Рост целых функций, обращающихся в ноль на аналитическом множестве

Authors

  • Maria Mitreva

Keywords:

bounds on the growth, entire functions

Abstract

Left $f$ be an entire function in $\mathbb{C}^{n}$, $V$ be the set of its zeroes, and $n_{f}(z', z_{n})$ be the number of zeroes of $f(z', z_{n})$ in the circle $|z_{n}| \leq t$. We construct an entire function $F$ such that $F$ vanishes on $V$ and its growth is estimated in terms of $n_{f}(z',t)$

Downloads

Published

1998-12-12

How to Cite

Mitreva, M. (1998). Рост целых функций, обращающихся в ноль на аналитическом множестве. Ann. Sofia Univ. Fac. Math. And Inf., 90, 133–138. Retrieved from https://annual.uni-sofia.bg/index.php/fmi/article/view/291