Factorizations of the groups $PSp_{6}(q)$
Abstract
The following result is proved
Let $G=PSp_e(q)$ and $G=AB$, where $A,B$ are proper non-Abelian simple subgroups of $G$. Then one of the following holds:
(1) $q=2$ and $A\cong U_3(3), B \cong U_4(2)$;
(2) $q=4$ and $A \cong J_2, B \cong U_4(4)$;
(3) $q=2^n$ and $A \cong L_2(q^3), B \cong L_4(q)$ or $U_4(q)$;
(4) $q=2^n>2$ and $A \cong G_2(q), B \cong PSp_4(q), L_4(q)$ or $U_4(q)$
Downloads
Published
1994-12-12
Issue
Section
Articles
How to Cite
Factorizations of the groups $PSp_{6}(q)$. (1994). Annual of Sofia University St. Kliment Ohridski. Faculty of Mathematics and Informatics, 86(1), 73-78. https://annual.uni-sofia.bg/index.php/fmi/article/view/439