-outgoing

interactions (va, v»). Moreover, as the incoming rays approach being gliding rays,

the difference in strength decreases, and so cancellations become increasingly sig-
nificant.

Essentla.lly the same arguments applied to the remaining terms constltutmg
Rpv? show that they contribute singularities of the same strength and sign as those
of (17) So this ends our discussion of RAv? in the case when v is defined using
w as in (4a). When w as in (4b) (resp.(4c)) is used, the analysis follows the same
outline with the plane B¥1~%2 (resp. BY) in the Tole of B¥1#2. Note that C,
(resp. C3) is properly contained in #B“1»—“2 (resp. #B%). We restrict to 72 > |n|?,
of course, because the only singularities in (Efv?)|on that C can propagate are
those at points g() (1,m)) with 72> |n|2. In each of the three cases one obtains
RBv? ¢ H**—3+2%¢ on the appropriate A;.

THE REMAINDER RB(u? — v?).

Recalling that u = v + RBu? , we have RB(u? — v?} = Rﬂ(2vRﬂu7) +
RB(RPBu?)2. Since each application of R smooths by one derivative, it is reasonable
to expect that any singularities of RB(u? — v?) are strictly weaker than those of
Rpv? on A;. The proof that this is so (see[9]) uses the following results:
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(21) a) a microlocal H® algebra lemma for interior points (namely, Rauch’s
Lemma [6]);

b) a microlocal H** algebra lemma for boundary points analogous to
Rauch’s Lemma ([8, Lemma 1.10]);
1

c) the fact that for % as in (1), microlocal H"-regularity for r < 256 — % + 3
propagates along generalized bicharacteristics ([4, Theorem 1.3]);

d) a theorem describing propagation of microlocal H**' regularity along
generalized bicharacteristics for second-order, linear, mixed problems
with Dirichlet boundary conditions ([8, Theorem 1.3]).

The first step is to obtain a careful estimate of the regularity of v? on Aj;.
With this (21 a-d) yield fairly easily that the term RB(RPu®)? is strictly weaker
than RBv? on A;, but such an argument does not quite yield sufficient regularity
of RB(vRBu?). (The difference arises because RBu? € Ht', while v € Hi,..) To.
find the extra smoothness needed, we write RBu? = RBAu® + RB(I — A)u?, where
A is a tangential pseudo-differential operator equal to 1 and supported near the
strong (s) singularities of u%. Since the incoming singularity-bearing rays meet bQ
transversally, A can be.chosen with-support-in. the hyperbolic region of T * b{Q.
This permits one to extend RAAu? (originally defined only in £ > 0) across the
boundary as the solution U of a wave equation in free space. Using this property

of U, estimates like &T,E,n)"'“cﬁﬁﬁu? € L? can be improved to estimates like

(r = .07, &,n)** U € L2 These in turn are used to obtain a more refined
estimate of vRBu? on A;. A final application of (21d) then shows that RG(vRfu?)

is strictly weaker than RBv? on A;.

OPEN PROBLEMS

It is interesting to consider the analogues of Problems I and II when the in-
coming rays are gliding rays. The remark (20) suggests, if gliding rays are thought
of as limits of transversal rays, that anomalous singularities arising from the cross-
ing of two gliding rays may be significantly weaker than ~ 2s — 2. In Problem
IT note that if I'y = {(2(¢),£()} are gliding rays, the tangent plane to char(] at
+( projects under (7,€,1) — (7,71) to a set that misses the hyperbolic region. In
view of the role played by B“ in the preceding analysis, this suggests that new
singularities due to the self-spreading of a gliding ray may be much weaker than in
the transversal case, perhaps only of strength ~ 3s — n.
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Das Wesen der Mathematik liegt eben in shrer
Freshest.

Georg Cantor

Hean Yobanoe. BBEIEHUE B AJITEBPAMYECKYIO TEOPUIO CKOJIb3f-
IIMX BEKTOPOB, II. 9T1a pabora asaserca BTOpo# uacTblo CTaTbM [1] mon TeM e
HAMMEHOBaHMEM, ONMyGNMKOBAHHON HECKOJIBKO JIET TOMY Ha3ad B ToM e Eocezodwnuxe, B
KoTopoll npeanoxena anre6panuecKan TEOPHUA PeaNbHBIX CKOJB3AUIMX BEKTOPOB HA OCHO-
Bé AKCMOMATHUECKM BBENEHHHIX PEaNbHBIX CTaHJAPTHHIX BeKTOpoB. Memay Tem aBTOpOM
ony6nMKOBaHa KOMN/EKCHAA BepCHA [2] peaNHbIX CTAHAAPTHHX BEKTOPHHX NPOCTPAHCTB
M Pa3sBUTa COOTBETCTBYIOMAA KOMIJEKCHan Bepcua [3] peanbholi TpexmepHo#t nuuelinol
aHanMTHYecKol reoMeTpun [4]. HacToaman paboTa ABNAETCA KOMNJIEKCHON! BepcHeli KoHC-
TPYKUMH, H3noxerHbx B pabore [1]. Kak n3secTHo, TPaAMIMOHHON MeXaHMUECKON MHTED-
npeTdumeit peanbHBIX CKOJIB3ANMX BEKTOPOB ABJIAIOTCA KOHIEHTPUPOBaHHLIE CHJILL AHAIM-
TUUECKOM CTATHKM M 3HAJIMTUUECKOH AMHAMUKU. BO3MOMKHOCTE NOCTPOEHMA KOMIMEKCHBIX
CKONB3AMWMX BEKTOPOB MMeeT riayboKue nocneacTsusa. Ee rnaBHbBIM pe3y/nbTaToM HBIA-
€TCA BO3MOXXHOCTb NOCTPOEHMA KOMIIJIEKCHONM aHANMTMYECKOH MEXAHMKM CO BCEMM IPOMC-
TEKaIOLMMHM OT DTOr0 KOHCEKBEHUHMAMM JUIA JIOTHYECKOro GYHAAMEHTa ©TON HayKu M AJa
pemenna wecToi npobnemu 'mnpbepTa 06 ee akcMoMaTHUYECKOH KOHCOMMAAMH.

- Iyan Chobanov. INTRODUCTION TO AN ALGEBRAIC THEORY OF ARROWS, II. This
paper represents the second part of the article {1] under the same title published some years ago
in this Annuael, in which an algebraic theory of arrows or sliding vectors has been proposed, based
on the axiomatically defined real standard vectors. Meanwhile the author has proposed a complex
version [2] of the real standard vector spaces and has developed the corresponding complex version
(3] of the real 3-dimensional linear analytic geometry [4]. This paper represents a complex version

“of the constructions exposed in [1]. As it is wellknown, the traditional mechanical interpretation
of the real sliding vectors are the concentrated forces in analytical statics and analytical dynamics.
The possibility of defining complex arrows has far reaching consequences. Its main result consists
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in the potenciality to develop a complex analytical mechanics with all the after-effects this fact
implies for the logical foundations of this science and for the solution of Hilbert's sixth problem
concerning its axiomatical consolidation.

The present paper represents the second part of the article (1] under the same
title published in this Annual about ten years ago. In the latter an algebraic
theory of the real arrows (or sliding vectors, vecteurs ghssants gleitende Vectoren,
cxoadasuue eexmoput) has been proposed, based. on the axiomatically defined real
standard vectors. _

Meanwhile some important .development has taken place. It has been discov-
ered [2] that, by the aid of mot-G-mot the same system of 15 axioms, by means of
which the real standard vector space may be described axiomatically, it is possible
to define a complex standard vector space (infinitely many such spaces, as a matter
of fact), by introducing a fourth operation vector multiplication in an Hermitean
space (which turns out to be probably 3-dimensional), this operation being charac-
terized by two only specific axioms. At that, as it turned out to be, these complex
standard vector spaces possess verbatim the same algebraic propertles as the real
one, mutatlis mutandis, as it is clear by itself.

This mathematlcal phenomenon has far-reaching consequences.

First of all, analytic geometries in complex standard vector spaces may be
developed, as it has been manifested in the article [3]. This mathematical process
provides the geometry, necessary as well as sufﬁcxent for all the following construc-
tions.

Second, an algebraic theory of arrows in complex standard vector spaces may
be developed, as this paper and its continuations display. This fact is important in
the following two respects.

On the one hand, the real arrows interpret mathematically the (sometimes)
so-called concentrated forces, i.e. those active and passive forces that are specific for
analytical statics and analytical dynamics. Now the possibility to define complex
forces is a conditio sine qua non for the potentiality to develop a complez analytical
mechanics (i.e. an analytical inechanics in complex standard vector spaces), and
this condition is satisfied by the complex arrows proposed in this paper.

On the other hand, by means of the so-called statical-kinematical analogy, the
arrows have a direct relationship with the rigid body kinematics. Strictly speaking,
a dictionary may be composed (that may be called the statical-kinematical dictio-
nary), by the aid of which a bijection may be established between the mathematical
facts in the algebra of arrows, on the one hand, and of the kinematics of rigid bodies,
on the other hand. In the presence of this dictionary it is out and out superfluous
to seek and prove theorems of rigid body kinematics which concern the velocity
distribution in a moving rigid body: it is perfectly sufficient to point out the terms
of the arrow-algebra that correspond to the respective kinematical terms involved
in the kinematical theorems in question, and to prove corresponding theorems for
these arrow-algebraic terms. Afterwards, the conclusions of these theorems have to
be translated into the kinematical language by means of the statical-kinematical
dictionary. In such a way, to any proposition of the algebra of arrows there corre-
sponds automatically a true proposition of the analysis of rigid body kinematics.
At that, theorems are discovered and proved out and out easier in the former than
in the latter. In such a manner, the possibility to define complex arrows has a direct
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bearing to the potentiality to develop a rigid body kinematics in complex standard
vector spaces (established, by the way, earlier, in the more general mathematical
situation proposed by Hermitean spaces, at that, see [5]), and a complex analytical
dynamics in the long run, as it will be. 1mmed1ately seen.

Namely, complex forces and rigid body kinematics in complex standard vector
spaces being once developed, all that remains to be done for the bunldmg-up of a
complex rigid body dynamics is to form those fundamental for this science quan-
tities, the momentum and the moment of momentum (alias kinetical moment) of a
rigid body in complex standard vector spaces, and to formulate the corresponding.
Eulerian dynamical azioms (or laws, or principles), viz. those of momentum and of
moment of momentum of rigid bodies, without which in analytical dynamics terra,
agua, aere et igns interdicls sumus.

The importance of all these constructions is predominantly an 1deologlca.l one,
since all they result in a mathematical Weltanschauung which affects profoundly
the logical foundations of the great science of analytical mechanics.

A wide-spread prejudice even today and even among professlona.l mathemati-
cians is that rational mechanics, in genera.l and analytical mechanics, in particular,
are not mathematics — al least not in the sense this term is accepted nowadays.
This bias is supported bllaterally

On the one hand, there is the multitudinous army of mechanicians and of the
ingratiated themselves to mechanics physicists and engineers with such a level of
mathematical schooling that, at the best, cannot but call forth condescending smiles
on the part of the modern professional mathematicians. For these mechanicians the
standpoint that rational mechanics is mathematics, and: not applied mathematics:
at that, is a rather disadvantageous — we should say, unprofitable, unproductive,
even contraproductive — one. This attitude once adopted, all mechanical writings
should unconditionally satisfy the severe modern mathematical criteria of logical
rigour — a demand that goes many times beyond the possibilities of their authors.
Herefrom the myth of those would-be specific peculiarities of rational mechanics
that presumably does not permit its insertion in the confined frames of pure math-
ematics, in the downright sense of the word. If we try to persuade these people in
the contrary, then we purely and simply canimus surdis, putting it mildly.

On the other hand, there is the not lesser army of those mathematicians who
have wound up with rational mechanics on the very student’s desks and, in their
horror vacui, regard it as a little short of a monstrum horrendum, informe, ingens.
The fear of the unknown is instinctive; it is proverbial, too: ignoti nulla supido ..
damnant quod non intelleguni. As to mechanical ignorance of some pure mathe-
maticians, it is comparable only with the mathematical ignorance of some applied
mechanicians: Banach, for instance, went as far as to write in his Mechanics [6)
neither more nor less than ”if a rigid body is at rest, we shall say that it is in
equilibrium“ (p. 234) 717

Things being as they are, is it strange that rational mechanics is nowadays a
persona non grata in the United Kingdom of Mathematical Sciences?

There are lucky exceptions, though. One of them was Hilbert. Another one is
Truesdell.

As a pure mathematician, Hilbert needs no recommendations. Corvo quoque
rarior albo, however, he was one of those few pure mathematicians who are complete
strangers to the very idea of mathematical chauvinism. Hilbert was a mathematical
cosmopolitan. The final chord of his famous Mathematische Probleme [7] is a vivid

/ 65



incarnation of his mathematical credo: _

”...und es drangt sich uns die Frage an, ab der Mathematik einst bevorsteht,
was anderen Wissenschaften langst widerfahren ist, namlich daB sie in einzelne
Teilwissenschaften zerfallt, deren Vertreter sich kaum noch einmal verstehen und
deren Zusammenhang daher immer loser wird. Ich glaube und wiinsche dies nicht.
Die mathematische Wissenschaft ist meiner Ansicht nach ein unteilbares Ganzes,
ein Organismus, dessen Lebensfahigkeit durch den Zusammenhang seiner Teile be-
dingt wird. Denn bei aller Verschiedenheiten des mathematischen Wissenstoffes
im einzelnen, gewahren wir doch sehr deutlich die Gleichheit der logischen Hilf-
smitteln, die Verwandschaft der Ideenbildungen in der ganzen Mathematik, und
die zahlreichen Analogien in ihren verschiedenen Wissensgebieten. Auch bemerken
wir: je weiter eine mathematische Theorie ausgebildet wird, desto harmonischer
und einheitlicher gestaltet sich ihr Aufbau, und ungeahnte Beziehungen zwischen
bisher getrennten Wissenszweigen werden entdeckt. So kommt es, dafl mit der
Ausdehnung der Mathematik ihr einheitlicher Charakter nicht verlorengeht, son-
dern desto deutlicher offenbar wird.

Aber — so fragen wir — wird es bei der Ausdehnung des mathematischen Wis-
sens fiir den einzelnen Forscher nicht schliellich unmoglich, alle Teile dieses Wissens
zu umfassen? Ich mééhte als Antwort darauf hinweisen, wie sehr es im Wesen der
mathematischen Wissenschaft liegt, da8 jeder wirkliche Fortschritt stets Hand in
Hand geht mit der Auffindung scharferen Hilfsmittel und einfacheren Methoden,
die zugleich das Verstandnis fritheren Theorien erleichtern und umstandliche altere
Entwicklungen beseitigen, and daB es daher dem einzelnen Forscher, indem er sich
diese scharferen Hilfsmitter und einfacheren Methoden zu eigen macht, leichter
gelingt, sich in den verschiedenen Wissenszweigen der Mathematik zu orientieren,
als dies fiir irgend eine andere Wissenschaft der Fall ist.

Der einheitliche Charakter der Mathematik liegt im inneren Wesen dieser Wis-
senschaft begriindet ...”

~ Like Archimedes, Hilbert stood firm on his physical legs. Although he has never

taught mechanics and has written not a single specific line on rational mechanics,
he nevertheless did not deny its purely mathematical core and believed steadily
in its potentialities of being developable as an axiomatically deducible structure.
In point of fact, Hilbert included in his list of 23 mathematical problems [7] the
nineteenth century bequeaths to the twentieth to solve, as problem number six,
that of the axiomatical foundation of rational mechanics.

As a pure mechanician Truesdell needs no recommendations either. Thirty
years ago he performed such a bright mathematical apology of rational mechanics
that I shall never get tired of quoting it over and over again:

. rational mechanics is a part of mathematics. It is a mathematical science,
and in its relations to experience, intuition, abstraction, and everyday life it does
not differ in essence from other branches of mathematics ... ‘

Is rational mechanics a part of pure mathematics? To most mathematicians
today pure mathematics means topology, abstract algebra, or analysis in abstract
spaces. These most certainly, rational mechanics makes no attempt to imitate.
While in spirit it is nearest to geometry, its problems, its aims, and its methods
bear little evident sxmllarlty to those of other parts of mathematics. A theorem in
topology is not evaluated in terms of its bearing on the theory of numbers. It is
equally ridiculous, though unfortunately not infrequent, to deprecate theorems of
rational mechamcs when they do not also contribute to the more-popular branches
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of pure mathematics.

Is rational mechanics a part of applied mathematics? Most certainly not” [8,
p. 335, 337].

Tormented words, it is true. Nuda veritas, though. Alas, one swallow does not
make a summer. Sunt verba et voces, praetereque nihil: the physical the engineer-
ing, the antimathematical mental constitution — mathematics in no wise means
formulas only — of the prevalent majority of contemporary - ‘mechanicians that has
driven Ilias malorum in rational mechanics, persevers in being the predominating
ideology, the retrograde philosophy in this great science, in which the cesrtamen pro
aris et focis has not yet begun.

However modest, the present paper contributes my mite in the noble strug-
gle aga.inst present-day obscurantism in mechanics conceived by Lagrange’s ip-
sissima verba “la maniere dont j’ai taché de remplir cet objet. ne laissera rien a
desirer”. At the same time, it incarnates Hilbert’s dictim in [7), nicht blof die der
Wirklichkeit nahe kommenden, sondern uberhaupt alle logisch moglichen Theorien
berucksichtigen zu haben.

§ 1. PRAELIMINARIA

The complex standard vector space being principium ab Jove for the whole
following exposition, the most important moments of their introduction will be
now reminded. |

The following notations are permanently used throughout this paper.

The symbols Ax, Df, Pr, Dm, Sch, Sgn, and sgn: replace the words aziom,
definition, proposition, proof, scholium, notation and denote respectively.

The letters R and C are reserved for the fields of all real and all complez
numbers respectively.

The letters F' amd P are reserved for any ordered field and for any Pythagorean
field respectively. An ordered field P is called Pythagorean iff 0 £ o € P implies the
existance of a # € P with 0< 3 and 3% = a. Then S is called the square root of
and is denoted by /a.

The sgmbol C(F) is reserved for the complez extension of F. In other words,

C(F) = F? supplied with the two operations

(1) C(znz2)+ (v, v2)  sgn: (z1+y1, 22+ 1)

(addition in C(F)) and

(2) (z1, 22)(1, ¥2)  sgn: (T191 — T2y, T1Y2 + 2201)
(multiplication in C(F)). Besides, by definition

(3) (z1,23) sgn: (z1—z2) ((z1, 1) € F?),

(4) (o1, 23)] sgn: yJiR+ad ((z1, z2) € P?).

The symbols in the left-hand sides of (3) and (4) are called the conjugate number
of (21, 23) and the module of (z1, z3) respectively. Obviously, (2)-(4) imply

(5) (21, 22)? = (21, 22)(z1, 22) (21, z2) € P?),
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the “real” element (z,0) of C(F') being identified with the element z of F' by means
of the traditional convention

(6) z sgn: (z,0).

Quotations.are made in the following manner (the example is a fictitious one):
Sgn 1, Ax 2, Df 3, Pr 4, Sch 5, and relation (6) of §7, for instance, are cited by
Sgn-1, Ax 2, Df 3, Pr 4, Sch 5, and (6) respectively in §7 itself, but by 7Sgn 1, TAx
2, 7Df 3, 7Pr 4, 7Sch 5, and 7 (6) respectively anywhere else.

The whole of the followmg exposition is based on the following definition. -

Df 1. S denoting F or C(F), a standard vector space over S (an S-standard
vector space) is called any set Vs for which mappings

(1) m : Vi—Vs
(addition in Vg),
(8) mg ! S x VS —— VS

(multiplication of the elements of S and V),

9) mg: VE—S

(scalar multiplication of the elements of V), and
(10) my : VE-—Vs

(vector multiplication in Vé) are defined, such that, if
(11) a+b sgn: my((a, b))

(sum of @ and b),

(12) - aa sgn: my((a, a))
(product of o and a),

(13) ab sgn: mg((a, b))

(scalar product of a and b),

(14) axb sgn: my((e,b))
(vector product of @ and b), and

(15) a-b sgn: a+(-b)

(difference of a and b), then the following conditions are satisfied:
Ax1S.a,b,ce Vsimply (a+b)+c=a+ (b+¢c).
Ax 2S. There exists 0 € Vg with @ € Vg impliessa+o=a.’
Ax 3S. a € Vs implies: there exists —a € V5 with a + (—a) = o.
Ax 4S. a € Vs implies la = a.
Ax 58. A\, p € S, a € Vs imply (Ap)a = A(pa).
Ax 6S. /\ p €S, a€Vsimply (A+ p)a = Aa+ pua.
Ax 7S. A GS a, b € Vs imply Aa + b) = Aa + Ab.
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Ax 8S. a, b € V5 imply ab = ba.

Ax 9S. A € S, a, b € Vs imply (Aa)b = A(ab).

Ax 10S. a, b, c € V5 imply (a+b)c = ac + be.

Ax 11S.a € Vg implies aa =0.

Ax 12S. a € V5, aa=0 imply a=o.

Ax 13S.a,b,c€ Vs imply'axb-c=bxc-a.

Ax 14S. a, b, ¢ € Vs imply (@ x b) x ¢ = (ac)b — (bc)a.

Ax 15S. There exist a, b € Vs -with a x b # o.

Df 2. The elements of Vg are ca}led standard- vectors over S (S-standard
vectors

Sc%l 1. The conditions Ax 1S-158S are called azioms of a standard vector space
over S (of a S-standard vector space).

Sch 2. The symbols 0 in Ax 11S, Ax 12S and I in Ax 4S denote the zero-
element and the unit-element of S respectively.

Df 3. o is called the zero-vector.

Df 4. —a is called the opposite vector of a.

Df 5. a x b- c is called the right-hand compound product of a, b, c.

Df 6. a- b x cis called the left-hand compound product of @, b, c.

Df 7. (a x b) x c is called the right-hand double vector product of a, b, c.

Df8. a x (b x c) is called the left-hand double vector product of a, b

Sgn 1. a sgn: aa if a € Vs.

Df 9. a? is called the scalar square of a.

Sgn 2. a, |a|, moda sgn: Va?ifa€Vp orac Ve(p)-

Df 10. a, |a|, moda is called the module of a.

Sgn 3. V sgn: Vg.

Df 11. V is called the real standard vector space.

Df 12. The elements of V are called real standard vectors.

Df 13. V¢ is called the complez standard vector space.

Df 14. The elements of V¢ are called complez standard vectors.

Sgn 4. a° sgn: %a ifa € Vp or a € Vg(p) and a # o.

Df 15. a® is called the unit-vector (the ort) of a.

Sch 2. The basic algebraic properties of Vs and especially of V¢ (r) and Vi (p)
are discussed at length in the article [2], see also [9, 10]. Therefrom we shall not
dwell on this question in details here and, if necessary, we shall refer the reader
to these sources. Yet, a compendium of the basic situations of Vs-algebra will be
found to be useful. Therefore, such one is exposed immediately below.

Pr 1. The system of axioms Ax 15-15S is consistent.

Sch 3. Pr 1 is proved by constructing a model of Vg. It is proposed by
S3, supplied with the following operations corresponding to the mappings (7)-(10)
respectlvely

(16) (z1, T2, T3) + (11, Y2, y3) sgn: (214w, T2 + ¥2, 23+ ¥a3),
(17) Mz, z2, z3) sgn: (Azy, Azg, Azg),
(18) (z1, 22, z3)(¥1, Y2, y3) sgn: le’yu'

r=1
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(19) (31) Z2, 1:3) X (yli Y2, y3) sgn :
(5253 — T3Y,, T3y, — i':1.37& 1Y, — 52.!71)
Now it is verified that (16)—(19) satisfy Ax 1S-158S.

Pr 2. The system of axioms Ax 15-155 is categorical. ‘

Sch 4. Pr 2 is an immediate corollary from Pr 5 below and from the fact,
well-known from the algebra of Hermitean spaces, that the theory of any ﬁmtt:dl-
mensional Hermitean space is categorical, i.e. any two of its models are zsomorphzc

Pr 3. Vs is a group with respect to the operation (7).

Pr 4. Vs is'a linear space over S with respect to the mappings (7), (8).

Pr 5. Vs is a 3-dimensional Hermitean space over ‘S with respect to the
mappings (7)-(9).

Pr 4 implies

Pr 6. Vs is a commutative group.

Sch 5. Pr 3-6 represent, as the saying is, a global characteristic of the S-
standard vector spaces. A local picture is proposed by the following propositiens.

Pr 7. A€ S; a, b€ Vs imply a(Ab) = )«(ab)

Pr8.d b ceVsimplyaxb-c=a-bxec.

Pr 9. a, b € Vs imply (a x b)? = a?b? — (ab).

Pr 10. a, b € Vs imply: a and b are linearly independent iff a x b # o.

Pr 11. a, b € Vs imply

a’? ab ac

(20) (axb-c)laxb-c)=| ba b® be

ca cb c?

Pr 12. a, b, ¢ € Vs imply: a, b and c are linearly independent iffax b-c # 0.

Pr 13. a, b Vsimplyaxb=-bxa. _

Pr 14. A€ S; a, b € Vs imply (Aa) x b= A(a x b).

Pr 15. a,b,c€ Vs imply (a+b)xc=axc+bxc

Pr 16. a, b c € Vs imply a x (b x ¢) = (ca)b — (ba)c.

Pr 17. A€ S; a, b € Vs imply a x (Ab) = X(a x b).

Pr 18. a,b,ceVsimplyax (b+c)=axb+axec

Sch 6. A most important role in Vs-algebra play the so-called Gibbs’ vectors.
They are defined in the following manner.

Let
(21) a, € Vs (r=1.3, &)
(22) ai X az - az # 0. |
Then
(23) a;l  sgn: ‘;"1 . ;“:: (v=1,23)
provided
(24) ayi3 sgn: a, | (v=1,12)
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are called Gibbs’ or reciprocal vectors of the vectors (21).
The basic properties of (23) are described by the following proposxtlons
Pr 19. (21), (22) imply

= S 1 (p=v) _
(25) a; a,,_{ 0 (usv) (n,v=1,23).

Pr 20. (21), (22) imply
(26) a3 Ry g £
Pr 21. (21), (22) imply
(27) (a1 x az-a)(a;* xa3'-az!) = 1.
Pr 22. (21), (22) imply
(28) (a;') " =a, (»=1,2,3).
Pr 23. (21), (22) imply

(29) g =, (v=1,2,3).
iff
(30) a,a, = { (1) Ez : :; (mv=1,23)
Pr 24. (21), (22),
(31) T € Vs
imply
3
(32) ¥ Z(ra;l)a,,.
v=1
Pr 25. (21), (22), (31) imply
3
(33) = Z(ra,,)a;l
v=1
Pr 26. (21), (22),
(34) a, €S (r=1,23)
imply: there exists exactly one (31) with
(35) TG, = Qy (r=1, 2,3),
namely
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3
(36) L Za,fa.:l.
: v=1

Pr 27. (21), (22) imply: theére exists exactly one (31) with

(37) ra, =0 w=1,2,3),
namely '
(38) r=o.
Pr 28. (31),
(39) a, €Vs (r=1,2),
(40) b, € Vs (V= 152);
(41) rxa,=0b, (#=1,2)
imply |
(42) a,b, +a,b, =0 (4, v =1, 2).
Pr 22. (31), (39),
(43) a; X a; # o,
(44) rxa, =0 (r=£72)
imply (38).
Pr 30. (21), (22),
(45) b, € Vs (v=1,%;3),
(46) a.b, +a,b, =0 G, = 1 2):

imply: there exists exactly one (31) with

(47) rxa,=0b, (r=l, 2,3);
namely
13
(48) F= 3 20;1 x by.
v=1

Pr 31. (39), (40), (42), (43) imply: there exists exactly one (31) with (41),
namely (48) provided

(49) /% sgn : a; X a2,
(50) b sgn: (by-az x al)al"l + (bs - @z x ay)as .
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Sch 7. There are four basic systems of vector-algebraic equations which are
routmely applied to Vs-algebra and in its applications to various problems, mainly
in geometry and mechanics. Three of them are the systems (35), (41), and (47).
With regard to the fourth one, it is regarded in the following propositions Pr 33-
Pr 35.

Pr 32, (31),

(51) a,be Vs,

(52) ato,

(53) ab=0

imply:

(54) rxa=2>b

iff there exists

(55) a€S

with

(56) r:aa+aa>;b.
Pr 33. (51), (53), (55),

(57) c € Vs,

(58) ac#0

imply: there exists exactly one (31) with (54) and

(59) re =i,

namely

(60) 1_:__a0+cxb‘

ac

Pr 34. (51), (55), (57),
(61) ac =0,
(62) aa+cxb#o

imply: there exists no (31) with (54), (59).
35. (51)-(53), (55), (57), (61),

(63) c # o,
(64) aa+cxb=o0
imply: any (31) satisfying (54) is satisfving (59) too, but there exists one at least

(31) satisfying (59) which does not satisfy (54).
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§ 2. BASIC DEFINITIONS

This paragraph contalns the basic deﬁmtlons relating mainly to a single arrow

and its fundamental attributes.

(1)
(2)

(3)

()

Sgn 1. Ws sgn: {(s, m)eV¢: s#0,sm=0Vs=m=o}.
Df 1. The elements of Wy are called arrows in Vg or S-arrows.
Df 2. s is called the basis of 5 if

s € Ws,
T = (s, m).

Df 3. m is called the moment of 3 if (1), (2).
Sgn 2. 0 sgn: (o, o).

Df 4. 0 is called the zero-arrow.

Df 5. 5 is called a non-zero arrow if (1),

T # 0.
Pr 1. (2) implies (3) iff
s # o, sm = 0.

Dm. Sgn 1, Sgn 2.

Sgn 3. Ag sgn: {(s, m) € VZ: s # 0, sm =0}.
Pr 2. (1) implies (3) iff 3" € As.

Dm. Sgn 1, Pr 1, Sgn 3.

Pr 3. If

B FE S € W,

then there exists exactly one { € Lg with

(6)

(7)

then

(8)

(9)
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Dm. Pr 2, Sgn 3, [3] 1, Pr 19.
Sgn 4. dir s” sgn: | € Lg with (6) if (5).

Df 6. dir 5 is called the directriz of 5.
Pr4. If

? e "\55

S & dir 5.

Dm. Sgn 3, Sgn 1, Pr 2, Pr 3, Sgn 4.
Sgn 5. mom,’s sgn: m + s x 7 if (1), (2),

r e Vs.



Df 7. mom, s is called the r-moment of 5.
Df 8. r is called the pole of momy 5 .

Pr 5. (1), (2), (9) imply s - mom,3 = 0.
Dm. Sgn 5, Sgn 1.

Pr 6. (1), (2) imply m = momo5 .

Dm. Sgn 5.

Pr 7. (9) implies mom; @ = o.

Dm. Sgn 5, Sgn 2.

Pr 8. (5), (9) imply

(10) mom; 3 =0
iff
(11) r Z dir 7.

Dm. Sgn 5 implies (10) iff
(12) TXS8=m.

Pr 3, Sgn 4 imply: dir 5 exists. Now Sgn 4, [3] 4 Sgn 1 imply (11) iff (12).
Pr 9. (5), (9),

(13) pE Vs,

(14) 52 dir 3

imply

(15) mom; s = (p—7) X 8.

Dm. (13), (14), Sgn 4, [3] 4Sgn 1 imply
(16) P X 8 = m.

Now (16), Sgn 5 imply (15).
Sch 1. Traditionally text-books on analytical mechanics define mom;7" (in
the case of V-arrows, naturally) by (15) rather than by

(17) | mom; s =m+s8 X7

The definition (17) obviously surpasses the definition (15) in being more economical.
Pr 10. (1), (2),

(18) r, € Vs | v=1,2)

mmply
(19) momy, § — MOMp, § = 8 X (1 — 73).
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Dm. Sgn 5.
Sch 2. The relation (19) is usually called the connection between the moments
of an arrow with respect to two poles.

Sch 3. (19) implies
(20) 8-momy, 5§ =8 -momg, s .

The inference (20) from (19) is, however, a trivial one, in the light of Pr .
Pr 11. (1). (18) imply

(21) (ry—7r2) -momy, & = (ry —r2) - momy, 5 .
Dm. Pr 10.
Pr 12. (1), (18),

(22) ™ F T2

(23) S=F ¢ §=01P)

imply

(24) (ry —72)° momy, 3 = (ry — 72)° mom,,s

Dm. Pr 11,1 Sgn 4. ,
Sch 4. The relation (24) gives an utterance of the fact that if (23) holds and

if (18) are different poles, then the projections of mom;, s (v = 1, 2) on the line
[ connecting them, i.e. defined by

(25) (r1~ro, raxry) & U,
are equnl
Pr 13. (1).
(20) r, €V . (v=1,2, 3),
(27) T‘IXT2+T2XT3+1'3XT1¢O,
(28) mom'l-u_s_" =0 ‘ (=1, 2,3)
nnply
(29) S =0.

Dm.. (2), (28), Sgn 5 imply

(30) r,X8=Mm r=1.23),
whence
(31) (r,—T3)xs=o0 (r=1,2,3).

On the other hand, (27) is equivalent to
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(32) (ri—r3)x(r2—r3)#o0
and (31), (32), 1 Pr 29 imply

(33) s=o.
Now (33), (30) imply
(34) m=o0

and (2), (33), (34), Sgn 2 imply (29).
Sch 5. The condition (27) implies that (26) are not colinear, i.e. that there
exists no line | € Lg with

(35) ™ &1 ([6=1,2.3).

In such a manner, 5 is cetainly the zero-arrow if there exist three non-colinear
poles (26) with (28). The inverse statement (i.e: that if (29), then there exist (26)
and (27), (28)) is trivial in the light of Pr 7.

Sch 6. Pr 13 admits the following inversion.

Pr 14. (1), (26), (27),

(36) n € Vs,
(37) momy, 5 =n - (p=1.3 3)
imply
(38) n=o0
and (29).
Dm. (2), (37), Sgn 5 imply
(39) r,X8$=m-mn (=1, 2,8),

whence (31). Since (27) is equivalent to (32), the relations (31), (32), 1 Pr 29 imply
again (33). Now (33), (39) imply

(40) m=mn.

On the orher hand, (2), (33), Sgn 1 imply (34), and (34), (40) imply (38). - .
Sch 7. Pr 13 and Pr 14 imply that the zero-arrow is the only arrow, the
moments of which with respect to three non-colinear poles are invariable with
respect to the latter.
The followmg two propositions give an idea of the dlstrlbutlon of the moments

of an arrow in space.
Pr 15. (1),(2),(18),

(41) 8 X (1'1 e rg) =0
imply |
(42) momy, § = MOMir, § .
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Dm. (41) implies
(43) m+38Xr, =m+38Xry,

whence (42) (Sgn 5).
Pr 16. (1), (2), (18),

(44) . 8 X (?‘1 = ‘I'z) # o .
imply
(45) mom, s # momg,’s .

Dm. (44) implies
(46) - m+8X7r Fm+38Xry,

whence (45) (Sgn 6).

Sch 8. Let (25) hold good. Then (41) implies that [ is coherent to dir 5 (Sgn
4,[3] 1 Sgn 6), i.e. I is parallel or coincides with dir 5°, while (44) implies that
is non-coherent to dir 5" (Sgn 4, [3] 1 Sgn 7). Now Pr 15 and Pr 16 display that

a necessary and sufficient condition for the equality of the moments of a non-zero
arrow with respect to two different poles is the coincidence or the parallelism of

dir 8 with the line incident with these poles.
Pr 17. (1), (2) imply (—s, —m) € Ws.
Dm. Sgn 1.
Sgn 6. -3 sgn: (—s, —m) if (1), (2).
Df 9. —75 is called the opposite arrow of 5.
Pr 18. (1) implies —(—=5) = 5.
Dm. Sgn 6.
Pr19. -0 =7.
Dm. Sgn 6, Sgn 2.
Pr 20. (1) implies (3) iff - 3" # 0.
Dm. Pr 18, Pr 19.
Pr 21. (1) implies (3) iff =5 € As.
Dm. Pr 20, Pr 2.
Pr 22. (1) implies (29) iff

(47) -5 =T5.
Dm. Pr 19 and: (2), Sgn 6 imply that (47) is equivalent to
(48) . —8=3s, —-m = m.

Now (48) imply (33), (34), whence (29) (Sgn 2).
Pr 23. (1); (2),

(49) - Xes
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imply (s, Am) € Ws.
Dm. Sgn 1.
Sgn7. A5 sgn: (As, Am) if (1), (2), (49).

Df 10. A5 is called the product of A and 7.

Pr 24. (1) implies 03 = 3.
Dm. Sgn 7, Sgn 2.
Pr 25. (49) implies A0’ = 0.
Dm. Sgn 7, Sgn 2.
Pr 26. (1) implies 15 = 5.
Dm. Sgn 7. :
Pr 27. (1) implies (-1)3 = -5 .
" Dm. Sgn 7, Sgn 6.
Pr 28. (1), (49) imply (-A)5 = —(17).
Dm. Sgn 7, Sgn 6.
Pr 29. (1), (49) imply A\(—=75") = —=(175).
Dm. Sgn 6, Sgn 7.
Pr 30. (1), (49) imply (=X)5 = A(—=7%).
Dm. Pr 28, Pr 29. '
Pr 31. (1), (49) imply (=A)(=3) =275
Dm. Sgn 6, Sgn 7.
Pr 32. (1), (49),

(50) pesS

imply (Ap)s" = Mp's).
Dm. Sgn 7.
Pr 33. (1),

51) 0#£X€S,

(52) AF =0

imply (29).
Dm. Pr 32, Pr 26, Pr 25.
Pr 34. (5), (49), (52) imply ) = 0.
Dm. Pr 33.
Pr 35. (5), (51) imply A5 # 0.
Dm. Pr 33, Pr 34.
Pr 36. (5), (51) imply A5 € As.
Dm. Pr 35, Pr 2. C

Pr 37. (51),
(33) - T, EWs

(54) ?1 - /\?2

(= 1; 2),
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imply ?2 = %?1

Dm. Pr 32, Pr 26.

Pr 38. (5), (51) imply- 3 ~ A7.

Dm. Pr 2, Pr 36, Sgn 7, (3] 1 Sgn 2.
Pr 39. (5), (51) imply: dir A5 exists.
‘Dm. Pr 35, Sgn 4.

Pr 40. (5), (51) imply dir A3" = dir &
Dm. Sgn 4, Pr 39, Pr 38, [3]1Ax3
Pr 41. (5) implies dir (~3") = dir &
Dm. Pr 27, Pr 40.

Pr 42. If .

(55)
(56) dir 7y = dir 75,

thenr there exists (51) with (54).
Dm. (56), Sgn 4, Pr 2, [3] 1 Ax 5 imply

(57) T T

Now (57), [3] 1 Sgn 2 imply that there exists (51) with (54)
Pr 43. (55) imply (56) iff (54).
Dm. Pr 40, Pr 42.
Pr 44. (49), (563), (54), (9) imply

(58) mom; 3’1 = Amom; 5 2
Dm. If

(59) Ty = (s, m,)

then

(60) 81 = Asg, m; = Amg,

(Sgn 7). Now (60), Sgn 5, 1 Pr 14 imply

(61) momy;3; = mi+8 Xr=Ama+(As) xT

= Amgy+ A(s2 X ¥) = X momy 5 2.

| Sgn 8. mom (5’1, 3'2) sgn: symg + samy if (53), (59).

Df 11. mom (5’1, 3') is called the mutual moment of 5°, (v =

Pr 45. (53) imply mom (&1, 3'2) = mom (7’32, 51)
Dm. Sgn 8.

Pr 46. (1) implies mom (3, @) = 0.

Dm. Sgn 2, Sgn 8.
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Pr 47. (1) implies mem (3°, 5°) = 0.

Dm. Sgn 8, Sgn 1.

Pr 48. (1), (49) imply mom (5", A3) =0."
Dm. Sgn 8,Sgn 7, Ax9S,1 Pr 7,5¢gn 1.
Pr 49. (1) implies mom (5", —5") = 0.
Dm. Pr 48, Pr 27. '

Pr 50. (55), (59), (18),

(62) r 2 dir 7, (v=1,2)
imply
(63) 8; -momy, § 2 = 8 -MOMy, 5.

Dm. Pr9,1Pr9,1Ax 8S, 1 Pr 13 imply

(64) 81 .momrl?z = 81 - (1‘2‘-— 'rl) X 8 = 81 X (7‘2 s 1'1) + 89

=87 -8; X(ra—171) = 8 -'(1-1 —T3) X 8; = 8 - MOMy, 5.1.
Pr 51. (53), (59), (9) imply

(65) mom( 7y, F3) = 8 - mom; 5 + 87 - momy; 7'y
Dm. Sgn 5 implies
(66) 81 -mom; 52+ 52 -momy 51 = 8;1(mz+82 X7) +82(my +81 xT).

On the other hand, 1Pr 8, 1 Ax 8S, 1 Pr 13 imply

(67) 818 XT+82:8 XP=28) X 82 T+ 83 X 81 -T.

=7 -8 X8 +r-8X8 =7(8; X8+82x8)=ro=0.

Now (66), (67), Sgn 8 imply (65).
- Pr 52. (18), (53), (59), (62) imply

(68)  mom(Fy, F2)=(r1—72)- si X 83.

Dm. (62), Sgn 4, [3] 4 Sgn 1 imply.
(69) T, X 8, =m, ' | (v=1,92).
Now Sgn 8, (69), 1 Ax 8S, 1Pr 8, 1 Pr 13 imply (68).
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§3. PARALLELISM

Sgn 1. 51 | 52 sgn: 8, X 82 = o if 2(53), 2(59).
Df 1. 51 is called adherent to 52 if 51 | 5.
Sgn 2. 51 | 52 sgn: s; X 83 # o if 2(53), 2(59).
Df 2. 5, is called non-adherent to 55 if ?1T?2.
Pr 1. 2(53) imply: exactly one of the relations

(1) F1|F
or

(2) e
holds.

Dm. Sgn 1, Sgn 2.
Pr 2. 2(53), (1) imply 52 | 5.
Dm. Sgn 1, 1 Pr 13.

Pr 3. 2(53), (2) imply 572 | 51.
D, Prl, Pr2

Pr 4. 2(1) implies 5 | 5.

Dm. Sgn 1.

Pr 5. 2(1) implies 5 | 0

Dm. Sgn 1, 2 Sgn 2.

Pr 6. 2(1) implies 5 | — 5.

Dm. Sgn 1,2S8gn6.

Pr 7. 2(1), 2(49) imply § | A5

Dm. Sgn 1, 2 Sgn 7.

Sgn 3. 57 ||| T2sgn: 57 | S 1ﬁ' 2(55).

Df 3. 5': is called coherent to. 5y if 37 ||l e
Sgn 4. s1 N 3ysgn: 357 | $p0r 5, = o (v _.<__ 2) iff 2(53).
Df 4. 5., is called non-coherent ‘o 55 if 57 ||| 5> :

Pr 8. 2(53) imply: exactly one of the relations

(3) S
or

4 e
Holds.

Dm. Sgn 3, Sgn 4.

Pr 9. 2(55}, (3) imnly 5 ||| F1-
Dm. Sgn 3 Pr 2.

Pr 10. 2(53), (4) imply 5, |||
Dm. Prg, Pr9.

82



Pr 11. 2(5) implies 5" {|| 5.

Dm. Sgn 3, Pr 4.

Pr 12. 2(5) implies 5 ||| — 5.

Dm. Sgn 3, 2 Pr 21, Pr 4.

Pr 13. 2(5), 2(51) imply 7 ||| A 5.

Dm. Sgn 3,2 Pr 35, Pr 7.

Pr 14..2(1) implies 7 ||| 7.

Dm. Sgn 4.

Sgn 5. 57 || Fasgn: 57 ||| 2 1 # A5 iff 2(53), 2(51).
Df 5. 5’ is called parallel to 5, if 57 || 5 2

Sgn 6. 57 || T sgn: 57 ||| 32 0or ¥y = A5y iff 2(53), 2(51).

Df 6. 5, is called non-parallel to =75 if 57 || 5 2.
Pr 15. 2(53) imply: exactly one of the relations

(5) 51l 52
or

(6) T3
holds.

(7)

or

(8)

Dm. Sgn 5, Sgn 6.

Pr 16. 2(53), (5) imply 53 || 51
Dm. Sgn 5, Pr 9, 2 Pr 37. ,
Pr 17. 2(53), (6) imply 52 || 1.
Dm. Pr 15, Pr 16.

Pr 18. 2(1) implies 5 || 7.

Dm. Sgn 6, 2 Pr 26.

Pr 19. 2(1) implies 3" || — 5"
Dm. Sgn 6, 2 Pr 27.

Pr 20. 2(1) implies 5" || 7.

Dm. Sgn 6, Pr 14.

Sgn 7. 3 T| 5 2sgn: 81+ 82 =0, m1 +my # o iff 2(563), 2(59).

Df 7. 5, is called dipolarto 55 if 57 1| 7.

Sgn 8. 57 T] 59sgn: 8{ + 83 #oormy +my =0 ff 2(53), 2(59).

Df 8. 7, is called non-dipolar to 5 if 57 T| 2.
Pr 21. 2(53) imply: exactly one of the relations
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holds.

Dm. Sgn 7, Sgn 8.

Pr 22. 2(53), (7) imply 5, 1l &;.

Dm. Sgn 7.

Pr 23. 2(53), (8) imply 32 T &

Dm. Pr 21, Pr22.

Pr 24. 2(53) (7) imply(1). -

Dm. Sgn 7, Sgn 1.

Pr 25. 2(53), (7) imply 2(55).

Dm. Let 2(59) hold and let, for instance, 3’ = Then 2 Sgn 2 implies

8; =m; = o. Now 8; = o and Sgn 7 imply 82 = o, whence ms = o according to
2 Sgn 1. Then m; + m, = o contrary to Sgn 7.

Pr 26. 2(1) implies 3 T] 0.
Dm. Pr 25, Pr 21.
Pr 27. 2(1) implies 5 T 7.

Dm. Pr 26, 2 Pr 1, Sgn

Pr 28. 2(1) implies 5 Tl 5

Dm.)Sgn 6, Sgn 8. :

Pr 29. 2(1), -1# A€ Simply 7 ] A 7.

Dm. If 3 = 0, then 2 Pr 25, Pr 26. If 5 # 0, then 2(2) implies s # o (2

|
Y

Pr 1) whence 8 + As # o by virtue of A # —1. Now Sgn 8.

(9)

(10)
(11)

Pr 30. 2(53), (7) imply (3).

Dm. Sgn 3, Pr 24, Pr 25.

Pr 31. 2(53), (7) imply (5). -
Dm. Sgn 5, Pr 28-Pr 30, 2 Pr 24.
Pr 32. 2(18), 2(53), (7), 2(62) imply

momy; 8 3 = INOMg, 5 1.

Dm. 2(62), 2 Sgn 4, [3] 4 Sgn 1 imply 2(69). 2 Sgn 5 implies

momrl?g = M3+ 82 X7y,

—_—
momy, §1 = mM;+ 8 X7l

Sgn 7, (7) imply

(12)

(13)

84

81+ 82 = 0.

Now 2(69) and (10)—(12) imply (9).
Pr 33. 2(53), (1) imply \

mom( 7§y, $3) =0
Dm. 2 Pr 46 or 2 Pr'52, Sgn 1.

Pr 34. 2(53), (3) imply (13).
Dm. Sgn 3, Pr 33.



Pr 35. 2(53), (5) imply (13).
Dm. Sgn 5, Pr 33.
Pr 36. 2(53), (7) imply (13).
Dm. Sgn 7, Pr 33.

§ 4. PERPENDICULARITY

Sgn 1. 37 T 73 sgn: 8183 = 0 iff 2(53), 2(59).
Df 1. 7, is called normalto 7 if 57 T 2. .
Sgn 2. 3 T 73 sgn: 883 # 0 iff 2(53), 2(59).
Df 2. 7, is called non-normalto 3, if 37 T &2
Pr 1. 2(53) imply: exactly one of the relations

(1) 1T 5,
or

(2) 1T 7
bolds.

Dm. Sgn.1, Sgn 2.

Pr 2. 2(53), (1) imply 2 T 7.

Dm. Sgn 1.

‘ Pr 3. 2(53), (2) imply ?2 .1.: ?1.

Dm. Pr 1, Pr 2.

Pr 4. 2(53), (1) imply 3(4). | -

Dm. %3, =7 (12v<2),then3Sgn4. 75, #70 (v =1,2), then
s, #0 (v =1,2) (2 Pr1). Now s1s; = 0 implies (s; X 83)® = s3s2 (1 Pr 9)
whence 8; x 82 # o (1 Ax 12S). Then 3 Sgn 2, 3 Sgn 4.

Pr 5. 2(53), () imply 3(6).

Dm. Pr 4, Sg. 6.

Pr 6. 2(53), \1) imply 3(8).

Dm. 3 Pr 21, 3 Pr 31, Pr 5, 3 Pr 15.

Pr 7. 2(1) implies 3 T 7.

Dm. 2 Sgn 2, Sgn 1.

Pr 8. 2(5) implies 3 T 3.

Dm. 2 Pr 1,1 Ax 12S, Sgn 2.

Pr 9. 2(5) impliess ¥ T — 5.

Dm. 2 Pr1, 2 Sgn 6, 1 Ax 125, Sgn 2.

Pr 10. 2(5), 2(51) imply 7 T A%

Dm. 2 Pr1,2 Sgn 7, 1'Ax 12S, Sgn 2.

Pr 11. 2(5), 2(53), 3 | 31, 8 T 52 imply (1).

Dm. 2(2), 2(59) imply 8 # 0 (2Pr 1), s x 8 = 0 (2 Sgn 1), ss; = 0 (Sgn
1). Then there exists 1(55) with s; = as (1 Pr'13, 1 Pr 32), hence 8152 = 0. Now
Sgn 1.

Pr 12. 2(1),2(53);, 5 ||| 3’1, ¥ T 72 imply (1).
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Dm. 2 Sgn 3, Pr 11.

Pr 13. 2(1), 2(63), 5 || 3°y, & T &'z imply (1).
Dm. 2 Sgn 5, Pr 12.

Pr 14. 2(1),2(53), 3 1l 51, & T 52 imply (1).
Dm. 2 Pr 31, Pr 13.

Sgn 3. 3{' L 7875 sgn: 818, = 0 iff 2(55}, 2(59).
Df3. 5 1 is called perpendicular to 55 if 57 L 5 4.

‘Sgn 4. 51 L 3, sgn: 818, #0o0rs, =0 (1 Sv=2) 1ﬁ'2(53), 2(59).

Df 4. 5°; is called non-perpendicular to s 5 if 57 1 5.
Pr 15. 2(53) imply: exactly one of the relations

(3) 51175,
or

(4) 117,
holds.

Dm. Sgn 3, Sgn 4.

Pr 16. 2(53), (3) imply 52 L 1.

Dm. Sgn 3.

Pr 17. 2(53), (4) imply 5, L &

Dm. Pr 15, Pr 16.

Pr 18. 2(53), (3) imply (1).

Dm. Sgn 3, Sgn 1.

Pr 19. 2(53), (3) imply 3(2).

Din. 2(59) imply s, #0 (v =1,2) (Sgn 3, 2 Pr 1). Now s;8, = 0 implies

(81 X 82)% = 8252 (1 Pr 9) whence 8; x 82 # 0 (1 Ax 12S). Then 3 Sgn 2.
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Pr 20. 2(53); (3) imply 3(4).-
Dm. Pr 18, Pr 4.
Pr 21. 2(53), (3) imply 3(6).

" Dm. Pr 18, Pr 5.

Pr 22. 2(53), (3) imply 3(8).
Dm. Pr 18, Pr 6.

Pr 23. 2(1) implies 3 L 7
Dm. Sgn 4, 2 Sgn 2.

Pr 24. 2(1) implies 3 1 5.
Dm. Sgn 4, 2 Sgn 2, 2Pl 1Ax IZS

Pr 25. 2(1) implies 3 1 — _s"

Dm. Sgn 4, 2 Sgn 6, 2Sgn 2Pril, le 12S.
Pr 26. 2(1), 2(49) imply 5 J_ AT

Dm. Sgn 4, 2 Pr 24, 2 Pr 25, 2Pr1 1 Ax 128.
Pr 27. 2(1), 2(53), 3 | 1, 5 L 52 imply (1).
Dm. Pr 18, Pr 11. .

Pr 28. 2(1), 2(53), 5 ||| 31, 3 L 5, imply (3).
Dm. 3 Sgn 3, Pr 12, Sgn 1, Sgn 3.



Pr 29. 2(1), 2(53), 5 || 53, 3 L 5 imply (3).
Dm. 2 Sgn 5, Pr 28. '

Pr 30. 2(1), 2(53), ¥ 1l 1, ¥ L 7 imply (3).
Dm. 2 Pr 31, Pr 29. = _

§ 5. OTHER RELATIONS

Sgn 1. 37 A 52 sgn: 81 X 83 # 0, 81mg + sy = 0 iff 2(53), 2(59).
Df 1. 5, is called intersecting 52 if 57 A 5 2.

Sgn 2. 57 A 52 sgn: 8 x 82 =0, s;my + samy # 0 iff 2(53), 2(59).
Df 2. 5y is called non-intérsecting 5 2 if 57 A 5 2.

Pr 1. 2(53) imply: exactly one of the relations

(1) 1A 52
o1

(2) T1A T,
holds.

(3)

Dm. Sgn 1, Sgn 2.

Pr 2. 2(53), (1) imply 32 A 5.
Dm. Sgn 1.

Pr 3. 2(53), (2) imply 52 7A 5 1.
Dm. Pr 1, Pr 2.

Pr 4. 2(53), (1) imply

?u#? . | (v =1,

Dm. Sgn 1, 2 Pr 1.

Pr 5. 2(53), (1) imply 3(2).
Dm. Sgn 1, 3 Sgn 2.

Pr 6. 2(53), (1) imply 3(4).
Dm. 3 Sgn 4, Pr 5.

Pr 7. 2(53), (1) imply 3(6).
Dm. 3.Sgn 6, Pr 6.

Pr 8. 2(53), (1) imply 3(8).
Dm. Sgn 1, 3 Sgn 8.

Pr 9. 2(1) implies ¥ A 5.

- Dm. Sgn 2.

Pr 10. 2(1) impltes 3 A 7.

Dm. Pr 4.

Pr 11. 2¢1) implies 3 A — 5.

Dm. 2 Sgn 6, Sgn- 2.

Pr 12. 2(1), 2(49) imply 5 A A5,
Dm. 2 Sgn 7, Sgn 2.

Pr 13. 2(53), (1) imply 51 A =75'5.
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Dm. 2 Sgn 6, Sgn 1.

Pr 14. 2(53), (1), 2(51) imply 33 A A3 52

Dm. 2 Sgn 7 Sgn L.

Sgn 3. 57 ® Ty sgn: 8; X 83 F 0,8 My + 3;m; # 0 iff 2(53), 2(59).
Df 3. 5, is called crossed with 52 if 37 ® 5 3.

Sgn 4. 57 ® 5 2sgn: 81 X 83 = 0 or s3m3 + 32my = 0 iff 2(53), 2(59).
Df 4. 51 is called non-crossed with 5 5 if 37 ® 5 3.

Pr 15. 2(53) imply: exactly one of the relations

(4) T1® F2
or

(5) T1® 5
holds.
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Dm. Sgn 3, Sgn 4.

Pr 16. 2(53), (4) 1mply 52 ® 1.
Dm. Sgn 3.

Pr 17. 2(53), (5) imply 52 ® ;.
Dm. Pr 15, Pr 16.-

Pr 18. 2(53), (4) imply (3).

Dm. Sgn 3, 2 Pr 1.

Pr 19. 2(53), (4) imply 3(2).

Dm. Sgn 3, 3 Sgn 2. "
Pr 20. 2(53), (4) imply 3(4).

Dm. 3 Sgn 4, Pr 19.

Pr 21. 2(53), (4) imply 3(6).

Dm. 3 Sgn 6, Pr 20.

Pr 22. 2(53), (4) imply 3(8).

Dm. 3 Pr 21, 3 Sgn 7, Sgn 3.

Pr 23. 2(53), (4) imply (2).

Dm. Sgn 1, Sgn 4.

Pr 24. 2(53), (1) imply (5).

Dm. Sgn 1, Sgn 4.

Pr 25. 2(1) implies 3 ® 5.

Dm. 2 Sgn 1, Sgn 4.

Pr 26. 2(1) implies 3 ® ©

Dm. 2 Sgn 2, Sgn 4.

Pr 27. 2(1) implies 3 ® —

Dm. 2 Sgn 6, Sgn 4.

Pr 28. 2(1), 2(49) imply 3 ® A 5.

Dm. 2 Pr 24, 2 Pr 25, Pr 26, 2 Sgn 7, Sgn 4.
Pr 29. 2(53), (4) imply 51 ® —5 2.

Dm. 2 Sgn 6, Sgn 3.

Pr 30. 2(53), (4), 2(51) imply 5"; ® A75.
Dm. 2 Sgn 7, Sgn 3.

Pr 31. 2(53), (1) imply: there exists exactly one 2(9) with



(6) rZdir 5, (=1, 2);

namely

MI»——A

(7)

provided 2(59),
(8) | 83 Sgn : 81 X 83,
(9) mg sgn : (m; - 82 X 31)31'1 + (my <83 X 31)3;1.

Dm. dir 5, (v =1, 2) exist by virtue of Pr 4, 2 Sgn 4. The relations (6) are
equlvalent to

(10) P X 8 = My ‘ (r=1,2)
respectively, provided 2(59) (2 Sgn 4, [3] 4 Sgn 1). In view of Sgn 1, 1 Pr 31 the
system (10) has exactly one solution 2(9), namely (7) provided (8), (9).

Pr 32. 2(53), (4) imply: there exists no 2(9) with (6).

Dm. dir 5, (v = 1, 2) exist by virtue of Pr 18, 2 Sgn 4. The relations (6) are
equivalent to (10) respectively provided 2(59) (2 Sgn 4, [3] 4 Sgn 1). In view of Sgn

3, 1 Pr 28, there exists no 2(9) with (10), since the necessary for the consistency of
the system of vector equations (10) condition 8;m; + sam; = 0 is violated.

§ 6. ARMS & FEET

Sch 1. Let 7 € Vs and 5 = (s, m) € Ws be given, 5 # . Let 5 € Vs be
wanted satisfying

(1) pZdir 3,

@) (F-r)s =0.

The condition ( 1) is equivalent to
(3) pxs=m

(2 Sgn 4, [3] 4 Sgn 1). In other words, P is sought as a solution.of the system of
vector equations (3) and -

(4) ps=rs
provided s # o, s, = (. Accordingto 1 Pr 33, this system has exactly one solution

(rs)s+sxm
8? '

(5) p=
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It is called the foof or » on s and is denoted by foot, s*. On the other hand, (5)
implies
sx(m+sxr)

.

©) por=

The right-hand side of (6) is called the arm of 5 with respect to r and is denoted by
army 5 . These and other circumstances are formalized in the present paragraph.
sx(m+sxr), |

m 22 X7) is 9(5), 2(2), 209).
Df 1. arm,’s is called the arm of 5 with respect to'r (the r-arm of 3°).
Pr 1. 2(5), 2(2), 2(9) imply

' Sgn 1. arm; 5 sgn:

8 X momy s

(7) army s = p

Dm. Sgn 1, 2 Sgn 5.

Pr. 2. 2(5), 2(2), 2(9) imply s - army 5 = 0.

Dm. Sgn 1.

Pr 3. 2(5), 2(2), 2(9) imply mom, s -arm; 5 = 0.
Dm. Pr 1. _ ,

Pr 4. 2(5), 2(2), 2(9) imply 8 x mom, s = s?arm; 5 .
Dm. Pr 1. | |

Pr 5. 2(5), 2(2), 2(9) imply mom,™s" = armg,s X s.
Dm. Pr 1, Pr 5.

Pr 6. 2(5), 2(2), 2(9) imply

(8) army s = s X (ve)s ~ 7.

52
Dm. Sgn 1, Pr 16.
Pr 7. 2(5), 2(9) imply army(—75) = arm, s .
Dm. 2 Sgn 6, Sgn 1.
Pr 8. 2(5), 2(9), 2(51) imply army(18") = arm; 5.
Dm. 2 Sgn 7, Sgn 1.
2 : 2
Pr 9. 2(5), 2(2), 2(9) imply (momr?) e % (armr—s") ;
Dm. Pr 5, Pr2,1Pr9.
Pr 10. 2(5), 2(9) imply 2(10) iff

9) army’s = o.
Dm. Pr 9, 1 Ax 12S.
Pr 11. 2(5), 2(9) imply (1) iff (9).
Dm. Pr 10, 2 Pr 8. '
Pr 12. 2(53), 3(5), 2(18), 2(62) imply

—
(10) arme, 5’1 + army; §2 = o.
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Dm. 3(5) imply 5(3) (3. Pr 20, 2 Pr 15), whenle dir ¥, and arm; 5, (v =
1, 2) exist for any 2(9) (2 Sgn 4, Sgn 1). The relations 2(62) are equivalent with
2(69) provided 2(59) (2 Sgr. 4, [3] 4 Sgn 1). On the other hand, Sgn 1 implies

8 X (-m1 + 8 X 1‘2)

(11) army, 51 = > ,
83
S X (Ma+82XT
(12) arme; 52 = 2 ( 232 2 X T1)
; 2

and (11), (12), 2(69) imply

81 x ((ry —72) x 87)
s

89 X ((1'2 - 1‘1) h. 4 82)
82
2

¥

(13) armge, 81 =

(14) armp, ?2 =

respectively. At last, 3(5) and 2(59) irrnply'

(15) 8; X8, =0

(3 Sgn 5, 3 Sgn 3, 3 Sgn 1) and (15), 5(3), 2 Pr 1 imply that there exists (51) with
(16) 82 = Asy.

Now (16), (14), 1Ax 85,1 Pr 7,1Sgn 1, 1 Pr 14, 1 Pr 17 imply

—_ X
(17) armr, 3 ._.,2 8 X ((T2 82 T1) 81)
i

and (13), (17) imply (10).
Pr 13. 2(53), 3(7), 2(18), 2(62) imply (10).
Dm. 3 Pr 31, Pr 12

Sgn 2. foot, 5 sgn: bkl

-~ iff 2(5), 2(2), 2(9).

Df 2. foot; s is called the foot of » on 5.

Pr 14. ‘2(5), 2(2), 2(9) imply footy 3 = » + arm, 5.
Dm. Sgn 2,

Pr 15. 2(5), 2(9) imply footy(~73") = foot, 5.

Dm. Pr 14, Pr 7.

Pr 16. 2(5), 2(9), 2(51) imply footr(A?) foot, 5.
Dm. Pr 14, Pr 8.

Pr 17. 2(5), 2(9),

(18) rZdir 7
imply
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(19) ‘ (armr".é", r X armg ?) € As.

Dm. 2(5) implies: dir 5" exists (2 Sgn 4). Now (18) is equivalent to
(20) arm; s #o

(Pr 11) whence (19) (2 Sgn 3).
Pr 18. 2(5), 2(9), (18) imply: there exists exactly one [ € Ls with

(21) (armr?, r X érm,'?) &l

Dm. Pr 17,]3] 1 Pr 19. ‘

Sgn 3. axisy 3 sgn: | € Lg with (21) iff 2(5), 2(9), (18).
Df 3. axis; 3 is called the r-azis of 5.

Pr 19. 2(5), 2(9), (18) imply r Z axis; 7.

Dm. [3] 4 Sgn 1.

Pr 20. 2(5), 2(9), (18) imply axis,(—75") = axis; s .

Dm. Sgn 3, Pr 7

Pr 21. 2(5), 2(9), (18), 2(51) imply axisy(A3’) = axis; s .
Dm. Sgn 3, Pr 8.

Sch 2. Let

(22) (ain bv) e AS.: -y € LSa (G,,, bv) & l,,, (V =1, 2)1

(23) a; X az # o.

Then

(24) a3 X as, (01 all b bZ)GI L (02 i bl)az X ((11 X 02) € AS'
(a1 X 02)2

Let | € Lg be defined by

(25) a; X a3, (01 X ag - bz)al + (az X a - bl)ag » (Gl - 02) &
(01 X 02)2

Then it is proved [3, p. 122] that there exists exactly one couple r, € Vs (v =1, 2)
with», Z 1, 7, Z 1, (v = 1, 2) respectively, namely

(26) oy (@1 X a3 - bo)a; + (@2 x a1 - by)as + (azb1)a; x ay
- (a1 x a2)? ?

(27) » _ (@ x @3- br)a; + (a3 x a; - b)ag — (a;1bg)a; x a2
2= (a1 x az)?

Now (26), (27) imply

a1 b+ aqxby

28 —_—ry =
( ) r T2 (ﬂ; X 02)2

aj X as.
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These geometrical facts give rise to the following considerations concerning V-

arrows.
Pr 22. s,, m, € V5 (v =1, 2),

(29) 81 X 82 # 0,
) 81mg + 8am
(30) 8 sgn : i 81 X 89,
(31) ™m sgn X ((82 X 81 1TI.2)81 + (81 X 89 -m1)32) 5

(81 x 82)2

2(2) imply 2(1).

Dm. 2 Sgn 1.

Sgn 4. ax(7s'1, 52) sgn: (s, m) iff 1(53), 2(59), (29) — (31).

Df 4. ax(5'1, 5 2) is called the azis of 5"y, 5.

Pr 23. 2(53), 2(59), 3(2) imply ax(7s';, 52) # o iff 5(4).

Dm. 2Pr 1, Sgn 4, 5 Sgn 3

Pr 24. 2(53), 2(59), 3(2) imply ax(s'1, 5'2) = —ax(s'2, 51)-

Dm. Sgn 4, 2 Sgn 6.

Pr 25. 2(53), 2(59), 3(2) imply ax(s'y, 52)T5, (v=1, 2).

Dm. Sgn 4, 4 Sgn 1.

Pr 26. 2(53), 2(59), 5(4) imply ax(F1, T2)L1 75, (v =1, 2).

Dm. Sgn 4,.4 Sgn 3, Pr 23, 5 Pr 18.

Pr 27. 2(53), 2(59), 5(4) imply ax(3'1, $2) A s, (v =1,2).

Dm. Sgn 4, 5 Sgn 1, [3] 1 Pr 106.

Pr 28. 2(53), 2(59), 5(4) imply: there exists exactly one couple #, € Vs
(v =1, 2) with 2(62) and :

(32) Ty Z dir ax(?l, ?2) ‘ (l'/ = 1, 2),
- namely
1
(33) = m ((81 X 32m2)31 + (82 X 31m1)82 + (32m1)31 X 82) ,
' 1
(34) ro = m ((31 X 32m2)31 + (82 X 31m1)82 -_ (slmg)s; X 82) .

Dm. [3] 4 Pr 47.
Pr 29.2(53), 2(59), 5(4), (30), (38), (39) imply 8 = r; — 5.
Dm. Clear.
§ 7. ADDITION
Pri.If
(1) (85, my) € Ws (=1,2),

93



then

(2) (81 + 82, my +m2) € Ws

iff

(3) 81+ 32 = o0, my +me=o0

or

(4) 81+ 82 #o0, 81ma + som,; =0
Dm. 2 Sgn 1.
Pr'2. { 1) 1rnply (2) iff one of the foHowmg conditions is satisfied:

(5) 81 = —82, m; = —m;

or

(6) 81 # —8,, 8 X ;92 =0

or

(M 81 X 82 # o0, s$ims + somy = 0.

Dm. By virtue of Pr 1 it must be proved that the systems of conditions (3)
and (4), on the one hand, and (5) — (7), on the other hand, are equivalent. Since
(3) and (5) are equivalent, it remains to be proved that the conditions (4), on the
one hand, and (6) and (7), on the other hand, are equivalent.

The first condition (4), i.e.

(8) $ + S2 # 0,

is consistent with the alternative

9 81X 82=0
or
(10) 81 X 83 # 0.

The case (8), (10) with
(11) syma + samy =0,

i.e. the case (7), is equivalent to (4).

As regards the case (8), (9), the followng two subcases are possible: at least
one of the vectors 8; and s, is zero; or none is zero.

In the first subcase, let for instance

(12)- 81 = o.
Now (12), (1), 2 Sgn 1 imply m; = o, and (11) is satisfied tr1.v1ally

In the second subcase, (9) nnphes that there exist A, € S (v = 1, 2) with
A #F0(v=1,2)and
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(13) 8; = A\189, 82 = A28;.

On the other hand, (1) and 2 Sgn 1 imply

(14) s,m, =0 ‘ _ (22 ==1,2).

Now (13), (14) imply (11) again. .
In such a manner, it is proved that the conditions (4) are equivalent to the

conditions (6) in the case (9), and with (7), in the case (10), g.e.d.
Pr 3. (1) imply

(15) (s1 + 82, my +m2) & Ws
iff
(16) _ 8 = —382, my # —my
or
(17) syma + symy # 0.

Dm. Pr 1, Pr 2.

Pr 4. (1) imply
(18) (51 + 52, my +m3) € As
iff (4).

Dm. 2Sgn 3, 2 Sgn 1.
Pr 5. (1) imply (18) iff (6) or (7).
Dm. Pr 2, 2 Sgn 3.

' Sgn 1. 51+ 528gn: § with

(19) S = (81 + 82, my +my)

provided

(20) - F,=(s,m)EWs (1r=1,2)
iff (2). | |

Df 1. s’y + 59 is called the sum of 5 and 55,
Df 2. The operation in Ws defined by means of Sgn 1, is called addition in

Ws.
Pr 6. (20), (2) imply

(21) (81, m1) + (82, m2) = (81 + Bgy YHy +my).
Dm. Sgn 1.
Pr 7. 2(53) imply:

(22) 14+ 5 exists

iff
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(23) 1|5, Fill 5

or

(24) FT1A .
Dm. Sgn 1, Pr 2,3 Sgn 1, 3.5¢n 8,5 Sgn 1.
Pr 8. 2(53).imply:

(25) 1+ 5,  does not exist

iff

(26) Tl

or | |

(27) 197,
l')m. Sgn 1, Pr3,3S5gn7, Pr2 5 Sgn3.
Pr 9. 2(53), (22) imply

(28) F1+ 2= TS24+ 51

Dm. The right-hand side of (28) ex1sts (Pr 7,3 Pr 2,3 Pr 23,5 Pr 16). Then
Sgn 1.
Pr 10. 2(1) implies

(29) T+ =7.

Dm. The left-hand side of (29) exists (2 Sgn 2, Sgn 1, 2 Sgn 1). Then Sgn 1.
Pr 11. 2(1) implies

(30) T +(-F)="7.

Dm. The left-hand side of (30) ex1sts (2'Sgn 6, Sgn 1,2 Sgn 1). Then Sgn 1,
"2 Sgn 2.

Pr 12. If _
(31) 7, € Ws =12 3),
then |
(32) (F1432)+F3=71+(F2+ 73),

provided all sums exist.
Dm. Sgn 1,1 Ax 1S.

Sgn 2. L(7F) sgn: {)7F : AES}lﬂ” T € Ws.

Df 3. L(78") is called the linear span of 5. :

Pr 13. 2(55), 2(49), 31 = A2 imply L(3"1) = L(5"2).
Dm. Sgn 2,2 Sgn 7.

Pr 14. If
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(33) 7, €L(?) (v=1,2),

then (22).
Dm. (33), Sgn 2 imply: there exist
(34) A ES (2=1; 2)
with | |
(35) =07 (v=1,2)

Then (35) and 2(2) imply

(36) T, = (s, X,,ni.) | (v=1,2),
in view of 2 Sgn 7, and (36), 2(59) imply

(37) 81+ 80 = (A1 + A3)s, my +my = (A + Ay)m.

If \; + A2 = 0, then (37) imply (3) whence (22) (Sgn 1, Pr 1). If A, + Ay # 0, then
(8) (Sgn 2). On the other hand, (36), 2(59) imply

(38) $1ma + 8amy = 2/\1:\—2(8171) = 1.

(1 Ax 9S, 1 Pr 7,2 Sgn 1), i.e. (11), and (8), (11) imply (22) (Pr 1, Sgn 1).
Pr 15. L(F) is a group with respect to the addition in Ws.
Dm. Pr 14, Pr 12, Sgn 2 with A =0, 2 Pr 24, Pr 10, Sgn 2 with A = —1, 2 Pr
27, Pr 11 display that 1 Ax 1S — 1 Ax 3S are satisfied (with L(3") instead of Vs).
Pr 16. 2(1),

(39) Ap€ES
imply
(40) Q1) 7 = AT Lo

Dm. Both sides of (40) exist: in case of 5 = 0 all members in (40) are the

zero-arrows (2 Pr 25); in case of 5" # 0 see Pr 14. Now (40) follows from 2 Sgn 7
and Sgn 1.
Pr 17. A € S, 2(53), (22) imply

(41) : /\(?1 + ?2) = A?l + )\?2

Dm. Both sides of (41) exist: in case of A = 0, all members in (41) are the
zero-arrows (2 Pr 24); in case of A £ 0 see Pr 1 and 2 Sgn 7. Now (41) follows from
2 Sgn 7 and Sgn 1:

Pr 18. L(7F) is a 1-dimensional linear space over S with respect to the
addition in W and to the multiplication 2 Sgn 7 of the elements of S and Ws.
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Dm. As regards the addition see Pr 15. Now 2 Sgn 7, 2Pr 26, 2 Pr 32, Pr 16,
Pr 17 display that 1 Ax 4S — 1 Ax 7S are satisfied (with L(3’) instead of V).

As regards the dimension of the linear space L(5") over S, let uz note, first,
that there exists a linearly independent element of L"), namely 7'; and, second,

that any two elements of L(75"), are linearly dependent. Indeed, let (33) hold. Then
Sgn 2 implies that there exist (34) with (35). If both of (34) are zeroes, then both of
(33) are zeroes too (2 Pr 24), and they are, therefrom, trivially linearly dependent;
if at least one of (34) iz non-zero, then the linear combination

(42) /\2?1 + (-—/\1)?2 = /\11\2(? - —S-)) = /\1/\2?

vanishes with non-zero coefficients (34): consequently, (33) are linearly dependent.
Sch 1. The record (42) is not a quite orthodoxal one: it exploits the undefined

still notion of a difference of two arrows (the difference s — 5", as a matter of fact).
In actually, (42) may be rewritten in the almost equivalent form

(43) A3E 1+ (A1) T2 = (M F) + (-A1)(AF)

—

= (AzAl)? -+ (—/\1A2)?2 = (A2 + (—Aly\z))? =0% =0
(2 Pr 32, Pr 16, 2 Pr 24). As it is, the difference of two arrows (if it exists) is
defined immediately below.
Sgn 3. 1 — Sasgn: §1+(=T52) iff 2(53) and ") + (=5 2) exist.
Df 4. 5, — 53 is called the difference of 5", and 5 5. :
Df 5. The operation in Wg defined by means of Sgn 3 is called subtraction in

Ws. )
Pr 19. 2(53) imply
(44) | . F1—-5y  exists
iff
(45) T2 TTl-5
or
(46) T1ATE,.

Dm. Sgn 3, Pr 7, 2S5gn6,3Sgn 1,5 Sgn 1.
Pr 20. 2(53) imply '

(47) $1— 52  does not exist

iff ‘ .
(48) T1lF2, Tl -

or

(49) T19 7.
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Dm. Sga 3, Pr 8, 2 Sgn 6, 5 Sgn 3.

Pr 21. (20)
(50) (81 — 82, m; —m3) € Wps
imply
(51) (81, m1) — (82, M2) = (81 — 82, My — my).

Dm. Sgn 3,2 Sgn 6, Pr 6.
Pr 22. 2(53), (44) imply

(52) ?1 e ?2 = -?2 + ?1.

Dm. Sgn 3, Pr 9.
Pr 23. 2(1)) implies

(53) T =T

Dm. Sgn 3, 2 Pr 19, Pr 10
Pr 24. 2(1) implies

(54) = B

Dm. Sgn 3, Pr 11.
Sch 2. Pr 24 has been used on the sly in (42).
Pr 25. 2(53), (22) imply

(55) —'(?1 + ?2) = —?1 =~ ?2.

Dm. The right-hand side of (55) exists (PPr 7, Sgn 3, 2 Sgn 6, 3 Sgn 1, 3 Sgn 8,
5 Sgn 1). Then Pr 6, 2 Sga 6, Pr 21.

Pr 26. 2(53), (22) imply
(56) (T =-TF) =51+ 59

Dm. Pr 25, Sgn 3, 2 Sgn 6.
Pr 27. (31) imply

(57) (F1-F2)+F3=F1+(-F2+73)

provided all sums and differences exist.
Dm. Sgn 3, Pr 12.
Pr 28. (31) imply

(58) (F1+7F2) -5 =TF14(F2-73)
provided all sums and differences exist.

Dm. Sgn 3, Pr 12.
Pr 29. (31) imply
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(59) (F1-52)-F3=F1-(F2+73)

provided all sums and differences. exist.
Dm. Sgn 3, Pr 12.
Pr 30. (39), 2(1) imply

(60) A=-p)s =27 —u7.

Dm. If 3 = 7, then all members in (60) are zeroes (2 Pr 25). If 3 # 7,
then (60) is simplified by Pr 18.
Pr 31. 2(49), 2(53), (44) imply

(61) M7 =)=~ X7

Dm. The right-hand side of (61) exists: if A = 0, then all members 1n (61) are
zeroes (2 Pr 24); if A # 0, then Pr 19,2 Sgn 7,3 Sgn 1, 3 Sgn 8, 5 Sgn 1. Now 2
Sgn 7 and Pr 21.

Pr 32. 2(53), (24), (34),

(62) AXa 20
imply
(63) T AN T

Dm. (24) implies (10), (11) (5 Sgn-1). If 2(59), then

(64) X & = (A, Aptris) (r=1.2)
(2 Sgn 7). Now (64), 1 Pr 14, 1 Pr 17, 1 Ax 8S, 1 Pr 7, (62), (10), (11) imply
(65) (A181) X (A282) = (A1A2)s1 X 82 # o,

(66) (A181)(Rzmz) + (A282)(Ramy) = (A do)(s1m32 + 83my) = 0,

and (65), (66) imply (63) (5 Sgn 1).
Pr 33. 2(53), (24), (34) imply

(67) MS14+ X772  exists.

Dm. If A; = 0 or Az = 0, then (67) is implied by 2 Pr 24, Pr 10, Pr 9. If (62),
then Pr 32, Pr 7.

Sgn 4. L(7F,)2_, sgn: {1\1?1 +A2F2: A, E€ES(v=1, 2)} If 3, € Ws
(l/ = 1, 2), ?1 A ?2.

Df 6. L(3,)2_, is called the linear span of 3, (v =1, 2).
Pr 34. 2(53), (24),

(68) TueL(T)2 (g=1,2)
imply
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(69) Ti1+ 7,  exists.

Dm. (68), Sgn 4 imply: there exist

(70) Auv €S (p; ¥=1;2)
with

(1) Tu=A1F1+ 2272 (r=1,2)
Now (71) and 2(59) imply

(72) ?,‘ = (A“181 “+ A‘,ggz, X,,lml + Xﬂgmz) (p =1, 2)
(2Sgn 7, Pr 6), and (72), 1 Ax 8S,1Pr7,1Pr 14,1 Pr 17 imply

(73) (A1181 + A1282) X (A2181 + A2282) = (Xuxzz — X12121)31 X 82,

(74) (A1181 +41282) (Az1my +Az2ma) + (A2181 + A2282)(A13m + A1ams)

= (A11A22 + A12221)(81m2 + 82my) = 0.

in view of (14) (2 Sgn 1) and (11) (5 Sgn 1).
The alternative

(75) Ar1doz — Aj2A21 #0
or
(76) A11A22 — A12A21 = 0
ﬁow arises _ | ,
If (75), then (73) and (10) (5 Sgn 1) imply
(77) (A1181 + A1282) X (A2181 + Ag282) # 0

and (72), (77), (74), 5 Sgn 1 imply
(78) T1ATs.

consequently (69) (Pr 7).
If (76), then (73) implies

(9 (A1181 + Ai282) X (A2181 + A2282) = o,
and(79), (72) imply
(80) 717

in view of 3 Sgn 1.
The supposition

(81) 71117
is wrong. Indeed, (72) and 3 Sgn 7 imply that (81) is equivalent to
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(82) A1181 + A1282 = —(A2181 + A2282),

(83) Ximy + Azms £ —(Rarmy + Agzmy)

i.e. with |

(84) (A11 4+ A21)81 + (A12 + A22)82 = o,

(85) (11 +Az)my + (A2 + Azz)mz £ 0.
Now (84) and (10) (5 Sgn 1) imply

(86) A1+ A2 =0, A1z + A2z =0,

and (86) irnply_
(87) (A11 + Aar)my + (Aaz + Azz)mz =0,

contrary to (85).' In such a manner,
(88) 71117

(3 Pr 21) and (80), (88) imply (69) (Pr 7).

Pr 35. L(5",)2_, is a group with respect to the addition in Ws.

Dm. Pr 34, Pr 12, Sgn 4 with A; = A, = 0, 2 Pr 24, Fr 10, Sgn 4 with Ay,
A2, on the one hand, and —A;, —A3, on the other hand, 2 Pr 27, Pr 11 display that

1 Ax 1S — 1 Ax 3S are satisfied (with L(F",)2_, instead of V).

. Pr 36. L(7F",)%_, is a 2-dimensional linear space over S with respect to the
addition in Wg and to the multiplication 2 Sgn 7 of the elements of S and W;s.
Dm. As regards the addition, see Pr 35. Now 2 Sgn 7, 2 Pr 26, 2 Pr 32, Pr 16,

Pr 17 display that 1 Ax 4S — 1 Ax 7S are satisfied (with L(7s’,)2_, instead of V5).
As regards the dimension of the linear space L(3 ,)2_; over S, let us note,
first, that there exist two linearly independent elements of L(5,)2_, namely 5,
and 7'3; and, second, that any three elements of L(5",)2_, are linearly dependent.
Indeed, 7, € L(5,)2-, (0=1,2)since 31 =171 4+03, 2=03;+
175" (2 Pr 24, 2 Pr 26, Pr 10, Pr 9). Let now (34) and

(89) MTFT14+X252=7

hold. If 2(59), then (89) is equivalent to

(90) (A181 + A28z, Aymy + Aamy) = (0, 0)
(2 Sgn 7, Pr 6, 2 Sgn 2), whence

(91) A181 + A28 = 0.

Now (91) and (100 (5 Sgn 1) imply A; = A; = 0, hence the linear independency of
—_ —_
s1 and 75 3.

On the other hand, let
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(92) T, € L(T,)} o (n=1,23)
Now (92) and Sgn 4 imply that, there exist

(93) Auv €S ' ‘ ' r=1,23v=12)
with 7 |
(94) ?p = /\“1?1 - g A“Q'?Q % . (p=1,2 3).

If .2(59), then (94) is equivalent to

(95) C Fu= (s + Ass, hamy + Agma) (B=1,2,3).
Let 1(34) be a non-zero solution of the system of equations
_ .3
: (96) : Z ayAul =0, Z au u2 =
' ' p=1 ‘ ' =1

i.e. with | |

(97) Za,{&"p # 0.
p=1 '

Now (96) imply

» - 3 N | 3
(98) Y ow@mAa=0, D @hp=0 |
u=1 p=1
and (95), (96), (98), |
(99) Z a“?p_ sgn : (01?1 + a2?2)1‘+ a3?3,

p=1

Pr 6, 2 Sgn 2 imply

| 3
(100) Y 0, Tu="7
=
with (97), i.e. the linear dependency of (92)
Pr 37. If

(101) T LTy
(102) Cic 7] S (v=1,2)
‘then

(103) TAT, | ' * (v=1,2).
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Dm. (101), Sgn 4 imply: there‘exist (34) with

(104) T =MT1+A750.

If 2(2), 2959), then (102), 3 Sgn 2 imply

(105) sxs, #o

Besides, (104), 2(2), 2(59), .2 Sgn.7, Pr- 6 imply

(106) 8= )18, + X389, m= -X-l.mi + Aams.
now (106), 2 Sgn 1, 1 Ax 8S, 1 Pr 7, Sgn 4, 5 Sgn 1 imply
(107) . smi+sm= Ag(simz + 8amy) =0,
(108) smy + 8om = Ai(8ymg + 8omy ) =0,

and (105), (107), (108), 5 Sgn 1 imply (103). -
~ Pr 38. (68), |

(109) 717
imply
(110) L(7)2-, =.E(F.)2 -

(r=1,2)

Dm. As in proof of Pr 34 it is proved that (73), (74) hold good. The case (76) .
is impossible since it implies (80) contrary to (109) (3 Pr 1). Now as in the proof
of Pr 34 it is proved that (78) holds. Hence the left-hand slde of (110) exists (Sgn

4). Then Pr 36 and Sgn 4.

Pr 39. If
(111) Sy = (8, m,) € Ws
(112) 81 X 82-83#0,
(113) s,m, +s,m,=0

then there exists exactly one 1(31) with
(114) rZ dir 7,

namely 5(7).
Dm. (112) imply 8, # o (v = 1, 2, 3), whence

(115) T AT

(v=1,2, 3),
(!"’: = 1,2, 3):
(v=1, 2, 3)1, 
v=1,23)

(2 Pr 1). Now (115) a.nd 2 Sgn 4 imply: dir 3, (v = 1, 2 3) exist and (114) i is

equivalent to

(116) . rXs,=m,
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Then (112), (113), 1 Pr 30 imply that there exists exactly one 1(31) with (116),
namely 5(7).
Pr 40. (111) — (113) imply

(117) T ATy , | (=123 y';é,u).
Dm. 5Sgn1. . |
Pr 41. (111) — (113),
(118) A\ ES | | ' (»=1,23),
(119) A1A223 #0
imply |
(120) XN T A XNTF C (mv=1,23; p#v)

Dm. Pr 40, Pr 32.
Pr 42, (111) — (113), (118), (119) imply

(121). A A5 + X252 A A3 T 3. .
Dm. Pr 40, Pr 33 imply (67). Besides, (111), 2 Sgn 7, Pr 6 imply

‘(‘122:) | M T14+ 27Tz = (A181 + Aas2, Iymy +z_\2m2)~

'On the other hand, (111) and 2 Sgn 7 imply

(123) Aa?a = (/\383, Xsma).

* Now (122), (123) imply

(124) (/\181 -+ /\282) X (/\333) /\3(A1(81 X 83) + A2(82 X 83))
(1 Pr 14, 1 Pr 17), whence
(125) (Alsl -+ Azsz) X (A383) ;é 0.

Indeed, otherwise (124), (119) imply

| (126) :\-1(81 X 83) +j2(82 X 33_) —o

. and scalar multiplication of (126) with s; implies
(127) Aa(s1- 83 X 83) =0

by virtue of 1 Pr 7, contrary to (119), (112) in view of 1 Pr 8. On the other hand
1Pr7, (113) lmply

105



(128) (’\1"’1 -f- h232)m3 =p 83(X1‘m1 + -Xgmg)

= A1(8ym3 + 83m ) + Ay(samg + s3my) = 0,

and (122), (123), (125), 5 Sgn 1 imply (121).
Pr 43. (111) — (113), (118) imply

(129) (Al 51+ A8 2) +A2 53 exists.

Dm. If A3A2A5 = 0, then (129) is implied by 2 Pr 24, Pr 10, Pr 9. lf (119)
then Pr 33, Pr 42, Pr 7.

Sgn 5. §1+ T2+ Sasgn: (14 F2)+ Faif (31).

Sgn 6. L(s,)ylsgn M1+ XS+ 23753 A ES(V_123)}1ff
(111) — (113).

Df 7. L(7',)3_, is called the linear span of 5, (u = 1,2, 3)

. Pr44. (111) — (113),

(130) Ty €L(T ) g & : (= 1,2)
imply (69). . |

Dm. (130), Sgn 6 imply: there exist , o
(181}  MES L w=1,%v=1,29)
with I | | | -
(132) Ty T A Tat e T (u=1,2)..

Now (132) and (111) imply

(133) T = (Au181 + A28z + A3, b 1m1+A oMy + Auams)(p = 1 2)
(2 Sgn 7, Pr 6), and (133), 1'Ax 85, 1 Pr 7, 1 Pr 14, 1 Pr 17 imply a
(134) - (AM181 + A1982 + M13s3) X (A2181 + A2287 + Az383)

= (A11h22 — M12221)81 X 82 + (A12h23 — A13A22) 82 X 83 +(Aysdar — A1 has)sg X 8
and : P R e T R

(135) (M1181 + Ai282 + A1383)(Azim + X??","?-'*‘ Xz:;_xma) .

+(Az181 + A2282 + /\2383)(:\—117111 + Xu‘mz + Xmma)
= (Andaz + Arzdar)(s1m2 + 82m) + (A2 Azs + )\13)\22)(82"33 + sa'mz) -
+(A1ara1 + A11A23)(33m1 + 8ym3) = 0 '
in view of
(136) -: .. - isym, =0 .~ + . - ‘. fr =12 3)
(2 Sgn 1) and (113) (Sgn 6). - o

The alternative
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(137) |A11A22 = A2da1 2 + [Ai2An - A13A22 + [A13das = A11A282 #0

or
(138) AnAza=A12221 =0, A2da1—A1sd22 =0 Ao —Arpde3 =0
now arises. ' |

If (137), then (1340 implies
(139) (A1181 + A1282 + A1383) X (A218 + 1\2282 + Ag383) # 0.

Indeed, the right-hand side of (134) represents a linear combination of Gibbs’ vec-

tors 7', ' (v = 1, 2, 3) defined by 1(23) provided 1(24); they exist by virtues of
(112) (Sg\n ‘6): in view of 1 Pr 20 and 1 Pr 12 such a combination may be zerro it,
and only if, all coefficients are zeroes, and this is not the case if (137) holds. Now
(132), (139) (135), 5 Sgn 1 imply (78), consequently (69) (Pr 7).

If (138), then (134) implies

(140) | (A1181 + A1282 + A1383) X (A2181 + A28z + Ag383) = o,

and (140), (132) lmply (80) in view of 3 Sgn 1.
~ The supposition (81) is wrong. Indeed, (132) and 3 Sgn 7 imply that (81) is
equivalent to

(141) Ansy + A1282 + Aisss = —(A2181 + A28z + -)\2383),

(142) Aumy + Aama + Aigms # =(A21my + Agamz + dggms),
i.e. to | |

(143)- (A11 + A21)81 + (A12 + A22)82 + (A13 + A23)s3 = o,

(144) (1 + /\21)‘"11 + (2 + Azz)mzz + (A13 + X23)ms # 0.

Now (143) a.nd (112),1 Pr 12 1mply
(145) A1+ A1 =0, Aiz+A22 =0,  Az+A=0,
and (145) imply |
(146) (i1 + Xa1)ma + A1z + Azz)ma + (Ais + Aes)ms = o. |
contrary to (144). In such a manner, (88) holds (3 Pr 21) and.(80), (88) imply (69)
(Pe 7). _

Pr 45. L(3,)3_, is a group with respect to the addition in Ws.

Dm. Pr 44, Sgn 6 with A\, = 0 (v = 1, 2, 3), 2 Pr 24, Pr 10, Sgn 6 with A;,
Az, Ag, on the one hand, and —A;, —A,, Aa, respectlvely, on the other hand, 2 Pr

27, Pr 11 display.that 1 Ax 1S — 1 Ax 3S are satisfied (with L( ,,)3.. ; instead of
Vs).

Pr 46. L( §'y)2_, is a 3-dimensional linear space over S w1th reppect to the
addition in Ws and to the multiplication 2Sgn 7 of the elements of 3 and Ws.
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Dm. As regards the addition, see Pr 45. Now 2 Sgn 7, 2 Pr 26, 2 Pr 32, Pr 16,
Pr 17 display that 1 Ax 4S — 1 Ax 7S are satisfied with L(5,)3_, instead of V).
As regards the dimension of the linear space L(5,)3_; over S, let us note,
first, that there exist three linearly independent elements of L(75,)3_;, namely

5, (v = 1, 2, 3); and second, that any four elements of L(75",)3_, are linearly
dependent.

Indeed, 5", € L(5,)0-; (1
?2 -_—'0?1 + 1?2 + 0?3, ?3 =
Pr 9, Sgn 6). Let now (118) and

= 1,2,3),since 51 =151 +052+073,
?1+032+ls3(2Pr24,2Pr26,Pr10,

(147) /\1?1 + ,\2?2 + A3—3+3 =70
hold. If (111), then (147) is equivalent to

(148) . (1\131 + A28 + /\333, /\1m1 + Azmg + Aama) (O, O)
(2 Sgn 7, Pr 6, 2 Sgn 2, Sgn 5), whence
(149) /\181 + /\282 + /\383 = 0.

Now (149) and (112) imply A, = 0 (v = 1,2, 3) (1 Pr 12), hence the linear

independency of 5, (v =1, 2, 3).
On the other hand, let

(150) B ETP, (=1,23,4).
Now (150) and Sgn 6 imply that there exist ‘ |
(151 A lS - | (r=1,2,3,4v=123)
with | e

(152) CRE R L N (h=1,23,4).

If (111), then (152) is equivalent to

(153) Tu=(Ap81 + A,,gsz + Aus83, A,,lml + Auzmg + A"3m3)
(r=1,23,4). '

Let

(154) ~ au€S h (k=1,23,4)

be a non-zero solution of the system of equations

(153) Zaﬂ wr =0 ' | (v=123),
p=1

l.e.
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A
(156) > au@, #0.
H=1
Now (155) imply
(157) Y wd=0 (v=1,2,3)

and (153), (155), (157) imply

4
(158) Y o, Tu="7
pu=1
with (156), i.e. the linear dependency of (150).
Pr 47. If
(159) TEL(Fhor
(160) 5|7, | | ; (v=1,2,3),
then |
(161) TAT,  w=1,23)

'Dm. (159), Sgn 6 imply: there exist (118) with
(162) T=MT1+ A2 S 2+ A3 53
If 2(2), 2(59), then (160), 3 Sgn 2 imply
(163) - sxs,#£o o (v=12,8)
Besides, (162), 2(2), 2(59), 2 Sgn 7, Pr 6 imply ‘
(164) 8= A8y + Aasz + A383, m = Aimy -i-szz + A3ma.
Now (164),2 Sgn 1, 1 Ax 85, 1 Pr 7, Sgn 6, 5 Sgn 1 imply

(165) smy + sym = Ay(81mg +32my) + A3(syms + 33m1) =@,

(166) smy + 8;m = Ay(81m2 + 8ym) + A3(syms + s3m,) =0, -

(167) smgz+ sgm = Aj(8ym3 + s3my ) + /\3(33m37-i: sgmy) =0,

and(163), (165) — (167), 5 Sgn 1 imply (161). ' oo
Pr 48. If A

(168) Tu € L(F )= (r=1,23)

109



(169) T 0= (%4 my) : (6=1,2,3),

(170) 01 X 02 ?3 #0,
then |
() LTy = L(F)er

Dm. (168), Sgn 6 imply: there exist

(172) A €S (p,v=1,23)
with
(173) Tu= AT+ M2 T2+ M3 T (n=1, 2, 3).

If (111), then (169) and (173) imply

(174) Ty = Au181 + Mu2sa + duasy (p=1,2,3),
{A75)  m, = Ajmy+ Ay + Aams - (k=1,23)
and (174), (175), 1 Ax 10S, 1 Ax 8S, 1 Pr 7, 2 Sgn 1, Sgn 6 imply

(176) _ Tun, +Tn, =0 - , (u, v=1,2:3).

Now (170) and (176) imply that the left-hand side of (171) exists (Sgn 6). Then
Pr 46:

.Sgn. 7. 51753 sgn: 8185 iff (20).
Df 8. 5,75 5 is called the scalar product of 5'; and 5'5.

2 .
Sgn 8..5 sgn: 5 s iff 2(1).
DF9. 7 is called the seaar square of 5
Pr 49. 2(53) imply ?1?2 = ?2?1.
Dm. Sgn 7, 1 Ax 8S. |
Pr 50. 2(49), 2(53) imply (A51) 52 = MT 175 2).
Dm. Sgn 7,2 Sgn 7, 1 Ax 9S.
Pr 51. (31), (22) imply (?1 -+ ?2)?3 = '?1'?3 + ?2?3.
Dm. Sgn 7, Pr 6, 1 Ax 10S.

2

Pr 52. 2(1) implies 5 2 0.
Dm. Sgn 8, Sgn2 7,1 Ax 118,
Pr53.2(1),s =0imply 3 =70,
Dm. Sgn 8, Sgn 7, 1 Ax 125, 2 Sgn 1.
Pr 54. L( Bl B 3-dimensional Hermitean space over S with respect to

the addition in Wy, to the multiplication 2 Sgn 7 of the elements of S and Wys, and
to the scalar multiplication Sgn 7 of the elements of Ws.

Dm. Pr 45, Pr 46, Pr 49 — Pr 53.

- Sch 3. The following considerations wiH' be useful in the sequel.
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Let the following problem be solved. If 3, = (s,, m,) v = 1, 2) be given
intersecting arrows, then find a third arrow 5 = (sa, mg3) such that, first, s3 =
81 X 83; and, second, that there exists a . € Vs with » Z dir 3", (v = 1, 2, 3),
ie. rx 8 =m, (v=1,2,3). (The directrices of 5, exist, since 5, # 0
(» =1, 2, 3), as 5 Sgn 1 and the definition of 3’3 imply.) in other words, conditions
are sought for the consistency of the system of vector equatlons X8 =

(v = 1, 2, 3), provided 83 = 38; X 33. Accordmg to 1 Pr 30, it is necessary and
suﬂiment to this end that

(177) s,m,+s,m,=0 | (n,v=1, 2, 3)
hold, i.e. that | | -

. (178) M8y = —M183,  M3sy = —M283, o mas;.; =

are satisfied (1 Ax 85, 2 Sgn 1). The system (178) is equivalent to

(179) M3s) =M1-82X 81, = M3sy = M2 82X 41, mzs -8 x’32 =

(1 Pr 13). accordmg to 1 Pr 26, the only solution mg of the system (179) of vector
equations is : .

(180)  mg= (m1 .82 X 81)8T ! + (my - 89 x 81)85 L.
kb,

(m; - 32 X .91)(32 x (81 X 32)) + (mg - 82X 81) (81 X (82) X sl)
(81 x'82)% ~

Now (181) and 1 Pr 14,1 Pr 15,1 Pr 8 imp-ly

(181) mg=

81 X 322

(8_X—3—272- X ((82 X 87 - m2)31 + (81 X 89 - m1)82)

(182) ms =

These conclusions give rise to the following definitions.
Sgn 9. —.‘?1 X ?2 sgn: o iff 2(53), 3(1), 3(8)
Sgn 10. 5’1 x 55 sgn: (8, m) with

(183) 8= 8; X 83,
' - X 822
(184) m = él—)-(% % ((sz X 31 m2)31 + (81 x 83 ml)sq)

iff (20), 5(1).
Df 10. 51 x 5, is called the vector product of 5°; and 5.
-Pr 55. 2(53) imply: 5"y x 5’3 exists iff 51+ 72 exists. -
Dm. Sgn 9, Sgn 10, Pr 7.
Pr 56. (130) imply: 71 x 7 exists.
Dm. Pr 55, Pr 44.
- Pr 57. (31) imply
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(185) ) ?1 X ?2?3:‘ ?3 X?g,‘?l,

provided the vector product exist.
Dm. Two cases are possible: -

(186) . . T,=7 | o (1gvs3)
or ,
(187) T £ & (v=1,2,3).
If (186), then both sides of (185) are zeroes (é Sgn 2, Sgn 9, 3 Pr 5, 3 Pr 26,
. Q.(IST); then the following subcases are possible:
(188) 1| T
or
"(189) 2P
or
(190) = F, A Fup (v=1,2).

Let (111) hold.

If (188), then 81 X 82 = o (3 Sgn 1) and (187) imply 81 = A8z (A € S). Besides,
the left-hand side of (185) is zero because of Sgn 9, Pr 54. Now if (189), then the
right-hand side of (185) is zero too by the same reasons, hence (185) holds. If

T2 | 73, then 53 A 5’3 by the assumption that 55 x 5’3 exists (Sgn 9, Sgn 10),
and Sgn 10 implies 3’2 X 73 = (82 X 83, m) with an appropriate m € V. Hence
FaX 83-81=283X83-(A82)=0(Sgn 7, 1Pr7),ie. (185) holds again.
In the same way it is proved that (185) holds in the subcase (189) of (187).
Let now (190) hold. Then Sgn 10 implies

(191) ?1 X ?2 = (81 X 83, p), ?2 X ?3 = (82 X 83, q)
‘with appropriate p, g € Vs. Now (191) and Sgn 7 imply
(192) : ?1)(?2'?3:81)(82-83,_ ?2)(?3-—3'}1’:.'92)(83-81

and the validity of (185} is a direct corollary of (192) and 1 Ax 13S.
Pr 58. (111) — (113), 5(7), s € Vs,

(193) T =(s,rXx8)

imply
194)  FTeL(F.),

Dm. (111) — (113), 5(7) imply (116) and s € Vs, (112) imply
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3
(195) 8= Z(s.s;'l)s,
v=1

(1 Pr 30). Now (195) implies

»
»

3
(196). rxs= Z(s;ls)r X B

v=1
(1 Pr15,1Pr 13,1 Pr 17, 1 Ax 8S) and (196), (116) imply

3

A(197) X = Z(a;ls)my.

v=1
Then (193) (195), (197), (111), 2 Sgn 7 imply (162) with
(198) A, = ss; ! (r=1,2,3),

whence (194) (Sgn 6).

Pr 59. (111) — (113), 5(7), (194), 2(2) imply (193).

Dm. Sgn 6 implies: there exist (118) with (162), and (162), 2(1), (111) imply
(164). The first relation (164) implies (198) (1 Pr 24). Now (198), (116), and the

second relation (164) imply

3 3
(199) m= E(s;’ls)r X 8 =7 X Z(ss;l)s,, =rx.s
v=1

v=1

in view of 1 Pr 15, 1 Pr 13, 1 Pr 17, 1 Ax 8S.
Pr 60. (111) — (113), (130) imply

(200) 1 x T2 € L(F0)ioy.

Dm. The existence of @1 X 7 2 is proved in Pr 56. Let

(201) Ty =T 1) : (r=1,2).
Then (201) and Pr 59 imply
(202) n,=rx7, ‘ . (v=1,2),

7 being defined by 5(7).
Two cases are now possible:

(203) T X02=0
or
(204) 01 X 09 :/—' 0.

If (203), then _&"1 | @2 (3 Sgn 1). The supposition @y 1| 72 is wrong.
Indeed, together with (201) it implies
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(205) 1+, =0,» Ny AN #o

(3 Sgn 7). Now the first relation (205) and (202) imply n, " ny, =7rX (0'1 -+ 0-2) =
rXO0s o0, contrary to the second relation (205). In such a manner, 7'y 11 72,
whence o) X T3 = 0 (Sgn 9), i.e. (200) holds good in the case (203) in view of

Pr 45.
If (204), then @1 A T2 (5 Sgn 1), since (202) 1mply

(206) O1m2+ 0L =01, T X0+ T2 TXTL =7 X02:01.+7 X T 02

=7r-09 x'&'1+r-’o"1-x32=r-('(_f2 XG1+0 Xo2)=r0=0
(1 Ax 85, 1 Pr 8, 1 Pr 13). Now (201), (204), Sgn 10 imply
(207) ?1 X ?2 = (?fl X ?2, n) : .
with

01 X 02

(208) n = W X ((-&—2 X .5"1 = nz)_o-'.l + (El X b'-z nl)Eg) .

On the other hand, (201), (202) and 2 Sgn 4 imply S
(209) | r» Zdir 7, | e : .(u =1, 2)
Now @1 A 72, (209), 5 Pr 31 imply |

(210) r:%gb’y"l X n,

provided

(211) O3 = 01 X 02,

(212) nj = (n; 5 x T1)F ! 4 (ng - T x 71)F !

At that, (210) satisfies

(213) rZ dir(73, n3),
ie.
(214) ST = B

Now (211), (212) imply

(n1 - 09 X (—7'3.)(5"2 X (5'-1 X 3'_2)) - (ng -0y X 31)((31 X 32) X 'a‘l)

(-51)('0_")2 ’
Le.
G WINPT T n
(216) ng = W X ((02 X 0y 'ng)dl +((71 X 05 'n‘l)dg),
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and (208),(216) imply

(217) n=ns.
Now (211), (214), (217) imply
(218) . rx (@1 xT)=mn,

and (207), (218), Pr 58 imply (200) in the case (204) |

Sch 4. The following remark may be useful in the capacity of an economizer
of technical and intellectual work. » ,

As it is immediately seen, two different definitions are given of the vector

product 5°; x 52 (when it exist:} of two arrows &; and~5 3, namely Sgn 9
and Sgn 10, in-accordance with tne mutual disposition of 5'; and 53 whether
51| F20r ;3 A T2 This distinction may be avoided by virtie of Pr 58 and
Pr 59. Indeed, if » denotes the intersecting point of the directrices of the arrows
5’1 and 8’7 in the case 3y A 52 (i.e. r is defined by 5(7) provided 5(8), 5(9),
see 5 Pr 31), then 5, X §'; may be defined by means of the relation

(219 F1X T2sgn: (s x-sé, r X (31 X 82)),
as it ‘has been shown in the proof of Pr 60. Now the same relation (219) may be
used in the case 51 | 52 too, 7 denotmg in this latter case an arbitrary vector.
Indeed, if 3, | 572, then 3’1 x 52= 0 accordlng +to "on 9; the rlght-hand side
of (219) is, however, also equal to @, since 8y X 83 = v, in view of 3Sgn 1.

To summarize 51 X 5 3 may be deﬁned by means of- (219) with 5(7) if s 1/\ 52

andw1thanyr1f 51| %

" 'Sch 5. In order to manifest the effectiveness of the “new deﬁmtlon” (219), let

us prove, by its aid, the relation (185): we know, from the proof of Pr 57, that its

direct deduction of the basis of Sgn 9. and Sgn 10 1s a rather con:, hca.ted one.
"And so, let (111) hold. Then, accordmg to (219)

(220) ‘ ¥y 1 X S 2 = (31 X 83, 1 X (31-)( 32)),
(221) § - ?2 X FS-+3 = (82 X 83, P2 X (32 X 83)).

At that, »; is any vectorif 5y | 52 and it is defined by the conditions »; Z dir 5,
(v =1,2)if 3y A 52, similarly, 7, is any vector if 55 | '3, and it is defined
by the conditions 7, Z dir 5, (r=2,3) if 3, A 5.

Now (220), (221), (111), and Sgn 7 imply
(222) ?1 X ?‘2 -'?3 = (31 X 32, ™ VX (81 X 82)) . (83, ma)‘z 81 X ‘82 + 83,
(223) | ?2 ‘X _.?3 --?1 = (82 5(‘83, T2 X:('82 X 83)) . (.?1, ml) =.32 X 83 - 8;{,

and (185) is implied by (222) (223), and 1 Ax 13S.

Pr 57 has been proved directly above in order to afford an opportunlty for-a
parallel between the two approaches. Some abridgements in the proofs of Pr 44,
Pr 46, etc. are also posible, on the basis of Pr 58 and Pr 59. :

' Pr 61. (111) — (113), (168) imply - :
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(225) 7, =, rx7,) (r=1, 2 3),
r being defined by 5(7) (Pr 59). Then, according to Sch 4, the relations

(2.26) » ?1 X ?2 -"-’-(-0—'1 X T, T X (3-"1 X t_'fg)),

(227) (T % T2)x T3 =((F1 x T2) x T3, * x ((T1 X T2) X 73)),

hold good. At that, the left-hand sides of (226), (227) exist by virtue of Pr 56.
On the other hand, (225) and Sgn 7, 2 Sgn 7, 1 Pr 17, Pr 21 imply

(228) (7173) T2 — (T273) 71
= (7,73)(F3, r X T3) — (7273)(F1, 7 X Ty)
= ((173)72, T x ((3173)72)) — ((7273)F1, 7 x ((7273)71))
= ((7153)T2 — (7203)71, r X ((F173)72) — (7273)71)) .

Now (224) is a direct corollary from (227), (228), and 1 Ax 14S:

Pr 62. L(73,)3., is a standard vector space over S with respect to the
addition in W, to the multiplication 2 Sgn 7 of the elements of S and W, to the
scalar multiplication Sgn 7 of the elements of Ws, and to the vector multiplication
Sgn 9, Sgn 10 in W5s.

Dm. Pr 45, Pr 46, Pr 54, Pr 56, Pr 57, Pr 61, and 5’; x 52 # @ (Sgn 10).

Sch 6. A comparison of the present paper with the article [1] at once displays
the complete analogy between the real and the complex algebras of arrows.

Further developments exposed in [1] will not be extended here for the complex
case. They concern mainly the associativity of addition of arrows, as well as some
facts about incidence of poles and arrows and metrical relations (distances, etc.).
- Some questions about incidence of arrows and planes are also omitted here, since
they concern mainly systems of arrows.

In the third part of this series of articles dedicated to the algebraic theory of
arrows finite systems of arrows will be discussed.
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ON THE COVERING RADIUS OF SOME BINARY CYCLIC
. o CODES .

EVGUENIA VELIKOVA

Escenus Beauxoea. PAIMYChI MOKPHITHA HEKOTOPBIX IBOMYHBIX LIMK-
JIUUHBIX KOO OB, PaccmaTpuBaloTca ABOUYELIE. UMKAMYHBIE KOAR AMHEL 7 = yv, Ko-

TOpHE NONYYAIOTCA CHeayOmMMUM pa.sﬁnenneM ‘MHOrOuJIeHa a:"" = &= (a:: - 1) (-—ﬁl)
bs (%—T) fi (:z:) re u MU — HeUeTHHE B3aMMHO MPOCThIC YHCIA. ;ﬂnn ®THX KOZOB Of-

peZieleHH PafMyCHl noxpu'nm (;wa ABYX M3 HAX — 'ronuco aepxnss M HWKHAS I‘pa.ilﬂ'l.lbl
pa.,zmyca.) 152 G . i :

Evgucma. Vehkova ON THE COVERING RADIUS OF SOME BINARY CYCLIC CODES
The binary cyclic codés of léngth u = uv obtained by the factorization x%%: — 1 ‘= {z . 1)

X ("": - 11) (1’::11) fi(z), where u a,nd v are odd relatively prime numbers’ are censidered.

For these codes we find the covenng rachu.s (for two codes only upper and lower bound on covenng
radms) o 5 v ; :

In this paper we study the problem of finding the covering radius of some
binary cyclic codes.. Let C be an:[n, k] binary linear code and with F denote the
field with two elements F»= GF(2). The covering radius R = R(C) of C is the
smallest integer, such that any vector of the space F” is within Hamming distance
R from some code word. The covering radius of cyclic codes of length up to 31 are
given in[1] and the covering radius of cyclic codes of length 33, 35 and 39, without 3
codes, are given in [2]. The codes, considered in this paper, are some blnary cyclic
codes of length whlch 1s a product of two relatively pnme odd numbers

i

" *This paper was partially supported by the Bulganan Comlttee of Scumce under cqntract
37/1988.
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Let u and v be odd integers, such that ged(u, v) = 1 and v < v. We consider
the binary cyclic codes of length n = uv, obtained by the following factorization:

W +1= fﬂ(z) . fl(z) ' fu(z) 'fu(z):

where
Jo(z) = z+1, .
— u—1_ _3u+1
f U(z) = Zz + +z + 1 - z+ 1 ’
v
fo(z) = 2+ dz+l= -E—f—ll
z¥’ + 1
) = -
1@ = 5@ e @
Table 1
In other words we consider only the codes Cade den.er PR I——
which generator pelynomial is a product , :
of some fo(z), fi(z), fu(z), fu(z). For 1 91(z)=f1(z) fu(z)
eagh twtr.o ll:'uTPe;S udaind 11;1 the:‘le a}l:',e é? Ca 92(2)= fo(z) f1(z) fu(z)
codes of this Kind and let the codes be C; C = !
and g;(z) be the generator polynomial of ’ gs(z)=f1 (z)/s ()
code C;, as they are given in the Table 1 Cs 94(2)=o(2) f1(z) fo(2)
and R; be the covering radius of code C;. Cs 95(z)=fo(z) fu(z)
Some of these codes have a parity ' 96(2)=fo(z)
polynomial which divides z* +1 (s = u -
or s = v) and these codes are composed “ i) :fo(x)f"(z)
of some repetitions of (in our case) F* Cs 98(z)= fu(z)
or E, (E, is the [s, s — 1, 2] even weight Co g8(z)=f1(z)
code). For such codes we can calculate Cio 910(2)= fo(2) f1(2)
their covering radius using [3]. In this & = '
way we obtain the covering radius of the u 911(2)=fo(2)u(2) fo(2)
following codes: C1z 912(z)= fu(z) fo(z)

— g1(z) = fi(z)fu(z) and C) is [uv, v, u] R, = iﬂi;ﬂ code and C) is u

repetitions of F,

— g2(z) = fo(x) fi(z) fu(z) and Cais [uv, v—1, 2u] Ry = 1+ L&~ : code and

Cs is u repetitions of E,,

— g3(z) = fi(z)fu(z) and C5 is [uv, u, v] Rs = M code and Cj is v

repetitions of F,

— g4(z) = fo(z) fi(2)fo(z) and Cy is [uv u—1,20) Ry =1+ —1—2——2 code and

C, is v repetitions of E,.
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We will use the following.obvious proposition:

Proposition 1. Let C be an [n, k] binary linear code. If H = (h; ... hn)
is a parity check matnx of C, then R(C) is the smallest integer, such that every
nonzero vector of F™~* ig a sum of at most R columns of the matrix H, i.e.

z=hiy+--+h,, tSR Vee P\ {o).

If H has repeated columns, then only one of this columns can be taken for the
calculation. Therefore, using this proposition we can calculate the covering radius
of the codes dual to Cj, .. C4 and namely the covering radius of the following
codes:

— g5(2) = fi(z)f.(z) and Cs is [uv, v —v,2) Rs = v coc‘ie‘and Cs is the dual

1y

— 96(2) = fu(z) and Cé is [uv, wv — v +1, 2] Re = L5-1 code and C is *he

dual to C», &
— g-.r(z) fo(z)fu(z) and C7 is [uv, uv — u, 2] R7 = u code and C+~ is the dual
to 03,

— ga(z) = fu(z) and Cg is [uv, v —u+1,2] Rg = -1-‘—'2'—1 code and Cjy is the
~ dual to C4.

The minimum distance of each of the rest four codes is glven by the following
theorem:
" Theoreml. i)If go(x) = fi(z) then Cy is a [uv, u+v—1, u] code and Cy
has a weight enumerator

3(u-1)

A(z) = Z ( ,:,‘z )(zzi +zu-2i)v,

t=0

ii) If g10(z) = fo(z)f1(x), then Cyo is the [uv, ,u+ v — 2, 2u] code,

i) If g11(z) = fo(z)fu(z)fo(z), then Cy; is the [uv, ,uv — u — v+ 1, 4] code,

iv) If g12(2) = fu(z)fo(2), then C) is the [uv, ,uv —u— v+ 2, 4] code.

Proof. i) The code Cy contains the code C) which is u times repealed\ ™,
well as the code C3 which is v times repeated F“. Cj is generated by the words
z;,i=1, ..., u with support X; = {i, i+u, ..., i+(v—1)u} and C; is generated
by words y;, =1, ..., v with support Y; = {4, s+ v, ..., 7+ (u—1)v}. We can

arrange the coordinates {1, 2, ..., n} in a u X v matrix
1 ... %o
S T
1u.1 P 1,_",
such-that i,; = i,,(modu) and i,; = ig(modv). Then the words z;, i =1, ..., u
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0 0 0 1 0
Mz=|1 - 1| — ithrow, y = R TR, f
0 0 0 . T
© j—th
“column
The word, which is a sum of ¢t words of z;, i = 1, ..., u and s words of y;,

j=1,..., vhas a weight ¢{(v — s) + s(u —t) and in this way we obtain

. 1(u-1) :
N S L

¢ceCy 1=0

and the minimum distance of the Cy is equal to u. ‘
ii) The code Cip is the even weight subcode of Cy and the minimum even

distance in Cy is 2u. |
iii) The generator polynomial of code Ci; is g11(z) = G +$12£:c a2 1) )

the word (z + 1)g11(z) = z¥* + 2% + z¥ + 1 belongs to the code Cy;. Therefore

d11 £ 4 but- Cy; is the even weight code and its dual code Cy is not a repetltlon

code, hence d;; = 4. We can compute the weight enumerator of C usmg the
Maanlhq,ms equations (see [4, p. 127)). The weight enumerator of Cy; is

z) - Z z,wt(c)

¢€CH
) -
— 21"""" Z ( ;t )((1 —..Z)?_Zi(l + Z)Zi § (1 - z)2§(1 + z)u—Zi)‘" ,
T i=0 ' ‘

iv) The code Cipisa self-complementary and its even weight subcode is Cy;.
Hence the minimum distance of Ci2 is equal to min{4, uv-— t},

where ¢ is the maximal weight of C;;. But the weight enumerator B(z) of code
" Cyy has degree less than uv — 3. Hence d;, = 4.

The bounds on the covering radius of the codes Cy and Cyg are gnen by the
following theorem:

Theorem2. i) Let vy = v— l2“" J 2“ =1 (v, is the remdual ofvmod2"“1)

and v; = Z(,)+t where 0 S ( +1). Then the code Cy with a
=0
generator polynomial gg(z) = fi(z) has a covering radius Ry, where

3(u-1)

l?“ti-lj Z (?)i+§('1;)i+t(r+l)§R9§ lzuv_l %(iil)(;‘)iJ,.

i=0 1=0
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ii) The code Cyo with a generator polynomial g;o(z) = fo(z)f1(z) has a cov-
ering radius Rjo where Rg + 1 S Rio S Ro+u—2.

Proof. i) If we arrange the coordinates in a u x v matrix as in the proof of
Theorem 1 i), then the words z;, i = 1,...,uand y;, j = 1,..., v from (1)
generate the code Cg. Let I;, j = 1, ..., v be the block of coordinate places on
the j-th column in that matrix. Then the word with support I; belongs to Cs.
From each block I; we take away the element, which is on the.last row and from
the parity check matrix H of the code take away the columns with this numbers.

In this way we obtain new blocks 1':; and matrix H. The code C with the parity
check matrix H is [uv — v, u — 1] code and it is generated by the words

| =< B
i " .
e ;

Then we can apply the upper bound on the covering radius of self-complementary

$(u-1)
code from [3] and obtain that Rg £ F:;— . ( 1: ) if.
i=0

The lower bound on Ry is constructive. Let us consider the word a € F“" We
take b;;—rJ copies of each column of length u and weight no exceeding —2——- and

the other v; = v— l J -2¥=1 columns are distinct and have the minimum possible

Cae

j(u-1)
weight. The word a has a weight w = [F’TJ ( ; ) i+ Z ( j ) i+t(r+1)
s—O :

=0
and it is a leader, of the coset a + Cy. Hence Ry 2 ‘

ii) The code Clo is the even weight subcode of Cg and then Ryp 2 Ry + 1 (see
[5]). Let z be a leader of coset of Cy and

and let z* # 0. The the words (2!, ..., z, ..., z%) and (2!, ..., T, ..., 2") belong
to the distinct cosets to Cm and they have welght w= wt(z) and wy £ w—14u-1=
w4 u-—2. Therefore, Rigc S Ry+u-—2.

Corollaryl. When u = 3 then Ry = l_%’{l and Rio=1+ l%‘ij

This corollary follows from the fact that the upper and lower bounds on Ry
and R, from Theorem 2 are equal.

Theorem3 The code C;; with generator polynomial g1;(z) =
fo(z) fu(z)fu(z) has a-covering radius Ry; = v.

Proof. The coefficients of the generator polynomial of this code are g;;:
11::: 10, 0 ..1 and then R;; £ R* = v, where R' is the covering radius of

v—u u

[u + v, 1] code generated by the vector 911 (see [3]) a Cy; is a subcode of code Cs
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with ‘Rs = v. Then from the Supercode Lemma [5] follows that Ry; 2 v. Hence
R1 1=1U.

The covering radius of the code C}3 is obtained using the Proposition 1, as it
is given in the following theorem:

Theorem4. The code 6’12 with a length n = uv, u < v generator polynomlal
g12(z) = fu(z)fu(z) has a covering radius

Lig — i 1oy —
Rip = s(v-1) if < s(v-1),
v if 7(v—l)<u<v.

Proof. This code is dual to code C1o. The code Cyg contains the code C5 which
is u repetitions of E, and code C4 which is v repetitions of E,. Therefore a parity
check matrix of code C}5 is equivalent to

(1.--1 0---0 g::.B]2 --1\
(I | R R | P
. 10---0 E E &
Bl . . . Lo o (hhahn ) _ (Hy
: : e 5 : h{hy .- h H,
: : 0---0 :
.-0]0---0f  j1---1]1-.-1
- T =] L T/

1 0 0-1
£ 01 0 1 )
00 1 1

Let y = ( g; ) be an arbitrary syﬁdrom of the code Cy2 and ¥, e' Fr-l gy €

F¥=1 Let ¢; and ¢, be the smallest numbers such that y;, i = 1, 2 is the sum of ¢;
columns of H;. Then y; can be represented as a sum of {; + 2m columns of H; if
we add m pairs of equal columns of H;. There are two cases:

a) t; = t5(mod2) and let ¢t = max{t,, t2}. Then y, and yz can be represented
as a sum of ¢ columns of Hy or Hj respectively: y = h’ o h:‘ and yp =
h;": Forn oo h}, and we obtain that:

’ h[ hl
(z;) (h:f)'f' +(hu‘)
o ' v—1.
3 ) is a sum of ¢ columns of H and ¢ £ g

b) #; # t2(mod2). Then t} = u—t; and 1fy2 = hf +--+h,_,

the sum of the other t5 columns of L, because E hi = 0. Therefore t5 = tl(mod2)

i=1

and

then y, is equal to
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and (as in the case a)) we can obtain that ( g; ) is the sum of ¢t = max{t;, t5}

columns of.H. We have t; < T and t5 £ u, hence t £ ma.x{——2— u}.

In this way we obtain that Rz < ma.x{—2— u} On the other hand, Ry 2

9—2—1 because the covering radius of the code with parity check matrix H, is equal

to ¥ —2— and R;; 2 u because the vector y = ( g; ) withy; = (1,0, ..., 0)T and

yo = (0, ..., 0)T is the sum of u and no less than u columns of H. Therefore, we
obtain that Ry, = ma.x{l’—-a-l, u} which is equal to

Ry = v=1) if uwZi(v-1),
u if Z(v-1)<u<ow.

This paper was presented in part at the Initernational Workshop on Alubralc
and Combinatorial Coding Theory, Varna, Bulgaria '88 — [6]
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INTRODUCTION TO AN ALGEBRAIC THEORY OF
ARROWS, III

IVAN CHOBANOV

. meclianica rationalis erit scientia motuum,
qui ex viribus quibuscunque resultant, et virium
quae ad motus quoscunque requiruntur, accurate
proposita ac demonstrata ¥ .

. Vo
Isaac Newton: Philosophiae Naturalis Principia
Mathematica (Auctoris praefacio ad lectorem)

Haax Yobaxos. BBEIEHUE B AJITEBPANMYECKYK TEOPHUIKO CKOJIb34-
HIUX BEKTOPOB, III. 9Ta pabora asaserca TpeThell UACTBIO CEPMM CTaTbel, mOCBe-
HeHHBIX anre6panueckoif TEOPMM CKONB3AIIMX BEKTOPOB, NepBHe ABe yacTH [1, 2] KoTopoik
ony6nuxoBanul B eToM Eaxcezoonuxe. OHa 3aHMMaeTCA TIABHHM 06pa3soM KOHEUHHIMM CHC-
TeMaMM CKOJIb3AHIMX BEKTOPOB B KOMIJIEKCHHX CTAHAAPTHEX BEKTODHLIX TPOCTPAHCTBAX,
B YACTHOCTHM, MJM B CTAHAAPTHHX BEKTOPHHIX NPOCTPAHCTBAX Haj KOMIJIEKCHHIMM pac-
IIHPEHUAMYU TPOM3BOJNLHHX YNOPAAOUEHHHX NoAAxX, B o6mem. OnpelseneHus eTYX HpocT-
PaHCTB, & TaK¥Ke HEKOTOPHE OCHOBHLIE MOMEHTH MX anre6p, NpHMBedeHH B BBOAHYA YacCTb
ctaTbM [2]; Ana 6onee NoAPOGHOrO O3HAKOMJIEEMA B ©TON CBA3M UMTATENO PEKOMMEHRY€ET-
ca craTha [3] unu kuura [4). 3ameuatensHo, YTO He HaBNMIOAAIOTCA HHKAKME CyIECTBEHH bie
PACXOXKACHHMA MEXAY PealbHEMM M KOMIJIEKCHEIMM CAY4YaAMH anrebp CKONb3ALIMX BEKTO-
poB. TeopeMa o paHre MrpaeT Ty ke CaMYIO HEHTPAJILHY O POJib B TEOPUM KOMIJIEKCHEIX
CKONB3AMMX BEKTOPOB, KAK ¥ B TEODHM DeaJIbHLIX. ,

Ivan Chobanov. INTRODUCTION TO AN ALGEBRAIC THEORY OF ARROWS, III.
This article is the third part of s series of investigations on an algebraic theory of arrows or
sliding vectors, the first two parts [1, 2] of which are published in this Annual. It is dedicated
mainly to the finite systems of arrows in complex standard vector spaces or, more generally, in
standard vector spaces over the complex extensions of arbitrary ordered fields. The definitions of
these spaces, as well as some basic moments of their algebras, are given in the introductory part
-of the article [2]; for a more detailed exposition in this connection the reader is referred to the
paper [3] or to the booklet [4]. It is remarkable that no essential divergences are observed between
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the real and the complex eases of arrow algebras, The rmk-theorem plays the same central role
in the theory of complex arrows as in that of the real ones. i

This article is the third part of a series of investigations on an algebraic theory
of arrows or sliding vectors (vecteurs glissants, glestende Vektoreu, CXOABITUUE
sexmopu), the first two parts [1, 2] of which are pubhshed in this Annual. The
definitions and mnotations from [2] are systematically used in this third part, the
following manner of quotation being adopted (the example is a ficticious one):
notation 1, axiom 2, definition 3, proposition 4, scholium 5, and relation (6) of §7
of [2], for instance, are cited here by [2, 7 Sgn 1] [2, 7 Ax 2] [2,7Df3),[2,7Pr
4],.{2, 7 Sch 5], and [2, 7(6)] respectively. In general, the exposition of the present
paper is an immediate continuation of the exposition of the second part [2] of the
series in questlon

This article is dedicated mainly to the theory of finite systems of arrows in real
and complex standard vector spaces, in particular, and of standard vector spaces
over ordered fields and over the complex extensions of such fields, in general. As
it has been emphasized in [2], the definitions and the basic algebraic properties of
the standard vector space V over the ordered field F' and of the standard vector
space Vg (r) over the complex extension C(F) of F may be found in the article [3],
as well as in the booklet [4]. In any case, a brief account in this connection is given
in the introductory paragraph (§1. Praeliminaria) of [2], where.the notation Vs is
used in order to reduce the real case S = F, as well as the complex one S = C(F)
to a common denominator.

In order to simplify references and to ease the exposmon some most fun-
damental notations from [2] are reproduced over ‘again here. Such cases are, by
the way, extremely rare: as a matter of fact, they are exceptions made in case of
emergency. ' |

Since the main, if not exclusive, domain of applications of arrows is proposed
by analytical mechanics, kinematics as well as dynamics, and since the analytical
mechanics deals predominantly, if not exceptionally, with finite systems of arrows,
our interest will be focused on such systems in the main. In other words, we shall
consider sets consisting of a finite number of arrows. Since the properties of such
sets depend exclusively on the properties of the single arrows, it is quite natural to
fix our attention on the latter. This has been done in [2], where the following basic
definition has been adopted.

Sgn 1. Ws sgn: {(sm)eV?: s#0, sm=0or s =m =o]}.

Df 1. The elements of Ws are called S-arrows or arrows in Vs.

Df 2. Any set

(1) —s" = { § l’}yzl
of arrows
(2) T, EWs (v=1,...,n)

is called a (finite) system of S-arrows or of arrows in Vs.
Sch 1. For the sake of brevity (1) is usually called a system of arrows, S and
Vs being implied by the context.
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Sgn 2. Xg sgn: the set of all finite systems of S-arrows.
Df 3. The vector

(3) : 8= st
v=1
provided (1) and

(4) ?v=(3u;mv)€WS -. | (v=1,...,n)

is called the basis of 8.
Df 4. The vector

n

(5) m= Zm.,

provided (1), (4), is called the moment of s .

Sch 2. In the light of Df 3, Df 4, as well as of [2, 2 Df 2, 2 Df 3], it is clear,
that the basis and the moment of a system of arrows are the sums of the bases
and of the moments respectively of the particular arrows composing the system in
question.

Sch 3. Whereas there is a certain dependence between the basis 8 and the
moment m of a single arrow 3, as it is seen from Sgn 1, there is no compulsory
relation between the basis (3) and the moment (5) of a system of arrows (1). In
other words, the vectors s and m, defined by (3) and (5) respectively, may be
completely arbitrary. It may be proved that for any couple (s,m) of S-vectors s
and m there exists one at least (infinitely many, as a matter of fact) systems (1) of
arrows (4) for which the equalities (3) and (5) respectively take place. In particular,
there exist systems (1) of arrows (4), for which (3) and (5) imply sm = 0, as in
the case of a single arrow, but there exist also systems for which sm is equal to
any value in S.

Sch 4. Similarly, whereas the basis s and the moment m of a single arrow &
determine it completely by virtue of the definition

(6) 7 = (s, m),

the basis s and the moment m of a system of arrows. 5, by no means determine s,

unanimously: as it has been mentioned above, there are mﬁmtcly many systems of
arrows with the same basis and the same moment. In such sense, the notation

(") 3, =(s,m),

similar to (6), is void of meaning. It is convenient, however, to mtroduce the
following notation.
Sgn 3! s (s m) sgn: 8 aud m are the basis and the moment respectively of

the system of arrows s .
L -
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Sch 5. As it has been manifested ,_in (2], an extremely:importaht attribute
of an arrow 5 is its r-moment, denoted by mom,s" and defined in the following
manner. If
(8) ¥ e VS:

(9) T =(s,m) € Ws,
then by definition

(10) mom; s =m+s X 7.

In the same way, the notion of r-moment of a system of arrows EX, denoted by
momy § plays an extremely important role in the theory of the systems of arrows.

It is introduced by the aid of the following definition, which is complete imitation

of the definition (10).
Sgn 4. mom; s sgn: m + 8 x r iff (8) and

(11) _i(s, m) € Lg

Df 5. momy, s is called the r-moment of s or the moment of s with respect
— : - - —

to r.
Df 6. r is called the pole of mom; .

Pr 1. (4), (1), (8) imply . ~
(12) momy § = Zmomr?,,.
; ' v=1 ’

Dm. By definition
(13) momy 8, =m, + 8, X1 ¥=1:...,n)
Now (13), (3), (5), Sgn 4 imply

n

n n
(14) Zmomr?,,=z-m,,+23yxr:rh+sxr=momri.

v=1 v=1 v=1
Pr 2. (11') implies m = mom s,.
Dm."Sgn 4. , " _
Pr 3. (11) implies: momr 5 is invariant with respect to 7 iff

(15) s$=o.

Dm. If (15), then Sgn 4 implies mom; 5, = m for any (8) .
£t mom; s be invariant with respect to the poles (8), i.e. let

(16)-© ~ momys =mn
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for any (8). Sgn 4 and (16) imply

(17) ‘m+sxr=n (r € Vs).
e _

(18 eV | (v=1,2,3),
(19) | | f1X1'-2+7'2X‘l"3-F1'3Xf1¢0. ‘ '

Then (17), (18) imply

(20) P—— S =123
whence - ' |

(21) sx(r,—rz)=o0 (v=1,2).
The relation (19) is equivalent with .
(22) (‘!'1 = 1'3) X (1‘2 — ‘P3) # 0.

The system of vector equations (21) with (22), where s is unknown, has, according
to [2, 1 Pr 29), the only solution (15), ¢. e. d.
Pr 4. (8), (11) imply

(23) 8 -mom; 5 = sm.

Dm. Sgn 4.
Sch 6. The relation (23) displays that the scalar product s - momy s is in-

variant with respect to the pole r of mom,; 8. This important fact is an analogue
of [2, 2 Pr 5] and deserves a special attention.

Sgn 5. I( s ) sgn: sm iff (11).

Df7.1(s)is called the first scalar invariant of 5.

Sgn 6. II(s) sgn: - &1 iff (11) and

(24) s #o.

Df 8. II( 8) is called the second scalar invariant of 3.

Sch 7. The analogue of the notion of directriz of a smgle arrow [2, 2 Sgn 4]
is played, in the theory of systems of arrows, by the so-called azis of a system of
arrows. This notion is generated by the following considerations.

Let a system of arrows (11) be given and let the following question be put: do
there exist poles (8) for which mom, 8 are parallel to 7 (Naturally, this problem

is meaningless unless (24) is satisfied. ) The affirmative answer of this question is
equivalent with the assumptlon that the vector equation with respect to »:

(25) 8 X momy 8 = 0
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is consistent provided (11), (24). By virtue of Sgn 4, (25) is equivalent with

(26) sx(m+sxr)=o,
i.e. with
(27) (rxs)xs=mxs

in view of [2, 1 Pr 13]. New (27), (24), and [2, 1 Pr 32] lmply there exists a € S
with

s x (m x 8)

(28) rxs=as+ 2

A scalar multiplication of (28) by s implies

(29) as® =0,

and (29), (24), [2, 1 Ax 125] imply a = 0; therefore (28) implies
’ s x (m x s8) |

(30) TX8s= —7—'—'—

In such a way, if (8) satisfies (25) or, just the same, (26), then it must be
sought among the solutions = of the vector equation (30). We shall establish now
that any r satisfying (30) satisfies (25) too: any solution (8) of, (30) is; at the same
time, a solution of our initial problem (25).-

Indeed let (8) satisfy (30). Since [2, 1 Pr 16] implies

(31) | sx(mx8)= - s*m — - (ms)s,

the relation (30) is equivalent with

(32) m +8xr : (%i;-) s.

Now (32) and Sgn 4 imply

(33) mom; § = (%?;) s,

and (33) implies (25).

On the other hand, (30) is the equatlon of a hne l, if r is regarded as’a fluent
radius-vector. Consequently, all poles (8), for which the moments of the system of
arrows 8 are parallel to the basis s of s, are located on the line (30). This line is

‘called the azis of .

Let us now formalize this conclusion.
Sgn 7. ax s sgn: | with

(34) (s, M) &1,

82

132



iff (11), (24). _

Sch 8. The meaning of Sgn 7 is disclosed by the aid of Sgn 4 of §1 (p.86) of
the article [5].

Df 9. ax 8, is called the azis of 5.

Pr 5. (11), (24), (8),
(35) rZ ax 8

imply (33).
Dm. Sgn 7 and Sgn 1 of §4 (p. 117) of [5] imply that (35) is equivalent with
(30), which on its part is equivalent with (32). Now (32) and Sgn 4 imply (33).
Sch 9. The following proposition discloses why ax s is an analogue of dir 7,
as it has been mentioned in Sch 7.

Pr 6. If-
(36) O #£F €Ws,
(37) =17},
then
(38) ax s =dir 7.

Dm. (36), (6) imply
(39) s#o, sm = 0.
On the other hand, (37)-and Df 3, Df 4 imply (11). Now (11), (39), Sgn 7 imply
(40) (s, m) &ax s.
On the other hand, [2, 2 Sgn- 4] imply

(41) | (s, m) & dir 7,

and (40), (41) imply (38) by virtue of Pr 18 of §1 (p. 86) of [5]. -
"~ Seh 10. The following proposition displays that the moments of a system of
arrows have a minimal property for the poles located on the axis of the system.

Pr 7. (8), (11), (24), (35),

(42) PEVs,

(43) pZax s

imply

(44) (mom,-_.srl’)2 < (mom;,-_ar’)2 .
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Dm. Sgn 7 implies that (35) and '(43) are equivalent with (30) and

-, 8% (m x 8)

(45) ] Pxs | 2

respectively, and Sgn 4 implies that (30) and (45) are equivalent ivith'(.33) and

ms
(46) mom; 5, # (,—2) -
respectively. Let
(47 mom; 8§ = (T-f) s+7,

where, in view of (46),

- (48) 7 #o.

Now (47) and (335 imply

(49) mom; 8, = momr $, + 7,

and (49), Pr 4 imply

(50) 87 = 0.

‘Then (33) and (50) imply

(51) o -momy s =0,

and l(49), (51) imply

(52) (mom;,-i)z = (momri) ’ + 7.

At last, (52) and (48) imiply (44).

Sch 11. The same minimal property characterizes dirs’: let us remind [2,
2 Pr 8]. S . ' '
-Sch 12. If I is a line parallel to ax s, then all moments of 8, with respect to

poles incident with [ are equal between themselves. Indeed, let
(53) I ax s,

Then there exists a n € Vs with sn =0 and

(54) (s,mn) &l

If (8) is incident with [, then

(55) rXs=n.
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Now (55) and Sgn 4 imply-
(56) momy 5§ = m — n.

In such a way, the following proposition has been proved.
Pr 8. (11), (24), (54), (8), r Z I imply (56).

Sch 13. Another important property of ax 8 is dlsclosed by the following

considerations. Let

(87) r, €Vs k (p=1,2)
and 1ét | -
(58) dist(r1, ax s) = dist(rz, ax s ),

L.e. the end-points of 7; and 72 are at equal distances from ax s . Since

(59) dist(r,, ax ) = %

(v=1, 2), as Sgn 7 and Sgn 9 of §4 (p. 124) of [5] imply, (58) is equivalent to

@ [rre-txaY [, sminday

Now (60) and Sgn 4 imply

0 romne (2)0)'= (rome (%))

and 7(61), Pr 4 imply
o g < | 2
(62) (mc:m.:.1 s, ) = (mom,-, kA ) .
In such a manner, the following proposition has been proved.
Pr 9. (11), (24) (57), (58) imply (62)
Sch 14. The following proposition is an analogue of {2, 2Pr 9.
Pr 10. (11), (24), (8), (42), (35) imply
(63) mom;_g}:(r—-p)xe+(’—';—s) s.

Dm. Sgn 4, (30).
Pr 11. (11), (57) imply

(64) © momy, $ ~momy, 5 =8 X (r1 —73).
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Dm. Sgn 4. ‘ ‘ '

Sch 15. The relation (64) is called the connection between the moments of a
system of arrows with respect 16 two poles, and it plays a fundamental rolec in the
so-called statical-kinematical analogy, which will be discussed briefly below. The
connection (64) is a complete analogue of the connection between the moments of
an arrow With respect to two poles [2, 2(19)].

Sch 16. (64) implies

(65) $-momy, 5 =4-momy, § .

The inference (65) from (64) is; howefer, trivial in the light of Pr 4.
Pr 12. (57),

(66) 8, €Xs

imply

(67) (71— r2) -momy, 8 = (r; —r2) -momy, 5.
Dm. Pr 11.
Pr 13. (66),‘ (57),

(58) T # T2, . |

(69) S=P o S=C(P)

imply |

(70) (r1 - 13)° ‘momy, § = (r1 —73)° *MOM;, S .

Dm. Pr 12, [2, 1 Sgn 4].
Sch 17. The relation (70) gives expression of the fact that if (68) holds and
if (57) are different poles, then the projections of mom;, s (v=1, 2) on the line [

connecting them, i.e. on
(71) (1‘1 — T2, T2 X'T‘l) & I,

are equal.
Pr 14. (11), (18), (19),

(72) momy, 5 =n - (=123

imply (15).
Dm. (72), Sgn 4 imply

(73) m+sxr,=n (v=1,2,3)
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and (73) imply (21). Since (19) is equivalent to (22), the system of equations (21)
implies (15).

Sch 18. The condition (19) implies that (18) are non-colinear, i.e. there exists
no line ! with », Z I (v = 1,.2, 3). In such a manner, the basis of the system s

is certainly zero if there exist three non-colinear poles, the moments of kA thh

respect to which are equal. The inverse statement is trivial in the light of Pr 3.

Sch 19. Before we proceed further, let us make a brief remark of an ideological
character. The above exposmon rev’ea.ls the most important role the notion of
moment of an arrow plays in the theory of arrows. It would not be far-fetched to
state that both notions are genetically connected.

Indeed, an arrow 5 being given by (6), its »-moment is determined by (10).

On the other hand, (10) implies m = mom, 5, so that (6) may be written in the
form

(74) T = (8, momo 3.

In other words, a special r-moment of 5, namely its o-moment, takes part in
the very definition of 3 by means of (6). In other words, the arrow-concept is
unthinkable at all without the moment-concept. On the other hand, not a step could
be made.in the theory of arrows without the intensive exploxtatlon of moments. The
rank-theorem, the discussion of which lies yet ahead, i§ a brilliant illustration of
this assertion.

The general connection between a.rrow-concept and moment-concept being
once comprehended, a problem of cardinal importance arises at once, and quite
naturally at that. It concerns the logical possibilities for a formal, purely mathe-
matical, generalization of the arrow theory.

. As it has been emphasized at the very end of the introductory remarks of (2],
discussing in his Vortrag [6] the problem of the axiomatical consolidation of the
logical foundations of rational mechanics, Hilbert underlines that, in the course of
this process, “auch wird der Mathematiker, wie er es in der Geometrie getan hat,
nicht blo die der Wirklichkeit nahe kommenden, sondern iiberhaupt alle logisch
moglichen Theorien beriicksichtigen zu haben”. The real arrows (i.e. the elements
of Wgr) ”sind der Wirklichkeit nahe kommende” mathematical entities; the complex
ones are obviously not, to say nothing of the C{F')-arrows. And yet, maybe there
are other generahzatlons of the arrow-concept, for instance, in multldlmensmnai
Hermitean or, at least, Euclidean spaces?

This questlon is answered in the negative, and the main reason for this state
of affairs lies in the fact that the introduction of a fourth operation (vector mul- -
tiplication) in an Euclidean or in a Hermitean space with the most economical
requirement that 1t must satisfy the two only specific conditions [2, 1 Ax 138,
1 Ax 14S] inevitably reduces the dimensions of the spaces in question to 3 (with
the additional condition that this operation should not be trivial, i.e. that there
must exist two at least Euclidean or Hermitean vectors, the vector product of which
is different from zero). And this fourth operation 1s used most essentially in the
definition (10) of the moment of an arrow.

It is true that there are made efforts to generalize the vector multiplication
in multidimensional cases, but it is still a controversial point to what extent these
generalizations may be rated as not far-fetched ones.
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Sch 20. If G C Vs and a mapping
(75) TERRIE ¢ a3

is defined, then it is said that-a vector field over G is at hand. Now, a system of
arrows (11) being glven a vector field

(76) B Vs — Vs

is eo ipso defined, determined by the relation

(77) ~ p(r) sgn: mom T : . (r € Vs),
1.e.
(78) pr)=m+sxr : ! . (r € Vs),

by virtue of Sgn 4.
~ Df 10. The vector field (76) defined by (77) is called the moment field of s .

Sch 21. Let us regard the image u(Vs) of Vs through the mapping (78). By
definition, it is a set consisting of S-vectors. Now any set of vectors has a natural
characteristic, namely the maximal number of linearly independent elements of this
set. Since any four standard vectors are linearly dependent, this maximal number
may be 0, or 1, or 2, or 3 at most. After these explanations, the following definition

may be accepted
- Sgn 8. rank s sgn: the maximal number of linearly independent elements of

u(Vs) iff (11), (7).
Df 11. rank s is called the rank of 3.
Sch 22. The ra.nk of a system of arrows kA is, as it will be seen in the sequel,
a most important characteristic of 3. Therefore, a system of arrows kX being
given, the problem of the deterrmnatlon of rank s is a most actual one. The direct

application to this end of the definition Sgn 8 is, however, a very clumsy approach
to the goal. .

Indeed, let us get aware of the nature of this direct appllcatlon ‘What must
one do in order to determinate rank X s

To prove that rank s =3 means to find such three particular poles (18) that
momy, 8 (v =1, 2.3 are lmearly independent, i.e. : :

(19) momy, § X MOmy, § -momy, § # 0.

To prove that rank s = 2 means, first, to establish that momry s (v= 1,2 3)
are linearly dependent for any three poles (18), i.e.

(80) Momy, § X MOmy, § - MOMr, 8 =0

and second, to find such two, particular poles (57), that mom, 8 (v =1, 2) are
linearly independent, i.e. : ' : -
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(81) momg, 8 X mMoMy, 8 ¥ 0.

To prove that rank 8= 1 means, first, to demonstrate that mom;, 3 (v.=
1, 2) are linearly dependent for any two poles (57), i.e-

(82) mom;, § X momy, 8 = o;

and second, to find such a particular pole (8), that mom, 8 is linearly independent,
i.e.

(83) | momy 8, # 0.

At last, to prove that rank 5=0 means to establish that momy 8, is linearly
dependent for any pole (8), i.e.

(84) momr s =o0.

It is obvious that all these procedures cannot be assessed as a very attractive
mathematical task. They certainly require some amount of inventiveness. Therefore
it is quite natural to seek a certain Schablon that would permit to determinate rank
8 automatically, as the saying goes.

This Schablon is proposed by the so-called theorem of the rank of a system of
arrows (or, concisely, the rank-theorem). It consists in the following proposxt.xon

Pr 15 (the rank-theorem). If (11), then

(85) rank s =0

iff

(86) s=o, m = o;
(87) ~ ranks =1

.

(88) s=o0, m # o;
(89) rank s =2

" |

(90) 8 # o, sm = o;
(91) rank s =3

iff

(92) " sam=0.
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Sch 23. The following scheme proposes an abbreviated formulation of the
rank-theorem:
s$=0, m=o,
s=0, MFEO,
93 Edg =
(93) ran._i s#o0, sm=0,
sm # 0.

W N = O

. Sch 24. Two different proofs of the rank-theorem (93) will be given below.
Before proceeding to these, let us get aware of the meaning of Pr 15.

Let a system (1) of arrows (4) be given. Then its basis 8 and its moment m are
trivially determined by (3) and (5) respectively. Now, in order to determine rank
5., one must simply check up which of the cases (86), or (88), or (90), or (92) is at
hand. This is why the rank-theorem has been called a Schablon in Sch 22. Where
did the difficulties in the determination of rank 3, described in Sch 22, vanish?

The answer is: these difficulties are overcome, once for ever, in the proof of Pr 15.
First proof of the rank-theorem. Sufficiency. Let (86) hold. Then (8) and
Sgn 4 imply (84), whence (85) (Sgn 8).
Let (88) hold. Then (86) and Sgn 4 imply (83). On the other hand, (57) and
Pr 3 imply (82), whence (87) (Sgn 8).
"~ Let (90) hold. If (8), (35), then the second relation (90) and (30) (Sgn 7) imply

(94) rxs=m.

Let

(95) s € Vs , | w=1,2),
(96) 81X 82-83F#0, |

and let by definition

(97) r, =748, (v=1,2,3).
Then (97), Sgn 4, (94) imply

(98) momy, s =m+38Xx(r+s,)=sxs, (v=1,2),
whence

99) momy; 5 X momr, § = (8 X 81) X (8 X 83),

iLe.

(100)' momy; § X Moy, § = (8 X 71 - 82)s.

Now (100), (96), and the first relation (90) 1mp1y (81). On the other hand, if (18)
then Sgn 4 and the second relation (90) imply
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101 momy, § X MOMy, § - MOMy, §
. LS T2 S

=((rem —rim + 38 X ry-72)8)(m + 8 X r3).

Now (101) aiid the second relation (90) imply (80), whence (89) (Sgn 8).
At last, let (92) hold. If (8), (35), then (30) holds. Let (95), (96),

(102') ; 83 =38,

and let by definition .

(103) T, =71+8, . _— (v»=123).
Then (103), Sgn 4, (30) imply

(104) momryi:m—}-.sxr,,=m-{-3xv(1'.>&.9,,)=(T.‘;Ts)s-i-sxs_,,
| w=1,2,3) |
and (104), (102) imply
(105) mom;, § X momy, § - MOMry 8
= ((Z)sroxa)x ((F)o+exs) (7))

ms

:(32 )(sxsl sz)s
Now (105), (92), (96) imply (79), whence (91) (Sgn 8).
Necessity. The sufficiency of the conditions (86), (88), (90), (92) for (85), (87),
(89), (91) respectively once proved, the necessity of these conditions is trivial, since
they are mutually inconsistent.

Second proof of the rank-theorem. Necesszty Let (85) hold. Then Sgn 8
implies (84) for any (8) whence

(106) m=o

(Pr 2) and (15) (Pr 3). Now (15), (106) imply (86).
Let (87) hold. Then Sgn 8 implies that there exists (42) w1th

(107) momz 5 # o
and that (57) imply (82). If
(108) A= mom; 5,
then (82) implies

(109) - momr § X i =0

for any (8), and (109), Pr 2 imply
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(110) mxp@g=o0.

On the other hand, (109) and Sgn 4 unply
(111) (m+sxr) x‘p-o,

and (110), (111) imply

(112) _ (sxr)xf=o0

for any (8). If (24), then there exist (57) with
(113) Car )R vl o

Since (112) holds for Iany (8),

(114) (sx7,)XE=0 | v=1,2),
and (113), (114) imply

(115) 7 = o,

contrary to (107). This conmderatlon is due to the supposmon that (24) holds.
Therefore (15). Now Pr 3, Pr 2 imply m = 7, whence

(116) m # o,

and (15), (116) imply (88).
Let (89) hold. Then Sgn 8 implies that there exist 5, € Vs (v =1, 2) with

(117) momy, s X momg, s # o,

“and that (18) imply (80). If (15), then (64) implies
(118) momy, § = momg, §

.contrary to (117), whence (24). On the other hand, if
(119) m, = mom-ﬁvi | fir=1,2)
Then (80), Pr 2, (8) imply

(120) my X my-m = 0,

(121) - My X My -mom; S =0.

Now (121), Sgn 4 imply

(122) myxmy-(m+sxr)=0,

and (120), (122) imply
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(123) myxmgz-sxr=0
for any (8). Let (18), |
(124) ri1X7ryr3#£0
hold. Then (123) implies

(125) (ﬁ;xmg)xs-ry=0 | (ir=1,2,3)-
and(124), (125) imply |

(126) (m; x my) X 8 = o,

i.e. | |

(127) (my8)mz — (m2s)m, = 0.

Now (127), (118), (119) imply |

(128) - mys8 =0,

and (128), Pr 4 imply

(129) sm = 0.

‘Then (24), (129) imply (90).
Let (91) hold. Then there exist (18) with (79). Let

(130) m, = momy, s - . w=1,2,3).

Now (130), (79), Pr 2, Pr 4 imply

(131) my X my-m3 # 0,

(1-3'2) sm = sm, =1, 23}
If (129); then (131), {132) imply (15), and (15), (130), Sgn—4 imply |
(133) m,=m .(v=1273),

contrary to (131). Hence (92).

Sufficiency. The necessity of the conditions (86) (88), (90), (92) for (85),
(87), (89), (91) respectively being, in such a manner, proved, the sufficiency of
these conditions is verified trivially, since they are mutua]]y inconsistent.:

Sch 25. The first proof of the rank-theorem may be assessed as simpler than

the second one.
Pr 16. (18), (66)

(134) m, =momy, 5’ - (y = 1,2.8
imply
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(135) (ry —rus1)(my, —my ) =0 (v=1,2,3)
provided R
(136) ry=r, my = my.

Dm. (134), (11), Sgn 4 imply

(137) m+sxr,=m, (r=1,2 3),
ie.
(i38) M4 SX Tyl =My -, =l B 3)

provided (136). Now (137), (138) imply
(139) 8 X (ry —Tug1) =M, —Mmy4 (r=1,%, 3)

and (139) imply (135).

Sch 26. In such a manner, the conditions (135) provided (136) are necessary
for the consistency of the relations (134) or, just the same, of (137). As a matter
of fact, (134) imply seemingly much more burdensome necessary conditions than
(135), namely :

(140) (ry—m)(me —ms )+ (ro — 7 )(my —my) =0

_ (B, v,o0,7=1,2,3).
Indeed, (137) imply

(141) 8 x (ruy—v,)=myu-—my(p,v=1,23),
(142) 8 X (ro=7;)=m,—m,(0,7=1,2,3),

and (141), (142) imi)ly
(143) ) (ru —7m)(mo —ms) + (ro — 77 )(my — m,)
=(ry—7,) 8x(ro—7)+(ro—7:)-8x(ry—7,)

=8 (ro—rr)x(ry—7)+8-(ru—7,) x(ro —7;)

(4, v, 0,7 =1, 2, 3), whence (140).

It will be seen, however, that all the relations (140) are simple corollaries from
(135), rather than mutua.lly independent.

As a matter of fact, the number of different among themselves relations (140)
is 6, rather than 81, as one might'think at a first glance. Indeed, let by definition

(144) Ltﬂ: v,0,7) = (ry —7)(mo —m;) + (7, —_i-,)(m“ —-m,)
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(#, v, 0, 7=1, 2, 3). Now obviously

(145) L(g, p,0,7) = 0,
(146) L(g,v,0,0) = 0

(#, v, 0, 7=1, 2, 3). On the other hand,

(147) L(yi B, 0, T) = —L(#, v, e, T)a
(148) L(F’s v, 7, 0') = —L(I"1 v, o, T))
(149) L(r,o,p,v) = L{p,v,0,7)

(#, v,0,7 = 1,2, 3), etc. In such a manner, the relations (140) reduce to the
following ones: (135) provided (136) and

(150) (r1 —72)(m1 —mg) + (r1 — r3)(m1 —m2) = 0,
(151) (1'2 - 1"3.)(1712 = ml) + (1'2 — 1'])(1712 = m3) = 0,
(152) (rs — r%)(ma —my) + (rg—r2)(mz—m,;) = 0.
Now (135) imply

(153) (r1 — 72)(my — m3) + (r1 — 73)(m; — M)

= (ry — r3)(my — My + My — m3) + (r1 — v3)(M; — M3 + M3 — M3)
(11— 72)(my — m3) + (r1 — 72)(m2 — m3)
+(r1 — r3)(my —m3) + (ry— r3)(ms —m2)
= (r3 = Tz)(mg = m3) = 0,
i.e. (150). Similarly, (135) imply
(154) (r2 — r3)(ma — my) + (r2 — r1)(m2 — m3)
= (ra = r3)(mz —m3+ m3 —my) + (r2 — 71 )(m2 — My + My — M)
= (rz — r3)(m2 — m3) + (r2 — r3)(Mm3 — m,) '
+(r2 —r1)(m2 —my) + (r2 — 1) (M) — Mm3)
= (r3 —r1)(m; — m3) =0,
ie. (151). At last, (135) imply
(155) (r3 — r1)(ms — ma) + (r3 — r2) (M3 — Mm,)
= (r3 — r1)(ms — my + my —my) + (r3 — r2)(m3 — M2 + 1i; — M)
(r3 —r1)(ms —my) + (r3 — r1)(my — my)
+(r3 = r2)(m3 — m3) + (r3 — r3) (Mg — my)
= (r2 — r1)(m1 ~ my) =0,

ie. (152).
Now the following question quite naturally arises: are the conditions (135) also
sufficient for the consistency of the relations (134). In other words, (18) and
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(156) m, € Vs '*(V = 1: 2: 3)

with (135) being given, does there exist a system of arrows (66) satisfying (234)? Or
otherwise, does there exist, under the same conditions, a solution 8, m of the system
of vector equations (137). As the following proposition displays, this question 1s
answered in the affirmative, provided (19) holds.

Pr 17. (18), (19), (156), (135) provided (136) imply: there exist infinitely
many systems of arrows (11) with (134), namely all these for which

3

(157) 8= % > art xb,

v=1
provided
(158) a =7y — 79, . Qs = P9 — 713,
(159) by = m; —m,, bz = m3 — mg3,
(160) az =1 * reo4 172 X173 +1‘3.X 1,
(161) bs = (b; - az X 01)0;1 + (bz @z X al)agl_'
and
(162) m=m;+ 7 X s.

Dm. Since (134) is equivalent with (137), a solution s, m of this system of
vector equations at the hypothesis (135) provided (136) must be found. The system
(137) implies

(163) sxa,=b, ' ' (v=1,2)

provided (158), (159). As it is well-known [2, 1 Pr 28], necessary conditions for the
consistency of (163) are

(164) a,b, +a,b, =0  wv=12)
Now the definitions (158), (159) imply that (164) are equivalent to |
(165) e R =) =0, Ty — )iz —wig) =0

and | | | - _ »

(166)  (r1=r2)(ma —ms) + (73 = 7g)(my — my) = 0.

As regards the conditions (165), they are satisfied by virtue of the hypothesis (135);
as regards the condition (166), it is satisfied by virtue of (151), which is a corollary
from (135), as proved in Sch 26. - ' : :

On the other hand, the conditions (164) are sufficient for the consistency of
(163), provided ‘ A

(167) a; Xaz#o |

[2, 1 Pr 31]: if (167), (164) hold, then the system (163) has exactly one solution s,
namely (157), provided ' ' ' ,
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(168) a3 = a; X Gy
and (161). Now (158) imply that (167) is equivalent to
(169) (1'1 —— ‘l'z) X (‘l‘) - 1'3) # o

by virtue of (19), and that (168) is equivalent to (160).
The basis s of 8, being once det.ermmed in such a manner, the moment m is

defined by (162). Let

(170) p=my+ryx8s

Now (162), (170) imply

(171) - m—-—ps=my —ma+(r; —72) X 8.

Since s nullifies the right-hand side of (171) the last equation 1mphes p =m and
(170) implies

(172) m=my+rsx8. °
Similarly, let |
(173) - g=m3z+rzxs.

Now (170), (173) imply
(174) P—qg=my—m3+(r2—r3) X s.

.Since s annulates the right-hand side of (174), the last equation implies ¢ = p = m,
and (173) implies ;

(175) m=mgz+7r;X8s.

In such a manner, the proposition is proved.
Sch 27. Pr 17 being proved, the following problem arises: determine the rank
of the systems of arrows s ; satisfying (137), (18) with (19) and (156) with (135)

being given.
According to Pr 3, Pr 15 and Pr 17, the following relations hold

0 iff m,=o0 (u=1,2,3),
1 iff my=my;=m3+#o.

(176) rank s = {

as regards the other cases, they demand a more detailed dlscussmn
According to Pr 4, Pr 15 and Pr 17,

2° . {3#0, sm; =0,
iff
-3 81’"1-‘/—'0

Now (157) and the definition [2, 1(23) provided 1(24)] of the reclprocal vectors a
(v=1,2, 3) imply 4

(177) rank s ={
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3

(178) 2(a1 x-az-az)s = Z(a,,.,.l X @yy2) X B,.
' v=l1 ‘
provided
(179) a,3=a, - (2 = L, 2},
and (178) implies (24) iff
3 :
(180) Z ((GV+15?)"'V+2 —(av42br)av 1) #o.
o=l
Of; the other hand, by virtue of (179) the relation (180) may be written in the form
" _ :
(181) Z(au+2bv+1 e au+1bv+2)au ?é o
v=1
provided
and (181), in view of
(183) - auby+ayby=0 (B, v=1,2,3)

is equivalent to

3
(184) D (avsibisa)a, # o
v=1
Because of .
(185) a1 X ay-as # 0,
the condition (184) is equivalent to
3
(186) E(“vbv+l)(bv+1 a,) #0.
r=1
As regards the condition
(187) sm; =0,
the above considerations display that it is equivalent to
3
(188) D (@y41by42)(@ymy) =0,
v=1
and
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(189) smy; #0
is equivalent to

. |
(190) Y (avs1biya)(a@,my) £ 0.

Summing up, we may formulate the following proposition. '
" Pr 18. (18), (19), (156), (135) provided (136) imply: if (66) satisfies (134),
then )

m, =0 (=1, 2, 3),
my = my =m3 # o,

| (184), (188),

3 (190)

provided (158) — (161), (179), (182).
Sch 28. As it has been emphasized in Sch 4, although the basis s and the
moment m of a system of arrows 8 are extremely important characteristics of 3

(see, for instance, the role of s and m in the rank-theorem Pr 15), they do not de-
termine 8 completely, so that the notation (7) is void of sense: there are infinitely

many systems of arrows that have the same basis s and the same moment m for
any (s, m) € V2. And yet, in the applications of the theory of arrows to analytical
mechanics at least, dynamics as well as statics, the role of these characteristics of
the systems of arrows is, to the highest degree, a predestinating one. The reason
is concealed in the fact that, both in statics and dynamics, the systems of arrows
available in the mechanical problem in the capacity of forces (both active and pas-
sive) acting on mass-points and rigid bodies, are authoritative by means of their
bases and moments rather than by themselves as individual mechanical entities.
Putting it more specific, a system of arrows (66) is of interest to statics and dy-
namics inasmuch as its basis 8 and its moment m are concerned, rather than the
particular arrows entering into its composition. Figuratively speaking, one may say
that for analytical statics and analytical dynamics the definition of (66) by (11) is
sufficient, and the definition of (66) by (1) provided (2) is not necessary (inasmuch
as the determination of the particular reactions of the geometrical constraints im-
posed on the mass-points or on the rigid bodies is neg%ected)_. To put it another
way, both the statical and the dynamical effects of a system of forces (arrows) s

remain unaffected if kA is replaced by a system of forces A having the same basis
and the same moment as 5. '

The causality of all these circumstances is rooted in the fact that a system of
forces acting on a mass-point or a rigid body is presented in the basis equations of
analytical statics and analytical dynamics by its basis and its moment namely, and
not by the particular arrow-components which this system involves. This question
is discussed in some details in the following three scholiums. .

Sch 29. Analytical statics and analytical dynamics are concerned with the
mechanical behaviour of mass-points and rigid bodies subjected to certain geo-
metrical constraints and to the action of active forces (wholly determined in the
conditions of the statical or dynamical problem in question) and of passive forces
or reactions of the ¢onstraints. More precisely, analytical statics is concerned with
the equilibrium of the said mass-points and rigid bodies, and analytical dynamics
with their motion.

0
1
(191) rank s = 9
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In order to fix the ideas, let a rigid body B be given, subjected to certain
geometrical constraints, restricting to [ its degrees of freedom, and let

(192) ©nER A=1,...,0

be mutually independent parameters of B. Let B be under the action of the active
forces (arrows) :

(193) . | 'F,u = (F;;, M‘u).‘ ' (p=1,....m);

~and let the geometrical constraints generate (by virtue of special statical or dynam-
ical axioms) the passive forces (reactions of the constraints)

(194) _R')y=(Ry,Ny) g (Vzl, ...,n).
For the sake of brevity let by definition

(195) Foge= By | (v=1,...,n),
i.e.
(196) » Fm+y = Ry, Mm+y = Ny (V = 1, sy 11)
- provided | |
(197)  Fomir = Fnps Mnyy) | (v=1,...,n),
and let . | |
m+n rﬁ+n
(198) F=) F, M=) M,
' v=1 v=l -
If
' m+n

(199) F= {?u}

. - v=1

denotes the system of all forces ébot.h active and passive) acting on B, then obvi-
ously F'and M are the basis and the moment of F respectively.

In any statical and dynamical problem all active forces (193) are completely
determined functions \ T

(200) F#“‘: ?#(qua ERER (1] qlla ey q.l; t)

(n=1,..., m) of the parameters (192) of B, of their velocities (derivatives with
respect to the time t) _ o '

(201) AER  (A=1,...,D,
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-and possibly of the time t itsel{. (As a matter of fact, tradionally in statics the active
forces (193) do not depend exphcnte}y on the velocities ;201) and on .) In other
words, the bases and the moments of (193) are completely determined functions

(202) . Fu=Fulq,--- a5 41, -, 415 1)
and |
(203) M, = My(q1, - @ 41, -, @13 1)

(e= 1 , m) respectlvely of (192), (201) a,ndt

As regards the reactions of the geometrical constraints (194), the situation is
a quite different one: they are unknown quantities the determination of which is in
store for statics and dynamics, in the process of the solving of the corresponding
mechanical problem. Now, any of the reactions (194) is generated by a single
geometrical constraint 1mposed on B, so that the number of the passive forces is
equal to the number of these geometnca.l constraints, i.e. to n. Let

(204) c, €V : | (r=1, s:5n)
be the radius-vector of the corresponding point of contact .of the rigid body B with
the v-th geometrical constraint. Then (204) are wholly determined functions

(205) e =clq, ..., a3 t) . (w=1,...,n)
of the parameters (192) of B and possibly of £. According toa kinetic’a.l (statica.l as
well as dynamlcal) axiom, the directrix of the v-th reaction R v i is incident with the

point of contact c, of the geometrical constraint generating R,, =10, 0),
le.

(206) & x R =N p=l,....m)

In such a manner, it is enough to know the bases R, of the reactions Ti:, in order

to know R, themselves (v =1,...,n). In other words, these namely bases R,

=1, ..., n) are unknown quant.ltles in the statical or dynamlca,l problem under
con31derat10n as well as the parameters (192) of B. In the case of a dynamical
problem, initial values

(207) 20 = 0(0) | | s Ll
and 1 | | . | , " o
(208)  dro=a(0) (=1,
are prescnbed to (192) and (201) respectively, and functions-

(209) g = qa(t) o . ' T T [

of the time ¢ are sought.
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Sch 30. This information once grasped, let us proceed to the formulation of
a statical problem concerning a rigid body B:

The fundamental problem of rigid body statics may be described in the fol-
lowing manner.

Let a rigid body B be given, subjected to n geometrical constraints with points
of contact (204) which generate the reactions (194), and let B be under the attion
of the active forces (193). Find the equilibrium of B and the reactions of the
constraints.

In this formulation the term equilibrium has been used. It is a fund»amenta.l
statical notion ant it requires a special definition. This definition is given in the
followmg manner.

" It is said that a rigid body is in equslibrium under the action of a system of
forces when the rank of this system iz zero.

Under the notations introduced in Sch 29, the rigid body will be in equilibrium
under the action of the active forces (193) and of the reactions of the constraints
(194) if, and only if, the following conditions are satisfied:

(210) F=0, M=0.

In such a manner, it is seen, that the necessary and sufficient condition (210)
for the equilibrium of the rigid body is expressed exclusively by the aid of the basis
F and the moment M of the system of forces (199) acting on the rigid body. Let
us, however, discuss this formulation somewhat closer. '

The equations (210) may be written in the form

(211) ZF‘,+ZR,, =

v=1
and
m
(212) ZM,,+ZC., x R, =
p=1 r=1

respectively, by virtue of (198), (196), and (206). In such a manner, the fundamen-
tal problem of rigid body statics is reduced mathematically to the vector equations
(211), (212), where the unknown quantities are the parameters (192) of the rigid
body B and the reactions R, (v = 1, ..., n) of the constraints. In this general
formulation the statical problem is indeterminate: as a rule, the number of the
unknown quantities is much greater than the number of the equations (211), (212)
(two vectors equations, equivalent to six scalar ones) available for their determi-
nation. In order to make this problem mathematically wholly determinate one,
various additional hypotheses about the mechanical nature of the geometrical con-
straints are made, which reduce the number of the unknown quantities to six. (A
classical for analytical statics hypothesis of this kind, possessing a sound physi-
cal motivation at that, consists in the assumption that the geometrical constraints
are smooth, i.e. that they generate reactions perpendicular to the corresponding
constraints.) :
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It is clear that the equations (211), (212) include unknown quantities of
two kinds: ﬁrst the parameters (192) of B; and, second, the reactions R,
(=1, !
Wlth a view to a better understanding of the essence of the problem, let tis
suppose that O:cyz is an orthonormal right-hand orientated Cartesian system of
reference, the origin O of which coincides with the zero-pole (i.e. the pole, with
respect to which the moments M, and N, (u=1,...,m;v=1,..., n) of (193)
and (194) respectively are taken). If %, j, k denote the vectores of the axes Oz, Oy,
Oz respectively, then these conditions imply

(213) 2=72=k*=1, ij=jk=ki=0

and |

(214) " k=ix3.

Let by definition |
(215) Fy = Fupi+ Fuyj+ Fu.k | (B=1,...,m),
(216) M, =M, i+ M,,j+ M,k (r=1,...,m),
(217) R, = Ryzi+ Ryyj + Rk (v=1,...,n),
(218) ¢, =it eyt ek w=1,...,a).

At these notations the vector equa.tlon (211) is equivalent to the followmg three
scalar equations -

I
-

(219) Z Fus + Z By

v=1

(220) Z Fuy + E Ry = 0,

p-l v=1
(221) ZFM - ZRM = 0,
p=1

and the vector equation (212) is equivalent to the following three scalar equations

m n
(222) Z My + E(vaRyz — Cyz Rvy) = 0,
p=1 v=1
m n
(223) Z Mpy + Z(cvz Ryz — ¢yr sz) = 0,
u=1 v=1
(224) Y My 4 (cowRuy —cyRus) = 0.

p=1 v=1
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In such a way, the statical problem is reduced to the determination, by means,
of the equations (219) — (224), of the equilibrium values (if any) of the parameters
(192) of B and of the equilibrium reactions (if any) of the constraints -

(225) N ' Ry;r;, Ryy, Ryz (V = 1, .). .y n).'

The expression “if any” used above means“if such exist”. Now some explana-
tions in this connection are more than indispensable.
Any statical problem consists, as a matter of fact, of three subproblems

1. Does equilibrium exist?
2. If yes, then which is the equilibrium position of the rigid body?
3. If yes, then which are the reactions that realize it?

The first question is equivalent with the problem of existence of a solution
of the statical problem. As in any mathematical problem, in a statical problem
the ‘existence of a solution is a fact that must be proved ad hoc, rather than a
presumptive postulate,

* As a thatter of fact, the statical problem under consideration has a solution
if, and only if, the system of equations (219) — (224) is consistent. And it is
consistent if, and only if, there exist such quantities (192) and (225) that satisfy it.
TautologlcaLthough these statements seem, they emphasize the 1mportance of the
existence problem in statics, which in mechamcs in general not 1nfrequent is found
to be neglected.

The second question is equivalent with the problem of determination of the
equilibrium values (i.e. those satisfying the system of equations (219) — (224)) of
the parameters (192) of the rigid body.

The third problem is equivalent to the problem of determmatlon of the equi-
librium values (i.e. those satisfying the system of equations (219) — (224)) of the
components (225) of the reactions of the geometrical constraints.

And that is that. In such, and in such only, sense the statement in Sch 28 must
be understood, namely that“a system of arrows (66) is of interest to statics and
dynamics, inasmuch as its basis s and its moment m are concerned, rather than
the particular arrows entering into its composition”: the conditions of equilibrium
(210) are expressed by means of the basis F and the moment M of the system (199)
of all forces (passive as well as active) acting on the rigid body, and not by means
of the particular arrows this system contains.

"~ Sch 31. An analogous situation is observed when dealing with a dynamical
problem concerning a rigid body.

The fundamental problem of rigid body dynamics may be formulated in the
following manner.

Let a rigid body B be given, subjected to n geometrical constraints with points
of contact (204) which generate the reactions (194), and let B be under the action
of the active forces (193). Initial conditions (207), (208) being prescribed to the
parameters (192) of B and to their velocities (201) find the motion of B and the
reactions of the constraints.

In this formulation the term motion has been used. It is a fundamental me-
chanical notion and it requires a special definition. Since this definition is a rather’

»
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intricate one, we shall not reproduce it here and, making a long story short, we
shall substxtute a mathematical surrogate for it.

To this end, let us first introduce two fundamental dynamical attnbutes for
any rigid body.

If P is an arbitrary point of the rigid body B, r = OP, v = dr/dt (the
derivative being taken with respect to the system of reference Ozyz), and dm
denotes a “mass-element” of B (all these terms being duly defined), then.

(226) = / vdm
and
227) L=/r><vdm

are by definition the momentum and the moment of momentum (kinetical moment)
of B respectively with regard to Ozyz, the integrals in (226) and (227) bemg taken
over the part of the space occupled by the rigid body.

One of the greates} discoveries in all the history not only of rational mechamcs,
but of the whole mathematical physics as well, was made by Euler in 1775, and is
reflected in his article [7]. In accordance with it, there exists one at least system
of reference (inertial system of reference) that, all derivatives being taken with
respect, to it, for any rigid body B and for any system of forces F (passive as well

as active) acting on B, the derivative with respect to the time ¢ of the momentum
and of the. moment of momentum of B are equal to the basis and the moment of

F respectively, both moments being taken with respect to the origin of Ozyz.
These laws or principies of Euler are called the first and the second Eulerian
dynamical azioms respectively (or Euler’s laws or principles of momentum and af
moment of momentum of a rigid body respectively).
The mathematical formulation of both Eulerian dynamical axioms read

: d .
(228) = / vdm _ F
and

(229) - j rxvdm=M

dt

respectively provided (193) — (199).
These preliminaries settled, it is said that a rigid body is movmg or is in motion

ﬁnder the action of the system of forees F(F M) when (228) and (229) hold good.

In such a manner, it is seen that the necessary and sufficient conditions (228),
(229) for the motion of the rigid body are expressed exclusively by the aid of the
basis F'and the moment M of the system of forces (199) acting on the ngld body.
Let us, however, discuss this formulation somewhat closer.

The equations (228) and (229) may be written in the form
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(230) | dt/vdm ZF +ER

p=1

and
(231) - c—{;./rxvdm?ZM“+2cyxR,
o=l v=1

respectively, by virtue of (198); (196), and (206). In such a manner, the fundamental
problem of rigid body dynamics is reduced mathematically to the vector equations
(230), (231), where the unknown quantities are the parameters (192) of the rigid
body B as functions (209) of the time t and the reactions R, (v = 1, ..., n) of
the constraints. As in the statical case, in this general formulation the dynamlcal
problem is indeterminate: as a rule, the number of the unknown quantities is much
greater than the number of the equations (230), (231) (two vector.equations equiv-
alent to six scalar ones) available for their determination. In order to make this
problem mathematically a whole determinateé one, in dynamics, as well as in stat-
ics, various additional hypotheses about the mechamcal nature of the geometncal
constraints are made, which reduce the number of the unknown quantities to six.
(As in statics, the most popular, traditional, and even classical hypothesis of this
kind is the postulate of smooth geometrical constraints.)

It is clear that the equations (230), (231) include unknown quantities of two
kinds: first, the parameters (192) of B, their velocities (201), and their accelerations

(232) HhER (=L .0

and, second, the reactions R, (v =1, ..., n). In other words, the equations (230),
(231) are, as the saying goes, of a heterogeneous type: being differential equations
of second order with respect to the time ¢ with regard to the unknown functions
(209), they are, in the same time, linear algebraic equations with regard to the
unknown reactions of the costraints R, (v =1, ..., n).

As in the statical case, Ozyz being an mertla.l system of reference with (213),
(214), let by definition the relations (215) — (218) hold. Then the vector equation
(230) is equivalent to the following three scalar equations:

(233) . %/zdm = ZFps‘i"Zsz:
d

v=1
(234) dt / gdm = Z Fuy+ Z R '
p=1 r=1
d m k]
(235) = f tddm = Y Fu..+) R
p=1 v=l
provided
(236) r=gzi+yj+zk
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and the vector equation (231) is equivalent with the following three scalar equations:

: d ; :
(237) 7 / (yz — zy)dm = Z M, + z:(c,,.yR,,z —cv:Ryy),
u-l
d , . )
(238) Eg /(Z:ﬂ = a:z)dm = E M“y = Z(Cy.zRv:: - Cervz):
' 7 o p=1 r=1
' d . - m 7
. p=1 o=l )

In such a way, the dynamical problem is reduced to the determination, by’
means of the equations (233) — (235) and (237) — (239) (or by the aid of other
systems of differential equatipns, mathematically equivalent to (233) — (235) and
(237) — (239), but technically much more convenient; dynamical equations, con-
taining such characteristic for a rigid body quantities, as its moments of inertia
and moments of deviation, have been proposed by Euler and are called today the
Eulerian dynamical equations) of those functions (209) (if any) that govern the
motion of rigid body and of the reactions of the constraints (225) (if any) that
produce this motion (along with the active forces (193) acting on the rigid body).

The express1on “if any” used above means“if such exists”. As in statics, some
explanations in this connection are more than unavoidable.

As a matter of fact, any dynamical problem consists of three subproblems:

1. Does motion exist?
2. If yes, then which is the motion of the rigid body?
3.If yes, then which are the reactions that realize it?

The first question is equivalent to the problem of existence of a solution of the
dynamical problem. As in any mathematical problem, in a dynamical problem the
existence of a solution is not an a priori datum, but a fact that needs an ad hoc
demonstration. As a matter of fact, the dynamical problem under consideration
has a solution if, and only if, the system of equations (233) — (235) and (237) —
(239) is consistent.

This point needs a closer elucidation. Most of the authors of mechanical writ-
ings do not investigate at all the problem of existence of solutions of staticil and dy-
namical p-otlems. One of the reasons for such a mathematical behaviour is purely
psychological. Solution of a statical or dynamical problem means, for these authors,
rest or motion of the rigid body involved, and the existence of rest and motion is
regarded by them as something self-apparent, self-evident, and self-explanatory.

This is not so. As Brelot [8] notes:

“On sait que lorsqu’on schématise selon I’habitude des problémes méchaniques
concrete physiquement possibles, on obtient parfois des problemes mathématiques
impossibles . .. Exemples avec le {rottement (Painlevé), exemple connu de la barre -
pesante dlamet.rale glissant sans frottement dans une sphére” (p. 7).

Writing “des problémes mathématiques impossibles” this author has in mind
mechanical problems without solutions. In this connection the reader may see, for
instance, our article [9].
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Another reason that explains the traditional carelessness of most authors of -
mechanical wrltmgs as regards the existence of dynamical solutions is rooted in
the fact that, in their majority, they solve dynamical problems by t.he aid of the
Lagrangean dynamzcal equations

(240) S e =0 (A=1,....0),

rather than by means of the Eulerian dynamical axioms (228), (229). Now the
equations (240) do not contain the unknown reactions of the costraints ( 194): these
reactions are expelled from the mechanical paradise by the aid of the postulate of
ideal constraints

n
(241) Y R,dc, =0,

and this act of heroism is regarded by the adherents of Lagrangean dynamical
tradition as the chief achievement of their Teacher. The reactions of the constraints
are, however, the mathematical factor that may deprive a dynamical problem of
its solution. In such a manner, the Lagrangean dynamical equations (240), faced
with the existence problem, may be compared with daltonists faced with a colour-
table. Moreover, they are pointblank blind when confronted with this problem. It
is needless to underline that the Lagrangeanists are as helpless in front of the third
of the above questions (which are the reactions of the constraints?) as they are in
front of the first of them: the only thing the Lagrangean dynamical equations (240)
can do is to describe mathematically the motion if any.

The second question is equivalent to the solving of the equations (240) which
are neither more nor less than the projections of the Eulerian dynamical axioms
(228), (229) on appropriate axes: these axes are chosen in such a manner that the
unknown reactions of the constraints (194) vanish when (228), (229) are projected
on them. In such a way the functions (209) are determined, satisfying the initial
conditions (207), (208).

The third question is.equivalent to the problem of determination of the re-
actions (194) of the constraints. Since they take part linearly in the equations
(230), (231), this determination, provided the functions (209) are known, offers no
difficulties.

And that is that. In such, and in such only, sense the statement in Sch 28
must be understood, namely that“the systems of arrows available in the mechanical
problem in the capacity of forces ... are authoritative by means of their bases
and moments rather than by themselves as individual mechanical entities”: the
conditions of motion (228), (229) are expressed by means of the basis F' and the
moment M of the system (199) of all forces (passive as well as active) acting on
the rigid body, and not by means of the particular arrows this system contains.

Sch 32. Analytical mechanics is sometimes described as the mathematics of
the equilibria and motions of mass-points and rigid bodies, and of the forces that
generate these equilibria and motions and are generated by them.

This description is clear in the light of the above explanations in connection
with the fundamental problems of statics and dynamics. Not less clear is also that
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the theory of arrows is predestinated to play an important role in the problems of
analytical mechanics.

Still the first generations of mecha.n1c1ans have become well aware of this fact
Not a few expenmenta.l and intellectual work has been dedicated to the doctrine
of forces, aiming at the elucidation of various aspects of the force-concept from
all angles In order to realize that it is sufficient to remember the amount of
painstaking work accomplished by mathematicians and physicists in. connection
with the problem of the parallelogram of forces.

This problem is a most remarkable one. Let B be a physicalrigid body and let
P, and P; be its points. Let @; and Q; be small fixed pulleys and let w; and wy
be weights fastened to the ends of two inextensible flexible strings, the other ends
of which are fastened to P; and P; respectively, and which are passed through @,
and Q; respectively. If B is in equilibrium under the action of its weight ws and of
the weighte’ w; and wq, then Qy, @2, and the mass-center G of B lie in a vertical
plane, as a simple experiment displays.

Let e, be the unit vectors of the vectors P,Q, (v = 1, 2) respectively and
let e be the unit vector of the downwards dlrected vertical. Let by definition
s, =wye, (v=1,23). If O is any fixed point, chosen for the zero-pole, let by
definition m, = OP, x 8, (v = 1, 2), m3 = OG x 83. Then obviously

(242) T, = (s, m,) €Ws . =139,
and the rigid body B is in equilibrium under the action of the forces (242) iff

.3 3
(243) Y s =0 Z =
v=1 ;

v=1

Only a genius could guess that the action of the forces 5'; and 55 could be
replaced, without disturbing the equilibrium of B, by a single force 3, the basis s

of which is equal to the sum s; + 82 of the bases of 5°; and 5’3, and the directrix
of which is passing through G.. The name of this genius is unknown. It is also
an enigma where, when, and who was the first-to confirm this brilliant conjecture
by an experiment fated to become classical.even in the primary course in physics
today. It is easily seen that

(244) ? = (31 + 82, My + m?)’
i.e. that-
(245) T = ?1 + ?2.

This story is instructive to the highest degree. -

In the first place, here lies the germ of the idea of reduction of a system af
forces.

In the second place, here lies the germ of the notion of equivalent systems of
forces.

In the third place, here lies the germ of the concept of sum of two forces.

In the fourth place, here lies the germ of the idea of elementary statical oper-
ations.
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In the fifth place, this proces has provoked the mathematicians to solve the
problem of the parallelogram of forces and to initiate, in such a manner, a scientific
politics in mechanics aimed at its mathematification — a tendency half-finished as
yet. ‘ :
For what reason did the ancient mechanician invent the intricate mechanism
with the pulleys described above? The answer is obvious: simplicity. Two arrows
are something more complex than a single one. Now this simple discovery may be
generalized. Anyone knows from his school-days how this device is accomodated to
the addition of two arrows with parallel directrices, etc. The common of all these
processes is the simplification of a system of arrows by diminishing the number of
its elements. _

It must not be left unnoticed that replacing two arrows by their sum in a
system of arrows s one does not change the basis and the moment of s. In

the due course of time the mechanicians became concious of the fact-that there
exist four elementary operations, by means of which any system of forces may be
transformed into the simplest possible form; at that it preserves unchanged its basis
and its moment. This mathematical process has been called the reduction of the
system of forces in question.

All these facts, initially established in the statical case, have been inductively
transferred from it to the dynamical one. The fact, that a reduced system of forces
has the same, dynamical as well as statical, effect as the starting system, has been
realized long before the definition (210) of equilibrium has been formulated in its
complete generality, and out and away earlier than the Eulerian dynamical axioms
(228), (229) have been proclaimed. _

After these explications the aim of which is to give a physical motivation and
a heuristic background for the following considerations, we shall proceed now to
the mathematical formalization of the circumstances described,

Sgn 9. 1~ S3 sgn:

(246) 81 = 89, my = my
iff
(247) ﬁ,’(s,,, m,) € Lg (r=1,2)

Df 12. sy is called equivalent to sz if
(248) s1 ~ $3.
- Pr 19. (66) implies 5 ~ s.
Dm. Sgn 9.
Pr 20. If
(249) S;ge Ys .(V = 1,,_2),“

(248), then 83 ~ 81.
Dm. Sgn 9.



Pr21. If
(250) 8, € Ts | . (v=1,2,3),

(248), 83 ~ 33, then 81 ~ s3.
Dm. S n 9.
E. Pr 22. The relation ~ in s defined by Sgn 9 is an equivalence relation in
s-

Dm. Pr 19 — Pr 21.

Df 13. Any equivalence class in Eg, generated by the relation ~ in Xg, is
called an S-action or an action in V.

Sgn 10. Ag sgn: the set of all actions in V.

Sch 33. In the light of the explanation given in Sch 29 — Sch 31 one could say
" that namely the actions in V, alias the elements of AR, rather than the particular
systems of arrows in V/, alias the elements of YR, are that determine the mechanical
(dynamical as well as statlcal) behaviour of a rlgld body in analytical mechanics,
the term behaviour meaning equilibrium or motion.

Sch 34. 3 being a system of arrows, the qualification of 8, as simple or as

complicated is depnved of the possibilities of an objective Judgement save, maybe,
by means of the number of its elements. And yet, immediately beiow. four types of
systems of arrows are proposed, any of them with its particular designation, in the
capacity of the simplest possible kinds of systems.

Sgn 11. o sgn: {0'}.

Df 14. o 18 called the zero-system.

Df 15. {3} is called a monosystem iff 0 # 5 € Ws.
Df 16. {5,}%_, is a called a dipole iff

(251) Ty (80, mu) € Ws » | (v=1,2),
(252) 81+ 82 =o, my + ms ¥ o. ‘

Df 17. {73°,}2_, is called a bisystem iff (251),
(253) : 8y X 82 # 0, 81Mo + 89y # 0.
Sgn 12. X,(v =0, 1,2, 3) sgn: o iff v = 0; the set of all dipoles iff v = 1;

the set of all monosystems iff » = 2; the set of all bisystems iff v = 3.
Sgn 13. X sgn: the union of £, (v =0, 1, 2, 3).

Pr 23. { }_1621lmphes 81T182
Dm. Sgn 12 Df 16, [2, 3 Sgn 7].

Pr 24. , € 3 implies 3 ® 7 3.
Dm. Snlzi’)f17zssn3] ‘
Pr 25. (66) implies: there exists ¢ € X with

(254) s ~0.

Dm. If (11), then one exactly of the cases (86), (88), (90), and (92) is possible.
~ I (86), then o = 0 satisfies (254) (Sgn 11, [2, 2 Sgn 2], Sgn 9, Sgn 12,
Sgn 13). - '

If (88), let p, FEVs, pXT=m, ?; = (-7,0), T2 = (F,m): Then m # o
implies @ # o. Besides, obv:omaly 0. Hence
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(255) T, €EWs ‘ (v=1,2)
(Sgn 1). If

(256) 0, ={%v}-1,

then o € I (Df 16, Sgn 12) and ¢, satisfies (254) (Sgn 9, Sgn 13).

If (90) let by definition (9) hold (Sgn 1). If ¢ = = {7}, then 0' € X, (Df 15,
Sgn 12) and o satlsﬁes (254) (Sgn 9, Sgn 13). _

If (92), let 8 € Vs,

(257). s; xs#o0, sm=sm

and let by definition

(258) S,=(8,m,) (@=12)"
provided. '
(259) - m;=o, 82 = 8 — 51, mo=m

Then (257) — (259) imply (255) (Sgn 1) If (256), then o € X3 (Df 17, Sgn 12),
since (257), (259), (92) imply

(260) $) X8, =8 xs#o, symo+somi=sm#0,

and o satisfies (254) (Sign 9, Sgn 13).

The following proposition is an immediate corollary from Pr 25 a.nd from the
rank-theorem.
Pr 26. (66) implies: a necessary and sufficient condition for the existence of a

(261) o €L, : - (¥=0,12,3)
with (254) is | | o

(262) rank s = v PR | ‘ '(~u =0,1,2,3)
respectively. |

Sch 35. Naturally, the ancient mechanicians worked, technically at least in a
quite different way. Not disposing with an algebraic definition of the arrow concept
and with all the technical facilitations this definition proposes, they were compelled
to work synthetic-geometrically and invented, with an eye on the reduction of the
systems of forces, the so-called elementary s‘tat:cal operations. We give here a non-
formal descnptlon of these operations.

Let 3 be a system of forces and let two of its elements ?—,, € s (v =1, 2}
possess a sum 51+ §q. Let LA be a system of forces defined in the following

manner a consists of all elements of 3 except for 5’1 and 5'y; besides, 31+ 52 €
o Then it is said that - g is obtamed from s by means of the first elementary
stat:cal operation, and the transition from 8 to o or, alias,. the substitution of
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o for s in forthcoming mechanical considerations is- called the first elemeniazg

stat:cal operation.
Let s be a system of forces and let one of its elements 5 € s be decomposed

in two addends 3 ,(r =1,2),ie. § = 51+ 52 Let o be a system of.forces
defined in the following manner: o, consists of all elements of s except for =
besides, 5, € o(v=1, 2). Then it is said that ¢ is obtained from s by means of
the second elementary statical operation, and the transition from 5, to o or, alias,
the substitution of o for s in forthcoming mechanical considerations is called the
second elementary statical operation.

Let s be a system of forces including the zero-arrow, i.e. = 5. Let o
be a system of forces defined in the following manner: o consists of all elements

of 8, except for © . Then it is said that g is obtained from s by means of the
third elementary statical operation, and the transition from s to g or, alias, the
substitution of ¢ for s in forthcoming mechanical considerations is called the third

elementary statzcal opcratzon
Let s be any system of forces and let the system of forces o be delux

in the followmg manner: o consists of all the elements of s and moreover, of

the zero-arrow © . Then it is said that LA is obtained from s by means of the
fourth elementary statical operation and the transition from 38, to o or, alias, the
substitution of o, for s in forthcoming mechamcal consnderatxons is called the

fourth elemehtary statccal operation.
It is trivially seen that, if o is obtained from kA by means of any of the

described four elementary statlcal operations, then s~o.In other words, any of

the four elementary statical operations preserves the bas:s and the moment of the
initial system of forces.

It is self-evident that the desultory application of the four elementary statical
operations on a particular system of forces s leads to a dead-end. It turn out,

however, that by the aid of purposeful apphca.tlons of these operations on any
system of forces -8 the latter may be 1educed to a zero-system, or to a dipole, or to

a mono—system or at last, to a bi-sysstem, in other words, to some of the systems
of £,(0S v =£3) [10 p. 115—122]. This fact reveals the meamng of the term

reductlon of a system of arrows.
A system of arrows 8, being given, the process of discovering, by means of the

elementary statical operatlons asystem o € £,(0 S v £3) with s~ 0, is called
a reduction of S

‘N. B. 1. ThlS is obviously a non-mathematical description of the term reduc-
tion.

N. B. 2. In the above description it is said ”a reduction” and not ”the
reduction”. The reason for that is the fact that a reduction of a system of arrows
s is not an univocally determined mathematical phenomenon: if (11) and s = o,
m # o, then there exist two at leasi different oy € ¥, with E E_U’(V = 1, 2).

Similarly, if (11) and sm # 0, then there exist two at least different E.';' € T3 with
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s ~oy(v=1,2).
—_ —

Sch 36. The indefiniteness of the simplest dipoles or bisystems equivalent with
a given system of arrows 5 in the cases rank 5 =1 and rank s = 3 respectively

leads to the formulation of various problems aimed at the clarification of the nature
and degree of this indefiniteness. Some of these problems are discussed immediately
below.

Sch 37. The following question quite naturally arises. A system of arrows
(66) with (91), as well as (57), being given, do there exist (255) with

(263) r, Z diss, (v=1,2)
and _ |

(264) a {¥ =1

Pr 26 implies that a necessary and sufﬁcieﬁt condition for (264) is

(265) {%.}-1 €3,

and Sgn 12 implies that (265) is equivalent with (253) provided (258). In other
words, the problem is equivalent with the following one. :

If (57) and
(266) (s, m) € V¢,
(92), then do there exist
(267) (s,, m,) € V¢ (r=1,2)
with (253),
(268) s,m, =0 (v=1,2),
(269) 814+8,=8, m+ms=m,
(270) ¥, X8 =M, (=1, 2).

In order to answer this question, let us first note that necessarily (68) must
hold. Indeed, the supposition r, = r, = r, along with (270), implies

(271) rXs,=m, (v=1,2),

contrary to the second relation (253) (2, 1 Pr 28].
Let us suppose that the above question is answered in the affirmative, and let
by definition ' ‘

(272) m; = 7 X 38,
(273) 8 = s8-—3,
(274) mg = T X (8 —_— 81). o

In other words, the left-hand sides of (272) — (274) are certainly known if s, is
known, and the problem is reduced to the determination of s; namely.

Such a s; does not necessarily exist. Indeed, (272), (274), and the second
relation (269) imply '
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(275) (1‘1 - 1‘2) X8 =m+4 8 X7y,
and (275) implies that the condition
(276) (ri—m)(m+sxr2)=0

is necessary for the affirmative answer of the above question. Let us discuss this
problem somewhat closer.
Sgn 4 implies that (275) is equivalent with

,(277) . (ri—r)x 8= momq-gi,
and (276) is equivalenﬁ to

(278) (r1—72) -momg, s =0.
On the other hand , (278) and (67) imply
(219)  (r1—7s)-momg s =0,

and (279), Sgn 4 imply
(280) (r1=ra)(m+s8xr)=

The relations (276) and (280) are, however, not mutually independent. Indeed, the
supposition

(281) (1‘1 - Tz)(m +s8X 1'1) # 0
leads, along with (275), to the contradiction
(282) (r1—72)-8x(r1 — 1"2) # 0.

The conditions (68) and (276) display that the equation (275) with respect to
8y is consistent. As it is well known, (275) implies

(283) 8y = Ay — o) ("" € (’:1"_2_):2)(; 17 73) (A €S),

and (283) implies

(m+sx7ry) x(r1—73)

(284) 81X 8= A(r1 —72) x 8) + (=) X 8.
Two cases are possible: '

(285) (ri—7r)xs=o.

or

(286) (ri—-r3)xs#o,
If (285), then (68), (92) imply

" (287) s = p(ry — ) (0#pueSs),
and (284), (2_85), (287), (276) imply '
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" (288) 8 X s=J(m+ 8 X ry).
The supposition
(289)  m+sxry=o

~ is wroAg, since it implies sm = 0 contrary to (92). In such a manner, if (185), then
(287), (288) imply : , :

(290) 81 x 8#o.
If (286), then (284) and.

(291) 81 X8=o0
imply
(292) Ky — it 8= g —~ Wl K gy BT x73) % {1 =)
. ; (r1 — 72)?2
Let by definition
(293) - A= (r1—re)xs-8sx((m+8x7ry) x(r; — r3)).
Then
(294) A = (s(r1—r2))((m+8x7y)X(r1—72)8)
— ((m+8xr3) x(ry —73) - (r1 — 73))8%,
ie.
(295) A= (s(ry—m))((m+8 X 73) X (11 = 73) - 8)

and (292), (293), (295) imply"

_ (8(r1 —73))((m + 8 x73) X (r1 —73) - 8}
| (29_6) A= (r1=r2)%((r1 — 72) x 8)?

In other words, (291) is equivalent to (296).
In such a manner, (290) holds good for any A-€ S if (285) and for any

A (s(r1 —r2)((m+8x72) X (ry —72)-8)

&) (r1 = 7r2)%((r1 ~r2) x 8)?

if (286).

( It)will be now proved that (283) with any A € S if (285) and with any A € §
satisfying (297) if (286), along with (272) — (274), propose a solution of the problem
under consideration. ;

Indeed, (273) implies the first relation (269). On the other hand, (272) and
(274) imply , ,

(298) _ m1+m2=(n—r2)xs+r2xs.
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Now (298) and (275) imply the second relation (269).

Besides, 5272) and (274) (273; imply (270).

As regards the first relation (253), the definition (273) implies that it is equiv-
alent to (290 and, by hypothesis, is satisfied for any A € S in the case (285) and
“for any A € sa.t:sfymg 328‘9 in the case (285).

At last, the left-han e of the relatlon 253) is equal to

(299) 81 rax(8—-81)+(8—8) r1 X8
= 8 -T2 X8+8-7T X8 =81 -8X (r1 -rz). '
' On the other hand, (283) implies

(m+.sxr2)x(rl-—.fz)-sx(n—fz).
(ry —ra)?

kg virtue of (276) and (92), i.e. the second relation (253) is satisfied: for any A € S.
. e d .
There do not exist solutions of the problem under consideration other than
the- ones described above, since the, latter are consistent with all the necessary
;ondltions for the existence of a solution, being thelr corollaries, as a matter of
act

‘In such a way, the following proposition has been proved.

Pr27. If r, € Vg(v =1,2) and s (s m) is a given system of arrows with

rank s = 3 then (68) and (276) are necessary conditions for the existence of

(300) 81-8%X(r1—73) =

=sm#0

(301) =, =(8,m,) €EWs (r=1,2)

satisfying (263) and (264). These conditions are sufficient at the same time: if they
" are satisfied, then (301) defined by (283) with an arbitrary A € S in the case (285)
or with any A € S satisfying (297) in the case (286) and by (272) — (274) are the
only arrows satxsfymg (263) and (264). :
Sch 38. The second problem may by formulated in the followmg manner. A
gystem of arrows (66) with (91) being given, let (42) be any point and { with

(302) (@, b)&l (a # 0,ab=0)

a line. The question now arises whether there exist arrows (255) with (264) and

(303) pLdir 7y, .

(304) [ =dir7,.

The relations (303), (304) are equvalent to

(305) P x 81 =my, |

(306) s2=)a, my=2Xb (AeS)

respectively, by virtue of (302); and (264) is eqmvalent to (269) Now (305), (306),
(269) imply

(307) | 31+Aa#3, ﬁxa1+Xb=m,
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and (307_) imply

(308) pxs—-Apxa)=m-—Xb.
Then (308), (302) imply

(309) - (pxs—-m)a=0.

In other words, (309) is a necessary condition for the affirmative answer of the
problem under consideration.
Another necessary condition is that

(310) PX8#m.
Indeed,
(311) PXs=m

and Sgn 4 imply
(312) monmn;

Now (312) and Pr 4 imply sm = 0 contrary to (92) (Pr 15). :
A third necessary condition for the affirmative answer of the question under
consideration reads

(313) Pxa—b#o.
Indeed, otherwise (302), (304) imply

(314) 5 Z dir 55,
Le. |
(315) 77' X 89 = M.

Now (305) and (315) contradict (253).
“Let now (309), (310), and (313) be satisfied. The relations (307) imply

(316) X (s—Aa)+Ab=m,
i.e. .
(317) Mb—-Pxa)=m+sxp,

and (317) implies
(318) A(s(b-7P x a)) = sm.
The right-hand side of (318) is different from zero by virtue of (92). Therefore

necessarily

(319) (Fxa—b)s#0,
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and (318), (319) imply
sm
s(axp+b)

Let us note that the necessary condition (319) is obviously stronger than the
condition (313). Now (320) and the first relation (307) imply

(321) #y 2o b = (—-_i’—f——) a

s(axp+b)

(320) A=

In such a manner, all unknown quantities are determined, provided the con-
ditions of the problem are consistent. Now it remains to be proved that these
quantities propose a solution of the problem.

First of all, (321) and the first relation (306) with (320) imply the first relation

269
( )In the second place, (305) and the second rela.tlon (306) with (320), along with
(308) and (321) imply

(322) my+my=px8+Ab=pxs—AFxa)+rb
=m-Xb+AFxa)-Xpxa)+Ab=m,

1.e. the second relation (269).
In the third place, (321) with (320) and the first relation (306) imply

(323) 8 X 83 =35 x (Aa) = A(s x a).

Now (320) and (92) imply X # 0. In other words, according to (323), the first
relation (253) is equivalent to

(324) sxa#o,

and it is clear that the necessary condition (324) must be also hypothesized.
At last, (321) with (320) and (305), (306), (302) imply

(325) s1ma + samy = (8 — Aa)(Ab) + (Aa)(P x (8 — Aa))

=As8b)+XAa-pxs)=A(sb+s-axp)=As(b+axp)#0

by virtue of A # 0 and (319).

In such a way, the followmg proposmon is proved.

Pr 28. If s(s, m) is a given system of arrows with rank 5 =3,p€Vs
and the line [ is defined by means of (302), then (309) (310), (319) and (324) are
necessary conditions for the existence of arrows (301) with (264) and (303), (304)
These conditions are sufficient too: if they are satisfied, then the only solution is
proposed by (321) and (305), (306) with (320).

Sch 39. The last problem of this kind we shall now discuss is the following
one. Let a system of arrows (11) with (91) be given and let

(326) e, b) &l S (v=1,2)

be two lines, i.e. vore A
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(327) a, #o, a,b, =0 (v=1;2)
Now we ask: do ih_ere exist two arrows (301) with (264) and |
(328)  dir 5, =1, | \ v=1,2).
By virtue of (326), the relations (328) are equivalent to | |
(329) =M, my=Xb, g - p=iyg)
with appropriate . |
(330) A ES | (=1, 9,
 In view of (329), the relation (264) is equivalent to
(331) | | Aai + /\2027 = s, A1b; + Aby = m.

Pr 26, Sgn 12, Df 17, and (264) imply (253). Hence (329) imply
(332) A #£0 | (v=1,2),
(333) a; X a; _75' o, a1 b; + asb;, # 0.

The first relation (331) implies
(334)  Mal4Ag(azar) =sai,  Aaias) + Azal = say,
and the first relation (333) implies |
(335) aial — (ajaz)(aza;) # 0.
Now (334), (335) imply

2

sa; a2¢211 aj sa, ‘
- 8as a; a,as; 38as
336 A= - Ao =
( ) ! (ﬂ.l X 02)2 : 2 (31 X 02)2

On the other hand, (331) implies that the condition
(337) s$-a; xaz=0

is necessary for the consistency of the problem under consideration. Now (337) and
the first relation (333) imply '

(.338) s = (sa;l)a; + (.gd;l)ag,

where

339 -1 _ @2 x (a1 x as) -1 _ (a3 xag) xay
( ) = (0.1 X 02)2 : @2 (31 X 02)2
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and (339) imply

(3401 (a1 x aé)zaai'l' = @1 XGy-8XGy= (aal)ag — (aza1)(sa2),

(341) (a1 X a3)’sa;! = ay X ay-ay x s = al(say) - (sa,)(aa3).

Now (340), (341), and (336) imply
(342) Ay = g0 ' v(V =1,2)

and (342), (331), (338), and the first relation (329) imply the first relation (269).
The second relation (269) is equivalent to the second relation (331), i.e. with

a% .a 8
asa; Qa8

a8 a1a>
azs al

(343) b, +

bg = (a1 X ag)zm‘

by virtue of (336). In other words, the condition (343) is necessary for the affirma-
tive answer of the question under consideration. As regards the conditions (253);
they are satisfied in view of (329), (332), (333). '
In such a manner, the following proposition is proved.
Pr 29. If s(s, m) is a given system of arrows with rank = 3 and the lines

l, (v =1, 2) are defined by means of (326) with (327), then the conditions (333),
(337), and (343) are necessary for the existence of arrows (301) with (264) and (328).
These conditions are sufficient too: if they are satisfied, then the only solution of
the problem is proposed by (329) with (336).

Sch 40. As it has been promised, we shall conclude our exposition with some
remarks in connection with the statical-kinematical analogy. Under this term the
following mathematical phenomenon is understood.

A rigid body B being given and a denoting any of its points, there exists
exactly one function @ of the time £ with the following property: a point » belongs
to B if, and only if, the condition

(344) %(r —a)=wx(r—a)

1s satisfied for any t.
This discovery is due to Euler, and @ is called the instantaneous angular velocity

of B. Euler’s theorem (344) implies
' dr, drs s .
(345) F—W_ux(rl—rg)
for any two points r, (v =1, 2) of B.
There is a formal analogy between (345) and the connection (64) between the
moments of a system of arrows with respect to two poles », (v = 1, 2). Indeed, it
is sufficient to substitute momy, s for dr,/dt (v = 1, 2) respectively and s for @

in (345) in order to obtain (64). Inversely, it is sufficient to substitute dr,/dt for
momy, 8 (v =1, 2) respectively and & for s in (64) in order to obtain (345). This

fact has far reaching consequences.
It turns out that for any theorem concerning systems of arrows there corre-
sponds a true theorem concerning rigid body kinematics. At that, there is no need

171



to prove the kinematical theorem: it is certainly true, provided the arrow-theor#m
is proved. Furthermore, to any construction in the theory of the systems of arrows
there corresponds a meanmgful kinematical construction concerning rigid bodies.
We shall enter in no details in this connection, and we shall confine our exposition
to two examples only.

Let w (w, St + a x W) be a system of arrows intrinsic to the rigid body 2 by

virtue of the statical-kinematical analogy. The kinematical analogue of the axis of
a system of arrows (11) with (24) (Sgn 7) is the helicoidal azis of the rigid body B
provided @ # o, i.e. ax “w, in other words the line [ defined by

(346) | (5, EXG +enE) X ‘7) &l
=

The helicoidal axis (346) of B has important kinematical interpretations.

The second example is connected with the rank-theorem (Pr 15). Its kinemat-
ical analogue reads

Pr 30. w (w, £ + a x W) denoting a system of arrows intrinsic for the ngld

body B by vu'tue of the statical-kinematical analogy, the motion of B in the moment
of time £ is a rest, a translation, a rotation, or a-most general helicoidal movement
according to the s’:ases_rank w=0,1,20r3 respectively.

As mentioned, we shall enter in no more details here in connection with the
statical-kinematical analogy. A special study will be dedicated to this theme in due
time.
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ON THE REDUCTION OF POLYADIC RECURSIVE PROGRAMS
TO MONADIC ONES*

DIMITER SKORDEV

Jusmump Cxopdes. O CBEIEHUU MOJIMAIIMUYECKUX PEKYPCHUBHBIX IIPO-
T'PAMM K MOHAINYECKHUM. B pabore paccMaTpHMBaeTCA OAUH METOA CBEAECHHUA MO-
NHAOHYECKHX PEKYDCHBHHX NPOrpaMM K MoHaauueckuM. OH OCHOBaH Ha HMReAX, MCHONb-
sosaunnx JI. MpaHoBRIM IpHM HEKOTOPHX HNPHMEHEHMAX ero anrebpauuveckol Teopum pe-
kypcuu. O6cy>kaaeTca NPUMMEHMMOCTD BTOrO METOAa AJA PeaM3alMM NOAMaJAUUYECKUX pe-
KYDCHBHEIX NPOrpaMM B A3BIKaX NPOrpaMMHPOBaHMA, ONYCKAIOMMX TONBKO PEKYDCHUBHBIE
nponeny pul 6e3 napamMeTpos.

Dimiter Skordev. ON THE REDUCTION OF POLYADIC RECURSIVE PROGRAMS TO
MONADIC ONES. In the paper, a certain method is considered for the reduction of polyadic
recursive programs to monadic ones. The method is based on ideas used before by L. Ivanov in
some applications of his algebraic recursion theory. The applicability of this method is discussed
for the implementation of polyadic recursive programs in programming languages admitting only
recursive procedures without parameters.

The recursive programs considered in this paper are, roughly speaking, inter-
preted recursive program schemes (for the last notion, cf. e.g. [1, 2]). The monadic
recursive programs can be described as recursive programs which contain only unary
functional and predicate symbols and satisfy the condition that branching in them
is controlled only by primitive predicates (compare with [1] pp. 7-4, 8-1). The
polyadic recursive programs are those recursive programs which are not monadic.
Their reduction to monadic ones can be used for their implementation in program-
ming languages admitting only recursive procedures without parameters and hence

*An invited talk held at the Summer School and Conference on Mathematical Logic and its
Applications "Heyting '88“ (Varna, September 13-23, 1988). Research partially supported by the
Ministry of Culture, Science and Education, Contract No. 247/1987. '
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not permitting to implement polyadic recursive programs in a straightforward man-
ner (such languages are, for example, Basic and Forth, where in the case of the first
of them its GOSUB-feature can be used). In the present paper, a method of re-
duction will be exposed which is based on ideas used before by 1. Ivanov in some
applications of his algebraic recursion theory [3, 4]. In a slightly different form, and
without considerations about the practical implementation, this method has been
exposed in [5].

Let A= (A R, B, ...; P, Py, . ..) be a (possibly partial) algebraic system.

Definition 1 (mductlve deﬁmtlon of the notion of an A- quasz-termal
partial mapping of A™ into A™):

(1.1) Fy, F,, :.. and the projection fuhctions-l?rm ja, .y an) =aj,
m=1,2,..., j=1, ..., m, are A-quasi-termal.

(1.2) IfF: A" - — A" and G: Al — — A™ are .A-quasx-termal then so is
FoG: A' — — A" defined by

FoG(a)~ F(G(&))-.

(13)IfF: A" — — A" and G: A™ - — AP are A-quam«termal then so is
FxG: A™ — A™1? defined by

F x G(a) ~ F(a).G(a)
(the multiplication sign in the right-hand side denotes concatenation).

(14) If P is l-ary, and F : Am— S Al G, H: A™— — A" are A—quam-termal
- then so is (P; o F = G, H) A™ — 4 A™ defined by
G(a) if Pi(F(a)) = true,

(P,' oF = G, H)((_l) = { H(ﬁ) if P,—(F(E)) = false.

Definition 1’ (inductive definition of the notion of an .A-quasi-termal
operator): a uniform relativized version of Definition 1.

In the case when Fy, F5, ..., P, Ps, ... are unary, we adopt also

Definition 2 (mductlve definition of the notion of 4 monadic .A -quasi-
termal mappmg of A into A):

(2.1) F1, Fy, ... and id4 = pr, ,; are monadic .A-quasi-termal mappings.
(2.2) If F and G are monadic .A-quasi-termal mappings, then sois F o G.
(2.3) If G and H are monadic A-quasi-termal mappings, then so is |

(% =>G, H )= (P,'Oid,q = G, H).

Definition 2 (inductive definition of the notion of a monadic A- quasz-
termal operator): "a uniform relativized version of Definition 1’.

Remark 1. The assumption that Fy, F2, ..., P;, P, ... are unary does
not always assure that all .4-quasi-termal mappings of A into A are monadic. Let
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A = (N; predec; eqzero), where N = {0, 1, 2, ...}, predec(a) = a — 1, and
eqzero(a) is equivalent to (a = 0). Then the mapping (eqzeroopredec = idn,

predec) is not monadic (only the mappings Aa. a — ¢, 7 =0, 1, 2, ..., are
monadic). :
We return again to the general case (i. e. Fy,Fy, ..., Pi, P,, ... are not

necessarily unary).
Definition 3. The set of all finite sequences of elements of A will be

denoted by A*.
Definition 4. Forany F: A™ — — A", we.define F*: A*— — A* as
follows:

. ' Flay; - Om)={@miga, -.., 8s) B8 200y
Fiiy oy ael = { otherwise

(this construction has been used in-[6]).
Definition 5. For any partial m-ary predlcate P on A, we define a

partial unary predicate P on A* as follows:

))_—{ P(ai, ..., am) if s > m,

otherwise.

Pl(a, -,

Definition 6. The partial mappings drop, dup, r0111 , Toll,y, ...of
A* into A* are defined as follows:

(az, ..., @) if 5> 0,
drop((a1, vy Gg)) { 1 otherwise;
0 (als 03, =iy )lf5>0
dup((ai, ..., a;)) = { 1 ot.herw1se
‘ (an+11 a, .. '7: Qn, An42, --- a") lf 8. B,
'rolln((al, )) = { ] otherw‘ise |

(these denotations are borrowed, ‘mutatis mutandis, from the programmmg lan-

guage Forth)
' De finition 7. Let A be the unary partial structure defined by

= (A% Fy, F;, ..., drop, dup, roll,, rollz, P;, Pz, .51

Theorem 1. Whenever F is an .A-quaSI-termal partlal mapping of A™
into A", then F* is a monadic A"-quasi-termal partial mapping of A* into A*.

i h eorem 1. IfT' is an A-quasi-termal operator then there is a monadic
A’-quasi-termal operator I'* having the same number of arguments and satisfying

the equality
(64 ooy GL)y=TGi, ..., Gg))

for all sequences Gy, ..., G belonging to dom T.
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Proof (of both theorems). We use the equalities

(Prm,j)' = (dropo rolll)"'-i o (drop)j‘l,
_ (Prl,l). = dropodup, -
(FoG) = F'oG,

the fact that, whenever F: A™ = — A" and G: A™ — — A®, then

FloG™’ o if m=0,
F*o(rollyym—1)™ 0 G*q copy,, otherwise,

(FxG) = {
where copym = (pickm D™ if m > 1, copyy = duli, copyo = id4., and pick; =
roll;o (roll,“) o dup o roll;, as well as the fact that, whenever P; is l-ary, and
F: A™ - - A%, : A™ — — A", then

(PioF =G, H) = (P => G"o(drop)', H o (drop)') o F' o copy,,.

If we modify the definition of A" by adding suitable other primitive operations,
then the above proof may be replaced by a simpler one. For example, in the case
of Theorem 1’ we could add all monadic mappings quasi-termal with respect to
the original 4" as additional operations, and we would have yet a non-tautological
result. When applying the construction from the proof to concrete operators, some-
times also the addition of certain predlcates of the form P;o® with monadic ® could
happen to be convenient.

A certain kind of calculus can be developed for the construction of the op-
erators I'". Let us adopt the convention that, when given an expression intended
to denote some element of some set A", the same expression will denote also the
corresponding mapping of A° into A™. Then, given an .4-quasi-termal operatar
I’ having k arguments and producing m-ary functions, we form the corresponding
expression U*, where U is an expression for I'(g1, ..., gx)(Z1, ..., Zm), assuming
g1, -.-, gr to be variables for functions of the suitable types, and z;, ..., z,, to
be variables for elements of A. The next step is to transform U” into an expression
of the form V o 2] o... 0 z},, where V does not contain 23, ..., z,,, and V is
obtained from g3, ..., gk, from denotations of monadic mappings and from pred-
icates P; o ® by means of composition and branching (this transformation can be
done by using equalities from the proof of Theorems 1, 1’ and some other equa.htles
e. g. dupo F*= F*o F*foreach F : A"~ — A). Takmg the expression V and
replacing the occurrences of g3, ..., 9% in it by variables va;, ..., yai for unary
operations in A*, we obtain an expression for I'"'(yay,...., 7ak)

Example 1. Let Abe the same as in Remark 1 Let U be the expression

g(g(predec(y), z), g(predec(z), 2)),

where g is a variable for functions of type N> — — N, and z, y, z are variables for
elements of N. Then

U = g o(g(predec(y), 2)) o (g(predec(z), z))
= g¢' og o(predec(y)) oz o(g(predec(z), 2))’
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= g og oroll; ! o(g(predec(z), z)) o (predec(y)) oz’
= g"og’oroll; og o(predec(z)) oz o(predec(y)) oz’
= g'og’oroll;'og oF oz 0y 0z,

where roll; ! is the inverse mapping of roll,, and the mapping F of type N° —-
N* is defined by

F(z, y, z) = (predec(z), z, predec(y), z).
Hence, taking v to be a variable for unary operations in A", we may set
I"(y) =yoyoroll;'oyo F.

Definition 8. A recursive program over A is a system of equations of
the form :
yl"—‘:rai(gh“'r gk): .=1r""kr
where T'a;, ..., Ia; are A-quasi-termal operators. The above program is called
monadic if g¢;, ..., gx are variables for unary functions, .and the operators
Tay, ..., Fap-are monadic. The functions computed by the program are the com-
ponents of the least solution of the system.

Remark 2 Some authors use the term “monadic program” in a sense
which is not the same as in the above definition. Cf., for example, {7, p. 544].

Definition 9. Given a recursive program over A having the form
from Definition 8, the monadic transform of this program is the monadic recursive
program ‘

va; = I'a;(yay, ..., yai), =1 ivey B

over A’, where ya;, ..., vaj are variables for unary operationsr in A*.
Using the continuity of the .A-quasi-termal operators and of the operation
AF, F°*, one easily proves.

Theorem 2. If Gy, ..., G are the functions computed by a given
recursive program over A, then Gj, ..., G, are the functions computed by its
monadic transform. '

Since

G(aly teey am.) _G‘(<a1’ =L am'))

where m; is the arity of G;, Theorem 2 shows a way for the reduction of recursive
programs over A to monadic recursive programs over A’.
Example 2. Let A= (N; predec, C, L, R; eqzero), where

C(z, y) = §(m+ YWz+y+1)+2,

L(C(z, y) =z, R(Clz, y))=vy
for all z, y in N. Consider the two-argument partial recursive functlon w defined
recurswely by -

| C(z, z) , Cif y=0,
,w(C‘(:c, Y), z) = y-—1 : ity >0, #=0,
w(w(y—1, z), w(z —1, z)) otherwise
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(according to [8)], w is an universal function for the uhary partial recursive func-
tlons) The above recursive definition of w can be represented by a recursive pro-
gram in the sense of Definition 8 such that w will be the function ¢omputed by that
recursive program. We could, for example, take the recursive program g = A(g)oG,

where g is a variable for two-argument partial functions in N, the operator A trans-
forms such functions into three-argument partial functions in N, G is a rnappmg of
N? into N®, and the following defining equalities hold:

C(zr Z) if y= 0,
Ag)(z, y, )~ q y—1 if y>0, z=0,
: a(g(y =1, 2), g(z -1, z)) otherwise, .

G(t, z) = (L(t), R(t), 2).

Since (A(g) 0 G)* = (A(g)) o G* = A’(g") o G*, the monadic transform of the above
recursive program can be written as y = A° (7) o G*. For constructing an explicit
expression for A’(7); we consider the expression U where U is the expression
A(g)(z, y, z). We have the equahty i =

U* = (eqzero‘'o y* . =% (Clz; 2))’ (eqzero o z* = (predec(y))’,
(9(g(predec(y), z), g(predec(z), 2))))).
Makmg use of Example 1, we get | . -
U = (eqzero oy*=> . C’oz’ 02, (e\qzero‘lo z* —> predec’oy’,
g*og’o rollglog'oF'oz'oy'oz'))
= (eqzero'o drop = C o drop o rolly, eqiero‘ — predec’ o drop,
gog'o _::'0112—‘1 og'oF*))oz*oy o2’
Hence ; |
A'(7) = (eqzero'odrop=> C"o drop o rell;, (eqzero’ ==
predec’ o drop,y oy o ::'0112’1 oo F)).

So we have found the explicit form of the monadic transform of the original recursive
program computmg w. According to Theorem 2, this monadic transform computes
the function «*, and therefore could be used for computing values of w.

Of course, a recursive program in Pascal for computing values of w can be
written in a stralghtforward manner. But the monadic transform constructed above
glves us the posmblhty to construct relatively simple programs computing values
of w in programming la.ngua.ges holdmg out much more restricted possibilities for a
stralghtforward recursive programming. To demonstrate this, we wrote a program
in Applesoft.Basic for the some purpose, using the obtained monadic transform

and the GOSUB-feature of Basic. The length of the program is less than 1000
bytes. Sequences from N* are represented on a stack principle, the members of
the sequence following each other in direction from top to bottom. The stack is
realized by means of an array A'supplied with a counter D, and the dimension of A
is chosen in concordance with the restriction in Applesoft.Basic about the number
of the nested subroutine calls. The flow diagram of the program and the way of
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i

DIM A(55)

\ INPUT “FIRST ARGUMENT =" ;A(1) j

S AL0) /

L]

\ INPUT "SECOND ARGUMENT

/{computaﬁon }'\

\ PRINT “FUNCTION VALUE ="'; A(0) /

END

Fig. 1. Flow diagram of the program in Basic for computing w

top
A(D)=a1
A(D'I):ﬂz

A(D-2'=03

A(' ) ‘-'05_1

A(0) =a,

bottom
Fig. 2. The stack representation of the sequence (a1,...85)

using the array A for the stack representation of elements of N* are shown on
Fig. 1, 2. An essential part of the program is a subroutine called “computation”
which contains three calls of itself. The flow diagram of this subroutine is shown
on Fig. 3. As to the efficiency of the considered program, the situation is not
so bad as somebody could suspect. Namely, some experiments were made by the
author on a “Pravetz-8M” microcomputer, and they showed the compiled variant
of the program running faster then the directly written recursive Pascal program
processed in the Apple UCSD Pascal system. For obtaining more information
about the efficiency of using monadic transforms, the author wrote also a monadic
recursive and a non-recursive program in Apple Pascal for computing values of w
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!

T,Z:=A(D),A(D-1}

X,¥:=LIT),R(T)

0 ¥eS .| A(D-1):=CX2) D:=D-1 RETURN
0 Y2 ol AtD-11:2v-1 D:=D-1 RETURN)

A{D+2},A{D+1},A(D):=X-1,Z,Y1

/ {computation}

A(D},A{D~1) ,A(D-2):= A{D-1),A[D-2),A(D)
/ {co;nputarian}
/{ cmputat.ionjr

i

( RETURN )

Fig. 3. Flow diagram of the subroutine “computation”

using again the monadic transform of the original recursive program. The table
below contains some average ratios of run-times {(the timing-experiments were based

on computing w(4, 0), w(11, 1), w(11, 3), w(41, 50), w(60, 61) and w(312, 3):

Applesoft.Basic Apple UCSD Pascal
interpreted - compiled polyadic monadic non-
recursive recursive recursive
1.94 0.86 1 1.06 1.10
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